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ABSTRACT

ESSAYS ON RANDOM FOREST ENSEMBLES

Matthew Olson

Abraham J. Wyner

A random forest is a popular machine learning ensemble method that has proven

successful in solving a wide range of classification problems. While other successful

classifiers, such as boosting algorithms or neural networks, admit natural interpreta-

tions as maximum likelihood, a suitable statistical interpretation is much more elusive

for a random forest. In the first part of this thesis, we demonstrate that a random

forest is a fruitful framework in which to study AdaBoost and deep neural networks.

We explore the concept and utility of interpolation, the ability of a classifier to per-

fectly fit its training data. In the second part of this thesis, we place a random forest

on more sound statistical footing by framing it as kernel regression with the proximity

kernel. We then analyze the parameters that control the bandwidth of this kernel

and discuss useful generalizations.
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CHAPTER 1 : Introduction

In his 2001 paper Statistical Modeling: The Two Cultures Leo Breiman lamented that

the statistics community had become overly reliant on stochastic data models, which

had led to “irrelevant theory” and “questionable conclusions” (Breiman et al., 2001).

At the same time, an emerging class of data analysts - the machine learners - were

applying black-box, algorithmic, models with great success. Among these models

were AdaBoost and random forests, ensembles of thousands of decision trees with

no clear connection to classical statistics. As new, more successful, algorithmic tools

were supplanting the model-based tools of linear regression, statisticians stood on the

sidelines.

The situation has changed dramatically since then, as evidenced by the advent of

statistical machine learning (Hastie et al., 2009). The key bridge between the “black-

boxes” of machine learning and stochastic data models was optimization: optimiza-

tion provided the framework for statisticians to interpret these algorithms in the

language of maximum likelihood. A canonical example of this bridge was the framing

of AdaBoost as a stage-wise approach to additive logistic regression (Friedman et al.,

2000). If ensemble of trees algorithms were the black boxes of data analysis in the

early 2000s, today’s black boxes are deep neural networks, with millions of param-

eters. Yet, even these models can be interpreted in terms of binomial deviance and

regularization, language familiar to the statistician.

An interpretation is useful to the extent that it allows others to think fruitfully about

an idea, and leads to meaningful generalizations (Buja, 2000). One finds this to be the

case with the framing of AdaBoost found in Friedman et al. (2000). Subsequent work

led to gradient boosting, an algorithmically explicit method utilizing trees and gradi-
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ent descent to maximize a likelihood (Friedman, 2001). Similarly, the training process

for deep neural networks has successfully borrowed techniques of regularization that

have deep foundations in penalized likelihood estimation.

However, there is no true interpretation of anything (Buja, 2000), and it is often coun-

terproductive to slavishly follow any interpretation to its logical conclusion. Again,

one finds this to be the case with the framing of AdaBoost as maximum likelihood.

Variants of boosting algorithms that use more aggressive optimization tend to per-

form worse than the original formulation (Schapire and Freund, 2012). Furthermore,

natural extensions of the likelihood interpretation, such as probability estimation, can

perform poorly in practice (Mease and Wyner, 2008). In a similar way, accelerated

gradient methods used in training deep neural networks can converge to local optima

with worse generalization than unmodified stochastic gradient descent (Wilson et al.,

2017).

The unifying thread of this thesis is the random forest classification algorithm, an

ensemble method that defies the optimization view of machine learning. The math-

ematics of a random forest are far less elegant than AdaBoost: there is neither a

global loss function nor an interpretation of gradient descent. Although a random

forest greedily minimizes an impurity criteria at each node, this minimization is done

imprecisely as variables are selected at random. Furthermore, additional random-

ization - and thus less optimization - also leads to good performance (Geurts et al.,

2006). We use random forests as an umbrella for studying the performance of suc-

cessful machine learning methods, specifically AdaBoost and deep neural networks.

We also suggest that although a random forest does not fit cleanly into the familiar

likelihood framework, we can still frame it in statistically familiar terms as kernel

regression.
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In the first part of the thesis, we argue that AdaBoost and neural networks produce

fits that are qualitatively similar to a random forest. In particular, we focus on the

property of all three classifiers to generalize well despite achieving perfect training

accuracy. In each case, we provide decompositions of the final algorithm into ensem-

bles low bias, decorrelated classifiers. Although obvious in the case of random forests,

these decompositions are more subtle in the case of AdaBoost and neural networks.

This view also supports the absence of regularization and early stopping, which are

strongly suggested by the optimization perspective.

The second part of this thesis offers a new interpretation of a random forest as kernel

regression, which places it squarely back in the statistician’s domain. This interpre-

tation was inspired from the analysis of random forest probability estimates, which

are simply the fraction of trees in a forest that vote for a certain class. Apriori, an

ensemble vote has nothing to do with a probability. We show that in the case of ran-

dom forest, this fraction amounts to kernel regression with the proximity function.

We then analyze the parameters that control the bandwidth of this kernel, as well as

construct useful generalizations of the proximity function.
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CHAPTER 2 : Interpolating Classifiers

Abstract

The literature on AdaBoost focuses on classifier margins and boost-

ing’s interpretation as the optimization of an exponential likelihood func-

tion. These existing explanations, however, have been pointed out to be

incomplete. A random forest is another popular ensemble method for

which there is substantially less explanation in the literature. We intro-

duce a novel perspective on AdaBoost and random forests that proposes

that the two algorithms work for similar reasons. In the process, we ques-

tion the conventional wisdom that suggests that boosting algorithms for

classification require regularization or early stopping and should be lim-

ited to low complexity classes of learners, such as decision stumps. We

conclude that boosting should be used like random forests: with large

decision trees, without regularization or early stopping.

2.1. Introduction

In the “boosting” approach to machine learning, a powerful ensemble of classifiers is

formed by successively refitting a weak classifier to different weighted realizations of

a data set. This intuitive procedure has seen a tremendous amount of success. In

fact, shortly, after its introduction, in a 1996 NIPS conference, Leo Brieman crowned

AdaBoost (Freund and Schapire, 1996) (the first boosting algorithm) the “best off-

the-shelf classifier in the world (Friedman et al., 2000).” AdaBoost’s early success

∗Joint work with Adi Wyner, Justin Bleich, and David Mease.
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was immediately followed by efforts to explain and recast it in more conventional sta-

tistical terms. The statistical view of boosting holds that AdaBoost is a stage-wise

optimization of an exponential loss function (Friedman et al., 2000). This realization

was especially fruitful leading to new “boosting machines” (Friedman, 2001; Ridge-

way, 2006) that could perform probability estimation and regression as well as adapt

to different loss functions. The statistical view, however, is not the only explanation

for the success of AdaBoost. The computer science literature has found generalization

error guarantees using VC bounds from PAC learning theory and margins (Guestrin,

2006). While some research has cast doubt on the ability of any one of these to

fully account for the performance of AdaBoost they are generally understood to be

satisfactory (Schapire, 2013).

This paper parts with traditional perspectives on AdaBoost by concentrating our

analysis on the implications of the algorithm’s ability to perfectly fit the training

data in a wide variety of situations. Indeed, common lore in statistical learning sug-

gests that perfectly fitting the training data must inevitably lead to “overfitting.”

This aversion is built into the DNA of a statistician who has been trained to believe,

axiomatically, that data can always be decomposed into signal and noise. Tradition-

ally, the “signal” is always modeled smoothly. The resulting residuals represent the

“noise” or the random component in the data. The statistician’s art is to walk the

balance between the signal and the noise, extracting as much signal as possible with-

out extending the fit to the noise. In this light, it is counterintuitive that any classifier

can ever be successful if every training example is “interpolated” by the algorithm

and thus fit without error.

The computer scientist, on the other hand, does not automatically decompose prob-

lems into signal and noise. In many classical problems, like image detection, there
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is no noise in the classical sense. Instead there are only complex signals. There are

still residuals, but they do not represent irreducible random errors. If the task is to

classify images into those with cats and without, the problem is hard not because it is

noisy. There are no cats wearing dog disguises. Consequently, the computer scientist

has no dogmatic aversion to interpolating training data. This was the breakthrough.

It is now well-known that interpolating classifiers can work, and work well. The

AdaBoost classifier created a huge splash by being better than its established com-

petitors (for instance, CART, neural networks, logistic regression) (Breiman, 1998)

and substantively better than the technique of creating an ensemble using the boot-

strap (Breiman, 1996a). The statistics community was especially confounded by two

properties of AdaBoost: 1) interpolation (perfect prediction in sample) was achieved

after relatively few iterations, 2) generalization error continues to drop even after

interpolation is achieved and maintained.

The main point of this paper is to demonstrate that AdaBoost and similar algo-

rithms work not in spite, but because of interpolation. To bolster this claim, we

will draw a constant analogy with random forests (Breiman, 2001), another inter-

polating classifier. The random forests algorithm, which is also an ensemble-of-trees

method, is generally regarded to be among the very best commonly used classifiers

(Fernández-Delgado et al., 2014). Unlike AdaBoost, for which there are multiple

accepted explanations, random forest’s performance is much more mysterious since

traditional statistical frameworks do not necessarily apply. The statistical view of

boosting, for example, cannot apply to random forests since the algorithm creates

decision trees at random and then averages the results—there is no stage-wise op-

timization. In this paper, we will put forth the argument that both algorithms are

effective for the same reason. We consider AdaBoost and random forests as canonical

6



examples of “interpolating classifiers,” which we define to be a classifier’s algorith-

mic property of fitting the training data completely without error. Each of these

interpolating classifiers also exhibits a self-averaging property. We attempt to show

that these two properties together make for a classifier with low generalization error.

While it is easy to see that random forests has both of these mechanisms by design,

it is less clear that this is true for AdaBoost.

It is worth noting that Breiman noticed the connection between random forests and

AdaBoost as well, although his notion of a random forest was more general, including

other types of large ensembles of randomly grown trees (Breiman, 2001). In his 2001

Random Forests paper, he conjectured that the weights of AdaBoost might behave

like an ergodic dynamic system, converging to an invariant distribution. When run

for a long time, the additional rounds of AdaBoost were equivalent to drawing trees

randomly grown according to this distribution, much like a random forest. Recent

work has followed up on this idea, proving that the weights assigned by AdaBoost do

indeed converge to a invariant distribution 2 (Belanich and Ortiz, 2012). In this work,

the authors also show that functions of these weights, such as the generalization error

and margins, also converge. This work certainly complements ours, but we focus on

the similarity between AdaBoost and random forests through the lens of the type of

decision surfaces both classifiers produce, and ability of both algorithms to achieve

zero error on the training set.

One of our key contributions will be to present a decomposition of AdaBoost as the

weighted sum of interpolating classifiers. Another contribution will be to demonstrate

the mechanism by which interpolation combined with averaging creates an effective

2 More specifically, they consider the so called “Optimal AdaBoost” algorithm, which is assume
to pick the base classifier with lowest weighted error at each round. They show that the per round
average of any measurable function of the training weights converges under mild conditions.
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classifier. It turns out that interpolation provides a kind of robustness to noise: if a

classifier fits the data extremely locally, a “noise” point in one region will not affect

the fit of the classifier at a nearby location. When coupled with averaging, the result is

that the fit stabilizes at regions of the data where there is signal, while the influence

of noise points on the fit becomes even more localized. It will be easy to see this

point holds true for random forests. For AdaBoost, it is less clear, however, and a

decomposition of AdaBoost and simulation results in Section 2.4 will demonstrate this

crucial point. We will observe that the error of AdaBoost at test points near noise

points will continue to decrease as AdaBoost is run for more iterations, demonstrating

the localizing effect of averaging interpolating classifiers.

We will begin in Section 2.2 by critiquing some of the existing explanations of Ad-

aBoost. In particular, we will discuss at length some of the shortcomings of the

statistical optimization view of AdaBoost. In Section 2.3, we will discuss the merits

of classification procedures that interpolate the training data, that is, that fit the

training data set with no error. The main conclusion from this section is that inter-

polation, done correctly, can provide robustness to a fit in the presence of noise. This

discussion will be augmented with simulations discussing the performance of random

forests, AdaBoost, and other algorithms in a noisy environment. We will then derive

our central observation in Section 2.4, namely that AdaBoost can be decomposed as

a sum of classifiers, each of which fits the training data perfectly. The implication

from this observation is that for the best performance, we should run AdaBoost for

many iterations with deep trees. The deep trees will allow the component classifiers

to interpolate the data, while a large number of iterations will lend to a bagging

effect. We will then demonstrate this intuition in a real data example in Section 2.5.

Finally, we conclude with a brief discussion in Section 2.6.
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2.2. Competing Explanations for the Effectiveness of Boosting

In this section we will present an overview of some of the most popular explanations

for the success of boosting, with analysis of both the strengths and weaknesses of

each approach. Our emphasis will focus on the margins view of boosting and the

statistical view of boosting, each of which has a large literature and has led to the

development of variants of boosting algorithms. For a more extensive review of the

boosting literature, one is well-advised to consult Schapire and Freund (2012).

Before we begin, we will briefly review the AdaBoost algorithm not only to refresh

the reader’s mind, but also to establish the exact learning algorithm this paper will

consider, as there are many variants of AdaBoost. To this end, the reader is invited

to review Algorithm 1. In our setting, we are given N training points (xi, yi) where

xi ∈ X and yi ∈ {−1,+1}. On round m, where m = 1, . . . ,M , we fit a weak classifier

Gm (x) to a version of the data set reweighted by some weighting vector wm. We

then calculate the weighted misclassification rate of our chosen learner, and update

the weighting measure used in the next round, wm+1. The final classifier is output

as the sign of a weighted linear combination of classifiers produced from each stage

of the algorithm. In practice, one sometimes limits the number of rounds of boosting

as a form of regularization. We will discuss this point more in the next section, and

challenge its usefulness in later parts of the paper.

2.2.1. Margin View of Boosting

Some of the earliest attempts to understand AdaBoost’s performance predicted that

its generalization error would increase with the number of iterations: as AdaBoost is

run for more rounds, it is able to fit the data increasingly well which should lead to

overfitting. However, in practice we observe that running boosting for many rounds

9



Algorithm 1 AdaBoost Hastie et al. (2009)

1. Initialize the observation weights wi =
1

N
, i = 1, 2, . . . , N .

2. For m = 1 to M :
(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute errm =

∑N
i=1wiI (yi 6= Gt (xi))∑N

i=1wi
.

(c) Compute am = log

(
1− errt

errt

)
.

(d) Set wi ← wi · exp (at · I (yi 6= Gt (xi)))

(e) Set fi(x) =
∑M

m=1 amGm (x)

3. Output f(x) = sign (fM(x))

does not overfit in most cases. One of the first attempts to resolve this paradox

was explored by Schapire et al. (1998), who focused on the margins of AdaBoost.

The margins can be thought of as a measure of how confident a classifier is about

how it labels each point, and one would hypothetically desire to produce a classifier

with margins as large as possible. Schapire et al. (1998) proved that AdaBoost’s

generalization error decreases as the size of the margins increase. Indeed, in practice

one observes that as AdaBoost is run for many iterations, test error decreases while

the size of the empirical margins increase. In fact, recent research has demonstrated

that AdaBoost can be reformulated exactly as mirror descent applied to the problem

of maximizing the smallest margin in the training set under suitable separability

conditions (Freund et al., 2013).

One could take these observations to suggest that a more effective algorithm might be

designed to explicitly optimize margins. However, one can find evidence against this

hypothesis in Breiman’s arc-gv algorithm (Breiman, 1999). Breiman designed the

arc-gv algorithm to maximize the minimum margin in a data set, and he found that
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this algorithm actually had worse generalization error than AdaBoost. Moreover, he

developed generalization error bounds based on the minimum margin of a classifier

which were tighter than those established by Shapire, casting doubt on the existing

margin explanation. Other algorithms designed to maximize margins, such as LP-

Boost have also been found to perform worse than AdaBoost in practice (Wang et al.,

2011). Critics of these supposed counterexamples to the margin view of boosting

note that AdaBoost’s success likely depends on the entire distribution of margins on

the data, not just the smallest margin. More recent work has improved upon the

Breiman’s generalization bound by taking into account other aspects of the margin

that more closely reflect its distribution, adding new life to the margin explanation

of AdaBoost (Gao and Zhou, 2013). While the margin explanation of AdaBoost is

certainly intuitive, its role in producing low generalization error is still an area of

active research.

2.2.2. Statistical Optimization View of Boosting

Friedman et al. (2000) take great strides to clear up the mystery of boosting to

provide statisticians with a statistical view of the subject. The heart of their article

is the recasting of boosting as a statistically familiar program for finding an additive

model by means of a forward stage-wise approximate optimization of an exponential

criterion. In short, this view places boosting firmly in classical statistical territory by

clearly defining it as a procedure to search through the space of convex combinations

of weak learners or base classifiers. This explanation has been widely assimilated

and has reappeared in the statistical literature as well as in a plethora of computer

science articles. Subsequent to the seminal publication of Friedman et al. (2000) there

has been a flurry of activity dedicated to theoretical analysis of the algorithm. This

was made possible by the identification of boosting as optimization, which therefore
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admits of a mathematically tractable representation. Research on the optimization

properties of AdaBoost and the exponential loss function is still an active area of

research, see Mukherjee et al. (2013), for example.

Although the statistical optimization perspective of AdaBoost is surely interesting

and informative, there remain problems. First, we observe that the fact that Ad-

aBoost minimizes an exponential loss may not alone account for its performance as a

classifier. Wyner (2003) introduces a variant of AdaBoost called Beta-Boost which is

very similar to AdaBoost except that by design the exponential loss function is con-

stant throughout the iterations. Despite this, Beta-Boost was able to demonstrate

similar performance to AdaBoost on simulated data sets. Furthermore, among many

similar examples in the literature, Mease and Wyner (2008) present a simulation ex-

ample in which the the exponential loss is monotonically increasing with the number

of iterations of AdaBoost on a test set, while the generalization error decreases. In

this example, the value of the exponential loss is uninformative about how well the

classifier generalizes. Freund et al. (2013) also provide evidence to this end. They con-

duct an experiment that compares AdaBoost to two AdaBoost variants that minimize

the exponential loss function at differing rates: one performs the minimization very

quickly through gradient descent, while the other performs the minimization quite

slowly. They find that AdaBoost performed significantly better than these two com-

petitors, suggesting that AdaBoost’s strong performance cannot be tied exclusively

to its action on the exponential loss function.

We also contend that some of the mathematical theory connected with the statistical

optimization view of boosting has a disconnect with the types of boosting algorithms

that work in practice. The optimization theory of boosting insists that overfitting can

be avoided by requiring the set of weak learners, to be just that: weak. Bühlmann
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Algorithm 2 Random Forests Hastie et al. (2009)

1. For b = 1 to B:
(a) Draw a bootstrap sample X∗ of size N from the training data
(b) Grow a decision tree Tb to the data X∗ by doing the following recursively

until the minimum node size nmin is reached:
i. Select m of the p variables
ii. Pick the best variable/split-point from the m variables and partition

2. Output the ensemble {Tb}Bb

Let Ĉb(x
∗) be predicted class of tree Tb. Then ĈB

rf (x∗) = majority vote{Ĉb(x∗)}B1 .

and Yu (2003) argues that one can avoid overfitting by employing regularization

with weak base learners. However, empirical evidence points to quite the opposite:

boosting deep trees for many iterations tends to produce a better classifier than

boosted stumps with regularization (Mease and Wyner, 2008). The use of early-

stopping as a form of regularization has also been called into question (Mease and

Wyner, 2008). The thrust of our paper will be to demonstrate why we should actually

expect boosting with deep trees run for many iterations to have better generalization

error. Recent work also suggests that boosting low complexity classifiers may not be

able to achieve good accuracy in difficult classification tasks such as speech recognition

or image recognition (Cortes et al., 2014). This paper proposes an algorithm called

“DeepBoost” which encourages boosting high complexity base classifiers—such as

very deep decision trees—but in a “capacity-conscious” way. One last problem with

theory associated with the statistical view of boosting is that by its very nature

it suggests that we should be able to extract conditional class probability estimates

from the boosted fit, as the procedure is apparently maximizing a likelihood function.

Mease and Wyner (2008), however, point out a number of examples where the implied

conditional class estimates from the boosting fit diverge to zero and one. While

boosting appears to do an excellent job as a classifier, it apparently fails to estimate

probability quantiles correctly.
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We can now summarize the main empirical contradictions with existing theoretical

explanations of boosting, which motivates the view we present in this paper:

• Boosting works well, perhaps best in terms of performance if not efficiency, with

“strong learners” like C4.5 and CART (Niculescu-Mizil and Caruana, 2005).

• The value of exponential loss does not always bear a clear relationship to gen-

eralization error (Mease and Wyner, 2008).

• The optimization theory offers no explanation as to why the training error can

be zero, yet the test error continues to descend (Freund and Shapire, 2000)

This paper will squarely depart from the statistical optimization view by asserting

that AdaBoost may be best thought of as a (self) smoothed, interpolating classifier.

We will see that unlike the statistical optimization view, this perspective suggests that

for best performance once should run many iterations of AdaBoost with deep trees.

This will allow us to draw a number of analogies between AdaBoost and random

forests. A key component to this argument will consist of explaining the success of

interpolating classifiers in noisy environments. We will pursue this line of thought in

the following section.

2.3. Interpolating Classifiers

It is a widely held belief by statisticians that if a classifier interpolates all the data,

that is, it fits all the training data without error, then it cannot be consistent and

should have a poor generalization error rate. In this section, we demonstrate that

there are interpolating classifiers that defy this intuition: in particular, AdaBoost

and random forests will serve as leading examples of such classifiers. We argue that

these classifiers achieve good out of sample performance by maintaining a careful
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balance between the complexity required to perfectly match the training data and

a general semi-smoothness property. We begin with a quick review of the random

forests classifier, which will be in constant analogy with AdaBoost.

2.3.1. Random Forests

Random forests has gained tremendous popularity due to robust performance across a

wide range of data sets. The algorithm is often capable of achieving best-in-class per-

formance with respect to low generalization error and is not highly sensitive to choice

of tuning parameters, making it the off-the-shelf tool of choice for many applications.

Algorithm 2 reviews the procedure for constructing a random forests model. Note

that in many popular implementations, such as R implementation randomForest Liaw

and Wiener (2002) built from Breiman’s CART software, nmin is set to one for clas-

sification. This implies that each decision tree is designed to be grown to maximal

depth and therefore necessarily interpolates the data in its bootstrap sample (assum-

ing as least one continuous predictor). This results in each tree being a low bias but

high variance estimator. Variance is then reduced by averaging across trees, resulting

in a “smoothing” of the estimated response surface. The random predictor selection

within each tree further reduces variance by lowering the correlation across the trees.

The final random forest classifier still fits the entire training data set perfectly, at

least with very high probability. To see this is true, consider any given training point.

As the number of trees increases, with probability close to one, that point will be

present in the majority of the bootstrap samples used to fit the trees in the forest.

Thus the point will get the correct training set label when the votes are tabulated to

determine the final class label.

We wish to emphasize that despite its success, random forests is not directly opti-
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mizing any loss function across the entire ensemble; each tree is grown independently

of the other trees. While each tree may optimize a criteria such as the Gini index,

the full ensemble is not constructed in any optimization-driven fashion such as is the

case for AdaBoost. While there has been recent theoretical work describing the pre-

dictive surface of random forests (Wager and Walther, 2015), the analysis required

unnatural assumptions that are hard to justify in practice (such as the growth rate

of minimum leaf size). Rather, we postulate that the success of the algorithm is due

to its interpolating nature plus the self-averaging mechanism. We next consider the

implications of interpolating classifiers more broadly.

2.3.2. Local Robustness of Interpolating Classifiers

Let us begin with a definition of interpolation:

Definition: Let Xi be vector observations of predictor variables a let Yi be the

observed class label. A classifier f(X) is said to be an interpolating classifier if for

every training set example, the classifier assigns the correct class label; that is for

every i, f(Xi) = Yi.

The term “interpolation” is likely jarring for some readers. In many contexts, one

often thinks about interpolating a set of points with classically smooth functions,

such as polynomial splines. However, strictly speaking, there are many other ways

that one might interpolate a set of points—through the fit of an AdaBoost classifier,

for instance! Since the notion of fitting a set of points without error is central to this

paper, and since the common definition of interpolation does not preclude the kinds

of fits we consider, we felt it appropriate to proceed with the term.

Many statisticians are not comfortable with classifiers that interpolate the training

data: common wisdom suggests that any classifier which fits the training data per-
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Figure 1: Three estimated regression functions with two interpolating fits (black and
blue) and an ordinary least squares fit (red).

fectly must have poor generalization error. Indeed, one of the first interpolating

classifiers that might come to one’s mind, the one-nearest neighbor, can be shown

to be inconsistent and have poor generalization error in environments with noise.

Specifically, Cover and Hart (1967) have shown that the asymptotic generalization

error for the one-nearest neighbor classifier is at least as large as the Bayes error rate.

However, the claim that all interpolating classifiers overfit is problematic, especially

in light of the demonstrated success of classifiers that perfectly fit the training data,

such as random forests.

One of our key insights reverses the common intuition about classifiers: interpolation

can prevent overfitting. An interpolated classifier, if sufficiently local, minimizes the

influence of noise points in other parts of the data. In order to make this point

conceptually clear, it is helpful to put ourselves in familiar territory with a regression

example.
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Suppose we are trying to predict a continuous response y based on real-valued x

observations. Let us assume that the true underlying model is y = x+ ε, where ε is a

mixture of a point mass at zero and some heavy-tailed distribution. In other words,

we’ll assume that most points in a given training set reflect the true linear relationship

between y and x, but a few observations will be noise points. This is analogous to

the types of probability models we typically consider in classification settings, such

as those found in later sections of the paper. Figure 1 shows hypothetical training

data: note that the only “noise” point is found at x = 0.4. We then consider fitting

three models to this data: two interpolating functions, given by the blue and black

lines, and an ordinary regression fit given by the red line. The first thing to notice

is that the two interpolating fits differ only from the true target mean model y = x

only at the noise point x = 0.4. In contrast, the fit of the regression line deviates

from the underlying target over the entire range of x. The one noise point corrupted

the entire fit of the regression line, while the interpolating lines were able to minimize

the influence of the noise point by adapting to it only very locally. Moreover, one

should note that between the two interpolating fits, the blue line interpolates more

locally than the black line, and thus its overall fit is even less influenced by the noise

point. This simplified example is of course meant to be didactic, but we will show

throughout the rest of this paper that in practice AdaBoost and random forest do

indeed produce fits similar to the blue line.

While it is conceptually clear that it is desirable to produce fits like the blue interpo-

lating line in the previous example, one may wonder how such fits can be achieved in

practice. In the classification setting, we will argue throughout this paper that this

type of fit can be realized through the process of averaging interpolating classifiers.

We will refer to the decision surface produced by this process as being spiked-smooth.
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(a) (b)

Figure 2: An illustration of the robustness to noise of interpolating classifiers. In
2a a classifier (such as a logistic regression) is fit to a set of training data, and the
decision boundary produced by this classifier is shown as a solid line. In 2b, the
same type of classifier is fit to the training data, except a noise point is added to
the data (the blue point marked by the arrow). The one noise point shifts the entire
decision boundary, which is shown as the dotted line. On the other hand, the decision
boundary produced by a classifier which interpolates very locally is shown as a solid
line. It is clear that this classifier is able to adapt locally to the noise point, and the
overall fit does not get corrupted.
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The decision surface is spiked in the sense that it is allowed to adapt in very small re-

gions to noise points, and it is smooth in the sense that it has been produced through

averaging. A technical definition of a spiked-smooth decision surface would lead us

too far astray. It may be helpful instead to consider the types of classifiers that do

not produce a spiked-smooth decision surface, such as a logistic regression. Logis-

tic regression separates the input space into two regions with a hyperplane, making

a constant prediction on each region. This surface is not spiked-smooth because it

does not allow for local variations: in large regions (namely, half-spaces), the classi-

fier’s predictions are constrained to be the same sign. Figure 2 provides a graphical

illustration of this intuition.

Intuitively, we expect ensembles of interpolating classifiers to generalize well because

they are flexible enough to fit a complex signal, and “local” enough to prevent the

undue influence of noise points. It is clear that random forests are averaged collections

of interpolating classifiers, and we will show in section 2.4 that AdaBoost may be

thought of in the same way. Classically smooth classifiers—such as logistic regression

or pruned CART trees—are forced to produce fits that are locally constant. It is

harder for such classifiers to “recover” from making a mistake at a noise point since

the surface of the fit will affect the fit at nearby points. Interpolating classifiers are

flexible enough to make mistakes in “small regions.” When averaged over many such

classifiers, the influence of the noise point can be easily smoothed out. Later examples

in the paper will visualize this process, and will demonstrate that the later iterations

of AdaBoost have a smoothing effect which shrinks down the influence of noise points

on the overall fit of the classifier.

With this discussion in mind, let us consider another conceptual example, this time in

the classification setting. Suppose we have have two predictors x1 and x2 distributed
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independently and uniformly on [0, 1]2 and y ∈ {−1,+1}. Further suppose that the

true conditional class probability function is

P (y = 1|x) = p = .75

for all x. This is a pure noise model with no signal, but in general one could view this

as a subspace of a more complex model in which the P (x) function is approximately

constant. Since the Bayes decision rule is to classify every point as a “+1”, we would

desire an algorithm that will match the Bayes rule as close as possible. Again, we

stress that this closeness should be judged with respect to the population or a hold-

out sample. On this training data, any interpolating classifier will necessarily differ

from the Bayes rule for 1− p = 25% of the points on average.

Figure 3 shows a possible sample of training data from this model of size n = 20.

The blue points represent the “+1”’s and the red points represent the “-1”’s. There

are 5/20 = 25% red points. The training data was sampled according to a Latin

Hypercube design using the midpoints of the squares so that the points would be

evenly spaced, but that is not essential.

Figure 4 shows four hypothetical classifiers that could result from fitting boosted

decision tree models to the training data in Figure 3. When decision trees are used

as base learners for data with continuous predictors, it is a common convention to

restrict the split points of the trees to be the midpoints of the predictors in the

training data. Consequently, the classifier in each small square shown in Figure 3

will necessarily be constant throughout; this is the finest resolution of the classifier

resulting from boosting decision tress assuming no sub-sampling. Thus, Figure 4a

represents the interpolating classifier closest to the Bayes rule. (In these plots, pink
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Figure 3: Training Data

squares represent “-1”’s and light blue squares represent “+1”’s.) Note that the

interpolation is in fact quite local; the estimated function varies rapidly in the small

neighborhoods of the pink squares. For such a classification rule the percentage of

points in a hold-out sample that would differ from the Bayes rule (in expectation over

training sets) would be (1−p)n/nd where p = P (y = 1|x) and d is the dimensionality

of the predictor space (for our example, d = 2). We will present evidence later that

in noisy environments boosting sufficiently large trees does actually tend to find such

rules as that in Figure 4a. Interestingly, since

lim
n→∞

(1− p)n/nd = 0

such rules are in fact consistent. This illuminates the point that interpolation does not

rule out consistency. By allowing the decision boundary to be “mostly” smooth, with

spikes of vanishing measure, it is possible to obtain consistency in the limit as n→∞,

even while classifying every training point correctly. This stands in direct contrast
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to the conclusion of others such as Bickel et al. (2006) who have observed that the

“empirical optimization problem necessarily led to rules which would classify every

training set observation correctly and hence not approach the Bayes rule whatever be

n.”
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(b) Hypothetical Classifier 2
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(d) Hypothetical Classifier 4

Figure 4: Four different hypothetical classifiers on a pure noise response surface where
P (y = 1|x) = 0.75.

While a classifier such as that in Figure 4a would preform well and is even con-

sistent, many possible interpolators exist, such as the others displayed in Figure 4.
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Figure 4b shows the (hypothetical) result of allowing the boosting algorithm to use

trees involving only x1 and not x2.

It is interesting to note that this classifier has severely overfit, even though it is a

simpler model, depending on only one of the two predictors. The classifier in Figure 4c

has an even worse error rate, while the classifier in Figure 4d differs from the Bayes

rule with rate ((1− p)n)2/n2. This final example illustrates the type of structure and

error rate that occurs when stumps are used as the weak learner. In fact, Mease and

Wyner (2008) show that the additive nature of stumps results in boosted classifiers

that differ from the Bayes rule at a rate of at least (1−p)d(1−1/d)d and hence is not

consistent. The reason for this is that using linear combinations of stumps does not

provide enough flexibility to interpolate locally around points for which the observed

class differs from the Bayes rule. In contrast, boosting larger trees, such as those

grown in random forests interpolating with spikes of increasingly smaller size. Some

simulations demonstrating the superior performance of larger trees over stumps are

given in Mease and Wyner (2008) and here in Section 2.4.3.

The different classification rules represented by the four plots all interpolate the train-

ing data; however, their performances on the population vary considerably due to dif-

ferent degrees of local interpolations of noise. In the sequel, we will show how random

forests and boosted ensembles of large trees results in classifiers that are robust to

noise. The classifiers behave in noisy regions as in Figure 4a. AdaBoost and random

forests average many individually overfit classifiers, similar to the one in Figure 4b.

The final result is a robust classifier, that is spiked-smooth; it fits the noise but only

extremely locally.
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2.3.3. A Two-Dimensional Example with Pure Noise

We will begin with an easy to visualize example that demonstrates how fine inter-

polation can provide robustness in a noisy setting. In particular, we compare the

performance of AdaBoost, random forests and one-nearest neighbors, which are all

interpolating classifiers. We will see see graphically that AdaBoost and random forests

interpolate more locally around error points in the training data than the one-NN clas-

sifier. Consequently, AdaBoost and random forests are less affected by noise points

as one-NN and have lower generalization error. We will show that the self-averaging

property of AdaBoost and random forests is crucial. This property will be discussed

in subsequent sections.

The implementation of AdaBoost is carried out according to the algorithm described

earlier. The base learners used are trees fit by the rpart package (Therneau and

Atkinson, 1997) in R. The trees are grown to a maximum depth of 8, meaning they

may have at most 28 = 256 terminal nodes. This will be the implementation of

AdaBoost we will consider throughout the remainder of this paper.

We will consider again the “pure noise” model as described in the previous sec-

tion, where the probability that y is equal to +1 for every x is some constant value

p > .5. For the training data we will take n = 400 points uniformly sampled on [0, 1]2

according to a Latin Hypercube using the midpoints as before. For the correspond-

ing y values in training data we will randomly choose 80 points to be −1’s so that

P (y = 1|x) = .8.

Figure 5 displays the results for the following: (a) one-NN, (b) AdaBoost , and (c)

random forests. Regions classified as +1 are colored light blue and regions classified

as −1 are colored pink. The training data is displayed with blue points for y = +1
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and red points for y = −1. Since the Bayes’ rule would be to classify every point as

+1, we judge the performance of the classifiers by the fraction of the unit square that

matches the Bayes’ rule. The nearest neighbor rule in this example classifies 79% of

the region as +1 (we expect p = 80% on average for the one-NN) while AdaBoost

performs substantially better classifying 87% of the square as +1 after 100 iterations

(which is long after the training error equals zero). This is evidence of boosting’s

robustness to noise discussed in the previous section. The random forests (with 500

trees) does even better, classifying 94% of the figure as +1. Visually, it is obvious that

the random forests and AdaBoost classifier is more spiked-smooth than one-nearest

neighbors, which allows it to be less sensitive to noise points. AdaBoost and random

forests do in fact overfit the noise—but only the noise. They do not allow the overfit

to metastasize to modestly larger neighborhoods around the errors. It is interesting

to note that there seems to be a large degree of overlap between the regions classified

as -1 by both the random forests and AdaBoost; one-NN does not seem to visually

follow a similar pattern.

As we will see in the Section 2.3.6, by increasing the sample size, number of dimensions

and iterations the performance is even better. The agreement with the Bayes rule

for AdaBoost and random forests converge to practically 100% despite the fact that

both algorithms still interpolate the training data without error.

2.3.4. A Visualization of Spiked-Smoothing

We have argued that local interpolation such as in Figure 4c is desirable, and we have

demonstrated that AdaBoost and random forest classifiers can achieve such a fit in the

previous simulation. Now, we turn to the crucial point of how these classifiers achieve

such a fit. To this end, we will graphically display the process of spiked-smoothing in

the case of the random forest classifier from the previous simulation. Each of the first
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(a) one-NN (b) AdaBoost

(c) Random Forests

Figure 5: Performance of one-NN, AdaBoost, and random forests on a pure noise
response surface with P(y = 1|x) = .8 and n = 400 training points.
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six plots in Figure 6 shows the classification rule fit by different decision trees in the

random forest. We have restricted each plot to a subset of the unit square to aide in

visual ease. The bottom plot, Figure 6g shows the classifier created from a majority

vote of each of the six random forest decision trees. As in the previous sections, the

light blue regions indicate where a classifier returns y = +1, and the pink regions

indicate where a classifier returns y = −1.

As before, we remark that the Bayes rule in this case would be to classify every point

as y = +1, and so agreement with the Bayes rule in the plots below can be visualized

as the proportion of the figure that is light blue. The first thing to notice is that each

decision tree fails to reproduce the Bayes rule. Indeed, since each tree interpolates its

bootstrap sample, each figure is bound to contain regions of pink, since most bootstrap

samples will contain at least a few noise points. However, one will also notice that

these regions of pink tend to be localized into thin strips (this is especially apparent

in trees one, three, five, and six). In other words, noise points tend not to ruin the

fit of the decision tree at nearby points.. The magic of spiked-smoothing is revealed

in the classifier 6g created by a majority vote of the six decision trees. By itself,

each decision tree is a poor classifier (evinced by relatively large regions of pink).

However, when voted these regions of pink get shrunk down into smaller regions,

indicating better agreement with the Bayes rule. One can easily imagine that if these

“thin strips” were actually much wider, as in the case of fitting stumps, averaging

would not be able to reduce the influence of these noise points enough. The end effect

of averaging is to create a decision surface which is affected only very minimally by

the noise points in the training set. A simulation in Section 2.4 will demonstrate that

the additional iterations of AdaBoost serve to “shrink” the fit around noise points,

much as the regions of pink in this example became more localized after averaging.
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Figure 6: First six trees from a random forest, along with the classifier created by a
majority vote over the trees.
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2.3.5. A Two-Dimensional Example with Signal

In light of the example in the previous section, one might note that certain non-

interpolating algorithms, such as a pruned CART tree, would recover the Bayes error

rate exactly. In this section, we consider an example where a much more complex

classifier is required to recover the signal, yet the self-averaging property is still needed

to prevent over-fitting to noise.

We consider n = 1000 training points sampled uniformly on [0, 1]2 with the Latin

Hypercube design. In this simulation, there is signal present. Inside of a circle of

radius 0.4 centered in the square, the probability that y = +1 is set to 0.1, while the

probability that y = +1 outside the circle is set to 0.9.

This simulation setting is similar to the previous one, except that the probability

that y = +1 varies at different points over the unit square. One can see in Figure 7

that the Bayes rule in this setting is just to label every point inside the circle y = +1

and every point outside the circle y = −1, which gives a Bayes error rate of 0.1. We

can then compare the performance of AdaBoost, random forests, and CART as in

the previous section by examining how much of the circle gets classified as y = +1

and how much of the outer region is classified as y = −1. We run AdaBoost for 500

iterations, fit a random forests model with 500 trees, and build a CART tree that is

pruned using cross-validation. Note that we prune the CART tree in order to show

how a “classical” statistical model of limited complexity performs on the classification

task.

We find that AdaBoost and random forests have an overall error rate of around 0.13,

one-nearest neighbor has an overall error rate of 0.20, and CART has an error rate

of 0.18. CART fails to perform well in this example because it is not allowed enough
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complexity to capture the circular pattern. To do so via only the splits parallel to the

axes allowed by the algorithm would require a very deep tree (as allowed in random

forests and AdaBoost), which pruning does not afford. Rather, a shallow tree can only

recover a simple rectangular pattern due to its shallow depth. One-NN, on the other

hand, again suffers from its inability to keep the interpolation localized. Outside of

the circle, one can observe small “islands” of pink surrounding noise points: by failing

to localize the fit, test points near these noise points get classified incorrectly. Again,

one finds that random forests and AdaBoost have superior performance because they

tend to finely interpolate the training data, and the process of spiked-smoothing

shrinks down the influence of noise points.

2.3.6. A Twenty-Dimensional Example

We now repeat the simulation in Section 2.3.3 with a larger sample size and in 20

dimensions instead of 2. Specifically, the training data now has n = 5000 observations

sampled according to the midpoints of a Latin Hypercube design uniformly on [0, 1]20.

We again randomly select 20% or 1000 of these points to be −1’s with the remaining

4000 to be +1’s.

Since in 20 dimensions it is difficult to display the resulting classification rules graph-

ically we instead examine the rules on a hold out sample of 10,000 points sampled

uniformly and independently on [0, 1]20. Figure 8 plots the proportion of points in the

hold out sample classified by AdaBoost as +1 as a function of the number of itera-

tions. This proportion peaks at .1433 at nine iterations but then gradually decreases

to .0175 by 100 iterations and is equal to .0008 by 1,000 iterations. The fact that by

1,000 iterations only 8 of the 10,000 points in the hold out sample are classified as

+1 means there is very little overfitting. The large number of iterations has the effect

of smoothing out the classifier resulting in a rule that agrees with the Bayes rule for
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(a) One-NN (b) AdaBoost

(c) Random Forests (d) CART

Figure 7: Performance of AdaBoost, random forests, and CART on a response surface
where P (y = 1|x) = 0.10 inside the circle and P (y = 1|x) = 0.90 outside of the circle.
There are n = 1000 training points and the Bayes error is 0.10.
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Figure 8: This plot shows the proportion of points in a test set for which the pre-
dictions made by AdaBoost and the Bayes rule differ, as a function of the number
of boosting rounds (black). The blue line shows this proportion for the one nearest
neighbor classifier. Note that the agreement of AdaBoost and the Bayes rule increases
with the number of boosting rounds.

99.92% of the points. Recall that AdaBoost fits the training data perfectly, and thus

differs from the Bayes rule on 20% of this sample. We see clearly here that AdaBoost

overfits with respect to the training data but not with respect to the population.

Again, this is a result of extremely local interpolation of the points in the training

data for which the observed class differs from the Bayes rule. A random forests model

fit to the training data agrees with the Bayes rule at every point except for one, and

hence has exceptional generalization error.

2.4. Self-Averaging Property of Boosting

2.4.1. Boosting is Self-Smoothing

In the previous sections, we have demonstrated simple examples where random forests

and AdaBoost yield the strongest performance with respect to the Bayes rule. We
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have argued that these algorithms are successful classifiers due to the fact that they fit

initially complex models by interpolating the training data but also exhibit smooth-

ing properties via self-averaging that stabilizes the fit in regions with signal, while

continuing to keep localized the effect of noise points on the overall fit. While this

smoothing mechanism is obvious for random forests via the averaging over decision

trees, it is less obvious for AdaBoost. In this section we explain why the additional

iterations in boosting way beyond the point at which perfect classification of the

training data (i.e interpolation) has occurred actually has the effect of smoothing out

the effects of noise rather than leading to more and more overfitting. To the best of

our knowledge, this is a novel perspective on the algorithm. To explain our key idea,

we will recall the pure noise example from before with p = .8, d = 20 and n = 5000.

Recall that the classifier produced by AdaBoost corresponds to I[fM(x) > 0] where

fM(x) =
M∑
m=1

αmGm(x)

as defined earlier. Taking M = 1000 which was successful in our example let us

rewrite this as

f1000(x) =
1000∑
m=1

αmGm(x) =
10∑
j=1

100∑
k=1

α100(j−1)+kG100(j−1)+k(x) =
10∑
j=1

100∑
k=1

hjk(x)

where

hjk(x) ≡ α100(j−1)+kG100(j−1)+k(x).

Now define
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hjK(x) ≡
K∑
k=1

hjk(x)

and note that for every j ∈ {1, ..., 10} and every K ∈ {1, ...100} that I[hjK(x) > 0]

is itself a classifier made by linear combinations of classification trees. The ten plots

in Figure 9 display the performance on the hold-out sample for these ten classifiers

corresponding to the ten different values for j as a function of K. Interestingly, each of

these 10 classifiers by itself displays the characteristic of boosting: the agreement with

the Bayes rule increases as more terms are added (for instance, as K is increased).

A second interesting fact about these 10 individual classifiers in the decomposition is

that each one achieves perfect separation of the training data and thus each one is

an interpolating classifier. This result can be expected in general, provided the total

number of iterations for each classifier in the decomposition is sufficiently large. This

is clear for the first classifier, since it is simply AdaBoost itself and will necessarily

achieve zero training error under some standard conditions as discussed in Jiang

(2002). The second classifier in the decomposition is simply AdaBoost weight carried

over from the first classifier. Since re-weighting the training data does not prevent

AdaBoost from obtaining zero training error, the second classifier also interpolates

eventually, as does the third, and so on.

Decomposing boosting in this way offers an explanation of why the additional iter-

ations lead to robustness and better performance in noisy environments rather than

severe overfitting. In this example, AdaBoost for 100 iterations is an interpolating

classifier. It makes some errors, mostly near the points in the training data for which

the label differs from the Bayes rule, although these are localized. Boosting for 1000

iterations is thus a point-wise weighted average of 10 interpolating classifiers. The
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Figure 9: A decomposition of boosting

random errors near the points in the training data for which the label differ from

the Bayes’ rule cancel out in the ensemble average and become even more localized.

Of course, the final classifier is still an interpolating classifier as it is an average of

10 interpolating classifiers. In this way, boosting is self-smoothing, self-averaging or

self-bagging process that reduces overfitting as the number of iterations increase. The

additional iterations provide averaging and smoothing—not overfitting. Empirically

this is very similar to random forests and provides evidence that both algorithms,

which perform well in our examples, actually do so using the same mechanism.

We further illustrate this phenomenon of increasing localization of the interpolating

resulting from this averaging through the following simulation. We take the same

training data as before but this time we form the hold out sample by taking a point a

(Euclidean) distance of .1 from each of the 1000 points labeled as −1 in the training

data in a random direction. Due to the forced (and unnatural) close proximity of the

points in the hold out to training set deviations from the Bayes’ rule (points with −1
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Figure 10: This plot shows the proportion of points in a test set for which the pre-
dictions made by AdaBoost and the Bayes rule differ, as a function of the number of
boosting rounds (black). The test set has been chosen to contain excess points near
the error points in the training set.

labels), the error rate is much higher than it would be for a random sample. However,

the interpolation continues to become more localized as the iterations proceed (see

Figure 10) so even points that are quite close to the label errors (the −1 points)

eventually become classified correctly as +1. Comparison to Figure 8 shows that

this localization continues at a steady rate even after the error on the random hold-

out sample is practically zero. In contrast, the nearest neighbor interpolator this

simulation yielded 100% disagreement with the Bayes’ rule.

2.4.2. A Five-Dimensional Example

We will now consider a second simulation to further illustrate how this self-averaging

property of AdaBoost helps prevent overfitting and improves performance. In this

simulation we add signal while retaining significant random noise. Let n = 400,

d = 5 and sample xi distributed iid uniform on [0, 1]5. The true model from for the
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Figure 11: Errors made by each classifier in a decomposition of boosting (first two
rows) and errors made by the final classifier (bottom)
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simulation is

P (y = 1|x) = .2 + .6 I
[

2∑
j=1

xj > 1

]
.

The Bayes’ error is 0.20 and the optimal Bayes’ decision boundary is the diagonal of

the unit square in x1 and x2. Even with this small sample size, AdaBoost interpolates

the training data after 10 iterations. So we boost for 100 iterations which decomposes

into ten sets of ten (which is analogous to the 10 sets of 100 from the 20 dimensional

example in the previous section).

The ten plots in the first two rows in Figure 11 show the performance of the ten

classifiers corresponding to this decomposition with respect to a hold out sample of

1000 points. Each point in the figure represents a point classified differently from

the Bayes rule. While each of the ten classifiers in the decomposition classifies a

number of these 1000 points incorrectly especially along the Bayes boundary, exactly

which points are classified incorrectly varies considerably from one classifier to the

next. The final classifier (displayed in the last plot), which corresponds to AdaBoost

after 100 iterations, makes fewer mistakes than each of the ten individual classifiers.

Since AdaBoost is a point-wise weighted average of the 10 classifiers, the averaging

over the highly variable error locations made by each classifier reduces substantially

the number of errors made by the ensemble. The percentage of points classified

differently from the Bayes’ rule by the final classifier is 118/1000=0.118 while after

the first ten there were still 162/1000=0.162 classified differently from the Bayes

rule. Averaged over 200 repetitions of this simulation these numbers are .19 after

the first ten iterations and .15 after 100 iterations confirming that the performance

does improve by running beyond the point at which interpolation initially occurs as

(a result of this self-smoothing).
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In this example, we also have evidence that AdaBoost takes some measure to decor-

relate the errors made by its base classifiers, as hypothesized in Amit et al. (2000)

and suggested in Figure 11. To this end, we computed the correlation between

I[h1
10(X) = Y ], . . . , I[h10

10(X) = Y ] over a large test set. The correlations ranged

from 0.4 to 0.56, with an average value of 0.488. As a comparison, we also considered

a similar calculation for the decomposition produced from a random forest with 500

trees, and from bagging 1000 depth 8 trees. As with AdaBoost, we can also decom-

pose these classifiers into a sum of interpolating classifiers: 25 sub-ensembles of 20

trees in the case of the random forest, and 10 sub-ensembles of trees in the case of

bagged trees. The interpolating classifiers produced by the random forest had error

correlations ranging from 0.75 to 0.87, with an average of 0.81, while the correla-

tions for the bagged trees ranged from 0.9 to 0.94, with an average value of 0.92.

In other words, the sub-ensembles produced by random forests and AdaBoost are

less correlated than the bagged trees, with AdaBoost being markedly less so. When

voting across constituents in its decomposition, it is clear that such a decorrelating

effect would help to increase the effectiveness of the voting mechanism to cancel out

error points. While we observed this phenomenon in a few data sets, we cannot state

under what conditions it happens more generally. However, it is know that boosting

generally outperforms bagging, and that bagged trees will be much more correlated.

2.4.3. Comparison to Boosted Stumps

Throughout this paper we have considered AdaBoost with large trees of up to 28

terminal nodes. We have shown that AdaBoost with such large trees is a classifier

which interpolates the data in such a way that it performs well out of sample for prob-

lems in which the Bayes’ error rate is substantially larger than zero. In this section

we will consider the performance of AdaBoost with stumps as the base learner. The
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statistical theory predicts that AdaBoost with stumps will overfit less than AdaBoost

with larger trees, as expressed, for instance, in Jiang (2002). It is also thought that

stumps should be preferable when the Bayes’ decision rule is additive in the original

predictors. For instance the seminal book by Hastie et al. (2009, chapter 10) advo-

cates using trees of a depth one greater than the dominant level of interaction, which

is generally quite low.

AdaBoost with stumps does not self-smooth nearly as well as with larger trees, likely

because the the classifiers in the decomposition are more highly correlated, and the

“rough” fits from stumps fail to interpolate the training data locally enough; the fit

is not spiked-smooth around the training set error points. Consequently, AdaBoost

with stumps as base learners is outperformed by AdaBoost with large trees as base

learners, when the Bayes error rate is high. This is the case even when the Bayes

rule is additive. This result is matched by random forests which works best with

large trees. Its randomly chosen predictors at each splitting opportunity lowers the

correlation among the trees and the resulting fit is more spiked-smooth.

To illustrate this with an example, we return to the five dimensional simulation from

Section 2.4.2 which has an additive Bayes decision rule. Figure 12 displays the per-

centage of points that are classified differently from the Bayes rule in the hold out

sample of 1000, as a function of the number of iterations. It can be seen that the

stumps (left panel) do not perform as well as the 28 node trees (right panel). After

250 iterations, AdaBoost with stumps yields 141/1000 points in the hold out sample

classified differently from the Bayes rule, compared to 116/1000 for this same data

set using instead AdaBoost with 28 node trees. In fact, the stumps seems to suffer

from overfitting when run beyond only 25 iterations, while the 28 trees do not have a

problem with overfitting as the number of iterations are increased.
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(b) 28 Node Trees

Figure 12: Comparison of AdaBoost with stumps (a) and 28 node trees (b) for the
five dimensional simulation. The blue line corresponds to One-NN.

These numerical values are based only on a single run of this simulation, but the

qualitative finding is reproducible over repeated runs. The result serves to illustrate

that the good out-of-sample performance of AdaBoost using large trees resulting from

the local interpolation of noise points is not shared by AdaBoost using stumps. The

idea that stumps will perform better in noisy environments because they overfit less

is not supported by this simulation. While the stumps do overfit less on the training

data, as evidenced by the fact that they did not give zero training error, they actually

overfit worse than the larger trees out of sample. Again, we attribute this to boosting

with stumps lacking the self-smoothing property and not being flexible enough to

interpolate the noise locally.

2.5. Real Data Example

In previous sections, we explored the mechanism of spiked smoothing in simulation

experiments where it was easy for us to identify noise points. Recall that with a fully
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specified probability model, noise points are simply sample points whose sign differs

from the Bayes’ rule. While simulated examples are certainly good for illustration,

one may wonder whether these settings are overly simplistic. Data in the real world

is typically generated by more complicated—and unknown—probability models with

heteroskedastic noise components. Since boosted trees have been empirically success-

ful in such settings, it pays to move our discussion to the context of a data set arising

in the real world.

2.5.1. Phoneme Data

In this section, we will discuss spiked smoothing in the context of a data set arising

in a speech recognition task designed to discriminate “nasal” vowels from “oral”

vowels in spoken language 3. For a collection of 5404 examples of spoken vowels, this

data set contains the amplitudes of the first 5 harmonic frequencies as collected by

a cochlea spectra (hearing aid), along with a label of either nasal or oral (n=5404,

p=5). The goal is then to use these harmonic frequencies to correctly identify the

type of vowel. While there are many potential data sets we could have considered,

this one is convenient to analyze since it consists of a relatively small number of real

valued covariates. This makes it easier to talk about “neighborhoods” of points later

in our discussion.

We begin by dividing the phoneme data set up into a training set consisting of 70%

of the samples, and a testing set consisting of 30% of the examples. Depth eight

decision trees boosted for 1000 rounds and a random forest classifier both achieve

comparable test error rates of 9.0% and 9.4%, respectively 4. Figure 13 demonstrates

3The original data can be found at the following address: https://www.elen.ucl.ac.be/neural-
nets/Research/Projects/ELENA/databases/REAL/phoneme/phoneme.txt.

4The error rates reported are the result from repeating the fitting procedure on 100 random
train/test set splits and considering the average error on the test set.
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Figure 13: Plots of testing and training error as a function of number of boosting
iterations for trees of different depths. The black lines show the test error rates while
the red lines show training error rates. Notice that depth seven and eight boosted
trees quickly fit the training data, as depicted by the rapidly decreasing red lines.

that boosting deep trees is preferable to shallow trees in this data set. Each frame in

the figure shows the testing error in black and the training error in red as a function of

the number of boosting iterations for different depth trees. One can readily observe

that test error steadily decreases with the depth of tree used in AdaBoost. It is

interesting to note that boosting trees of all depths are slow to overfit the data, even

with boosted stumps after 1000 iterations. It is also worth noting that boosted depth

8 trees quickly interpolate the training data, as indicated by the sharply decreasing

red line. This raises the often asked question: what is AdaBoost doing after it achieves

a perfect fit on the training set?

Any discussion of spiked smoothing on real data is complicated by the reality that

it is impossible to identify noise points without knowing the underlying probability
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model. As a substitute for noise points, we flipped the signs of 100 randomly chosen

points in our training data set (about 2% of the data) and analyzed the fits of boosted

trees and a random forest classifier around these points. After refitting the models to

the perturbed data, we find the the testing errors are 10.2% and 10.0% for boosted

depth eight trees and a random forest, respectively. Figure 14 illustrates that even

after thousands of rounds of boosting, test error continues to decrease. The punchline

is that both algorithms are able to achieve fits with comparable test set error even

after flipping the sign of a large number of points in the training set.

As a comparison with another interpolating classifier, we also repeated the same

experiment with a one nearest-neighbors classifier. We found the one nearest neighbor

achieved a test error rate of 10.5% when fit on the original training set, and a test

error rate of 12.6% when fit on the noisy training set. The increase in error rate

when noise is added to the training set is larger than that of AdaBoost or a random

forest, which coincides with the results form the simulated example in section 2.3.3.

Furthermore, two sample t-tests reveal that the increase in error rate for one nearest-

neighbors is significant at the 0.01 level in both cases (p-values less than 1e−16 in

both cases).

We will argue that additional rounds of boosting are helping to “smooth out” and

“localize” the influence of the 100 noise points that we introduced into our training

set. In section 2.3.3, we illustrated the action of spiked smoothing in diagrams which

showed AdaBoost’s fit on a two dimensional plane. In this slightly higher dimensional

example, we instead consider small neighborhoods around each of the noise points

and track the fraction of points in these neighborhoods that agree with the sign

of the “correct label”, that is, before flipping the sign. 5. Panels (a) and (b) of

5We choose each neighborhood to be a rectangle centered at the point of interest, with side lengths
chosen in such as way that the neighborhood contains only a small number of training points. We
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Figure 14: Plot of testing error for depth 8 boosted trees fit to a training set which
has flipped labels for 100 randomly selected examples.

Figure 15 plot this fraction as a function of the number of boosting iterations for

two representative “noise points.” In both panels, it is clear that as the number of

iterations increases, the fraction of points in each neighborhood that agrees with the

original sign of the training point increases. Recall that in this case AdaBoost still

fits its training data perfectly: the in-sample AdaBoost fit agrees with the sign of the

flipped training point in both figures. Despite this, the algorithm still fits a majority

of points in a neighborhood of each of these noise points in the correct way. The

classifier is producing a spiked smooth fit, that is, it fits the data in such a way to

localize the influence of noise points. One can interpret the increasing homogeneity

in each neighborhood as the result of averaging. The first few iterations of deeply

boosted trees produce a fit that interpolates the training data, but this fit is quite

complicated in the sense that it assigns large numbers of points in the neighborhood

to both ‘+1‘ and ‘-1‘. As the number of iterations increases, this fraction increases

so that the fit becomes more smooth in the classical sense.

then chose 100 points uniformly at random in this rectangle and computed the AdaBoost classifier
at each point: these points are obviously not included in the original data set.
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Figure 15: The fraction of points in a neighborhood that agree with the sign of
the original training point before its sign was flipped. Figures (a) and (b) plot this
proportion for two different, representative noise points.

2.5.2. Additional Data Sets

We repeated a version of the analysis conducted in Section 2.5.1 for five additional

data sets from the UCI repository: Haberman, Wisconsin breast cancer, voting, Pima,

and German credit. In our analysis we did the following: we added 5% label noise to

the training data, missing values were imputed with the mean prior to model fitting,

and all experiments were conducted on 50 random training-testing splits of each data

set. Table 1 reports the mean increase in testing error after adding 5% label noise over

the 50 random training-testing splits. For example, on the original haberman data

set, AdaBoost achieved an average error rate of 34.225%, and on the noisy version

of the data set achieved an average error rate of 34.354%. The mean difference of

0.13% is reported in the table. It is also apparent in each setting that AdaBoost

and random forest are relatively immune to the addition of label noise. The stars in

the Table 1 report the significance level when comparing the increase in error rate for

AdaBoost and a random forest with that of one-nearest neighbors using a two-sample

t-test. With the exception of the German credit data, the increase in error rate for

one nearest neighbors was larger than that of one nearest neighbors with statistical
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significance.

Data set AdaBoost Random Forest 1-NN

Haberman 0.13** 0.52* 1.55
breast cancer 0.20*** 0.39*** 2.29
voting 1.63** 0.30*** 2.71
Pima 0.56*** 0.45*** 1.75
German 0.29 0.68 0.68

Table 1: The increase in average testing error after changing the sign of 5% of the
training data. The stars in the table report the significance level when comparing
the increase in error rate for AdaBoost and a random forest with that of one-nearest
neighbors using a two-sample t-test. One star denotes significance at the 10% level,
two stars denotes significance at the 5% level, and three stars denotes significance at
the 1% level.

2.6. Concluding Remarks

AdaBoost is an undeniably successful algorithm and random forests is at least as

good, if not better. But AdaBoost is as puzzling as it is successful; it broke the basic

rules of statistics by iteratively fitting even noisy data sets until every training set

data point was fit without error. Even more puzzling, to statisticians at least, it

will continue to iterate an already perfectly fit algorithm which lowers generalization

error. The statistical view of boosting understands AdaBoost to be a stage wise

optimization of an exponential loss, which suggest (demands!) regularization of tree

size and control on the number of iterations. In contrast, a random forest is not

an optimization; it appears to work best with large trees and as many iterations as

possible. It is widely believed that AdaBoost is effective because it is an optimization,

while random forests works—well because it works. Breiman conjectured that “it is

my belief that in its later stages AdaBoost is emulating a random forest” (Breiman,

2001). This paper sheds some light on this conjecture by providing a novel intuition

supported by examples to show how AdaBoost and random forest are successful for

the same reason.
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A random forests model is a weighted ensemble of interpolating classifiers by con-

struction. Although it is much less evident, we have shown that AdaBoost is also

a weighted ensemble of interpolating classifiers. Viewed in this way, AdaBoost is

actually a “random” forest of forests. The trees in random forests and the forests in

the AdaBoost each interpolate the data without error. As the number of iterations

increase the averaging of decision surface because smooths but nevertheless still in-

terpolates. This is accomplished by whittling down the decision boundary around

error points. We hope to have cast doubt on the commonly held belief that the later

iterations of AdaBoost only serve to overfit the data. Instead, we argue that these

later iterations lead to an “averaging effect”, which causes AdaBoost to behave like

a random forest.

A central part of our discussion also focused on the merits of interpolation of the

training data, when coupled with averaging. Again, we hope to dispel the commonly

held belief that interpolation always leads to overfitting. We have argued instead

that fitting the training data in extremely local neighborhoods actually serves to

prevent overfitting in the presence of averaging. The local fits serve to prevent noise

points from having undue influence over the fit in other areas. Random forests and

AdaBoost both achieve this desirable level of local interpolation by fitting deep trees.

It is our hope that our emphasis on the “self-averaging” and interpolating aspects

of AdaBoost will lead to a broader discussion of this classifier’s success that extends

beyond the more traditional emphasis on margins and exponential loss minimization.
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CHAPTER 3 : Deep Neural Networks Generalize on Small Data

Abstract

In this paper, we use a linear program to empirically decompose fit-

ted neural networks into ensembles of low-bias sub-networks. We also

show that these sub-networks are relatively uncorrelated which leads to

an internal regularization process, very much like a random forest, which

can explain why a neural network is surprisingly resistant to overfitting.

We then demonstrate this in practice, by applying large neural networks,

with hundreds of parameters per training observation, to a collection of

116 real-world data sets from the UCI Machine Learning Repository. This

collection of data sets contains a much smaller number of training exam-

ples than the types of image classification tasks generally studied in the

deep learning literature, as well as non-trivial label noise. We show that

even in this setting deep neural nets are capable of achieving superior

classification accuracy without overfitting.

3.1. Introduction

A recent focus in the deep learning community has been resolving the “paradox” that

extremely large, high capacity neural networks are able to simultaneously memorize

training data and achieve good generalization error. In a number of experiments,

Zhang et al. (2017) demonstrated that large neural networks were capable of both

achieving state of the art performance on image classification tasks, as well as per-

∗Joint work with Adi Wyner and Richard Berk.
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fectly fitting training data with permuted labels. The apparent consequence of these

observations was to question traditional measures of complexity considered in statis-

tical learning theory.

A great deal of recent research has aimed to explain the generalization ability of very

high capacity neural networks (Kawaguchi et al., 2017). A number of different streams

have emerged in this literature (Neyshabur et al., 2017; Liang et al., 2017; Lin et al.,

2017). The authors in Zhang et al. (2017) suggest that stochastic gradient descent

(SGD) may provide implicit regularization by encouraging low complexity solutions

to the neural network optimization problem. As an analogy, they point out that SGD

applied to under-determined least squares problems produces solutions with minimal

`2 norm. Other streams of research have aimed at exploring the effect of margins on

generalization error (Bartlett et al., 2017; Liang et al., 2017). This line of thought

is similar to the margin-based explanations of AdaBoost in the boosting literature

that bound test performance in terms of the classifier’s confidence in its predictions.

Other research has investigated the sharpness of local minima found by training a

neural network with SGD (Dinh et al., 2017; Neyshabur et al., 2017). The literature

is extensive, and this review is far from complete.

The empirical investigations found in this literature tend to be concentrated on a small

set of image classification data sets. For instance, every research article mentioned in

the last section with an empirical component considers at least on of the following four

data sets: MNIST, CIFAR-10, CIFAR-100, or ImageNet. In fact, in both NIPS 2017

and ICML 2017, over half of all accepted papers that mentioned “neural networks”

in the abstract or title used one of these data sets. All of these data sets share

characteristics that may narrow their generality: similar problem domain, very low

noise rates, balanced classes, and relatively large training sizes (60k training points at
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minimum). In this work, we consider a much richer class of small data sets from the

UCI Machine Learning Repository in order to study the “generalization paradox.”

These data sets contain features not found in the image classification data, such as

small sample sizes and nontrivial, heteroscedastic label noise.

As part of our investigation we will establish that large neural networks with tens of

thousands of parameters are capable of achieving superior test accuracy on data sets

with only hundreds of observations. This is surprising, as it is commonly thought

that deep neural networks require large data sets to training properly (Rolnick et al.,

2017). In fact, we will establish that with minimal tuning, deep neural networks

are able to achieve performance on par with random forests, which are considered to

have state-of-the-art performance on data sets from the UCI Repository (Fernández-

Delgado et al., 2014).

The mechanism by which a random forest is able to generalize well on small data sets

is straightforward: a random forest is an ensemble of low-bias, decorrelated trees.

Randomization combined with averaging reduces the ensemble’s variance, smoothing

out the predictions from fully grown trees. It is clear that a neural network should

excel at bias reduction, but the way in which it achieves variance reduction is much

more mysterious. The same paradox has been examined at length in the literature on

AdaBoost, and in particular, it has been conjectured that the later stages of AdaBoost

serve as a bagging phase which reduces variance (Breiman, 2000a,b).

One of the central aims of this paper is to identify the variance stabilization that

occurs when training a deep neural network. To this end, the later half of this

paper focuses on empirically decomposing a neural network into an ensemble of sub-

networks, each of which achieves low training error and less than perfect pairwise

correlation. In this way, we view neural networks in a similar spirit to random forests.
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One can use this perspective as a window to viewing the success of recent residual

network architectures that are fit with hundreds or thousands of hidden layers (He

et al., 2016). These deeper layers might serve more as a bagging mechanism, rather

than additional levels of feature hierarchy, as is commonly cited for the success of

deep networks (Bengio et al., 2009).

The key takeaways from this paper are summarized as follows:

• Large neural networks with hundreds of parameters per training observation

are able to generalize well on small, noisy data sets.

• Despite a bewildering set of tuning parameters (Bengio, 2012), neural networks

can be trained on small data sets with minimal tuning.

• Neural networks have a natural interpretation as an ensemble of low-bias clas-

sifiers whose pairwise correlations are less than one. This ensemble view offers

a novel perspective on the generalization paradox found in the literature.

3.2. Ensemble View of Deep Neural Networks

In this section, we establish that a neural network has a natural interpretation as

an ensemble classifier. This perspective allows us to borrow insights from random

forests and model stacking to gain better insight as to how a neural network with

many parameters per observation is still able to generalize well on small data sets.

We also outline a procedure for decomposing fitted neural networks into ensemble

components of low bias, decorrelated sub-networks. This procedure will be illustrated

for a number of neural networks fit to real data in Section 3.4.4.
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3.2.1. Network Decomposition

We will begin by recalling some familiar notation for a feed-forward neural network

in a binary classification setting. In the case of a network with L hidden layers, each

layer with M hidden nodes, we may write the network’s prediction at a point x ∈ Rp

as

z`+1 = W `+1g(z`) ` = 0, . . . , L

f(x) = σ(zL+1)

(3.1)

where σ is the sigmoid function, g is an activation function, WL+1 ∈ R1×M , W 1 ∈

Rp×M , and W ` ∈ RM×M for ` = 2, . . . , L (and z0 ≡ x). Assume that any bias terms

have been absorbed. For the models considered in this paper, L = 10, M = 100, and

g is taken to be the ELU activation function (Clevert et al., 2015). It is also helpful

to abuse notation a bit, and to write z`(x) as the output at hidden layer ` when x is

fed through the network, i.e. z0 = x.

There are many ways to decompose a neural network into an ensemble of sub-

networks: one way to do this is at the final hidden layer. Let us fix an integer K ≤M

and consider a matrix α ∈ RM×K such that
∑K

k=1 αm,k = WL+1
1,m for m = 1, . . . ,M .

We can then write the final logit output as a combination of units from the final
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hidden layer:

zL+1(x) = WL+1g(zL(x))

=
M∑
m=1

WL+1
1,m g(zLm(x))

=
M∑
m=1

K∑
k=1

αm,kg(zLm(x))

=
K∑
k=1

M∑
m=1

αm,kg(zLm(x))

=
K∑
k=1

fk(x)

(3.2)

where fk(x) =
∑M

m=1 αm,kg(zLm(x)). In words, we have simply decomposed the final

layer of the network (at the logit level) into a sum of component networks. The

weights that define the kth sub-network are stored in the kth column of α.

We will find in Section 3.4 that networks trained on a number of binary classifica-

tion problems have decompositions such that each fi fits the training data perfectly,

and such that out-of-sample correlation between each fi and fj is relatively small.

This situation is reminiscent of how a random forest works: by averaging the outputs

of low-bias, low-correlation sub-ensemble. We argue that it is through this implicit

regularization mechanism that overparametrized neural networks are able to simul-

taneously achieve zero training error and good generalization performance.

3.2.2. Ensemble Hunting

The decomposition in Equation 3.2 is of course entirely open-ended without further

restrictions on the set of weights stored in α. One constraint that we will impose

is that each sub-network should also achieve very high training accuracy. We will
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restrict our analysis to networks that obtain 100% training accuracy, and we will

demand that each sub-network fk do so as well.

Another desideratum is that each sub-network should be built from different parts

of the full network, as much to the extend that is possible. One strategy for accom-

plishing this is to require that the columns of α are sparse and have non-overlapping

components. In practice, we found that the integer programs required to find these

matrices were computationally intractable when coupled with the other constraints

we consider. We also found that common `1 heuristics to finding sparse solutions

tended to find α matrices with repeating columns. Our final approach was simply to

force a large, randomly selected number of entries in each column to be zero through

linear equality constraints.

We will now introduce some notation that will allow us to outline our ensemble

search more precisely. First, we fixed the number of target sub-networks to K = 9.

For each of the K columns of α, we sampled integers (m1,k, . . . ,m60,k) uniformly

without replacement from the integers 1 to 100, and we included the linear constraints

αmj,k,k = 0. Thus, we constrained each sub-network fk to be a weighted sum of

no more than 40 hidden units from the final hidden layer (in practice, the number

of non-zero entries tended to be smaller than this). Under this scheme, two sub-

networks, on average, only share at most 16 non-zero hidden units. We then used

linear programming to find a matrix α ∈ R100×9 that satisfied the required constraints:

K∑
k=1

αm,k = WL+1
1,m , 1 ≤ m ≤M

αmj,k,k = 0, 1 ≤ j ≤ 60, 1 ≤ k ≤ K

fk(xi)yi ≥ 0, 1 ≤ i ≤ n, 1 ≤ k ≤ K
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In summary, the first set of constraints ensures that the sub-networks fk decompose

the full network, that is, so that zL+1(x) =
∑9

k=1 fk(x) for all x ∈ Rp. The second set

of constraints zeros out 60 entries for each column of α, encouraging diversity among

the sub-networks. The final set of constraints ensures that each sub-network achieves

100% accuracy on the training data (non-zero margin). Notice that we are simply

looking for any feasible α for this system, and these constraints are rough heuristics

that our sub-networks are diverse and low-bias. We could have additionally incorpo-

rated a loss function which further penalized similarity among the columns of α, such

as maximizing pairwise distances between elements. It is also worth mentioning that

it is straightforward to extend this program beyond binary classification to multi-class

settings at the expense of a few more linear constraints. For simplicity, we avoided

this more general setting.

Finally, the goal of our analysis is to examine the accuracy and diversity of the

ensemble members f1, . . . , f9 on a hold out test set. There are a number of metrics

one might consider when assessing the diversity of ensemble components, including

the Q-statistic, κ-statistic, or conditional entropy, among others (Zhou, 2012). In

the examples that follow in subsequent sections, we use the fraction of test cases for

which two ensemble members disagreed, averaged over all
(

9
2

)
pairings.
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3.2.3. Model Example

As a first application of ensemble hunting, we will consider a simulated model that

generates data from the following process:

x ∼ U [−0.5, 0.5]2

p(y = 1|x) =


1 if ‖x‖2 ≤ 0.3

0.15 otherwise .

The Bayes rule for this model is to assign a label y = 1 if x is inside a circle centered

at the origin with radius 0.3, and to assign y = −1 otherwise. This rule implies a

minimal possible classification error rate of 10%.

We draw 250 independent observations from this model, and fit two models: a neural

network with L = 10 hidden layers and M = 100 hidden nodes, and a random forest

with 90 trees. All models are trained so that they achieve zero training error. The

decision surfaces implied by the neural networks and random forest, as well as the

Bayes rule, are plotted in Figure 16.

Evaluated on a hold-out set of size n = 10, 000, the neural network and random forest

achieve test accuracies of 85.2% and 88.5%, respectively. Inspecting Figure 16, we see

that although each classifier fits the training data perfectly, the fits around the noise

points outside the circle are confined to small neighborhoods. Our goal is to explain

how these types of fits occur in practice.

The bottom two figures in Figure 16 show the decision surfaces produced by the full

random forest and as well as a smaller forest consisting of 10 trees. Comparing these

surfaces illustrates the power of ensembling: the smaller forest has a smaller accuracy
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(a) Bayes Rule (b) Neural Network

(c) RF (90 trees) (d) RF (10 trees)

Figure 16: Plots of the decision surfaces from the classifiers fit in Section 3.2.3. In
each figure, the white region indicates points for which the classifier returns a label
of y = 1. Training points with class label y = 1 are shown in red, and points with
class label y = −1 are shown in blue.

than the large forest, as evidenced by the white patches outside of the circle. However,

these patches are relatively small, and when averaged with 8 other small forests, much

of these get smoothed out to the correct value. Averaging works because each of the

9 smaller forests are diverse by construction. We would like to extend this line of

reasoning to explain the fit produced by the neural network.

Unlike a random forest, for which it is relatively easy to find sub-ensembles with

low training error and low correlation, the corresponding search in the case of neural

networks requires more work. Using the ensemble-hunting procedure outlined in the

previous section, we decompose the network into K = 9 sub-networks f1, . . . , f9,
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(a) f1 (b) f2 (c) f3

(d) f4 (e) f5 (f) f6

(g) f7 (h) f8 (i) f9

Figure 17: Decision surfaces implied from a decomposition of the neural network from
Section 3.2.3.

and we plot their associated response surfaces in Figure 17. The test accuracies of

these sub-networks range from 82% to 86%, and every classifier fits the training data

perfectly by construction. When examining these surfaces, it is curious that they all

look somewhat different, especially near the edges of the domain. Using the test set,

we find that the average pairwise disagreement among these sub-networks is 9.7%. For

comparison, the average pairwise disagreement among the 9 smaller random forests

comprising the larger one was 7.3%.

One surprising conclusion from this exercise was that the final layer of our fitted neural

network was highly redundant: the final layer could be decomposed as 9 distinct
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classifiers, each of which achieved 100% training accuracy. Common intuition for

the success of neural networks suggests that deep layers provide a rich hierarchy of

features useful for classification (Bengio et al., 2009). For instance, when training a

network to distinguish cats and dogs, earlier layers might be able to detect edges,

while later layers learn to detect ears or other complicated shapes.

Our analysis here suggests that these later layers might serve mostly in a variance

reducing capacity. There are no complicated features to learn in this example: the

Bayes decision boundary is a circle, which can be easily constructed from a network

with one hidden layer and a handful of hidden nodes. The final layer of our deep

network is highly redundant and has no problem fitting the training data. The trick

is reducing variance, and this happens when the sub-networks get averaged.

3.3. Model Stacking Connection

We can provide some heuristic intuition for how the neural network optimization

program relates to ensembling. In order to do so, we will draw a connection to

model stacking, which is a well-known method for creating ensembles that are linear

combinations of base learners (Breiman, 1996b; Wolpert, 1992). For simplicity, our

discussion will focus on the regression problem with squared error loss.

Suppose that we observe a training set T = {(x1, y1), . . . , (xn, yn)} of independent

observations generated from the model y = h(x) + ε, where Eε = 0 and Eε2 = σ2.

Further, suppose that we have a collection of base precictors that were learned from

the training data, f̂1, . . . , f̂K . The goal of model stacking - at the population - is to

minimize the expected generalization error using weighted combinations of the base

learners, where we assume that the weights sum to one. Let us denote expectation

with respect to the sampled training set as ET and expectation with respect to a new
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test point (x, y) as E. We may then write the ensemble problem as:

min
α
ETE

(
y −

∑
k

αkf̂k(x)

)2

.

Let us further define the bias and covariance that occurs when fitting our predictors

over different realizations of the training set T :

bias(f̂k)(x) = h(x)− ET f̂k(x)

cov(f̂i, f̂j)(x) = ET

(
f̂i(x)− ET f̂i(x)

)(
f̂j(x)− ET f̂j(x)

)
.

We may then express the population level model-stacking problem into bias and

variance constituents using a bias-variance decomposition for ensembles:

min
α

(
σ2 +

∑
k

α2
kbias2(f̂k)(x) +

∑
i,j

αiαjcov(f̂i, f̂j)(x)

)
.

If we use low bias, high capacity base learners, then the third variance term in the

expression dominates, and the the largest reduction from ensembling comes from

decreasing the ensemble variance.

Now, recall that the output layer of a neural network is simply a weighted combination

of the final hidden layer. Thus, if we map WL+1 to α and map fk(x) to the predictions

made by each node in the final hidden layer, the neural network optimization problem

can be written in a very similar manner to the stacking problem:

min
α,f1,...fK

E

(
y −

∑
k

αkfk(x)

)2

.

Note the key difference, that neural networks optimize α and the base learners jointly,
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instead of a two stage procedure.

3.4. Empirical Results

In this section we will discuss the results from a large scale classification study com-

paring the performance of a deep neural network and a random forest on a collection

of 116 data sets from the UCI Machine Learning Repository. We also discuss empir-

ical ensemble decompositions for a number of trained neural networks from binary

classification tasks.

3.4.1. Data Summary

The collection of data sets we consider were first analyzed in a large-scale study

comparing the accuracy of 147 different classifiers (Fernández-Delgado et al., 2014).

This collection is salient for several reasons. First, Fernández-Delgado et al. (2014)

found that random forests had the best accuracy of all the classifiers in the study

(neural networks with many layers were not included). Thus, random forests can

be considered a gold standard to which compare competing classifiers. Second, this

collection of data sets presents a very different test bed from the usual image and

speech data sets found in the neural network literature. In particular, these data sets

span a wide variety of domains, including agriculture, credit scoring, health outcomes,

ecology, and engineering applications, to name a few. Importantly, these data sets

also reflect a number of realities found in data analysis in areas apart from computer

science, such as highly imbalanced classes, non-trivial Bayes error rates, and discrete

(categorical) features.

These data sets tend to have a small number of observations: the median number

of training cases is 601, and the smallest data set has only 10 observations. It is

interesting to note that these small sizes lead to highly overparameterized models:
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Categorical Classes Features N

min 0 2 3 10
25% 0 2 8 208
50% 4 3 15 601
75% 8 6 33 2201
max 256 100 262 67557

Table 2: Dataset Summary

on average, each network as 155 parameters per training observation. The number

of features ranges from 3 to 262, and half of data sets include categorical features.

Finally, the number of classes ranges from 2 to 100. More detail can be found in

Table 2.

Preprocessing

We will note here some of the most important preprocessing decisions. A more de-

tailed discussion can be found in Fernández-Delgado et al. (2014). As is common in

real world data sets, a number of data sets contain missing values. Missing values

are simply replaced by zero. Although arbitrary, this decision shouldn’t bias compar-

ison of our classifiers. Ordinal variables are converted to a continuous scale, and all

features are centered and standardized.

3.4.2. Experimental Setting

For each data set in our collection, we fit three classifiers: a random forest, and

neural networks with and without dropout. Importantly, the training process was

completely non-adaptive. One of our goals was to illustrate the extent to which deep

neural networks can be used as “off-the-shelf” classifiers.
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Figure 18: Plots of cross-validated accuracy for neural networks fit with and without
dropout, and a random forest. Each plot point corresponds to a data set.

Implementation Details

Both networks shared the following architecture and training specifications:

• 10 hidden layers

• 100 nodes per layer

• 200 epochs of gradient descent using Adam optimizer with a learning rate of

0.001 (Kingma and Ba, 2014).

• He-initialization for each hidden layer (He et al., 2015)

• Elu activation function (Clevert et al., 2015).

Our choice of architecture was chosen simply to ensure that each network had the

capacity to achieve perfect training accuracy in most cases. See Section 3.4.3 for

observations about the training process.

The only difference between the networks involved the presence of explicit regular-

ization. More specifically, one network was fit using dropout with a keep-rate of

65



0.85, while the other network was fit without explicit regularization. Dropout can be

thought of as a ridge-type penalty is often used to mitigate over-fitting (Srivastava

et al., 2014). There are other types of regularization not considered in this paper,

including weight decay, early stopping, and max-norm constraints.

Each random forest was fit with 250 trees, using defaults known to work well in

practice. In particular, in each training instance, the number of randomly chosen

splits to consider at each tree node was
√
p, where p is the number of input variables.

We used the random forest implementation found in the sklearn machine learning

library (Pedregosa et al., 2011).

Evaluation Metrics

We evaluated each of the fits using 5-fold stratified cross-validation. The limited

number of observations in some data sets excluded the possibility of more preferable

training-test splits. We were chiefly concerned with measuring the accuracy of each

classifier, but we also found it interesting to examine performance in terms of F1

score, and area under the curve (AUC). Recall that the F1 score is the harmonic

mean between a classifier’s precision and recall. The three measures we consider

present a more complete view of the quality of a classifier’s predictions.

3.4.3. Classifier Performance

Accuracy

We turn first to Figure 18, which plots the cross-validated accuracy of the neural

network classifiers and the random forest for each data set. In the first figure, we

see that a random forest outperforms an unregularized neural network on 72 out of

117 data sets, although by a small margin. The mean difference in accuracy is 2.4%,
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which is statistically significant at the 0.01 level by a Wilcoxon signed rank test. We

notice that the gap between the two classifiers tends to be the smallest on data sets

with low Bayes error rate - those points in the upper right hand portion of the plot.

We also notice that there exists data sets for which either a random forest or a neural

network significantly outperforms the other. For example, a neural network achieves

an accuracy of 90.3% on the monks-2 data set, compared to 62.9% for a random

forest. Incidentally, the base-rate for the majority class is 65.0% percent in this data

set, indicating that the random forest has completely overfit the data.

Turning to the second plot in Figure 18, we see that dropout improves the performance

of the neural network relative to the random forest. The mean difference between

classifiers is now decreased to 1.5%, which is still significant at the 0.01 level. The

largest improvement in accuracy occurs in data sets for which the random forest

achieved an accuracy of between 75% and 85%. It is also worth noting that the

performance difference between the neural networks with and without dropout is less

than one percent, and this difference is not statistically significant.

While it might not be surprising that explicit regularization helps when fitting noisy

data sets, it is surprising that its absence does not lead to a complete collapse in

performance. Neural networks with many layers are dramatically more expressive

than shallow networks (Bengio et al., 2009), which suggests deeper networks should

also be more susceptible to fitting noise when the Bayes error rate is non-zero. We

find this is not the case. Furthermore, as we illustrated in Section 3.2, the additional

capacity of deep neural networks may be directed mostly in a redundant manner, in

which multiple components of a network learn essentially the same function.
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(a) Accuracy (b) AUC (c) F1 score

Figure 19: The distribution of relative performance (relative to the best possible over
all classifiers) for each classifier over data sets.

Relationship of Data Set Properties with Accuracy

In addition to cataloging the performance differences between these classifiers, we

were also interested in determining if any data set characteristics explained these

gaps. The characteristics we examined were the number of training observations, the

number of features, the number of classes to predict, and the base rates for each class.

In order to assess the correspondence between data set characteristics and accuracy,

we considered Spearman rank correlation.

We found that the performance gap between a random forest and an unregularized

neural network was modestly negatively correlated with the number of training cases

(at a 0.01 significance level). That is, the gap between random forests and neural

networks decreases on smaller data sets. The magnitude of this correlation persists

when considering the gap between neural networks fit with dropout and random

forests, but is no longer significant. We also found that the only data set characteristic

that was noticeably correlated with the difference between neural network accuracy

with and without dropout was the number of classes: dropout networks tended to

perform a bit worse on data sets with more classes.

We will briefly comment on the relative performance of these classifiers on the other
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performance metrics mentioned in Section 3.4.2. To this end, Figure 19 plots the

distribution of a classifier’s performance as a fraction of the best performance across

all three classifier’s on a given data set. This allows a more meaningful comparison

across data sets. As was the case for accuracy, we also find slight improvements in

AUC and F1 for neural networks fit with dropout. The random forest had a slight

advantage over both neural networks across these metrics.

3.4.4. Ensemble Formation

We will now carry over the ensemble decomposition analysis from Section 3.2 to the

binary classifiers fit in Section 3.4. Our analysis will exclude a number of data sets.

First, since our ensemble analysis relies on a holdout set, we only considered data sets

with more than 500 observations. This allows us to conduct an 80/20 train-test split

of the data with a reasonable number of observations for a holdout sample. Secondly,

of the 27 binary classification data sets with at least 500 observations, we remove 7

data sets either because the network was unable to achieve perfect training accuracy,

or the number of observations was too large to solve the required linear program. As

we mentioned in Section 3.2.2, ensemble hunting can also be applied in the multi-

class setting at the expense of a slightly more complicated linear program, although

we do not do so here. For each data set, we extract K = 9 sub-networks fk such that

each network fits the training data perfectly, and such that fi and fj are constructed

from different parts of the network. Again, we remark that the fact that this is even

possible to do is not obvious. If it were the case that each hidden unit in the final

layer was highly specialized, such a decomposition would be impossible to find. Our

choice of K = 9 was arbitrary, and in some cases a much larger value of K works just

as well. In addition to a random forest with 90 trees, we also construct sub-ensembles

of from 90 bagged CART trees of depth 6.
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Figure 20: Distribution of average pairwise disagreement of ensemble members over
20 binary classification data sets.

Figure 20 plots the distribution of average pairwise disagreement of ensemble members

across the 20 binary classification tasks. We first notice that the mean disagreement

tends to be low across all classifiers. This is not entirely surprising, as these classifiers

were able to achieve test accuracies exceeding 96% on at least half of these data

sets, indicating that not too much label noise may be present. We do notice that

the random forest tends to have the smallest ensemble disagreement. Again, this is

not surprising since a random forest ensemble is explicitly constructed to have this

property. The neural networks and bagged trees tend to have similar disagreement,

with neural networks being slightly lower. We point out again that we were by no

means exhaustive or optimal in our search for diverse sub-networks, so it is possible

that much more diverse decompositions exist.

3.5. Discussion

We established that deep neural networks can generalize well on small, noisy data sets

despite memorizing the training data. In order to explain this behavior, we offered a

novel perspective on neural networks which views them through the lens of ensemble

classifiers. Some commonly used wisdom when training neural networks is to choose

an architecture which allows one sufficient capacity to fit the training data, and then
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scale back with regularization (Bengio, 2012). Contrast this with the mantra of a

random forest: fit the training data perfectly with very deep decision trees, and then

rely on randomization and averaging for variance reduction. We have shown that

the same mantra can be applied to a deep neural network. Rather than each layer

presenting an ever increasing hierarchy of features, it is plausible that the final layers

offer a bagging mechanism.

Future work can proceed along a number of dimensions. For one, it is certainly

possible to improve the test accuracy of the networks fit in Section 3.4 through more

extensive tuning. It may also even be possible to find a better set of default parameters

to improve the results demonstrated in this paper. Our analysis is far from the last

word on a comparison between random forests and neural networks. One might also

improve our analysis in Section 3.2 by incorporating a loss function or better sparsity

constraints that aid the search for a decomposition of the final hidden layer.

It is of more interest to analyze whether anything in the network’s training proce-

dure can explain the ensembling behavior in the last layer. The randomness present

in stochastic gradient descent, or perhaps instability in the training procedure that

arises when the loss function is driven near zero and gradients collapse might provide

“jittering” to the final output layer. This “jittering” might provide the decorrela-

tion effect hypothesized by Breiman (2000a) in the case of AdaBoost. To this end,

one might consider modifications of the training process that involve injecting more

randomness into the final layer near the end of training, in the spirit of dropout.

As far as we can tell, there is nothing immediately obvious from the equations of

backpropogation that suggest another mechanism.
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CHAPTER 4 : Random Forest Probability Estimation

Abstract

A random forest is an increasingly popular tool for producing esti-

mated probabilities in machine learning classification tasks. However, the

means by which this is accomplished is unprincipled: one simply counts

the fraction of trees in a forest that vote for a certain class. In this pa-

per, we forge a connection between random forests and kernel regression.

This places random forest probability estimation on more sound statis-

tical footing. As part of our investigation, we develop a model for the

proximity kernel and relate it to the geometry and sparsity of the estima-

tion problem. We also provide intuition and recommendations for tuning

a random forest to improve its probability estimates.

4.1. Introduction

In classification tasks, one is often interested in estimating the probability that an

observation falls into a given class - the conditional class probability. These proba-

bilities have numerous applications, including ranking, expected utility calculations,

and classification with unequal costs. The standard approach to probability estima-

tion in many areas of science relies on logistic regression. However, modern data sets

with nonlinear or high dimensional structure, it is usually impossible to guarantee

a logistic model is well-specified. In that case, resulting probability estimates may

fail to be consistent (Kruppa et al., 2014). As a result, researchers have been relying

∗Joint work with Adi Wyner.
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more on machine learning and other nonparametric approaches to classification that

make leaner assumptions.

Random forests have become a widely used tool in “black-box” probability estimation.

This technique has been found to be successful in diverse areas such as medicine

(Gurm et al., 2014), (Escobar et al., 2015), ecology (Evans et al., 2011), outcome

forecasting in sports (Lock and Nettleton, 2014), and propensity score calculations

in observational studies (Zhao et al., 2016), (Lee et al., 2010). First proposed in

Breiman (2001), the random forests classifier consist of a collection of randomly grown

trees whose final prediction is an aggregation of the predictions from individual trees.

Random forests enjoy a number of properties that make them suitable in practice,

such as trivially parallelizable implementations, adaptation to sparsity, and automatic

variable selection, to name a few. The reader is well-advised to consult Biau and

Scornet (2016) for an excellent review of recent research in this area.

After fitting a classification random forest to training data, it is common practice to

infer conditional class probabilities for a test point by simply counting the fraction

of trees in the forest that vote for a certain class. A priori, this is an unprincipled

practice: the fraction of votes of classifiers in an ensemble need not have anything to

do with a class probability. In the case when base classifiers in the ensemble are highly

correlated - such as a collection of bagged tree stumps - the estimated probabilities

will necessary converge to 0 or 1.

The next section contains a simulated example for which a random forest produces

catastrophically poor probability estimates, yet still manages to obtain the Bayes error

rate. These observations should not be surprising. Achieving a low misclassification

error rate requires only that the classifier estimates one quantile well: the median.

As long as 251 out of 500 trees vote for the correct class, the forest will achieve a low
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test error rate. Probability estimation at every quantile simultaneously is obviously

a much harder problem. What is surprising is that despite such ad hoc foundations,

random forests do tend to produce good probability estimates in practice, perhaps

after calibration (Niculescu-Mizil and Caruana, 2005). The goal of this paper is to

put random forest probability estimates on more sound statistical footing in order

to understand how a voted ensemble is able to estimate probabilities. Moreover, we

will exploit this understanding to improve the quality of these estimates in the cases

where they are poor.

4.1.1. Motivation

Random forests tend to be excellent classifiers under a wide range of parameter set-

tings (Berk, 2008). The same robustness, however, is not enjoyed by a forest’s prob-

ability estimates. In fact, it can sometimes be the case that such classifiers achieve

the Bayes error rate while producing remarkably bad probability estimates. The fol-

lowing example motivates our analysis of random forest probabilities in the rest of

the paper.

We consider a very simple model. First, draw n = 1, 000 predictors uniformly at

random from [−1, 1]50, and then generate class labels according to the conditional

class probability P (y = 1|x) = 0.3 if x1 < 0, and P (y = 1|x) = 0.7 if x1 ≥ 0. The

first dimension contains all of the signal, while the remaining 49 dimensions are noise.

Note here that a simple tree stump would produce very good probability estimates.

Fit to training data, the stump would split near x1 = 0, and the training data that

accumulated in each daughter node would have relative proportions of y = 1 labels

in the way we would expect. The story is quite different for a random forest.

Figure 21 plots a histogram of estimated probabilities from a classification random
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forest under two different parameter settings. The parameter that will concern us

most in this paper is mtry, the number of randomly chosen candidate predictors for

each tree node - the details are spelled out in Section 4.2. Since the population

conditional class probability function only takes on two possible values, namely 0.3

and 0.7, we would ideally expect these histograms to consist of two point masses at

these values. Figure 21a shows the results from using a random forest with mtry =

1, while Figure 21b shows the estimated probabilities when mtry = 30 2. When

comparing these figures, the quality of probability estimates differs drastically. When

mtry = 1, the probabilities are pushed toward the uninformative value of 0.5, while

when mtry = 30, the probabilities are centered around their true values of 0.3 and

0.7. However, in both cases, the random forest achieves the Bayes error rate of 0.3!

Each random forest is able to achieve similar (optimal) classification performance in

terms of test error, but very different performance in probability space. A random

forest can produce good probability estimates, but only when tuned properly.

In order to determine why this discrepancy in probability estimation quality differs,

we will focus our efforts on the estimation at a single point x0 = (0.5, 0.5, . . . , 0.5).

Specifically, we will be concerned with the points in the training set that get used to

make a prediction at x0, which is the same to say, the training points that appear in

the same terminal nodes of the forest trees as x0. Such points are referred to in the

literature as voting points, and were first studied by Lin and Jeon (2006). Figure 22

displays the voting points for the point x0 projected in the (x1, x2) plane. Ideally,

voting points should all lie in the half-space x1 ≥ 0, since these points all have the same

conditional class probability as our target point x0, and we would hope that a random

forest would only consider “similar” points in making a prediction. When comparing

2Note that when mtry = 1, one randomly chosen predictor is considered at each split, so the trees
in the forest are very weak.
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(a) mtry = 1 (b) mtry = 30

Figure 21: Histogram of estimated probabilities produced by a random forest under
two different settings of mtry. We expect these probabilities to cluster around 0.3
and 0.7.

Figures 22a and 22b, it is clear that the forest with mtry = 30 concentrates all of its

voting points in the correct neighborhood, while the forest with mtry = 1 does not.

This example illustrates that the parameter mtry intuitively controls the “tightness”

of voting neighborhoods: when mtry is large, these neighborhoods concentrate more

tightly. We would like the reader to see the analogy to the bandwidth parameter in

a kernel regression. This analogy is at the heart of the paper.

4.1.2. Outline

Our contribution is to frame random forest probability estimation in the framework

of kernel regression, and to exploit this framework to understand how to use ran-

dom forests to produce better probabilities. The explicit connection between random

forests and kernel methods has recently appeared in Scornet (2016a), although this

connection is implicit in earlier works of Leo Breiman (Breiman, 2000a), (Breiman,

2004). This work shows that regression random forests can be viewed as close cousins
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(a) mtry = 1 (b) mtry = 30

Figure 22: Plots indicating the training points contributing to the random forest’s
prediction at x0 = (0.5, 0, . . . , 0) projected on the (x1, x2) axis. The size of the plot
point indicates the fraction of trees in the forest for which each point appears in the
same terminal node as the target point x0.

of kernel regression, in which the kernel function is the proximity function, which will

be discussed in more depth later in the paper. We build on this work by studying the

shape of the random forest kernel, especially as it relates to the forest’s parameter

settings. As a key tool to developing intuition about the behavior of this kernel, we

develop an analytical approximation to the kernel of a simplified model of a random

forest studied in other parts of the literature. This model allows us to bridge intuition

about bandwidth selection in Nadaraya-Watson type kernel estimation to understand

the role of parameter tuning in random forest probability estimation.

We will begin in Section 4.2 by providing more formal background on random for-

est probability estimation, as well as notation which will facilitate our discussion

throughout the paper. Next, we will introduce the concept of the proximity function

in Section 4.3, and we will relate random forests to kernel regression methods. This

not only allows us to view random forest probabilities in a more principled way, but
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also motivates discussion of the random forest proximity function as a fundamental

quantity of interest in probability estimation. In order to better understand the shape

of the random forest kernel and its connection to tuning parameters, we develop a

kernel approximation to a simplified model of a random forest in Section 4.4. This will

allow us to bridge our intuition about kernel regression to random forest probability

estimation. We will then confirm the intuition developed from our simple model in

Section 4.5, and will consider more extensive simulation experiments in Section 4.6.

4.2. Background

In this section, we will establish mathematical notation to facilitate of discussion in

the rest of the paper, as well as provide background on the existing literature in

probability estimation in random forests.

4.2.1. Setup and Notation

In the standard set-up for binary classification problems, we observe n pairs of training

data points (x1, y1), . . . , (xn, yn) with xi ∈ X ⊂ Rp and yi ∈ {0, 1}, and the goal is to

learn a mapping from xi to yi. To make the problem more statistically tractable, it is

often assumed that these pairs are independent and identically distributed, and that

x and y are related according to an unknown conditional class probability function

P (y = 1|x). The goal of the analyst in classification is simply to discriminate whether

P (y = 1|x) ≥ 0.5 to predict the class of a new test point x. The related problem of

directly estimating the probability of class membership P (y = 1|x) is much more

difficult. This is the problem we consider in this paper in the context of random

forests.

Recall that a random forest for classification consists of a collection of T un-pruned

decision trees, where each tree is grown on a bootstrap sample of the data, and the
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split variable at each node of the tree is chosen to be the best among a subset of

size mtry randomly chosen predictors. The randomness introduced in each tree is

governed by a random variable θ ∈ Θ (i.e. the bootstrap sample that was chosen,

as well as the candidate subset of random predictors at each node of the tree). The

parameter θ will serve us primarily as a way to index the trees in the forest. Each

decision tree partitions the input space into hyper-rectangles formed by the terminal

nodes. We will denote the terminal node in the tree generated by θ ∈ Θ to which a

point x belongs by Rθ (x), and we will denote the number of sample points in this

node by Nθ (x).

To simplify notation, we will assume that the bootstrap step is not used in the tree-

growing process. With this caveat, we can define the prediction for a single tree at a

single point x0 by

f (θ, x0) =
n∑
i=1

I (xi ∈ Rθ (x0)) yi
Nθ (x0)

.

In words, to make a prediction at a point x0, we simply determine which terminal node

that point belongs to, and then return the fraction of training points in that node for

which y = 1. A random forest is constructed from a selection of independent random

draws θ1, . . . , θT and the associated trees f (θ1, ·) , . . . , f (θT , ·). We will consider two

types of random forests for probability estimation, classification forests, denoted by

RFclass (·) and regression forests, denoted by RFreg (·). We can define these as

RFreg (x0) =
1

T

T∑
t=1

f (θt, x0)

RFclass (x0) =
1

T

T∑
t=1

round (f (θt, x0)) .

In the case of a classification random forest, we estimate probabilities simply by
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making a class prediction for each tree round (f (θt, x0)), and counting the fraction

of trees that vote for a certain class. In practice, classification forest trees are often

grown to a terminal node size of one. In later sections, we will be concerned with

the extent to which RFclass (x0) and RFreg (x0) approximate the conditional class

probability P (y = 1|x0). It is not apriori obvious that counting the fraction of trees

that vote for a certain class, as in a classification random forest, is principled way to

estimate this quantity.

4.2.2. Literature on Probability Estimation

There has been relatively little literature on probability estimation in random forests.

It is known that classification random forests probabilities are typically uncalibrated,

but produce among the best estimates among machine learning classifiers after cal-

ibration (Niculescu-Mizil and Caruana, 2005). Other research has investigated the

usefulness of correcting probabilities in random forests using Laplace and m-estimates

at the nodes (Bostrom, 2007). There also exists limited empirical evidence comparing

the efficacy of regression and classification random forest probabilities in a number

of simulated and real data settings (Li and Cutler, 2013).

Recently, researchers have argued that regression random forests are appropriate for

probability estimation (Malley et al., 2012), (Kruppa et al., 2014). This claim follows

from recent work showing that regression random forests are consistent in a number

of settings (Scornet et al., 2015). Essentially, the argument is that if one passes the

binary random variable Y in a regression forest, then consistency in conditional class

probability follows since E (Y |X) = P (Y = 1|X). We contend that this argument is

too simplistic to explain how to obtain useful probability estimates in practice. For

one, random forest probabilities are not always good, even if this theory says otherwise
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3. Secondly, one must appreciate that classification and regression random forests are

extremely similar, except for the default parameter settings and aggregation method.

Indeed, we argue in the appendix that in the binary outcome case, the splitting criteria

for regression trees is exactly the same as that for classification trees. We assert that

performance differences in probability estimation simply result from differences in

default parameter settings: regression random forests have a larger default setting for

mtry, and in many cases this can account for any discrepancy in probability estimation

performance. We will argue in the rest of the paper that a kernel perspective on

probability estimation is more appropriate since it emphasizes that tuning parameters

are critical in practice.

4.3. Probabilities from the Proximity Function

In this section we will introduce the concept of the proximity function and relate

it to the task of probability estimation. We will begin by motivating the proximity

function as a natural distance measure induced by a random forest, and we will

briefly describe some of its traditional uses. Next, we will argue that the probability

estimates produced through voting resemble those of kernel regression, where the

kernel is given by the proximity function.

4.3.1. The Proximity Function

We will begin by defining a natural distance metric induced by a random forest, the

proximity function.

Definition 1 (The Proximity Function). Grow a random forest according to θ1, . . . , θT

on a training set (x1, y1), . . . , (xn, yn). The proximity function is a mapping KT :

X × X → [0, 1] where KT (x, z) = 1
T

∑T
t=1 I (x ∈ Rθt (z)).

3The example from Section 4.1.1 has the same qualitative outcome if we use a regression random
forest instead of a classification random forest, even with a very large training set.
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In words, the proximity function simply measures the fraction of trees in a forest for

which two test points appear in the same terminal node. One can view this quantity

as a natural notion of similarity between two points: the more times these two points

appear in the same terminal node of a tree, the more similar they are. In the limit

of an infinite number of trees, it is also natural to consider a population version

of the proximity function given by K(x, z) = Pθ (z ∈ Rz (θt)). It is easy to argue

from the law of large numbers that KT (x, z) → K(x, z) as T → ∞ almost surely

(Breiman, 2000a). Since trees generate partitions of the input space, one also has

the interpretation that the proximity function gives the probability that two points

are in the the same cell of a randomly chosen partition. The notation KT and K is

also meant to be suggestive: both are self-adjoint, positive definite kernels that are

bounded above by one (Breiman, 2000a).

The most common use of the proximity function is for clustering training data. To this

end, one can define the proximity matrix P ∈ Rn×n where Pi,j = KT (xi, xj). In other

words, the proximity matrix contains all of the pairwise similarities among the training

data. By the kernel properties of the proximity function, one can easily argue that the

matrix D ∈ Rn×n, Di,j = 1− Pi,j defines a Euclidean distance matrix. One can then

appeal to multidimensional scaling to a find a lower dimensional representation of the

data that approximately respects the similarity measure induced from the proximity

function. In addition to clustering, the proximity function has an number of other

creative applications including missing data imputation and outlier detection. See

Berk (2008) for more discussion.

4.3.2. Proximity Probabilities

Given our motivation of the proximity function as a measure of similarity between

points, it is reasonable to explore how we might use this function to create probability
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estimates. To this end, let us first recall the form of Nadaraya-Watson kernel-weighted

regression. For our purposes, a kernel function K : X × X → R+ is a non-negative

function such that K (x, z) is large when x and z are close in some sense. In practice,

one often considers parameterized families, such as the Gaussian family Kλ (x, z) =

exp
(
−||x−z||22

2λ

)
. Here, λ is referred to as the bandwidth of the kernel, and controls the

bias-variance trade-off in estimation by changing the size of the local neighborhood.

A kernel regression estimate of conditional class probability is then given by

P (y = 1|x0) =

∑N
i=1K (x0, xi) yi∑N
i=1K (x0, xi)

.

If we let wi(x0) = K(x0,xi)∑N
i=1 K(x0,xi)

, we can simply think of a kernel estimate as a

weighted combination of training data labels, with weights proportional to the sim-

ilarity between a given training point and the target points x0, i.e. P (y = 1|x0) =∑n
i=1wi(x0)yi.

We can also make a simple argument that kernel regression is an intuitively ap-

pealing method for estimating conditional class probabilities. Suppose we estimate

marginal and conditional probabilities in the following manner: P̂ (y = 1) = n1

n
,

P̂ (x0) = 1
n

∑n
i=1Kλ (x0, xi), P̂ (x0|y = 1) = 1

n1

∑
i:yi=1Kλ (x0, xi), where n1 is the

number of training points in the data set for which yi = 1. Notice that the last two

expressions are just kernel density estimates of P (x0|y = 1) and P (x0), respectively.

We can then write an estimate for the conditional class probability using Bayes rule,

plugging in kernel density estimates for the appropriate quantities as follows:
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P (y = 1|x0) =
P (y = 1)P (x0|y = 1)

P (x0)

≈ P̂ (y = 1) P̂ (x0|y = 1)

P̂ (x0)

=
n1

n
1
n1

∑
i:yi=1 Kλ (x0, xi)

1
n

∑n
i=1Kλ (x0, xi)

=

∑n
i=1 Kλ (x0, xi) yi∑n
i=1Kλ (x0, xi)

.

We will now make a connection between the probabilities generated from voting and

the proximity function. Note that the connection between regression random forests

and kernel regression was pointed out in Scornet (2016a). Our focus here is to cast

probability estimation in this light in order to explain the role of random forest

parameters in controlling the quality of probability estimates, and we believe it is

most natural to do this in the kernel regression setting. In later sections, we will

devote effort to explaining how tuning parameters such as mtry and the number of

nodes in each tree act as bandwidth parameters for this estimate.

Recall from Section 4.2 that a random forest estimate of probabilities is given by

P (y = 1|x0) = 1
T

∑T
t=1 f (x0, θt). We can plug in the definition of f (x0, θt) to re-write

this estimate in a more enlightening form:
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P (y = 1|x0) =
1

T

T∑
t=1

n∑
i=1

I (xi ∈ Rθt (x0)) yi
Nθt (x0)

=
n∑
i=1

yi

(
1

T

T∑
t=1

I (xi ∈ Rθt (x0))

Nθt (x0)

)

≈
n∑
i=1

yi

(∑T
t=1 I (xi ∈ Rθt (x0))∑T

t=1 Nθt (x0)

)

=
n∑
i=1

K(x0, xi)yi∑n
i=1 K(x0, xi)

.

We will refer to the quantity in the last step as the proximity probability estimator of

conditional class probability.

Definition 2 (Proximity Probabilities). The proximity probability estimate of condi-

tional class probability at a test point x0 is defined to be

RFprox (x0) ≡
n∑
i=1

K(x0, xi)yi∑n
i=1 K(x0, xi)

.

In the third step, we use the approximation that 1
T

∑T
t=1

at
bt
≈

1
T

∑T
t=1 at

1
T

∑T
t=1 bt

for any positive

sequence of numbers at and bt
4. It is interesting to consider this approximation

in the context of positive random variables X and Y : the approximation is merely

assuming that E
(
X
Y

)
≈ E(X)

E(Y )
. Note that we simply use this approximation as intuition

4We also use the fact that

1

T

T∑
t=1

Nθt (x0) =
1

T

T∑
t=1

n∑
i=1

I (xi ∈ Rθt (x0))

=

n∑
i=1

1

T

T∑
t=1

I (xi ∈ Rθt (x0))

=

n∑
i=1

K (x0, xi)

.
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for motivating a different way of aggregating probabilities. In particular we make no

claims about the quality of this approximation. When this is the case, RFprox (x0)

will be similar to the estimated probability estimated in the usual way.

4.3.3. Intuition

We will close this section with a few final thoughts on the similarities and differences

between the different ways of using a random forest for probability estimation. First,

it will be helpful to define a quantity which gives a conditional class probability

estimate for a point x0 for a given tree generated by θt: pt (x0) =
∑n

i=1

I(xi∈Rθt (x0))yi
Nθt (x0)

.

With this notation in hand, we can give three expression for probability estimates

generated by a regression, classification, and proximity random forest:

RFreg (x0) =
1

T

T∑
t=1

pt (x0)

RFprox (x0) =
T∑
t=1

Nθt (x0)∑T
t′=1 Nθ

t
′ (x0)

pt (x0)

RFclass (x0) =
1

T

T∑
t=1

round (pt (x0)) .

First, one should note that in classification setting, the typical default is to grow a

tree to node purity, so RFprox (x0) agrees with RFclass (x0) in this case. In the case

where nodes are not grown to purity, there is an interesting difference between the way

regression random forest probabilities and proximity probabilities differ. In particular,

regression random forests average node probabilities across trees with equal weights,

while the proximity probability averages probabilities with weights proportional to the

number of points in each node. Stated in another way, RFprox (x0) forms a probability

estimate by collecting all points in the training set (with multiplicity) that share a

terminal node with the target point, and taking a grand mean. If one really does
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believe that pt (x0) is an estimate of a conditional class probability, this might be

a reasonable strategy when some nodes have small counts. The form of RFclass (x0)

seems to suggest that it is unlikely that pt (x0) do in fact estimate probabilities: if we

consider pt (x0) to be a random variable with expectation P (y = 1|x0) and very small

variance, RFclass (x0) would tend to produce estimates that are all close to 0 or 1.

4.4. Kernel Intuition

We argued in the previous section that random forest probabilities can be fruitfully

viewed from a kernel regression point of view. Central to kernel regression is the shape

of the kernel and associated bandwidth parameter. Unfortunately, the mathematics

of the original random forest algorithm forest are complicated and make analytical

expressions for the kernel intractable. In this section, we derive the kernel in a

simplified setting considered in Breiman (2000a), Breiman (2004), Biau (2012). In

particular, we demonstrate that a weighted Laplacian kernel is a good analogy to a

random forest, and we leverage this analogy to provide intuition for how the parameter

choice in a random forest informs the quality of its probability estimates.

4.4.1. A Naive Model of a Random Forest Kernel

While the mechanics are quite simple, the mathematics of a random forest make an-

alytical expressions for quantities of interest intractable. As a result, the literature

tends to focus on stylized models that make analysis more amenable. In this vein, we

construct a simplified model of a random forest by borrowing elements from models

considered in Breiman (2000a), Breiman (2004), Biau (2012). Closed for expressions

for other random forest models have been considered elsewhere, but our model con-

tains richer elements that more closely capture adaptive splitting (Scornet, 2016a). As

we will demonstrate, adaptive splitting is key to constructing a kernel which adapts
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to the shape and sparsity of the conditional class probability function.

Algorithm 3 Simplified Random Forest Tree

1. Specify the number of leafs M ; initialize leafs = {troot}.
2. For m = 1 : M :

(a) Select a terminal node t ∈ leafs uniformly at random.
(b) Split t into daughter nodes tL, tR

(i) Choose mtry predictors at random F ⊆ {1, . . . , p}
(ii) Select split variable uniformly among the S∗

signal variables in F
(iii) Choose split point uniformly at random

(c) Replace t with tL and tR in leafs

The simplified model we will consider is given in Algorithm 3. To begin, we assume

that the domain of the predictor variables is X = [0, 1]p. Of the p predictors, S of

them are related to the response variable, and we call such predictors strong, and the

remaining W predictors are unrelated to the response, and we call these weak. One

may equivalently call strong variables “signal” variables, and weak variables “noise”

variables. We fix a number M of tree nodes before tree growing begins. At each

stage of the growing process, we select a node at random to split on, and randomly

select mtry predictors. Among the mtry variables chosen, we split only on the strong

ones with equal probability (unless only weak variables are chosen). This mechanism

mimics adaptivity in the forest, and one can indeed verify in simulated examples that

the predictors which are related to the response do indeed tend to be split on with

higher probability (Biau, 2012). Finally, the chosen predictor is split on uniformly at

random.

Note that the above algorithm gives a probability model for a fixed tree in the forest.

We are interested in the probability that such a randomly drawn tree contains two

fixed points in one of its terminal nodes, which is precisely the interpretation for

a random forest proximity kernel. In this setting, we can derive an approximate
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expression for the proximity kernel, which is given in the following proposition.

Proposition 3. Suppose a random forest is grown to a size of M nodes. Under the

above setting, we can derive an approximation for the proximity function K (0, x):

K(0, x) ≈ exp

{
− logM

(
pS
∑
s∈S

xs + pW
∑
w∈W

xw

)}

where

pS =

S∧mtry∑
k=1

(
S−1
k−1

)(
W

mtry−k+1

)
k
(

p
mtry

)
pW =

1− SpS
W

.

Proof. (See Appendix 4.8.2)

It is clear that even in this simple setting, the kernel will clearly not be translation

invariant. However, one can make the further approximation, as in Scornet (2016a),

that K (x, z) ≈ K (0, |x− z|).

In a 2000 paper, Breiman derived an approximation to the proximity function in a

simplified model in which predictors were selected uniformly at random at each stage

of the growing process, with no distinction between “strong” and “weak” variables

(Breiman, 2000a). The form of this kernel was correspondingly more simple, and took

the form of a symmetric Laplacian density: exp
(
− logM

p
||x− z||1

)
. The advantage

of our formulation is that it is evident that variables receive different importance

weights in the proximity function. We will demonstrate in Section 4.5 that the prox-

imity function does tend to adapt to the shape of the underlying conditional class

probability function, especially in regards to sparsity. In our model, the mechanism

by which this adaptation takes place is through weights ps and pw from Proposition 3.
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In particular, the kernel tends to be more narrow in the direction of “strong” vari-

ables and flatter in the direction of “weak” variables. Correspondingly, our model

captures this phenomenon by assigning higher weights to signal variables than weak

variables, and the relative widths are controlled by the mtry parameter. It is also

possible to change the shape of the kernel by assigning different weights to different

strong variables, but makes the analysis a bit more tedious.

4.4.2. Naive Kernel Parameters

In this section, we will discuss how the value of mtry and the number of tree nodes

affects the shape of the kernel derived in the previous section. The values of ps and pw

are visualized as a function of mtry in Figure 23. We fix the number of strong variables

as S = 5, and plot the weights for varying numbers of noise variables W . Notice first

that for any value of W , the weight for strong variables pS is a strictly increasing

function of mtry and the weight for weak variables pw is a strictly decreasing function

of mtry. Furthermore, for large enough values of mtry, one can prove the weights

for strong variables asymptote to 1/S, and the weights for weak values converge

to zero. These qualitative findings accord with what we would expect in a random

forest. When mtry is large, the selection of candidate predictors likely contains a large

number of signal variables, and such variables are preferred by tree splitting criteria

since they lead to more pure daughter nodes. The consequence of a larger weight on

such variables is that the kernel is more narrow in directions of signal, which again

accords with what we will empirically demonstrate in Section 4.5. Furthermore, we

can see that the value of mtry needed to filter out noise variables increases with the

number of weak variables.

The number of terminal nodes also affects the shape of the proximity function derived

in the previous section. In particular, a larger number of nodes M shrinks the diam-
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(a) (b)

Figure 23: The plots above show the probability of selecting strong and weak variables
as a function of mtry in the naive model. In both figures, the number of strong
variables is fixed at 5, while the number of weak variable ranges from 5 to 85.

eter of the kernel by a multiplicative factor of logM , making it more concentrated.

In our model, the number of nodes M is a predetermined parameter, but in practice

it depends on a number of characteristics of the data, such as the size of the data set

and the value of mtry. For a data set of fixed size n, the number of tree nodes tends

to decrease with larger values of mtry. The intuition is simple: an increase in mtry

increases the number of signal variables appearing at each split, producing more shal-

low trees. Figure 24 shows a plot of the average number of nodes in a random forest

tree for a simulated example as a function of mtry, which confirms our intuition.

We can summarize the main conclusions from our simplified model as follows:

• The value of mtry controls the relative width of the kernel in signal and noise

dimensions.

• An increase in the number of nodes in the tree shrinks the kernel equally in all

directions.
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Figure 24: The number of terminal nodes as a function of mtry for a simulated
example.

• Larger values of mtry are needed to sufficiently “zero out” the weight of noise

variables in high dimensions.

4.4.3. Laplace Kernel Regression

Given the form of the kernel we derived in Section 4.4.2 and the implications for its

parameters explored in Section 4.4.2, we now develop some intuition for a optimal

choices for kernel regression with a weighted Laplace kernel. The idea here is to

explore the role of kernel weights in producing good probability estimates, and then

to tie these weights to random forest parameters. In kernel regression, one typically

selects a kernel before looking at the data. We would like to demonstrate that a

kernel that adapts to the data is much more powerful, and is in fact essential in

higher dimensions.

We will consider here kernels of the form

Kλ,w(x, z) = exp{−λ
p∑
j=1

wj|xj − zj|}
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where wi are non-negative weighs summing to one. The kernel weights wi determine

the shape of the kernel, and λ controls the concentration. It is clear that in the case of

infinite data, the kernel weights do not matter - however, this is not the case in finite

data. An appropriately shaped kernel can drastically affect the quality of probability

estimates.

In the following example, we will compare conditional probability estimates using

kernels with different shapes. We will begin by drawing n = 500 points uniformly at

random from the square [−25, 25]2, and then a label y ∈ {0, 1} with the conditional

probability

P (y = 1|x) =


1 if r(x) < 8

28−r(x)
20

if 8 ≥ r(x) ≥ 28

0 if r(x) ≥ 1.

(4.1)

where r(x) =
√

(x2
1 + x2

2). This is the “circle model” from Mease et al. (2007). Note

that the level sets of the conditional class probability model are simply concentric

circles, which are shown in Figure 25. We consider probability estimation with two

different kernels. The first is Kλ,(1,1)(x, z) = exp (−λ (|x1 − z1|+ |x2 − z2|)) and the

second is Kλ,(10,1)(x, z) = exp (−λ (10|x1 − z1|+ |x2 − z2|)). Note that the first kernel

is has symmetric level sets - which is well-suited for this problem - and the second has

level sets which are very skewed in the x1 direction. In Figure 25 we plot the RMSE

for probability estimation on a holdout set using each of these kernels for various

values of the bandwidth parameter λ. The best RMSE achieved by the symmetric

kernel is 0.07, while the best achieved by the skewed kernel is 0.15. This comes as no

surprise: with a finite amount of data, the shape of the kernel is critical. Interestingly,

both of these estimators achieve the same misclassification rate when used for class

estimation. We would again like to emphasize the point that misclassification is
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(a) (b)

Figure 25: The plot on the left shows the level sets for the conditional class probability
function. The plot on the right shows the out of sample root mean squared error for
probability estimation for two different kernels. The red line corresponds to a kernel
with poor shape relative to the underlying probability density function, while the
blue line shows a well-suited kernel.

generally a much more forgiving task than probability estimation: tuning matters!

We will close this section with a final point about kernel shape and sparsity. Suppose

we observe n training points (xi, yi), where x ∈ [0, 1]p and y ∈ {0, 1} with P (y = 1|x)

a function only of the first coordinate. Our goal will be to estimate the probability

that y = 1 at some point x0. In order to do this, we will consider counting the

fraction of points in neighborhoods of x0 that have volume 0 < s < 1, but different

shapes - for simplicity we will consider hyperrectangles with different side lengths. If

we consider a square, the side lengths of a neighborhood that capture a fraction s

of the training data will have expected side length s1/p in the first coordinate. Now,

consider a rectangle which has side lengths in the ratio of λ : 1 : · · · : 1. The expected

side length in the first coordinate to capture a fraction s of training points is now

λ
(
s
λ

)1/p
. Thus, the ratio of requires lengths in the signal direction between the square
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and rectangle is λ1/p−1. When λ < 1, that is, when the rectangle is more narrow in

the signal direction, the square requires about 1/λ times more data points to estimate

the probability with the same precision as the rectangle.

4.5. Empirical Properties of the Proximity Function

We will now present some simulated examples to demonstrate some of the qualita-

tive findings from the previous section. In particular, we will show empirically that

the random forest proximity matrix adapts to level sets of conditional class proba-

bility functions, and sparsity. These findings should resonate with the intuition for

probability estimation presented in Section 4.4.3.

4.5.1. Adaptation to CCPF Shape

We will begin by illustrating that the proximity function’s shape reflects the local

geometry of the conditional class probability function. While not implied directly

by Proposition 3, one could easily modify the Proposition’s assumptions to reflect

preferential splitting among the strong variables. This is future work, but we find it

to be enlightening to present the current material to the extent that it reflects our

discussion in Section 4.4.3, and has direct implications for the quality of probability

estimation. Furthermore, in the next three examples we include a completely random

forest as a straw man for which to compare the actual random forest algorithm. The

completely random forest is nonadaptive: it operates exactly as a random forest,

except the predictor to split on and split value are chosen uniformly at random. The

proximity function derived from this algorithm is most similar to the one suggested

in Breiman’s analysis mentioned in Section 4.4.2.

Our first example consists of a piecewise logistic model, where the form of the class

probability is given by Equation 4.2. On the domain x1 < 0, the probability model
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places more weight on the first coordinate, while on the domain x2 ≥ 0 the model

places more weight on the second coordinate. The structural break at x0 will allow us

the opportunity to investigate the extent to which the random forest locally adapts

to changes in the shape of the probability function. We draw n = 2, 000 points on

the square [−1, 1]2, and we draw a class label y ∈ {0, 1} according to Equation 4.2.

P (y = 1|x) =


1

1+exp(−3x1−x2)
if x1 < 0

1
1+exp(−x1−3x2)

if x1 ≥ 0

(4.2)

In Figure 26 we plot level sets for the random forest and completely random forest

proximity functions at different points. In particular, the top set of figures show

level sets for the random forest, and the bottom set of figures show level sets for

the completely random forest. The left set of figures shows level sets centered at

x0 = (−0.25,−0.25), and the right set of figures shows level sets centered at x0 =

(0.25, 0.25). Let us first turn our attention to Figure 26a. Since the first coordinate

of the target point x0 = (−0.25,−0.25) is negative, the probability model places

more weight on the first coordinate. Correspondingly, we see that the level set for

the random forest kernel is most narrow in the direction of the first coordinate.

Symmetrically, we see that the kernel is most narrow in the second coordinate in

Figure 26b, in which the kernel is centered at x0 = (0.25, 0.25). When parsing these

findings, it is good to keep in mind the circle example from Section 4.4.3 in which we

demonstrated the importance of the shape of the kernel.

One should compare the shape of the random forest kernel in each case with that

of the completely random forest, which is plotted in the bottom set of figures in

Figure 26. At both test points, the level sets are symmetric, regardless of the shape
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of the class probability function. Of course, this is not surprising: the completely

random forest is nonadaptive by design. Finally, averaged over 50 replications, the

average difference in root mean square error between the completely random forest

and the random forest (using the kernel approach) at the point x0 = (−0.25,−0.25)

is 0.002, while at x0 = (0.25, 0.25) is 0.007.

4.5.2. Adaptation to Sparsity

In our naive kernel model from Section 4.4.2 we argued that a random forest attached

greater weights to signal variables than noise variables, and it is through this mech-

anism that it adapts to sparsity. A random forest’s ability to adapt to sparsity has

been argued in other places in the literature, as well as from a good track record of

prediction in high dimensional problems (Biau, 2012), (Scornet et al., 2015), (Dı́az-

Uriarte and De Andres, 2006). We would like to illustrate through two examples that

this adaptivity is reflected in the shape of the proximity function, which is narrow in

directions of signal and flat in directions of noise.

Our first example is a simple logistic regression model, which we choose for visual

ease. We draw n = 500 predictors x uniformly at random from the square [−1, 1]2,

and then we draw a label y ∈ {0, 1} according to the probability

P (y = 1|x) =
1

1 + exp{−3x1}
.

Note that only the first coordinate of the predictor x matters: the second coordinate

is a noise variable. In this setting, when considering neighborhoods of a point x0

to use for probability estimation, the best neighborhoods consist rectangles that are

much more thin in the x1 direction than the x2 direction. In Figure 27, we plot the

level curves for the proximity function centered at x0 = (0, 0) using a random forest
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(a) (b)

(c) (d)

Figure 26: Level sets for the estimated probability density at a point x0 for both ran-
dom forests (sub-figures (a) and (b)) and completely random forests (sub-figures (c)
and (d)). Note that in the left set of figures, the target point is x0 = (−0.25,−0.25),
while in the right set of figures x0 = (0.25, 0.25). It is clear that that the level sets
produced by the completely random forests are much more symmetric than the usual
random forest.
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(a) Random forest (b) Completely random forest

Figure 27: Level sets for the estimated probability density at the point x0 = (0, 0).
The level set for the random forest stretches out in the signal dimension x1, while the
level set for the completely random forest is symmetric.

and a completely random forest in the left and right plots, respectively. The random

forest proximity function has the shape we would expect at the origin: a thin vertical

strip. On the other hand, the completely random forest has a neighborhood that is

symmetric in both the x1 and x2 directions. In higher dimensions, one pays a price for

this symmetry, as will be explored in more extensive simulation results in Section 4.6.

In our next example, we continue using a logistic model, but with a greater number of

noise variables. We draw n = 1, 000 predictors x uniformly at random from [−1, 1]22,

and conditional on x, we draw y with probability

P (y = 1|x) =
1

1 + exp{−2x1 − 2x2}
.

Notice that only the first two dimensions contain signal about the class label y. The

remaining 20 coordinates consist of noise variables. Unlike the previous example, the

level sets of the proximity function are difficult to visualize, so we instead investigate
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approximate directional derivatives of the proximity function centered at the origin

Dj+K(0, 0) ≈ K(hej, 0)−K(0, 0)

h

Dj−K(0, 0) ≈ K(−hej, 0)−K(0, 0)

h

where we take h = 0.25. Figure 28 plots the directional derivatives for each of the 22

directions in predictor domain. The points in red are the values of the derivative for

the random forest, and those in blue are the values for the completely random forest.

Turning our attention first to the red points in Figure 28a, the derivatives in the the x1

and x2 directions for the random forest kernel are −1.9 and −2.85, respectively, while

the derivatives in the other dimensions are close to zero. In other words, the kernel is

very peaked in the signal dimensions, and very flat in the noise dimensions. On the

other hand, the directional derivatives for the completely random forest kernel are all

approximately the same, indicating a symmetric, flat shape. The same phenomenon

holds when analyzing left hand derivatives in Figure 28b. It further holds that as we

increase the value of mtry, the kernel becomes increasingly peaked in the directions of

signal as predicted by our naive model. Analyzing such directional derivatives might

be an interesting alternative to variable importance type measures in a random forest.

4.5.3. Kernel Shape: the Spam Data Example

In Section 4.4 we proposed a simple model of a random forest kernel that connected

the shape of the kernel to the mtry parameter. Specifically, we argued that as mtry

increased, the kernel became more concentrated on signal variables, and more flat

in noise dimensions. This intuition was also reflected on our motivating example in

Section 4.1.1. Here, we will provide an illustration of this point on the spam dataset.
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(a) Left derivative (b) Right derivative

Figure 28: Plots of the left and right directional derivatives of the estimated probabil-
ity density function produced by random forests (adaptive) and completely random
forests (non-adaptive).

The spam data set consists of n = 4601 emails, along with p = 57 predictors, with

each predictor giving the frequency of certain words in that email. Each example is

attached with a label indicating whether than email is spam or not. We are interested

in determining the shape of the random forest kernel in the direction of noise variables.

Since we do not know these variables ahead of time in this data set, we add in 50

additional “junk” predictors in the data that consist of randomly permuted predictors.

By permuting the predictors, we break any association with our newly constructed

predictor and the response.

We fit a classification random forest for different values of mtry, and we compute

directional derivatives of the kernel as in Section 4.5.2. More precisely, we estimate

directional derivatives at the point x0, where the p = 107 components of x0 are the

sample means for each predictor (including the “junk” predictors). The directional
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Figure 29: The average absolute value of the magnitude of directional derivative in
the artificial noise variables in the spam data set.

derivative estimates are given by

Dj+K(x0, x0) ≈ K(x0 + hjej, x0)−K(x0, x0)

hj

where hj is equal to 0.2 times the standard deviation of the jth predictor. Figure 29

plot the average absolute value of the directional derivative in the 50 “junk” directions

as a function of mtry. As predicted, the typical size of this derivative decreases as

the value of mtry increases. This is not surprising: larger values of mtry make it

more likely that signal variables are used in tree splits, decreasing the influence of

noise variables. One can visualize this effect as a “flattening” of the kernel in noise

dimensions as mtry increases.

We provide another illustration of the kernel shape in Figure 30. In each figure,

the vertical axis relates the value of the directional derive for each coordinate j =

1, . . . , 107, given by the horizontal axis. Figure 30a shows this relationship for a

random forest fit with mtry set to the classification forest default of
√
p = 10, while
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(a) mtry = 10 (b) mtry = 34

Figure 30: Directional derivatives for each variable in the spam data set. Variables
with indices to the right of the red line are artificially contructed noise variables.

Figure 30b shows this relationship for the regression forest default of p/3 = 34. In each

figure, it is immediate to notice that the last 50 predictors have very small directional

derivatives, given by black dots close to zero. When mtry increases from 10 to 34,

the values of all directional derivatives get shrunken to zero, with the exception of a

few large values for predictors in the original data set.

4.6. Probability Comparisons

We will now undertake an empirical investigation to determine the extent to which

random forest parameter tuning influences its probability estimates in a number of

simulated and real data examples. Specifically, we will be interested in studying

the affect of mtry on probability estimates, as well as the type of forest used, i.e.

regression, classification, or proximity. In particular, we will consider regression and

classification random forests with values at mtry set at both p/3 and
√
p, proximity

random forests tuned for the best value of mtry, completely random forests, and
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bagged CART trees.

4.6.1. Real Data Sets

We begin by considering probability estimation in six data sets taken from the UCI

machine learning repository: spam, splice, tic, parkinsons, australian credit, and iono-

sphere. A description of the original data is contained in Appendix 4.8.3. Unlike the

simulated examples presented earlier in the paper, we do not have the actual proba-

bilities in our data sets, so we will evaluate our probability estimates according to an

empirical root mean squared error:

√√√√ n∑
i=1

(p̂i − yi)2.

This quantity is computed for 50 random 80/20 splits of the data, and we report the

RF class RF reg RF class RF reg Bagged Random RF prox

mtry p/3 p/3
√
p

√
p p One Best

spam 0.200 0.201 0.196 0.198 0.208 0.211 0.207
splice 0.119 0.120 0.159 0.161 0.122 0.241 0.124

tic 0.163 0.179 0.183 0.200 0.135 0.287 0.184
parkinsons 0.257 0.260 0.257 0.259 0.268 0.280 0.313

australian credit 0.310 0.308 0.312 0.312 0.315 0.328 0.308
ionosphere 0.227 0.230 0.225 0.227 0.245 0.287 0.262

Table 3: Table of root mean squared errors for probability estimates for each of 6 data
sets from the UCI repository. Values of RMSE were computed as an average over
50 random training and testing splits for each dataset. The probability estimation
methods considered are random forests in regression and classification modes with
different settings of mtry, bagged trees, completely random forests, and proximity
random forests.

average. Furthermore, we add in 50 “junk” predictors to each data-set in the manner

described in Section 4.5.3. We added in noisy predictors to investigate the efficacy of

random forests in relatively sparse settings, as well as to consider a wider variety of
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mtry settings in data sets with small numbers of predictors.

The first set of results are reported in Table 3. Here, we record the root mean square

error for the seven methods previously described, evaluated on six data sets. At a high

level, no method uniformly dominates any other. However, the completely random

forest performs the worst in each experiment. This is unsurprising, especially in light

of our discussion of the shape of the completely random forest kernel described earlier

in the paper. Each predictor and each split point are chosen uniformly at random, so

the forest does not adapt to the shape of the data. Bagged trees perform the best on

one data set, and RFprox performs the best one one data set. The reader may recall

that our random forest model predicted that the bagged trees would have a kernel

tht was the most narrow in the signal dimensions since it exhaustively searched over

predictors at each split. This is not neccesarily at odds with our results: bagged trees

are also much more shallow as a result of the better splits, which results in a smaller

effective bandwidth.

One of the aims of this paper was to argue that the tuning parameter mtry matters

much more for succesful probability estimation than the type of the forest. There have

been claims in the literature that regression random forests are preferred for proba-

bility estimation because of their interpretation as ‘conditional expectation machines’

(Malley et al., 2012), (Kruppa et al., 2014). However, these experiments ignore the

fact that regression and classification forests have different default settings of mtry

in common software, and we argue this is a crucial confounding factor. For each

experiment, we conducted a paired t-test comparing the root mean square error for

regression and classification forests for the two different levels of mtry used as defaults

in existing software: p/3 and
√

3. In all but the tic dataset, we found the root mean

square errors produced by classification and regression forests to be indistinguishable.
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We also considered a more in-depth analysis of the splice data set. Figure 31 displays

the misclassification error (test error) and root mean square error as a function of

mtry. It is clear from Figure 31a that test error is relatively immune to the value of

mtry: for values larger than 4, test error is roughly the same. The story is quite differ-

ent for RMSE, as shown in Figure 31b. Here, the fall in RMSE is much more gradual

as a function of mtry, plateauing near a value of 30. It is of interest to note that if

one were to optimize the forest for test error and used mtry = 4, the corresponding

value of RMSE would be around 0.22, which is far away from the best value of 0.1.

This example reiterates our point that tuning random forest parameters can matter

substantially depending upon the quantities one wishes to estimate. In general, test

error is much less sensitive to tuning parameters than probability estimation error.

(a) (b)

Figure 31: Test error and root mean square probability estimation error for the splice
data as a function of mtry. Test error is generally much less sensitive to this parameter
value.
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4.6.2. Synthetic Data

In the previous experiments, we did not know the actual probability in each case, so

we needed to use a surrogate measure for the quality of our probability estimates.

Here, we will analyze six simulated data sets in order to compare the different methods

of obtaining probability estimates. In each instance we will draw a training set of

size n = 500, fit seven different models, and evaluate each model on a test set of size

n = 1000. This process is repeated 50 times, and we consider the average root mean

square error over these repetitions.

The first three models in our experiments have appeared elsewhere in this paper: the

circle model was mentioned in Section 4.4.3 and a simple model with signal in only

one dimension was used as a motivating example in Section 4.1.1. We also consider a

simple logistic regression model in three dimensional space, as well as a more compli-

cated logistic model that contains multiplicative interactions, the 10d Model. Our last

model generated data according to the XOR function in two dimensions. Please see

Appendix 4.8.3 for mathematical details. This set of models captures a range of dif-

ferent statistical phenomena, ranging from simple probability density surfaces in low

dimensions to more complicated nonlinear response surfaces. The results are reported

in Table 4. The RF prox method has much better performance on the synthetic data

sets, achieving the lowest average root mean squared error on four of six examples.

In some settings, such as the XOR or 1d Model, it suffers only half as much RMSE as

its nearest competitor. Bagged trees and the completely random forest fail to achieve

the best performance on any of the six data sets considered here. The difference in

error between classification and regression random forests for fixed values of mtry are

larger than in the previous section, but one method does not dominate the other.

The best type of forest and tuning parameter mtry is heavily problem dependent.
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RF class RF reg RF class RF reg Bagged Random RF prox

mtry p/3 p/3
√
p

√
p p One Best

Circle Model 0.161 0.149 0.179 0.168 0.179 0.150 0.137
1d Model 0.207 0.189 0.223 0.208 0.223 0.181 0.097

1d Model Sparse 0.121 0.120 0.138 0.137 0.132 0.181 0.126
10d Model 0.370 0.371 0.370 0.371 0.369 0.383 0.396

Logistic Model 0.162 0.151 0.177 0.168 0.184 0.136 0.115
XOR 0.215 0.197 0.229 0.213 0.229 0.193 0.136

Table 4: Table of root mean squared errors for probability estimates for each of 6
simulated models . Values of RMSE were computed as an average over 50 random
training and testing splits for each dataset. The probability estimation methods
considered are random forests in regression and classification modes with different
settings of mtry, bagged trees, completely random forests, and proximity random
forests.

4.7. Conclusion

In the statistics literature, the way in which one accomplishes probability density

estimation in a nonparametric setting is through the use of (Parzen) kernels. The

canonical reference for this methodology is the Parzen (1962), ‘On Estimation of a

Probability Density Function and Mode.’ Random forests have also been found to

estimate probabilities well in some settings, but they do so in an ostensibly different

way, by averaging the votes of trees. The connection that this paper makes is to

frame random forest probability estimation in a familiar statistical setting.

As discussed in the Parzen paper, the kernel and its associated bandwidth parameter

are crucial quantities in determine the quality of density estimate. In a random forest,

it is not obvious what these two quantities are, or how one might tune them. Our

paper extracts the kernel from the forest, and identifies the relevant tuning parameter.

We establish a model of the kernel which gives the user intuition for how changing this

parameter affects the kernel’s shape. As with any kernel procedure in practice, the

bandwidth parameter requires tuning: different sizes work better in different settings,
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completely dependent upon the problem at hand.

The practical implications of this paper are that for random forest probability es-

timation, tuning matters. This point is easy to overlook because random forests

misclassification error rate tends to be very robust to parameter settings. In practice,

it is tempting to trust that a random forest that produces a low misclassification error

rate will also produce reasonable probabilities, but the examples in this paper have

illustrated that this need not be the case.

Finally, the ‘kernel’ view of random forest also suggests extensions to the way random

forests are used for classification and probability estimation. As argued in Section 4.3,

one can view random forests as kernel regression with the proximity function. The

proximity function is just one possible measure of ‘closeness’ that can be extracted

from the forest. As a simple example, instead of a simple binary measure of whether

two training points occupy the same terminal node of a tree, one might instead take

into consideration the number of tree splits separating these points.

4.8. Appendix

4.8.1. Equivalence of Splitting Criteria

It is a trivial fact that the mean squared error and Gini splitting criteria are equivalent

when used with a binary outcomes y ∈ {0, 1}. As a consequence, random classification

and regression forests fir to binary data only differ in the default parameter settings

and aggregation method across trees. We will present a simple argument for this fact.

Suppose that a candidate split of some node results in left and right daughter nodes,

denoted by RL and RR, each of which contains NL and NR training points, respec-
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tively. The fitness criteria for such a split according to mean squared error is

∑
x∈RL

(yi − pL)2 +
∑
x∈RR

(yi − pR)2 (4.3)

while the fitness for the Gini criteria is

NLpL (1− pL) +NRpR (1− pR) (4.4)

where pL = 1
NL

∑
x∈RL yi and pR = 1

NR

∑
x∈RR yi. We can expand the squares in the

mean squared error criteria in Equation 4.3 as follows:

∑
x∈RL

(yi − pL)2 +
∑
x∈RR

(yi − pR)2 = NLpL − 2NLp
2
L +NLp

2
L +NRpR − 2NRp

2
R +NRp

2
R

= NLpL −NLp
2
L +NLpL −NLp

2
L

= NLpL (1− pL) +NRpR (1− pR) .

4.8.2. Naive Approximation

Suppose a random forest is grown to a size of M nodes. Under the setting of Algo-

rithm 4, we will derive an approximation to the proximity function K(0, z), where

z ∈ [0, 1]p. Our argument will borrow substantially from Breiman (2000a) and Scor-

net (2016b). Under completely random splitting (no notion of strong and weak vari-

ables), Breiman (2000a) found an approximation to the proximity function of the

form K(0, x) = exp (− logM/p
∑p

i=1 xi) (although it is worth noting that the ar-

gument presented there claimed to approximate K(x, z) for all x, z ∈ [0, 1], but it

contained an error).
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Algorithm 4 Simplified Random Forest Tree

1. Specify the number of leafs M ; initialize leafs = {troot}.
2. For m = 1 : M :

(a) Select a terminal node t ∈ leafs uniformly at random.
(b) Split t into daughter nodes tL, tR

(i) Choose mtry predictors at random F ⊆ {1, . . . , p}
(ii) Select split variable uniformly among the S∗

signal variables in F
(iii) Choose split point uniformly at random

(c) Replace t with tL and tR in leafs

Specifically, we will assert that

K(0, z) ≈ exp

{
− logM

(
pS
∑
s∈S

zs + pW
∑
w∈W

zw

)}
(4.5)

where

pS =

S∧mtry∑
k=1

(
S−1
k−1

)(
W

mtry−k+1

)
k
(

p
mtry

)
pW =

1− SpS
W

.

First, we will calculate the probability ps that a given strong variable xs is selected at

a given node when there are S strong variables, W weak variables, and mtry predictors

are considered at a time. Let R denote the number of strong variables selected among

the mtry, and Q denote an indicator for whether xs is selected . We will compute pS

by conditioning on R:

pS =

S∧mtry∑
k=1

p (Q = 1, R = k)

=

S∧mtry∑
k=1

(
S−1
k−1

)(
W

mtry−k+1

)
k
(

p
mtry

) .
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It is then easy to see that the probability of selecting a given weak variable is just

1−Sps
W

.

Next, we will compute the probability that 0 and z are in the same terminal node

given that there are kj total splits on coordinate j = 1, . . . , p. Let c1, . . . , ckj denote

the randomly chosen split points for coordinate j. Then the probability that these

split points do not separate 0 and xj, p
(
c1 6∈ [0, xj], c2 6∈ [0, xj] . . . , ckj 6∈ [0, xj]

)
, is

∫
c1 6∈[0,xj ]

∫
c2 6∈[0,xj ]

· · ·
∫
ckj 6∈[0,xj ]

p(dckj |ckj−1) · · · p(dc2|c1)p(dc1). (4.6)

Now, given ck−1, the distribution of ck is ck|ck−1 ∼ U [0, ck−1]. Thus, it holds that

p (ck 6∈ [0, xj]|ck−1) = 1− xj/ck−1.

One can then prove inductively that the integral in 4.6 reduces to 1−xj
∑kj−1

i=0
(− log xj)

i

i!
.

If we let wj = − log xj, this is precisely the probability that a Poisson random variable

Zj with parameter wj is greater than kj. Next, we need to consider p (k1, . . . , kp), the

joint probability of cutting kj times on predictor xj for j = 1, . . . , p. If we condition

on the total number of cuts K, then p (k1, . . . , kp|K) is multinomial with K total tri-

als and success probabilities (ps, . . . , ps, pw, . . . , pw). Finally, the distribution of K is

the sum of M − 1 Bernoulli random variables, the m of which has success probability

1/m. Putting this all together,

K(0, z) =
T∑
k=1

p(k)
k∑

k1+···kp=k

p (k1, . . . , kp|K = k)

p∏
j=1

p (Zj ≥ kj) . (4.7)

We seek a more tractable approximation to the probability computed in 4.7. Following

Breiman (2000a), we appeal to a Poisson approximation. Let us assume that p > 5,
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T ≤ exp (p/2) and W and S are such that ps and ws are both small. If there are

currently K nodes, then the probability of selecting the node that 0 and z are both

in is 1/K. So, kj is achieved by T − 1 binomial trials, such that the probability of

each is ps is xj is strong, and pw if xj is weak. Thus, we will assume that k1, . . . , kp

are independent Poisson random variables with parameter

λs = ps

T−1∑
k=1

1

k
≈ ps log T

λw = pw

T−1∑
k=1

1

k
≈ pw log T

depending upon whether the predictor is strong or weak. We may then approximate

4.7 by ∏
s∈S

U (λs, ws)
∏
w∈W

U (λw, ww) (4.8)

where U (λs, ws) = e−λs−ws
∑∞

k=1 λ
k
sp (Zs ≥ ws), and analogously for U (λw, ww). Fi-

nally, through a Laplace transform argument, Breiman (2000a) argued that

U (λs, ws) ≈ e−λsws .

4.8.3. Data Set Descriptions

Data Set N Features
australian credit 690 15

ionosphere 351 34
parkinsons 195 22

spam 4601 57
splice 2422 60

tic 958 9
voting 435 16

Table 5: Descriptions of UCI Respository data sets used in Section 4.6.
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• 1d Model

P (y = 1|x) =


0.3 x1x2 ≥ 0

0.7 x1x2 < 0

• Circle Model

P (y = 1|x) =


1, ||x||2 ≤ 8

28−||x||2
20

, 8 ≤ ||x||2 ≤ 28

0, otherwise.

• Logistic Model

P (y = 1|x) =
1

1 + e−2(x1+x2+x3)
.

• 10d Model

log

(
P (y = 1|x))

1− P (y = 1|x)

)
= 0.5(1− x1 + x2 − · · ·+ x6)(x1 + · · ·+ x6)

• XOR Model

P (y = 1|x) =


0.3, x1x2 ≥ 0

0.7, x1x2 < 0.
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CHAPTER 5 : Generalizations of the Proximity Kernel

Abstract

A random forest contains an implicit measure of similarity between

points in the input space known as the proximity function. The proxim-

ity function simply gives the fraction of trees in a forest for which two

points fall in the same terminal node. While useful in a great number

of applications, this measure is also quite crude, as it ignores all of the

information contained in a tree other than its terminal nodes, such as the

quality and depth of its splits. In this paper, we construct a rich class

of kernels derived from a random forest which generalize the proximity

function. Moreover, we demonstrate that these kernels are useful alterna-

tives to the proximity function in probability estimation and visualization

examples.

5.1. Introduction

Random forests are among the best off-the-shelf classifiers in existence. A common

explanation for their excellent performance relies on ensemble principles: a random

forest achieves bias reduction from its deep, un-pruned trees, and variance reduction

from averaging de-correlated trees (Breiman, 2001). More recent work has painted

random forests through the lens of kernel regression (Breiman, 2000a; Olson and

Wyner; Scornet, 2016a). From this point of view, a random forest works well because

it is able to detect training data that is similar to a target point when making a

prediction (Lin and Jeon, 2006). The similarity measure implicit in a random forest

is the proximity function, which measures the fraction of trees in the forest for which

two points appear in the same terminal node.
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The proximity function notion of similarity is intriguing since it is learned directly

from the data. For example, one finds that in simulated examples with a sparse signal,

the proximity function tends to be more “pointed” in the direction of signal variables

and “flatter” in the direction of noise variables (Olson and Wyner). In contrast,

most kernel methods in machine learning utilize a fixed, predefined kernel, such as a

radial basis function. While there have been efforts in the kernel learning literature

to learn ideal kernels for different generative processes (Jaakkola and Haussler, 1999),

the random forest does this implicitly and automatically.

We will illustrate in this paper that the proximity is far from the only notion of

similarity one can extract from a random forest. One obvious shortcoming of the

proximity function is that it only utilizes part of the total knowledge encapsulated in

a tree, namely, terminal node membership. In later sections we will provide examples

in which terminal node membership is largely uninformative. In these examples, split

quality, especially near the root of the tree, is much more important. We will propose

a new similarity kernel derived from a random forest that incorporates a richer set

of information from the tree. Moreover, we will illustrate the practical advantages

of this kernel over the proximity function in probability estimation and visualization

tasks.

5.2. Background

We will begin with a mathematical framework for a random forest. This framework

will make it natural to draw a close connection between random forests and kernel

functions. Specifically, we will find that the proximity function falls easily out of

the definition of a random forest’s probability estimates. Subsequent sections will

make strides toward generalizing this kernel by incorporating additional information
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learned from the training data during the tree growing process.

5.2.1. Random Forest Ensembles

In this section we will describe a random forest as originally defined in Leo Breiman’s

seminal 2001 paper Breiman (2001). A random forest is a collection of T unpruned

CART decision trees, where each tree is grown on a bootstrap sample of the data,

and the split variable at each node of the tree is chosen to be the best among a subset

of F randomly chosen predictors. Software implementations often include F as a

parameter named mtry, as in the R library randomForest (Liaw and Wiener, 2002),

or max features, as in the Python machine learning library sklearn (Pedregosa et al.,

2011). We model the randomness injected into each tree - such as the bootstrap

sample and the subset of variables considered at each node - through a random

variable θ ∈ Θ. For our purposes, θ will be used primarily as a way to index trees in

the forest. Finally, observe that each random forest tree partitions the input space

X into a set of hyper-rectangles. For a tree generated by parameter θ, we will denote

by Rθ (x) the hyper-rectangle that contains a point x ∈ X .

We can now leverage this notation to more formally define a random forest tree.

We will make a couple of simplifying assumptions to lighten the notation, which are

often considered in the literature (Breiman, 2000a). In particular, we assume that

each random forest tree is grown to maximal depth so that each terminal tree node

contains exactly one sample point. We will also omit the use of bootstrap sampling.

After fitting a random forest to training data (x1, y1), . . . , (xn, yn), we denote the

prediction made by the tree generated by the parameter θ at a point x ∈ X by

f(θ, x) =
n∑
i=1

I (xi ∈ Rθ (x)) yi.
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In words, to make a prediction, simply drop x down the tree, find which cell Rθ (x)

it occupies, and assign it the label yi corresponding the unique training point xi that

lies in that cell.

A random forest makes a class prediction by taking the majority vote among the trees

in the forest. It is also common practice to extract probability estimates from a fitted

random forest by considering the fraction of trees in the forest that vote for a certain

class (Breiman, 2002; Olson and Wyner; Liaw and Wiener, 2002). In our notation,

we may write the random forest probability prediction at a point x by

p̂rf (y = 1|x) =
1

T

T∑
t=1

f(θt, x)

=
1

T

T∑
t=1

n∑
i=1

I (xi ∈ Rθt (x)) yi

=
n∑
i=1

(
1

T

T∑
t=1

I (xi ∈ Rθt (x))

)
yi.

The item in parenthesis on the last line has the straightforward interpretation as the

fraction of trees in the forest for which xi and x occupy the same terminal node. This

quantity is important enough to warrant a definition.

Definition 4 (The Proximity Function). The random forest proximity function

Kprox : X × X → [0, 1] is defined by

Kprox(x, z) =
1

T

T∑
t=1

I (xi ∈ Rθt (x)) .
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With this definition, we may equivalently write the probability estimate as

p̂rf (y = 1|x) =
n∑
i=1

Kprox(x, xi)yi. (5.1)

Thus, random forest probability estimates have the satisfying interpretation as a

weighted sum of the training data, where the weights are given by a similarity function

between the target point x and each training points xi. The larger the value of

Kprox(x, xi), the more weight (xi, yi) is given when informing the predicted value.

5.2.2. The Proximity Kernel

The proximity function is an intuitive quantity that measures the similarity between

points in the predictor space: the more often that two points x and z appear in the

same terminal node of a randomly grown tree, the more similar we expect them to

be. Our notation for the proximity function suggests that it is a positive semi-definite

kernel (i.e. Mercer kernel), which turns out to be the case (Breiman, 2000a). Further-

more, since the proximity function is an average over a large number of trees, one can

also argue that Kprox(x, z) is a finite sample approximation to Pθ (x ∈ Rθ (z)), and

that the convergence to this probability happens almost surely as T →∞ (Breiman,

2000a). Expressed in slightly different terms, the proximity function can then be seen

to be an approximation to the probability that a randomly chosen recursive partition

of the input space contains the points x and z.

Historically, it has been much more common in the literature to motivate the prox-

imity function through its numerous applications rather than its link to probability

estimation. For instance, the proximity function is used for visualization, outlier de-

tection, missing data imputation, archetypal analysis, and clustering Breiman (2002).

One distinctive advantage of the proximity function over fixed kernels - such as radial
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basis functions - is that its shape is adaptively learned from the data. This makes

it especially appealing for situations in high dimensions with sparse signals. More

recently, there has been a focus on tying the proximity function to prediction. Some

work has evaluated the proximity function’s utility as a kernel in support vector ma-

chines (Davies and Ghahramani, 2014; Englund and Verikas, 2012), while Olson and

Wyner and Scornet (2016a) explore its use in kernel regression.

5.3. Random Tree Kernels

We saw that Kprox is one natural notion of distance implied by a random forest

ensemble. However, this measure is quite crude in some sense, as the only information

it uses from a particular tree in the ensemble is terminal node membership. For a

given tree, closeness is binary: two points are either in the same terminal node, or

they or not. In this section, we will see that there are many other types of tree-

based distance measures that incorporate much richer information, including a tree’s

structure and split quality. We will then demonstrate that alternative kernels that

account for this information can lead to measurable improvements in probability

estimation and visualization. A more exhaustive comparison in these areas can be

found in Section 5.4.

5.3.1. Topology-Induced Kernels

In Section 5.2, we saw that the terminal nodes of a tree produce a partition of the

input space. Moreover, this partition is recursive and hierarchical: one can extract

sequentially more coarse partitions from the tree by pruning terminal nodes. As a

toy example, consider Figure 32. The first split in the tree separates the data in two

vertical halves, while the second level of splits separates the right cell into two further

horizontal halves. According to the proximity measure of similarity, the points x and
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z have a similarity of 0, despite sharing the same cell of the first partition.

xz

xz

Figure 32: Equivalence between tree representation (a) and training data partition
(b).

This binary notion of distance can be too crude in some circumstances. For instance,

suppose we want to analyze the performance of school-age children on a standardized

test. We might produce a hierarchical partition of these students according to school,

grade, and class. We would expect that two students taken from the same school and

grade would display some level of similarity on this test, even if they were not in the

same class. This motivates the need to consider similarity between partition cells at

depths other than terminal nodes.

One such notion of tree-based distance is the path metric, which is simply the shortest

distance between two nodes in a tree where each edge has a cost of one (Semple and

Mike, 2003). We can then define a measure of distance d : X × X → N between

two points in our input space to be the path distance between the terminal nodes

containing each of these points. For instance, in Figure 32, the path distance between

x and z in this metric is d(x, z) = 2.

Previous work has constructed a tree kernel from the path metric, Kpath
λ (x, z) =

e−λd(x,z) (Englund and Verikas, 2012). As the parameter λ grows to infinity, Kpath
λ

reduces to Kprox. As λ decreases to zero, the similarity of two points (with respect
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to this metric) only depends on the fraction of the trees in the forest for which both

points share splits near tree roots. In Section 5.3.2, we will prove that the Kpath
λ is in

fact a kernel, and in Section 5.4 we will analyze its performance when used in kernel

regression for probability estimation.

Metrics based solely on path distance suffer from the obvious shortcoming that they

ignore the informativeness of the splits producing the tree nodes. This problem is

especially relevant in a random forest, for which the most informative splits in a given

tree tend to occur near the root for large values of F (Scornet et al., 2015).

In order to make this more clear, let us consider a simple probability model in which

x is drawn uniformly on [0, 1]2 and conditionally on x, p(y = 1|x1 > 0) = 0.3 and

p(y = 1|x1 ≤ 0) = 0.7. Only the first coordinate of x informs the conditional

probability of the response. Suppose we fit a random forest tree to a data set generated

by i.i.d. (x, y) pairs generated from this probability model. If a node in the tree

splits on the first coordinate (and assuming this happens at the optimal population

split x1 = 0), all subsequent splits by its descendants will be due to noise alone.

Furthermore, note that with high probability, any terminal node will contain an

ancestor node that splits on the first coordinate. Thus, the path distance between

two nodes is irrelevant, especially near the bottom of the tree. What does matter is

the whether two nodes share a certain informative split.

One may wonder if there are other types of kernels that can be built from tree topology

alone. A natural way to approach this problem is to form the graph adjacency matrix

associated with the tree, and to consider various metrics on the rows of this matrix.

However, it was shown that practically all metrics one might consider, including

Cosine similarity, Tanimoto similarity, Pearson correlation, or resistance measures,

all reduce to degenerate measures similar to the proximity matrix (Sologub, 2011).
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This occurs since the degree of a tree leaf is one. In other words, one must look

elsewhere to find other tree based metrics.

5.3.2. Incorporating Split Information into Similarity Measures

The previous section motivates our search for tree-based similarity measures that

incorporate split information at each node. The most natural measure of split quality

is the magnitude of the resulting impurity decrease (Breiman et al., 1984). This

quantity also has an important role in tree-based variable importance (Breiman et al.,

1984; Louppe et al., 2013). Let us recall the node splitting process that occurs when

building a CART tree rooted at a node t. Among all possible candidate splits that

produce two daughter nodes tL and tR, the CART procedure chooses the split for

which the impurity decrease

∆i(t) ≡ φ(t)− (pLφ(tL) + pRφ(tR)) (5.2)

is maximized, where pL and pR are the fraction of training points from t that are

located in nodes tL and tR, respectively, and φ is a measure of impurity, such as the

Gini index.

We propose a new kernel K∆ that measures the similarity between two points x and

z in a way can be thought of as a weighted graph distance. For each of these points,

we can keep track of the values of the impurity decreases ∆i as we traverse from the

root node to each of the terminal nodes containing x and z, respectively. Intuitively,

we assign a similarity to x and z depending upon what fraction of the total decrease

in node purity from root to leaf is shared for both points.

In order to make our discussion concrete, we will develop our definition in the context

of the tree in Figure 33. The path leading to the terminal node containing x results
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z

�i1

�i2

�i3

Figure 33: Tree along with node impurity decreases to illustrate the calculations of
K∆(x, z).

in a total decrease in impurity of ∆i1 + ∆i2 + ∆i3, while the path leading to z results

in a total decrease of ∆i1 + ∆i2. The terminal cells that contain x and z share only

one common split that leads to an impurity decrease of ∆i1. We do not count the

decrease ∆i2 which occurs at the least common ancestor node as common for the

obvious reason that x and z are assigned different “directions” after passing through

this split. Given these quantities, we define, the ∆-similarity between x and z as

K∆(x, z) ≡

√(
∆i1

∆i1 + ∆i2 + ∆i3

)(
∆i1

∆i1 + ∆i2

)
.

An alternative way of viewing this quantity is as follows. The total amount of decrease

in node impurity leading to x is ∆i1 + ∆i2 + ∆i3, and a fraction ∆ii
∆i1+∆i2+∆i3

of this

decrease is shared with z. Conversely, a fraction of ∆ii
∆i1+∆i2

of the total path sum

of impurity decrease leading to z is shared with x. In order to aggregate these

two fractions into one measure, we simply take their geometric mean. We chose the

geometric mean as an aggregator because of its connection to the cosine kernel, which

appears in the proof of Proposition 6. Later discussion will mention some alternatives.
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More formally, fix a tree with M total nodes, and index the nodes according to

m = 1, . . . ,M . Suppose that A = {i1, . . . , ia} indexes the nodes leading from the

root to the terminal node containing x, and B = {j1, . . . , jb} indexes the nodes

leading from the root to the terminal node containing z, and ` is the index of the

least common ancestor between these terminal nodes. This notation allows us to

define the kernel K∆.

Definition 5 (The ∆ Kernel). The kernel K∆ : X × X → [0, 1] is defined by

K∆(x, z) =

√(∑
k∈C ∆i(tk)∑
a∈A ∆i(ta)

)(∑
k∈C ∆i(tk)∑
b∈B ∆i(tb)

)

where C = (A− {`}) ∩ (B − {`}).

This new measure of similarity satisfies some comforting properties. First, if the

terminal nodes containing x and z contain no common splits, then K∆(x, z) = 0.

If x and z share the same terminal node, then clearly K∆(x, z) = 1. Furthermore,

recall the one-dimensional probability model given in Section 5.3.1 for which only

the first coordinate contained information about the response. After splitting on the

first coordinate, any further splits will lead to small decreases in impurity since the

residual values in nodes are equally likely to have the value y = 1 or y = 0. Thus, the

distance between any points located in a subtree rooted at a node cause by a split on

the first dimension should be small. Despite being far apart in “node-space,” these

points are close with respect to K∆. Finally, note that we defined Kpath
λ and K∆ for

individual trees. Their extensions to an ensemble of trees is obvious: compute these

kernels for each tree in the ensemble and average.

We will now argue that the three “kernels” Kprox, Kpath
λ , and K∆ are all positive

semi-definite Mercer kernels. There are two important reasons for doing this. The
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first is that we want to ensure that these functions have the basic properties we

would expect from a well-defined similarity measure, such as symmetry. The second

reason is numerical: the routines used in popular kernel methods all require positive

semi-definite input matrices (such as in the multidimensional scaling applications we

consider later in the paper). Note that it has already been proved in the literature

that Kprox is a Mercer kernel, but from a much different approach than Proposition 6.

Proposition 6. The functions Kprox, Kpath
λ , and K∆ : X ×X → [0, 1] are all positive

semi-definite Mercer kernels.

Proof. The proof will rely on basic facts about Mercer kernels that the reader can find

in Smola and Schölkopf (1998) or Shawe-Taylor and Cristianini (2004). In each case,

the target kernel is an average of kernels produced by each tree. Since it is the case

that if K1, . . . , KT are all kernels so is K ≡ 1/T (K1 + · · · + KT ), it remains only to

show that the kernel induced by each tree is a Mercer kernel. We will also rely heavily

on the fact that if K :W ×W → R+ is a kernel and g : X → W is a function, then

Kg(x1, x2) ≡ K(g(x1), g(x2)) is a kernel. In each case below, we produce a mapping

g and a base kernel K.

(a) Kprox

Suppose that the tree has M terminal nodes, and index each of these nodes

by m = 1, . . . ,M . Let g : X → [0, 1]M , where (g(x))m is the indicator func-

tion of whether x lies in the terminal node with index m. Then Kprox(x, z) =

〈g(x), g(z)〉.

(b) Kpath
λ

Suppose that the tree has M total nodes, and index these nodes by m =

1, . . . ,M . Let g : X → [0, 1]M , where (g(x))m is the indicator function of
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whether x lies in a terminal node that is a descendant of node m. We will

show that Kpath
λ (x, z) = exp (−λ||g(x)− g(z)||2). In order to see this, notice

that ||g(x) − g(z)||2 is the path distance d(x, z) between the terminal nodes

containing x and z: ||g(x)||2 gives the depth of the path leading to the terminal

node containing x, ||g(z)||2 in the case of z, and 〈g(x), g(z)〉 is the depth of

the least common ancestor of the terminal nodes containing x and z. Finally,

||g(x)− g(x)||2 = ||g(x)||2 + ||g(z)||2 − 2〈g(x), g(z)〉, which is equivalent to the

node distance between x and z in light of the preceding interpretations. The

kernel K is taken to be the Gaussian kernel exp (−λ||x− z||2).

(c) K∆

Suppose that the tree has M total nodes ; we will index all these nodes, ex-

cluding the root node, by m = 1, . . . ,M − 1. Suppose φ : {1, . . . ,M − 1} → R+

is any function mapping tree nodes to positive scalars. In the case of K∆, this

function can be taken to be φ(m) =
√

∆im. Now let g : X → [0, 1]M−1 where

(g(x))m is φ(pa(m)) if the terminal node containing x is a descendant of node

m, and 0 otherwise. The kernel K is taken to be the cosine kernel 〈x,z〉
||x||||z|| .

We conclude this section by mentioning that the types of kernels described here are

far from exhaustive, and there are numerous avenues for refinement. Focusing on the

case of K∆, the use of the geometric mean to aggregate the fraction of shared decrease

in impurity was chosen since it could be easily mapped to the cosine kernel mentioned

in the proof of Proposition 6. One can also show that the harmonic mean of these

two quantities gives rise to a kernel (Belanche Muñoz and Tosi, 2012) (or any of the

dozens of kernels mentioned in Shawe-Taylor and Cristianini (2004)). As another
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variation, one might consider weighting the decreases in impurity by the depth that

these splits occur in the tree. The main point is that the typical way in which one

uses trees in a random forest to measure similarity is far from the only one. In the

next two sections, we will give simple use-case examples to illustrate the power of this

generality.

5.3.3. Kernel Comparison I: Probability Estimation

We saw in Section 5.2.1 that the probability estimates produced by a random forest

are similar to those produced by kernel regression using the proximity kernel. We can

use the class of kernels discussed in the previous section to produce competing kernel

regression probability estimates. In particular, in this section we will compare the

probability estimates resulting from a random forest to those obtained with kernel

regression using K∆ and Kpath
λ for λ = 0.4, and kernel regression with a radial basis

function with variance parameter 0.1. The value of λ = 0.4 was tuned with out-of-bag

(OOB) data. This procedure is described further in Section 5.4.

The probability model we consider generates observations in the following manner:

z ∼ Unif(1, 2, 3, 4)

x|z ∼ N (µz, I2×2)

y|z ∼ Ber(pz)

where µ1 = (−2,−2), µ2 = (−2, 2), µ3 = (2,−2), µ4 = (2, 2) and p1 = 0.1, p2 =

0.3, p3 = 0.3, p4 = 0.9. In words, we draw observations uniformly at random from

four clusters, where x is drawn from a cluster dependent normal distribution, and y is

a Bernoulli random variable with a cluster dependent success probability. It is worth

noting at this point that a simple depth-2 decision tree with four total terminal nodes
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is optimal for probability estimation in this problem.
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(d) RBF

Figure 34: Histogram of probability estimates using a random forest, and kernel
regression with kernels K∆, Kpath

0.4 , and a radial basis function with variance parameter
0.1.

We generate n = 1, 000 observations from this model and compare the resulting

probability estimates from each of the four methods on a hold-out set of size n = 1, 000

(F = 1 and 250 trees). Figure 34 plots histograms of the estimated probabilities from

each method. Observe first that our underlying probability model only admits three

possible probabilities - 0.1, 0.3, and 0.9 - so an ideal estimator would produce a

histogram where the mass concentrates at these values. These values are marked in

each plot by red vertical lines.

The random forest estimates and the radial basis function probability estimates are
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both very similar, and quite disperse, with no clear modes. The remaining two sets of

estimates all have three sharp modes, although some bias occurs in each. Note that

the quality of probability estimate produced by Kpath
λ will depend critically on tuning

λ correctly. As λ→∞, the kernel will collapse to Kprox, while as λ→ 0, the kernel

effectively causes the tree to collapse to its root. The variance parameter for the RBF

was chosen to be very small in order to make the kernel overly “sharp,” so that the

final estimator resembled something like one-nearest neighbors. It is clear that if the

kernel is too sharp, the probability estimates will suffer from high variance.

In this light, we can analyze the kernel weights to see why K∆ and Kpath
0.4 perform

better than the random forest in this example. The random forest proximity matrix

tends to be very sparse, since the training points that impact each prediction - the

“voting points” - are concentrated in small neighborhoods (Lin and Jeon, 2006). This

is not surprising. The proximity measure of similarity is zero or one depending upon

whether two points are in the same terminal node of a tree, and terminal nodes map to

rectangles with small volume since each random forest tree is grown deep. The kernel

matrix for the RBF is also very nearly sparse, since we chose a very small variance

parameter. On the contrary, the weights in the other two kernels are much less sparse,

meaning that more training points inform the probability estimates. In this particular

example, the neighborhoods in which the probability model takes constant values is

relatively large, so one can leverage more training data when producing probabilities.

5.3.4. Kernel Comparison II: Visualization

We will also consider a second application for random forests: dimensionality re-

duction and data visualization (Breiman, 2002). Given the a set of training points

x1, . . . , xn and a kernel K, one can form a “distance” matrix D ∈ Rn×n where

(D)i,j = 1 − K(xi, xj). If K is positive semi-definite, bounded above by 1, and
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satisfies K(xi, xi) = 1 for i = 1, . . . , n, it can be shown that there exists an embed-

ding ψ : X → Rm for m ≤ n such that ||ψ(xi)−ψ(xj)||2 = Di,j. One can find such an

embedding through multidimensional scaling (MDS). After fitting a random forest,

it is common in practice to use the proximity kernel Kprox to produce an embedding

of the data in R2 using the first few coordinates from MDS. The resulting plots are

known as proximity plots.

Proximity plots tend to have a characteristic star-shape, which has caused some to

question how well they represent the data. The authors in Hastie et al. (2009) claim

that

“Proximity plots for random forests often look very similar, irrespec-

tive of the data, which casts doubt on their utility. They tend to have a

star shape, one arm per class, which is more pronounced the better the

classification performance.”

Returning to discussion in the previous section, since the proximity function has a

binary similarity criteria based on node membership, points x and z in the input

space can only be considered to be similar if they are also close in a Euclidean sense.

In other words, if x and z are far apart in the input space X , the value of Kprox(x, z)

will also likely be very small, even if p(y = 1|x) is close to p(y = 1|z). The star

shape quality of proximity plots is likely to be due to this phenomenon (Hastie et al.,

2009). We will illustrate the proximity plots produced by applying MDS to K∆ and

Kpath
λ can be qualitatively different that traditional proximity plots. We revisit the

probability model from Section 5.3.3 with a slight modification. We keep the set-up

exactly the same, except we generate x from a normal distribution in 12 dimensional

space instead of 2. The first two coordinates of each mean µi are the same as before,

but now we add on an additional 10 identical coordinates to each mean. Since our data
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Figure 35: Plots of the first two scaling coordiantes using the proximity kernel, K∆,
and Kpath

0.4

now lives in a higher dimensional space, visualization is a more interesting problem.

In Figure 35 we plot the first two scaling coordinates using each of the three kernels,

where the plot points are colored according to their true conditional class probability

values. As reflected in our discussion, the proximity plot produced by the random

forest has its characteristic start shape with three branches. The proximity plots

produced by K∆ and Kpath
0.4 look very similar and break the data up into four distinct

clusters. This representation is appealing in the sense that the data can be perfectly

separated by a decision tree of depth two which splits on the first two coordinates.

In all cases, points with similar conditional class probability are grouped together.

5.4. Experiments

In this section we will conduct a more extensive comparison between the random

forest and the derived kernel methods. Specifically, we will augment the probability

estimation study in Section 5.3.3 with eight synthetic data sets, and the visualization

study in Section 5.3.4 with five real world data sets from the UCI repository. Our

goal here is not to prove that one method uniformly dominates another, but rather

to provide evidence that Kpath
λ and K∆ are useful kernels that produce qualitatively
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different results from the usual random forest machinery.

Mease One-d One-d
(sparse)

FriedmanFriedman
(sparse)

Logistic Logistic
(sparse)

XOR

K∆ 0.190 0.293 0.302 0.345 0.388 0.337 0.349 0.325
Kpath 0.189 0.300 0.303 0.321 0.367 0.339 0.344 0.338
random forest 0.206 0.365 0.328 0.286 0.346 0.363 0.350 0.386

(a) Misclassification Error

Mease One-d One-d
(sparse)

FriedmanFriedman
(sparse)

Logistic Logistic
(sparse)

XOR

K∆ 0.206 0.043 0.098 0.398 0.410 0.126 0.155 0.121
Kpath 0.108 0.079 0.102 0.378 0.401 0.094 0.137 0.123
random forest 0.156 0.196 0.121 0.349 0.385 0.154 0.127 0.207

(b) Brier Score

Mease One-d One-d
(sparse)

FriedmanFriedman
(sparse)

Logistic Logistic
(sparse)

XOR

K∆ 0.875 0.712 0.700 0.736 0.695 0.724 0.723 0.697
Kpath 0.882 0.710 0.700 0.763 0.709 0.722 0.723 0.688
random forest 0.864 0.670 0.694 0.798 0.723 0.689 0.703 0.650

(c) AUC

Table 6: Table of probability estimation results.

5.4.1. Probability Estimation

We will compare the probability estimates produced by the following three estimators:

(1) p̂rf (x) = 1
T

∑T
t=1 f(θt, x)

(2) p̂∆(x) =
∑n

i=1
K∆(xi,x)yi∑n
i=1 K

∆(xi,x)

(3) p̂path(x) =
∑n

i=1
Kpath(xi,x)yi∑n
i=1K

path(xi,x)
.

Each estimator is constructed from the same random forest in each simulation, which

has T = 250 trees and the suggested default value of F =
√
p for classification,

where p is the number of input variables. All models are trained on a data set of size
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n = 500, and are evaluated in terms of misclassification error rate, Brier score, and

AUC over a test set of size n = 1, 000. The results we report in this section were

constructed as averages over 25 repetitions of each experiment. Finally, we note that

when constructing Kpath, we choose λ by tuning over the out-of-bag (OOB) training

data to optimize for the Brier score. We consider five model classes, three of which we

compare in low and high dimensional settings, for a total of eight simulation settings.

The probability models were chosen to span a wide range of phenomena, including

additive and non-additive response surfaces, sparse and dense features, as well as

more traditional models such as logistic regression.

Mease Model

The first model is the Mease model from Mease et al. (2007). Each predictor x

is drawn uniformly at random on [−28, 28]2, and the conditional probability of the

response y is given by

p(y = 1|x) =


1 if ||x||2 ≤ 8

28−||x||2
20

if x < 0

0 otherwise .

One Dimensional Model

We consider two versions of the one dimensional model which was used in Olson and

Wyner and mentioned in Section 5.3.1. In this model, x is drawn uniformly on [0, 1]p,
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and y is drawn according to

p(y = 1|x) =


0.3 if x1 ≥ 0

0.7 if x1 < 0.

In a low dimensional setting, we take p = 2, and in a higher dimensional setting we

take p = 50. Since all of the signal is contained in the first coordinate, the latter

model is very sparse.

Friedman Model

The Friedman model is a highly nonlinear model taken from Friedman et al. (2000)

which unlike the previous examples, does not have an additive structure. The pre-

dictor x is drawn from a p dimensional spherical normal distribution centered at the

origin. Condition on x, the response is drawn as

log

(
p(y = 1|x)

p(y = 0|x)

)
= 2(1− x1 + x2 − · · ·+ x6)(x1 + · · ·+ x6).

We also consider dense and sparse version of this model, taking p = 10 and p = 26.

Logistic Model

The logistic model generates data according to the probability model implied by a

logistic regression. We draw x uniformly on [−1, 1]p, where we take p = 3 and p = 23.

In the former case, every variable in the input space is related to the response, where

in the latter case the last 20 variables are noise variables.

log

(
p(y = 1|x)

p(y = 0|x)

)
= x1 + x2 + x3
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XOR Model

Finally, the xor model is a simple data generating process that takes x uniformly

on [−1, 1], and the probability of y varies according to the parity of the signs of the

coordinates of x:

p(y = 1|x) =


0.3 if x1x2 ≥ 0

0.7 if x1x2 < 0.

Results

The results from these experiments are summarized in Table 6. Aside from the

Friedman model, the random forest tended to perform slightly worse than the ker-

nel regression with Kpath and K∆ across all metrics. The largest performance gaps

occurred in the dense one dimensional and xor model. These are two models in par-

ticular in which we would expect these performance gaps: the best predictor is given

by a depth one tree in the first case and a depth 2 tree in the second case. The action

of K∆ is to emphasize informative splits, which would occur near the root of each

random tree, and the tuning implicit in Kpath would encourage effectively smaller

trees.

We also notice that Kpath and K∆ have similar performance, but Kpath does slightly

better across all metrics in a few models. Again, this might not be surprising since

Kpath incorporates explicitly OOB tuning, while K∆ is entirely determined by the

training data used in each tree. While no method uniformly dominates the others,

we do see noticeable advantages of our alternative kernels, especially in cases where

we expect the underlying data to be generated from a simple model.
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Australian Credit Breast Cancer Mammographic Tic-Tac-Toe Wine

Figure 36: Data set visualizations. The first two rows show proximity plots from a
random forest and K∆, while the last row shows principal components. Points are
colored according to class response.

5.4.2. Visualization

Our preliminary analysis with synthetic data in Section 5.3.4 indicated that K∆ (and

Kpath) was able to produce qualitatively different proximity plots than a random

forest. Here, we construct proximity plots using this kernel and a random forest on

five real data sets from the UCI Machine Learning Repository: Australian credit,

Wisconsin breast cancer, mammographic, tic-tac-toe, and wine. We also compare

these visualizations with the first two principle components for each data set. We

chose to exclude Kpath
λ from the data since it required an explicit tuning parameter,

and for the purposes of visualization it is not clear what an objective criteria for this

choice is.

Figure 36 shows the proximity plots produced for each data set. The first row consists

of traditional proximity plots produced by a random forest, the second row shows
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Name n p Classes

Australian Credit 690 14 2
Breast Cancer 569 30 2
Mammographic 961 5 2
Tic-Tac-Toe 958 9 2
Wine 179 13 3

Table 7: Data set Summary

those from K∆, and the third row plots the first two principle components of the

data. Each plot shows the class label plotted in a different color: all data sets have

two classes, with the exception of wine, which has three.

Again, we observe that in each case the random forest proximity plots all have the

characteristic star-shape, where each branch contains training data with similar labels.

The number of arms in each is either one or two. The proximity plots produced by K∆

are qualitatively much different, with a range of shapes and clusters. Interestingly,

both the random forest and K∆ both produce visualizations that tend to separate

the data according to class label better than PCA. This is to be expected since these

kernel methods see class labels at training time, where PCA does not. The difference

in quality of visualization is especially apparent in the tic-tac-toe data set. One

reason for this might be the presence of categorical variables in the data, for which all

9 predictors in this data set consist of categorical variables. Trees are a much more

natural structure for dealing with discrete data compared to PCA, which expects its

inputs to be real valued.

5.5. Discussion

The goal of this paper was to emphasize the close relationship between random forests

and kernel methods. This relationship is both implicit in the way in which a random

forest creates probability estimates, and explicit in a number of applications - such as
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visualization - that deal directly with the proximity function. Our main contribution

was to generalize the proximity kernel to other notions of tree-based similarity that

take topology and split information into consideration. We then demonstrate that

these generalizations are useful alternatives to traditional random forests in proba-

bility estimation, and produce qualitatively different visualizations.

There are a number of avenues for future work. First, one might consider using

these kernels in other kernelized tasks, such as support vector machine classification,

KernelPCA, or priors for Gaussian processes (Davies and Ghahramani, 2014). It is

also natural to consider using these kernels in transfer learning applications. Recall

from our previous discussion that one advantage of random forest kernels over fixed

kernels (such as radial basis functions) is that they adaptively learn their shape from

the training data. Thus, it is plausible that these kernels would perform well on

related tasks.

We will also note here that kernel methods based on random forests tend to be compu-

tationally expensive, with memory and computational requirements of O(n2T ). This

limited us to data sets and simulation settings with n = 1, 000 or fewer observations.

However, all of the operations in kernel construction can be trivially parallelized over

trees which reduces this burden.

Finally, we would like to emphasize that the K∆ kernel is only one possible type

of similarity metric that incorporates split information. Our proof of Proposition 6

illustrates that through a simple feature embedding and appropriate choice of base

kernel, one can construct many additional variations.
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