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Recent experiments have exploited elastic instabilities in membranes to create complex patterns. However,
the rational design of such structures poses many challenges, as they are products of nonlinear elastic behavior.
We pose a simple model for determining the orientational order of such patterns using only linear elasticity
theory which correctly predicts the outcomes of several experiments. Each element of the pattern is modeled by
a “dislocation dipole” located at a point on a lattice, which then interacts elastically with all other dipoles in the
system. We explicitly consider a membrane with a square lattice of circular holes under uniform compression
and examine the changes in morphology as it is allowed to relax in a specified direction.
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I. INTRODUCTION

It is a testament to the ingenuity of nature that at all length
scales, there exists a multitude of complex self-assembled
patterns. The formation of patterns, from the textured
dimples in a grain of pollen to the labyrinth of creases in a
coral colony to the ridges in a fingerprint, exemplify local
ordering mechanisms that lead to intricate and beautiful tex-
tures �1–3�; the mechanisms that drive them are far from
understood. Mastery of such processes would revolutionize
the fabrication and design of novel materials with specific
properties. Synthetic elastomeric membranes can be coaxed
into exhibiting these sorts of elastic instabilities under swell-
ing, buckling, and dewetting �4�; these effects have been
used to build microlenses �5� and stretchable electronics �6�,
for instance. By harnessing elastic instabilities in elastomeric
membranes, the once lofty goal of creating self-assembled
complex patterns with long-range order may be attainable. In
this paper, we expand on our approach to model and predict
secondary pattern structure in perforated, two-dimensional
elastic membranes, motivated by recent experiment. Because
our method is based on linear elasticity theory, the possibility
of solving “the inverse problem” for a desired final structure
becomes computationally tractable.

In �7�, it was shown that when an elastomeric poly�dim-
ethylsiloxane� �PDMS� membrane with a square lattice of
circular holes �with diameter roughly half the lattice spacing�
in it is uniformly swollen or, alternatively, is compressed
hydrostatically, the holes deform into a striking diamond
plate pattern, schematically depicted in Fig. 5 and shown in
�7�. The order persists for upwards of 105 times the original
lattice spacing with only phase-slip defects, which do not
change the overall symmetry of the pattern. It is interesting
to note that the same diamond plate pattern emerges from
membranes with vastly different lattice spacings, ranging
from 1 �m to 1 cm. Because the same mechanism causes
patterns to form over such a wide range of length scales, this
technique is well suited to create devices for many fields and
industries. In particular, when a material is in the diamond
plate state, it has a photonic band gap �8�; hence, merely by
compressing and relaxing a membrane, we can control its
band structure. We note that the thin, perforated film of
PDMS sits atop a thick, solid PDMS film. This forces the

deformations of the thin membrane to be two dimensional
and simplifies our following analysis.

This effect occurs in the highly nonlinear regime of elas-
ticity; thus, only finite element simulations using specific
models of nonlinear elasticity capture the entire process of
the holes collapsing �9�. With the sole assumption that each
hole collapses to some elongated shape, we use only linear
elasticity to successfully predict the orientational order in the
diamond plate pattern and the herringbone pattern formed
from an underlying triangular lattice. Not only does our
model shed light on the interactions in the system, it repre-
sents progress in the ability to rationally design new patterns
and order.

In the next section, we review the linear theory of elastic-
ity and consider a hydrostatically compressed membrane
containing either a single hole or two holes. The breakdown
of linear elasticity illustrates the need for nonlinear analysis.
In Sec. III, we adopt the spirit of the theory of cracks and
show that complex behavior can be explained by recasting
the problem using linear dislocation theory. While an explicit
analytic description of the shape of a collapsed hole cannot
be reached through this method, each hole can be modeled as
an elastically interacting distribution of parallel edge dislo-
cations, or “dislocation dipoles,” whose centers are fixed to
the center of their corresponding hole but are allowed to
rotate freely. In the simple case of a quartet of holes, the
resulting configuration exactly reproduces the unit cell for
the diamond plate pattern. Since elastic interactions are long
ranged, the collective interactions of all the holes must be
included to find the true ground state of the system—the
inclusion of which additionally stabilizes the pattern. We end
with technical appendices which argue the validity of our
approximation.

II. IN WHICH THE LINEAR THEORY
OF ELASTICITY FAILS

A. Elasticity in Flatland [10]

Our ultimate goal is to study the effects of uniform ten-
sion on a thin sheet of elastic material with a square lattice of
circular holes cut in it, as it models an elastic sheet that is
uniformly swollen. In general, the resulting deformations are
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constant across the thickness of the sheet and may be con-
sidered to be purely longitudinal. This is because forces act
primarily in the plane of the film, yielding the boundary con-
dition �iknk=0. In the nanoscale experimental system �7�, the
elastic membrane was on a substrate, which suppresses out-
of-plane buckling. Henceforth, we will only consider two-
dimensional systems with planar deformations.

Let us pause for a minute to derive the equilibrium con-
ditions of this system. Since the deformations are constant
throughout the thickness of the sheet, we may assume that
uzz=0 and thus �zz=�iz=0. We are left with the two equilib-
rium equations h��ik /�xk=−pi, where i ,k=x ,y and h is the
thickness of the film. When no external body forces are
present, the equations of equilibrium reduce to ��ik /�xk=0
or

��xx

�x
+

��xy

�y
= 0,

��xy

�x
+

��yy

�y
= 0. �1�

Viewing these both as equations of the form � ·A=0, we
know that �xi=�ik�k�y and � jy =� jk�k�x and it follows that
�x�y +�y�x=�xy −�xy =0 �where �ik is the totally antisymmet-
ric tensor�. Thus, �m=�mn�n� for some scalar �, known as
the Airy stress function. We thus have �ik=�im�kn�m�n�.
Moreover, since uik= ��iuk+�kui� /2, we have �im�kn�i�kumn
=0. The relation between stress and strain, Eq. �A17�, im-
plies that

�im�kn
�2�mn

�xi � xk
=

Yd

1 + �
�0 +

�

1 − �d − 1��
�2 � · u� = 0.

�2�

As a result, we deduce that the stress function satisfies the
biharmonic equation, �4�=0. In orthogonal coordinates, we
recast the components of the stress tensor in terms of the
Airy stress function by taking advantage of Eq. �A13� and
re-expressing �ij in terms of ��	,

��	 = �

�

���

1

h�
��	


�

���
� 1

h


��

��

� + ��


1

h�h	

�h


���

��

��	
	 ,

�3�

where �
�=1 because 
�̂ , �̂� is a right-handed orthonormal
basis. Equation �3� is a solution to the equilibrium equations,
Eq. �A14�, and the Airy stress function solves the biharmonic
equation in orthogonal coordinates.

1. Fixing a hole (demo)

The simplest system to study is an infinite elastic sheet
with a circular hole, of radius R, cut in it under uniform
tension Px̂. This problem naturally lends itself to polar coor-
dinates, for which the equations for the stress function be-
come

�rr =
1

r

��

�r
+

1

r2

�2�

��2 , ��� =
�2�

��2 ,

�r� = −
�

�r
�1

r

��

��
� . �4�

A standard procedure for solving such problems is to solve
first for the deformation of a continuous sheet under the
proper forces. Second, we solve for a second stress function
respecting the symmetry broken by the force with boundary
conditions �ik�r=��=0. The final stress function is given by
the sum of the two stress functions, where the matching con-
dition is given by the stress-free boundary condition at the
edge of the hole.

The components of the stress tensor for a continuous elas-
tic sheet under uniform tension Px̂ are �xx

�0�= P and �yy
�0�

=�xy
�0�=0, which, by integrating Eqs. �1�, yield the stress

function

��0� = Py2/2 = Pr2�sin2 ��/2 = Pr2�1 − cos 2��/4, �5�

from which it follows that the components of the stress ten-
sor are �rr

�0��r�= P�1+cos 2�� /2, ���
�0� �r�= P�1−cos 2�� /2,

and �r�
�0��r�= P�sin 2�� /2. Clearly, rotational symmetry is

broken in the x̂ direction.
In order for the second stress function to respect the bro-

ken symmetry of the system, it must have the form ��1�

= f�r�+g�r�cos 2�. Since the stress function satisfies the bi-
harmonic equation, we can easily integrate to find

f�r� = ar2 log r + br2 + c log r ,

g�r� = sr2 + tr4 + u/r2 + v . �6�

The first boundary conditions �ik
�1��r=��=0 dictate that a

=b=s= t=0, leaving

�rr
�1��r� = c/r2 − �6u/r4 + 4v/r2�cos 2� ,

���
�1� �r� = − c/r2 + 6�u/r4�cos 2� ,

�r�
�1��r� = − �6u/r4 + 4v/r2�sin 2� . �7�

Using the final boundary conditions, ��	
�1��R�=−�r�

�0��R�, the
remaining constants are found to be c=−PR2 /2, u=
−PR4 /4, and v= PR2 /2. Note that even though there are only
two equations for three unknowns, this system is not under-
determined because the constant c cannot depend on �. As-
sembling this, the components of the stress tensor are given
by

�rr�r� =
P

2
�1 −

R2

r2 + �1 −
4R2

r2 +
3R4

r4 �cos 2�	 ,

����r� =
P

2
�1 +

R2

r2 − �1 +
3R4

r4 �cos 2�	 ,

�r��r� = −
P

2
�1 +

2R2

r2 −
3R4

r4 �sin 2� , �8�

which may be rewritten, using Eq. �A18�, as components of
the strain tensor

urr =
1

Y2
��rr − ����� ,
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u�� =
1

Y2
���� − ��rr� ,

ur� =
1 + �

Y2
�r�. �9�

Recall that the strain tensor is the relative displacement of
every element from its equilibrium position. In polar coordi-
nates, we have urr=�ur /�r, u��= ��u� /��� /r+ur /r, and
2ur�=�u� /�r+ ��ur /���−u� /r, from which it follows that
the displacement vector is

ur =
P

2Y2
��1 − ��r +

�1 + ��R2

r

+ ��1 + ���r −
R4

r3 � +
4R2

r
	cos 2�
 ,

u� = −
P

2Y2

�R2 + r2�2 + ��R2 − r2�2

r3 sin 2� . �10�

However, if we repeat the above process for an infinite
sheet under hydrostatic compression �or expansion� to linear
order, the rotational symmetry of this system is not broken.
Consider an annulus of inner radius R0 and outer radius R1
under uniform hydrostatic compression with boundary con-
ditions given by �rr

�0�=−P and ���
�0� =�r�

�0�=0. Clearly, the dis-
placements are purely radial and we need only solve �4u
=0, subject to the boundary conditions �rr�r=R1�=−P and
�rr�r=R0�=0. The displacements are given by ur�r�=a /r

+br, from which it follows �rr=
Y2

1−�2 �−�1−��a /r2+ �1+��b�.
The boundary conditions determine the values of the con-

stants a=− P
Y2

�1+��
R0

2R1
2

R1
2−R0

2 and b=− P
Y2

�1−��
R1

2

R1
2−R0

2 . The solution
to an annulus under hydrostatic compression is

ur�r� =
P

Y2

R1
2

R1
2 − R0

2��1 + ��
R0

2

r
+ �1 − ��r� , �11�

with the components of the stress tensor given by

�rr�r� = − P
R1

2

R1
2 + R0

2

r2 − R0
2

r2 ,

����r� = − P
R1

2

R1
2 + R0

2

r2 + R0
2

r2 ,

�r��r� = 0. �12�

In the case of a finite sheet or a pipe under hydrostatic
compression, there is the well-known von Mises buckling
instability at a critical pressure where the circular hole de-
forms into an ellipse whose major axis is chosen at random
�11�. This critical pressure scales with the ratio of the system
size to the hole radius and, thus, diverges for large systems.
The system we are studying, on the other hand, has an un-
derlying lattice which breaks the rotational symmetry of each
hole. A superposition of the above solutions would not ac-
count for the interaction between holes �12�.

2. Fixing a hole (take 2)

Understanding the elastic interaction between holes in an
elastic sheet was, during the first half of the last century, the
subject of much research �12–18�, most of which was dedi-
cated to finding the maximum stress felt along the perimeter
of each hole. While linear elasticity may provide reasonable
solutions to such analysis, we will demonstrate that linear
theory breaks down upon further investigation.

The simplest system accounting for the interaction be-
tween holes is an infinite elastic sheet containing two holes
of radius R, whose centers are separated by distance 2d. This
sheet is then subjected to uniform tension P. The analysis of
this system will closely follow that of Ling �18�. Bipolar
coordinates, defined by

x =
a sinh 


cosh 
 − cos �
, y =

a sin �

cosh 
 − cos �
, �13�

for �� �0,2�� ,
� �−� ,��, are the natural choice for this
problem as lines of constant 
 or � are circles in the xy plane
defined by x2+ �y−a cot ��2=a2 csc2 � and �x−a coth 
�2

+y2=a2 csch2 
. The system �see Fig. 1� of two equal holes
corresponds to 
= �s, s=cosh−1�d /R�, and a2=d2−R2.
When the system is under uniform tension P, the compo-
nents of the stress tensor are �xx= P, �yy = P, and �xy =0. By
integrating Eqs. �1�, the stress function for an infinite system
under uniform tension is

��0� =
P

2
�x2 + y2� =

Pa2

2

cosh 
 + cos �

cosh 
 − cos �
. �14�

Using the method outlined in the previous section, we under-
take the tedious calculation, detailed in Appendix A, Sec. A
1, to find the equilibrium configuration of this system. The
results for uniform compression and tension are displayed in
Fig. 2. Upon further analysis of the compressed system,
large-enough values of P yield overlapping solutions for the
displacement vectors, signaling the breakdown of the linear
theory.

FIG. 1. Curves of constant 
 and � are circles in bipolar
coordinates.
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III. LINEAR THEORY OF NONLINEAR ELASTICITY

Even were there no instability in the linear theory of two
elastic holes, the sheer complexity of the equations would
make analytic calculations of increasing numbers of holes a
nearly impossible task, and understanding the mechanism by
which the holes collapse and the shapes they form requires a
nonlinear theory of elasticity. Thus, we turn to the theory of
cracks for inspiration. In the linear theory of elasticity, cracks
can be described by a continuous distribution of parallel dis-
locations �19,20�. The stresses in a body due to a crack are
the same as the stresses in an isotropic body with a distribu-
tion of dislocations with the same height profile as that of the
crack. As a first approximation, we model each of the col-
lapsed holes as a pair of oppositely charged dislocations,
known as a dislocation dipole �21�. This formalism allows us
to recover the same physics by the simple numerical mini-
mization of algebraic equations, once described by a com-
plex system of coupled differential equations.

In continuum elasticity theory, a dislocation dipole mod-
els an infinitesimally thin bit of material inserted into �or
removed from� the bulk medium along the dipole vector

di�x�. This causes relatively large displacements in the im-
mediate vicinity of the dislocation, which rapidly relax.
However the effects of such a deformation are felt far away
from the dislocation. Consider any closed contour � which
surrounds one end of the dislocation dipole. As this circuit
is traversed, the displacement vector changes incrementally
by the Burgers vector b, a finite amount given by bi

=−��dui=−��
�ui

�xk
dxk �19�. A dislocation dipole connects a

pair of antiparallel Burgers vectors of the same magnitude.
In our system, the elastic sheet itself can be accurately

modeled by linear elasticity theory; however, the free bound-
aries of the holes do not. Thus, we consider the stresses in
the system not to be caused by the details of the deformation
at the boundary, but by vacancies described by dislocation
dipoles whose centers coincide with the centers of the origi-
nal holes. Such deformations in continuum systems are more
readily described by a continuous distribution of dislocations
denoted by the tensor 
ik. As more parallel dislocations are
added, their profile begins to form the outline of a macro-
scopic vacancy �or inclusion�, hi�x�=�x
ikdxk.

A. Filling a crack

Our model system consists of an isotropic solid where
each collapsed hole is represented by a thin line of material
that has been taken out of the system or a dislocation dipole.
The Burgers vector for a dislocation dipole of strength b with
dipole vector d located at r is

b�x� = ẑ � d̂b�− �2�x −
d

2
− r� + �2�x +

d

2
− r�	 �15�

or, in Fourier space,

b�q� = 2ibẑ � d̂eiqr cos � sin�qd

2
cos�� − �0�	

� ibqẑ � deiqr cos � cos�� − �0� , �16�

where � is angle of q and �0 is the direction of the dipole and
we have, in the spirit of the dipole approximation, taken the
lowest-order term in d= �d�.

The interaction energy of two dipoles d1 and d2 both of
strength b separated by R, see Fig. 3, is given by

E =
Y2b2d1d2

�2��2 � d2q
�q � �ẑ � d̂1���q � �ẑ � d̂2��

q4

��iq cos�� − �1���− iqe−iqR cos � cos�� − �2�� , �17�

where d1 is at the origin; a derivation of which appears in

FIG. 2. �a� An elastic sheet with two circular holes cut out is
subjected to �b� uniform tension and �c� compression. The dark blue
curves are the boundary of the holes. Other curves show deforma-
tions of the circles in �a� to aid the eyes.

FIG. 3. Two dipoles of strengths d1 and d2 are separated by
R.
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Appendix B, Sec. B 1. After carrying out the integration �see
Appendix B, Sec. B 2�, the pairwise interaction between two
dislocation dipoles is

Eint = −
Y2

�

b2d1d2

R2 �cos��1 + �2�sin �1 sin �2 +
1

4
� . �18�

Note that the interaction energy is invariant under �1→�1
+� and �2→�2+�, which reaffirms that each collapsed hole
is represented by a line, not a vector. The total interaction
energy of an array of dislocation dipoles is merely a sum of
all pairwise interactions because we are using linear theory.
The centers of the initial holes set the position of each dis-
location dipole, but they are allowed to rotate freely. The
equilibrium state minimizes the free energy over the angle
each dipole makes with respect to a fixed axis.

1. 2Ã2 diamond plate plaquette

The simplest case consists of four holes located at

�a /2, �a /2�. Because all four holes have the same radius,
their dipole vectors should have the same magnitude. We
minimize the energy functional, composed of the sum of six
pairwise terms,

E2�2 = −
Y2b2d2

�a2 �cos��1 + �2�sin �1 sin �2

+ cos��3 + �4�sin �3 sin �4

+ cos��1 + �3 − ��sin��1 −
�

2
�sin��3 −

�

2
�

+ cos��2 + �4 − ��sin��2 −
�

2
�sin��4 −

�

2
�

+
1

2
cos��1 + �4 −

�

2
�sin��1 −

�

4
�sin��4 −

�

4
�

+
1

2
cos��2 + �3 −

3�

2
�sin��2 −

3�

4
�sin��3 −

3�

4
�	 ,

�19�

over each of the angles, which are measured with respect to
the x axis. Minimizing with respect to the four angles, we
find �1=�4 and �2=�3 by symmetry and

sin 4�1 − cos 2�1 − 4 sin 2��1 + �2� = 0,

sin 4�2 + cos 2�2 − 4 sin 2��1 + �2� = 0. �20�

The minimum �see Fig. 4� is

�1 =
1

2
sin−1� 1

10
� = �2 −

�

2
. �21�

While one might have postulated that the lowest-energy con-
figuration would have �1=0 and �2=� /2, it turns out that the
energy is slightly lowered if these angles are slightly shifted.
This is due to the finite size of our system—as we shall see,
for larger systems, the dipoles align along the crystal axes
and there is a boundary effect which distorts the dipole di-
rections at the edges.

2. We had to count them all: nÃn systems of holes

Here, we extend the calculation from the previous section
to study the ground state of an n�n lattice of holes. One
might wonder how we can study larger and larger systems
since the interaction only falls off as 1 /R2. Because the in-
teractions are between dipoles, the interaction energy at large
distances decreases because the angle of the dipoles rotates
around the circle. Indeed, consider the interaction of a single
dipole at the origin with N2−1 other dipoles in an Na�Na
lattice. The angular dependence in Eq. �18� will wash out the
power law if the dipoles rotate through 2� uniformly. As we
will see in the next section, this is precisely what happens as
shown in Fig. 5.

For these larger arrays of holes, the sheer number of
coupled equations makes it impractical to find solutions by
hand and we use MATHEMATICA to solve the many coupled
nonlinear equations. We find the orientations of the ground
state of each lattice. We find that the diamond plate order of
the 2�2 plaquette persists for larger and larger samples with
increasing alignment along the lattice directions.

B. Stretching the lattice

In experimental systems �7�, the elastic sheet was
stretched in a specific direction before allowing it to swell,

FIG. 4. The ground-state orientation of the 2�2 plaquette.

FIG. 5. The ground-state orientations for square lattices of �a�
10�10, �b� 13�13, �c� 17�17, and �d� 20�20.
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leading to a background stress �xx=T cos �, �yy =T sin �.
To calculate the coupling energy between the stretching and
the dipole angle, we will rotate the system, such that the x
axis is defined by the direction of stretching, �xx=T and the
dipole is located at the origin, or

b�q� = ibqẑ � d cos�� − �0 + �� . �22�

It is most appropriate to use the energy functional E
= 1

2Y2
�d2x��2��2. In Fourier space, the dipole term is given

by �2�= i�ik
qk

q2 bi�q� �21� and the stretching term by �2�

=T ��q�
q ����. The energy is

E =
1

2Y2
� d2q

�2��2�T
��q�

q
���� − bd cos2�� − �0 + ���

��− T
��q�

q
���� + bd cos2�� − �0 + ��� , �23�

from which the coupling energy is

Estretch = −
Tbd

Y2�2��2� qdq� d�
��q�

q
����cos2�� − �0 + ��

= −
Tbd

Y2�2��2cos2�� − �0� . �24�

The new term causing the dislocation dipoles to align
with the direction of stretching competes with original inter-
action energy, favoring the diamond plate pattern. Follow-
ing the same minimization procedure as before, we find that
for small tensions, the diamond plate pattern is only slightly
perturbed and for large tensions, the dislocation dipoles
align along the direction of stretching, which may be seen in
Fig. 6.

IV. CONCLUSION

We have created a model system for an elastic sheet with
square lattice circular holes cut out of it. When the sheet is
swollen or, equivalently, subjected to uniform tension, it is
established both via experiment and finite-element calcula-
tions that the holes snap shut. Their major axes align into a
diamond plate pattern with long-ranged order. While our ap-
proach does not predict this nonlinear effect, we are able to
model the interaction between the orientations of the col-
lapsed holes. Our system also corroborates experimental re-
sults of the sheet under external forces. It is difficult to ex-
tend it to an infinite lattice, since the minimization would
then be over an infinite number of angles. An Ewald-type
summation may be used for an infinite system whose unit
cell is the 2�2 plaquette. However, this is unlikely to lead to
new insight as the diamond plate order is clearly maintained
for large systems. Moreover, as we show in Appendixes B 3,
the dipole interactions are the dominant terms even for more
general elliptical holes. This method may easily extended to
holes on other lattices and other geometries. We have dem-
onstrated that our linear theory captures the dominant piece
of the orientational ordering of the collapsed holes and can
be used fruitfully to rationally design and prototype new
structures.

ACKNOWLEDGMENTS

We thank G. P. Alexander, B. G. Chen, C. D. Modes,
S. Yang, and Y. Zhang for useful discussions. This work
was supported by NSF Grant No. CMMI09–00468 and NSF
MRSEC under Grant No. DMR05-20020.

APPENDIX A: LINEAR ELASTICITY IN A NUTSHELL

The theory of linear elasticity describes the deformation
and energetics of a solid body under external force or load.
While this theory was originally developed over a century
ago and has been presented time and again �13,19,22,23�,
this brief tutorial will illuminate a few salient features as well
as familiarize the reader to our notation. The goal is to de-
velop the framework for a generalization of Hooke’s law for
solid three-dimensional bodies. When a solid is deformed,
the displacement of every point, x, is described by the vector
u, such that its final positions are given by x�=x+u�x�. Let
us first consider two points separated by ds=�dx ·dx that are
very close together. After being deformed, their separation
becomes ds�, where ds�2= �dxi+dui�2 using the Einstein
summation convention. By noting dui= ��ui /�xk�dxk, we may
rewrite this as

FIG. 6. The 4�4 and 7�7 systems of holes are stretched by

tension Tx̂. For small tensions �in �a� and �d� T=0.1
Y2

�
b2d2

a2 �, the
diamond plate ground state is only slightly perturbed. Whereas for

large tensions �in �b�, �c�, �e�, and �f� T=2
Y2

�
b2d2

a2 �, the holes align
along the x̂ axis, the direction of stretching. In �b� and �e�, the angle
of stretching is �Stretch=� /4 from horizontal.
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ds�2 = ds2 + �
ik
� �ui

�xk
+

�uk

�xi
+

�ui

�xk

�uk

�xi
�dxidxk

= ds2 + 2�
ik

uik
L dxidxk, �A1�

where uik
L is the Lagrangian strain tensor. However, for small

deformations, we need only consider terms linear in �ui /�xk
and the linearized strain tensor is

uik =
1

2
� �ui

�xk
+

�uk

�xi
� . �A2�

In the following, we will rely upon orthogonal coordinates,
��, with the diagonal metric ds2=h


2d
2+h�
2d�2

=���h�d���2 �24�. In general, the orthogonal coordinates are
nonholonomic but the benefit of orthogonality outweighs this
complication.

What is the linearized Lagrangian strain tensor in our new
coordinates? By definition,

ds�2 − ds2 = 2u�	
L h�d��h	d�	 �A3�

and

ds�2 = �
i
�dxi +

�ui

�xk
dxk��dxi +

�ui

�xj
dxj� . �A4�

Since u is a vector, we may write it in either coordinate
system

u = uix̂i = u��̂�, �A5�

from which we have ui=��u��̂� · x̂i. In order to calculate the
direction cosines, we note that if xi=xi����, then

�̂� =
1

��
j
� �xj

���
�2�

i

�xi

���

x̂i �A6�

We recognize the radicand in the denominator as h�
2 and we

have

�dxi +
�ui

�xk
dxk� = � �xi

���

+
�

���
�u


h


�xi

��

�	d��. �A7�

Using orthogonality, �i
�xi

���

�xi

��	
=h�

2 ��	, it is straightforward to
find

u�	 = �
i

�h�

�u�

��	

+ h	

�u	

���

+
�

���
� 1

h


�xi

��

� �xi

��	

u


+
�

��	
� 1

h


�xi

��

� �xi

���

u
	/�2h�h	� , �A8�

where we only sum over the repeated indices i and 
, not �
or 	 associated with the scale factor h. In the following, we
will adopt the Einstein summation convention and, only
when there is ambiguity, will we specify which indices are to
be implicitly summed.

In the spirit of Hooke’s law, there is an energy cost asso-
ciated with displacing every point from its equilibrium posi-
tion. While the general form is quite complicated, to first

order, the energy can be constructed from the linear strain
tensor. Because the strain tensor is a symmetric rank two
tensor, the only two possible scalar invariants that can be
constructed are �uii�2 and �uik�2. Because these terms are in-
variants of the system, they cannot depend on coordinate
system. From this, we deduce the form of the energy density

� =
1

2
��uii

2 + 2�uik
2 � , �A9�

where � and � are Lamé coefficients. Since any deformation
may be written in terms of uniform or hydrostatic compres-
sion and pure shear, we rewrite the strain tensor, uik

= 1
3�ikull+ �uik− 1

d�ikull�. The hydrostatic compression is given
by the first term, as it involves only the trace of uik. The
second term describes pure shear because its trace is zero. In
terms of these quantities, the energy becomes

� =
1

2
�Kull

2 + 2��uik − 1
d�ikull�2� , �A10�

where the bulk modulus K=�+ 1
d� and � is the shear modu-

lus.
When a body is deformed, the displaced internal elements

experience forces which tend to restore them to their equi-
librium positions. The volume element bounded by the sur-
faces x=x0, x=x0+�x, y=y0, y=y0+�y, z=z0, and z=z0+�z
experiences a force along any surface with normal n, f i
=�iknk, where �ik is the stress tensor and

Fi
ext =� dA�iknk =� dV

��ik

�xk
. �A11�

In equilibrium, the internal stresses of the system must bal-
ance the external forces exerted upon it; thus, the equilibrium
condition for the system is

��ik

�xk
− f i

ext = 0. �A12�

In curvilinear coordinates, this entire discussion can be re-
peated and the stress tensor in these coordinates is merely a
transformation of the stress tensor in Cartesian coordinates

��	 =
1

h�

1

h	
�
ik

�xi

���

�xk

��	

�ik, �A13�

where, again, there is no sum over � or 	. The equilibrium
conditions become

�
i	�

1

h	

�

��	
� 1

h�

�xi

���
�� 1

h�

�xi

���

�	� +
1

h	

�xi

��	

���	 +
1

h	

���	

��	

− f�
ext = 0, �A14�

where we have followed the same procedure as in the deri-
vation of u�	 which requires expanding the tensor in both the

x̂i and �̂� frames.
The relation between stress and strain follows the argu-

ment in Cartesian coordinates. If the system is deformed an
infinitesimal amount �ui, the work done by the change in
internal stresses is the force times the displacement, W
=�dV���ik /�xi��uk. When integrated by parts, the work is
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W =� dA�iknk�ui −� dV�ik
��ui

�xk

= −
1

2
� dV�ik� ��uk

�xi
+

��ui

�xk
� = −� dV�ikduik.

�A15�

Note that the surface integral vanishes because �ik=0 at in-
finity. Thus, dE=�ik�uik. By taking the total differential of
Eq. �A10�, dE=Kulldull+2��uik− 1

d�ikull�d�uik− 1
d�ikull�

= �Kull�ik+2��uik− 1
d�ikull��duik, we can rewrite the stress

tensor in terms of the strain tensor, �ik=K�ikull−2��uik

− 1
d�ikull�, or conversely, the strain in terms of the stress,

uik= 1
d2K

�ik�ll+
1

2� ��ik− 1
d�ik�ll�.

Similarly, it is instructive to consider a homogeneous de-
formation, which has constant stain tensor everywhere in the
volume. For a d-dimensional solid, uniform pressure is ap-
plied to the faces with normals in the �ẑ directions. In three
dimensions, for example, we consider the simple compres-
sion of a rod. This implies that �zini= p or �zz= p. Thus, all
off diagonal components of the strain tensor are zero and the
diagonal components are ull= p� 1

dK − 1
2� � /d, for all l�z, and

uzz= p� 1
dK + d−1

� � /d. The relative longitudinal compression is
given by uzz= p /Yd, where

Yd =
2d2K�

2� + �d2 − d�K
�A16�

is the d-dimensional Young’s modulus. The ratio of trans-
verse extension to longitudinal compression is given by the
Poisson ratio �=−ull /uzz= �dK−2�� / ��d2−d�K+2��. Con-
versely, the bulk and shear moduli written in terms of the
Young’s modulus and Poisson ratio are, respectively, K
= 1

dYd / �1− �d−1��� and �= 1
2Yd / �1+��. The stress tensor is

given in terms of the strain tensor by

�ik =
Yd

1 + �
�uik +

�

1 − �d − 1��
�ikull� �A17�

and the converse by

uik =
1

Yd
��1 + ���ik − ��ik�ll� . �A18�

The conventional form of the energy is given in terms of Yd
and �,

E =
Yd

2�1 + ��� ddx�uik
2 +

�

1 − �d − 1��
ull

2� . �A19�

Now that we have derived the relations between the stress
and strain tensors, the equilibrium condition may be recast in
terms of the displacement vector

Yd

2�1 + ��� �2ui

�xk
2 +

1 − �d − 3��
1 − �d − 1��

�2ul

�xi � xl
� − f i = 0. �A20�

If the force only acts through the surface, then f i vanishes in
the bulk and we recover the result that �2� ·u=0 from
which it follows that �4u=0.

1. Identities in orthogonal coordinates

We include these for completeness. These were necessary
for us to study the Airy stress formalism in orthogonal coor-
dinates and we did not find these, presumably known identi-
ties, in any reference.

Consider the general set of orthogonal coordinates,


�x ,y� ,��x ,y��. The new basis preserves length of the
differential line element, ds2=dx2+dy2=h


2d
2+h�
2d�2

=h

2� �


�x dx+ �

�y dy�2+h�

2� ��
�x dx+ ��

�y dy�2, defining the scale func-
tions h


−2= � �

�x �2+ � �


�y �2 and h�
−2= � ��

�x �2+ � ��
�y �2. However, it is

often more useful to consider Cartesian coordinates as func-
tions of the new orthogonal ones, 
x�
 ,�� ,y�
 ,���, which
yield an equivalent statement of the scale functions h


2

= � �x
�
 �2+ � �y

�
 �2 and h�
2 = � �x

�� �2+ � �y
�� �2. By transforming from

orthogonal back to Cartesian coordinates, the differential line
element gives h


2� �x
�
 �2+h�

2� �x
�� �2=1 and h


2� �y
�
 �2+h�

2� �y
�� �2=1,

from which, we obtain the first set of identities

�x

�

= h


2 �


�x
,

�y

�

= h


2 �


�y
,

�x

��
= h�

2 ��

�x
,

�y

��
= h


2 ��

�y
. �A21�

a. Linear elasticity in bipolar coordinates

For clarity’s sake, we take a moment to explicitly write
out the useful equations in bipolar coordinates. From Eq.
�A8�, we simply read off the components of the strain tensor

u

 =
1

h

�u


�

+

1

h2

�h

��
u�, u�� =

1

h

�u�

��
+

1

h2

�h

�

u
,

2u
� =
�

�

�u�

h
� +

�

��
�u


h
� . �A22�

The stress tensor may be written as a function of the Airy
stress function � from Eq. �3�

�

 =
1

h

�

��
�1

h

��

��
� +

1

h3

�h

�


��

�

,

��� =
1

h

�

�

�1

h

��

�

� +

1

h3

�h

��

��

��
,

�
� = −
1

h2� �2�

�
 � �
−

1

h

�h

��

��

�

−

1

h

�h

�


��

��
�

= −
1

2
� �

�

� 1

h2

��

��
� +

�

��
� 1

h2

��

�

�	 , �A23�

or in terms of the relative displacement vector, from Eq.
�A17�,

�

 =
Y2

1 − �2 �u

 + �u��� ,

��� =
Y2

1 − �2 �u�� + �u

� ,
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2�
� =
Y2

1 + �
u
�. �A24�

At first glance, it seems an insurmountable goal to solve the
differential equations for the displacements in terms of the
Airy stress function. However, following �14�, they become
much more tractable if one considers the terms

�

 + ��� =
Y2

1 − �

1

h2� ��hu
�
�


+
��hu��

��
� =

1

h2� �2�

�
2 +
�2�

��2� ,

�A25�

�

 − ��� =
Y2

1 + �
� �

�

�u


h
� −

�

��
�u�

h
�	

= −
�

�

� 1

h2

��

�

� +

�

��
� 1

h2

��

��
� �A26�

or, equivalently, we arrange equations to obtain

�

�

� ��

�

−

Y2�hu
�
1 − �

� +
�

��
� ��

��
−

Y2�hu��
1 − �

� = 0

�A27�

from �

+��� and �

−���, respectively. There exists a
function G which satisfies Eq. �A27� for which �G

�� = ��
�


−
Y2

1−�hu
 and �G
�
 =− ��

�� +
Y2

1−�hu�. Using these equations, we
eliminate u
 and u� from Eq. �A26�

�2

�
 � �
�G

h
� = −

h

1 + �
��

 − ���� , �A28�

where the left-hand side of this equation may be written in
this manner because �2

�
��
1
h =0. Thus, the relative displace-

ment vectors are given by

u
 =
1 − �

Y2

1

h
� ��

�

−

�G

��
� ,

u� =
1 − �

Y2

1

h
� ��

��
+

�G

�

� . �A29�

Due to the nature of problems in the theory of linear elas-
ticity theory, the most useful identities involve the directional
cosines relating the 

 ,�� to the 
x ,y� coordinates. The unit
vectors in the new system are given by �̂= 1

h

� �x

�
 x̂+ �y
�
 ŷ� and

�̂= 1
h�

� �x
�� x̂+ �y

�� ŷ�. The orthogonality condition �̂ · �̂=0 im-
plies �x

�

�x
�� + �y

�

�y
�� =0. The directional cosines are related be-

cause h

2 = � �x

�
 �2�1+ � �y
�
 / �x

�
 �2�= � �x
�
 �2�1+ �− �x

�� / �y
�� �2�

=h�
2� �x

�
 �2� �y
�� �−2 or

1

h


�x

�

=

1

h�

�y

��
,

1

h


�y

�

= −

1

h�

�x

��
, �A30�

where the sign is chosen such that both 
x̂ , ŷ , ẑ� and 
�̂ , �̂ , ẑ�
form right-handed orthonormal triads. Thus, under the
change of coordinates 
x ,y ,z�→ 

 ,� ,z�, a rank-2 tensor

Aij =aijx̂ix̂ j transforms as A�	=a�	�̂��̂�

=aij��̂� · x̂i��̂���̂	 · x̂ j��̂	, which may be written as

a�	 =
1

h�h	

�xi

���

�xj

��	

aij . �A31�

The derivatives of the directional cosines can be made from
linear combinations of derivatives of the orthogonality con-
dition �x

�

�x
�� + �y

�

�y
�� =0 and the scale functions. For example,

to find �
�
 � 1

h


�x
�
 �, first note that there are two ways of obtain-

ing this derivative; directly,

�

�

� 1

h


�x

�

� = −

1

h

2

�h


�


�x

�

+

1

h


�2x

�
2 , �A32�

and by taking the derivative of the product of 
 scale func-
tion and orthogonality condition with respect to 
,

�

�

� 1

h


�x

�

� �x

�b
=

1

h

� 1

h


�h


�


�y

�


�y

��
−

�2y

�
2

�y

��

−
�2x

�
 � �

�x

�

−

�2y

�
 � �

�y

�

�

=
1

h

2

�h


�


�y

�


�y

��
−

1

h


�2y

�
2

�y

��
−

�h


��
,

�A33�

where we have made use of the definition
�h


�� = �2x
�
��

�x
�


+ �2y
�
��

�y
�
 . Next, multiplying Eq. �A32� by �x

�� and Eq. �A33�
by � �y

�� �2 and taking their sum, this becomes

h�
2 �

�

� 1

h


�x

�

� =

1

h

2

�h


�


�y

��
� �y

�


�x

��
−

�y

��

�x

�

� −

�h


��

�x

��

+
1

h

2

�y

��
� �y

��

�2x

�
2 −
�x

��

�2y

�
2�
=

1

h

2

�h


�


�y

��

h�

h


−
�h


��

�x

��
−

1

h


�y

��

h�

h


�h


�

.

�A34�

By following a the same procedure, the formulae for the
derivatives of the directional cosines are

�

�

� 1

h


�xi

�

� = −

1

h�
2

�h


��

�xi

��
,

�

��
� 1

h


�xi

�

� =

1

h
h�

�h�

�


�xi

��
,

�

�

� 1

h�

�xi

��
� =

1

h
h�

�h


��

�xi

�

,

�

��
� 1

h�

�xi

��
� = −

1

h

2

�h�

�


�xi

�

,

�A35�

where i=1,2, x1=x, and x2=y. Note that the cross partial
derivatives of the directional cosines are equal

�

��
� �

�

� 1

h


�xi

�

�	 −

�

�

� �

��
� 1

h


�xi

�

�	 = 0,

�

��
� �

�

� 1

h�

�xi

��
�	 −

�

�

� �

��
� 1

h�

�xi

��
�	 = 0, �A36�

which leads to our final identity
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�

��
� 1

h�

�h


��
� +

�

�

� 1

h


�h�

�

� = 0. �A37�

b. Fixing a hole (outtake)

Recall that � is the solution to the biharmonic equation
�4�=0 with respect to the symmetries in our system. The
biharmonic equation when written in terms of the function
� /h has the simplified form

� �4

�
4 +
�4

��4 + 2
�4

�
2 � �2 − 2
�2

�
2 + 2
�2

��2 + 1��

h
= 0.

�A38�

Similarly, the components of the stress tensor are given by

�

 = �1

h

�2

��2 −
sinh 


a

�

�

−

sin �

a

�

��
+

cosh 


a
	�

h
,

��� = �1

h

�2

�
2 −
sinh 


a

�

�

−

sin �

a

�

��
+

cos �

a
	�

h
,

�
� = −
1

h

�2

�
 � �
��

h
� . �A39�

Our system, while undergoing uniform hydrostatic compres-
sion, is described by the stress function in Eq. �14�,

��0�

h
=

Pa

2
�cosh 
 + cos �� ,

or, equivalently, is given by the components of the stress
tensor

�


�0� = ���

�0� = P, �
�
�0� = 0. �A40�

We aim to find solutions to the biharmonic equation that are
even in both 
 and �. Thus, the Airy stress function is given
by

��1�

h
= C�cosh 
 − cos ��log�cosh 
 − cos ��

+ �
n=1

�

�n�
�cos n� , �A41�

where �n�
�=An cosh�n+1�
+Bn cosh�n−1�
. The compo-
nents of the stress tensor corresponding to this Airy stress
function are

�


�1� = −

C

2a
�cosh 2
 − 2 cosh 
 cos � + cos 2�� +

1

a
�1�
�

+
1

2a
�
n=1

�
1

n
�fn+1�
� − 2 cosh 
fn�
� + fn−1�
� − 2 sinh 
gn�
��cos n� , �A42�

���
�1� =

C

2a
�cosh 2
 − 2 cosh 
 cos � + cos 2�� +

1

a
�1�
� −

1

2a
�1��
�

− �
n=1

�

��n+1� �
� − 2 cosh 
�n��
� + �n−1� �
� + �n + 2��n+1�
� + 2 sinh 
�n��
� + �n − 2��n−1�
��cos n� , �A43�

�
�
�1� = −

C

a
sinh 
 sin � −

1

2a
�
n=1

�

�gn+1�a� − 2 cosh 
gn�
� + gn−1�
��sin n� , �A44�

where fn�
�= �n+1�n�n−1��n�
� and gn�
�=n�n��
�. The
boundary conditions require that there should be no stress at
infinity �
=0�, hence

�
n=1

�

�An + Bn� = 0 �A45�

and the normal and tangential stresses must vanish along the
edges of the holes, located at 
= �s. Thus, the constants An,
Bn, and C must satisfy the following recurrence relations for
n�2:

fn+1�s� − 2 cosh sfn�s� + fn−1�s� = 2 sinh sgn�s� ,

�A46�

gn+1�s� − 2 cosh sgn�s� + gn−1�s� = 0, �A47�

subject to the conditions

2�1�s� = − 2
P

a
− C cosh 2s , �A48�

f2�s� − 2 sinh sg1�s� = 2 cosh s , �A49�
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s − 2 cosh sf2�s� + f3�s� = 2 sinh sg2�s� + 2C , �A50�

2 cosh sg1�s� − g2�s� = 2C sinh s . �A51�

Using Eq. �A47�, we find gn�s�=c1�1
n+c2�2

n, where �1 and �2
are roots of the characteristic polynomial tn+1−2 cosh stn

+ tn−1=0, yielding gn�s�=c1e−ns+c2ens. However, the stress
must be finite everywhere, thus, c2=0. Equation �A51� com-
pletes the relation for gn�s� as c1=2C sinh s. Because, Eq.
�A46� is a nonlinear recurrence relation, we must consider
fn+2−2 cosh sfn+1s+ fns−

gn+1

gn
�fn+1�s�−2 cosh sfn�s�+ fn−1�s��

=0. Two of the roots of the characteristic polynomial for this
equation are degenerate; the equation is fn�s�=d1e−ns

+d2ne−ns+d3ens. From the boundary conditions, we deter-
mine fn�s�=−2K�cosh s+n sinh s�e−ns. From the definitions
of fn�
� and gn�
�, we find that the coefficients An, Bn, and C
satisfy

An = 2C
e−ns sinh ns + ne−s sinh s

n�n + 1��sinh 2ns + n sinh 2s�
,

Bn = − 2C
e−ns sinh ns + nes sinh s

n�n − 1��sinh 2ns + n sinh 2s�
,

with B1 =
C

2
tanh s cosh 2s + P , �A52�

and

C = − P� 1

2
+ tanh s sinh2 s

− 4�
n=2

� � e−ns sinh ns + n sinh s�n sinh s + cosh s�
n�n2 − 1��sinh 2ns + n sinh 2s� 	
−1

.

�A53�

Now that we have equations for the stresses everywhere, we
may now solve for the field of relative displacement vectors.
Recall that our function G is given by

G =
h

1 + �
� � d
d�� �2

�
2 −
�2

��2 − 1
�

h

=
2h

1 + �
�2C�tan−1�tanh




2
cot

�

2
�cos �

+ tan−1�coth



2
tan

�

2
�cosh 
	 + �

n=1

�

�n�
�sin n�
 ,

�A54�

where �=��0�+��1� and ��
�=An sinh�n+1�
+Bn sinh�n
−1�
. To calculate the displacement field, we will need to
know the following relations:

��

�

= h�sinh 
�− Ph cos � + C�

− �
n=1

� �h

a
�n�
�sinh 
 − �n��
�	cos n�� , �A55�

��

��
= h�sin ��− Ph cosh 
 + C�

− �
n=1

�

�n�
��h

a
sin � cos n� + n sin n�	� ,

�A56�

�G

�

= −

2h

1 + �
�C��

h

a
sinh 
 cos � + sin ��

+ �
n=1

� �h

a
�n�
�sinh 
 − �n��
�	sin n�� , �A57�

�G

��
= −

2h

1 + �
�C��

h

a
cosh 
 sin � − sinh 
�

+ �
n=1

�

�n�
��h

a
sin �sin n� − n cos n�	
 .

�A58�

These equations, together with Eqs. �A29�, complete our de-
scription of the system of two holes under hydrostatic com-
pression, which may be seen in Fig. 2. It should be noted that
in the compressed system, there is an instability for large-
enough values of P wherein the displacements intersect each
other, causing overlap in the system.

APPENDIX B: FILLING THE CRACKS:
THE DISLOCATION DIPOLE

We devote this appendix to the technical details of the
mathematical manipulation required to compute the energet-
ics of a lattice of dislocation dipoles.

1. Theory of dislocations

The notion of topological defects is most easily demon-
strated by considering crystals. Let us consider a two-
dimensional square lattice, with equilibrium positions de-
fined by u= �m+1 /2�ax̂+naŷ, ∀m ,n�Z, where a is the
lattice spacing. Now, we add extra row of points along the y
axis, �u=−na��x�ŷ, n�0, and allow the system to elastically
relax. Far away from the defect, the line integral around a
closed circuit of lattice points enclosing the defect is not
zero, but �du=−ax̂. Every dislocation can be described by a
Burgers vector b, a constant vector which measures the elas-
tic displacement caused by a defect and is defined by the line
integral around the defect core, bi=�dui=�

�ui

�xk
dxk. When the

Burgers vector is perpendicular to the axis of the line inte-
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gral, as in our example, that is known as an “edge disloca-
tion.” When the two vectors are parallel, the defect is a
“screw dislocation.”

The Burgers vector formalism extends beyond the simple
case of crystals to isotropic bodies. We follow Ref. �21� to
derive the energy of a distribution of defects. It is often more
convenient to deal with the tensor wik=�ui /�xk when dealing
with the energetics of dislocations. By Stokes’ theorem,
�dxkwik=�d2x�lk�wik /�xl=�nbin

�x�, where bi=�lk�wik /�xl is
the dislocation density. To calculate the energy of a distribu-
tion of dislocations, we relate this description involving wik
to the Airy stress function. Recall that the stress tensor is
given by �ik=�ij�kl�

2� / ��xj�xl�. We can express the strain
tensor and therefore the energy as uik= ��1+���ik
−��ik�ll� /Y2= ��1+���ij�kl�

2� / ��xj�xl�−��ik�
2�� /Y2. Simi-

larly, the strain tensor may be separated into continuous and
singular components, uik= �wki−wik� /2+wik. By applying
the operator �ij�kl�

2 / ��xj�xl� to both definitions of uik, we
find that

1

Y2
�4� =

1

2
�ij�kl

�2

�xj � xl
�wki − wik� + �ij�kl

�2wik

�xj � xl

= −
1

2
��ij

�bi

�xj
− �kl

�bk

�xl
� − �ij

�bi

�xj
. �B1�

We now plug this into the energy functional, E
= 1

2�d2x�ikuik,

E =
1

2Y2
� d2x���2��2 + 2�1 + ���ij�kl

�2

�xj � xl
� ��

�xi

��

�xl
�	 .

�B2�

However, the second term is a boundary term which inte-
grates to zero if the system has no net dislocation charge.
Thus, in Fourier space, the contribution to the energy from
the dislocations is given by

E =
Y2

2
� d2q

�2��2

�ik − q̂iq̂k

q2 bi�q�bk�− q� . �B3�

2. Dipole term

Despite the complex form of the integral in the disloca-
tion dipole interaction energy, when completed, it has a sur-
prisingly simple form. The integral becomes tractable by
transforming to polar coordinates and then manipulating the
trigonometric functions. In polar coordinates, the integral in
Eq. �17� becomes

E =
Y2b2d1d2

�2��2 �
0

2�

d��
0

�

qdq cos�− qR cos����

�cos2�� − �1�cos2�� − �2� . �B4�

Employing Bessel function and trigonometric identities, we
find

E = −
Y2

�

b2d1d2

R2 �cos��1 + �2�sin �1 sin �2 +
1

4
� . �B5�

3. Why we can ignore higher-order terms

Our goal is to prove that we need only consider the first-
order dipole-dipole term when considering collapsed holes.
For simplicity sake, we will study an elongated shape that is
symmetric about both its semimajor and semiminor axes �see
Fig. 7�. Here, we consider only shapes for which the ratio of
minor and major axes 2a /d�1. In the theory of cracks, the
height profile of a crack h�x� may be constructed from a
continuous distribution of finite parallel edge dislocations. A
finite edge dislocation of length � can be thought of as a two
infinite edge dislocations of the same strength but opposite
charge which is given by Burgers vectors situated at b+
=b��x−� /2� and b−=−b��x+� /2�, in other words, a dislo-
cation dipole. Given the height profile of a shape, it is trivial
to construct it from such dislocation dipoles, h�x�=d�x�.
Thus, the interaction energy between such a shape made
from dislocation dipoles and a single dislocation dipole d2
located a distance R0 away is given by

E = −
Y2b2d2

�
�

−a

a

dx
d�x�
R2�x��cos���x�

+ �2�x��sin���x��sin��2�x�� +
1

4

 . �B6�

By repeated application of the law of cosines, the functional
forms of R�x�, ��x�=� /2−
�x�, and �2�x� are

FIG. 7. Setup for dipole expansion of an elongated shape sym-
metric about both the x and y axes, in this case, an ellipse.
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R2�x� = R0
2 + x2 − 2R0x cos��

2
+ �0�

= R0
2 + x2 + 2R0x sin �0, �B7�


�x� = cos−1� x + R0 sin �0

�R0
2 + x2 + 2R0x sin �0

� , �B8�

�2�x� = �20
− �0 − 
�x� + �/2. �B9�

The energy density is

f = −
Y2b2d2

�

d�x�
R0

2 + x2 + 2R0x sin �0

��− cos��̃ − 2
�x��cos�
�x��cos��̃ − 
�x�� +
1

4
� ,

�B10�

where �̃=�20
−�0. This may be vastly simplified by expand-

ing the angular terms

cos��̃ − 2
�x�� =
cos �̃�x + R0 sin �0�2R0

2 cos2 �0 + 2 sin �̃�x + R0 sin �0�R0 cos �0

R0
2 + x2 + 2R0x sin �0

, �B11�

cos��̃ − 
�x�� =
cos �̃�x + R0 sin �0� + sin �̃R0 cos �0

�R0
2 + x2 + 2R0x sin �0

. �B12�

The energy density becomes

f = −
Y2b2d2

�

d�x�
�R0

2 + x2 + 2R0x sin �0�3� �R0
2 + x2 + 2R0x sin �0�2

4
− �

n=1

4

cn�x + A�n�
= −

Y2b2d2

�

d�x�
�R0

2 + x2 + 2R0x sin �0�3 �
n=0

4

cn�
m=0

n
n!

m ! �n − m�!
An−mxm, �B13�

where A=R0 sin �0, B=R0 cos �0, and the coefficients cn are given by c0=B4 /4, c1=B3 cos �̃ sin �̃, c2=B2�cos2 �̃−2 sin2 �̃�
+B2 /2, c3=−3B cos �̃ sin �̃, and c4=−cos2 �̃+1 /4. While the above energy is for general shape of dislocations, we choose a
shape to do the actual calculation. For simplicity sake, we choose an ellipse of major axis d0 and minor axis 2a. Thus, d�x�
=d0

�1−x2 /a2. With the change of variables, y=x /a, our energy integral becomes

E = −
Y2b2d2

�R0
6 �

−1

1

dy
d0a�1 − y2

�1 + � a
R0

y�2 + 2 a
R0

y sin �0�3 �
n=0

4

cn�
m=0

n
n!

m ! �n − m�!
An−m�ay�m. �B14�

Expanding the denominator for a
R0

�1, we find �1+ � a
R0

y�2+2 a
R0

y sin �0�−3��1−6 a
R0

sin �0y+3� a
R0

�2�8 sin2 �0−1�y2+¯�.
Now, we need only do the integral �−1

1 dy�1−y2yn=2�1− �−1�n��0
1�1−y2yN for, since �1−y2 is even, this integral is

zero for odd integer n. This is very simple using beta functions, which we may see by the change of variables t=y�2,

2�
0

1

dy��1 − y�2y�N = �
0

1 dt
�t

�1 − ttn/2 = �
0

1

dtt�n+1�/2−1�1 − t�3/2−1 � B�1 + n

2
,
3

2
� =

�� 1+n
2 ��� 3

2�
��2 + n

2� =
��1 + �− 1�n�

2n/2+1

�n − 1� ! !

� n
2 + 1�!

.

�B15�

The interaction energy is thus

E = −
Y2b2d2d0a

�R0
6 �

n=0

4

�
m=0

n

cn
n!

m ! �n − m�!
An−mam �

2m/2+2��1 + �− 1�m��2
�m − 1� ! !

�m
2 + 1�!

+ 3
a2

R0
2 �8 sin2 �0 − 1�

�m + 1� ! !

�m
2 + 2�!

	
− 6

a

R0
sin �0

�2�1 − �− 1�m�
m ! !

�m+1
2 + 1�!


 . �B16�

While this appears to be a complicated expression, let us, for the moment, consider only the first-order term in a,
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E0 = −
Y2b2d2d0a

4R0
6 �

n=0

4

cnAn = −
Y2b2d2d0a

4R0
6 �B4

4
+ AB3 cos �̃ sin �̃ + A2B2�cos2 �̃ − 2 sin2 �̃ +

1

2
�

− 3A3B cos �̃ sin �̃ + A4�1

4
− cos2 �̃�	

= −
Y2b2d2d0a

4R0
2 � cos4 �0

4
+ �cos3 �0 sin �0 − 3 sin3 �0 cos �0�cos �̃ sin �̃

+ cos2 �0 sin2 �0�cos2 �̃ − 2 sin2 �̃ +
1

2
� + sin4 �0�1

4
− cos2 �̃�	 . �B17�

This does not appear to have the same functional form as the original energy. However, with the help of some trigonometric
identities, we begin to simplify the energy

cos4 �0 + sin4 �0�1 − 4 cos2 �̃� =
1

2
sin2 2�0 cos 2�̃ + 1 − 4 sin2 �0 cos2 �̃ , �B18�

�cos3 �0 sin �0 − 3 sin3 �0 cos �0�cos �̃ sin �̃ =
1

4
�2 cos 2�0 − 1�sin 2�0 sin 2�̃ , �B19�

�cos2 �̃ − 2 sin2 �̃ +
1

2
�cos2 �0 sin2 �0 =

3

8
cos 2�̃ sin2 2�0. �B20�

We now use these identities in the energy to find

E0 = −
Y2b2d2d0a

4R0
2 �1

8
sin2 2�0 cos 2�̃ +

1

4
− sin2 �0 cos2 �̃ +

1

4
�2 cos 2�0 − 1�sin 2�0 sin 2�̃ +

3

8
cos 2�̃ sin2 2�0�

= −
Y2b2d2d0a

4R0
2 �1

2
sin 2�0�sin 2�0 cos 2�̃ + cos 2�0 sin 2�̃� − sin2 �0 cos2 �̃ −

1

4
sin 2�0 sin 2�̃ +

1

4
� . �B21�

Now we substitute �̃=�20
−�0 to find

E0 = −
Y2b2d2d0a

4R0
2 �1

2
sin 2�0 sin 2�20

− sin2 �0 cos2 �̃ − sin �0 cos �0 sin �̃ cos �̃ +
1

4
�

= −
Y2b2d2d0a

4R0
2 �cos��0 + �20

�sin �0 sin �20
+

1

4
� . �B22�

So we have found that to first order in a /R0 an ellipse of major axis d and minor axis 2a interacts with a dislocation dipole of

strength d2 a distance R0 away like a dislocation dipole with effective dipole strength d̃=�d0a /4. Higher-order terms contain
more powers of a /R0, which can be neglected for very thin shapes or for dipoles that are very far away.
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