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ANALYTIC STRUCTURE OF TWO-DIMENSIONAL QUANTUM FIELD THEORIES
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Harvard University
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There has been considerable progress in the past year in
understanding the structure of two-dimensional quantum field
theories. Some of this progress has come from an improved
understanding of how algebraic geometry enters into the theory
of determinants of differential operators on Riemann surfaces.

~ In thése notes I will sketch the connection briefly, en route
to a description of some recent work done with L. Alvarez-Gaum .
J.-B. Bost, G. Moore, and C. Vafa.! Further details appear in
Ref. 2. The motivation for these investigations is of course
the fact that 24 field theory is an essential ingredient in the
formulation of string theories, as discussed by many other
speakers here. 1In particular the Fermi-Bose equivalence to be
described below is a key tool used in many constructions.

It has been known for many years that quantum field theory
in two dimensions has remarkable special features. For example,
in many cases such theories are exactly solvable. The study of
such solvable models led to the discovery that in some instances
theories with commuting fields were exactly equivalent to other
theories with anticommuting fields. In the following paragraphs
I will outline some features of this equivalence and sketch how
it can be demonstrated. A key feature of the development is

that it applies to theories formulated on compact orientable
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surfaces of arbitrary genus, as it must in order to be of use
for string theory.

A simple example of a theory with commuting (Bose) fields
is the following. Consider a compact Riemann surface X and the
"field space" & of all real functions ¢:X + R satisfying some
sort of Sobolev condition) which we will not specify in detail.
Define the functional S [¢] = [[3¢]* = £X3¢5¢. S, is called the
action functional of a free massless boson; it depends on ¢ and
also on the conformal structure chosen for X. It is possible.

to define a probability measure [d9] on & in such a way that

z, = J [as]e Sbl®] (1)
a

is well-defined. There are two complications, however. First,
to define the measure [d¢] we must "regulate" it, i.e. suppress
the contributions from rapidly-varying maps ¢. We can only do
this if we are given not just a conformal structure on X, but a
metric g in the given conformal class. Thus Zb = Zb[g]. Secondly,
as it stands Zy includes an integral over constant maps ¢, all
of which have Sb = 0. To remedy this trivial infinity we must
eliminate the zero mode of 3 from & and, it turns out, divide
the measure by the metric norm of this zero mode, i.e. by |1[*=
Jxvolg, the area of X. It turns out that we can define (1) by

[aet-s*'s'J'i , (2)

Hall?

zb[g]

which is just the naive answer to (1) obtained by Gaussian in-
tegration, but made meaningful by removing the zero mode and

defining the determinant via zeta-function regqularization.




Equation (2) is called the partition function of the com-
muting field theory. It does not characterize the measure |d+:
since it is just one number for each g. Rather it is the
simplest of a collection of moments of [d¢], which are calied
correlation functions. We will restrict attention to (2), but
our conclusions generalize to the more complicated functions
as well.

Next we can define an anticommuting (or Fermi) field theory.
Again let X be a compact Riemann surface, but this time equipped
with an even theta characteristic. This amounts to choosing a
spin structure on X, or a holomorphic line bundle L such that
L#2L = K, the canonical bundle on X. Analogous to (l) one can
define _ - =S
Zp = J[db][dcl[db][dcle £ . (3)
The functional measures in (3) are more formal than the one in
(1). For the present purposes it suffices to define (3) by a
formula analogous to (2)

.11 = 5t %
ZelgiL] = det 3 3, . (4)

Here EL is the Cauchy-Riemann operator on the holomorphic line
bundle L. Again a metric is‘needed to define the "measures" in
(3); it enters (4) via the adjoint. Since generically H®(X;L)
=0, gL has no zero mode and no prime or normalizing factor is
needed in (4).

The expression (4) is the partition function of an anti-
commuting field theory. It too admits generalizations to cor-
relation functions which we will not discuss here.

Suppose that X is the Riemann sphere. Then the statement



of Bose-Fermi egquivalence begins with the claim that

where ¢ is some constant independent of g. 1In fact (5) is true,
but in a fairly uninteresting way. Both sides of (5) are un-
changed if g is replaced by f*g for some diffeomorphism f.
Moreover, both sides change in the same simple way if we change
g in its conformal class, i.e. if we replace g by eog for a func-
tion 0. (See e.g. Ref. 3.) Since up to diffeomorphism there is
just one conformal structure on s?, (5) follows at once.

Equation (5) is bound to be more interesting for surfaces
of genus y > 0, since here there is a nontrivial space of con-
formal classes, the moduli space of genus y. On such an X (5)
cannot be literally true, however, since one side depends on a
@=characteristic while the other does not. Thus (5) should be
replaced by

zZ,lgl = csz[g;L] . (5")
L
Moreover from earlier work involving the case where X is an in-
finite cylinder, we know that ¢ in (1) must be taken to be not
a function to R but rather a circle-valued function. The dis-
tinction matters when X is not simp1y=connecteq.

When X has genus Y > 0 we can classify maps ¢ into topo-
logical sectors as follows. Choose a canonical homology basis
for X {ai,bi} (see e.g. Refs. 4, 5) and let ¢ wind ng ,mg times
around S' as one walks around ai’bi respectively. Viewing S' as
a group, we can realize any ¢ as ¢n,m° ® where 9 has zero winding

and w is harmonic, by the Hodge theorem. Then

- =]
n,m - ¢n,md ¢n,m
({2) becomes



oy, | J (det-sw]‘ﬁ
VA [ ] = n,m —_— . (6)
b9 [ngme |12

The foregoing analysis was performed by the authors of Re?.

5, who then summed (6) to get

bet(mi,wj)~

vxt= -4
z,[g] = [1] 8 [e](1)]? [ ger'3%s . (7)
€ 1| 2

Here ¢ is the Riemann theta function with characteristics

and we sum over the half-points of the Jacobian of X; this is
because the physically appropriate prescription for (6) sums
over half-integers nyyme. T is the period matrix of X in the
given homology basis, and we have rewritten det ImT as the
determinant of the matrix of inner products of the Abelian dif-
ferentials wi determined by the homology basis.*

In Ref. 5 Fermi-Bose equivalence and Quillen's theorem®were

used to deduce

~+
1 ]
det 3 8

det 3
det(wl,w3)°

T3, = c | s [e] (1) |2 (8)

1]*

where on the right € is the point in the Jacobian corresponding
‘to the spin bundle L via the chosen homology basis and Riemann's

5

theorem.*® We will sketch how (8) can be derived directly.

N Both sides of (8) are functions of g with the same behavior
under conformal rescaling. Thus their quotient F is a function
on the moduli space «# of curves of genus y (or more precisely
on its coveru&} curves with a 6-characteristic). We need two
key facts about moduli space:

(a) _# is a complex space, and 3,3, vary holomorphically.

(b) _#& has only one holomorphic function in genus y > 2;



indeed # has only one pluriharmonic function. This
follows from the existence of the Satake compactifi-
cation of 4, which has codimension two.

Thus to show that F is a constant, and hence prove (B), one has

only to show that

6,8 10gF = 0 (9)

wheferé, § are holomorphic and antiholomorphic derivatives on..
To show (9), we note that the determinants in (8) are closely

related to Quillen's construction of norms on determinant line

bundles.® Indeed over moduli space we have determinant bundles

De = DET 3, Dé = DET EL’ and by the Riemann=-Roch-Grothendieck

theorem we have
D=D, @D, ®D = trivial.
Moreover the trivializing section is o = o ® Og ® o,, where o§
is the holomorphic section of DQ vanishing whenever H®(X;L) # 0,
and
Op = (@A ..onw)7t @ (1)7F e 8le] ()72

(We are being careless about torsion since we are going to take
the absolute square of o.) 0 never vanishes or blows up, since
€ is chosen to make § vanish whenever §L has a zero mode.

The quotient of the two sides of (8) is then just F =
Hoé 2o, @ o,ll, and so 68 logF is the Hermitian curvature of
Quillen's norm on D. But remarkably, Quillen's norm has the
property of being flat on any trivial combination of determinant
bundles.’ Hence 6§logf'= 0, F is a constant, and (8) is estab-
lished for genus Y > 2. (The cases Y = 1,2 can be verified

directly by other means.?)



Arguments like these based on the near-compactness of .«

also let one prove Fermi-Bose equivalence for the correlatior

functions mentioned above. They have other applications t~

string theory as well, as discussed for instance in Ref. 2.
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