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Dynamic Quorum Policy for Maximizing Throughput
in Limited Information Multiparty MAC

Prasanna Chaporkar, Saswati Sarkar, Member, IEEE, and Rahul Shetty

Abstract—In multiparty MAC, a sender needs to transmit each
packet to a set of receivers within its transmission range. Band-
width efficiency of wireless multiparty MAC can be improved
substantially by exploiting the fact that several receivers can be
reached at the MAC layer by a single transmission. Multiparty
communication, however, requires new design paradigms since
systematic design techniques that have been used effectively in
unicast and wireline multicast do not apply. For example, a trans-
mission policy that maximizes the stability region of the network
need not maximize the network throughput. Therefore, the objec-
tive is to design a policy that maximizes the system throughput
subject to maintaining stability. We present a sufficient condition
that can be used to establish the throughput optimality of a
stable transmission policy. We subsequently design a distributed
adaptive stable policy that allows a sender to decide when to
transmit using simple computations. The computations are based
only on limited information about current transmissions in the
sender’s neighborhood. Even though the proposed policy does not
use any network statistics, it attains the same throughput as an
optimal offline stable policy that uses in its decision process past,
present, and even future network states. We prove the throughput
optimality of this policy using the sufficient condition and the
large deviation results. We present a MAC protocol for acquiring
the local information necessary for executing this policy, and
implement it in ns-2. The performance evaluations demonstrate
that the optimal policy significantly outperforms the existing
multiparty schemes in ad hoc networks.

Index Terms—MAC layer scheduling, stability, throughput op-
timal policy, wireless multicast.

1. INTRODUCTION

N multiparty MAC, a sender needs to transmit each packet
I to a set of receivers within its transmission range. Multiparty
MAC forms the basis of a growing and diverse class of network
utilities—this motivates the design of intelligent resource allo-
cation policies for multiparty MAC. We first present examples
of such utilities.

Enhancing Reliability Using Multi-Path Diversity: Wireless
communication is known to be unreliable. Several packets are
dropped between the source and the destination, some inadver-
tently, e.g., due to channel errors during deep fades, extended

Manuscript received June 18, 2004; revised March 31, 2005; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor E. Knightly. This work
was supported by the National Science Foundation under Grants ANI-0106984,
NCR-0238340, and CNS-0435306. Parts of this paper were presented at
WiOpt’04, University of Cambridge, U.K., March 2004, and MOBIHOC’ 04,
Tokyo, Japan, May 2004.

P. Chaporkar is with INRIA, Paris, France (e-mail: Prasanna.Chaporkar@
ens.fr).

S. Sarkar is with the Department of Electrical and Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
swati@.ee.upenn.edu).

R. Shetty is with GTL Limited, India (e-mail: shettre @hotmail.com).

Digital Object Identifier 10.1109/TNET.2006.880175

C/? R, \Transr}lris_s_iqq Rgpg\e\({t S,
K ; . R
7 Ra 5 o’
O, : ‘ N
e R '.
Sl..’- g "
P Sy
\ O ! \
N , o,
4 ’
SR g

Transmission Range of S|

Fig. 1. An example to demonstrate the advantages and the challenges associ-
ated with wireless multiparty MAC. The figure shows two senders 51, S> and
five receivers R, to R5. Ry to R4 are S;’s receivers, and R5 is S5’s receiver.
Dashed circle indicates the communication range of a sender.

periods of congestion, some deliberately by misbehaving nodes
[1]. Even in one-to-one communication, regulated multiple
transmissions of each packet through different paths [2], [3]
enhance reliability.!

Communicating Routing Updates: Routing updates are com-
municated through limited flooding [4]-[7].

Anycast: Anycasting is the transmission of a message (e.g.,
query) such that it reaches at least one node (e.g., server) in a
predetermined set [8]. It is used in database query, sensor net-
works and disaster recovery operations.

Multicast: Multicasting is the transmission of a message
such that it reaches multiple nodes [9], [10]. It is used in
group communication applications like distance learning and
teleconferencing. We distinguish between multiparty MAC and
multicast as follows. Unlike in multiparty MAC, in multicast
the destinations need not be in the sender’s transmission range;
multicast is thus an end-to-end communication. Multicast is
one of many utilities that can use multiparty MAC.

Since wireless communication is inherently broadcast, in
multiparty MAC, a sender needs to transmit each packet only
once in order to reach all its receivers. Multiparty communica-
tion is likely to benefit significantly from appropriate utilization
of this “free-delivery” property. But, the broadcast property
leads to several well-known transmission challenges (e.g., the
hidden terminal problem), which adversely affect multiparty
MAC. We focus on exploiting the advantages and mitigating
the disadvantages of the broadcast property so as to design an
optimal multiparty MAC.

A multiparty specific challenge is that some but not all the re-
ceivers may be ready to receive. For example, in Fig. 1, when .S
is transmitting to Rj5, Ro cannot receive the transmission from
S as both the transmissions will collide at Ry. However, Ry,
R3, and R, can still receive the transmission. Thus, S; needs to

IPaths may be link-disjoint, node-disjoint, and braided or partially-disjoint.
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decide whether it should transmit even when R» is not ready, or
it should wait until all the receivers are ready.

A transmission policy decides whether a sender should
transmit at any given time. A policy that does not allow trans-
mission until a sufficient number of receivers are ready may
lead to unstable systems that have unbounded queue lengths at
the senders. On the other hand, if the senders transmit when
only a few receivers are ready, then the transmitted packet will
be lost at the receivers that were not ready, which may result
in low system throughput. Thus, there is a trade-off between
system stability and the throughput. The system clearly needs
to be stable. The challenge therefore is to design a multiparty
MAC that maximizes the system throughput, while maintaining
system stability.

In Section III, we describe our system model and obtain a
sufficient condition to establish the throughput optimality of
an arbitrary stable policy. In Section IV, we propose a quorum
based transmission policy that defers transmission at each
sender until it has a quorum, i.e., a sufficient number of its
receivers are ready to receive. The quorum-policy is suitable
for distributed implementation in resource constrained ad hoc
networks, as it uses 1) simple computations; 2) no information
about system statistics; 3) limited control message exchange;
and 4) limited information about its neighbors. We prove that
the quorum-policy maximizes throughput among all policies
that stabilize the system (see the Appendix). A sender’s optimal
quorum value depends only on its queue length and its trans-
mission decisions depend on the number of its ready receivers.
The first quantity is easily available at a sender. In Section V,
we propose a MAC protocol that allow a sender to estimate the
second quantity. In Section VI, we evaluate the performance of
various multiparty schemes using ns-simulations in a wireless
network consisting of several multicast and unicast sessions.
Simulation results show that the optimal policy provides signif-
icantly higher throughput than existing approaches.

II. LITERATURE REVIEW

We now briefly review previous multiparty MAC schemes.
Singh et al. have proposed a MAC protocol for power aware
broadcast [11]. Wang ef al. have proposed a scheduling and
power control protocol to minimize the transmission powers
[12]. Jaikaeo et al. have studied multiparty communication
using directional antennas [13]. Kuri et al. have proposed a pro-
tocol for reliable packet delivery in wireless LANs [14]. This
protocol is based on assumptions that hold in wireless LANs but
not in ad hoc networks. For ad hoc networks, Tang et al. have
proposed Broadcast Medium Window (BMW) protocol, which
is a unicast based multiparty MAC that transmits a packet to
each receiver separately in round robin fashion [15]. IEEE
802.11 implements multiparty communication by broadcasting
a packet after disabling all control messages — we refer to this
as broadcast based multiparty. Thus, second hop interference
is ignored. Tang et al. have proposed a Broadcast Support Mul-
tiple Access (BSMA) protocol, which is a quorum-1 multiparty
scheme [16], [17]. In this scheme, a sender transmits a packet
whenever at least one receiver is ready to receive. Sun et al.
have proposed Batch Mode Multicast MAC (BMMM) protocol,
which also implements quorum-1 multiparty scheme [18]. The
unicast based multiparty policy does not exploit the broadcast
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nature of wireless medium, and its multiple transmissions of
a packet waste power and bandwidth. The broadcast based
multiparty and quorum-1 multiparty policies cause packet
loss at receivers because several receivers may not be ready
at the time of transmission. The broadcast based multiparty
also causes packet collision due to second hop interference.
Thus, the performance trade-offs have not been adequately
explored for multiparty MAC. Furthermore, there is no analyt-
ical performance guarantee for any of these schemes. Several
interesting protocols have been proposed at the transport and
network layers for the utilities that would use multiparty MAC,
e.g., multicast [10], [11], [19], [20], transmitting routing up-
dates [4]-[7], etc. These higher layer protocols can work with
any underlying MAC, and their performances depend on the
efficiency of the MAC which is the focus of our research.

III. SYSTEM MODEL

We consider a wireless network with several MAC layer mul-
tiparty and one-to-one (unicast) sessions. Each multiparty MAC
session comprises of a sender and a set of receivers (party) that
are in the sender’s transmission range. However, all nodes need
not be in each other’s transmission range. We consider transmis-
sion of data traffic. Time is slotted. We assume that each packet
can be transmitted in a single slot.

A. Wireless Multiparty MAC Requires New Design Paradigms

A major design challenge in wireless multiparty MAC is that
several existing approaches for optimizing system performance
do not apply. Consider the objective of maximizing system
throughput in a network with n senders generating packets at
rates Aq, ..., A, respectively. Consider only the transmission
policies that ensure that each packet is received correctly by
at least one designated receiver. Now, throughput is the sum
of the number of packets received correctly per unit time
over all the receivers. The stability region of a policy is the
set of arrival rates X = (Ay,...,\,) for which the senders
have finite expected queue lengths. The stability region of the
network (denoted as A) is the union of that of all transmission
policies. In unicast and wireline multicast, a policy maximizes
throughput if and only if its stability region equals A. The latter
happens if there exists a Lyapunov function that has a negative
drift for the policy in A. Lyapunov function is a positive real
valued function of queue lengths [21]. The Lyapunov function
is said to have a negative drift, if its expected value decreases
for large queue lengths. Then, the queue lengths are not likely
to become large, and hence the system is stable. Thus, existence
of a Lyapunov function with negative drift for every XeA
under a certain policy is sufficient to prove that the policy max-
imizes the stability region. This in turn would prove that such
a policy maximizes the throughput in packet radio and wireline
multicast networks [22], [23]. This systematic approach cannot
be used in wireless multiparty MAC as a policy that attains A
need not maximize the throughput and vice versa.

Example: Consider Fig. 1. When Sy transmits, Ry, R, Ry
receive the packet without any error; R receives the packet only
if S5 is not transmitting simultaneously. When S5 transmits,
R5 receives the packet without any error. Consider two trans-
mission policies A; and As. Under A1, each sender transmits
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whenever it has a packet. Under A, S, transmits whenever it
has a packet, while .Sy transmits only when S5 is not transmit-
ting. We assume that S; knows S»’s transmission decisions, and
in each slot a packet arrives at S7 (S2) with probability A1 (A2).
Policy A;’s stability region is Ay = {X 0 <\ < i =
1,2}. This is also the network’s stability region as a sender can
transmit only one packet in each slot. The network throughput
under A, for arrival rates Xe AyisA1(4—A2)+ Ao. Now, As’s
stability region is Ap = {X 0< A <1,0< A <1 = A},
which is a strict subset of the network’s and A;’s stability re-
gion. The throughput under A, for arrival rates X € Ay is
4X1 + Ag. Thus, when Ay > 0, the throughput under A, is
strictly higher than that under A for Xin As. Thus, unlike A1,
A, attains the stability region of the network, but for certain ar-
rival rates its throughput is less than A;’s throughput.

The above observation has two consequences. First, we must
maximize the throughput subject to stability. In other words,
we must design a stable transmission policy that maximizes the
throughput among all the stable policies. Second, the existing
framework does not apply. Therefore, we need new design tech-
niques to attain the objective.

B. How Much Should Nodes Coordinate in Multiparty MAC?

The optimum policy and the maximum throughput depends
on how much each node knows about the network. We describe
three broad categories of coordination levels.

1) Full Coordination: Nodes coordinate with each other so
that each node knows the queue lengths at all other nodes in the
network. Thus, each node decides when to transmit based on the
knowledge of every other node’s transmission decisions. This is
equivalent to having a centralized scheduler that knows the state
of the entire network, decides the transmissions and informs the
nodes accordingly. For example, in unicast packet radio net-
works, Tassiulas et al. have presented an optimum scheduling
policy under full coordination [22].

2) Active Information Exchange: Each node decides when
to transmit based only on the transmissions in its neighborhood,
and the readiness states of its receivers. It learns the former
by sensing the channel, and the latter by limited message ex-
change with its receivers. A node does not know anything else
about the network, and does not coordinate its transmissions
with those of any other node. The unicast IEEE 802.11 belongs
in this framework. In IEEE 802.11, each node decides when to
transmit based on channel sensing and RTS-CTS exchange with
its receiver.

3) Passive Observation: Each node decides when to transmit
based only on the transmissions in its neighborhood, which it
learns by sensing the channel. Nodes do not exchange any con-
trol message. Randomized MAC protocols like ALOHA and
CSMA belong in this framework.

An optimum full coordination scheme will have the max-
imum throughput, but is not likely to be deployed given its need
for huge control message exchange and/or centralized coordina-
tion. On the other extreme, passive observation based schemes
will be simple to implement, but will have low throughput due
to excessive collisions. The active information exchange case
provides a nice trade-off between the two extremes both in
terms of throughput and control overhead, and are therefore
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Fig. 2. MAC layer multiparty session and its interaction with the rest of the
network. Node S is a sender, where packets arrive at the rate A. Sender S trans-
mits the packets to receivers R to R¢.

Fig. 3. Multicast session from S to receivers R; to R; and two unicast ses-
sions from S5 to Rg and S3 to Rg in a multi-hop wireless network. First we
observe that a single network layer multicast session corresponds to many MAC
layer multiparty sessions, e.g., using multiparty communication S; transmits to
intermediate nodes I; to Iz, I, transmits to the receivers 2 to I3, etc. Con-
sider a MAC layer multiparty session from sender .51 to MAC layer receivers I,
I and I5. Observe that when Ry is receiving data, S is not ready to transmit,
but all S, ’s receivers are ready to receive. Furthermore, when S5 is transmitting
to Rs, receivers I, and I3 are not ready to receive, but S, is ready to transmit
and I, is is ready to receive. Thus, readiness states of I» and I5 are correlated.

most likely to be deployed. For example, IEEE 802.11 is one
of the most popular unicast MAC schemes. We design an
optimal dynamic multiparty MAC based on active information
exchange. The proposed policy is distributed, adaptive, com-
putationally simple, and can be implemented using a simple
modification of IEEE 802.11.

C. Mathematical Framework and System Objectives for
Dynamic Multiparty MAC Based on Active Information
Exchange

Fig. 2 represents the interaction between a MAC layer multi-
party session, and the rest of the network. Due to the broadcast
nature of wireless medium, transmissions from other nodes in
the network affect the performance of the multiparty session and
vice versa. The effect of the rest of the network on the multiparty
session is that the receivers are not always ready to receive. A
receiver will not be ready when there are transmissions in its
neighborhood or the transmission condition is poor, or when it
is in a sleep mode. For example, in Fig. 3 the receivers I, and
I3 will not be ready when S3 is transmitting to Rg. Further, the
readiness states of different receivers are correlated in the same
slot. The correlation across slots is due to bursty channel er-
rors. The impact of the session on the rest of the network is that
the sender’s transmission interferes with simultaneous transmis-
sions in its neighborhood. This interference is controlled as fol-
lows. The sender does not transmit if any node in its neighbor-
hood is receiving a packet. For example, in Fig. 3, S; does not
transmit when Sy is transmitting to Rgy. Also, the sender backs
off just after transmitting a packet so that other senders can use
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the shared medium. Thus, a sender is not ready when it backs
off or a node in its neighborhood is receiving a packet. Thus, the
effect of the session on the rest of the network is controlled by
regulating the sender’s readiness states. The readiness states of
the receivers may be correlated with that of the sender.

We consider a single multiparty session with G receivers, and
model its interaction with the rest of the network by consid-
ering ergodic stochastic readiness states of the sender and the
receivers. For example, in Fig. 2, we only consider the sender S
and the receivers Ry to Rg, and assume that S, Ry, ..., Rg are
ready as per a G + 1 dimensional ergodic stochastic process.
The readiness process in a slot is described by a vector ] =
[Jo j1 j2,---,Jc], where (a) jo is 1 if the sender is ready and it
is 0 otherwise, and (b) for all [ > 1, 7; is 1 if the Ith receiver is
ready and it is O otherwise.

In each slot, the sender decides whether to transmit with
the goal of maximizing the throughput subject to attaining
stability. We determine the sender’s optimal strategy based
on its (a) readiness state (which it determines by sensing the
channel); (b) queue length; and (c) observation of its receivers’
readiness states. We adopted this model because the senders
do not coordinate their transmissions, and thus from the per-
spective of a sender the network is a stochastic disturbance
which is partially observable but not controllable. Each sender
finds the network only partially observable as it knows only
the readiness states of its receivers. Different fairness goals
can be attained and inter-session interaction can be controlled
by selecting appropriate backoff intervals (e.g., as in [24])
which in turn regulates each sender’s and receiver’s readiness
states. We allow an arbitrary ergodic readiness process so as
to incorporate any desired inter-session interaction. We focus
on maximizing the throughput subject to stability for any given
readiness process. This requires us to address several open
research problems that are specific to multiparty MAC.

The packet arrival process at the sender is an irreducible, ape-
riodic and time homogeneous Markov Chain (MC) of y states. A
state of the MC indicates the number of arrivals in a slot. Here y
denotes the maximum number of packets arriving in a slot, and
A denotes the expected number of arrivals in a slot under the
MC’s stationary distribution. Each packet can be transmitted in
a single slot. Next we present some definitions that will be used
in the rest of the paper.

Definition 1: A transmission policy is an algorithm at a
sender node that decides when to transmit a packet. A neces-
sary condition for a sender to transmit a packet is that it is ready
to transmit, and it has a packet to transmit.

This class includes offline policies that decide transmissions
based on knowledge of packet arrivals and readiness vectors in
all past, present and future slot.

Definition 2: A reward for a packet is the number of receivers
that receive the packet successfully.

Definition 3: System throughput is the expected reward per
unit time.

Definition 4: The packet loss at a receiver is the fraction of
transmitted packets that are either not received or received in
error at the receiver. The system loss is the sum of the packet
losses at all the receivers.
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Definition 5: A system is stable if the sender’s mean queue
length is bounded. Further, a transmission policy that stabilizes
the system is called a stable policy.

Note that for any stable policy the packet departure rate is
equal to the arrival rate .

Definition 6: A stable transmission policy A is called
e-throughput optimal if no other stable transmission policy can
achieve throughput more than e plus the throughput under A.

Definition 7: The busy slots are the slots in which the sender’s
queue is non-empty.

Definition 8: Quorum is the minimum number of multiparty
receivers that have to be ready for a sender to transmit.

Definition 9: A policy A belongs to the class of generalized
quorum policies, if it sets quorum T'(¢) € {0,...,G + 1} in
every busy slot ¢ based on arbitrary rules and then transmits
a packet only when the sender and 7'(¢) or more receivers are
ready. The quorum may be selected based on past, present and
future arrivals and readiness states.

For any transmission policy 3, there exists a generalized
quorum policy that transmits in the same slots as A. This can
be seen as follows. Let A, using certain rules, select slots
t1, 12, ... in which it transmits. Consider a generalized quorum
policy A that computes slots #1,%2,... using the same rule
as A and sets quorum O in these slots. In the remaining busy
slots, A sets quorum G + 1. Thus, A and A transmit in the
same slots. Hence, it is sufficient to consider only generalized
quorum policies.

In the following theorem, we provide a sufficient condition
for a generalized quorum policy to be e-throughput optimal. Let
52 (t) denote the number of busy slots in which quorum 7 is
chosen until time ¢ under a generalized quorum policy A. Note
that it is not necessary to select a quorum when queue length is
zero, as a packet cannot be transmitted in this case.

Theorem I: For any ¢ > 0, a stable generalized quorum
policy A is e-throughput optimal with probability (w.p.) 1 if the
following condition holds for some 7" € {0, ..., G}:

’ )

A A
Tt + T t
lim —S (> 5 +1( ) >1- —6

.p. L. 1
Jm : 2 WP ey

We now motivate the above result. The number of packets
served per unit time under any stable policy is equal to the arrival
rate A. A stable policy A; can achieve throughput higher than
that of A only by attaining a higher reward for infinitely many
packets. Now, A selects quorum values 7" and T + 1 except for
€/2G fraction of slots. We refer to these slots as type-1 slots, and
we refer to the remaining slots as fype-2 slots. Thus, A transmits
in every type-1 slot that has 7'+ 1 or more ready receivers. Each
of the remaining packets transmitted in type-1 slots achieves
reward I". Thus, A; can achieve a higher reward infinitely often
only by transmitting packets in type-2 slots. Now, even if all
type-2 slots have G ready receivers, then the improvement in
the throughput is at most €/2 as the fraction of type-2 slots is
at most €/2G. Thus, A is e/2-throughput optimal and hence
e-throughput optimal.

Theorem 1 does not show how to design an e-throughput op-
timal policy. Nevertheless it is a useful tool as it provides a suf-
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ficient condition to establish the e-throughput optimality of a
stable generalized quorum policy. The utility of the theorem is
similar to that of a Lyapunov function. Recall that a sufficient
condition for a policy to be stable is the existence of a Lyapunov
function with negative drift. But this sufficient condition does
not in general show how to design a stable policy. We next de-
sign an adaptive transmission policy that satisfies condition (1)
and hence is e-throughput optimal.

IV. THROUGHPUT OPTIMAL TRANSMISSION POLICY (A (T))

We describe a parametrized quorum-policy Ap(T") that we
prove to be e-throughput optimal. The policy selects a quorum
value based on the queue length at the sender in each slot. A
packet is transmitted if (a) the sender is ready to transmit; (b) the
number of ready receivers is greater than or equal to the quorum;
and (c) the sender has a packet to transmit. In other words, the
sender does not transmit unless it has a “quorum” i.e., unless
the number of ready receivers exceeds or equals the selected
quorum value. The quorum values are selected as follows. Let
(@ denote the queue length at the sender and let parameter I" be
some fixed positive integer. For 1 < T < @, the quorum is 7" if
(G-TY'< Q< (G—-T+1)I and quorum is 0 if @ > GT.
Thus, the quorum value increases with decrease in queue length.
The policy does not select a quorum when queue length is zero.

A. Analytical Performance Guarantees for Ao(T")

We show that Ao (I) is e-throughput optimal under some ad-
ditional assumptions on the readiness process. We assume that
the readiness process is an irreducible, aperiodic and time ho-
mogeneous Markov Chain (MC) with arbitrary transition prob-
abilities. The state of the MC is the G 4+ 1 dimensional vector

j= [Jo J1,- - -, Jjc] that represents the readiness state. Note that
the MC has a finite number of states, since j; € {0, 1} for every
1 € {0,...,G}. Since we do not impose any restriction on the

transition probabilities of the Markov chain, the chain can cap-
ture the correlations of the sender’s and the receivers’ readiness
states in the same and different time slots. Fig. 3 shows how such
correlations arise in practice. Let b2 denote the unique steady
state probability that the sender is ready to transmit and u re-
ceivers are ready to receive. Let n,(t) denote the number of
slots until time ¢ in which the sender and u receivers are ready.
Now, by ergodicity of the readiness process

(T
lim n_()

t—o0 t

=R wp. I 2)
In general, from ergodicity we cannot conclude anything
about the rate of convergence of the empirical distribution
limy_, o0 ny(t)/t to the steady state distribution bZ. But for
finite, aperiodic MC’s, empirical distribution converges to the
steady state distribution exponentially fast [25]. We use this
exponential convergence to prove the optimality of Ao (T"). The
optimality of Ao(T") holds for any ergodic process that has the
exponential convergence property.

Next, we formally state the optimality result. Let the
throughput of policy Ao (T) be 20T and let the maximum
throughput attained by a stable policy be Q.

Theorem 2: 1f the arrival rate ) is less than the steady state
probability that the sender is ready (ZG b2), then for any

u=0 "u

given € > 0 there exists I'o such that Ap(T") is e-throughput
optimal for every I' > I'. Formally, 2,,; — 020 < ¢ w.p.
1. Further, no policy is stable if A > >"."_ bf.

The above result implies that any stable off-line policy that
takes transmission decisions based on the knowledge of past,
present and future arrivals and readiness states cannot attain
throughput more than Q*°). This holds even though Ao (T")
takes transmission decisions based only on the current packet
availability and the current number of ready receivers.

The intuition behind the result is as follows. Consider a policy
that selects the same quorum in every slot. The expected reward
is a monotonically increasing function of the quorum. Hence, a
throughput optimal policy should select the largest quorum 7
that stabilizes the system, i.e.,

G G
oo <a< >k

u=To+1 u=To

3

The throughput can be further improved by appropriately ran-
domizing between the quorum values 7 and T + 1. The ran-
domization should be such that the system remains stable. Intu-
itively, the optimum policy should select the quorums 7, and
To + 1 most of the time. The difficulty is that the sender does not
know X and b2’s, and thus cannot compute To. But, Ao(T) se-
lects the quorums To and To + 1 most of the time, even though
it does not know 1. This can be explained as follows. From
(3), the rate at which slots with m or more ready receivers ar-
rive is more than the packet arrival rate A, for every m < Tp.
But, for m > T + 1 the rate at which the slots with m or more
ready receivers arrive is smaller than A. Thus, for quorum values
greater than or equal to Tp + 1, i.e., when Q < (G — Tp)T,
the queue length process has a positive drift. Hence, the queue
length increases, and consequently the quorum decreases. How-
ever, for quorum values less than or equal to Tp, i.e., when
Q > (G — Tp)T, the queue length process has a negative drift
and hence the queue length decreases, and the quorum increases.
Hence, when I is large enough the quorums 7, and T + 1 are
selected most of the time.

Recall that a packet is lost at a receiver if the receiver is not
ready at the time of transmission. Now, Ao (I") may transmit
a packet even when some of the receivers are not ready, and
is therefore unreliable. But, wireless is an inherently unreliable
medium. Thus, it is a standard practice to use a reliable trans-
port layer strategy to retrieve the information lost at the MAC
layer. Several existing MAC strategies for multiparty communi-
cation in ad hoc networks, like broadcast based multiparty and
quorum-1 multiparty are unreliable as well. Fortunately, several
reliable transport layer schemes have been proposed for wireless
multicast transmissions, which can be used in conjunction with
any multiparty MAC strategy [19], [20]. But, the efficiency of
these schemes is severely impaired when the packet loss at the
MAC layer is high. Our focus is to minimize the packet loss sub-
ject to resource limitations in the network. Now, there would not
be any loss if a packet is transmitted only when all the receivers
are ready, but then as discussed before, the system may become
unstable. Note that stability is essential as otherwise the queue
lengths at the sender would be unbounded leading to unbounded
delays. Thus, our objective is to use a transmission policy that



840

minimizes the packet loss among all stable policies. The next
theorem shows that Ao (I") achieves this objective.

Theorem 3: If Ao (L) is (Ae)-throughput optimal, then no
stable policy can achieve loss smaller than the loss under Ao (I)
minus e for any given € > 0.

We describe the intuition behind this result. In a stable system,
the throughput of a transmission policy is AR, where R is the
policy’s average reward per packet. Thus, Ao (') maximizes R
since it maximizes the throughput. Now, since the system loss
under any policy is G — R, Ao(T") minimizes the system loss
as well. Refer to [26] for the formal proof.

From Theorem 3, if the system loss for Ap(T") is more than
that the system can tolerate, then the required loss constraint
cannot be guaranteed by any stable policy. Since stability is es-
sential, the resources available in this case are not enough to
deliver the required QoS, and other measures such as admis-
sion control and rate control must be resorted to. This is be-
yond the scope of this paper. Henceforth, we do not consider
loss explicitly.

B. Properties of Ao (T)

1) In each slot, Ap(T") takes transmission decisions at each
sender based only on local information: (a) sender’s cur-
rent queue length, (b) sender’s and receivers’ current readi-
ness states. Hence, Ao (T") is distributed and dynamic.

2) Under Ap(T"), each sender need not know which particular
receivers are ready. The number of ready receivers turns
out to be a sufficient statistic for throughput optimality.
This simplifies the protocol design problem.

3) Ap(T') is computationally simple.

4) Ap(T")’s optimality is guaranteed for all ' > T'o. Now,
I'o depends on the system parameters. But, only a rough
estimate of I'o (e.g., an upper bound on I'p), is neces-
sary for appropriately selecting I'. Furthermore, simula-
tions show that Ap(T")’s performance is similar for dif-
ferent values of I'. Once T is selected, Ap(T") does not
require any statistical or topological information.

The first three properties of Ap(T") follow from its descrip-

tion, and the last property follows from Theorem 2.

V. DYNAMIC MULTIPARTY MAC PROTOCOLS

The optimal decision rule at each sender is based on its queue
length, readiness state, and the number of ready receivers. The
sender is ready if it is not backing off, and none of its neigh-
bors is receiving a packet. We present a protocol to inform each
sender about the number of ready receivers and transmissions
in its neighborhood. In unicast, IEEE 802.11 uses RTS-CTS-
DATA-ACK handshake for this purpose. The difficulty in mul-
tiparty communication is that if all the receivers of a sender send
CTS simultaneously in response to the sender’s RTS, then these
CTS messages will collide. Hence, the sender will not know
whether the receivers are ready, and cannot decide whether to
transmit. Also, other nodes will not know whether to defer their
transmissions.

We now propose a sequential CTS (SCTS) transmission
scheme so as to prevent the collision of the CTS’s. Each sender
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allots a unique sequence number ¢ € {0,...,G — 1} to each
of its receivers. When a sender wishes to transmit a packet, it
first sends an RTS addressed to its party. A ready receiver with
sequence number ¢ sends a CTS after ic + (i + 1)s time units
after it receives the RTS. The quantity c is the time required to
transmit a CTS and s is one Short Inter Frame Space (SIFS)
duration. The sender transmits the packet if the number of CTS
responses it received is greater than or equal to the quorum
determined by the decision rule (e.g., Ao (T') or Ap(I)).

Each RTS has a duration/ID field with value P + Gec+ (G +
1)s, where P is the duration of the packet. The ith receiver’s
CTS message has a duration/ID field with value P + (G — i —
1)c+ (G —1)s. The nodes in the neighborhood of the sender and
receivers set their Network Allocation Vector (NAV) equal to the
maximum of the current NAV value and the value of duration/ID
field in RTS (CTS) message, and does not transmit a packet in
the NAV duration.

In the multiparty case, depending on the number of CTS mes-
sages received, the sender may not transmit a packet even after
an RTS-CTS exchange. In this case, it transmits a release mes-
sage. If a receiver receives a release message or does not receive
data within a certain interval of transmitting CTS message, then
it transmits a release message. A node that receives a release
message either from the sender or a receiver resets its NAV to
the previous value. After deciding not to transmit a packet, or
after completing a packet transmission, each sender backs off
for an i.i.d. (uniform) random interval.

The SCTS scheme has several advantages. It requires only a
minor modification of IEEE 802.11. Thus, it can co-exist with
IEEE 802.11, i.e., unicast and multiparty senders can implement
IEEE 802.11 and SCTS respectively. Moreover, this scheme
does not use direct sequence (DS) capture like BSMA [16], [17].
It has been shown that DS capture cannot be used in general
topologies [18]. The control message exchange in SCTS is sim-
ilar to that in BMMM [18]. The difference between SCTS and
BMMM is that SCTS broadcasts the RTS whereas BMMM sep-
arately transmits RTS to each receiver. Also, unlike BMMM,
SCTS requires release messages.

VI. SIMULATION RESULTS AND DISCUSSION

We have proved that Ay (I") is e-throughput optimal, when
the readiness states are Markovian, time is slotted and infor-
mation about readiness states is instantaneously available at the
sender. We compare the application layer throughputs in a wire-
less network with several unicast and multiparty sessions for
the following different multiparty MACs when the assumptions
made in analysis do not hold: each unicast sender uses IEEE
802.11b and each multiparty sender uses 1) Ao(T"); 2) broad-
cast based multiparty; 3) unicast based multiparty; 4) quorum-1
multiparty; and 5) full-quorum multiparty. We also investigate
the impact of control overhead on the performance of these poli-
cies. Now, the readiness states are generated due to packet trans-
missions, time is continuous and the sender learns readiness
states by exchanging control messages. The simulation results
demonstrate that A (T") attains significantly higher throughput
than the other existing policies. We implement these policies in
ns-2 [26].



CHAPORKAR et al.: DYNAMIC QUORUM POLICY FOR MAXIMIZING THROUGHPUT IN LIMITED INFORMATION MULTIPARTY MAC

100

Histogram for the Fraction of Time Each Quorum is Chosen

841

Multiparty Throughput as a Function of Queue Threshold

80

60 |

40 +

Fraction of time (%)

20 +

1620

1610

c)

1600 +

1590

1580 -

Throughput (packets/se

1570

1560

Quorum

(b)

0 1 2 3 4 5

. 1550 - . » -
6 7 8 9 0 20 40 60 80

100 120 140 160

Queue Threshold

©

Fig. 4. We evaluate the the performance of various multicast strategies in the topology shown in (a). The topology has a multicast session with sender M and eight
receivers m; to msg and eight unicast sessions. Unicast session ¢ has sender U; and receiver u;, 1 < ¢ < 8. Here A, = 200 packets/s and Ay = 500 packets/s.
(b) plots the fraction of time each quorum is chosen by Ao (T') for I' = 75. (c) shows the throughput of the multiparty session under Ao (T') as a function of T'.

In each part, I is referred to as queue threshold.

A. Simulation Scenario

We use UDP at the transport layer. We do not use TCP, as the
interaction between TCP and wireless MAC is not well under-
stood and hence is a topic of research even for unicast sessions.
We measure a receiver’s throughput as the number of packets it
receives successfully per unit time, and a session’s throughput
as the sum of its receivers’ throughputs. We use the SCTS pro-
tocol to implement Ay (I"), quorum-1 and full-quorum multi-
party policies. We consider a time interval of 2000 seconds and
collect the relevant data only in the last 1500 seconds. Each
channel has capacity C' = 11 Mbps. The RTS packet has 44
bytes. The CTS and release packets have 38 bytes. Multiparty
senders in unicast based multiparty MAC and unicast senders
send ACK packets of size 38 bytes. The maximum propagation
delay is 2 us, and SIFS duration is 10 ps.

We present the simulation results for a topology shown in
Fig. 4(a). In Fig. 4(a), each unicast sender U; generates packets
at rate Ay and the multiparty sender M generates packets at
rate Aps. The packet arrival processes are Poisson. The packets
arriving at U; have length 100 bytes. Size of the packet header
is 52 bytes. The trends remain same for larger packet sizes for
unicast sessions; the results differ only in magnitude.

Now we discuss how the packet transmissions generate readi-
ness states in the topology. Forevery i € {1,...,8}, U; isready
when it is not backing off and m; has not reserved the channel
by transmitting a CTS. Also, m; is ready when U; is not trans-
mitting a packet to u;. The multiparty sender M is not ready
when it backs off, while u; is always ready.

B. Discussion on Simulation Results

We have proved that any stable policy that selects any two
consecutive quorums 7" and 7'+ 1 most of the time, maximizes
the throughput as long as n,,(t)/t converges. Our simulations
demonstrate that even when the readiness states are generated by
packet transmissions, Ao (T") selects two consecutive quorums
most of the time [Fig. 4(b)], and n,,(t)/t converges [26]. This
validates the optimality result. In addition, Fig. 4(c) shows that
as I' increases, the throughput of the multiparty session under

Ao (T') converges to the optimum value. We note that optimality
is achieved even for small values of T'.

We observe that A (I") achieves substantial throughput gain
over other existing policies [Fig. 5(a) and (c)]. We next explain
the trend. The broadcast based multiparty scheme does not
exchange any control messages, and thus causes frequent data
packet collisions. Thus, the reward per packet is low resulting in
low throughput. Quorum-1 policy exchanges control messages
and avoids data packet collisions. As a result, this policy pro-
vides much better throughput than broadcast based multiparty
policy. The limitation of this scheme is that the quorum is
always 1, and hence the policy may transmit even when only
a few receivers are ready. The full-quorum policy achieves
optimum throughput for small load, but saturates quickly
Ay 50 packets/s). Thus, though the reward per packet
is high, the number of packets transmitted is much smaller
resulting in low throughput and unstable system. The policy
Ao (T) outperforms these policies as it prevents data packet
collisions by exchanging control messages. Also, by selecting
an appropriate quorum value, Ao(T") prevents transmission
when only a few receivers are ready, transmits fast enough so as
to attain stability, and therefore obtains the best possible reward
per packet constrained to stability. The unicast based multiparty
policy uses separate transmissions to reach different receivers
even when they can be reached using a single transmission.
Hence, the total number of packets delivered under this policy
is much smaller than that under other policies. This results in
low throughput.

Fig. 5(b) shows that when the multicast sender uses Ao (T),
the throughput of unicast sessions is similar to that under any
other policy for the multicast sender. Thus, Ao (T") increases
the throughput of the multicast session by sending more packets
when the unicast sessions are not transmitting and not by de-
creasing the throughput of the unicast sessions.

We now evaluate the control overhead of different policies.
The overhead decreases the throughput as transmission of
the control packets increases packet transmission times, and
increases the energy consumption due to transmission of ad-
ditional control packets. The detrimental effect of overhead
on the throughput and energy consumption increases with
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Fig. 5. We evaluate the performance of various multicast strategies in the topology shown in Fig. 4(a). In each part, Ay = 500 packets/s, and A (T') is referred
to as Optimal multiparty policy. (a) plots the throughput gain of A, (T') over other polices as a function of A for the multiparty session. The throughput gain of
Ao(T) over A is computed as (100 x (220 — Q2))/22%. In (b) we plot the throughput of unicast sessions under various policies. In (a) and (b), Pas is
2000 bytes. In (c) and (d), we plot the throughput gain of A o (T") over other polices and energy consumed per payload byte (EP) under various policies, respectively,
as a function of Py. Here, Ay = 300 packets/s. EP is computed as (P + O)/(g + P ) Joules/byte.

increase in the ratio between the overhead and payload, which
in turn depends on the packet sizes. We therefore investigate the
impact of overhead on the performance of different policies by
evaluating their throughput [Fig. 5(c)] and energy consumption
[Fig. 5(d)] for different packet sizes.

Fig. 5(c) shows that even for small packet sizes, e.g., 500
bytes, Ap(T") achieves significant throughput gain over other
policies. Thus, the high reward Ao (T") achieves per packet
more than compensates for a larger net packet transmission
time, which happens due to additional overhead. Furthermore,
if overhead consumes large time, then the service rate under
Ao(T") decreases and hence queue length at M increases. This
also lowers the quorum. Thus, Ao (T") queries the system fewer
times to achieve the quorum, which reduces the overhead. Thus,
Ao (T") implicitly considers the control overhead in its decision
process, and thereby achieves higher throughput. As expected,
the increase in throughput diminishes as packet size decreases.

Now, we evaluate the energy consumption of various policies.
Let M spend « Joules for transmitting each byte. Then, the total
energy consumed in transmitting a packet is equal to (Py;+O)«

Joules, where Py, is the packet size and O is the total over-
head that includes packet headers, RTS, CTS and Release mes-
sages. A policy A delivers g X Py payload bytes in a transmis-
sion, where ¢ is the reward. The energy consumed per payload
byte (EP) is the ratio of total energy spent and the total pay-
load bytes delivered per packet («( Py + O)/(g x Pps) Joules/
byte). Without loss of generality, we assume o = 1. Fig. 5(d)
shows that for moderate packet sizes (> 500 bytes), the EP
of Ap(T) is comparable to that of other policies. For small
packet size (100 bytes) Ao (I")’s EP is significantly higher than
that of quorum-1 multiparty and broadcast based multiparty.
Now, we explain this trend. Ao (T") achieves significantly higher
g, but has higher O. Note that EP equals (1/g) (1 4+ O/Py)
Joules/byte. When packet size is moderate, 1/g dominates, and
hence EP of Ap(I') is comparable to that of other policies.
For smaller packet size, O/P; dominates, and hence the EP
of Ap(T) is larger than that of some other policies. The energy
overhead under unicast based multicast is much higher than that
under other policies as it transmits a packet separately to each
receiver.
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Summarizing, the simulations demonstrate that the gain in
throughput attained by Ao (T") over other approaches more than
compensates for its use of additional control overhead. Now,
Ao(T') can be implemented in other ways so as to further miti-
gate the impact of overhead, yet retain its advantages. For ex-
ample, consider the burst sequential CTS protocol (BSCTS)
which can be used for delay tolerant traffic. BSCTS differs from
SCTS in that in BSCTS the sender contends for channel access
only when it has D packets (D > 1), where D is a constant. The
sender transmits D packets in a single frame if it has a quorum.
Thus, the frame size in BSCTS is D times that in SCTS, where
D can be chosen so that the size of an RTS/CTS packet is signifi-
cantly less than this frame size. This decreases the ratio between
the control overhead and payload to any desired value, and re-
duces the EP of BSCTS to values lower than that of all other
policies. For example, even when Py; = 100 bytes, if D = 20,
the EP of BSCTS is 0.14 which is smaller than that of all the
remaining policies. Note that BSCTS retains the throughput op-
timality of Ao (I")[26]. Furthermore, if Ap(I") is stable, then
BSCTS does not alter the fraction of time Ao (I") occupies the
channel, and hence does not affect the throughput of other ses-
sions. Detailed investigations of BSCTS and other protocols
that implement Ao (T") constitute interesting topics for future
research.

VII. CONCLUSION

Maximizing the performance in wireless multiparty MAC
presents challenges that are not encountered in wireless uni-
cast or wireline multicast networks. For example, a transmission
policy that maximizes the stability region of the network need
not maximize the network throughput. The goal therefore is to
maximize throughput subject to attaining stability. We consider
a scenario where each sender decides its transmissions based on
the transmissions and readiness states in its neighborhood, and
does not coordinate its decisions with its neighbors. We present
a sufficient condition that can be used to establish the throughput
optimality of a stable transmission policy. We subsequently de-
sign a distributed, adaptive stable quorum-policy that allows a
sender to decide when to transmit using simple computations
based only on its local information. The quorum-policy attains
the same throughput as the optimal offline stable policy that uses
in its decision process past, present, and even future arrivals and
readiness states. We prove the throughput optimality of the pro-
posed policy using the sufficient condition and large deviation
results. We present a MAC protocol for acquiring the local infor-
mation necessary for executing this policy, and implement it in
ns-2. Simulations demonstrate that the optimal strategy signifi-
cantly outperforms the existing approaches in ad hoc networks
consisting of several multicast and unicast sessions.

We hope that the performance improvement obtained by the
proposed policy and the intuition gained in its design would
stimulate further research in this area. Some open problems are:
1) maximizing performance in full-coordination and passive ob-
servation cases; 2) studying the multiparty MAC’s interaction
with higher layer protocols for utilities like multicast, anycast,
transmitting routing updates, attaining reliability through multi-
path diversity etc.; 3) maximizing the performance in presence
of mobility, dynamic group membership changes, security con-
cerns, etc.; and 4) designing a protocol that implements Ao (T)
with the minimum possible control overhead.

APPENDIX

First we present some definitions.

Definition 10: A single quorum transmission policy (1)
(denoted by Ar) is a generalized quorum policy for which
T(t) = T for every busy slot.

Definition 11: A single quorum policy (7') in a system with
finite buffer capacity B will be denoted by A p.

We note that the policies Ap(I'), Ar and Ay p belong to
the class of generalized quorum policies. Without loss of gen-
erality, we assume that a generalized quorum policy chooses
quorum G 4 1 when the sender’s queue is empty. In this case,
the choice of quorum does not affect the transmission decision
as the sender cannot transmit a packet anyway.

Now, we consider a process observed by the sender under an
arbitrary transmission policy A as a three-dimensional process
Y2 = (k,7,a), where k is the queue length at the sender, j
is the readiness state and a is the arrival process state in the
nth time slot. Since the readiness and the arrival processes are
Markovian, the process {Y;* : n > 1} is a Discrete-Time
Markov Chain (DTMC), if A € {Ao(T"), Ar, Ar p}. Further-
more, the system is stable under Ao (I"), Ar and A g if and
only if the DTMC is positive recurrent. Thus, the stability im-
plies existence of a unique stationary distribution. Let us de-
note by 7y, 7 and Ty, the steady state probability that the queue
length at the sender is & under policies Ao (I"), Ar and Ar g,
respectively.

A. Proof of Theorem

Proof: We consider a generalized quorum policy A that
satisfies (1). Our aim is to show that for an arbitrary policy A,

QA -0 <e  wp. L 4)

For every stable policy Aq, lim;_,o, 221 (t)/t = X w.p. 1,
where z21(t) denote the number of packets transmitted under
policy A; until time ¢.

28(t

A (t

lim 2 wp. 1. (5
Let S2(t ) denote the number of slots until time # in which
the quorum under A is 7 or T' + 1 and let S2(t) denote the

remaining slots until time ¢. Hence, for every ¢t > 1

Thus, = lim

SA(t) =sp(t )+3T+1<t) (6)

SA(t) 4+ SA(t) =t. (7)
QA

From (1) and (7),  lim s t(t) < % 8)

Further, let n,,(¢) be the number of slots until time ¢ in which
the sender and u receivers were ready. Ergodicity of the readi-
ness process implies for both A and A4

u(t
tlimn ():bﬁ3

w.p. 1. O]

Let S2(t) denote the number of slots until time ¢ in which
the sender and wu receivers were ready, and the quorum under A
was T or T + 1.

Let S2(t )

Now Z SA

u=0

= n,(t) — S2(t)

u

foreveryt > 1. (10)

t) < 5’ (t) foreveryt>1. (11)
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Finally, let 22 (¢) denote the number of packets that departed

until time ¢ when the quorum under A is T or T 4 1.
Foreveryt > 1, 22(t) > 22(t) — S2(t).  (12)

Furthermore, 7 (t) is equal to the 35, S2(t) plus some
of the S () slots. This is because A transmits in every busy
slot in which the sender and at least T' + 1 receivers are ready,
and the quorum is 7" or T" + 1.

Therefore, the throughput Q2 or the reward received per unit
time under A satisfies the following relation:

G
> uSp()

QA > lim “=H
t—o0 t
G
TlnaX{O,EA(t) - > SuA(t)}
. u=T+1
+ th_glo " (13)
G
> uSe(t)
Now flim u=T+l
& qA
> u(nu(t) = S (1))
= lim * T+l p (from (10))
Z unu(t) aA
> lim “=LH _im 95000 (from (11))
t—o00 t t—o0 t
G
> uny(t)
> lim % —5  (from @) (14)
Now, we consider the second term in (13).
G
T max {07/Z\A(t) - > Sf(t)}
. u=T+1
lim
t—o00 t
G
TlnaX{O,EA(t) - > nu(t)}
> lim u=Tt1
t—o0 t
_ G
TlnaX{O,zA(t) -SAH) - X nu(t)}
. u=T+1
> lim
t—o0 t
(from (12))
G
Tmax{07zA(t) - > nu(t)}
. u=T+41 €
> 1 - —. 15
- tiglo t 2 a5)

We note that the throughput of any stable policy A; is bounded
as

G
> uny(t)
Q4 < lim u=rl
G
Tmax{&zAl - > nu(t)}
+ lim . u=T+l (16)

From relations (5), (9), (14) and (15), (4) follows. [ ]
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B. Proof for € -Throughput Optimality of Ao (T") Theorem 2

We use the following results to prove Theorem 2.
Lemma 1: Tt A < 2% b2 then A () is stable for every
I' < oc.
Lemma 2: The policy A is stable if

G
> o>
u=T

Lemma 3: Consider any given € > 0 and a quorum 7" that
satisfies (17). Then, for A, there exists a value I'y (¢, T") such
that for every ' > T'y(¢, T)

Z WkSE

uOu’

a7)

(18)

Lemma 4: Consider any given € > 0, a quorum 7" such that

G
Db <A

u=T

(19)

and buffer capacity B = (G — T + 1)I'. Then, for Ag r there
exists a value T'a(€, T') such that for every I' > T'a(€, T)

BT
Z T < —

k=0

(20)

Lemma 5: Let Pr_ denote the steady state probability that
the queue length () at the sender is greater than (G — T + 1)T"
under Ap(I"). If T satisfies (17), then

PT7 S i Tl .

k=T+1

2L

Lemma 6: Consider buffer capacity B = (G —T + 1)T
and let Pr, denote the steady state probability that the queue
length () at the sender is less than or equal to (G — T')I" under
Ao(T). Then

(G=T)T

Pr. < Y R
k=0

Results in Lemmas 1 and 2 are intuitive. We only present the
intuition here. We observe that for any quorum 7' that satisfies
(17), the rate at which the slots with ready sender, and T" or more
ready receivers arrive is higher than packet arrival rate. Hence,
the expected busy period length is finite. Thus, the stability fol-
lows. Refer to [26] for the formal proofs.

1) Proof of Theorem 2:
Proof: In view of Theorem 1 and Lemma 1, it suffices to
show that there exists a quorum 7o such that (1) is satisfied. Let

To = arg max {Z b } . (23)

(22)

u=T

If A < Zu o 0B then 0 < T < G exists.
First, let 0 < Tp < G.
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Now, we have shown earlier that the process { YnAO(F) in >

1} is a DTMC. By Lemma 1, we know that the DTMC is er-
godic. Hence,
Ao(T Ao(T
p 51 ) + 572 ()

t—oo t

w.p. L.
(24)
Now, we fix I' > max{I'1(e,To),I'2(e, To + 1)}. Since Tp

satisfies (17) and Tn + 1 satisfies (19), from Lemmas 3 and 4

=1-Proy1), —Pro_

> €
Z T S E and (25)
u=0I+1
(G=To—-1)T' .
T < —. 26
ugo T <15 (26)

Thus, from Lemmas 5 and 6 the result follows.
Now, if Tp = G, then P(TO+1) L= 0. This is because quorum
chosen by Ap(T") is always less than or equal to G + 1. Hence,
Ao (T) Ao (T)
S t)+ s t
i 9200 + a2
t—o00 t
Further, since T satisfies (17), relation (25) holds by Lemma
3. Thus, the result follows from Lemma 5.
Now, if T = 0, then Pr,_ = 0. This is because quorum
chosen by A (T) is always greater than or equal to 0. Hence,

=1—-Pr, w.p.1 (from (24)).

Ao (D) Ao (D)
lim STOO )+ 3T5+1 (t)

t—o00 t

w.p. 1
(from (24)).

= 1= Paot),

Further, since Tp + 1 satisfies (19), relation (26) holds by
Lemma 4. Thus, the result follows from Lemma 4.

Now, we show that if A > ZS:O b then no policy can stabi-
lize the system. Let § = A — Zf:o bR, Observe that § > 0. We
show that the queue length under arbitrary policy A becomes
unbounded in this case w.p.1. Let A(t) and z(t) denote the
number of arrivals and departures under A until time ¢, then the
queue length at time ¢ is A(t) — 2 (). Hence, it suffices to show

that

A(t) — 22(1)
t

lim

t—oo

>6 wp. Ll (27)

Note that since the sender can transmit only when it is ready,
the total number of departures under any policy is bounded
above by the total number slots in which the sender was ready.
From the above observation, and ergodicity of the arrival and
the readiness processes

At
flim (*) =\ wp.l, and (28)
) _ g
Jlim. - < Zob“ =A—68 wp.l. (29)
Relation (27) follows from (28) and (29). [ ]

2) Proof for Lemma 3:

Proof: From Lemma 2, we know that if 7" satisfies (17),
then there exists a unique stationary distribution 73, under policy
Ar. We note that >~ 7, = 1. Hence, limy, o0 Y e, Tk =
0. Thus, the result follows. [ |

3) Proof for Lemma 4:
Proof: We prove this Lemma in three steps. 1) We obtain
an upper bound on the expected time required for reaching state
(B ,j) for any readiness state j starting from empty buffer. 2)
We obtain a lower bound on the expected time required to reach
queue length B — I starting from the full buffer given that the
queue length B — T is reached before the system returns to the
full buffer state. 3) Using these bounds, we prove (20).
If T satisfies (19), then there exists a § > 0 such that A\ =
S b+ 6.

Part (a): Let Z denote ar.v. indicating the time required to
reach full buffer state starting from queue length zero. We obtain
a bound on E[2 ] independent of the initial arrival and readiness
state. Let B = B/~.

__Let A(%) denote the arrivals in the system until time ¢ and let
A(t) denote the arrivals admitted in the system. Recall that the
arrivals are dropped if the buffer is full. Hence, A(t) < A(t).
Also, from ergodicity of the arrival process

lim @ =X wp. L

t—o0

(30)

Furthermore, let z2-7 (t) denote the number of departures until
time ¢, and let D227 (t) denote the number of slots in which the
sender and at least " receivers are ready until time ¢. We note
that the policy A 7 transmits a packet in every slot with ready
sender and T" or more ready receivers, except when the queue is
empty. Hence, 2227 () < D227 (t). Also, from ergodicity of
the readiness process

DAB.T
lim (*)

t—oo t

G
=Y bf=Xx-6wpl (3
u=T

Now forevery k <B, P{Z >k} =1 (32)
since to fill the buffer at least B packets have to arrive and at
most vy packets can arrive in any slot. Without loss of generality,
we assume that the queue length is zero at time zero. Thus, for
any k > 1

P{Z>

)
+
=
[l
)
—N—

M{AB +u) — 2277 (B +u) < B}}.
(33)

Further, for every u < k

{w:Z\(w) ZB\—f—k‘}Q{w:A\(E—i—u,w):A(ﬁ—}—u,w)}.

Hence, from (33) it follows that

P{Z > B +k}

k
gP{ﬂ{A(§+u)—zABT(B+u)<B}}
gP{A(§+k) — A (B k) < B} (34)
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Now, the event {A(B +u) — 2277 (B +u) < B} implies the
event {A(B + u) — DA77(B + u) < B}. Lett = B + k.
Hence, relation (34) becomes

P{Z >t} <P{A(t) - D*»7(t) < B}
ey
B

{ﬂ—()\—é)<g}}
o[22

+P{w—@—5)z

N >
.

Now, since ¢t = B + k,

4 B 6
f k -—-1)B, —<-. 35
orevery k> (6 ) 753 (35)
Hence, for every k that satisfies (35),
P{Z >t}

A(t) -6 DA#T(t) b
<P{—=— — P— 2 (\A=68)> —
< { " A< 1 }—I— { p (A=106) > 5
< 9e~(BHk)C (36)

where C is a constant independent of the initial arrival and re-
ceiver readiness state. The upper bound (36) follows from (30),
(31), substituting ¢ = B + k, and the large deviation bounds for
the finite, ergodic Markov chains [25]. Let K = (4/6 — 1) B
Now,

k=1
C$ ez
k=k+1
< E + % +2 (§+k)C
k=1

(smce P(F) < 1 for every event E, and (36))
1 4 2’ye‘§c

= B — —
<7 "3 > T

Part (b): Let Z denote ar.v. indicating the time required to
reach B — T  starting from full buffer. Without loss of generality,
the buffer of the system is full at time zero. To reach the queue

(37
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length B — 1" from B, at least ' departures must happen. Since
at most one packet can depart in a slot, for every £k < T°

P{Z >k} =1
Fork>1, P{Z >T +k}

r
=P { () {z277(C +u) — AT +u) < r}}

(38)

:1—P{U{zAB“"(I‘—i—u)—;l(F—Fu) ZF}}

u=0

>1 — min {1

The sender’s buffer is never empty until time Z as it is the first
time the sender’s queue length becomes B — I starting from B.
Hence, 2227 (I +u) = D257 ([ +u). Let Q(m) denotes the
sender’s queue length in slot m. Now, Q(0) = B. Also,

P{z257 (T +u) —
:P{U {{DAB-T(F—Fu) — AT +u) >T}H()

v=0

{Q(v) =
<3P {{DA”~"‘(F +u)— AT +u) > T}

v=0

k
D OP{AR (T 4 u)— AL+ u)> r}} .
" (39)

AT +u) > T}

B,Q(m) < B:Vme {v+1,T +u}} (40)

{Qv) =

Relation (40) follows from the observation that there should
be at least I' contiguous loss free slots (queue length < B) at
the end of interval [0, Z] for the difference between the depar-
tures and arrivals in [0, Z] to be greater than I". Furthermore,
if Q(m) = B for some m, then the difference between the
number of arrivals and departures in [0, m] is 0, since Q(0) =
B. Now, (41) follows from union bound property. Furthermore,
if Q(v) = Band Q(m) < B,Vm € {v+1,I" + u}, then

DABT (D 4 u) — A(T + u)
=D*»7( +u) — AT + u) —
— (DAB.T(F + u) _ DAB.T(U)) _

B,Q(m) < B:Vme {U—i—lJ‘—i—u}}}. 1)

(D227 (v) — A(v))
(AT +u) — A(v)).

From the stationarity of the arrival and readiness processes, for
every k

P{AT +u) — A(v) = k}

=P{AT+u—v)=%k} and (42)
P{D*#7(T +u) — D*#7(v) = k}

=P{D*57(T' +u—v) = k}. (43)

P{z*57 (T 4+ u) — AT 4+ u) > T}
< ZU:P{DA”*"(F—}—u— v) — AT +u—v) >T}
U:érom (42) and (43)) (44)
= zu:P{DAB=T(F+v)—A(F+v) >T}. (45)

v=0
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Let ¢t = I' 4+ v and consider

P{D?57(t) — A(t) > T}
L [DAET(t) A(t) T
=P { T 2 ?}

:P{<w_(/\_5)>_<@—/\> 25+£}

SP{M—(A—&)Z;}-FP{@—AS?}.

(46)

From (30), (31), and large deviation bound for finite ergodic
MC’s [25] we obtain

P{<@ _)‘> < _75} <e ' and (47)
P{<w _(A—5)> > g} < emt0

where C7; > 0 and C'5 > 0 are constants in/c\lependent of I' and
the initial arrival and readiness state. Let C' = min{C, Cs}.
Hence, from (46), (47) and (48)
P{D277(t) — A(t) >T} < 2¢7'C.
P{z257 (T +u) — AT +u) > T}

(48)

(49)

< 3" 2e7C  (from (43) and (49))
v=0

= Z 2~ T+ (since t =T + v)
v=0

2 7I‘/C\
66 . (50)

Using (50) in (39), we obtain

2k 1 —r’é
P{er+k}21—min{1,M}. (51)

c
2k +1)e-TC)  2ke-TC 0 o
min < 1, ( —i—A)e = 6,\ Vi< —el© -1
C c 2
c
=1 Vk>—¢'9—-1 (52)
Thus,
> . Zke_r6
E[Z]>T+> (1-min 1, =— (from (38))
k=1 C
[6/2€F?J

2]%71‘6
>T+ Z 1- 2= (from (51) and (52))
k=1 ¢

C o 1

Part (c): Since the system has finite buffer, {Y 25 : n > 1}
is a positive recurrent and ergodic DTMC. Now, we consider the
epochs at which the queue length is B. Let us call a time dura-
tion between two successive epochs as a cycle length. Let m(t)
denote the number of cycles completed until time ¢, and 7 (¢)
denote the number of cycles until time ¢ in which queue length

(53)

becomes less than or equal to B — I'. Let X, denote a random
variable indicating the length of the uth cycle. Furthermore, let
Xu+ and X, denote the random variables indicating the time
spent in the states with queue length > B — I' and the states
with queue length < B — T, respectively. By ergodicity

B-T > Xuo
Z Te = lim =X wp.1
t—o00 t
k=0
m(t)
m(t) B-T E Xu_
Since t > Z Xu, Z T < thm ";(lt) w.p. 1
u=1 k=0 - Z Xu
u=1

We note that X,,_ = 0 if the queue length is always greater
than B — I in the wuth cycle, then

m(t)
B-T > Xui-
> m < lim S—— wp.
=0 t—o0 m(t)
- > X,
i=1

where u; denote the subsequence of cycles in which the queue
length becomes < B — I'. Now we note that X,,,_ < Z and
Xu, > Xu,+ > Z for every i. Furthermore, since the DTMC
is positive recurrent, we conclude the following: (a) () — oo
w.p. last — oo (b) E[Z] < oo and E[Z] < 0. Hence, by
Kolmogorov’s Strong Law of Large Numbers

B-T
E[Z]
dom <= wp.l (54)
s E[Z]
From (37), (53), and (54)
B—FA B (% + %) + ZVECBC
T <
k=0 T + +%€FC - %
B-T
Thus, lim T, =20
This proves the required result. ]

4) Intuition for Lemmas 5 and 6: We prove Lemma 5 by
showing that the sender’s queue length under Ao (") is greater
than (G — T + 1)T" implies that the queue length under Ar
is greater than I' on every sample path. Thus, the steady state
probability that the sender’s queue length is greater than (G —
T + 1)T under Ap(T) is less than or equal the steady state
probability that the sender’s queue length is greater than I" under
Ar. Now, the result follows from Lemma 3.

To show the required, we note that if the sender’s queue length
under Ap(T") exceeds (G — T)T, then the the quorum under
Ap(T) is less than or equal 7'. Since the quorum under Ar is
always T, we conclude that the quorum under Ap (") is less
than or equal to the quorum under Ay if the sender’s queue
length under Ao (T") exceeds (G —T)T'. Hence, when the queue
length under Ap(T') exceeds (G — T')T', Ap(T") also transmits
in the slots in which A7 transmits. Now, consider a slot ¢ such
that the queue length under A (T") becomes (G —T)I". In ¢, the
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queue length under A is at least 0. Since the arrivals for Ao (T")
and Ar are the same, the queue length under Ap(I") exceeds
(G — T + 1)T only if the queue length under A exceeds I'.
Refer to [26] for the formal proof.

We prove Lemma 6 by showing that the sender’s queue length
under Ap(T") is greater than or equal to that under Ag r in
every slot on every sample path. Thus, the steady state proba-
bility that the sender’s queue length is less than or equal to (G —
T)I" under Ap(I') is less than or equal that under Ag 7. Now,
the result follows from Lemma 4. Recall that B = (G—T+1)T.
To show the required, we note that if the queue length under
Ap(T) is less than B, then the quorum under Ao (") is greater
than or equal to 7". Thus, for these values of queue lengths Az p
transmits in every slot in which A (") transmits. Moreover, the
queue length under A g can at most be B. Thus, the result fol-
lows. Refer to [26] for the formal proof.
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