
Toward Scalable Verification for Safety-Critical Deep Networks
Lindsey Kuper

Parallel Computing Lab, Intel Labs
lindsey.kuper@intel.com

Guy Katz
Stanford University

guyk@cs.stanford.edu

Justin Gottschlich
Parallel Computing Lab, Intel Labs

justin.gottschlich@intel.com

Kyle Julian
Stanford University

kjulian3@stanford.edu

Clark Barrett
Stanford University

barrett@cs.stanford.edu

Mykel J. Kochenderfer
Stanford University
mykel@stanford.edu

ABSTRACT
The increasing use of deep neural networks for safety-critical ap-
plications, such as autonomous driving and flight control, raises
concerns about their safety and reliability. Formal verification can
address these concerns by guaranteeing that a deep learning sys-
tem operates as intended, but the state of the art is limited to small
systems. In this work-in-progress report we give an overview of
our work on mitigating this difficulty, by pursuing two comple-
mentary directions: devising scalable verification techniques, and
identifying design choices that result in deep learning systems that
are more amenable to verification.

ACM Reference Format:
Lindsey Kuper, Guy Katz, Justin Gottschlich, Kyle Julian, Clark Barrett,
and Mykel J. Kochenderfer. 2018. Toward Scalable Verification for Safety-
Critical Deep Networks. In Proceedings of SysML Conference (SysML). ACM,
New York, NY, USA, 3 pages.

1 INTRODUCTION
Machine learning systems, and, in particular, deep neural networks
(DNNs), are becoming a widely used and effective means for tack-
ling complex, real-world problems [4]. However, a major obstacle
to the use of DNNs in safety-critical systems, such as autonomous
driving or flight control systems, is the great difficulty in providing
formal guarantees about their behavior.

A powerful technique for formal verification of properties of
a software artifact is to encode the artifact and the property one
wishes to prove about it as a satisfiability modulo theories (SMT)
formula, and then use an SMT solver to prove that the property
holds or find a counterexample showing that it does not. While it is
possible to verify properties of neural networks using SMT solvers,
until recently the technique only scaled to toy-sized networks of
fewer than ten neurons [12].

Yet, for the practical adoption of SMT-based DNN verification,
we must be able to verify properties of DNNs of up to thousands
(or more) of neurons. To do this, we advocate a two-pronged ap-
proach. First, we propose the development of specialized, efficient
SMT solvers that are well-suited for DNN verification problems.
Second, we propose designing DNNs in ways that make them more
amenable to SMT-based verification. These two approaches com-
plement each other, and we observe that design choices that make
a DNN more amenable to verification are also desirable for other
reasons, such as improved speed of inferencing, smaller memory
requirements, and reduced power footprint.

SysML, February 15-16, 2018, Stanford, California, USA
.

Figure 1: Overview of the Reluplex architecture. Reluplex takes
as input a network description and a property we wish to prove
about the network’s behavior, both expressed as an SMT formula.
The SMT solver incorporates a domain-specific linear programming
(LP) + ReLU theory solver that interacts with an underlying SAT
solver and determines whether the formula is satisfiable.

2 SCALING UP SMT-BASED VERIFICATION
OF NEURAL NETWORKS

A primary focus of this work is in extending the capabilities of
automated verification tools such as SMT solvers to formally ver-
ify properties of DNNs used for safety-critical systems. A major
challenge of verifying properties of DNNs with SMT solvers is in
handling the networks’ activation functions.

Each neuron of a neural network computes a weighted sum of
its inputs according to learned weights. It then passes that sum
through an activation function to produce the neuron’s final out-
put. Typically, the activation functions (e.g., sigmoid) introduce
nonlinearity to the network, making DNNs capable of learning
arbitrarily complex functions, but also making the job of automated
verification tools much harder, in some cases moving the problem
from P to NP.

Using SMT solvers to verify properties of neural networks in-
volves encoding the network and the property in question as formu-
las in some theory, such as the theory of linear real arithmetic. Our
work leverages the observation that, apart from their activation
functions, neural networks can be expressed using conjunctions of
linear real arithmetic formulas, which are straightforward to handle
using standard linear programming (LP) solving algorithms. It is
also possible to express piecewise-linear activation functions, such

ar
X

iv
:1

80
1.

05
95

0v
2

 [
cs

.A
I]

 2
 F

eb
 2

01
8

SysML, February 15-16, 2018, Stanford, California, USA L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, M. Kochenderfer

as rectified linear units (ReLUs), as part of linear arithmetic for-
mulas, but every ReLU in a network then introduces a disjunction
to the formula. These disjunctions quickly cause an exponential
increase in the state space that the SMT solver must explore to
prove properties about the network, thus limiting the applicability
and scalability of the approach.

In a recent paper [8], we proposed an improved SMT-based algo-
rithm, called Reluplex, capable of verifying properties of networks
that are an order of magnitude larger than previously possible. Relu-
plex mitigates the difficulty posed by activation functions through
a lazy approach, which often makes it possible to eliminate many
activation functions from the problem without changing the result.
It extends the theory of linear real arithmetic by introducing a new
“ReLU” predicate that can be split into disjuncts lazily, making it
possible to avoid exploring large parts of the state space. As a result,
the Reluplex solver can verify networks that are notably larger
than what was previously possible. For example, we used Reluplex
to verify safety properties of a DNN used as the controller for a
prototype of the ACAS Xu aircraft collision avoidance system [7].

The lazy-ReLU-splitting technique that Reluplex uses is an exam-
ple of the general problem-solving strategy of exploiting high-level
domain-specific abstractions for efficiency that has proven fruitful in
a variety of areas. For example, in the setting of high-performance
domain-specific languages, a high-level representation of program-
mer intent enables compiler optimizations and smart scheduling
choices that would be difficult or impossible otherwise [1]. The
use of high-level abstractions not only does not compromise high
performance, but actually enables it. Reluplex’s lazy ReLU splitting
is another such optimization, made possible by the addition of the
high-level ReLU predicate to the theory used by the solver. The
higher-level representation makes it possible to determine the sat-
isfiability of a formula more efficiently than if the problem were
expressed at a lower level.

An important lesson here for scalable verification is that we
have much to gain by not treating SMT solvers as black boxes,
but instead developing domain-specific theory solvers like Reluplex
that are uniquely suited to the verification task at hand. We are
currently working on extending Reluplex to handle piecewise-linear
approximations of other commonly used activation functions to be
able to handle a wider variety of networks.

3 DESIGNING VERIFICATION-FRIENDLY
NEURAL NETWORKS

In addition to improving the scalability of verification tools, a com-
plementary direction for scaling DNN verification is to design the
networks themselves in a way that makes them more amenable
to verification. When designing a neural network, some of the ob-
vious design decisions are related to the topology of the network,
such as the number of hidden layers and their dimensions. It is not
surprising that, from a verification point of view, smaller networks
are generally easier to handle. Developers of neural networks may
opt to use a smaller network, perhaps achieving lower accuracy, in
order to enjoy the benefits of verification. On the other hand, re-
cent work [5] suggests that it is possible to significantly reduce the
storage requirements of neural networks without compromising

accuracy. Although the motivation for this work was ease of deploy-
ment of neural networks in resource-constrained settings rather
than ease of verification, these pruned, quantized networks may
also be easier for verification tools to handle than uncompressed
networks.

Our initial experiments suggest that the size of the network is
not necessarily the only factor to consider; the network topology is
also important. We have observed that networks with many layers
with a few neurons each are generally easier for the solver to handle
than networks with few layers, but many neurons in each layer.

An extreme way of applying this principle is by discretizing
parts of the neural network in question, effectively turning it into
a family of smaller networks. The ACAS Xu network [7] used this
approach due to considerations that did not include verification
— rather, due to hardware constraints, the developers found that
many smaller networks were preferable to one large one. However,
the discretization step also made it easier to verify properties of
each of the smaller networks. A similar approach could facilitate
the verification of other systems as well.

Another decision with consequences for the scalability of ver-
ification is activation function selection. These choices can have
far-reaching effects. For example, some of the more successful ver-
ification efforts thus far [3, 8] have focused on piecewise-linear
activation functions, such as ReLUs or max-pooling layers, while
attempts to verify networks with sigmoid activation functions have
proved far less scalable.

In addition to network topology and activation functions, there
are several other potential avenues to explore. One example is
low-precision DNN arithmetic, which is an increasingly popular
way to accelerate DNN training and inferencing [6]. The simplicity
and smaller size of low-precision networks will make them more
amenable to verification than full-precision networks [2, 11], as
well as more suitable for use on low-power edge devices [10]. It
may even be the case that hardware accelerator techniques that
optimize inference on low-precision networks could be used to
speed up verification of those same networks.

4 CONCLUSION
Verifying that neural networks behave as intended may soon be-
come a limiting factor in their applicability to real-world, safety-
critical systems such as those used to control autonomous vehicles
and aircraft. Recent work revealing neural networks’ vulnerability
to adversarial inputs [13], including in physical-world attacks [9],
makes meeting this challenge more urgent.

Verification is a promising avenue for mitigating this difficulty,
but additional work is required to scale up verification techniques
to be practically applicable to modern DNNs. Initial work by us and
others points to two complementary avenues that could achieve the
sought-after scalability: first, the design of verification algorithms
tailored for neural networks (e.g., by enriching the theories used by
SMT solvers); and second, the creation and use of design principles
for neural networks that produce DNNs that are more amenable
to verification (e.g., model topology and activation function selec-
tion). We believe that through additional work in these directions,
verification could be successfully applied to many real-world deep
learning systems.

Toward Scalable Verification for Safety-Critical Deep Networks SysML, February 15-16, 2018, Stanford, California, USA

REFERENCES
[1] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.

Atreya, and Kunle Olukotun. 2011. A Domain-Specific Approach to Heteroge-
neous Parallelism. In Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP ’11). ACM, New York, NY, USA, 35–46.
https://doi.org/10.1145/1941553.1941561

[2] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Verification
of Binarized Neural Networks. CoRR abs/1710.03107 (2017). arXiv:1710.03107
http://arxiv.org/abs/1710.03107

[3] Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. CoRR abs/1705.01320 (2017). arXiv:1705.01320 http://arxiv.
org/abs/1705.01320

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The
MIT Press. http://www.deeplearningbook.org.

[5] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. CoRR abs/1510.00149 (2015). arXiv:1510.00149 http://arxiv.org/abs/1510.
00149

[6] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Quantized Neural Networks: Training Neural Networks with Low
PrecisionWeights and Activations. CoRR abs/1609.07061 (2016). arXiv:1609.07061
http://arxiv.org/abs/1609.07061

[7] Kyle Julian, Jessica Lopez, Jeffrey S. Brush, Michael Owen, and Mykel J. Kochen-
derfer. 2016. Policy Compression for Aircraft Collision Avoidance Systems. In
Digital Avionics Systems Conference (DASC). https://doi.org/10.1109/DASC.2016.
7778091

[8] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I. 97–117. https://doi.org/10.1007/
978-3-319-63387-9_5

[9] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2016. Adversarial examples
in the physical world. CoRR abs/1607.02533 (2016). arXiv:1607.02533 http:
//arxiv.org/abs/1607.02533

[10] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F.
Kawsar. 2016. DeepX: A Software Accelerator for Low-Power Deep Learning
Inference on Mobile Devices. In 2016 15th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN). 1–12. https://doi.org/10.1109/
IPSN.2016.7460664

[11] N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. 2017.
Verifying Properties of Binarized Deep Neural Networks. CoRR abs/1709.06662
(2017). arXiv:1709.06662 http://arxiv.org/abs/1709.06662

[12] Luca Pulina and Armando Tacchella. 2010. An Abstraction-refinement Approach
to Verification of Artificial Neural Networks. In Proceedings of the 22nd Inter-
national Conference on Computer Aided Verification (CAV’10). Springer-Verlag,
Berlin, Heidelberg, 243–257. https://doi.org/10.1007/978-3-642-14295-6_24

[13] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
CoRR abs/1312.6199 (2013). arXiv:1312.6199 http://arxiv.org/abs/1312.6199

https://doi.org/10.1145/1941553.1941561
http://arxiv.org/abs/1710.03107
http://arxiv.org/abs/1710.03107
http://arxiv.org/abs/1705.01320
http://arxiv.org/abs/1705.01320
http://arxiv.org/abs/1705.01320
http://www.deeplearningbook.org
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1609.07061
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
https://doi.org/10.1109/IPSN.2016.7460664
https://doi.org/10.1109/IPSN.2016.7460664
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
https://doi.org/10.1007/978-3-642-14295-6_24
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

	Abstract
	1 Introduction
	2 Scaling up SMT-based verification of neural networks
	3 Designing verification-friendly neural networks
	4 Conclusion
	References

