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ABSTRACT

ESSAYS ON WAGE INEQUALITY USING THE SEARCH FRAMEWORK

Kory Kantenga

Iourii Manovskii

The distribution of wages and jobs changed all across advanced economies the last few

decades. These changes came seemingly unexpected. Economic theory tell us to look at

supply and demand to understand what happened. In practice, we cannot directly observe

demand and supply shifts. We also cannot easily distinguish the economic forces behind

these distributional changes from other concurrent phenomena. These fundamental problems

permeate all studies of changes in the wage and occupational distributions. This dissertation

applies two approaches to overcome these challenges. In the first chapter (with Tzuo-Hann

Law), we take an assortative matching model with on-the-job search and use it understand

what forces drove up wage inequality in Germany between the 1990s and 2000s. The model

conceives of a worker’s ability and a firm’s productivity as one-dimensional, rankable indices,

which we non-parametrically identify. With these productivity ranks, we identify production

technology. The model fits wages almost as well as statistical decompositions that use more

degrees of freedom. This model fit gives us confidence to make inference with the model. We

find that changes in production technology and the equilibrium sorting patterns it induces

account for the rise in wage dispersion. Search frictions had little impact on its rise over time.

The approach in the first chapter works well to account for rising wage inequality. However,

it misses out on another important change - the decline in traditionally middle-wage jobs

or job polarization. In the second chapter, I present a multidimensional skills search model

which accounts for changes in occupational wages, occupational employment shares, and the

wage distribution at large. In contrast to the first chapter, this model takes a parametric

approach but still reproduces numerous aspects of US cross sectional data observed from

1979 to 2010. The model indicates industry trends and technological progress account for the

majority of these changes. Information and communications technology spurred demand for

jobs requiring interpersonal and social skills in the 1990s. This development appears farther

v



reaching than the automation of jobs concentrated in the manufacturing and construction

sectors.
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Chapter 1 : Sorting and Wage Inequality

This chapter is co-authored with Tzuo Hann Law.

Abstract

We measure the roles of the permanent component of worker and firm productivities, com-

plementarities between them, search frictions, and equilibrium sorting in driving German

wage dispersion. We do this using a standard assortative matching model with on-the-job

search. The model is identified and estimated using matched employer-employee data on

wages and labor market transitions without imposing parametric restrictions on the pro-

duction technology. The model’s fit to the wage data is comparable to prominent wage

regressions with additive worker and firm fixed effects that use many more degrees of free-

dom. Moreover, we propose a direct test that rejects the restrictions underlying the additive

specification. We use the model to decompose the rise in German wage dispersion between

the 1990s and the 2000s. We find that changes in the production function and the induced

changes in equilibrium sorting patterns account for virtually all the rise in the observed wage

dispersion. Search frictions are an important determinant of the level of wage dispersion

but have had little impact on its rise over time.
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1.1. Introduction

Cross-sectional wage dispersion increased substantially in the US between the 1970s and

the 1980s. Lagging the experience of the US by about a decade, Germany experienced a

similar, dramatic increase in wage dispersion from the 1990s to the 2000s.1 Until recently, the

literature mainly focused on understanding the increase in wage dispersion across observable

dimensions of worker skills, such as education, age, experience, and occupation. It is well

known, however, that these observable dimensions account for a relatively small share of

the wage variance. In contrast, worker and firm fixed effects included in standard log wage

equations are typically found to account for a larger amount of wage variance than all the

observables combined. Moreover, changes in the dispersion of the estimated fixed effects

and their correlation are found to be very important in accounting for the increase in wage

variance over time. Card, Heining, and Kline (2013) document this for Germany, while

Barth, Bryson, Davis, and Freeman (2014) report related evidence for the US. The empirical

literature lacks a structural interpretation for these fixed effects. However, the findings that

fixed effects are important for fitting both the level and increase in wage dispersion suggests

that permanent heterogeneity across workers and firms is an important feature of the data.

Motivated by this descriptive evidence, we assess the role of the dispersion of the per-

manent component of worker abilities, the dispersion of firm productivities, and comple-

mentarities between the two in the production technology in determining the level and the

rise in German wage dispersion. While these changes are exogenous from the point of view

of our theory, they induce an endogenous response in wages and in the sorting of workers

across employers. Moreover, even if they are fixed, the extent of frictions in the assortative

matching process might change over time, for example due to the spread of new information

technologies, generating an endogenous response of wages and sorting patterns. We attempt

to disentangle and separately measure these effects. The key challenge, of course, is that

neither workers’ abilities nor firm productivities nor the production technology are directly

observable in the data.
1See Dustmann, Ludsteck, and Schönberg (2009).
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We conduct our analysis using the standard theory of assignment problems in hetero-

geneous agent economies which traces its roots to Becker (1973). Specifically, we use the

state-of-the-art version of the model that allows for time-consuming search as introduced

by Shimer and Smith (2000) and on-the-job search as in Hagedorn, Law, and Manovskii

(2016).2 The key distinction of our approach is that the identification strategy of Hage-

dorn, Law, and Manovskii (2016) does not impose parametric restrictions on the shape of

the production technology. This is important because the production technology is the key

object of interest in our analysis. In this model, sorting of workers across firms is guided

by wages which reflect complementarities in the production technology. The data we use

comes from a large matched employer-employee sample provided by the German Institute

for Employment Research (IAB). To measure the changes in wage dispersion over time, we

consider a sample spanning the 1990s and another spanning the 2000s.

In this model, the production technology is a production function that takes worker abil-

ity and firm productivity as inputs. The first step in our analysis involves nonparametrically

estimating this production function. To do so, we implement the identification strategy in

Hagedorn, Law, and Manovskii (2016).3 First, we use the result that workers hired from

unemployment can be ranked based on their wages within firms. Within-firm rankings are

partial because each firm hires and therefore ranks a subset of workers in the economy.

Workers who move between firms link these partial rankings. This enables us to solve a

rank aggregation problem to effectively maximize the likelihood of a correct global ranking.

Second, we rank firms exploiting the result that the value of a vacant job increases in firm

productivity. We measure this value using only data on wages and labor market transition

rates. Third, we recover the production function. The production function can be recovered,

because the observed out-of-unemployment wages of a match between a particular worker

and firm in the model are a function of the match output and the value of a vacancy for
2Related structural models of labor market sorting were estimated in Lise, Meghir, and Robin (2011) and

Lopes de Melo (2013). Gautier and Teulings (2012), Abowd, Kramarz, Pérez-Duarte, and Schmutte (2014)
and Bagger and Lentz (2014) estimated sorting models that are more fundamentally different.

3Lamadon, Lise, Meghir, and Robin (2014) study nonparametric identification of a related model that
introduces a different model of on-the-job search into the environment of Shimer and Smith (2000).

3



that firm. Thus, the out-of-unemployment wage equation can simply be inverted for output.

Although each worker is typically observed working at only a few firms, we estimate his

output at other firms by considering how much similarly ranked workers (who actually work

at the other firms) produce.

We make three empirical contributions. First, we show that an arguably parsimonious

structural model can fit the data as well as prominent wage regressions do. Second, we show

through a series of decompositions that the production function is primarily responsible for

the increase in German wage dispersion. Third, we provide evidence in support of wages

driving sorting patterns in the data. The prominent regressions we mentioned provide a

strong description of wages. However, the model distills the channels through which the

observed wage changes arise. Understanding the relative importance of these channels goes

a step beyond descriptive evidence in answering why wage inequality went up in Germany.

For example, counterfactuals suggest that changes in search frictions do not account for

the rise. In addition, the evidence we provide in support of a model where wages driving

sorting does not rely on the model. This evidence shows that the model provides a satisfying

description of wages in a case where these regressions do not, coworker wage differentials

across firms. Hence, our approach provides a more interpretable and equally, if not more

in some respects, data-consistent account on why wage inequality increased than previous

work.

As many of our decompositions will involve counter-factual experiments, it is important

to verify that our model fits the wage data well. To do so, we use the estimated production

function and the parameters describing search frictions to simulate equilibrium wages and

ask if the simulated wages fit wages in the data. The model’s fit to wage data is comparable

to that achieved by prominent regressions with a fixed effect for every worker and a fixed

effect for every firm in the dataset. In addition, the model fits mobility rates and sorting

between workers and firms while using far fewer degrees of freedom.

To disentangle the contributions to wage dispersion due to changes in production comple-

mentarities from the induced endogenous response of sorting, we use the model to conduct

4



counter-factual experiments that involve changing the estimated production function hold-

ing the match distribution fixed and changing the match distribution for a fixed production

function. These experiments imply that the joint effect of changing complementarities and

sorting account for almost all the increase in wage variance, while the direct effect of tech-

nological change accounts for more of the increase than the indirect, endogenous response

of sorting.

Similar experiments that involve changing the estimated parameters governing search

frictions imply that these changes have had only a minor effect on the change in wage

dispersion. However, search frictions play a very important role in determining the level of

wage variance. Given the estimated production function we can compute the wage dispersion

that would arise in a frictionless model. We find that eliminating search frictions may

increase wage dispersion. This finding may appear surprising given the standard result that

search frictions tend to generate wage dispersion among homogeneous workers.4 However,

in our analysis, workers are heterogeneous and search frictions prevent them from fully

exploiting the complementarities in the production process, which lowers the cross-sectional

wage variance in equilibrium.

As mentioned, a prominent alternative approach to studying wage dispersion in the lit-

erature estimates log wage equations that include additive worker and firm fixed effects.

Gautier and Teulings (2006) and Eeckhout and Kircher (2011) show that standard assorta-

tive matching models based on comparative or absolute advantage do not give rise to log

wages that are linear in worker and firm fixed effects. Instead, it is the nonlinearities of

wages, reflecting in part the production complementarities, that guide the sorting process

in the model. Yet, log wage regressions with worker and firm fixed effects fit the wage data

very well with the R2 often in excess of 0.9 across many datasets (e.g. Germany, Denmark,

France, and US). We explore whether the nonlinearities at the core of the theory can be di-

rectly detected in the wage data.5 Consider two workers of different ability x and x′ working

at a firm with productivity y who both move to a firm with productivity y′ 6= y and earn
4For example, see Burdett and Mortensen (1998).
5Nonlinearities refer to deviations from log additive separability.
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log wages logw(x, y). Linearity in fixed effects restricts log wage differentials to be equal

when workers switch firms

logw(x, y)− logw(x′, y) = logw(x, y′)− logw(x′, y′).

We develop a statistical test based on this restriction and find that log wage differentials vary

across firms, indicating the presence of nonlinearities. The additive specification rules out

nonlinearities that we detect in the data, because it imposes that firms pay a firm-specific

wage premium to all workers. Thus, the firm effect cancels out when considering the log

wage difference for the workers in the same firm.

The same test applied to model-generated data yields comparable results. Hence, in

this aspect, this structural model (in which nonlinearities in wages drive sorting) fits the

data while the additive specification does not. Moreover, the linear regression with additive

worker and firm fixed effects yields an R2 above 0.9 when estimated on model-generated

wages. This is the case even though complementarities in production induce substantial

nonlinearities in model-generated wages. This suggests that a high R2 and other descriptive

evidence in the literature supporting an additive specification are insufficient to conclude

that the additive specification is a meaningful description of the data. To the contrary,

nonlinearities feature prominently in the data and drive sorting.

The remainder of the paper is organized as follows. In Section 2, we present the model

and summarize the identification strategy. In Section 3, we describe the data. The empirical

performance of the model is assessed in Section 4. In Section 5, we use the estimated model

to perform the counter-factual experiments that isolate the sources of the rise in the German

wage dispersion. In Section 6, we test whether wage differentials differ across firms, which

regressions with worker and firm fixed effects preclude. Section 7 concludes.

1.2. Model and Identification

We use the on-the-job search model presented in Hagedorn, Law, and Manovskii (2016).

Their identification strategy relies only on wages and job transitions observable in standard
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matched employer-employee datasets. The model’s theoretical foundation is Becker (1973),

where wages and allocations reflect production complementarities in a frictionless setting.

Becker’s framework stresses the role of wages in guiding the assignment of workers to firms

but is not well suited for labor market applications due to its lack of frictions. To extend

Becker’s framework, this model incorporates the frictional search and vacancy posting envi-

ronment of Shimer and Smith (2000). Only unemployed workers search in Shimer and Smith

(2000), whereas job-to-job moves are common in the data. To accommodate this, Hagedorn,

Law, and Manovskii (2016) build in on-the-job search in the spirit of Cahuc, Postel-Vinay,

and Robin (2006a).

1.2.1. Model

Time is discrete. Agents are risk neutral, live infinitely, and maximize present value of

payoffs discounted by a common discount factor β ∈ (0, 1). A unit mass of workers are either

employed (e) or unemployed (u) while pf mass of firms are producing (p) or vacant (v).

Workers and firms have heterogeneous productivities. Their productivity rank is denoted by

x ∈ [0, 1] and y ∈ [0, 1], respectively. When matched, worker x and firm y produce f(x, y)

where f : [0, 1]2 → R+. Consistent with x and y being productivity ranks, fx > 0 and

fy > 0. There are no other restrictions on f .6 We call f the production function and refer

to the quantity f(x, y) as the match output.

Defining productivity on ranks is without loss of generality. The rank of a worker (firm) is

given by the fraction of workers (firms) who produce weakly less with the same firm (worker).

In this paper, productivity, rank, or type have identical meanings. Therefore, the distributions

of worker and firm types are both uniform. If the “original” (non-rank) distributions of worker

and firm types are Gx and Gy respectively, and the “original” production function is f̃(x̃, ỹ),

then we transform the production function

f(x, y) = f̃(G−1
x (x), G−1

y (y))

6These restrictions do not imply that wages given y are strictly increasing in worker productivity x or
vice versa.
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and the distributions are Gx(x̃) = x, Gy(ỹ) = y.7

The functions characterizing the distributions of employed workers, unemployed workers,

producing firms, and vacant firms are denoted de(x), du(x), dp(y) and dv(y), respectively.

Since productivities are defined on ranks, de(·) + du(·) = 1 and dp(·) + dv(·) = pf . The

function describing the distribution of producing matches is dm : [0, 1]2 → R+. Aggregate

measures of this economy are employment, E; unemployment, U ; producing firms, P ; and

vacant firms, V . Specifically,
∫

dm =
∫

de =
∫

dp = E = P , 1−
∫

dm =
∫

du = U =
∫

dv = V .

All these equilibrium objects that characterize distributions are constant in the steady state.

There are two stages in each period. In the first stage, matched workers and firms

produce and the output is split into wages and profits. There is free entry. Entrant firms

draw a fixed number of vacancies and type y from a uniform distribution. Entry costs

ce per vacancy.8 Once in the market, firms pay maintenance cost c per unfilled vacancy

per period. In the second stage, all workers and all vacancies engage in random search.

The total search effort is s = U + φE where φ ∈ [0, 1] is an exogenous search intensity of

employed workers (relative to unemployed workers). V denotes the number of vacancies.

Meetings are generated by m : [0, 1] × [0, 1] → [0,min(s, V )] which takes the pair (s, V ) as

inputs. The probabilities that an unemployed or an employed worker meets a vacancy are

given by Mu = m(s,V )
s , and Me = φm(s,V )

s , while the probability of a vacancy meeting a

potential hire (employed or unemployed) is Mv = m(s,V )
V . Conditional on the meeting, the

vacancy meets an employed worker with probability Ce = φE
U+φE and meets an unemployed

worker with probability Cu = U
U+φE .

9 Not all meetings result in matches, because some

unemployed workers prefer continuing searching to matching with the vacancy they met

and some employed workers prefer remaining in their existing matches. At the end of the
7It is easier to see this in one dimension. Let the “true productivity” of workers be given by x̃ distributed

Gx(·) with support [0, x̄]. The “true production function” is f̃ and hence, the output of a worker is f̃(x̃).
Then, worker x̄ produces f̃(x̄), i.e. a worker with rank x = 1 produces f(1) = f̃(x̄). Because x̃ and f̃ are
unobserved, it is not possible to separately identify x̃ and f̃ , e.g. f̃ = 3x̃ with x̃ ∈ [0, 1] and f̃ = x̃ with
x̃ ∈ [0, 3] are observationally identical. This observation extends to two dimensions. Hence, the relevant
object to measure in the data is f(x, y) with (x, y) ∈ [0, 1]2.

8ce is assumed to be such that the mass of jobs in the economy is equal to the mass of workers. That is,
pf = 1.

9We estimate Mv, Me, Mu, Ce, and Cu directly without imposing functional form assumptions on m.
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period a match is destroyed with exogenous probability δ.

Denote the surplus received by an employed worker by So. The worker’s surplus received

depends on search history, as will become clear when we describe wage setting. Let Vu(x)

denote the value of unemployment for a worker of type x. Ve(x, y, S
o) is the value of

employment for a worker of type x at a firm of type y when the worker receives So. Vv(y) is

the value of a vacancy for firm y, and Vp(x, y, So) is the value of firm y employing a worker

of type x when the worker receives So. So does not affect the size of match surplus S(x, y).

It only determines the split of the surplus between the worker and the firm. Formally,

Ve(x, y, S
o) := Vu(x) + So (1.1)

Vp(x, y, S
o) := Vv(y) + (S(x, y)− So) (1.2)

S(x, y) := Vp(x, y, S
o)− Vv(y) + Ve(x, y, S

o)− Vu(x) (1.3)

We now describe wage setting, which determines So. An unemployed worker who meets

a vacancy makes a take-it-or-leave-it offer and extracts the full surplus. As in Cahuc, Postel-

Vinay, and Robin (2006a), when a worker of type x employed at some firm ỹ meets a firm y

which generates higher surplus, the two firms engage in Bertrand competition such that the

worker moves to firm y. At the new firm y, the worker obtains the full surplus generated

with firm ỹ, S(x, ỹ), while the new firm y retains S(x, y)−S(x, ỹ). Small, unmodelled costs

of writing an offer deter potential poaching firms from engaging in Bertrand competition

unless they know the poaching attempt will succeed. These modeling choices on the wage

setting protocol are restrictive. However, as we demonstrate later, they enable us to use

the non-parametric identification strategy in Hagedorn, Law, and Manovskii (2016) and are

flexible enough to deliver a good fit to the data.

These modeling choices also imply certain assumptions on wage dynamics. First, wages

are constant over a job spell. This happens because firms poach only when they know

they will succeed. Empirically, we attribute within-job spell wage growth to experience

accumulation. Second, workers move job-to-job to firms with whom they generate higher
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surplus. These firms may be less productive (lower y). Third, wages may decline upon a

job-to-job transition like in Cahuc, Postel-Vinay, and Robin (2006a), especially after the first

job-to-job transition in an employment spell. This may happen because a worker accepts a

lower wage in anticipation of the potential surplus (and wage) gain from future successful

job-to-job moves. Fourth, the take-it-or-leave-it offer by the unemployed worker does not

mean that wages equal the entire match output. Firms profit from poached workers and

hence, unemployed workers who make the take-it-or-leave-it offer must compensate the firm

for the option value of poaching. Fifth, the take-it-or-leave-it offer implies that for any

(x, y) match, wages out-of-unemployment are higher than wages which arise from a job-to-

job move (for the same worker type x). This happens because the continuation value of the

match is identical regardless of So. Hence, the surplus premium that a worker who moved

out-of-unemployment commands over a worker who moved job-to-job, must be reflected in

wages.10 We provide evidence that many of these implications are borne out in data in

Section 1.4.

Matching takes place when both the worker and the firm find it mutually acceptable.

To formalize this, we describe the set of firms (workers) that workers (firms) are willing to

match with. This set depends on whether the worker is moving out-of-unemployment or

job-to-job. Bw(x) is the set of firms that a worker of type x moving out-of-unemployment

is willing to match with:

Bw(x) = {y : S(x, y) ≥ 0}.

Likewise, Bf (y) is the set of workers moving out-of-unemployment that firm y is willing to

match with:

Bf (y) = {x : S(x, y) ≥ 0}.

Be(x, y) is the set of firms whom worker x employed at y is willing to move to via a job-to-job

transition:

Be(x, y) = {ỹ : S(x, ỹ) ≥ S(x, y)}.
10The surplus premium can be seen from

So(x, ycurrent, U) = S(x, y) > So(x, ycurrent, yprevious).

10



Bp(y) refers to the set of matches where firm y can successfully poach a worker from:

Bp(y) = {(x̃, ỹ) : S(x̃, y) ≥ S(x̃, ỹ)}.

A match (x, y) forms between a vacancy and an unemployed worker when y ∈ Bw(x) and

x ∈ Bf (y). A worker in match (x, ỹ) moves job-to-job and forms a new match with y when

(x, ỹ) ∈ Bp(y) and y ∈ Be(x, ỹ). We denote the complement of a set X by X.

Thus, the worker’s value of unemployment reflects the surplus that the worker claims

from the take-it-or-leave-it offers:

Vu(x) = βVu(x) + β(1− δ)Mu

∫
Bw(x)

dv(ỹ)

V
S(x, ỹ)dỹ

︸ ︷︷ ︸
expected surplus from successful matching

. (1.4)

The firm’s value of vacancy reflects the expected profits from poaching only. Firms extract

no surplus from hiring unemployed workers:

Vv(y) = −c+ βVv(y) + β(1− δ)MvCe
∫

Bp(y)

dm(x̃, ỹ)

E
(S(x̃, y)− S(x̃, ỹ)) dx̃dỹ

︸ ︷︷ ︸
expected profits from poaching

. (1.5)

However, the maintenance cost to unfilled vacancies (c) provides the incentive to firms to

hire unemployed workers. Free entry implies

ce =

∫ 1

0
Vv(ỹ)dỹ,

because firms enter and exit until the expected value of a vacancy equals the entry cost of

posting a vacancy. Employed workers extract So from their current match if the current

match is maintained and stand to extract the current match surplus in the event of a
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successful job-to-job move:

Ve(x, y, S
o) = w(x, y, So) + βVu(x)

+ β(1− δ)

1−Me + Me

∫
Be(x,y)

dv(ỹ)

V
dỹ

So
︸ ︷︷ ︸
retains So when not successful at on-the-job search

+ β(1− δ)

Me

∫
Be(x,y)

dv(ỹ)

V
dỹ

S(x, y).

︸ ︷︷ ︸
captures S(x, y) when successful at on-the-job search

(1.6)

A special case of this will be when workers move out-of-unemployment. Here, So = S(x, y)

and the value of employment is

Ve(x, y, S(x, y)) = w(x, y, S(x, y)) + βVu(x)

+ β(1− δ)

1−Me + Me

∫
Be(x,y)

dv(ỹ)

V
dỹ

S(x, y)

+ β(1− δ)

Me

∫
Be(x,y)

dv(ỹ)

V
dỹ

S(x, y)

= w(x, y, S(x, y)) + βVu(x) + β(1− δ)S(x, y)

= Vu(x) + S(x, y)

where the last equality is from Equation (1.1). Rearranging yields

w(x, y, S(x, y)) = S(x, y) + (1− β)Vu(x)− β(1− δ)S(x, y)

= (1− β(1− δ))S(x, y) + (1− β)Vu(x). (1.7)
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Finally, the value of a producing job is

Vp(x, y, S
o) = f(x, y)− w(x, y, So) + βVv(y)

+ β(1− δ)

1−Me + Me

∫
Be(x,y)

dv(ỹ)

V
dỹ

 (S(x, y)− So)

︸ ︷︷ ︸
retains profits from workers who did not move job-to-job

. (1.8)

In a steady state search equilibrium (SE), all workers and firms maximize expected payoff,

taking the strategies of all other agents as given. A SE is then characterized by the density

du(x) of unemployed workers, the density dv(y) of vacant firms, the density of formed matches

dm(x, y) and wages w(x, y, So). The density dm(x, y) implicitly defines the matching sets as

it is zero if no match is formed and is strictly positive if a match is consummated. Wages

are set as described above and match formation is optimal given wages w, i.e. a match is

formed whenever the surplus (weakly) increases. The densities du(x) and dv(x) ensure that,

for all worker-firm type combinations in the matching set, the numbers of destroyed matches

(into unemployment and to other jobs) and created matches (hires from unemployment and

from other jobs) are the same.

1.2.2. Nonparametric Identification and Estimation

A constructive nonparametric identification proof is provided in Hagedorn, Law, and

Manovskii (2016). Here, we briefly describe their strategy.

Plugging Equations (1.4), (1.5), (1.6), and (1.8) into (1.3) and using (1.7), we obtain

that wages out-of-unemployment can be written as

w(x, y, S(x, y)) = f(x, y)− (1− β)Vv(y). (1.9)

From this equation, three key identification and implementation steps follow.
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Ranking and Binning Workers

Recall that x is the productivity rank of workers. Since fx > 0, we immediately see that out-

of-unemployment wages within firms rank workers. We use the rank aggregation procedure

described in Hagedorn, Law, and Manovskii (2016) to obtain a global ranking of workers

initialized with lifetime expected wages of workers.11 The rank aggregation algorithm com-

bines the partial ranking of out-of-unemployment wages. For instance, at Firm 1, wages

out-of-unemployment reveal that workers are ranked a > b and wages at Firm 2 reveal that

b > c. Worker b, by being ranked at two separate firms, reveals that a > b > c. Repeating

this aggregation of rankings across more firms yields a global ranking of workers. Of course,

rankings in the data may be inconsistent due to stochastic processes such as measurement

error. The full procedure as described in Hagedorn, Law, and Manovskii (2016) maximizes

the likelihood of the correct global ranking.

Once workers are ranked, they are binned. Workers are ranked from lowest to highest

rank and partitioned (binned) to form bins. For example, the bottom 5% workers are in

the lowest bin. Given the large number of workers available data we use, closely ranked

workers that are very similar are put in the same bin. We then use wage observations for

all workers in a bin as if they were a single worker’s observations and compute the relevant

statistics accordingly. For example, out-of-unemployment wages that workers in bin x at

some firm j will simply be w(x, j, S(x, j)). Binning is advantageous because it averages out

stochastic processes like measurement error. Binning also provides a good estimate of wages

(and output) of matches between workers and firms that are not observed in the data. All

this information can be inferred from wages of similarly ranked workers within the same bin.

Ranking and Binning Firms

Having ranked and binned workers, we first observe that by ranking and binning firms in a

similar fashion, we will be able to nonparametrically estimate out-of-unemployment wages
11Assuming that within firm wages are indeed increasing in true worker rank x, we prove in Appendix

A.1 that worker and firm fixed effects in the two-way fixed effects linear regression identifies these ranks of
workers and firms only when the underlying match density is uniform. However, the identification of ranks
is not guaranteed in presence of sorting that leads to a nonuniform match density.
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between workers in x and firms in y, w(x, y, S(x, y)). This can simply be done by averaging

wages between workers in bin x and similarly job-to-job wage can be obtained. Furthermore,

with Vv(y) known, we can simply invert the wage equation and obtain f(x, y).

Hagedorn, Law, and Manovskii (2016) show that the value of vacancy is monotone in

y. Further, they show that the value of vacancy can be computed from wage and transition

data alone.

To see this, rearrange Equation (1.7) and replace the surplus, S(·, ·), terms in the value

of vacancy

Vv(y) =
−c

1− β
+
β(1− δ)MvCe

1− β

∫
Bp(y)

dm(x̃, ỹ)

E
(S(x̃, y)− S(x̃, ỹ)) dx̃dỹ

to obtain

Vv(y) =
−c

1− β
+

β(1− δ)MvCe
(1− β)(1− β(1− δ))

×∫
Bp(y)

dm(x̃, ỹ)

E
(w(x̃, y, S(x̃, y)− w(x̃, ỹ, S(x̃, ỹ)) dx̃dỹ

︸ ︷︷ ︸
out-of-unemployment wage premium

.

This implies that firms can be ranked according to the out-of-unemployment wage pre-

mium they pay to workers that they expect to poach. This is not straightforward to compute

in practice. Consider the naive approach of computing this statistic from the wages of work-

ers that are actually poached by some firm j from other firms. The statistic requires the

out-of-unemployment wages of these poached workers at j and their previous firms. How-

ever, out-of-unemployment wages at the previous firm may not be observed in the data.

To overcome this problem, we utilize the fact that we have out-of-unemployment wages,

w(x, j, S(x, j)), after ranking workers, which we do prior to computing Vv. This provides an

estimate of the needed out-of-unemployment wages.12

Still, we may not accurately observe the distribution of workers moving into a given firm
12If no measure of w(x, j, S(x, j)) is available, then we use the average wages of all workers in bin x,

ESw(x, j, S).
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due to short samples. To solve this problem, we utilize the fact that for a given worker

type, wages out-of-unemployment are greater when surplus is greater. This is immediate

from Equation (1.7). Hence, we infer which matches a firm would have poached from by

comparing w(x, j, S(x, j)) across firms, i.e. firm j will poach workers in bin x from other firms

if wu(x, j, S(x, j)) > wu(x, j′, S(x, j′)) where j′ 6= j. Summing the wage premium weighted

by the observed match density gives the expected out-of-unemployment wage premium which

ranks firms. Once firms are ranked, they can be binned in the same way workers were binned.

Recovering the Production Function and Search Parameters

To compute the value of vacancy of individual firms, Vv(j) we now need to estimate Mv, Ce

and δ. The probability that firm j fills the vacancy conditional on meeting an unemployed

worker (q̃uj ) is the share of unemployed workers that j is willing to hire.13 Denoting the

number of observed new hires out-of-unemployment in firm j by Hu(j) and the number of

unobserved vacancies posted by v(j), we have Hu(j) = (1− δ)MvCuq̃uj v(j). In other words,

the observed number of new hires equals the probability the match is formed times the

number of vacancies. Aggregating over firms, we can solve for MvCu since total vacancies V

equal U in the steady state, which overcomes the need to observe vacancies at the firm level.

MvCe can be estimated in a similar way. Next, we estimate on-the-job search intensity using

the fact that φ = U
E ·

Ce
Cu . Finally, with φ we compute Ce or Cu (since unemployment U is

known) and then back-solve for Mv. The average length of employment spells identify δ. To

do this, we use employment spells that are observed without truncation due to the sample

period.

Recovering the production function is straightforward after workers and firms are ranked

and binned. We first compute w(x, y, S(x, y)). Averaging Vv(j) yields Vv(y). Finally, we

solve for f(x, y) using Equation (1.9).
13This can be measured from the unemployment rates of worker types that firm j hires. See Hagedorn,

Law, and Manovskii (2016) for details.
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1.3. Data

We use the Linked Employer-Employee (LIAB) M3 panel covering 1993-2007 provided by

the German Institute for Labor Research (IAB) to estimate the model. This panel includes

about 1.8 million unique individuals and over 500,000 establishments out of which over 2,300

establishments are surveyed between 1996 and 2005. The IAB builds the LIAB survey panel

through stratifying over industries, so the establishments represent the cross-section of in-

dustries in Germany. Large establishments are oversampled.14 The work history of workers

includes records from the Employment History (Beschäftigten-Historik - BeH) and records

from the Benefit Recipient History (Leistungsempfänger-Historik - LeH). BeH records can-

not be longer than a year since annual notification is required for all jobs in progress on

December 31, but LeH records can span multiple years. We observe the complete work

history between 1993 and 2007 of every worker recorded to have worked at any one of the

surveyed establishments for at least a day between January 1st 1993 and December 31st

2007. While the work history we observe also includes employment spells at establishments

outside the surveyed panel, we observe the complete workforces (that an establishment re-

ports) at surveyed establishments only. Wage records are based on notifications submitted

by employers to various Social Security agencies upon a change in the conditions of employ-

ment. Hence, this panel excludes individuals not subject to Social Security contributions,

e.g. civil servants and full-time students.

The panel consists of continuous job spells and unemployment records. Start and ends

of spells are reported at a daily frequency and the IAB splits unemployment spells spanning

multiple years so that all spells fall within a year. We impute missing education values using

the IP1 procedure described in Fitzenberger, Osikominu, and Völter (2006).15 An important

limitation of the data is the censorship of about 9% of the earnings at the Social Security

maximum. Our structural analysis does not suffer much from this limitation, because the

estimation procedure we use relies mainly on out-of-unemployment wages, of which only
14We show the establishment size distribution Appendix A.2 and show in Appendix A.2.1 that this dataset

reflects aggregate wage trends reported in the literature.
15Details in Appendix A.2.
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2% are censored. We impute censored wages following closely the imputation procedure in

Card, Heining, and Kline (2013).16

We consider full-time employed men aged 20-60 employed by West German establish-

ments. Mini-jobs which appear past 1999 are dropped. We only consider workers with more

than one job spell and less than 150 job spells. We also only consider jobs with a real daily

wage above 10 Euros with 1995 as the base year. We drop all apprentice and self-employed

workers as well. We define out-of-unemployment spells in our sample as individuals (1)

whose first observed job is prior to age 26, (2) whose start of a new job is preceded by

compensated unemployment in the past 28 days, or (3) who have an uncompensated gap

between two jobs longer than one month.

Next, we split the sample into data from 1993 to 2000 (1990s) and 2001 to 2007 (2000s),

and estimate the model separately on each subsample. Our sample contains 383,772 estab-

lishments, 889,307 workers, and 6,254,287 job spells for the 1990s; and 321,756 establish-

ments, 818,967 workers, and 5,269,024 job spells for the 2000s. We aggregate it to a monthly

frequency to estimate our model. We aggregate to a yearly frequency to perform our test

of additive separability and estimate worker and firm effects to be consistent with Card,

Heining, and Kline (2013). In the case of several concurrent jobs in a given month (year),

we define the main job to be the job in which the worker earns the most in that month

(year).

The worker ranking procedure we use relies on workers moving between establishments.

Thus, we restrict the ranking of workers as well as regressions to remove the effects of

observable characteristics to the largest connected set (see Abowd, Creecy, and Kramarz

(2002)) containing 359,643 establishments, 871,533 workers and 6,176,894 job spells for the

1990s and 272,632 establishments, 780,347 workers, and 5,070,658 spells for the 2000s. We

rank workers using data from the full sample.

We treat establishments in the data as firms as described in the model. We use the terms

interchangeably for the rest of the paper.
16Details are provided in Appendix A.2. Our imputation procedure adapts the procedure in Card, Heining,

and Kline (2013) to the limitations of our sample.
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For our test of additive separability, we restrict our sample to LIAB-surveyed establish-

ments that employ at least 2 workers, because we cannot fully observe coworkers relationships

at non-surveyed firms. This sample consists of 1,225,892 unique coworkers pairs observed

at 2 different establishments, 11,120 workers, and 793 establishments. For estimation of

the production function and report of fit, we restrict our sample to LIAB-surveyed estab-

lishments that employ at least 10 workers. We only rank establishments and estimate the

production function on this sample, because ranking establishments requires observing their

entire workforce history. This sample consists of 1,658 (1,512) establishments, and 720,762

(535,091) workers for the 1990s (2000s). We have a total of 3,442,577 job spells for the

1990s, and 2,501,472 job spells for the 2000s with which we estimate the model. The drop-

ping algorithm we use for misranked workers (described in Hagedorn, Law, and Manovskii

(2016)) drops 7,869 workers for the 1990s and 8,803 workers for the 2000s.

1.4. Estimating the Model

As described earlier, we estimate the model with wages net of the effects of observables on

each subperiod (1990s and 2000s) of the data. The model is estimated on residual wages. To

construct residual wages, we follow Card, Heining, and Kline (2013) in including an unre-

stricted set of year dummies as well as quadratic and cubic terms in age fully interacted with

educational attainment in our set of time-varying observable characteristics. In particular,

we regress individual log real daily wage logwit of individual i in month t on a worker fixed

effect αi and an index of time-varying observable characteristics z′it

logwit = z′itγ + αi + rit,

where rit is an error component. The residual wage which serves as input into the analysis

is then defined as wit = exp(logwit − z′itγ̂). Card, Heining, and Kline (2013) (CHK) also

include establishment fixed effects in the regression. This difference is inconsequential for

our purposes, as the inclusion of establishment fixed effects has virtually no impact on

γ̂. In particular, over the combined 1993-2007 sample, corr(z′itγ̂, z
′
itγ̂CHK) = 0.9952 and
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corr(logwit, logwit,CHK) = 0.9995, where wit,CHK = exp(logwit − z′itγ̂CHK).

Table 1 shows that residual wages, logwit−z′itγ̂, capture a large portion of cross-sectional

variance in log wages in the data given our set of observables.

Table 1: Covariance Matrix of Log Wages in the 1990s and 2000s
1993-2000 (1990s)

logw α̂ z′γ̂ r

logw 0.1811 0.1538 0.0097 0.0176

α̂ 0.1516 0.0021 0.0000

z′γ̂ 0.0076 0.0000

r 0.0176

2001-2007 (2000s)

logw α̂ z′γ̂ r

logw 0.2295 0.1906 0.0182 0.0207

α̂ 0.1843 0.0063 0.0000

z′γ̂ 0.0120 0.0000

r 0.0207

Residual wages (α̂+r) represents 93% of wage variance in the first period and 89% in the

second period. The overall change in wage variance is 0.2295−0.1811 = 0.0484. The change

in residual wage variance, var(α̂+ r), is 0.2050− 0.1692 = 0.0358. The model includes wage

variation which accounts for 0.0357/0.0484 = 74% of the increase in wage inequality.

Having ranked workers and establishments, we bin workers into 20 bins with an equal

number of unique individuals in each bin. Establishment bins are selected so that each bin

contains approximately the same number of unique jobs. It is not possible to have exactly

the same number of jobs in each bin because establishments in the data differ greatly in

size.

20



The inputs to the model (the production function, f(x, y) and search parameters Mv

(search intensity), φ (on-the-job search intensity), and δ (match destruction probability))

are estimated following the steps described in Section 1.2. We fix the gross interest rate at

1.04 to pin down the discount factor β and estimate production function up to an additive

constant. The last step of our estimation involves estimating the additive constant to the

production function to minimization the squared deviations of mean log wages and the

variance of log wages.

We estimate this additive constant by simulating wages using the production function

(Figure 1) and search parameters (Table 2) estimated from the data. Irregularities in the

matching set arise due to firm size heterogeneity. For instance, some firm bins contain

less than five firms with one of the firms being very large. The large firm influences the

matching set greatly and this results in roughness of the matching set on the edges. To

overcome these irregularities, we calibrate the matching set by perturbing the matching

set obtained directly from the data by 1 bin from its edge. In practice, the perturbation

amounts to including and excluding worker types on the edge of the matching set. The

perturbation which fits the data best is used. The fit of the model to the data is evaluated

using the resulting wage and density functions. Note that the fit of the model generated

wages and match density to the data does not arise by construction. The mobility of

workers in the simulation arises endogenously in the model from the production function

and search parameters. These primitives do not guarantee generating wages or mobility

identical to what is observed in the data. We compare the resulting wage functions and the

match densities later in this section.
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Table 2: Parameters
1990s 2000s

Data Model Data Model
Externally Selected Parameters
Annual Gross Interest Rate 1.04 1.04
Estimated Parameters
Monthly Meeting Probability, Mv 0.34 0.41
On-the-job Search Intensity, φ 0.42 0.23
Monthly Job Separation Probability, δ 0.012 0.0098
Calibrated Parameter
Additive Constant to f(x, y) 1.254 5.799
Target Quantities
Mean Log Wage 4.40 4.32 4.50 4.48
Variance Log Wages 0.169 0.167 0.205 0.204
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1.4.1. Model Fit

We simulate the model using the model primitives, f(x, y) and search parameters, obtained

in the previous subsection. We simulate the model for the same number of years as in the

subsample periods. The model is simulated at a weekly frequency and model-generated

data is aggregated the same way as done in the real data. Table 3 summarizes the fit of

the model. In both periods, the model replicates the job-to-job transition rate and the

employment rate. In a steady state, aggregate employment and the separation rate (δ)

define the job finding rate, so the model replicates overall job mobility rates. The model

also generates comparable quantities of sorting (as measured by a rank correlation of types)

between workers and establishments.17 We can see from Table 3 that highly ranked workers

tend to sort with highly ranked firms and that this correlation has increased from 0.7621 to

0.7919 in the data. The model produces roughly the same order of sorting as in the data.

Table 3: Model Fit

1990s 2000s

Data Model Data Model

Fit to Mobility and Sorting

Probability of Monthly Job-to-Job Move 0.0118 0.0118 0.0107 0.0093

Employment Rate 0.8916 0.8783 0.9002 0.9219

Correlation of Worker and Firm Type 0.7621 0.7117 0.7919 0.7487

corr(wmodel,wdata)

Overall 0.9996 0.9983

Below Median 0.9975 0.9991

Above Median 0.9995 0.9974

Explanatory Power

R2 using wmodel(x, y) 0.919 0.918

R2 using Worker and Firm Fixed Effects 0.942 0.941

17Sorting is measured on surveyed establishments only as it requires ranking firms.
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Next, we correlate the non-parametrically estimated wage function from the data, wdata,

with the wage function generated by the model, wmodel. The wage function refers to wages

averaged across all workers and establishments in match (x, y) in the data and in the model

simulated data. The model fit to the wage function in the data does not arise by construc-

tion. We only target the overall mean and variance of log wages in our calibration, and

use the production function estimated using wages out-of-unemployment. We report the

overall correlation of the wage function from the data and the model simulation. We also

report this same correlation restricted to the lower and upper half of wages. We see from

these correlations that the estimated production function along with the estimated search

parameters replicate the nonparametric wage function in the data.

To assess the overall fit to raw wages, we predict wages and compute the R2 arising from

our prediction. We only assess the fit on wages earned at surveyed establishments, because

we can only rank surveyed firms. Every worker i and establishment j in the economy

has an estimated type given by x̂(i) and ŷ(j), respectively. Our prediction of wages is

log ŵit = z′itγ̂ + logwmodel(x̂(i), ŷ(j)). wmodel is the equilibrium wage function simulated

from the model. For comparison, we display the R2 of the regression including a fixed effect

for every worker and every establishment. This regression is run on wage data including

surveyed and non-surveyed establishments using an identical set of observable characteristics.

The R2 is displayed for wages paid by surveyed establishments only.

Regarding wage dynamics, the average residual wage of a worker declines about half of

the time when the worker moves between jobs in the data. In model-generated data, wages

decline 46% of the time. Note that the model implies that wages out-of-unemployment are

greater than wages arising from a job-to-job move for a given (x, y) pair. Average residual

wages from job-to-job moves exceed residual wages out-of-unemployment by only a tenth of

a standard deviation. Hence, the data does not outright reject this implication of the model.

Finally, we provide a visual comparison of wages and match densities from the simulation

described above. Figure 2 compares wages obtained in the data to wages that are simulated

using the production function and search parameters estimated from the data. The wage
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function simulated from the model is almost uniformly above or below the wage function

from the data. This is consistent with the average values reported in Table 2, because the

wage function is weighted by the match densities to calculate its average. Figure 3 provide

two views of the match densities arising from the same exercise. Overall, we find that our

nonparametrically estimated model fits the data along key dimensions with three search

parameters and a non-parametrically estimated production function over 20 worker types

and 20 establishment types. The model’s fit to wages is comparable to wage regressions

which assign a fixed effect to every worker and to every establishment. This is true for the

hundreds of thousands of workers and over a thousand establishments in this analysis. In

addition to wages, the model replicates mobility and sorting over productivity in the data.

Given this fit, we can confidently exploit the structure of the model to understand the rise

in German wage inequality in Section 1.5.
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1.4.2. Log-Linear Variance Decompositions

We also consider the model’s ability to generate the decomposition of wages as described

in Abowd, Kramarz, and Margolis (1999). To do so, we take the wage function estimated

from the data and the wage function estimated from model simulated data and assess how

well we reproduce the moments from a worker-firm fixed effects variance decomposition.18

We also examine the extent to which aggregation and mobility bias affect replicating the

decomposition.

In their study of West German inequality, Card, Heining, and Kline (2013) decompose

log wages into variance contributions due to observables and worker and firm fixed effects on

a superset of our data.19 They find that firm fixed effects account for around 20% of wage

variance over 1996 to 2001 and 2002 to 2009. However, variance contributions emerging from

this method have been shown to be biased due to noisy estimates of fixed effects for small

firms where few workers move (Andrews, Gill, Schank, and Upward, 2012, 2008). We follow

Card, Heining, and Kline (2013) and aggregate the data to the annual level to estimate

regressions with worker and firm fixed effects.

Estimating this regression on raw log wages in the data, we find evidence that much of

the firm variance contribution in our sample comes from small firms. We only observe a

few workers at these firms moving, because these firm are relatively small (e.g. less than 20

workers). Restricting to smaller firms, the firm contribution rises to 58% whereas it is only

41% for firms for larger firms.20 The covariance between worker and firm fixed effects for

these smaller firms drop to −11% compared −4% for larger firms. This feature of the data

is consistent with Andrews, Gill, Schank, and Upward (2012) who argue that mobility bias

causes an upward bias in the variance contributions and downward bias in the covariance

contribution of worker and firm fixed effects.
18The weekly simulation contains 24,000 workers and 240 firms over 8 years. The production function and

search parameters are the only inputs into the model.
19Card, Heining, and Kline (2013) have access to the entire universe of firms and workers whereas our

dataset only contains a subset of firms. Hence, their data features substantially more mobility in magnitude.
However, our connected sets both contain upwards of 99% of all observations, hence we also have substantial
mobility in our more limited data.

20Firms are smaller in the sense that we observe fewer than 3000 worker-firm matches over 1993-2007.
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To understand how our model performs, in Table 4, we present worker-firm fixed effect

variance decompositions for (1) wages in the data, (2) fitted wages from binning worker-firm

fixed effects, (3) fitted wages from our estimated wage function in the data, and (4) fitted

wages from a wage function from model simulated data. For (2), we take fitted residual

wages via worker and firm fixed effects and average them in bins defined by ordering fixed

effects to see how aggregation affects variance contributions. The resulting new fitted wage

averages out noise in firm effects due to limited mobility associated with small firms. With

such aggregation, we see that the variance contribution of firms goes down to 21% from 54%.

Thus, we find that aggregating removes a substantial amount of estimated firm heterogeneity,

because much of the firm contribution is due to noisy estimates of fixed effects from smaller

firms. Similarly, we construct a fitted wage for every observation in the data using the wage

function we estimate in the data and a wage function we simulate from the model. Our

fitted wages estimated in the data and simulated from the model, z′itγ̂ + logw(x̂(i), ŷ(i)),

match the firm contribution that emerges from (2). Hence, our fitted wages reproduce

the firm contribution to wage variance in the data once we take into account the effect of

aggregation on the firm variance contribution. The correlation between worker and firm

productivity types reported in Table 3 is much higher than the correlation of estimated

worker and firms fixed effects.21

Performing the AKM decomposition on model generated data and model generated

mobility of workers to firms results in the estimated worker type share of wage variance to

explain almost all (>94%) the variance in wages.22 Firm fixed effects explain a negligible

quantity of wage variance. Our results here suggests that this is largely due to firm sizes,

aggregation and heterogeneous mobility of workers across firms in the data. With those

elements equalized between the model and the data (Table 4, lines 2 and 4), we find that
21See Abowd and Kramarz (1999) and Eeckhout and Kircher (2011) for discussions on the relationship

between the correlation of worker and firm fixed effects and sorting over fundamental quantities such as
productivity.

22We concatenate model simulations from 1993-2000 and 2001 - 2007. Hence, the variance in the model
lies in between the variance of wages in both halves of the data. This variance does not match exactly the
variance of the full sample in the data due to factors (such as panel balance) that we do not account for.
This does not affect the well known observation that worker fixed effects explains most wage variance in
Beckerian models.
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the model in fact replicates the firm contribution.

Table 4: Variance Contribution on Fitted Wages (1993-2007)

Var(αi) Var(ψj) Cov(αi, ψj) Var(z′γ̂)

1. logwijt 47% 54% −14% 2%

2. z′itγ̂ + wakm(x(i), y(j)) 68% 21% −2% 9%

3. z′itγ̂ + wdata(x̂(i), ŷ(j)) 46% 22% 22% 8%

4. z′itγ̂ + wmodel(x̂(i), ŷ(j)) 49% 20% 22% 4%

5. wmodel(x, y) 94% 0.1% 2.2% N/A

Note: wdata(i, j) are log wages in the data. wakm(x, y) are fitted log wages z′γ̂ + logw(x, y) where w(x, y)

is determined ranking workers according to worker and firm fixed effects instead of our estimation method.

wdata(x, y) are fitted log wages z′γ̂ + logw(x̂, ŷ) where w(x̂, ŷ) is the wage function estimated in the data

based on estimated worker (x̂) and firm (ŷ) types. wmodel(x, y) are fitted log wages z′γ̂ + logw(x, y) where

w(x, y) is the wage function emerging from a simulation where the production function and search

parameters are inputs.

1.4.3. Discussion

It is important to note that our nonparametric identification rests on the model’s restric-

tive bargaining assumptions. Workers out of unemployment make take-it-over-leave-it offers

and thus have full bargaining power. This assumption implies wages out of unemployment

convey sufficient information to identify worker types and consequently firm types and the

production function. The implementation of the identification strategy may still yield ac-

curate estimates of worker types as long as wages out of unemployment convey enough

information to rank workers with a degree of accuracy comparable to the number of bins

we use. The extent to which wages out of unemployment do not directly reflect underlying

worker productivity governs the bias in our estimate of the production function, because

identifying firm types and the production function rest on first identifying worker types.

We provide evidence that despite this restrictive assumption, the model reproduces many

salient features of the wage structure like job-to-job wages (as shown through fit to overall
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wages). Model fit suggests we cannot outright reject the model as a good approximate to the

true residual wage data generating process. Of course, the fact that we do not have strong

evidence to reject the model based on fit alone does not make it a good description of wage

setting. However, our wage setting device holds some positive merits in terms of capturing

features of the data where other bargaining protocols may have more difficulty. For example,

this protocol delivers a similar degree of wage declines upon job-to-job transitions, which

may be more difficult to generate in a similar model where more traditionally workers have

no bargaining power out of unemployment. In this latter case, workers experience a large

wage jump upon receiving their first poaching offer, because workers go from receiving none

to the entire surplus. They may even be willing to accept negative wages at some firms in

expectation of a large jump. Wages following the first job-to-job move will be informative

of the worker’s type, since the worker’s value of the new job includes the surplus from the

previous job. However, wages will be convoluted by expectations over future on-the-job

offers, thus inhibiting identification of workers types off of these wages alone. The protocol

we use delivers wage declines naturally and yields identification using only wages, increasing

the replicability of this approach across datasets where only wages are reported. These

kinds of merits along with the model’s fit attest to the usefulness of this wage setting device

despite employing a non-traditional, restrictive assumption.

1.5. Decomposing the Rise in German Wage

Dispersion

We now perform decompositions to understand why wage dispersion has increased in Ger-

many. Our first decomposition uses the model to tease apart the contributions to the increase

in residual wage variance of model primitives − search and production technology. Then,

we separate the direct and indirect effects of changes in the production technology. Finally,

we evaluate the importance of search frictions for cross-sectional wage dispersion.
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1.5.1. The Contributions of Search Frictions and Production Technology to Rising Wage

Dispersion

We first ask which model primitive affects the increase in wage variance. To answer this

question, we turn to the structural model, which we demonstrated to be a good fit to the

data. In this model, the search parameters are the job destruction rate (δ), the aggregate

search intensity (Mv), and the on-the-job search intensity (φ). We change these parameters

one at a time and recompute the model while maintaining f(x, y) to measure their contri-

bution to the increase in wage inequality across the subperiods. The change in variance due

to increasing all of the search parameters simultaneously is −0.0011, as shown in Table 5.

This suggests that changes in search frictions do not explain the increase in wage variance

we observe. In contrast, we find that maintaining the search parameters while changing the

production function gives all the increase in the wage variance. Hence, we conclude from

here that the key primitive which affected the increase in German wage inequality is the

production function.23

Table 5: Wage Variance Counterfactuals

Wage Variance

f(x, y)1990s + Search1990s 0.1672

f(x, y)1990s + Search2000s 0.1661

f(x, y)2000s + Search1990s 0.2070

f(x, y)2000s + Search2000s 0.2038

23The bargaining protocol in the model takes place at the firm level which differs from the wide-spread,
sectoral-level bargaining in West Germany. Jung and Schnabel (2011) show that only 19% of firms pay at the
sectoral-bargained level using a 2006 survey of over 8,000 firms. Furthermore, larger firms disporportionately
deviate and pay above the sectoral agreement. Thus, the oversampling of large firms in our sample likely
helps the fit of the model (at least in the later subperiod) despite our differing bargaining protocol.
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1.5.2. The Effects of Changes in Production Technology and Induced Sorting Patterns on

the Rise in Wage Dispersion

How does the production function affect the change in wage variance? Our next decompo-

sition is designed to separate the channels by which the production function affects wages.

Recall that the value functions (Equations 1.4-1.6 and 1.8) contain the equilibrium bargain-

ing sets given by Bw(x), Bf (y), Be(x, y) and Bp(y) as well has the production function

f(x, y). In equilibrium, the change in f(x, y) as described in the previous decomposition

induces a change in the bargaining sets as well as wages. In turn, changes to the bargaining

sets induce changes in the equilibrium match density.

We consider two counter-factual experiments to tease apart the effects of the change

in the production function. In each counter-factual, we simulate wages arising in a partial

equilibrium, meaning wages may respond to changes in the production function or bargaining

sets, but not both. To isolate the direct effect of changing match outputs without altering

behavior (bargaining sets), we compute the wages which arise from the partial equilibrium of

the estimated production function from the 2000s, while maintaining the bargaining sets and

search parameters from the 1990s. The wage variance for this counter-factual equilibrium

is 0.1988 which means this direct effect accounts for 86% of the change in wage variance.

To isolate the indirect effect of changes in sorting behavior, we compute wages which arise

from the partial equilibrium with the estimated production function and search parameters

from the 1990s, but with the bargaining sets from the 2000s. The wage variance in this

case is 0.1740 meaning this indirect effect accounts for 19% of the change in wage variance.

Notice that both effects do not add up to the increase in wage variance from changing the

production function alone due to general equilibrium responses. However, we see that the

direct effect of changes in the production function exceeds the indirect effect in accounting

for wage variance.
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1.5.3. Measuring the Contribution of Search Frictions to Wage Dispersion

Our first three decompositions suggest important roles for the production function through

its direct effect on output and its indirect effect on behavior and sorting. However, it

appears that search frictions themselves do not have much of a role to play in increasing

wage variance. Here, we assess the role that search frictions play in the cross section. As

mentioned, the model’s roots in Becker (1973) suggest a very natural way of understanding

the role of search frictions – remove them completely and compute frictionless wages. In

Becker’s environment, firms take the wage schedule as given and maximize profits π(x, y) =

f(x, y)− w(x). This yields the first order condition

fx(x, y) = wx(x).

This condition must hold at the equilibrium allocation y∗ = µ(x) and therefore, wages can

be obtained by integrating along the equilibrium path

w∗(x) =

∫ x

0
fx(x̃, µ(x̃))dx̃+ w0

w0 ∈ [0, f(xmin, µ(x̃min))]

where w0, the constant of the integration, is the share of the output going to the lowest type

worker.

In the production functions that Becker considers, this equilibrium path is on the main

diagonal (µ(x) = x) in the case of positive assortative matching (PAM), and on the off

diagonal (µ(x) = 1−x) in the case of negative assortative matching (NAM). The identifica-

tion strategy we use does not rely on the global modularity of the production function. In

fact, the production function we estimate is neither sub-nor super-modular, so we compute

the optimal planner’s allocation from the estimated production function and numerically

compute equilibrium wages. The planner’s problem is to maximize output by assigning a

worker type to a firm type with the constraint that each firm type can only hire one worker
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type. We use an implementation of the algorithm in Munkres (1957) to obtain a solution to

this linear assignment problem. These optimal allocations are displayed in Figure 4.24

We find that eliminating search frictions has an ambiguous effect on log wage variance.

It depends on the value used for w0, which our theory is silent on. This may appear

somewhat surprising given that search frictions are often thought to increase wage dispersion.

However in this quantitative exercise, wage variance may increase when search frictions are

eliminated. We find that the wage variance is lower when search frictions are eliminated

only for extremely high values of w0. For most of the range of w0, wage variance is in fact

higher. In this case, search frictions prevent workers and firms from fully exploiting the

complementarities in production. We find that the log wage variance is 5.6% and 14.1%

lower in the 1990s and the 2000s respectively when w0 = f(xmin, µ(x̃min)) is imposed.

The wage variance increases dramatically as the share of output going to workers, w0, is

decreased. We conclude that search frictions affect the level of wage dispersion but do not

explain its change over time.

24The grey shading is the acceptance set. The dark spots are is the output maximizing assignment of
workers to firms assuming full employment.
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1.5.4. The Potential Impact of Collective Bargaining

Many labor market changes occurred in West Germany during the periods we consider, in-

cluding the Hartz Reforms, the development of open clauses, active labor market policies,

and continued reunification. These events and others affecting job mobility and wages out-

of-unemployment in Western Germany are captured in the estimated production function.

In this sense, the production function overstates the role of technological change in affecting

wage inequality.25 Here, we examine the rise in wage dispersion attributable to changes in

certain areas of the production function. This exercise aims to unpack the relative impact

of changes in technology versus labor market policies on the production function we esti-

mate. While we cannot isolate the impact of the labor market policies mentioned, we can

provide suggestive counterfactuals as to the importance of collective bargaining regarding

wage dispersion.

Our dataset provides information as to whether firms participate in collective bargaining

at the sectoral or firm level. We perform four counterfactual exercises. Each holds fixed all

the model primitives from the 1990s with the except of the production function for specific

firm types. We replace the production function for these types with the production function

from the 2000s, preserving the mean for the 1990s. The four exercises replace the production

function for the 1) six firm types with the lowest share of collective bargaining in the 1990s,

2) six firm types with the highest share of collective bargaining in the 1990s , 3) six firm

types with the smallest change in the share of collective bargaining, and 4) six firm types

with the largest change in the share of collective bargaining as shown in Table 6.26

We find that changes in the production function affecting firms with the lowest shares of

collective bargaining can explain 44% of the increase in wage dispersion, whereas changes in

the production function affecting firms with the highest shares of collective bargaining can

explain 61% of the increase in wage dispersion. These counterfactuals suggest a potentially

large role in explaining the increase in wage variance for firm types where levels of collective
25See Card, Heining, and Kline (2013) for a discussion of labor market reforms.
26The fraction of firms by firm type participating in a bargaining agreement can be found in Table 24 in

the Appendices.
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Table 6: Firm Types (1990s)

Share of Collective Bargaining Firm Types Log Wage Variance
1. Lowest 1-6 0.1851
2. Highest 13-18 0.1911
3. Lowest Change 9-12, 17, 18 0.2063
4. Highest Change 3, 4, 7, 8, 15, 16 0.2035

bargaining were high prior to the 2000s. Firm types where the change in collective bargain-

ing were highest and lowest seem to be equally important in accounting for the increase in

wage dispersion, which does not lead us to speculate a disproportionately large impact on

wage dispersion from firm’s changing bargaining status. Again, these counterfactuals are

merely suggestive. There remains much work to be done concerning the impact of collec-

tive bargaining and labor market policies in frictional, general equilibrium settings of labor

market where wages guide sorting. Dustmann, Ludsteck, and Schönberg (2009) and Card,

Heining, and Kline (2013) provide evidence pointing to a potentially important role for union

and collective bargaining in accounting for the rise in wage dispersion in Germany. Our ap-

proach identifies the effects of production and search technology on wage dispersion using

recently developed methods, but more comprehensive frameworks incorporating labor mar-

ket policies and collective bargaining are needed to make further progress on understanding

the impact of labor market developments on rising wage inequality.27

1.6. Testing Additive Separability

We estimate a structural model where wages drive sorting between workers and firms and find

that the model fits wages well. However, the leading non-structural wage decomposition due

to Abowd, Kramarz, and Margolis (1999) (AKM) explains wage variance equally well. To

fit wages, AKM specify log wages as additive in returns to observable characteristics, worker

and firm fixed effects and an error term. Estimated via least squares, this specification yields

R2 statistics of around 90% across several datasets, including France, the United States, and
27Our approach treats these developments as factors affecting residual output and hence residual wages.
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Germany.28 The literature has considered this high R2 to be supportive of the additively

separable specification as a good first approximation to the wage determination process.

Card, Heining, and Kline (2013) also provide additional evidence in support of additively

separability in data.29

We find a high R2 statistic insufficient to conclude that the wage structure is additively

separable. Instead, we find evidence that (i) we reject the restrictions of additive separability

under many stochastic error processes and (ii) not rejecting additive separability requires

match quality shocks to be roughly a fifth of wage variance, allowing for additional factors

like measurement error. AKM’s log additive separability specification imposes the restric-

tion that two workers who both move from firm j to firm j′ receive the same percentage

wage increase or decrease, implying that wages do not drive sorting.30 In contrast, theoret-

ical models of sorting, such as the one we estimate, permit different workers to experience

different wage gains or losses when moving across firms, inducing sorting between workers

and firms.31 We test how well the data supports this restriction, which also indicates the

importance of non-parametrically estimating wages in place of this prominent parametric

specification to capture significant deviations from log additive separability.

We take no stance on the true data generating process for residual wages when evaluat-

ing the additive separability restriction. We specify a general process (a dummy variable for

each worker-firm match) for residual wages and test whether this general process satisfies

the implications of constant log wage differentials for colleagues. Previous theoretical cri-

tiques argue that the fixed effects cannot be interpreted as primitives of a structural model.

Gautier and Teulings (2006) argue that environments featuring comparative advantage do
28See Lopes de Melo (2013) for AKM results across various matched employer-employee datasets.
29For example, see Figures V, VI and VII for additional support of the AKM fit and specification.
30Residual log wages are specified as the sum of worker fixed effect (αi), firm fixed effect (ψj) and error,

uit. Concretely, residual log wages are written as αi + ψj + uit. To consistently estimate the fixed effects,
workers are assumed to not make any mobility decisions based on uit. Thus, the linear regression implies
that sorting on residual wages are guided by solely by (αi, ψj)j=1,...,J . However, this specification means
that workers experience identical wage gains (or losses) across firms and thus make identical accept/reject
decisions based on wages alone, ruling out wages guiding sorting.

31Shimer (2005) provided an example of in structural model where wages decompose to separable worker
and firm fixed effects, and positive assortative matching still takes place. However, sorting in this example
takes place due to unemployment risk, because the highest paying jobs are hard to obtain. It is not based
on comparative advantage, which is realized as nonlinearities in the wage function.
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not have a universally “most productive” firm, so we cannot interpret fixed effects as a mean-

ingful ordering of firms. In Eeckhout and Kircher (2011), wages are non-monotonic in firm

productivity, because workers must compensate firms for the option value of forming more

productive matches. In this setting, firm fixed effects cannot be interpreted structurally

as a measure of productivity. Another strand of critiques takes the specification as correct

but shows that the fixed effects are subject to estimation error and bias due to limited mo-

bility of workers between firms. For example, Andrews, Gill, Schank, and Upward (2012)

show that the firm fixed effect estimates are noisy and fixed effect covariance estimates are

downwardbiased when workers move infrequently between plants.

Card, Heining, and Kline (2013) look at average wage changes for movers going from one

wage quartile to another. They find fairly symmetric wage changes, in that workers moving

to a higher quartile tend to receive a wage increase similar in magnitude to the decrease

that workers experience moving to a lower quartile. They also divide worker and firm fixed

effects into deciles and look at the average residual within these decile cells which they find

to be small. They interpret their findings, along with a high R2, as evidence in support of

the worker-firm fixed effect specification.

We do not assume the fixed effect specification to be correct but instead turn to the

data for direct evidence without using a structural model for residual wages. We exploit

coworker mobility in the data to examine log wage differentials under the AKM specification.

It restricts log wage differences between workers to be constant across firms. Rather than

looking at the average wages of movers, we first estimate a less restrictive wage equation

and then focus on testing the restrictions with workers who are colleagues at two firms.

This method provides a direct statistical test of additive separability and directly indicates

the presence of complementarities. If workers base their job mobility decisions on these

complementarities, then the restrictions of the AKM log linear wage specification will fail

in a more general setting. For that reason, we begin with a general specification and test

whether restrictions implied by AKM hold.

We now explain our test. wijt refers to the wages that worker i earns at firm j at time t.
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The worker-firm fixed effects model in the empirical literature specifies log wages (logwijt)

as

logwijt = z′itγ +
∑
i

αiDi +
∑
j

ψjDj + uit︸ ︷︷ ︸
residual wages

(1.10)

where logwijt are log real wages that worker i earns at firm j at time t, zit are observable

characteristics of i at time t with return rates γ, αi is a worker fixed effect, ψj is a firm

or establishment fixed effect, D is an indicator variable for the observation of i or j, and

uit captures everything else. In this piece-rate wage structure, wage differentials come en-

tirely from worker fixed effect differentials (αi−α′i) and zero-mean idiosyncratic errors after

conditioning on observables like education and experience and working at the same firm.

Therefore in expectation, differences in worker fixed effects account for wage differentials

between workers at the same firm. If unobserved worker-firm complementarities captured

in the error term play a role in workers’ decisions to take jobs, then the correlation between

the worker’s new firm fixed effect and the error term causes worker and firm fixed effects to

be inconsistently estimated.

We use a specification that puts these complementarities in the non-error component of

wages and test how well additive separability fits this more general wage specification. We

begin by specifying log wages more generally as

logwijt = z′itγ +
∑
i

∑
j

ϕijDij + uit︸ ︷︷ ︸
residual wages

, (1.11)

where ϕij is the match effect on wages (not to be confused with a match quality shock which

we allow for in the error process) and Dij is an indicator variable for the match.32 Under

the null hypothesis of additive separability, the difference-in-difference of ϕij is

∆ijϕ ≡ (ϕij − ϕij′)− (ϕi′j − ϕi′,j′) = 0, ∀(i, i′, j, j′) (1.12)
32The technical identification details are relegated to Appendix A.3.1.
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because the two-way fixed effects model amounts to the linear restriction ϕij = αi + ψj .

We test these linear restrictions individually. We construct ∆ijϕ̂ by taking all possible

difference-in-difference combinations (i, i′, j, j′) observed in the data.

Then, we construct our test statistic

TSij =
∆ijϕ̂

SE(∆ijϕ̂)
. (1.13)

To convey the idea of our test, we assume uit is distributed i.i.d. normal and allow for

general, persistent error processes and match quality shocks later. This simplification allows

us to calculate the standard error of ∆ijϕ̂ as

SE(∆ijϕ̂) =

√
σ̂2
u

(
1

Tij
+

1

Ti′j
+

1

Tij′
+

1

Ti′j′

)
(1.14)

where Tij is the number of periods worker i workers at firm j and σ̂2
u is the consistent

estimator of σ2
u constructed from the residuals of the match effects regression. Under the

null, TSij is distributed N (0, 1). We fail to reject the null linear restriction on (i, j) if TSij

falls within an acceptance region.

In practice, we do not restrict errors in the data to be i.i.d. normal. We allow ϕij to

include a match quality shock and proceed with both parametric and subsampling inference.

We parameterize the error process as a stationary AR(1) plus a lognormal match quality and

perform our test.33 We also do two forms of subsampling inference. First, we assume that uit

is an arbitrary stationary process and we make asymptotic inference by using subsampling

to calculate standard errors. Second, we make inference based on an approximate finite

sample distribution of the test statistic to relax the stationarity assumption. We rely on

standard subsampling techniques to make robust inference.34 Table 7 contains results for

our alternative inference methods under the null hypothesis.

Every pair of workers i and i′ who are coworkers at firm j and j′ provides direct evidence
33The degree of persistence makes no notable difference in our results as shown in Tables 25 to 29 in the

Appendices.
34We relegate the technical details for these procedures to Appendix A.3.2 and A.3.3.
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on whether wages are additively separable. If wages were indeed additively separable as

assumed under the null, then we would sometimes falsely reject additive separability purely

due to error. In the data, we find that the null hypothesis is rejected for a large number

of the additive separability restrictions when match quality shocks are less than 15-20%

of wage variance. For example, we reject at least three to four times as many restrictions

using a 5% test than expected if match quality shocks make up 5% of wage variance.35 We

present our main results in 7. Table 7 shows that additive separability fails more often than

expected given match quality shocks that make up 5% of wage variance. Our prior on the

wage variance due to match quality shocks in our dataset is around 2%.36 Hence, we find

match quality shocks to be too small to explain the number of deviations from additive

separability that we observe in the data. Additional results allowing for larger and smaller

match quality shocks and various error processes can be found in appendix Tables 25 to

29.37

35Match quality shocks we consider are defined to be 1) fixed over a job spell and 2) orthogonal to
observable characteristics, worker and firm fixed effects, and the error process.

36Details on the origins of our prior can be found in Appendix A.3.2.
37In a previous version of this paper, we estimated match quality shocks in the error process. Here, we

let match quality shocks vary in the share of wage variance they make up in order to show that our results
are robust to our way of estimating match quality shocks by clustering workers.
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Table 7: Failed Additive Separability Restrictions

Parametric Errory Stationary Process Finite Sample

Rejection Region Data Model Data Model Data Model

(1) (2) (3) (4) (5) (6)

1% 8.14% 8.70% 10.51% 28.36% 9.53% 28.36%

5% 16.67% 13.90% 19.76% 35.44% 19.80% 35.44%

10% 23.17% 17.62% 26.37% 42.10% 26.96% 42.10%

Notes: The columns labeled “Data” are produced from data itself. The columns labeled “Model” are results

using the model-simulated data as described in Section 1.4. The columns for “Data” represent 1, 225, 892

unique cases of two coworkers moving between two firms. The number of unique individuals and firms are

11, 120 and 793 respectively. The columns for “Model” represent 145, 471 unique cases of two coworkers

moving between two firms. The number of unique individuals and firms are 9, 382 and 120 respectively. If

all linear restrictions held, a rejection region of X% is expected to contain X% of realizations of ∆ijϕ. For

columns (1) and (2), the parametric error we specify is a stationary AR(1) process with persistence equal

to 0.65. We make asymptotic inference with an arbitrary stationary error process in columns (3) and (4).

Columns (5) and (6) make finite sample inference using an empirical approximation of the distribution of

TSij . All data cases allow for lognormal zero-mean match quality shocks with a variance equal to 5% of

wage variance. Results allowing for various match quality shock variance contribution and persistence are

shown in appendix Tables 25 to 29.

We interpret our results as evidence for the presence of nonlinearities in wages as pre-

dicted by theory. In particular, structural models of search and matching give rise to these

non-separabilities through production complementarities. The model we use replicates log

wage non-separabilities found in the data as shown in Table 7.38 Estimating AKM on model-

generated wages which contain these nonlinearities yields R2 in excess of 0.95. We view our

results as evidence that wages drive sorting between workers and firms in the data as they

do in the model.
38The wage error process simulated in the model consists only of i.i.d. measurement error (εit). We allow

for match quality shocks in the data, but the model does not contain match quality shocks. Hence, we test
whether logwijt = αi + ψj + εit. We reject additively separability restrictions even when the error process
is misspecified as an AR(1) with ρ > 0, thereby upwardly biasing the standard errors and thus making it
more difficult to reject additive separability.
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1.7. Conclusion

We estimate a standard search model described and identified in Hagedorn, Law, and

Manovskii (2016) which features sorting between heterogeneous workers and firms. Wages,

and only wages, guide the sorting of workers to firms in the model. This is consistent with

models encountered in much of the theoretical literature on worker assignment and sort-

ing. We find that the model fits the data well along key dimensions as it replicates wage

means, variances, mobility rates, and sorting between workers and firms. Residual wages

predicted by the model, together with observable characteristics generate R2 statistics that

are comparable to that of standard two-way fixed effects linear decompositions. These de-

compositions of log wages use many more degrees of freedom to obtain the same order of

fit that we achieve with a parsimonious structural model. The use of this model permits a

counter-factual analysis to disentangle the importance of production and search technology

on wage dispersion.

We apply this method to examine the rise in German wage inequality in the 1990s and

the 2000s and quantify the extent that changes in production and search technology are

responsible for the rise in residual wage variance. An important channel through which

production technology affects the increase in wage variance is through the reallocation of

workers to firms induced by changes in wages. Search technology also plays an important

role in determining wage variance through the allocation of workers, despite having little

impact over the periods we consider.

Overall, we find the data to be consistent with theory in which wages guide the sorting

of workers to firms. This finding might appear surprising in light of the well known fact

that two-way fixed effects regressions fit the data extremely well, and these wage specifi-

cations limit the role wages play in sorting. The fact that our model and fixed effect log

wage regressions account equally well for wages begs the question of which approach is more

consistent with the data. The key difference is that log wages are assumed to be linear in

worker and firm fixed effects in these regressions, while they are nonlinear in the structural

model we use. We design and implement a test to directly detect the presence of nonlinear-
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ities in the wage data. In particular, we compare wage differentials of two workers observed

working at two different firms. We find that the variability of these wage differentials across

firms in the data is consistent with the structural model but not with the log-linear additive

specification.
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Chapter 2 : The Effect of Job-Polarizing Skill Demands

on the US Wage Structure

Abstract

I present a quantitative model which accounts for changes in occupational wages, occupa-

tional employment shares, and the overall wage distribution. The model reproduces numer-

ous aspects of US cross sectional data observed from 1979 to 2010, notably job and wage

polarization. Decompositions reveal changes in production complementarities to be crucial

but insufficient to replicate the observed occupational and wage changes. The distribution

of worker skills, sorting, and the distribution of skill demands all play pivotal roles. The

model indicates skill demands polarized over these three decades, shifting demand away from

middle-skilled towards high and − to a lesser extent − low-skilled occupations. I find that

industry trends, technological progress, and trade account for up to 57% of changes in skill

demands. Information and communications technology spurred demand for jobs requiring

interpersonal and social skills in the 1990s. This development appears far more pivotal than

the automation of routine jobs concentrated in the manufacturing and construction sectors.
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2.1. Introduction

The US labor market has undergone major changes over the past few decades, affecting

what jobs workers do and what their jobs pay. These changes include greater differences in

pay (rising wage inequality) and more jobs in high and low-pay occupations versus middle-

pay occupations (job polarization). Evidence suggests labor demand-shifting factors ranging

from technological change to globalization explain both phenomena. However, changes in

occupations and wages sometimes appear counter to these demand-side explanations. For

instance, low-paid workers’ wages fell relative to the median wage in the 1980s but rose

relative to the median in the 1990s. If relative demand shifts drive these wage changes,

then we might also expect to see a relative drop in low-paid occupational employment in the

1980s and rise in the 1990s. However, occupational employment changes looked similar in

both decades even though wages changes did not.1 This paper aims to reconcile changes in

the occupational structure (average wages and employment) and the wage distribution. In

doing so, I estimate a job search model to match these changes from 1979 to 2010. I use the

model to infer the underlying shifts in demand which took place and distill which economic

forces account for these shifts.

Importantly, we cannot directly observe the skill demands underlying the occupational

and wage distributions. We most readily observe equilibrium job allocations and wages. A

model of job selection can isolate changes in skill demand and reconcile wage and occupa-

tional patterns. For example, Autor and Dorn (2013) show clerical employment correlates

negatively with the risk of a machine replacing the worker, however clerical wages correlate

positively with this risk. This pattern seemingly contradicts the narrative that labor-saving

technology lowered labor demand in automatable occupations, causing their wages and em-

ployment to decline. Based on this narrative, we expect clerical employment and wages

to correlate negatively with automation risk. However, selection effects can make sense of

a positive correlation for wages. If the most productive workers stay in this occupation as

demand falls, then average wages may rise. This example shows how a model of job selection
1See Lefter and Sand (2011); Mishel, Schmitt, and Shierholz (2013)
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might reconcile counterintuitive changes in occupational employment and wages.

The static, competitive Roy (1951) model provides a strong foundation to model job

selection but misses out on a rich set of forces which shape wages and the allocation of jobs.

In particular, dynamic incentives and labor market search frictions alter the composition

and quality of jobs accepted as well as the distribution of earnings across workers even in the

same occupation. For example, labor-saving technology increases the risk of job loss for some

workers. Employers may increase the wages of workers who anticipate being replaced by a

machine to incentivize them to remain at the job despite increasing unemployment risk.2

The static Roy model misconstrues such wage increases arising from dynamic incentives.

Ignoring such forces may lead to different conclusions regarding how skill demand changed

and what drove said change. We cannot directly observe such dynamic tradeoffs, but a model

can parse their influence. This paper contributes by presenting a quantitative model rich

enough to capture these forces, reconciles wage and occupational changes, and yet remains

simple enough to estimate with commonly available data.

Several key challenges emerge when considering a model of job selection and wage setting

in this context. First, we must specify what mechanisms allocate workers to jobs and

determine their pay in equilibrium. Conclusions about how skill demands changed may differ

depending on what mechanisms set wages and allocate workers to jobs. Second, occupations

pose a severe computational burden, because there are so many of them. The Dictionary

of Occupational Titles (DOT) holds over 12,000 occupational titles. Third, changes to skill

demands, skill supply, and productivity remain unobserved. We must make inference about

these objects. The model I employ enriches the Roy framework in just enough ways to

overcome each of these challenges.

I build on a state-of-the-art model developed by Lise and Postel-Vinay (2016). Workers

and employers search and match in the labor market. Those who meet decide whether

to form an employer-employee relationship and bargain to determine wages. Workers make

decisions today knowing their decision will affect their position in the labor market tomorrow.
2E.g. Kredler (2014).
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They possess heterogeneous, multidimensional skills and use their skills to perform tasks of

varying complexity in manual and cognitive dimensions. These tasks define occupations.

Tasks reduce the dimensional space of occupations, facilitating the inclusion of variety of

occupations in structural estimation. Task complexity characterizes the skill level needed

to perform a task. Naturally, differences between the worker’s skill level and a job’s task

complexity characterize skill mismatch (i.e. over/under-qualification). This concept provides

a natural framework to analyze job selection. Some workers lack the skill level needed in

some dimension for a job but others have it. Wages guide workers away from jobs they

perform poorly. The model shares the above features with Lise and Postel-Vinay (2016)

but in contrast features changes in productivity and the distribution of skill requirements

(i.e. skill demands) over time. We cannot fully observe productivity or the distribution

of skills demanded or supplied in the data. However, the model imposes enough structure

on the data to allow us to draw inference on these latent objects. I discipline the model’s

parameters using cross-sectional and longitudinal-based moments from US micro data.

The estimated model reproduces numerous aspects of US cross sectional data observed

from 1979 to 2010. These aspects include decadal changes in employment shares and average

wages across occupational groups and the rise in wage dispersion. The model also replicates

the varying patterns of inequality expansion (1980s, 2000s) and contraction (1990s) at the

bottom half of the wage distribution. Given a good model fit, I perform a series of decom-

positions to dissect how the model reconciles occupational and wage changes. The model

sheds light on what circumstances led to wage polarization in the 1990s despite consistent

job polarization. Job polarization refers to a rise in the employment shares of low and

high-skilled occupations at the expensive of medium-skilled occupations. Wage polarization

refers to wage compression in the wage distribution below the median and expansion above

it. The model infers that production technology shifted away from general skills to specific

skills (e.g. cognitive, manual) in the 1980s and then away from manual skills towards cog-

nitive skills in the 1990s, causing wage polarization during this period. Throughout, the

distribution of skill demands shifts from manually complex to cognitively complex tasks,
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causing job polarization. Changes in the distribution of skill endowments and skill demands

are just as important as changes in productivity to match occupational and wage changes.

Selection effects play a major role in replicating the data. Estimates of changes in skill

demands noticeably differ depending on the agents’ horizon of foresight over future changes

in productivity and skill demands.

The model permits comparisons of prominent explanations for skill demand shifts and

leads to insight about what forces drove changes in skill demand over the 1980s, 1990s, and

2000s. The literature on wage inequality and job polarization propose an array of explana-

tions behind shifts in labor demand ranging from the adoption of labor-saving technology

(automation) to increased access to cheap labor abroad (offshoring).3 Classical, closed econ-

omy determinants of labor demand include technology (neutral vs. labor-augmenting vs.

capital-augmenting) and the price of physical capital. Open economy considerations include

the relative price of import goods, i.e. import competition. I take these prominent factors

and examine how well they account for changes in the distribution of skill demands.

Two major issues arise in attempting to evaluate these explanations. First, we often

observe either limited or low frequency data regarding technological change. For example,

we observe different types of capital adoption (e.g. machinery versus transport equipment)

annually in cases where we observe them over a long horizon (10+ years). Low range or low

frequency time series data make distinguishing between genuine and spurious correlations

challenging. I exploit cross-sectional variation in task complexity between occupations and

variation in industry concentration across occupations to overcome this challenge. Second,

it remains unclear in many studies how much the factors explored contribute to changes

in the occupational and wage distributions at the national level. These studies typically

exploit cross sectional variation at the country, industry, firm and local area levels.4 Studies

exploiting variation at the cross-country level do not speak to particular national experiences.

Aggregating effects across industries, firms, or local areas is non-trivial, because demand-
3This literature is too large to survey here. Autor (2015) extensively surveys technological change.
4Firpo, Fortin, and Lemieux (2011) provide a notable exception, however they only look at the impact

of some factors on the overall wage distribution − not the occupational employment or occupational wages.

52



shifting factors can induce broad, national-level general equilibrium responses like labor

reallocation across sectors or spending multiplier effects.5 These effects may amplify or

dampen the overall demand impact of any given factor, which summing up local effects may

fail to capture.6 I take an agnostic stance on how skill demands shifted and use the model to

estimate them. The model presents a picture of what happened to skill demands nationally

as it represents the whole of the US labor market from 1979 to 2010, circumventing this

second challenge.

I perform variance decompositions to measure the contribution of the prominent expla-

nations put forward to explain changes in the distribution of skill demands. First, I consider

measures of task content to examine what job characteristics not modeled account for skill

demand shifts. Task content differs from task complexity. For example, sales and crafts-

men jobs require a medium level of cognitive skills even though the content of each job

differs greatly. I map cognitive and manual task complexity in the model to occupational

task content in the data. I find that demand increased mainly in task areas that require

interpersonal skills like negotiation and persuasion. Meanwhile, demand decreased mainly

in areas populated with automatable (i.e. “routine”) tasks. However, this risk of automation

has little explanatory power after controlling for manufacturing and construction industry

trends. In contrast, demand growth in interpersonal task areas remains a large explanatory

factor for demand shifts even after controlling for industry trends. Jobs more vulnerable

to being shipped overseas (i.e. offshored) actually increased in demand on average in the

1990s, all else equal. These jobs include ones which require high cognitive skills but little

face-to-face contact like economists and accountants. Next, I measure the contribution of

industry trends, capital adoption (to capture technological change), and import competi-

tion from China. Decompositions show information and communications technology (ICT)

drove changes in skill demands in the 1990s to a large extent. This evidence supports the
5Reallocation refers to labor moving to other area in response to a negative shock. Multiplier effects refer

to Keynesian-type spending multipliers.
6Acemoglu, Autor, Dorn, Hanson, and Price (2016) argue reallocation and multiplier effects on labor

demand caused by increased Chinese import competition take place mostly within local areas and thus
aggregating local area effects reflects the national impact.
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narrative that ICT developments spurred much demand for jobs requiring interpersonal and

social skills. Machinery and transport equipment adoption provide some explanatory power

for changes in the 1980s, while drivers of demand in the 2000s remain more mixed. Overall,

industry trends and technological progress explain much of the shifts in skill demands, yet

a sizable portion (43%) of these changes remain unexplained.

2.1.1. Connected Literature

This paper relates to several dense and interconnected literatures. The challenges mentioned

provide an organizing principal to parse this dense literature and place this paper into

context.

Determining the endogenous allocation of workers to jobs dates back to Roy (1951) whose

model remains widely used to frame the endogenous allocation of workers to jobs (Boehm,

2017; Autor and Dorn, 2013; Autor and Handel, 2013; Yamaguchi, 2012). In a standard Roy

model, workers possess specific heterogeneous skills, and competitive skill prices allocate

workers across jobs. While a good foundation, this setup ignores dynamic decision making

and labor market imperfections. Consequently, the Roy model mischaracterizes a set of rich

and potentially important outcomes surrounding occupational choice which the dynamic,

structural model here captures. Work dating back to Willis and Rosen (1979) supports the

notion that workers make dynamic career decisions, forecasting their future earnings to make

schooling and occupational choices.7 Dynamic decisions change selection and wage setting

incentives in the presence specific human capital. For example, Chari and Hopenhayn (1991)

show wages in declining “vintages” (e.g. manufacturing jobs) face countervailing pressures

in the presence of specific human capital. On one hand, new hires need an incentive to

acquire and maintain specific skills in a job which has increasingly less productive value

elsewhere and high risk of layoff. This pressures employers to pay higher starting wages

to fill vacancies. On the other hand, older workers become stuck in this occupation over
7E.g. Keane and Wolpin (1997); Heckman, Lochner, and Taber (1998). Dynamic decisions refers to the

feature that workers take the future into account for their decision today. It seems unlikely workers suddenly
become myopic entering the labor market.
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time, so the employer need not compensate them as much to stay.8 Average wages in the

occupation may rise if the former force dominates. The Roy model can only reconcile wage

increases with higher demand or selection of better workers into the job. Neither need

occur in this example. The interaction between labor market imperfections and dynamic

considerations (i.e. the inability to easily move to a new job) drive wage dynamics here.

Thus, the competitive lens of the Roy model misinterprets this scenario.

Task-specific, heterogeneous human capital provides a way to incorporate occupations

without a heavy computational burden and model unobserved skill evolution. Task-specific

means this human capital only helps perform a specific task. Workers differ in their stock

of human capital, making it heterogeneous. Task-specific human capital emerged in the

job/wage polarization literature to explain non-monotone changes across the wage distribu-

tion (Acemoglu and Autor, 2011). Papers apply this framework to understand phenomena

like occupational mobility (Sanders, 2016) and why skills reward differently across occupa-

tions (Yamaguchi, 2012).9 Even more papers use it in the Roy occupational choice framework

to explain the drivers of job and wage polarization. Datasets like The Dictionary of Oc-

cupational Titles (DOT) and O*NET provide information on tasks to estimate this class

of models, while datasets like the National Longitudinal Survey of Youth (NLSY) provides

information to estimate pre-labor market entry skills which evolve according to the model.

The model here adopts this framework.

Structural and reduced form literatures provide differing ways to deal with unobserved

skill demand and supply. In the structural literature, Lindenlaub (2017) estimates the static,

competitive equilibrium of a multidimensional assignment model. Task, skill, and wage data

identify skill supply and demand as well as productivity in the model. She then uses the

model to explain wage changes over the 1990s and 2000s. Changes in production technology

parameters come as an unanticipated shock and wages fully adjust. The model provides

valuable insights into the mechanics of wage polarization where workers may switch ranks.

While useful to examine wage changes, the assignment equilibrium of Lindenlaub (2017)
8Their skills are specific and increasingly less valued elsewhere.
9Sanders and Taber (2012) provide an extensive overview of this literature.
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remains unsuitable to address job polarization or other changes in the occupational struc-

ture.10 Changes in production complementarities drive wage polarization in this frictionless,

static assignment model. However, this frictional, dynamic model says changes in the distri-

bution of skill supply and skill demand appear just as important as changes in productivity

when matching both occupational and wage changes.

I build directly on Lise and Postel-Vinay (2016). Their multidimensional skill, search

model specifies how skills evolve to gain insight on the role of skill accumulation and mis-

match over a worker’s life cycle. There, changes in the occupation structure only arise from

job selection − not changes in the distribution of skill requirements or productivity. The

distribution of skill requirements and productivity parameters remain fixed.11 They esti-

mate their model to match moments in the NLSY1979 male cohort and examine the lose

due to skill mismatch. In contrast, I examine a transition path where the distribution of

skill requirements (i.e. demands) and productivity evolve and match moments on both the

NLSY1979 cohort (to discipline model parameters) and the cross-sectional distributions of

wages and occupations over time.

The reduced form literature uses econometric techniques to identify demand shifts con-

sistent with wage and occupational changes. It takes equilibrium employment and wage

outcomes as given and aims to separate out selection effects without estimating the under-

lying structural model.12 This literature proposes a variety of demand shifting factors like

import penetration and metrics for technology adoption to pin down demand shifts. Papers

exploit time-series, cross-sectional variation in these factors across firms (Bresnahan, Bryn-

jolfsson, and Hitt, 2002; Bartel, Ichniowski, and Shaw, 2007), industries (Autor, Katz, and

Krueger, 1998), countries (Michaels, Natraj, and Van Reenen, 2014; Goos, Manning, and

Salomons, 2014), and local areas (Autor, Dorn, and Hanson, 2013; Autor and Dorn, 2013;
10See Footnote 57 in Lindenlaub (2017).
11An obvious way around this drawback is to estimate the equilibrium of the Lise and Postel-Vinay (2016)

over sub-periods where skill requirements and technology remain fixed. I show this estimation approach
matches wages changes well but fails to match wage and employment changes at the occupational level. It
also precludes any analysis on the role of changing expectations in job polarization and wage determination

12In contrast, the structural approach puts structure on selection effects and equilibrium outcomes, aiming
to use the model to make inference about the data.
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Acemoglu and Restrepo, 2017). I view my structural approach as complementary to this

literature. It provides a comprehensive framework in which to compare and contrast some

of the demand-shifting economic forces that these papers present. The model’s job selection

mechanism makes the effect of changes in skill demands on wages ambiguous at both the

individual and occupational levels. This ambiguity allows the model to match seemingly

contradictory changes in employment and wages. Such ambiguity also exists in competitive

models on the aggregate level like Boehm (2017) and Kredler (2014). Boehm (2017) employs

a static, perfectly competitive Roy model where selection effects (also referred to as sorting)

generate ambiguity at the aggregate level. Increased demand for a task reallocates workers

across jobs. Occupational wages may rise or fall depending on the skill distribution of the

workers who move. In this paper, workers reallocate, but search and matching frictions affect

reallocation. Kredler (2014) employs a dynamic model of human capital and technological

change. Wage dynamics generate ambiguity at the occupational level.13 Wages rise as an

occupation contracts to compensate entering workers for a shorter career. Similarly, wages

may rise as prospects of a job-to-job move worsen in my environment. Experienced workers

face wage loses as their skills become obsolete.14 All else equal, average wages within an

occupation may rise or fall with occupational contraction, depending on the distribution of

entrants and experienced workers.

2.2. Model

2.2.1. The Environment

Time is discrete. The economy consists of workers and jobs. Workers enter and exit the

labor market exogenously. Workers may be employed, unemployed, or out of the labor force.

They live finite lives and possess human capital also referred to as skills. All workers possess

a non-separable bundle of general, cognitive and manual skills denoted by x ∈ X . Workers
13Kredler (2014) constructs a dynamic model based on the two-period model of Chari and Hopenhayn

(1991).
14Their skills become obsolete, because human capital is specific to their occupation or vintage. Entering

workers do not possess as much occupation-specific human capital, so obsolescence does not drive down
starting wages. In Kredler (2014), human capital solely depends on the level of experience in an occupation
or vintage whereas here it can also depend on work history.
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use their skills to do tasks. Cognitive and manual skills are task-specific, meaning manual

skills do not contribute to doing cognitive tasks and vice versa. General skills affect the

overall efficiency level doing any task. Skills reflect task complexity.15

Employers or firms offer a job as in the standard Mortensen-Pissarides framework

(Mortensen and Pissarides, 1999). A job consists of a non-separable bundle of cognitive

and manual skill requirements (or demands) denoted by y ∈ Y. Skill requirements differ ac-

cording to the firm’s production technology. Workers search for jobs and supply their skills

to a firm with whom they match. Skill requirements reflect the task complexity required

for a job. Employers post job vacancies and draw skill requirements from the distribution

F(y). Matched employers use their technology and the worker’s skills to produce output.

Employers pay workers wages thereby splitting the total value (or surplus) created from

the worker-employer match. f(x,y) is the flow value of output from a match between a

worker with skills x and a firm requiring skills y where f : X ×Y → R+. c(x,y) is the flow

disutility of labor for worker x at firm y where c : X × Y → R+. b(x) is the flow utility

of an unemployed worker x where b : X → R+. In what follows, the subscript of t denotes

that the function is time dependent.

Workers and firms have a common discount factor β̃. As mentioned, worker transitions in

and out of the labor force are exogenous. Workers entering the labor market at time t draw

their skills from an exogenous distribution Vt(x). Workers enter the labor market at time t,

aged a and draw initial skills denoted by x(0). They exit the labor market permanently with

age-dependent probability ξa and exit with certainty at age 65.16 The distribution of worker
15Task-specific skills are coarser and more transferrable than occupation-specific skills. This task-specific

framework based on task complexity has two important advantages. First, the framework accomodates
many occupations with a much smaller number of parameters. With occupation-specific skills, the number
of model parameters (e.g. productivity levels) increases with each additional occupation. In contrast, this
number does not grow with the number of occupations with task-specific skills, allowing us to accomodate
many occupations. Second, this framework provides a natural explanation for why different occupations have
similar pay. Similar pay is due to the similar complexity of the tasks these occupations require (Yamaguchi,
2012).

16In Cortes, Jaimovich, and Siu (2016), workers decide whether to enter the labor market before deciding
where to work and do not know their skill level ex-ante. They decide based the realization of a stochastic
process and the expected returns to working. Implicitly here, the worker entry-exit decision depends on age,
a stochastic process, and mandatory retirement at 65. I use the corresponding reduced-form probabilities in
this model. Explicitly, worker entry-exit may depend on factors like the value of home production or leisure.
Exogenous entry-exit probabilities will capture these decisions so long as the ex-ante expected labor market
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skills in the economy is denoted byWt(x). The skill requirements distribution, Ft(y), evolves

exogenously whereas the worker skills distribution, Wt(x), evolves endogenously when there

is human capital evolution as I will describe shortly.

Workers and firms engage in random search in a single labor market. Employed and

unemployed workers encounter an employer in each period with probabilities Me,t and Mu,t,

respectively. Given an encounter, a job offer is drawn from the commonly known distribu-

tion F(y). Jobs may be destroyed with exogenous probability δ. Enduring matches face a

permanent productivity shock with probability ω where the firm draws new skill require-

ments from F(y).17 Workers and firms take the distribution of skill requirements as given

at time t and forecast it over future dates.18 A worker’s task-specific skills at a job requiring

skills y evolve according the law of motion h : X × Y → X where

x(t+ 1) = h(x(t),y), (2.1)

thus (2.1) defines human capital (or skill) evolution at job y. I assume h satisfies the

following:

lim
t→∞

h(x(t),y) = y, (2.2)

lim
t→∞

h(x(t),0) = x. (2.3)

(2.3) says the skills for unemployed workers (for whom y = 0) depreciate towards a lower

bound (x) in the support X as the duration of their unemployment spell grows. (2.2) defines

learning-by-doing. A worker’s skills converge to the skill requirements of the job as they

spend time on-the-job. Workers with skills exceeding those required lose their excess skill

level over time, while workers learn skills on-the-job for which they remain deficient. I call an

employed worker over-qualified in a skill dimension when that worker’s skill level exceeds the

return depends only on age. This will be the case if workers learn their specific skills only after entry.
17The distribution of firm skill demands evolves exogenously. Although unmodelled, these skill require-

ments evolve with technological change. I introduce technological innovation on-the-job through this per-
manent shock to skill requirements.

18I consider the cases where all agents have no foresight and perfect foresight over this distribution.
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required skill level and under-qualified in a skill dimension when that skill level falls short

of the required skill for the job. With learning-by-doing, job selection determines human

capital evolution, because the job selected determines gains and loses of skill.19 Thus, the

distribution of worker skills becomes endogenous if h(x(t),y) 6= x ∀(x,y, t).

Timing

At the start of each period, the worker is employed, unemployed, or out of the labor force

and their skills have evolved accordingly. For an employed worker, the match breaks up

exogenously with probability δ and the worker leaves the work force with probability ξa. If

still employed, then worker produces f(x,y) with their current firm. Next, the worker meets

a new employer with probability Me,t and then receives a job offer (y). If a meeting occurs,

the worker and potential employer decide whether to form the match and then proceed

to negotiate the split of the surplus. If they both accept the match, then the employed

worker starts the next period with the new employer, leaving the current employer. If the

worker does not meet an employer, then the current match may experience a permanent

shock to skill requirements (w.p. ω). If faced with the permanent shock, the employer and

worker decide whether to remain matched or separate.20 The worker starts the next period

unemployed in the case of a separation following the shock.

An unemployed worker (x) receives an exogenous utility flow b(x) at the start of the

period. Next, the worker meets an employer with probability Mu,t and then receives a job

offer (y). If a meeting occurs, the employer and worker decide whether to form the match

and proceed to negotiate the split of the surplus. If they both accept the match, then the

newly employed worker starts the next period with the employer, barring a separation or

labor market exit at the start of the next period. If the match does not form or no meeting

takes place, then the worker stays unemployed the next period, barring a labor market

exit at the start of the next period. Workers out of the labor force exogenously enter as
19Job selection is equivalent to task or occupational selection in this model, because the combination of

tasks a worker selects defines their occupation.
20Matches terminate mutually if the surplus falls below zero, so workers quitting is equivalent to employers

firing them in this model. The worker may quit to go into unemployment in order to search again with the
meeting rate Mu,t.
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unemployed at the start of the period.

At the start of each period, an unmatched employer posts a vacancy at cost τ and

meets a worker with probability Mv,t. Upon meeting a worker, the employer draws skill

requirements (y) and then decides whether to form a match with the worker (x). If the

match forms, then they negotiate the split of the surplus and begin producing together

the next period. Matched employers produce f(x,y) with the worker at the start of each

period and then engage in negotiations if the worker meets another employer who makes

a poaching offer. Matched employers whose workers do not meet another employer may

experience a permanent shock to skill requirements (w.p. ω). If faced with the permanent

shock, the employer and worker decide whether to remain matched or separate. Newly

unmatched employers may post a vacancy tomorrow in the way described or freely exit the

labor market. Employers outside the labor market may freely enter at the start of the period

as an unmatched employer.

Bargaining Protocol

Workers and employers bargain over the total value (or surplus) generated by the match.

The outcome of this bargaining process determines the split of the surplus. The bargaining

protocol follows the sequential auction model of Cahuc, Postel-Vinay, and Robin (2006b).

Unemployed workers with bargaining power λ ∈ [0, 1] bargain with employers à la Nash.

Hence, unemployed workers take a share of the surplus equal to λ. Employers attempting

to poach employed workers compete with the worker’s current employer. If an employed

worker meets an employer offering skill requirements (y′), then the two employers engage

in Bertrand competition over the share of the surplus to give the worker. As result, the

worker receives a value equal to at least the surplus of the employer with whom the worker

generates lower surplus. This value is the worker’s outside option in the bargaining process.

The worker and employer with higher surplus then engage in Nash bargaining over the

surplus amount exceeding the worker’s outside option. Thus, a job-to-job transition only

occurs when the surplus for the poaching employer exceeds that of the current employer.

To illustrate the process, let S(x,y) denote the surplus of a match of employer with
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skill requirements y and worker with skills x. Let W (x,y, σ) denote the value the worker

receives in the match and σ denote the share of the surplus received. Suppose a meeting

on-the-job occurs and S(x,y′) ≥ S(x,y) > W (x,y, σ) so that the poaching employer with

y′ generates higher surplus with the worker than the current employer. The offer of y′

triggers a bidding war between the two employers, because the worker expects to gain

from renegotiating the wage contract, W (x,y, σ). The worker stands to gain in the case

where S(x,y) > W (x,y, σ). Bertrand competition causes employers y and y′ to bid until

W = S(x,y) at which point employer y loses the bidding war. Then, employer y′ and

the worker Nash bargain over S(x,y′)− S(x,y) where the worker has bargaining power λ.

Hence, the share of the surplus for the worker at the new employer (σ′) is

σ′ = σ(x,y′,y) =
λ[S(x,y′)− S(x,y)] + S(x,y)

S(x,y′)
= λ+ (1− λ)

S(x,y)

S(x,y′)
∈ (0, 1]. (2.4)

The employed worker takes a value W (x,y′, σ′) equal to the lower surplus of the two em-

ployers plus a share of the surplus gain from the job-to-job move.21 The corresponding

worker’s surplus share consists of the unemployed worker’s share (λ) and an additional

amount generated by competition between the employers for the worker.22

2.2.2. Worker’s Problem

Let zt denote the aggregate state variables Ft, ft, Me,t, and Mu,t. Let any function T (·; zt)

be denoted by Tt(·) and Et denote the expectation over zt+1.23 As mentioned, y denotes the

skill requirements of the current employer of a worker. y consists of cognitive (yc) and manual

(ym) skill requirements. x denotes the skills of the worker which evolve to x′ next period.

x consists of cognitive skills (xc), manual skills (xm), general skills (xg), and age (a). For

workers, I define an age effective discount factor βa = β̃(1− ξa). Denote the value functions

for an unemployed and employed workers at time t as Ut(x) and Wt(x,y, σ), respectively.
21I assume the share of the surplus stays constant until an on-the-job meeting triggers renegotiation.

Assuming the share stays constant until renegotiation does not affect mobility decisions but does affect the
time profile of wage payments as Lise and Postel-Vinay (2016) note. Total value (or surplus) determines
mobility. I also assume unemployed workers accept job offers when indifferent.

22I elaborate on the reasons for using this protocol in Appendix B.1.2.
23Thus, any function subscripted with t also has the argument zt.
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σ denotes the employed workers endogenous share of the total surplus. I denote the total

surplus at time t by St(x,y). I assume σ remains constant prior to renegotiation.24 Since the

worker receives a constant share σ of the surplus St(x,y), Wt(x,y, σ) = σSt(x,y)+Ut(x). I

assume linear utility in wage income.25 An unemployed worker receives a flow income b(x).

Thus, the unemployed worker’s value function Ut(x) imposing the bargaining protocol solves

Ut(x) = b(x) + βaEtUt+1(x′) + βa(1− δ)λMu,tEt
∫
Y

max{0, St+1(x′,y)} dFt(y). (2.5)

where x′ = h(x,0) for xm and xc. The value of being unemployed consists of the flow income

b(x), the age-discounted present value of being unemployed tomorrow, and the present value

of the expected share of the surplus if the worker finds employment.

Let wt(x,y, σ) be the wage implementing the employed worker’s wage contract at time

t. The employed worker’s value function Wt(x,y, σ) given σ and imposing the bargaining

protocol solves

Wt(x,y, σ) = wt(x,y, σ)− c(x,y) + βaEtUt+1(x′) + βa(1− δ)(1−Me,t)σEtS̃t+1(x′,y) +

βa(1− δ)Me,t ×

Et
∫
Y

max{σŜt+1(x′,y), Ŝt+1(x′,y) + λ[St+1(x′,y′)− Ŝt+1(x′,y)]}dFt(y′),(2.6)

where

Ŝt+1(x,y) = max{St+1(x,y), 0}

S̃t+1(x′,y) =(1− ω)Ŝt+1(x′,y) + ω

∫
Y

max{St+1(x′,y′), 0}dFt(y′)

subject to (2.1). As in Hagedorn, Law, and Manovskii (2017), I assume a small offer writing

cost ε prevents employers with lower surplus than the current employer from engaging in
24This assumption pins down wages in the model, because wages adjust to deliver this constant surplus

split.
25I thereby assume risk neutrality for workers and firms. The assumption significantly increases the

tractability of the model at the cost of precluding any kind of meaningful welfare analysis.
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Bertrand competition if an on-the-job meeting occurs so that σ′ = σ in equilibrium if

S(x,y) ≥ S(x,y′) > W (x,y, σ).26 The value of employment with firm y consists of the wage

less disutility of labor, the present value of unemployment, and the share of the surplus if the

worker does or does not meet a firm while searching on-the-job or experiences a permanent

change to skill requirements after no meeting on-the-job.

2.2.3. Employer’s Problem

As described, an unmatched employer decides whether to post a vacancy at time t and then

draws skill requirements from Ft(y) if it meets a worker. Employers draw a new y at each

worker meeting. Hence, the value of a vacancy is the same for all unmatched employers

ex-ante. Let τt be the cost of posting the vacancy at time t and let Vt be the value of this

vacancy posting. Let Pt(x,y, σ) be the value of producing with a worker of type x and

delivering surplus share σ. Let Ce,t be the probability of meeting an employed worker and

Cu,t be the probability of meeting an unemployed worker − all conditional on meeting a

worker. Then the value of a vacancy Vt solves

Vt = −τt + (1− δ)Mv,tCu,t(1− λ)Et
∫
Y

∫
X|u

βa max{0, St+1(x,y)}dFt(y)dWt(x|u) +

(1− δ)Mv,tCe,t(1− λ)×

Et
∫
Y

∫
Y×X|e

βa max{0, St+1(x,y)− Ŝt+1(x,y′)}dFt(y)dWt(x,y
′|e) (2.7)

where Wt(x|u) and Wt(x,y
′|e) are the distributions of unemployed workers and employer-

employee matches at time t, respectively. I assume free entry of employers which drives the
26This restriction prevents bidding up of wages on-the-job in order to restrict attention to human capital

in terms of producing wage growth over job tenure in the model. An obvious extension would be to allow
both human capital accumulation and bidding up of the share of surplus on-the-job (so-called job shopping).
In Appendix B.1.3, I show the wage and surplus function without this restriction.
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value of vacancy to zero so that

τt = (1− δ)Mv,tCu,t(1− λ)Et
∫
Y

∫
X|u

βa max{0, St+1(x,y)}dFt(y)dWt(x|u) +

(1− δ)Mv,tCe,t(1− λ)×

Et
∫
Y

∫
Y×X|e

βa max{0, St+1(x,y)− Ŝt+1(x,y′)}dFt(y)dWt(x,y
′|e). (2.8)

Alternative assumptions on free entry and the timing when employers learn their types are

possible27, however I choose this timing and the free entry assumption for tractability as in

Lise and Postel-Vinay (2016).

The value of producing solves

Pt(x,y, σ) = ft(x,y)− wt(x,y, σ) + βa(1− δ)(1−Me,t)(1− σ)EtS̃t+1(x′,y) +

β(1− δ)Me,tEt
[

max{0, (1− σ)St+1(x′,y)} · ρ(x,y)
]

(2.9)

where

ρ(x,y) =

∫
Y

1{St+1(x′, ỹ) < St+1(x′,y)}dFt(ỹ)

subject to (2.1). ρ(x,y) is the probability the worker at y does not draw an employer

with higher surplus.28 The matched employer receives output less wages and the share of

the surplus from producing next period which depends on whether or not another employer

poaches the worker. If the worker does not meet another employer, then the current employer

draws new skill requirements (w.p. ω).29 Pt(x,y, σ) = (1−σ)St(x,y)+Vt since the employer

takes a constant share of the surplus,. It follows that the total surplus of a match (x,y) is

St(x,y) = Wt(x,y, σ)− Ut(x)︸ ︷︷ ︸
σSt(x,y)

+Pt(x,y, σ)− Vt︸ ︷︷ ︸
(1−σ)St(x,y)

. (2.10)

27See Hagedorn, Law, and Manovskii (2017). However, their model is one dimensional, and the distribution
of y is normalized to uniform for identification. This model does not impose these restrictions.

28
1{·} denotes the indicator function.

29The match only draws new skill requirements if the worker does not meet another employer. I impose
this structure to make the model more tractable in terms of solving for the surplus.
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2.2.4. Surplus, Wages, and Equilibrium Concept

Now we can derive the surplus function using (2.5), (2.6), (2.9), and the free entry assumption

which implies that Vt equals zero. Given meet probabilities, we can also solve St(x,y)

backwards, because βa = 0 (ξa = 1) for workers aged 65 and older. These workers leave the

labor force due to mandatory retirement as stated earlier. The surplus for a match where

the worker retires next period is

St(x,y) = ft(x,y)− c(x,y)− b(x) (2.11)

which is just the static flow of the surplus. For non-retiring workers, the surplus is

St(x,y) = ft(x,y)− c(x,y)− b(x) + βa(1− δ)Et
[
− λMu,t

∫
Y

max{0, St+1(x′, ỹ)} dFt(ỹ) +(
1−Me,t

)
S̃t+1(x′,y) + Me,t · ρ(x,y) ·max{0, St+1(x′,y)}+

Me,t · (1− ρ(x,y)) ·
[
Ŝt+1(x′,y) + λ

(
S̄t+1(x′,y)− Ŝt+1(x′,y)

)]]
, (2.12)

S̄t+1(x′,y) =

∫
Y
1{Ŝt+1(x′,y) < St+1(x′, ỹ)} · St+1(x′, ỹ) dFt(ỹ)∫

Y
1{Ŝt+1(x′,y) < St+1(x′, ỹ)}dFt(ỹ)

.

Assuming the match survives to next period (w.p. 1− δ), the surplus consists of the static

flow and the continuation value. The continuation value consists of four terms. The first

term reflects that the worker can quit and search again as an unemployed worker and expects

to obtain the value shown. It enters negatively into the surplus, because the incentive to

form the match falls if the worker’s incentive to quit the next period rises. The second and

third terms consist of two parts. The first part is the probability that the worker does not

leave the match. The worker only stays if 1) a meeting does not place (w.p. 1 −Me,t) or

2) a meeting takes place but the poaching employer draws skill requirements that do not

deliver higher surplus (w.p. Me,tρ) given the worker’s x. The second part is the surplus next

period, barring a mutual separation due to a negative match surplus. Thus, the second and

third terms are the value coming from the expectation to remain in the match. Naturally,
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the fourth term is the value coming from the expectation to leave the match for another job.

Me,t(1 − ρ(x,y)) is the probability of meeting an employer who draws skill requirements

that deliver a higher surplus for the worker’s x. The second part of this last term consists

of the expected value the worker obtains from transitioning to a new employer.

(2.12) shows how the distribution of skill requirements and other parameters governing

the surplus affect the total value of a match and consequently match formation and contin-

uation. The worker and the employer care about who the worker can meet next, because

some of the total gain from a job-to-job move goes to the worker. The employer extracts

some of that gain today. This potential gain affects the current surplus and in turn affects

match formation and match continuation.30 Thus, expected changes in Ft(y) due to drivers

of job polarization also influence current job selection through the value of a potential or

current match.

The effect of changes in Ft(y) on the value of a match are generally ambiguous. Let us

refer to the probability of drawing a better match in terms of surplus (1−ρ) as the worker’s

job prospects.31 Suppose ω is zero and Ft changes once permanently such that ρ(x∗,y∗)

rises for the worker x∗ at employer y∗. In other words, the worker x∗’s job prospects worsen

at the current employer y∗. This change lowers the option value of searching again as

an unemployed worker and increases the value of continuing the match tomorrow. Both

of which increase the surplus. Intuitively, the current match becomes more valuable to

the worker as job prospects worsen. However, worsening prospects ambiguously affect the

expected value from leaving to a better job. It lowers the probability of the worker finding

a better match (1− ρ), but it may increase or decrease the expected value of a new match,

S̄t+1. This effect depends on how F changes. Suppose the probability mass on matches

with the highest surplus for x∗ move to matches with the lowest surplus, then S̄t+1 falls. In

this case, the expected value from leaving the current match falls, lowering the value of the
30I use match formation and job selection interchangeably. The employer and worker do not care about

who the employer can meet next except vis-à-vis the option value of the employer searching again (i.e. the
value of a vacancy). Employers do not search for replacement employees on-the-job as workers search for
new employers. Employers searching on-the-job to replace the worker adds an additional and potentially
interesting layer of complexity that I do not take on here.

31Better also refers to cases where surplus is at least as good.
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current match. This effect offsets the increase from the first three continuation terms. Thus,

worsening job prospects have an ambiguous effect on the value of a match. Hence, we cannot

determine a priori the selection effects of a change in Ft(y). Intuitively, this effect should be

ambiguous. Worsening job opportunities make a job both more valuable and less valuable.

A job becomes more valuable when finding a better one becomes more difficult, but a lack of

future opportunities makes the job less valuable. These opposing considerations complicate

predicting the allocative impact of job-polarizing skill requirements.

An employer delivers the worker’s share of the surplus through wages. Combining (2.12),

Wt(x,y, σ) = σSt(x,y) + Ut(x), and substituting in (2.6) produces the following wage

equation

wt(x,y, σ) = σft(x,y) + (1− σ)c(x,y) + (1− σ)b(x) + (1− σ)βa(1− δ)×

Et
[
λMu,t

∫
Y

max{0, St+1(x′,y)} dFt(y)−

Me,t · (1− ρ(x,y))
(
λS̄t+1(x′,y) + (1− λ)Ŝt+1(x′,y)

)]
. (2.13)

The first three terms consist of the worker’s share of the static surplus (2.11) plus the labor

disutility, c(x,y), and outside option, b(x), flows. The potential gains from a transition

to unemployment and a transition to another employer make up the continuation value’s

wage contribution. The wage increases with the attractiveness of unemployment in order

to deliver the share of the surplus promised and sustain the match. The attractiveness

of unemployment increases in the probability of meeting a new employer (Mu,t) and the

expected surplus associated with this meeting. The wage falls as the potential gains from

a job-to-job transition increase. In this manner, the employer extracts some of the surplus

gain from potential job-to-job moves. An increase in potential job-to-job transition gains

arises due to either a higher meeting rate on-the-job (Me,t), better job prospects in terms of

potential matches (1 − ρ), higher future surplus at the current job (Ŝ), or higher expected

future surplus elsewhere (S̄). Deteriorating job prospects for the worker due to a fall in

1− ρ, S̄, or Ŝ increase the wage.
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(2.13) does not yield unambiguous predictions for wage changes at the individual or

aggregate level if F changes. Consider an economy with only two occupations with skill

requirements ŷ and ỹ, respectively, and a set of workers whose skills are such that surplus is

highest with their current employer. Then, a fall in the probability mass on ŷ decreases 1−ρ

and S̄ and thus increases the wage for a worker at employer ŷ. However, the gains from an

employment to unemployment transition fall, thus decreasing the wage for this worker and

offsetting the increase just described. In this manner, the contraction of an occupation puts

upward pressure on wages, but wages in the occupation may rise or fall. The wage effect for

an individual depends on which change in the continuation value dominates. Naturally, the

effect on average wages within an occupation depend on the distribution of the individuals

within the occupation and how their individual changes aggregate.

Equilibrium Concept

We can now consider an equilibrium for this model. I focus on an equilibrium concept

where the economy transitions from one steady state in 1979 to another in 2010. This

equilibrium path is the outcome of decentralized, optimal individual behavior over time

given beliefs about objects that change over time and taking others behavior as given. A

transition path equilibrium allows changes in skill requirements and productivity over time,

which generate changes in the equilibrium wage distribution and occupational structure.

Skill requirements or demands, Ft(y), evolve over time to produce job polarization in this

model.32 Productivity evolves (ft) over time and contributes to changes in wage outcomes

and changes in the occupational structure through sorting (also referred to as selection

effects).

In this model, workers and employers must form beliefs over how these skill demands

will evolve in order to make decisions about what matches to form and determine wages.

The two most straightforward albeit extreme cases are perfect foresight and no anticipation.

Under perfect foresight, all agents know the entire path {Ft(y)}Tt=0 and {ft(x,y)}Tt=0 (i.e. zt)

following an unanticipated change at time 0. Under no anticipation, changes in zt surprise all
32But not just job polarization. Ft(y) also affects the wage distribution.
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agents each period and zt remains their best guess of zt+1. Comparing these cases provides

insight on the importance of expectations over the future demand for an occupation in job

selection and wage determination.

In Appendix B.1.5, I define the general rational expectations equilibrium and explain

the difficulties in solving for it outside of a steady state.33 I then make the case for this

more restrictive but more easily solved partial equilibrium, which I use to take the model to

the data. Here, I provide the definition. A partial equilibrium must consist of the solutions

to (2.5), (2.6), and (2.9) which characterize equilibrium wages (2.13) given that free entry

assumption drives equilibrium Vt (2.7) to zero.

Definition 2.2.1 (Partial Equilibrium Path).

Given {zt}Tt=0, the tuple {Ut(x),Wt(x,y, σ), Pt(x,y, σ), Vt, wt(x,y, σ)} form a partial equi-

librium path from time 0 to time T if the following hold.

i) (2.5), (2.6), and (2.9) solve Ut(x), Wt(x,y, σ), and Pt(x,y, σ), respectively

ii) wt(x,y, σ) satisfies (2.13) for all employed workers

iii) Vt = 0 at every period t by (2.8) [Free Entry]

iv) Agents hold beliefs over the path of {zt}Tt=0, i.e. {Ft(y)}Tt=0 and {ft(x,y)}Tt=0

Solving this equilibrium amounts to backwards solving (2.12) from (2.11) at time T back

to time 0 when the unanticipated changes to zt hit. If the agents’ beliefs coincide with the

actual paths of Ft and ft, then it can be a considered a rational partial equilibrium path.

2.3. Data

Use of the task framework became popular with Autor, Levy, and Murnane well over a decade

ago. Naturally, the datasets used to analyze the task content of occupations in the US are

well-known, well-documented, and widely used now. These datasets include the Current

Population Survey (CPS) and National Longitudinal Survey of Youth (NLSY) for workforce
33Exogenous meeting rates make the equilibrium partial. Appendix B.1.5 endogenizes the meeting rates

to show the general equilibrium.
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data over time and the Dictionary of Occupational Titles (DOT) and the Occupational

Information Network (O*NET) for task content and complexity information. Estimating

the model requires time-varying information on hourly wages, employment shares and wages

across occupations, the equilibrium distribution of y, and the distribution of initial worker

skill endowments. The aforementioned datasets provide a means to obtain this information.

2.3.1. Wages and Employment Shares

Changes in the wage distribution and employment shares provide variation to estimate

productivity parameters and the distribution of skill requirements. I use the CPS to measure

changes across the wage distribution and employment shares from 1979 to 2010. I draw on

the Outgoing Rotation Group (ORG) of the CPS to do so. The CPS ORG consists of

roughly a quarter of the monthly CPS administered by the US Census Bureau. The Bureau

interviews households for 4 months, rotates them out of the survey for 8 months, and

rotates them back into the survey for a final 4 months. The ORG consists of individuals

interviewed in the last month of each rotation and provides point-in-time measurements

of wages for most workers. The March CPS Annual Social and Economic Supplement

(ASEC) provides household income and demographic data used extensively to study income

inequality.34 However, the March supplement does not provide point-in-time measures of

hourly wages in contrast to the CPS ORG questions. This point-in-time measurement makes

the quality of wage data in the ORG considerably higher than the ASEC (Lemieux, 2006).

From the CPS ORG, I pool monthly observations to construct an annual dataset of hourly

wages, occupations, and demographic information. I provide detailed information on dataset

construction, occupational harmonization, sample restrictions, and summary statistics in

Appendix B.2.1.

I estimate the model at the level of hourly wages for several reasons. First, the model

does not have an intensive margin with respect to labor supply (i.e. hours worked). Hourly

wages better reflects changes in productivity and skill requirements solely due to changes on

the extensive margin. Second, most workers (approximately 60%) in the economy receive
34See Heathcote, Perri, and Violante (2010) for example.
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hourly pay rates. The number of workers receiving hourly pay rates has also remained stable

around 60% since 1979.35 Examining wages and not total compensation raises the concern

that perhaps changes in non-wage benefits rather than productivity or skill requirements

explain changes across the wage distribution. The share of non-wage compensation has

arguably increased as shown in Sherk (2013), however the vast majority (approximately

80%) of total compensation still consists of wages according to macro-level data. Available

evidence suggests wages well reflect changes in the economic returns to a job even in the

presence of non-wage benefits (Katz and Autor, 1999). The lack of extensive individual-level

data on compensation composition over time makes it difficult to say whether increased non-

wage benefits account for wage polarization and expansion. Katz and Autor (1999) argue

from available evidence at the time that non-wage benefits actually tend to reinforce rather

than offset changes in the wage distribution we observe over the 80s and 90s.36 Thus, I judge

hourly wages to be a fair metric on which to examine job selection and pay decisions.37

Figure 5 shows changes at wage percentiles across the three decades I consider. The

left panel shows all workers and the right panel shows only men. The patterns for men

and women appear to differ slightly with more wage growth for women, however an overall

picture emerges. Wages expanded across the top wage distribution over all three decades.

Wages compressed at the bottom of the wage distribution in the 1990s, which we commonly

refer to as wage polarization. In the 2000s, some wage compression appears the very bottom

of the distribution, but overall wages did not expand or compress in the bottom half. This
35See Table 10 of Bureau of Labor Statistics (2016).
36Thus, implementing this model with wage data is not necessarily misleading despite missing out on

developments that affect non-wage compensation like healthcare costs. Wages still contain information
on productivity and skill requirement developments, which I make inference on using indirect inference as
opposed to an exact identification strategy. One could argue that employers and workers only care about
total compensation and not wages. Therefore, wages only carry partial information regarding pay and job
selection. This argument rests on the assumption that the employer can fully adjust the composition of
total compensation. If benefits come in standardized packages for example, then the employers will not
be neutral to the wage-benefit composition at the individual level. Recent evidence from Eriksson and
Kristensen (2014) suggests employers as well as employees face a nontrivial trade off in determining wages
and non-wage benefits. The presence of such a tradeoff increases the importance of wages with respect to
what information they carry.

37The availability of individual wage data compared to total compensation facilitates its widespread use
and use here. However, the debate as to whether wages are a sufficient metric to track the evolution of
returns to employment remains a contested and important area of research.
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Figure 5: Wage Percentile Changes (1979 to 2010)

figure confirms much of previous findings with respect to wage changes over these decades

(Mishel, Schmitt, and Shierholz, 2013).

I present occupational employment share and average wage changes using Acemoglu

and Autor’s (2011) broad grouping of occupations in Figure 6.38 They group occupations

into low-paid, medium-paid, and high-paid categories.39 The low-paid category consists

only of low-paid service occupations. The medium-paid category consists of sales, clerical,

administrative support, production, craft, repair, and operative occupations. The high-paid

category consists of managerial, professional and technical occupations. The top panel of

Figure 6 confirms the existing evidence regarding job polarization. We observe a relative

decline in middle-paid occupations throughout the 1980s and 1990s (Mishel, Schmitt, and

Shierholz, 2013; Lefter and Sand, 2011). We also see disproportionate growth in low-skilled

service occupations in the latest decade (Autor and Dorn, 2013). The right panel of Figure

6 shows only men. They exhibits similar employment share patterns.

Average wages within occupations diverge from employment share patterns. The gap in

average wages expands between occupations in the 1980s as wages overall spread out in the

1980s (Figure 5). Average wages polarize like wages overall in the 1990s as they rise less in

the middle-paid occupational group than the low and high-paid groups. However, women
38Several papers in the job polarization literature present these figures in terms of occupational skill ranks

using average wages in a reference year to rank occupations (Acemoglu and Autor, 2011; Autor and Dorn,
2013; Mishel, Schmitt, and Shierholz, 2013). I replicate and discuss these figures in Appendix B.2.6.

39In general, pay reflects skill level, so the literature often uses low-paid and low-skilled interchangeably.
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appear to drive this pattern as men show less wage growth in the low-skilled occupational

group. Average wage differences appear to expand in the 2000s, although not nearly as

strongly as in the 1980s. Looking only at men, we observe overall wage polarization even

though average occupational wages for men do not on strongly polarize between groups.

This observation suggests men in the middle-paid group moved down the wage distribution

by the start of the 1990s, and their partial wage recovery may account for some of the wage

polarization we observed.
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Figure 6: Employment Share and Average Wage Changes (1979 to 2010)

These occupational categories consider in Figure 6 do not yet map into the model prim-

itive regarding skill demands (y). I make use of task content/complexity data to map the

occupational data to skill requirements.

2.3.2. Skill Requirements

The DOT (1977) provides measures of task complexity along cognitive and manual dimen-

sions of skills at the occupation level. Importantly, the DOT features information gathered
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from direct observation of the tasks performed in an occupation and thus measures task

complexity independent of worker skills.40 The US Department of Labor infrequently up-

dated the DOT before replacing it with the Occupational Information Network (O*NET)

in the late 2000s. Even so, the DOT remains relevant to most of the period under consid-

eration. I manually update DOT task information using O*NET due to the emergence of

new occupations in 2003 where the DOT does not provide information. More recent work

like Lise and Postel-Vinay (2016) use O*NET instead of the DOT. I compare the DOT and

O*NET and argue the case for using the DOT here in Appendix B.2.4. Both the DOT and

O*NET come with the severe drawback that they only capture task changes between but not

within occupations.41 More recent attempts at analyzing task content within occupations

include the Occupational Requirements Survey (ORS) and Autor and Handel (2013). The

ORS only began releasing data in late 2016 (Bureau of Labor Statistics, 2017). Autor and

Handel collect representative survey data that allows them to capture differences in task

content within occupations at a point in time. Given limitations to data availability, the

DOT provides an acceptable and widely used means to obtain task measures.

I use the Dictionary of Occupational Titles combined with the CPS ORG to estimate

equilibrium skill requirements. Many papers like Autor, Levy, and Murnane (2003) and Ya-

maguchi (2012) use this merging method and data. They also provide detailed descriptions

and discussions of the DOT. I relegate those descriptions and discussions to Appendix B.2.2

and B.2.4 and focus on the main procedures here. I merge DOT measures into the CPS

ORG using Dorn’s harmonized occupational coding system (Dorn, 2009). This combined

CPS-DOT dataset contains DOT task measures on the occupational level and individual

weights to construct skill scores. From here, I construct cognitive and manual skill scores

using principle components analysis à la Yamaguchi (2012). I use general learning ability,

verbal ability, and numerical ability to estimate cognitive skill requirements. I use an array
40It would not be credible to use measures conditional on the distribution of worker skills to construct the

equilibrium distribution of y, because this (unobserved) distribution of worker skills changes over time as
well.

41I provide more detailed information about the DOT and O*NET datasets and their drawbacks in
Appendix B.2.2 and B.2.4.
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of other aptitudes to measure manual skill requirements, including physical strength, motor

coordination, finger dexterity, and manual dexterity. Appendix Table 30 contains details on

all these additional measures. I take the first principle component in each case and linearly

rescale it to the interval [0, 1].42 Some papers convert these task measures to percentiles,

however this transformation makes all occupations equidistant. I preserve the distance in

skill requirements between occupations, because this distance governs differences in output

and consequently differences in wages between occupations.
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Figure 7: DOT Equilibrium Skill Requirement Moments (1979 to 2010)

Figure 7 shows the resulting moments.43 We observe a rise (fall) in the mean level

of cognitive (manual) task complexity and increased dispersion in both dimensions of task

complexity. In addition, the (negative) correlation between cognitive and manual task com-

plexity falls until the last decade. I also show mean skill requirements for the major occupa-
42I could also use two exclusion restrictions and the first two principle components to identify cognitive and

manual skills. I implement this alternative approach, rotating the first two principle component scores based
on the restriction that general learning ability and motor coordination reflect only cognitive and manual
skill, respectively. This alternative approach yields cognitive skills with a correlation each year of at least
0.99 for cognitive skills and 0.96 for manual skills. Thus, the approach makes little difference with respect
to the final skill scores. I use the apporach of running two separate factor analyses for ease of interpretation.

43I smooth the time series of the moments to reduce sampling noise using Lowess with the optimal
bandwidth.
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tional and industry groups in Tables 8 and 9 from 1979 to 2010. The scores appear intuitive,

and the following hold on average. High-skilled (management, professional, technical) oc-

cupations require the most complex cognitive tasks and thereby the most cognitive skills.

Low-skilled service occupations require the least cognitively complex task and thus the least

cognitive skills. The middle-skilled occupations (clerical to products and crafts) require

varying amounts of cognitive task complexity but relatively higher manual task complex-

ity compared to low and high-skilled occupations. This feature suggests that technological

change inducing middle-skilled occupations to contract works through eliminating manually

complex tasks. Industries requiring the highest cognitive task complexity include financial

services, professional and business services, and educational and health services. Industries

requiring the highest manual task complexity include manufacturing, construction, and min-

ing. The service industry requires the lowest levels of cognitive task complexity.

Table 8: Mean Skill Requirements by Major Occupational Group

yC yM

Management, Professional, Technical 0.613 0.384
Clerical and Retail Sales 0.427 0.417
Construction, Mechanics, Mining, Transport 0.264 0.525
Machine Operators, Assembling, Inspection 0.370 0.543
Products and Crafts 0.161 0.480
Service 0.193 0.385

The mean skill requirements for these major occupational groups also suggests a simple

mapping from skill requirements y to low, middle, and high-skilled occupational groups.

Figure 8 plots average y for all occupational titles 1979 to 2010 with red lines at 0.4 on

the x-axis and 0.60 and 0.45 on the y-axis. This figure and Table 8 suggest cutoffs in the

level of cognitive and manual skill provide a fair mapping from skill requirements to occu-

pational categories. I consider the breakdown where jobs with yM < 0.4 and yC < 0.45

make up low-skilled occupations, jobs with yM ≥ 0.4 and yC < 0.6 make up middle-skilled

and the rest are high-skilled. This breakdown, weighting occupations by their employment

77



Table 9: Mean Skill Requirements by Major Industry Group

yC yM

Agriculture, Forestry, Fishing, and Hunting 0.312 0.446
Mining 0.382 0.462
Construction 0.363 0.517
Manufacturing 0.344 0.467
Wholesale and Retail Trade 0.374 0.398
Transportation and Utilities 0.337 0.440
Information 0.479 0.418
Financial Services 0.548 0.350
Professional and Business Services 0.510 0.402
Educational and Health Services 0.471 0.428
Leisure and Hospitality 0.342 0.389
Other services 0.290 0.465
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Figure 8: Average Skill Requirements by Occupation

share, captures approximately 70% of the employment for each category (low, middle, high)

using the Acemoglu and Autor (2011) occupational groups. Coincidently, this particular

breakdown nearly reaches the cutoffs that best match the Acemoglu and Autor categories.

Occupational titles and task content define the Acemoglu and Autor categories whereas only

task complexity defines these occupational categories. Yet, the two groupings overlap sig-

nificantly, which suggests task complexity captures a lot of information about occupations.

Many occupational mappings based on skill requirements are possible, however none match

the simplicity and intuitive appeal of this one. With this mapping, the relative contraction
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of manually complex tasks corresponds to the relative contraction of middle-skilled occu-

pations. The relative expansion of cognitively complex tasks corresponds to the relative

expansion of high-skilled occupations.
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Figure 9: Occupational Changes based on Skill Requirement Definition

I replicate Figure 6 using the occupation mapping described. Unsurprisingly, Figure

9 and Figure 6 exhibit similar overall patterns. These groupings overlap substantially, so

they should look similar. However, they differ in levels. The categorization based on skill

requirements results in more low-skilled occupations44, thus lowering the increase in the share

of low-skilled occupations in the 2000s. It also results in less high-skilled occupations45, thus

raising the increase level for high-skilled occupations. In addition, male occupational wages

polarize more under the skill requirement categorization unlike in Figure 9.
4421.8% vs. 11.8% in 1979, 23.3% vs. 16.3% in 2010. Examples of occupations recategorized into the

low-skilled category by skill requirements include hotel clerks and parking lot attendants. Most occupa-
tions recategorized from middle-skilled to low-skilled occupations are lower level clerical or manufacturing
occupations.

4529.0% vs. 25.3% in 1979, 42.0% vs. 36.2% in 2010. Nearly all recategorized occupations are from high-
skilled to middle-skilled occupations. They mainly consists of health and human service related occupations
like nursing, occupational therapists, physical therapists, and clinical technicians.
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2.3.3. Worker Skills

The National Longitudinal Survey of Youth (1979) provides nationally representative in-

formation to construct the distribution of entering worker skill endowments, Vt(x). It also

provides observations on the joint distribution of worker skill endowments and skill require-

ments, labor market transitions, and wages. I use the NLSY to construct V0(x) as well as

estimate some micro-level moments requiring panel data. Much of my treatment and con-

struction of the NLSY parallels Lise and Postel-Vinay (2016) and Boehm (2017). I elaborate

on this construction and its issues in more detail in the Appendix B.2.5 and describe the

main process here.

I construct x(0) analogously to skill requirements. I use the Armed Services Vocational

Aptitude Battery (ASVAB) test in the NLSY79, which provides pre-labor market entry

scores for mathematics knowledge, arithmetic reasoning, word knowledge, paragraph com-

prehension, numerical operations, general science, coding speed, auto and shop information,

mechanical comprehension, and electronics information (Bureau of Labor Statistics, U.S. De-

partment of Labor, 2014a). I extract the first two principle components of all the ASVAB

scores, and impose two exclusion restrictions to identify cognitive and manual skill scores.

I restrict mathematical knowledge to contain information only on cognitive skills, and auto

and shop information to contain information only on manual skills. I linearly rescale these

scores into the interval [0, 1] to form estimates (x̂C(0), x̂M (0)). For worker skills, I rotate

the first two principle component scores instead of separating the measures into categories,

because the ASVAB measures do not categorize as easily as the DOT measures. Tests

about mechanical comprehension and electronics likely convey information about cognitive

and manual skills as both tests require some knowledge of general science and reading com-

prehension.

Figure 10 shows the constructed V̂0(x) for the NLSY1979 cognitive and manual skills.46

It also shows V̂0(x) conditional on gender and educational attainment groups. The distri-

bution of initial cognitive skills across education groups appear intuitive. Higher education
46Workers initial ages vary based on educational attainment level.
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groups exhibit more cognitive skills. They also tend to exhibit more manual skills although

to a much lesser difference than cognitive skills. Initial cognitive skills across gender do not

notably differ, while initial higher manual skills exhibit a strong skewness towards males. I

reweigh V̂0(x) using the observed educational attainment and female share of the labor force

to obtain V̂t(x) over time. This approach remains sensible only if the distribution of cogni-

tive and manual skills remains similar within education-gender cells of cohorts. In Appendix

B.2.5, I use the NLSY97 to validate this restriction, which shows little difference between

V̂1979(x) and V̂1997(x) within education-gender group for cognitive skill but more difference

for manual skills. Finally, I allow a transformation of x̂(0) into x(0) in the estimation to

align it with y, because x̂(0) need not necessarily align with the DOT y.
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Figure 10: Marginal Distributions of Initial Worker Skills

2.4. Estimation

I estimate it via indirect inference after parameterizing it.47 The model requires parameter-

ization for the following objects: Ft(y), ft(x,y), c(x,y), b(x), and h(x,y). It also requires
47Lise and Postel-Vinay (2016) provide a formal identification argument for their model based on specific

functional forms that yield a closed form solution for the surplus function (see their Appendix A.6). The
exact argument remains too stylized to apply directly here, however the spirit of their identification argument
holds relevance for which features of the data to target. Non-parametric identification of static search models
is an emerging area of research, but it has yet to be extensively addressed for dynamic models.
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estimating or calibrating βa, δ, ω, λ, Me, and Mu. Indirect inference requires three steps.

First, I set parameter values. Second, I solve the model. Given parameter values, we know

ft(x,y)−c(x,y)−b(x). This function corresponds to the surplus function in the final period

before mandatory retirement. I solve the model backwards from this terminal period in the

worker’s life. Third, I simulate the model to produce the targeted moments. Estimation

iterates over this process until the model suitably reproduces the targeted moments.48

2.4.1. Parameterization

The parameterization I employ relies heavily on the one developed in Lise and Postel-Vinay

(2016), because it yields a good fit to many aspects of the data. The production function

consists of linear terms in skill requirements and quadratic terms to capture complementar-

ities and under-qualification in a skill dimension. Skill requirements reflect the employers

production technology and thereby directly affect output. In turn, output loss in production

drives positive sorting across task dimensions as it prevents matches with severely under-

qualified workers in some task dimension. The degree of output loss increases convexly with

the distance between skill and skill requirements. The wage function (2.13) reflects the cur-

vature in the production function. Matching changes in the shape of the wage distribution

may require a change in the convexity in the production function. To this end, I introduce

within-task complementarity terms xCyC and xMyM to form the production function in

(2.14).49 This production function exhibits absolute advantage in productivity as excess

skills do not hurt output. General skills amplify output, which magnifies differences within

cohorts over time.50

f(x,y) = xG ·
[
α0,t + αC,tyC + αM,tyM + αCC,txCyC + αMM,txMyM

− κC min{xC − yC , 0}2 − κM min{xM − yM , 0}2
] (2.14)

Empirically, over-qualified workers experience wage loses compared to workers with sim-
48I estimate based on the equally weighted minimum distance loss function.
49Lindenlaub (2017) permits such within-task complementarities and shuts down between-task comple-

mentarities.
50Empirically, wages exhibit increasing dispersion at higher ages.
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ilar skill levels positioned in jobs where their skills are required. They also receive higher

wages compared to workers with just-qualified skills (i.e. x = y), doing the same job

(Slonimczyk, 2013). The disutility of labor serves to permit these empirical observations.

Workers only experience labor disutility in dimensions of over-qualification as shown in

(2.15).51 General skills amplify the effect of labor disutility. I specify the flow utility of an

unemployed worker with the same general structure as the production function shown in

(2.16). However, it does not depend on specific skills.52

c(x,y) = xG ·
[
νC ·max{xC − yC , 0}2 + νM ·max{xM − yM , 0}2

]
(2.15)

b(x) = xG · b0 (2.16)

The worker’s specific skills accumulate or depreciate linearly in task dimensions shown in

(2.17). This learning-by-doing specification varies the skill acquisition or loss according

to the distance between the worker’s current skill and skill requirements. In this manner,

learning-by-doing is heterogeneous across workers.

h(x,y) = x︸︷︷︸
skill today

+ ΓH ·max{y − x,0}︸ ︷︷ ︸
skill gain

+ ΓD ·max{x− y,0}︸ ︷︷ ︸
skill depreciation

(2.17)

ΓH =

 γhCC γhCM

γhMC γhMM

 , ΓD =

 γdCC γdCM

γdMC γdMM


I specify general skills (2.18) as a function of age and an individual component (ε) weighted

by initial cognitive skills. This component exists to capture wage dispersion in talent among

workers in the most cognitive-intensive jobs. The quadratic age term serves to capture the
51Over-qualification does not cause output loses, but it does lower the total surplus of a match thus

indirectly lowering wages. Thus, over-qualified hold an absolute advantage but still may be undesirable.
Over-qualification also increases wages in some jobs as the wage equation (2.13) shows. The disutility of
labor due to over-qualification enters wages positively as the employer compensates the worker for said
disutility. In this manner, over-qualified workers can receive higher wages compared to workers with just-
qualified skills in the same job but lower wages relative to others in their skill level in more skilled jobs.

52I impose this restriction to reduce the number of parameters to estimate.
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wage-age/experience trend.

xG(t) = γ0 + γ1age(t) + γ2age
2(t) + xC(0) · ε (2.18)

Finally, I parameterize Ft(y) using five time-varying parameters (rt, aC,t, bC,t, aM,t, bM,t)

to characterize the sampling distribution of skill requirements. The time-varying nature of

the parameters makes parsimony crucial to estimate the model. To this end, I use a Clayton

copula to characterize the joint distribution of yC and yM . It consists of one parameter (r)

controlling the correlation between yC and yM .53 I use Kumaraswamy marginals for yC and

yM . This marginal provides a closed form cumulative distribution function over the support

[0, 1], making it more tractable.54 Each marginal consists of two parameters governing the

shape of the marginal. The first shape parameter pushes mean and variance in opposite

directions, while the second pushes them in the same direction. This feature makes the

model able to match similar trends with respect to the mean and dispersion of cognitive

task complexity but opposing trends for marginal task complexity.

The five parameters for Ft(y) and four parameters in ft(x,y) vary over time, and I

specify a process for how they evolve. One obvious approach estimates these parameters at

each point in time. I estimate the model at the monthly level over 32 years, rendering this

approach intractable. Instead, I allow them to evolve over time using linear time trends with

structural breaks to capture different trends across decades. Time trends with structural

breaks provide a compromise of flexibility and parsimony. I set structural breaks to occur

near the start and end points of each decade.55

53This copula falls into the class of Archimedean copulas, and its closed form conditional distribution
function simplifies the sampling process.

54Kumaraswamy approximates a Beta distribution and can be shown to map into a generalized Beta
distribution (Jones, 2009).

55I also explored including the dates of the breaks in the optimization routine. However, they did not
change much from around the start and ends of decades naturally, because the timing of targeted moments
is decadal.
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2.4.2. Solution and Simulation Protocol

Given parameters, I solve for the match surplus function and simulate a model labor market

to produce the targeted simulated moments. I simulate the labor market monthly for ap-

proximately 50,000 workers from January 1979 to December 2010. The simulation consists

of a burn-in period, a transition period, and a terminal period. I index the transition period

January 1979 as time period 1 (t = 1) and December 2010 as time period 384 (t = 384). I

index the burn-in period as t = 0 and the period after December 2010 as T = 385. F(y)

and f(x,y) do not vary over time during the burn-in period or after the transition.56

To solve the model, I first solve the model before (burn-in) and after the transition.

S(x,y) equals the static portion of the match surplus, f(x,y)− c(x,y)− b(x), for workers

whose age next period is 65. Given S(x,y) at this terminal age, I exploit the recursive struc-

ture of the surplus function and solve backwards over age to obtain S0(x,y) and ST (x,y).

Next, I use the recursive structure of the surplus again to solve St(x,y) backwards over

time from t = 384 to t = 1. The perfect foresight solution uses the time-varying parameters

at their respective times. In contrast, the no foresight solution does not incorporate infor-

mation from the future. In the case of no foresight, the agents assume no parameters vary

over time, i.e. St+1(x,y) = St(x,y). Thus, obtaining St(x,y) requires solving the model

backwards over age at every point in time t = 0, 1, ..., 384, 385.

Given the surplus function, the simulation protocol produces a cross section of worker

skills (xit), skill requirements (yit), surplus shares (σit), and labor market transitions. From

here, I construct wages based on (2.13), employment shares based on the mapping in Figure

8, and labor market transition rates. I add a zero-mean, log-normal measurement error with

standard deviation υ to simulated wages, because the data exhibits measurement error. The

simulation protocol starts with a burn-in period, holding all parameters fixed. To initialize

the burn-in period, all workers start out employed at a random yi0 and draw skills xi0 from
56Obviously, this approach misses out on any forward looking effects from the 2010s, which may affect

decisions and wages in the 2000s. However, it provides a clean way to estimate the transition path. In the
case of no foresight, this issue is irrelevant.
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V0(x).57 Matches immediately terminate where the surplus is negative. The simulation then

runs through the burn-in period to the terminal period (t = 385).

One period (t) of the simulation goes as follows. A worker starts the period with skills

xit aged ait. The worker exits the labor force and the match terminates with probability ξa.

An employed worker’s match with yit terminates with probability δ. An employed worker

in a surviving match meets another employer with probability Me. An employed worker

who meets a new employer then draws y′ from Ft(y) and moves to the new employer if

St+1(x′,y′) > St+1(x′,yit) where x′ = h(xit,yit). A worker who accepts starts at the new

employer next period and the surplus share (σit) updates according to (2.4). An employed

worker who fails to meeting a new employer draws y′ from Ft(y) with probability ω. Matches

with new skill requirements tomorrow terminate if St+1(x′,y′) < 0. In the case of separation,

a worker starts the next period unemployed. An unemployed worker meets an employer with

probability Mu. An unemployed worker who meets an employer then draws y′ from Ft(y)

and moves to the employer if St+1(x′,y′) ≥ 0 where x′ = h(xit,0). A unemployed worker

who accepts starts at the new employer next period and the surplus share (σit) equals λ.

Otherwise, that worker starts next period unemployed. A worker out of the labor force

enters at the start of the period.58 This worker draws new skills from Vt(x) and searches as

an unemployed worker.59

2.4.3. Target Moments

The model consists of two sets of parameters − time varying and time invariant. Time

invariant parameters include κC , κM , νC , νM , b0, (γ0, γ1, γ2), Γh, Γd, β̃, δ, ω, λ, ξa, (θ0, θ1),

(ζC , ζM ), arrival rates Me and Mu, and measurement error variance υ2.60 The ζ parameters
57I burn-in this labor market for 1000 periods, which provides enough time for the initial cohort of workers

randomly assigned to jobs to exit the labor market. I draw workers initial ages from the 1979 cross-sectional
age distribution in the CPS ORG.

58Lise and Postel-Vinay (2016) only simulate a cohort of workers to focus on the origins and costs of skill
mismatch whereas I simulate a model labor market, allowing new cohorts to enter.

59The worker draws an education level and a gender and then draws an age, ε, and cognitive and manual
skills the education-gender-group distribution of V̂0(x). Workers initial ages vary based on educational
attainment level. No population growth or shrinkage occurs, so new workers enter when old workers exit.

60I stick to a partial equilibrium, restricting Me,t and Mu,t to remain exogenous and time invariant. These
parameters vary in the general equilibrium as shown in Appendix B.1.5. In general equilibrium, these rates
vary with the endogenous distribution of worker types. The need for individual agents to forecast and track
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map the initial skills estimates (x̂C(0), x̂M (0)) into (xC(0), xM (0)) via x(0) = x̂(0)ζ to better

align x and y. The θ parameters are the scale and shape parameters for Pareto-distributed

individual heterogeneity ε. Time varying parameters include the five parameters of Ft(y),

α0,t, αC,t, αM,t, αCC,t, and αMM,t. I calibrate some parameters externally and estimate the

others using variation in the data.61

External Calibration

I fix a small number of parameters and show these externally calibrated parameters in Table

10. I set the monthly discount factor β̃ as commonly done in the literature. Its value

roughly corresponds to a 10% steady state discount rate per annum. I add (zero-mean,

log-normal) measurement error to wages as occurs in the CPS ORG wage data. Lemieux

(2006) measures the variance of measurement error in wages in the CPS ORG. I set υ2

to around the level estimated there. I set the involuntary separation probability δ to its

counterpart in the data. IPUMS-CPS identifies voluntary and involuntary unemployment,

and I apply Shimer (2012) to construct monthly worker flows. I set δ to match the monthly

involuntary flow from employment to unemployment. Similarly, I estimate ω to match the

involuntary flow into unemployment from employment. Finally, I calibrate entry (µa) and

exit (ξa) probabilities as a function of age to match age-based transition rates in and out of

the labor force.

Table 10: External Calibration

Parameter Value Target

β̃ 0.992 10% discount rate per annum
δ 0.012 Average Monthly Involuntary Separation Rate
υ2 0.020 Lemieux (2006)

this endogenous distribution makes the general equilibrium model intractable. We can also interpret this
model as an approximation to the general equilibrium outcome where its accuracy depends on the strength
of general equilibrium feedback onto the meeting probabilities.

61Here, I give the intuition for which variation in the data helps identify the parameters. However, I provide
an extensive identification argument for the estimated parameters given a sufficiently rich panel data set
in Appendix B.1.6. This argument further illuminates how the moments targeted in indirect inference help
identify the parameters.
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Estimation Moments

I estimate the remaining parameters jointly. The CPS-DOT provides information for most

moments, while the NLSY79 cohort provides information for some of the more micro-level

moments. As mentioned, I estimate ω to match the overall separation rate. The δ shock gen-

erates the involuntary flows from employment to unemployment. The remaining flows come

from voluntary separation following a productivity shock. Thus, ω reproduces the over-

all average monthly, separation rate conditional on the model’s other parameters. Along

similar lines, Me and Mu reproduce the monthly job-to-job and unemployment to employ-

ment transition rates given the rest of the model parameters. Hence, I target the average

monthly job-to-job transition rate, unemployment to employment flow rate and employment

to unemployment flow rate.62

I target the shape of wage-age profile to pin down values for (γ0, γ1, γ2) in the estimation.

I also target the differential between average wages overall and wages out of unemployment

to estimate b0, because b0 determines wage out of unemployment conditional on the model’s

other parameters. The wage drop following an unemployment spell contains information

on the worker’s bargaining power out of unemployment conditional on the model’s other

parameters like Γd. I compute average wage drop following an unemployment spell from the

sample NLSY79 panel (Appendix B.2.5) and use it to provide information for the bargaining

power λ.

I include moments on the correlation of initial skills and skill requirements at various

dates to estimate κC , κM , νC , νM , Γh, and Γd. The correlation of x and y in skill dimension

measure sorting patterns of worker type x across jobs with skill requirements y. Parameters

κC , κM , νC , and νM govern the sorting patterns across worker skill and job skill require-

ments. For instance, a worker close to zero in the cognitive dimension cannot obtain a job

with cognitive task complexity close to one given a high enough κC . Similarly, a worker with

cognitive skill close to one rejects a job with cognitive requirements close to zero for high
62I set the job-to-job transition rate target to 0.03 based on estimates in the literature (Moscarini and

Thomsson, 2006).
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enough νC . Γh also governs sorting patterns. For example, suppose Γh is the identity matrix

as opposed to the zero matrix. Skills adjust to skill requirements after one period. Severe

under-qualification in any skill dimension poses a much lower barrier to obtaining the job in

question in this case. Thus, the correlation between initial skills and skill requirements will

be low. Intuitively, one does not need a particular skill level if one can quickly train up to

doing the job. Faster human capital accumulation in a dimension tends to lower the corre-

lation between initial skills and skill requirements in that dimension. Meanwhile, increasing

κC , κM , νC , or νM tends to raise the correlation in the relevant dimension. It lowers the

surplus for over and under-qualified workers and results in worker skills more closely aligned

to the job requirements.63 The NLSY79 cohort provides measures of initial skills and their

skill requirements as described in Section 2.3.3. I target the observed correlation of initial

cognitive and manual skills, x(0), with their respective job requirements, y, for the cohort

in the simulation that corresponds to the NLSY79. I include these correlations at years ’79,

’81, ’84, ’87, ’90, and ’93, which constitutes twelve moments for these twelve parameters.64

Given V0 and all other parameters, the initial productivity parameters (α0,0, αC,0, αM,0,

αCC,0, αMM,0) along with x shape parameters (ζC , ζM ) govern wage differentials across y

and occupational groups by extension. Fundamentally, information to obtain αC,0 comes

from comparing wages of workers with similar x and yM but different yC (conditional on

the model’s other parameters). Information to obtain αCC,0 and αMM,0 comes from wage

differentials of workers with different x but matched with the same y.65 Hence, I target ini-

tial average wages and wage dispersion for the high, medium, and low occupational groups

described in Section 2.3.2. I also target decadal changes in average wages for these occu-

pational groups as well as decadal changes at the 10th, 50th, and 90th wage percentiles.
63Formally, Lise and Postel-Vinay (2016) show that these parameters alter the set of jobs acceptable to

each type of worker. The correlation serves as a metric to capture this information.
64As noted in Appendix B.2.5, I limit the NLSY panel to 1993, because sample attrition accelerates

afterwards and makes the representativeness of the post-1993 sample suspect. In the data, I estimate
corr(x̂i(0), yi) ∀i ∈ {C,M} rather than corr(xi(0), yi). I convert the model’s x to x̂ to compute the compa-
rable model simulation target.

65A precise identification argument can restrict to workers out of unemployment or entering the labor force.
These workers all possess the same bargaining power λ unlike workers with history dependent bargaining
power.

89



Changes at the 10-50-90 wage percentiles reflect changes in wage dispersion within occupa-

tional groups. These targets aims to capture the decadal trends in (α0,t, αC,t, αM,t, αCC,t,

αMM,t). Additionally, I include the average mean and variance of log wages across the 1980s,

1990s, and 2000s as these levels contain further information on the αt’s and information on

dispersion for the individual heterogeneity parameters (θ0, θ1). The use of decadal time

trends for αt’s give twenty-four parameters for the thirty moments mentioned.

Finally, I target changes in the observed (equilibrium) distribution of skill requirements

over time and decadal changes in employment shares across occupational groups. These

targets identify the distribution of skill requirements, Ft(y), over the set of accepted y’s

(conditional on the rest of the model). I target the means, variances, and correlation of

yC and yM in the initial year (1979) and their averages in the 1980s, 1990s, and 2000s to

estimate the five parameters of Ft(y). I select the decadal change in employment shares

across occupational groups, because this metric measures job polarization. The estimated

Ft(y) must not only reproduce moments like mean and variance but also the preeminent

feature of changes in the employment structure − job polarization. These targets yield

twenty-nine moments for twenty parameters using decadal time trends for the scale, shape,

and correlation parameters of Ft(y).

In summary, the parameters total sixty-four for eighty moments from 1979 to 2010.

These moments consists of

i) decadal averages of mean and variance of log hourly wages

ii) decadal averages of mean, standard deviation and correlation of (yC , yM ) and in 1979

iii) mean and standard deviation of wages within occupational groups in 1979

iv) log change in occupational group employment shares and average wages over 1979-

1989, 1989-2000 and 2000-2010 (Figure 9)

v) log change in 10-50-90 wage percentiles over 1979-1989, 1989-2000 and 2000-2010 (Fig-

ure 5)
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vi) average monthly job-to-job, employment-to-unemployment, and unemployment-to-

employment transition rates over 1979-2010

vii) average post-unemployment spell wage drop for the simulated NLSY79 cohort

viii) differential between average wages and wages out of unemployment for the NLSY79

cohort

ix) correlations of (xC(0), yC) and (xM (0), yM ) in 1979, 1981, 1984, 1987, 1990, and 1993

for the simulated NLSY79 cohort

x) average wages at ages 25, 35, 45, and 55.

2.5. Results

To present the results, I first show how well the model fits the data. Then I turn to what

the parameter estimates say about the environment which yields this fit (e.g. how are skills

valued relative to one another? how does this value change over time?). Next, I perform a

series of decompositions to understand how and why the model fits. These decomposition

shed light on the importance of the model’s features (e.g. human capital accumulation,

wage-setting employer competition). Finally, I look at what forces (e.g. routine-biased

technological change) can explain the skill demand changes estimated with the model.

2.5.1. Model Fit

I estimate the model under three different assumptions and show how well each fits the data.

The first two assumptions modify the horizon of foresight to shed light on the importance

of anticipation when fitting the data. The last assumption modifies Vt(x) to inform on

its importance for the model’s fit. I take the first model (I) as the benchmark case. This

benchmark considers the model with perfect foresight, human capital accumulation and

decumulation, and the exogenous Vt(x) discussed in Section 2.3.3. Perfect foresight means

agents know the entire path of zt (i.e. Ft and ft) following an initial shock starting at

period 1. In model (II), I eliminate foresight from the benchmark. Agents do not anticipate

changes to zt and changes come as a surprise each period. A comparison of (I) and (II) grants
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insight into the importance of anticipation in reproducing the data. In model (III), I keep

the perfect foresight benchmark, however I fix Vt(x) to V0(x). This modification eliminates

the reweighting of V0(x) to obtain Vt(x). This reweighting adjusts for increasing educational

levels and rising female labor force participation, holding fixed the within education-gender

distribution of x. A comparison of (I) and (III) informs on whether changes to V0(x) help

account for the data.

Figure 11 shows the models’ fit to changes in employment shares and occupational av-

erage wages in the left and right panels, respectively. The left panel shows that the model

replicates the job polarization observed in the data. Medium-skilled occupations shrank rel-

ative to both low and high-skilled occupations across decades. The right panel shows that

the model mostly replicates changes in occupational average wages over the same period.

Low and medium-skilled occupational wages fell while high-skilled wages rose on average in

the 1980s. All wages rose in the 1990s with low and high-skilled wages rising more than

medium-skilled wages (i.e. occupational wage polarization). The gap between occupational

average wages expanded again the 2000s, however the model fails to match the fall in low-

skilled occupational wages observed in the 2000s.66 It also overestimates the increase in

high-skilled occupational average wages. Overall, the model fits well to changes in employ-

ment and occupational wages and does not differ much over (I), (II), and (III). This outcome

suggests neither anticipation effects nor changes in the distribution of skills supplied drive

the broad occupational employment and wage patterns in the model.

Similarly, (I), (II), and (III) match the expansion of wage inequality across the wage

distribution in the 1980s as shown in left panel of Figure 12 and Appendix Table 36. They

also match expansion at the top of the wage distribution in the 2000s. None generate the

rise in wage in the lower tail of the distribution in the 2000s. However, the model does fit

the 2000s after restricting to the period prior to the Great Recession (2000-2007) as shown

in Figure 13. During the 1990s, the fit to changes at wage percentiles differs greatly over (I),

(II), and (III). The perfect foresight benchmark (I) generates the right amount of growth
66This fall occurs even when excluding the Great Recession 2007-2010.
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at the 10th and 90th percentiles, but overestimates growth at the 50th percentile. This

change translates to only minor compression (expansion) at the bottom (top) of the wage

distribution compared to the dramatic U-shaped pattern in the data.

Eliminating foresight (II) worsens the fit as inequality expanded across the distribution

in this case.67 Thus, ignoring anticipation in this environment impedes matching the wage

patterns we observe. In contrast, (III) produces the strong U-shaped change in the wage

distribution. This outcome strongly suggests the adjustment to V0(x) to construct Vt(x)

affects the model’s ability to produce wage polarization in the 1990s. This adjustment

increases the share of college educated workers as well as female labor force participation to

their observed levels over time, holding the within education-gender group distribution of x

fixed. Comparing (I) to (III) shows holding the within education-gender distribution fixed

worsens the model’s fit. Ultimately, only wage polarization in the 1990s appears sensitive to

the differing assumptions of (I), (II), and (III). Otherwise, the model fits wage distribution

changes, occupational wage changes, and employment share changes well. Furthermore, the

model matches occupational wages in 1979 and has a high correlation (above 0.96) with wage

percentiles in 1979, 1989, 2000, and 2010 (Appendix Table 38). This correlation becomes

particularly high (0.98) when excluding the extreme low (1-4) and high (96-100) percentiles.

The model also tracks average wages and its increase closely as shown in Figure 14. It also

tracks the increase in the wage dispersion despite overestimating wage dispersion. The job

ladder effect causes the model to overestimate wage dispersion. Some workers take low wages

in order to climb onto the job ladder, which creates a long left tail in the wage distribution

(Appendix Figure 49).68

The model produces aggregate moments related to mobility and skill requirements. It

also produces many but not all of the moments related to sorting and transitions to and from

unemployment. The model generates moments from the equilibrium distribution of y shown
67Workers at the 10th percentile in (I) became slightly more over-qualified in cognitive skills over 1989-

2000. They obtained a larger increase in wages compared workers at the 10th percentile in (II) who become
slightly more under-qualified in cognitive skills.

68Marginally qualified workers (where the surplus is just above zero) populate the lowest five percentiles
in the wage distribution, increasing the left skewness. I later show the model with pure Nash Bargaining,
which reduces the level of wage dispersion by eliminating the job ladder incentive to take low wage jobs.
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Figure 12: Wage Percentile Changes for I (top), II (middle) and III (bottom)
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in Figure 15, including the mean, dispersion, and correlation of skill requirements. However,

it tends to underestimate the dispersion in cognitive skills and overestimate the correlation

between manual and cognitive skills in the last decade. The model captures the correlation

(i.e. degree of sorting) between initial cognitive and manual skills and their respective skill

requirements (Table 11). But it fails to capture the size of the increase in the correlation

of initial cognitive skills and cognitive skill requirements for the NLSY79 cohort (Appendix

Figure 42).

The model generates the average monthly flow of employment to unemployment and vice

versa as well as the average monthly job-to-job transition rate (Table 11). It overestimates

the wage drop following an unemployment spell but roughly matches the average wage

differential for wages out of unemployment compared to wages overall. The model also fits
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Table 11: Model Fit

Data I II III

Distribution of x(0) and y

corr(xc(0), yc)

1980-1987 0.303 0.403 0.382 0.399
1988-1993 0.387 0.430 0.408 0.419

corr(xm(0), ym)

1980-1987 0.078 0.083 0.064 0.065
1988-1993 0.083 0.053 0.050 0.040

Aggregate Job Flows
Job-to-Job 0.032 0.024 0.035 0.032
Employment-to-Unemployment 0.015 0.016 0.015 0.017
Unemployment-to-Employment 0.261 0.266 0.277 0.262

Differential for U-to-E Wages (%) -0.205 -0.234 -0.273 -0.243
Unemployment Spell Average Wage Drop (%) -0.264 -0.430 -0.447 -0.417

the targeted age-wage profile for the CPS (Figure 16) and the NLSY79 cohort (Appendix

Figure 43). Overall, (III) delivers the best fit to all the target moments, explaining 95.4%

of the variation in the target moments compared to 94.6% and 94.3% for (I) and (II),

respectively (Appendix Table 34).69

69I discuss demographic heterogeneity in Appendix B.3.1.
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Parameter Estimates

We now turn to understanding what features of the model yield this fit, starting with the

model parameters. I present notable parameter estimates in Table 12 with the full set in

Appendix Table 39. The parameter estimates indicate what environment appears consistent

with the data. This environment consists of a higher valued, harder to accumulate skill and

a lesser valued, easier to accumulate skill. The estimates also mirror the finding of Lise

and Postel-Vinay (2016) that the model views different skills quite differently.70 Mismatch

between skills and skill requirements costs significantly more in the cognitive dimension in

terms of output loss (governed by κ) and disutility of labor (governed by ν). Surplus lose

due to under-qualification (i.e. yi > xi) remains higher than lose due to over-qualification in

both skill dimensions. Cognitive skills accumulate much slower than manual skills. A worker

learns manual skills fast and forgets them relatively slowly but learns cognitive skills slowly

and forgets them relatively fast. These learning parameters (ΓH , ΓD) cause young workers

to sort across jobs like prime age workers. Cognitive skill changes little over the life cycle

in the model’s estimation.71 The estimates also indicate cross-skill complementarities in

learning-by-doing with positive off-diagonal terms in ΓH . For example, a worker possessing

high cognitive skills can train up on-the-job to do more complex manual tasks faster than a

worker with low cognitive skills and similar level of manual skills.

Production technology (ft) shifts away from manual skills towards cognitive skills and

from general skills to specific skills. Table 13 shows that general skills decline in their rela-

tive productive value (α0) all else equal, biasing output towards specialized skills. Naturally,

the model estimates cognitive skills to hold a higher baseline productive value (αC) than

manual skills (αM ), because workers in cognitive-intensive, high-skilled occupations earn
70It is worth noting that Lise and Postel-Vinay (2016) employ a different set of moments and data. They

match their model solely to the longitudinal moments of the NLSY79 cohort using O*NET data. They use
a plenthora of task content from O*NET to construct their scores for cognitive, manual and interpersonal
skills. Here, I use mainly aggregate cross-sectional moments from the CPS, supplemented with information
from the NLSY79 unavailable in the CPS.

71Lower positive sorting across cognitive skills and requirements when young may come from yet-to-be
known information about the worker’s skill level rather than realized increases in cognitive skill levels over
time. This process of learning about skills when young can result in more turnover and potentially less
positive assortative matching across skill dimensions, e.g. Sanders (2012).
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Table 12: Time Invariant Parameters

I II III

ΓH(1, 1) 0.0009 0.0045 0.0029
ΓH(1, 2) 0.0003 0.0020 0.0093
ΓH(2, 1) 0.0185 0.0014 0.0196
ΓH(2, 2) 0.0608 0.0525 0.0897

ΓD(1, 1) -0.0148 -0.0113 -0.0209
ΓD(1, 2) 0.0000 0.0000 0.0000
ΓD(2, 1) -0.0348 -0.0020 -0.0005
ΓD(2, 2) -0.0331 -0.0535 -0.0330

νC 29.71 27.22 38.35
νM 14.19 0.0004 17.97

κC 130.8 103.0 128.7
κM 48.18 47.00 53.62

more (Appendix Table 38).72 However, production complementarities within tasks start on

a comparable level but diverge over time. Call a worker with high xC (xM ) a cognitive

(manual) specialist. Table 13 shows that cognitive production complementarities (αCC) in-

creased twofold in the 1980s and continued to increase at a slower rate, benefiting cognitive

specialists. Meanwhile, the relative productive value of manual specialists (i.e. αMM ) in-

creased slightly in the 1980s with no notable increase afterwards. The change in distance

between αC and αM pales in comparison to the change between αCC and αMM . Increased

bias towards specific skills and divergence in the productive value of these skills characterize

output in the model.73

The distribution of skill requirements or skill demands exhibit a similar bias towards

cognitive-intensive tasks. Figure 17 shows contour plots of changes in the density of Ft(y). It

shows the job-polarizing changes in skill demands. Lighter areas show increased density while
72Intuitively, the more difficult to acquire skill should be more valuable.
73Lindenlaub’s (2017) assignment model also finds increasing cognitive complementarites and decreasing

manual complementarities over the 1990s and 2000s. The model only has cognitive and manual skills.
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Table 13: ft(x,y) Parameters at Sample Dates

I II III

α0,t=0 1.314 -8×10−5 1.306
α0,t=121 -1.495 -1.905 -1.479
α0,t=267 -1.950 -1.542 -1.090
α0,t=384 -2.683 -1.208 -1.694

αC,t=0 20.26 19.56 19.23
αC,t=121 20.27 19.77 19.37
αC,t=267 19.80 18.18 19.36
αC,t=384 19.54 18.14 18.51

αM,t=0 -0.775 1.247 -1.283
αM,t=121 -0.853 0.646 -1.383
αM,t=267 -0.516 0.571 -1.383
αM,t=384 0.344 0.282 -0.379

αCC,t=0 9.914 10.62 8.379
αCC,t=121 21.23 16.62 21.01
αCC,t=267 31.83 24.52 32.68
αCC,t=384 34.48 28.04 36.58

αMM,t=0 8.387 8.877 8.615
αMM,t=121 9.055 10.14 10.46
αMM,t=267 6.261 6.174 8.193
αMM,t=384 5.930 2.733 7.347
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darker areas show decreased density. (I) and (III) estimate that the distribution of the skill

demands concentrated more in the northwest quadrant and fell in the southeast quadrant.

These changes to skill demands polarize employment as the model decompositions will show.

Medium-skilled, manually-intensive jobs populate the southeast quadrant whereas high-

skilled, cognitive-intensive jobs populate the northwest quadrant. (I) estimates a density

increase spread across high-skilled and low-skilled jobs. In contrast, (III) concentrates in

jobs in the high-skilled region of (yM , yC)-space. (II) estimates a proliferation of high and

low-skilled jobs like (I). However, this proliferation occurs at all levels of yC whereas (I)

estimates a more concentrated change.

To summarize, the model fits the data well in many dimensions. It fits marginally better

under full anticipation over no anticipation. It also fits better holding the skill endowment

distribution fixed rather than adjusting it fully for between education and gender demo-

graphics. The model points to several key features to fit the data. First, cognitive skills

accumulate slower and decline faster (relative to their accumulation speed) than manual

skills. Second, cognitive skills hold higher productive value than manual skills, and this

value increased over time to favor cognitive specialists and slowed more recently. Third,

the distribution of skill demands exhibits polarization. The first feature says some skills

must be slower to adjust to understand the data. I assess the importance of this feature in

the model decompositions. The last two features come as no surprise. Education strongly

correlates with cognitive skills (Figure 10), and wage returns to education have become

more convex over the period under consideration.74 The lens of the model says the “con-

vexification” of the returns to education reflect changes to the productive value of cognitive

skills. Specifically, cognitive production complementarities increased (at a decreasing rate)

since the 1980s. Of course, the distribution of available jobs, Ft(y), affects the allocation of

workers. This allocation exhibits polarization, so the distribution of skill demands polarized

as expected.
74See Valletta (2016) for a detailed discussion on the “convexification” of the returns to education.
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Skill-Biased Technical Change v. Task-Biased Technical Change

The model provides alternative interpretations to skill-biased technical change and task-

biased technical change. Skill biased technical change conceives of a labor market consisting

of high and low skilled workers. Technological progress increases the productivity of high-

skilled workers and wage inequality expands as a result (Acemoglu and Autor, 2011). Task-

biased technical change conceives of a labor market consisting of a mix of tasks, and workers

use their skills to do said tasks. The returns to performing a specific type of task increase

and wage inequality may expand, contract, or do both but in different parts of the wage

distribution (Acemoglu and Autor, 2011; Lindenlaub, 2017). The outcome depends on which

workers reallocate to which tasks. Routine-biased technical change serves as a notable

example of task-biased technical change. Routine-biased technical change lowers the relative

value of medium-level skills used to do routine tasks like assembly or clerical work. Workers

select out of these medium-wage tasks as their relative value falls. This selection produces

an expansion above the median wage and expansion or contraction below it depending on

which workers move into low or high-skill tasks. Some papers consider the 1980s to represent

skill-biased technical change while the 1990s represent more task-biased technical change.75

The model conveys skill-biased technical change in the 1980s as productivity changes

favored specific skills (xC , xM ) over general skills (xG). Estimates of the baseline return to

general skills (α0) drop in the 1980s, while production complementarities (αCC , αMM ) rise.

The model conveys task-biased technical change as a productivity shift towards cognitive

skills over manual skills. In the 1990s, the fall in α0 stops or decelerates while αMM begins to

fall or stagnate and αCC continues to rise. Thus, productivity estimates move towards move

towards cognitive skills away from manual skills. Hence, skill-biased technical change consists

of specialization (i.e. a shifts towards specific skills). Meanwhile, task-biased technical

change consists of shifts towards a particular specific skill and away from another. In this

sense, the model exhibits skill-biased technical change in the 1980s and task-biased technical
75See Acemoglu and Autor (2011), (Boehm, 2017), or Mishel, Schmitt, and Shierholz (2013) for further

discussion.
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change in the 1990s.76

2.5.2. Decompositions

Examining the model parameters grants broad insight into what assumptions and parameters

allow the model to fit the data. However, they do not readily explain what factors and

assumptions drive results like how (III) best fits polarization in the 1990s while wages in

(II) do not polarize at all. To this end, I use a series of decompositions to unpack the role

of the exogenous factors and model features. First, I comparatively examine the model

versions shown to gain insight into the role of anticipation and the skill supply distribution,

Vt(x). Then I perform decompositions to evaluate the importance of human capital evolution

(IV), heterogeneous specific human capital (V), changes in the distribution of skill demands

(VI), changes in production technology (VII), multidimensional skills (VIII), and employer

wage-setting competition (IX).

For each decomposition, I simplify the benchmark model (I) in an aspect and re-estimate

the model to measure the contribution of the relevant factor. Counterfactual analysis alone

is unsuitable to measure the contribution of a factor. The job selection and wage setting

mechanisms in the model interact with all of these factors. They amplify or dampen their

effects even in partial equilibrium. For example, suppose we want to measure the importance

of changes in the distribution of skill demands in matching the data. The relevant coun-

terfactual should measure how much of the data we account for in the absence of changes

to the distribution of skill demand. The gap between this measure and what we account

for when changing Ft(x,y) measures its importance. A naive counterfactual holds Ft(x,y)

fixed without adjusting the model parameters. This counterfactual ignores the increased

importance of ft(x,y) in the allocation of workers to jobs in the absence of changes to

Ft(x,y), thereby overstating the importance of Ft(x,y). I begin the decompositions com-

paring (I), (II), and (III) as they form the basis as to why I perform the decompositions that

follow. How well they match wage polarization in the 1990s distinguishes these versions of
76Alternatively, we can interpret the estimates through definition of Lindenlaub (2017). In this case, there

is only task-biased technical change as increased (αC , αCC) convey skill-biased and task-biased technical
change, respectively.

105



the model.

Wage Polarization

How do wages polarize in the 1990s? During this period, the distribution of cognitive

skill requirements shifts towards cognitive skills, and production complementarities in the

cognitive dimension increase. The opposite occurs in the manual skill dimension. Thus, the

parameters suggest a task-specific relative demand shift towards cognitive skills away from

manual skills in the 1990s in contrast to a shift towards both specific skills away from general

skills in the 1980s. This shift results in a proliferation of cognitive jobs and an increase in

their average wages (i.e. occupational upgrading). Meanwhile, a large deceleration in loses

due to specialization (i.e. α0 stabilizes or increases) and an increased level of general skills

(e.g. older workers) drive wage gains for workers in the low-skilled occupation.77 Thus, the

model produces polarization in occupational wages and employment similar to the data in

cases (I), (II), and (III).

However, neither job polarization nor occupational wage polarization serve as necessary

or sufficient conditions to generate wage polarization.78 The model allows us to clarify how

wage polarization occurs. We observe similar changes to the distribution of skill demands

and productivity parameters across (I), (II), and (III).79 We observe polarization in the

average wage in each occupational group. Moreover, we observe similar trends in changes

in the wage distribution in the 1980s and 2000s. Yet only (I) and (III) lead to inequality

expansion above the median wage and compression below the median.80 Only (III) produces

the dramatic U-shaped polarization which occurs in the data. Comparing these versions of

the model grants insight into how wage polarization in the 1990s arose.

In the 1990s, marginal expansion occurs below the median in (II), because wage growth

rose disproportionately in the low-skilled occupational group in (II). Some workers in this
77Recall that general skills amplify the output of specific skills. This feature generates the lifecycle profile

of wages. Alternatively, we can interpret α0 as reflecting the effect of economic growth on wages rather than
skill specialization. However this model is not a growth model, leaving such an interpretation ambivalent.

78Boehm (2017) proves this claim theoretically in a static, competitive Roy model.
79Correlation for all estimates are 0.990 for (I) and (II), 0.997 for (I) and (III), and 0.989 for (II) and (III).
80It is possible to eliminate inequality expansion below the median in (II). However, it increases low-skilled

wage growth well above its target value (Appendix Figure 50) and thus is not the optimal fit to the data.
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Table 14: Change in Wage Percentile for Median Worker

Occupational Group Data I II III

High +1 +0 −3 +0
Medium −1 −4 −3 −3
Low +1 −1 +2 −1

group overtook workers in the (shrinking) medium occupational group.81 Consequently, the

lowest percentiles in 2000 do not reflect their wage gains. Table 14 shows the change in the

wage percentile for the median worker in each occupation group. Low-skilled occupation

workers gain the most on medium-skilled workers in (II). In contrast, (I) produces some

wage compression in the bottom half without disproportionately increasing wages in the

low-skilled group. In (I), workers and employers anticipate technological and skill demand

changes. They agree to a wage schedule that in part backloads these expected gains to

incentivize the worker to stay at the job. Anticipation in (I) puts downward pressure on

wages where workers and employers expect gains, reducing this overtaking effect while still

allowing these wages to rise. In fact, removing foresight under the estimates of (I) results

in inequality expansion across the wage distribution in the 1990s and much more extreme

occupational and wage changes (Appendix Figure 51). In contrast, workers and employers

do not anticipate such gains and loses in (II). Adding foresight under the estimates of (II)

causes a negligible inequality contraction across the entire wage distribution (Appendix

Figure 52). Overall, the benchmark foresight model (I) fits marginally better to the data

as it spreads out of gains over time. However, the improvement over the model with no

foresight (II) remains small.

Model (III) constitutes a marked improvement over (I) with respect to wage polarization

in the 1990s. Recall that (III) estimates the model without adjusting Vt(x) over time.

The adjustment reweights the within education-gender distribution of V0(x) to match their
81In 1989, about 16% of low-skilled occupation worker earned less than the 10th percentile middle-skilled

occupation worker. By 2000, this percentage fell by 2.36 percentage points (ppts) in (III), 2.66 ppts in (I),
and 4.21 ppts in (II).
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Figure 18: Fixed Female Labor Force Participation

demographic shares in the labor market. This improvement suggests the reweight over

adjusts of the distribution of skill endowments, because the distribution of skills within these

groups changed over time. Notably, women exhibited a lower mean for manual skills in the

NLSY79. The NLSY97 confirms a within gender upward (downward) shift in documented

manual skills for women (men) (Appendix Figure 54). The distribution for men and women

look similar for cognitive skills in the NLSY79 (Figure 10) but appear to align on manual

skills over time. Thus, the adjustment for rising female labor force participation re-enforces

a gender bias in documented manual skills which diminished over time. Thus, we see the

shape of the distribution of skill endowments matters greatly to produce wage polarization

in this model. Holding the share of female labor force participation fixed but adjusting

for the rising share of college education workers (X) generates more of the U-shape change

to wages in the 1990s (Figure 24). Holding Vt(x) fixed does not mean the distribution of

skills remains fixed. Human capital accumulates and decumulates over the life cycle and

in response to structural change. Both shape the endogenous skill distribution in the labor

market. In both (III) and (X), manual skills accumulate faster compared to the benchmark

(Appendix Table 39).

Comparing (I) and (III) clarifies why the skill endowment distribution contributes to a

more dramatic U-shape change in wages. The skill endowment distribution in (I) results

in too many workers in the medium occupation concentrated in the lower tail of the wage

distribution. Figure 19 shows the (smoothed) employment share for the medium-skilled

occupation at every wage percentile. This curve shows workers in medium-skilled occupation

remain prolific in the middle of the wage distribution and less so in the upper and lower
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Figure 19: Employment Share at Wage Percentiles

tails. The curve shifts downward as the medium-skilled employment share shrinks. It also

becomes “less concave” at lower percentiles from 1989 (solid red) to 2000 (dashed green),

meaning workers in the medium occupations concentrate more in lower wage percentiles. In

(I), these workers start out more prolific in the lower wage percentiles in 1989 and move

downward. Consequently, more low-skilled occupation workers overtake them in the wage

distribution between the 10th and 50th percentiles. High-skilled occupation workers move

into the 50th percentile as the medium-skilled occupation shrinks and medium occupation

workers move down the wage distribution, driving up wages at the 50th percentile. Thus,

the movement of medium occupation workers downward causes the model to overestimate

the increase in wages at the 50th percentile. This overestimation worsens in case (I) where

these workers start out more concentrated in the lower percentiles compared to (III) and

(X).

The endowment distribution of manual skills accounts for more medium occupation work-

ers in lower wage percentiles in (I). The adjustment to construct Vt(x) skews the manual

skills distribution negatively. This results in more manual skill under-qualification among
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medium-skill workers and pushes them to lower wage percentiles.82 Of course, manual skills

accumulate toward the job requirements, but matching the positive correlation between

initial manual skills and manual job requirements constrains how fast manual skills can ac-

cumulate.83 Thus, the skill endowment distribution is crucial to matching wage polarization

in the 1990s in this model. This result contrasts starkly with Lindenlaub (2017) who con-

cludes changes in the distribution of skill endowments are not crucial to account for wage

polarization.

Learning Frictions

Time-consuming human capital evolution and heterogeneous specific human capital cause

under and over-qualification arise in this model. Call them learning frictions or matching

frictions. They result in imperfect matches (i.e. x 6= y). How important are such frictions to

account for wage and occupational changes from the 1980s to 2000s? I perform two decom-

positions to answer this question. The first removes specific human capital accumulation

and decumulation from the benchmark model. This decomposition evaluates the explana-

tory power of learning on-the-job. The second removes the matching friction in the model so

that human capital changes instantaneously. This modification equates to making cognitive

and manual specific human capital homogeneous where y serves as a permanent, match-

specific productivity shock. This decomposition evaluates the importance of misalignment

between skills and skill requirements in accounting for occupational and wage changes.

Eliminating specific human capital accumulation and decumulation makes little differ-

ence to the overall model fit relative to the benchmark.84 More under-qualified medium

occupation workers end up in the lowest wage percentiles due to their inability to acquire

more manual skills. Consequently, workers in the low-skilled occupation overtake them,

making wage polarization difficult to generate compared to the benchmark. However, the

model fits just as well on occupational employment and wage changes. This outcome sug-
82The average difference between xM and yM in 1989 is -0.080,0.001, and -0.006 for (I), (III), and (X),

respectively.
83Faster accumulation drives this correlation down as a worker may obtain a job with possessing a level

of manual skill well below what is required.
84Appendix B.3 displays full results for all decompositions.
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Figure 20: Fixed Specific Human Capital

gests limited importance for skill loss and acquisition relative to factors like structural change

in Ft and ft. Of course, this indication only says specific human capital evolution remains

of limited importance to reconcile broad wage and occupational changes. Specific human

capital accumulation may be crucial to understand a wide set of phenomena like job pro-

motion paths.85 Also, the acquisition of general human capital over the life cycle remains

important to matching growth at the lower percentiles.

The next decomposition eliminates the matching friction caused by heterogeneous spe-

cific skills. Consequently, it also eliminates the concepts of under-qualification, over-

qualification, and sorting. Permanent i.i.d. match-specific productivity shocks constitute

Ft(y) and each worker offers an indivisible, homogeneous unit of cognitive and manual

skill. The αt’s determine aggregate productivity, while Ft(y) determines the idiosyncratic

productivity of the specific skills. This model turns out to fit the data well with respect

to wage levels, wage dispersion, and occupational wage and employment changes (Figure

20, Appendix Table 42, Appendix Figure 56). It accounts for just under half (45%) of the

variation in the target moments that the benchmark model explains (95%). Therefore, het-

erogeneous specific human capital and the skill mismatch and sorting it produces account
85See Gibbons and Waldman (2004).
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Table 15: Mean Occupational Wage in 1979 (V)

Data I II III V

High 25.344 25.532 25.311 25.023 27.292
Medium 18.216 17.715 17.967 17.855 14.858
Low 14.410 15.126 14.411 15.106 14.072
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Figure 21: Homogeneous Specific Human Capital

for the other half of the model. Ft(y) permits the model to generate job polarization, while

αt’s produce occupational wage expansion and polarization. The model also generates the

observed wage expansion in the 1980s and 2000s, but it does not generate wage polarization.

It fails to match occupational wages for the middle-skilled group (last column of Table 15),

resulting in large shares of medium occupation workers at the bottom of the wage distribu-

tion. Occupational wage polarization pushes these workers further down. Wage polarization

cannot occur as a result. Clearly, heterogeneous specific human capital (along with the skill

mismatch and imperfect sorting it generates) appears crucial to reconcile wage and occu-

pational changes from the 1980s to 2000s. Overall, the model suggests matching frictions

matter greatly while skill evolution appears non-essential for this matter.
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Figure 22: Fixed F(y)

Productivity and Skill Requirements

The controversy surrounding the job-polarization explanation for wages centers on continu-

ous job polarization but discontinuous wage trends. Mishel, Schmitt, and Shierholz (2013)

argue that the long-run secular trend of job polarization cannot account for the reversal

in wage expansion below the median in the 1990s. The previous decompositions indicate

changes in Ft and ft can account for a large portion of the data even without heterogeneous

task specific capital. What individual role do these structural changes play in shaping consis-

tent job polarization but inconsistent wage polarization? Can they reconcile these seemingly

contradictory phenomena? I decompose the model first holding Ft and then ft fixed to shed

light on how each shape occupational and wage changes. The outcome indicates that the

job-polarizing distribution of skill demands acts as a force of wage compression across occu-

pational groups and the wage distribution broadly. Whereas, changes in productivity levels

act as a force of inequality expansion between occupational groups and all across the wage

distribution. Whichever dominates governs whether we observe inequality growth or wage

polarization.

Figures 22 and 23 show the occupational and wage results re-estimating the model hold-
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Figure 23: Fixed f(x,y)

ing either Ft or ft fixed, allowing the other to evolve. ft alone (Figure 22) generates inequal-

ity expansion in the 1980s and 2000s to a lesser extent. It also delivers wage expansion across

occupational wages in the 1980s. However, it fails to generate enough sorting to match job

polarization in any period. It fails to even match the patterns, let alone the magnitudes. It

also predicts wage expansion across occupations in the 1990s but wage contraction across the

entire distribution.86 The model again indicates specialization and its deceleration but fails

to estimate the extent of task-biased technical change. Thus, changes in the distribution

of skill demands help identify task-biased technical change to account growth at the 90th

percentile and job polarization. Ft alone (Figure 23) produces general patterns capturing

job polarization, however it fails to generate inequality expansion across any decade. In fact,

wages compress in all three decades as medium-skilled workers upgrade to the high-skilled

occupation (i.e. occupational upgrading). Such changes in the distribution of skill demands

offset the inequality expanding force of productivity shifts. This decomposition reveals Ft

and ft counteract to produce a consistent pattern of job polarization with varying changes

to the wage distribution over time. Quantitatively, they appear equally important when
86Lindenlaub (2017) matches wage polarization with a static assignment model, however that model

imposes no consistency with respect to neither occupational wage changes nor employment shares.
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comparing their overall fit to the data.87

Multidimensional Skills

Acemoglu and Autor (2011) suggests a task-based framework with at least three skill groups

best serves to analyze job polarization and wage changes. Generating wage polarization

requires at least two. Many models of labor market sorting reduce human capital to a sin-

gle index to evaluate the impact of technological change, e.g. Kantenga and Law (2017).

Evidence like Kambourov and Manovskii (2002) points towards occupation-specific rather

than task-specific skills. Thus, we might expect tasks to miss out on important differences

between occupations. For instance, a ballerina cannot smoothly transition to being a glass

cutter even though both require high levels of manual dexterity and moderate levels of cogni-

tive ability. This begs the question: how important is the occupational heterogeneity which

tasks fail to capture? More pointedly, what is the sufficient number of tasks/skill required to

reconcile occupational and wage changes? This paper focuses on major occupation groups,

but the model has any number of occupations with three skills and only two tasks. I address

this question in the most direct way possible by “eliminating” one of the tasks from the

model and comparing it to the case with two tasks.

The multidimensional nature of specific tasks define occupational groups. I aim to pre-

serve this definition to make this two skill, two task model comparable. To do so, I relegate

manual tasks and skills to an entirely descriptive role, setting αM,t, αMM,t, νM , and κM all

to zero. In this case, manual skills and tasks play no role in job selection or wage setting.

Manual tasks merely define which occupation we call high, medium, and low. This change

preserves comparability while effectively eliminating manual skills/tasks from the model

mechanisms. The model effectively consists of cognitive specific human capital, general

skills, and a cognitive task.

This decomposition produces a striking result. It fits wage polarization better than the

benchmark and explains 88% of the variation in moments overall. It also fits wage polariza-
87This result again starkly contrast with the conclusion of Lindenlaub (2017) that changes production

complementarities outweigh the importance of changes in the distribution of skill requirements.

115



−
.3

−
.2

−
.1

0
.1

C
h

a
n

g
e

 i
n

 L
o

g
 W

a
g

e

0 20 40 60 80 100
Wage Percentile

Data Model

VIII : 1980s

0
.0

5
.1

.1
5

C
h

a
n

g
e

 i
n

 L
o

g
 W

a
g

e

0 20 40 60 80 100
Wage Percentile

Data Model

VIII : 1990s

−
.1

−
.0

5
0

.0
5

.1
C

h
a

n
g

e
 i
n

 L
o

g
 W

a
g

e

0 20 40 60 80 100
Wage Percentile

Data Model

VIII : 2000s

−
.1

0
.1

.2
%

∆
 i
n
 E

m
p
lo

y
m

e
n
t 
S

h
a
re

1980s 1990s 2000s

VIII : Employment Share

Low Medium High

−
.1

−
.0

5
0

.0
5

.1
.1

5
%

∆
 i
n
 O

c
c
u
p
a
ti
o
n
a
l 
W

a
g
e

1980s 1990s 2000s

VIII : Occupational Wage

Low Medium High

Figure 24: Non-Productive Manual Skills (αM = 0, αMM = 0, νM = 0, κM = 0)

tion just as well as (III) (Figure 24). Merely assigning different labels over time produces

the patterns of job polarization and occupational wage expansion/polarization, although not

the magnitudes. Hence, we see that cognitive skills/tasks and general skills provide enough

content to reconcile patterns of wage changes and changes in the occupational wage struc-

ture. The model even replicates moments from the marginal distribution of yM in matching

occupational patterns (Appendix Table 46). Though this lens, specialization in cognitive

tasks account for all of these patterns. Unsurprisingly, this model (VIII) cannot replicate

the level of correlation between cognitive and manual task complexity (yM ), because man-

ual complexity (yM ) serves as a mere label. However, it does decline as it does in the data.

This model improves over the benchmark in wage polarization for similar reasons to (III). It

eliminates under-qualification in manual skills and thus concentrates more medium occupa-

tion workers in middle wage percentiles. This “cognitive-biased” technical change does not

push these medium occupation workers down the wage distribution like task-biased technical

change. Increases in production complementarities increase convexity in the upper half of

the wage distribution. Meanwhile, a deceleration in the fall of α0 and higher xg raise wages

disproportionately at the bottom. The lens of this model says the move from inequality ex-
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pansion to wage polarization comes from a slowdown in specialization rather than a different

type of technological change. The shift towards higher cognitive task complexity produces

some tasks that require no specialized skills. For example, suppose a technology firm ex-

pands to a new location. This new building raises demand for local low-skilled protective

services and food service workers.

On one hand, this outcome suggests no need to model a large array of tasks and skills

to reconcile the patterns we observe. Idiosyncrasies in task content do not prevent us from

understanding broad changes using task complexity alone. It appears enough that tasks

vary in their cognitive complexity to account for changes in the wage distribution. Identi-

fying occupations by applying the labels constructed in the data yield patterns for broad

occupational groups. The presence of two skills − not three − and one task provide enough

information to generate these patterns in a frictional setting with heterogeneous human

capital. The inability to reconcile wage polarization with a “canonical” competitive model

inspired use of the tasks framework (Acemoglu and Autor, 2011). Frictions (like search and

learning frictions) provide an alternative, tractable way to enrich the environment instead

of expanding the dimensionality of tasks to capture an intractable, large set of occupations.

On the other hand, this simpler model remains unsatisfactory. It seems unreasonable that

non-cognitive skills hold such little value in rewarding productivity or allocating jobs. We

can interpret it as the value of cognitive skills and age encompass the value of all other non-

cognitive skills. Data suggest otherwise as these skills/tasks do not correlate perfectly. It

also appears skills like interpersonal skills hold some importance for wages and job allocation

distinct from cognitive skills (Jaimovich, Siu, and Cortes, 2017).

Stationarity vs. Trends

How much of the same conclusions do we draw when conceptualizing technological change as

a one-time, permanent shock rather than ongoing structural change? The following decom-

position determines the significance of looking at a transition path to examine occupational

structural change. The benchmark model imposes discipline in the labor market across

time. The distribution of skill requirements and productivity evolve gradually, some pa-
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Figure 25: Repeated Stationary Model

rameters remain fixed, and cross-sectional outcomes aggregate from overlapping cohorts. A

non-stationary (partial) equilibrium transition path maps out the labor market from 1979 to

2010. Many papers take an alternative approach to technological change or demand shifts.

Instead, they consider them as a one time, permanent adjustment and estimate a series of

steady state models over sub-periods.88 They then use estimates over each sub-period to

perform counterfactual analysis and make inference about technological change.

I estimate a stationary version of the model over year long sub-periods. This version

eliminates human capital evolution and foresight over structural changes. I estimate the

stationary model to match annual levels of the target moments when available.89 This

model generates strong U-shaped wage polarization in the 1990s. In doing so, it fails to

match wage and occupational changes otherwise (Figure 25). In fact, it overestimates wage

polarization in the 1990s (Appendix Table 50). Imposing consistency over time greatly

improves the fit to occupational wage and employment changes. In this frictional setting,

the accumulation of decisions in an ongoing transition appear to better describe occupational
88e.g. Lindenlaub (2017); Kantenga and Law (2017). The question arises as to how long a period makes

a steady state.
89Correlations between initial specific skills and current job requirements are unavailable in 2000 and 2010

due to imposed data restrictions. Instead, I target employment shares by occupational group at the 10, 50,
and 90 wage percentiles to provide information on equilibrium sorting.
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Table 16: Task Price Polarization (in Log Points)

Boehm (2017) I II III

∆(πA − πR) 27.3 8.4 48.3 34.9
∆πR -5.2 -0.0 -17.4 -19.2
∆(πM − πR) 32.0 4.6 5.6 15.0

structural change than two entirely different states of the world.

Employer Competition

Lastly, I re-estimate the model with pure Nash Bargaining to see if employer competition

made any difference to the model fit. Nash Bargaining does not change the allocation of

workers to jobs under the same parameters as (I) or (III), because it only affects the split

of the surplus, not the surplus itself. However, it does affect wages as shown in Appendix

B.1.4. Nash Bargaining results in a marginally worse fit (Appendix Table 48, Appendix

Figure 57), but ultimately employer competition makes little difference compared to Nash.

2.5.3. External Validation

I show the model can evaluate hypotheses and produce findings in the literature to support

to its validity. The model yields ambiguous predictions as discussed in Section 2.2. This

lack of prediction makes the model flexible enough to match wage and occupational patterns

over time. However, it also makes the model difficult to validate. Natural questions for such

a quantitative model include: how plausible are the model’s insights? What can we observe

in the data to evaluate (if not test) the model’s validity? For example, the model indicates

workers hold higher general skills in low-skilled occupations in 2000 due to aging. Thus,

we ought to observe older workers in low-skilled occupations in 2000 compared to 1989. If

workers in the low occupation become younger on average, then we might question what

the model says about wage polarization. Average ages increase in this occupational group

in the CPS data, which is consistent with the model.

119



A good model replicates at least some relevant findings in reduced form approaches.

In contrast to this model, the competitive framework offers stronger predictions. Notably,

task-biased technical change results in polarized “task prices” if nothing else (Boehm, 2017).

I estimate these competitive “task prices” as a reduced-form validation exercise. Suppose

we conceive of wages in the general terms of a competitive Roy-style assignment model.

Wages equal the sum of skill prices times the worker’s skill level. Based on this framework,

Boehm (2017) develops a reduced-form method comparing NLSY cohorts to estimate relative

changes in task prices for manual (πM ), routine (πR), and abstract (πA) tasks. He finds

evidence of “task price polarization,” meaning the relative prices of manual to routine skill

and abstract to routine skills rise under task price polarization. I implement his estimator

for task prices on model simulated cohorts over the same time period (1984/92-2007/09),

substituting in my skill measures xC(0) and xM (0) and occupational groups in place of

(xA(0), xR(0), xM (0)) and his abstract, routine, and manual occupational groups.90 The

model simulated NLSY-like cohorts exhibit task price polarization despite wages arising

from a markedly different framework and data construction (Table 16).

Autor and Dorn (2013) also consider a competitive Roy-style model and test its predic-

tions about employment and wage changes in “routine” occupations.91 They hypothesize

that demand for routine tasks fell over 1980 to 2005, causing areas with larger shares of

routine occupations to experience drops in non-college worker wages and the share of rou-

tine employment. However, they find clerical occupations in commuting zones with higher

routine employment shares experience a wage gain, weakening their results.92 They hypoth-

esize that self selection puts more productive workers in clerical jobs but cannot test this

hypothesis due to a lack of data. The model can fill this gap and evaluate their hypothesis.

The model works in (yC , yM )-space instead of geographical space. Figure 26 shows rou-
90Abstract, routine, and manual correspond to the high, medium, and low-skilled occuaptions in Acemoglu

and Autor (2011). I selected the occupational groups to best align with these groups in a simple manner in
Section 2.3.2.

91Routine job consists of repetitative, codifiable tasks, e.g. bank teller (Autor, Levy, and Murnane, 2003).
92The gain is not small. It is comparable to the percentage gain for low-skill service occupations and

high-skill occupations.
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Figure 26: Routine Intensity in (yC , yM )-space

tine intensity in (yC , yM )-space where lighter shading represents higher concentration.93 I

calculate changes in employment shares in “clerical” and “non-clerical” middle-skilled occu-

pations in the model using its best fitting version (III).94 Figure 26 shows moderate to high

routine intensity for clerical jobs (red rectangle). From, 1980 to 2005, the employment share

of “clerical” occupations fell slightly (-1%) while its average wage rose (+6%) in the model.

This matches the pattern in the data even though the model does not target changes in

this group over this period. Meanwhile, employment shares (-29%) and average wages (-3%)

fell in the model’s “non-clerical” medium-skilled occupational group. Workers selected into

these occupation such that the average level of cognitive skills increases 4.7% in the “clerical”

group versus 2.2% in the “non-clerical” group. Manual skills in each occupational group only

changed slightly.

The hypothesis of Autor and Dorn (2013) says wages rise in clerical occupations due

to displacement of the least skilled workers and most routine tasks within clerical occupa-

tions.95 The increase in xC supports the first part of their hypothesis. The second part

of their hypothesis says the most routine-intensive tasks within clerical occupations become

displaced. The change in the density Ft(y) negatively correlates (-0.25) with routine inten-
93I calculate the Autor and Dorn (2013) measure of routine task intensity for occupations in 1979, map

these occupations into (yC , yM )-space, and smooth over the contours.
94I define clerical occupations in (yC , yM )-space using the interquartile values of (yC , yM ) estimated for

clerical occupations in the data, i.e. {(yC , yM ) : 0.37 < yC < 0.52, 0.32 < yM < 0.48}.
95The model provides a means to obtain measures of consistent within task changes in occupation that

Autor and Dorn (2013) claim to need.
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sity within this occupational group. Thus, the skill demand distribution shifts away from

areas holding initially higher routine intensity within the clerical group, supporting the sec-

ond part of their hypothesis. This example and “task price polarization” show the model

can produce results and test hypotheses from the literature, adding to the credibility of its

own insights.

2.6. Drivers of Skill Demand

Now, I turn to evaluate the importance of various economic forces behind changes in skill de-

mand. Various papers put forward strong candidates to explain why skill demand polarized,

shifting away from middle-skilled occupations towards high and low-skilled occupations.

Prominent explanations fall into the broad categories about technological progress, global-

ization, and consumer preferences. I map related variables into (yC , yM )-space and perform

variance decompositions on Ft(y) to measure the relative importance of some of these expla-

nations. The model delivers the whole (parameterized) distribution of skill demands from

1979 to 2010. This distribution provides the power and cross-sectional variation needed to

identify the contributions of each variable considered.96

2.6.1. Data & Variables

The model casts occupation in terms of their task complexity, but prominent explana-

tions also consider task content. Autor, Levy, and Murnane’s (2003) routinization hypoth-

esis claims forces like automation eliminated routine jobs. Goos, Manning, and Salomons

(2014) use task content to extrapolate whether automation and offshoring account for job-

polarizing skill demand changes.97 I consider task content measures for offshoring vulnera-

bility, routine-intensity, and interpersonal intensity estimated using O*NET and DOT via

Autor and Dorn (2013).98 Offshoring vulnerability measures the need for face-to-face con-
96The low frequency of the variables available makes spurious correlations likely without cross-sectional

variation.
97They model technological change as linear time trends as I do in the model. Few datasets measuring

realized automation and offshoring exists, which is why the literature uses task content as a proxy. One
recent exception is Acemoglu and Restrepo (2017). They use a proprietary dataset to examine the role of
robots.

98See Autor and Dorn (2013) for details on variable construction of offshoring vulnerability and routine
intensity measures. Interpersonal intensity comes from O*NET measures for social perceptiveness, coordi-
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tact and hence the ease of performing a task abroad. Figure 27 shows these jobs range from

manually complex but cognitively simple tasks to cognitively complex and manually simple

tasks. For example, insurance underwriters, (yC , yM ) = (0.67, 0.27) and machines operators,

(0.09, 0.60), fall into these categories. Routine-intensity measures the extent to which the

job’s tasks follow a set of codifiable rules and thereby susceptible to automation. Figure 27

shows these jobs consist of moderate to complex manual tasks of low cognitive complexity.

Machine and telephone operators (0.24, 0.4) serve as example of routine-intensive occupa-

tions. Interpersonal intensity measures the extent to which a job requires social skills like

negotiation, persuasion, and emotional perception. Psychologists (0.84, 0.30) serve as a good

example of an interpersonal-intensive task. Visual evidence immediately suggests roles for

offshoring and automation in explaining the decline in demand for medium-skilled occupa-

tions. Lighter areas in Figure 27 show high concentration of routine and offshorable tasks

in 1979. These areas in (yC , yM )-space coincide with areas where skill demand declined the

most (Figure 17).99 These same areas lack intense use of interpersonal tasks while areas of

increased demand use them intensively.

A variety of papers measure the impact of technology and trade via differences in tech-

nology adoption or trade exposure. These difference occur across industries, hence they

exploit industry differences and variation in the industry mix across areas. Michaels, Na-

traj, and Van Reenen (2014) show large polarizing effects across industries due to accelerated

information and communications technology (ICT) adoption and R&D using industry data

across countries. Following Michaels, Natraj, and Van Reenen (2014), I use the flow of ICT

expenditures as a share of value added to measure technological progress. In addition, I con-

struct similar capital share variables for machinery, research and development (R&D), and

transportation equipment. This data comes from the EU KLEMS Growth and Productiv-

ity Accounts Statistical Module. I also construct a measure of Chinese import penetration

into manufacturing sub-sectors.100 Autor, Dorn, and Hanson (2013) show large negative,

nation, persuasion, negotiation, instruction, and service orientation.
99I focus all the analysis here on estimated skill demands for the best fitting model (III). Additional results

for other model versions are available upon request.
100Import penetration is the ratio of imports to net imports minus the total value of domestic shipments
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Figure 27: 1979 Task Content in (yC , yM )-space

local effects on manufacturing employment driven by rising import competition from China.

Figure 28 shows the manufacturing industry concentrates in the area with the largest de-

cline in skill demand. Manufacturing industry import and export data comes from Schott

(2008). Data on domestic shipments comes from the NBER-CES Manufacturing Industry

Database.101 I aggregate these annual industry variables into 11 major sectors to create

consistency in variables across time and datasets.102 I then merge all of the above metrics

into the CPS DOT dataset (Appendix B.2.3) based on these sectors to obtain variables over

a (yC , yM ) grid.103 This approach mirrors Autor and Dorn (2013) and Autor, Dorn, and

Hanson (2013). They use variation in local exposure to test predictions stemming changes in

skill demand. I leverage the model and use variation in exposure across (yC , yM ) to identify

the impact of the factors mentioned on Ft(y).

To summarize, the factors I evaluate from the literature include ICT adoption, R&D,

manufacturing import penetration, susceptibility to automation and vulnerability to off-

shoring. ICT, R&D, and vulnerability to automation constitute technological factors. Im-

port penetration and offshoring risk serve as globalization and trade related factors. None of

based on the definition of Lu and Ng (2013). Manufacturing sub-sectors are 1) food and tobacco, 2) textiles
and appliances, 3) wood and furniture, 4) paper and printing, 5) chemicals and petroleum, 6) clay, stone,
rubber and leather, 7) metals, 8) equipment, 9) transport, and 10) other products (e.g. toys).

101http://www.nber.org/nberces/. Accessed 28 July 2017.
102These sectors are 1) agriculture, forestry, fishing, and hunting, 2) mining, 3) construction, 4) manufac-

turing, 5) wholesale and retail trade, 6) transportation and utilities, 7) information and communications, 8)
financial, professional and business services, 9) educational and health services, 10) leisure and hospitality,
and 11) other services.

103I weight observations by the industry concentration within the respective CPS DOT occupation in a
given year to obtain concentration variables over a (yC , yM ) grid. I smooth these variables over the support
of y which imputes values for jobs with similar task complexity but are unobserved in the data.
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Figure 28: Manufacturing, Mining, and Construction Concentration in (yC , yM )-space
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Figure 29: Financial, Professional and Business Service Concentration in (yC , yM )-space

these factors directly capture the effects of consumer preferences on skill demand. Autor and

Dorn (2013) argue increased demand for low-skilled service occupations comes from the in-

teraction of consumer preferences and technological change. Technological progress in goods

production lowers their cost, but consumer prefer variety and thereby increase their demand

for low-skilled, non-routine services. Similarly, firms performing highly complex tasks benefit

from technological innovation and demand more of these services as they expand. Figure 29

shows the professional services industry provides jobs consisting of highly complex cognitive

tasks and non-complex tasks. For example, receptionists perform relatively simple tasks,

(yC , yM ) = (0.30, 0.22), and work mostly in the professional service industry. I capture

this interaction by weighting industry level variables by their employment share within an

occupation.
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2.6.2. Variance Decompositions

The literature tells us a myriad of factors significantly affected skill demand, contributing to

polarization. However, the disparate nature of these studies makes evaluating their relative

importance difficult. Here, the model proves useful. Its estimates of the distribution of skill

demand in (yC , yM )-space provide a foundation to compare various factors once cast in this

space. It implicitly provides variation within and across occupations over time. We can

exploit the variation in changes across the support of (yC , yM ) to measure which factors

appear more important. I perform a simple linear variance decomposition on the change in

Ft across (yC , yM ) cells to measure each factors relative importance.104 I focus on contribu-

tions rather than the significance of each factor, because the literature has established their

significance.105 But, it has not fully established their relative importance.

First, I examine in which industries changes in the distribution of skill demand took place

given the visual evidence in Figures 28 and 29. Table 17 shows industry concentration in

1979 accounts for up to a half of the changes from 1979 to 2010.106 In other words, industry

(linear) trends alone account for half of the changes in the skill demand distribution. The

manufacturing and construction industries account for much of industries’ contribution as

Figure 28 suggested. The rise in importance in information and professional services in

the 1990s is consistent with rising ICT adoption as these industries experience the largest

additions relative to total value added.

Next, I decompose changes in Ft(y) due to task content. Interpersonal intensity nega-

tively correlates with both routine intensity (-0.66) and offshoring (-0.44) in 1979. Mean-

while, routine intensity and offshoring correlate weakly and positively (0.01). Table 18 shows

the variance contributions of offshoring vulnerability, routine intensity, and interpersonal in-

tensity to changes in the skill demand distribution. The fourth column shows interpersonal
104In Appendix B.3.2, I show that selection effect necessitate the use of the model primitive, Ft, and not

the equilibrium distribution of y.
105The projection coefficients hold no meaningful interpretation with respect to changes in the density of
Ft.

106The total variance contribution displayed includes contributions due to correlations in industry concen-
tration at (yC , yM ) cells. I use a 100×100 grid for 10,000 cells.
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task content outweighs routine intensity and offshoring risk in importance. Ignoring inter-

personal content overemphasizes the importance of routine content in accounting for changes

in skill demand as the last column of Table 18 shows. They correlate strongly and negatively,

but interpersonal intensity better accounts for ∆Ft(y) by a factor of 7 to 1.107 All else equal,

higher interpersonal intensity at (yC , yM ) correlates to increased skill demand (i.e. density

of F rises). I interpret this correlation as demand increased for interpersonal skills over the

three decades. Holding interpersonal intensity and offshoring risk fixed, demand decreased

for routine skills but to a much lesser degree than it increased for interpersonal skills. These

demand shifts appear to take place in the 1990s and 2000s, respectively. Automation may

account for this fall in demand for routine skills as routine skills remain more suscepti-

ble to automation by their definition. Jobs with higher offshoring risk actually increase in

demand, all else equal, especially in the 1990s.108 These jobs include tasks which require

high cognitive skills but little face-to-face contact like economists (0.65, 0.25), accountants

(0.65, 0.23), and operations/systems analysts (0.67, 0.34). Again, this increase outweighs the

fall in routine skills in importance to account for ∆Ft(y). Overall, the model’s skill demand

estimates do not reject Autor, Levy, and Murnane’s routinization hypothesis. However, they

emphasize asymmetry in the importance of the rise in demand for interpersonal skills versus

the fall in demand for routine skills. The model’s skill demands suggests industry trends in

manufacturing and construction encompass most of the explanatory power of automation

risk. Offshoring risk does not correlate to lower skill demand overall. In fact, demand rose

for cognitively complex tasks at higher risk of offshoring, all else equal. Some of these jobs

may have been offshored to the US, because the net flow of foreign direct investment (FDI)

began to increase starting in 1990.

Finally, I turn to the industry level variables to provide insight how technology and

trade account for ∆Ft(y).109 Table 19 presents the individual variance contribution of each
107The partial R2 of routine intensity is 1.6% compared to 11.8% for interpersonal intensity.
108The projection coefficient on offshoring vulnerability is positive for 1979 to 2010.
109I control for the initial industry shares in this decomposition, which is equivalent to including industry

trends in the level regressions. I do this for the same reason as Autor, Dorn, and Hanson (2013). I want
to use variation in industry level exposure (rather than industry trends) to identify the effects of changes in
each factor.
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factor and their joint contribution to changes in the distribution of skill demand. The

results suggest changes in machinery and transport adoption drove changes in demand in

the 1980s. The increase in variance contribution for ICT confirms the finding of Michaels,

Natraj, and Van Reenen (2014) for the 1990s. ICT drove changes in demand in the 1990s to a

relatively large extent. The 2000s appear more mixed in what affects ∆Ft(y). Overall, R&D

and transport adoption appear to serve as the most important determinants of changes in

skill demand over the three decades. The importance of manufacturing import competition

from China diminishes over time as the manufacturing industry share falls.110 ICT’s impact

occurred mainly in the 1990s. Industry trends, technological progress, and trade as measured

by the variables shown explain up to 57% of the job-polarizing change in the distribution of

skill demands from 1979 to 2010.111

I now provide a comprehensive interpretation of these results.112 Continued productivity-

enhancing (or labor-augmenting) industrialization in part drove the 1980s. Adoption of

machinery made specific skills which use complex tasks more valuable and thereby increased

their demand. At the same time, the manufacturing industry lowered demand for the

manually complex tasks it performs (likely due to automation), forcing the least productive

workers into low-skilled occupations.113 Hence, we see job polarization but wage expansion

across occupations and the distribution overall.114 The accumulation of machinery also

began to decelerate in the 1980s (Appendix Figure 58). The development of ICT in the 1990s

created opportunities requiring high cognitive skill to leverage social skills like negotiation

and persuasion. This key development led to occupational upgrading as demand shifted away

from complex manual tasks towards complex cognitive tasks involving interpersonal skills.

After the 1990s, it seems the impact of ICT development tapered. Automation susceptibility
110Autor, Dorn, and Hanson (2013) instrument this variable, but obtain similar results with OLS and 2SLS.
111The remaining 43% and lack of explanatory power in the 1980s and 2000s prompt questions beyond the

scope of this paper.
112Of course, this interpretation does not rule out others.
113The decline in manufacturing employment share in the 1980s onward look to be part of a long-run trend.

See <https://fred.stlouisfed.org/series/USAPEFANA>.
114Workers with few skills (often younger) tend to make more gains through experience. During the 1980s,

life cycle wage profiles flattened and began to become stepper again more recently Manovskii and Kambourov
(2005). This occurance likely relates to occupational wage polarization.
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Table 17: Initial Industry Concentration Variance Decomposition on ∆F(y)

1979-1989 1989-2000 2000-2010 1979-2010

Agriculture, Forestry, Fishing, & Hunting 0.033 0.006 0.045 0.001
Mining 0.001 0.001 0.003 0.000
Construction 0.063 0.026 0.010 0.074
Manufacturing 0.020 0.098 0.056 0.125
Wholesale & Retail Trade 0.000 0.024 0.001 0.011
Transportation & Utilities 0.000 0.045 0.029 0.010
Information Services 0.010 0.048 0.001 0.034
Financial, Professional, & Business Services 0.003 0.041 0.007 0.068
Education and Health Services 0.004 0.018 0.003 0.012
Leisure & Hospitality 0.020 0.001 0.011 0.000
Other Services 0.002 0.008 0.000 0.008

Total Variance Contribution (R2) 13.8% 37.4% 16.0% 47.1%

appears to have taken on some importance in the 2000s, but a lot of the changes in skill

demand during this time remain unexplained.

2.7. Conclusion

This paper presents a quantitative model which reconciles changes in the occupational and

wage structures. Reconciling these changes requires a framework which takes selection ef-

fects seriously. To this end, I employ a dynamic, multidimensional-skill search model. I

use variation in micro data on wages, occupations, and task complexity to estimate model

Table 18: Initial Task Content Variance Decomposition on ∆F(y)

1980s 1990s 2000s 1979-2010 1979-2010

Offshoring Vulnerability 0.040 0.164 0.009 0.128 0.021
Routine Intensity 0.004 0.001 0.090 0.023 0.226
Interpersonal Intensity 0.025 0.400 0.002 0.239 −

Total Variance Contribution (R2) 2.8% 30.2% 7.4% 33.5% 24.6%
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Table 19: Capital Input and Imports Variance Decomposition on ∆F(y)

1980s 1990s 2000s 1979-2010

Individual Contributions

∆ Chinese Manufacturing Import Penetration 0.082 0.009 0.005 0.003

∆ Capital Formation
ICT 0.006 0.176 0.031 0.006
Machinery 0.087 0.006 0.062 0.039
R&D 0.007 0.009 0.021 0.094
Transportation Equipment 0.162 0.064 0.058 0.104

Joint Contribution (Partial R2) 7.5% 18.6% 4.9% 16.3%
Total Variance Contribution (with industry mix) 20.3% 43.2% 20.1% 56.9%

parameters and back out what skill demand shifts occurred. The model produces the ob-

served patterns of expansion and contraction across occupations and the wage distribution

over 1979 to 2010. It also reproduces some patterns observed in the reduce form literature

on job and wage polarization. The model indicates selection based on heterogenous specific

human capital plays an important role in accounting for the observed allocation of workers

to jobs.

I then take the estimated shifts in the distribution of skill demands and use them to

evaluate explanations for these changes. I find industry trends, technological progress, and

trade as measured by the variables shown explain up to 57% of the polarization in the

distribution of skill demand over 1979 to 2010. Looking closer, the adoption of machin-

ery, transport equipment and R&D appear to hold some importance throughout the three

decades. However, ICT adoption took on a strong role in the 1990s and spurred demand for

interpersonal and social skills. The results suggest this “ICT Revolution” changed the occu-

pational and wage structure far more than the decline in demand for routine skills. Shifts

in routine skills do not appear quantitatively important outside of the long-run decline in

manufacturing and construction employment. Still, the variables used fail to account for
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about 40% of the changes in the distribution of skill demand, leaving several questions. Is

what is left truly unexplained noise at the occupational level or estimation error in ∆Ft(y)

or noise due to aggregating to the sector level? Are there technological changes yet to be

widely considered (e.g. robots, better measures of automation) which account for much of

what is left? All of these questions remain important for future work of this nature.

The model points to several avenues of potential research. First, the model takes a first

step at quantitatively introducing frictions and dynamic selection issues neglected in the

job/wage polarization literature. In doing so, it takes meeting rates as given to deal with

the inherently non-stationary nature of the transition path. As a result, the model remains

silent on the role of search related general equilibrium feedback. In this dimension, further

developments in directed search may prove fruitful. For example, Menzio and Shi (2010)

present a block recursive directed search model which makes meeting rates independent of

the endogenous distribution of worker types. However, the model has no firm heterogeneity.

Thus, it also has no meaningful notion of skill mismatch or imperfect sorting, which arguably

remains an important feature of the data. Second, the model views labor market structural

change as the result of a gradual process. Hershbein and Kahn (2016) provide evidence

which says short downturns amplify the negative impact of these changes on (cognitive)

routine skill demand. The exogenous nature of skill demands and free entry here means the

model cannot speak to the timing of structural adjustment on the firm side. Understanding

this requires progress in understanding how firms determine their multidimensional skill

demands.
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Chapter A : Appendix to Chapter 1

A.1. Worker-Firm Rankings with Fixed Effects

We show in this Appendix that worker and firm fixed effects can identify the productivity

ranks of workers and firms when the wage function is increasing (but not necessarily additive

separable) in worker and firm productivity types. This is guaranteed when the underlying

match density is uniform. However, the identification of ranks is not guaranteed when the

match density is not uniform.

A.1.1. Fixed Effects Identify Productivity Ranks when Match Density is Uniform

Some context helps. Let i represent the worker identifier that, without loss of generality, is

also the worker’s rank. j is the firm identifier/rank.

Represent log wages as w(i, j) as a draw from a joint probability mass function with support

S = {(i, j)|i = 1, ..., I; j = 1, ..., J} and αi+ψj as a numerical approximation to w(i, j) where

{αi}i=1,...,I and {ψj}j=1,...,J are real numbers. Denote the number of observations of w(i, j)

with nij . Consequently, the match density at (i, j) is θij =
nij∑
ij nij

. The total squared

approximation error from least squares estimation of α and ψ is

ε∗ = min
{α,ψ}

∑
i

∑
j

θij (w(i, j)− α(i)− ψ(j))2

s.t.

J∑
j=1

ψ(j) = 0

where the last constraint serves to eliminate trivial multiplicity. Note that θij = 1
I·J ∀ i, j

corresponds to a uniform joint probability mass function for w(i, j).

Lemma 1

Consider four real numbers. {wL, wH} represent wages where wL < wH . {αL, αH} repre-
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sents fixed effects. αL < αH , if and only if

(wL − αL)2 + (wH − αH)2 < (wL − αH)2 + (wH − αL)2.

Proof. Expanding and canceling terms in the expression above yields

0 < (αH − αL)(wH − wL)⇔ αL < αH �

Proposition 1: Ranks are identified when the match density is uniform.

Suppose w(i, j) is strictly increasing in i and j, but not necessarily additive separable. If

θij = 1
I·J ∀ i, j, then least squares estimates {α∗i }i=1,..,I are strictly increasing in i.

Proof. Suppose the fixed effects are not increasing in i. Then, there exists some k such

that α∗k > α∗k+1. Let w̃(i, j) denote w(i, j)− ψ∗j . Now

ε∗ · I · J =
∑
j

∑
i

(w̃(i, j)− α∗i )
2

=
∑
j

[(
w̃(1, j)− α∗1

)2
+
(
w̃(2, j)− α∗2

)2
+ ...

+
(
w̃(k, j)− α∗k

)2
+
(
w̃(k + 1, j)− α∗k+1

)2

︸ ︷︷ ︸
w̃(k,j)<w̃(k+1,j), α∗k>α

∗
k+1

+...

+
(
w̃(I − 1, j)− α∗I−1

)2
+
(
w̃(I, j)− α∗I

)2
]
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by Lemma 1

>
∑
j

[(
w̃(1, j)− α∗1

)2
+
(
w̃(2, j)− α∗2

)2
+ ...

+
(
w̃(k, j)− α∗k+1

)2
+
(
w̃(k + 1, j)− α∗k

)2

︸ ︷︷ ︸
α∗k and α∗k+1 are swapped

+...

+
(
w̃(I − 1, j)− α∗I−1

)2
+
(
w̃(I, j)− α∗I

)2
]

which is a contradiction to the assumption that α∗ and ψ∗ being the least squares solution.

The case for j follows immediately.

A.1.2. Identification Failure under Nonuniform Match Density

Identification of ranks is not guaranteed when the match density is not uniform, i.e. when

there is sorting. We provide a very simple example where fixed effects do not identify ranks.

Counterexample. Suppose log wages are w(i, j) = i ·j where i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.

Suppose the observed distribution of wage is given by m(i, j) which is

m(i, j) =



0.5 i = 1, j = 1

0 i = 1, j = 2

0.5 i = 1, j = 3

0.1 i = 2, j = 1

0.5 i = 2, j = 2

0.4 i = 2, j = 3

1 i = 3, j = 1

0 i = 3, j = 2

0 i = 3, j = 2
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Then the least squares estimates of the workers fixed effects are

p(i) =


3.242 i = 1

5.697 i = 2

5.484 i = 3

,

which ranks worker Type 2 as Type 3, and worker Type 3 as Type 2 based on their fixed

effects from smallest to largest. Workers are ranked incorrectly, because the fixed effects are

not increasing in underlying type (i) under this nonuniform density for w(i, j). The proof

which guaranteed identification of ranks under the uniform match density fails because

attaching nonuniform weights to the objective invalidates Lemma 1.

A.2. Data Appendix

This section provides further details on our data and imputation procedures. We describe

the wage trends we observe in our data and the distribution of firm sizes. We also describe

the imputation methods for education and censored wages.

A.2.1. Wage Dispersion in Germany

Table 20 shows the rise in wage inequality in West Germany from 1993 to 2007 by the per-

centile ratios. Conditioning on age, year, and education (residual wages), we find increasing

dispersion in wages as shown in Table 21 within these age and education groups. Despite

being a subset of German wages, our data exhibits similar wage dispersion patterns seen in

Dustmann, Ludsteck, and Schönberg (2009) and Card, Heining, and Kline (2013). Card,

Heining, and Kline (2013) attribute rising residual wage inequality to increasing worker

and firm heterogeneity from the covariance structure of wages. Dustmann, Ludsteck, and

Schönberg (2009) decompose the rise in inequality due to observable changes in the work-

force composition and the market prices on these observables. These observables account

for a significant portion of rising wage dispersion, but still much of it is due to residual wage

inequality rising. Table 21 shows this rise. The wage gap between the 90th and 10th and

the 50th and 10th percentiles grew over our observation period using worker and firm fixed
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effects to model wage residuals. Our sample generally exhibits these same trends found in

Dustmann, Ludsteck, and Schönberg (2009). Overall, log wage variance grew from 0.196 to

0.312 from the 1990s to 2000s in our dataset. Residual log wage variance increased from

0.169 to 0.205 over the same period.

Table 20: Percentile Ratio of Real Daily Logwages

90-10 pctile 90-50 pctile 50-10 pctile

1990s 1.285 1.115 1.152

2000s 1.308 1.119 1.169

Note: These tables illustrate the ratios of the 90-10, 50-10, and 90-50 imputed real daily log wages
(see Appendix A.2.2) and residual log wage percentiles in 1993 and 2007. The base year is 1995.
Regressions control for age-squared, age-cubed and year all interacted with education. Residuals
refer to logwage− z′γ̂ where z′γ̂ are estimated returns to the control variables.

90-10 pctile 90-50 pctile 50-10 pctile

1990s 1.286 1.112 1.156

2000s 1.346 1.110 1.212

A.2.2. Education Imputation

The education variable in the LIAB data comes from establishment reports to the Social

Security Administration. It contains missing entries and inconsistencies. For example, edu-

cation may drop from university to vocational schooling in a job spell and go back to univer-

sity. We impute missing education variable using the IP1 imputation procedure developed

by Fitzenberger, Osikominu, and Völter (2006). This procedure assumes establishments

never over-report a worker’s education and thereby forces education to weakly increase over

time. This assumption makes use of the fact that the German social security office requires

employers to report the highest education obtained by a worker. Hence, the education record

should increase weakly as workers may acquire more education. IP1 education contains four
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main categories: 1) less than secondary education; 2) less than secondary education with

a vocational qualification; 3) secondary education with/without vocation training; and 4)

university or technical degree. We find education missing 10.73% of the observations pre-

imputation and 0.01% post-imputation. As in Dustmann, Ludsteck, and Schönberg (2009),

we record missings as the lowest education level after imputation.

A.2.3. Wage Imputation

The LIAB only reports wages up to earnings limit for social security contributions (Kloster-

huber, Heining, and Seth, 2013). We find a censoring rate of 9% among all wage observations

in our sample and impute the censored values. Censoring occurs evenly across the years.

Our method is less sensitive to censored wages because we estimate the model using from

out-of-unemployment wages which exhibit only a 2% censoring rate. First, we convert daily

wages to real daily log wages using the CPI with base year 1995. Second, we fit tobit models

on age-education-year cells to impute the censored upper tail following Dustmann, Ludsteck,

and Schönberg (2009) and Card, Heining, and Kline (2013). We include age, job tenure,

the fraction of individual wages censored at all jobs, the mean individual wage, the frac-

tion of censored wages of lifetime coworkers, the mean of wages of lifetime coworkers, and

the fraction of lifetime coworkers with some college or university education in our censored

regression on log wages. We cannot observe all coworkers at non-survey establishments, so

we instead use the characteristics of all coworkers observed in a worker’s lifetime. These

variables reflect characteristics of the worker over their lifetime rather than the establish-

ment at a point in time. Third, we add a normal error term scaled to the variance of the

age-education-year cell from the fitted value of log wages. This forms the imputed wage.

We leave the wage at the real wage censored limit whenever the imputed value falls below

the censored value. The imputation yields the log wages over the observation period shown

in Table 22.
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Table 22: Daily Log Wages (1993−2007)

Mean Variance Min Max

Censored 4.274 0.198 2.302 4.909

Fitted 4.283 0.213 2.302 6.276

Imputed 4.290 0.222 2.302 6.152

Note: Daily log wages are real daily wages computed from the CPI with the base year 1995. The sample

contains 383,772 establishments (LIAB and non-LIAB), 889,307 workers, and 6,254,298 observations.

Imputed wages add a draw from a normal distribution (centered at zero with variance equal to the

estimated variance of age-education-year cell) to the fitted log wage.

A.2.4. Firm Characteristics

In Table 23, we show the establishment size distribution and its relation to establishment

productivity type.1 We observe that higher productivity type establishments tend to be

larger. In Table 24, we show the bargaining status of each establishment by firm type. The

lower type firms tend to lack collective agreements compared to higher type firms.
1These establishments hire at least 10 workers.
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Table 23: Firm Size Distribution by Type (1993−2007)

Firm Types 1− 10

Firm Size Mean Numbers of Workers Number of Firms

1− 49 15 693

50− 99 73 90

100− 199 141 59

200+ 392 23

Firm Types 11− 20

Firm Size Mean Numbers of Workers Number of Firms

1− 49 24 291

50− 99 72 150

100− 199 140 151

200+ 976 274

Note: This sample includes surveyed LIAB establishments over the 1993-2007 sample period.
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2000s

Firm Type Sectoral-Level Firm-Level None

1− 2 160 37 123

3− 4 244 29 69

5− 6 197 > 20 31

7− 8 131 > 20 > 20

9− 10 51 > 20 > 20

11− 12 71 > 20 > 20

13− 14 38 > 20 > 20

15− 16 32 > 20 > 20

17− 18 52 > 20 > 20

19− 20 32 > 20 > 20

Firm Type Sectoral-Level Firm-Level None

1− 2 163 42 181

3− 4 290 51 118

5− 6 163 24 28

7− 8 126 21 21

9− 10 22 > 20 > 20

11− 12 48 > 20 > 20

13− 14 39 > 20 > 20

15− 16 46 > 20 > 20

17− 18 37 > 20 > 20

19− 20 40 > 20 > 20

Note: These sample includes surveyed LIAB establishments over the 1993-2000 and 2001-2007 sample

periods, respectively. Due to confidentially restrictions, the number of firms for observations with less than

20 firms cannot be reported.
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A.3. Testing Additive Separability

In this appendix, we continue from Section 1.6 and discuss the econometric issues for identi-

fying match effects. We then explain our parametric inference and subsampling methods for

making asymptotic and finite sample inference on whether additive separability restrictions

hold.

A.3.1. Identification of Match Effects

The consistent estimation of the match effect (ϕ) in Equation (A.1) requires the strict

exogeneity assumptions shown in (A.2).

logwijt = z′itγ +
∑
i

∑
j

ϕijDij + uit (A.1)

E[zituit] = 0, E[ϕijuit] = 0 ∀i, j, t (A.2)

Strict exogeneity requires that the regressor be uncorrelated with current, past and future

values of the error term. We make the standard assumption on the orthogonality of the

observable regressors (zit) and the error term (uit). Similar to Card, Heining, and Kline

(2013), we assume a sufficient condition on the assignment of workers to jobs to ensure

orthogonality between the match effects and error term. Assuming the assignment to a job

defined by (i, j) does not depend on the error term is a sufficient condition for (A.2) to

hold. This condition is known in the literature as exogenous mobility. ϕij encompasses any

relationship described by (i, j), so workers may sort into jobs based on anything in this match

component. However, they cannot sort into the job (i, j) based on components in u. The

match component may consist of worker effects (αi), firm effects (ψj), and a match quality

shock (ηij) for example. A match quality shock is an idiosyncratic wage shock realized for a

particular (i, j) match. This shock is often assumed to be orthogonal to person and firm fixed

effects. This condition is not necessary to consistently estimate γ using an AKM regression

nor a match effects regression as Woodcock (2015) notes. The exogenous mobility condition

for the match effect regression is weaker than the exogenous mobility condition required for
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AKM, because workers may sort based on some match quality shock that enters the match

effect in addition to separable worker and firm effects. Note that exogenous mobility is only a

sufficient condition. If exogenous mobility on worker and firm fixed effects holds, then match

effect identification additionally requires the match quality shock to be uncorrelated with

the rest of the error component. Here, we understand match quality shocks as idiosyncratic,

match-dependent wage shocks that are orthogonal to other idiosyncratic shocks (uit) like

productivity for example.

Within the additively separable fixed effect regression framework, recent evidence from

Woodcock suggests that omitting match effects biases the estimate of returns to observable

characteristics (γ). Woodcock adds a match effect (i.e. a time invariant match quality shock

in our terminology) to the specification with worker and firm fixed effects and shows this

bias using US match employer-employee data. Mittag (2015) finds similar evidence of bias

in γ for the German LIAB dataset we employ. Hence, estimating γ consistently is a clear

advantage of constructing our test based on the match effect rather than residuals from the

AKM regression.

Using the match effects regression raises estimation concerns similar to AKM. First,

idiosyncratic shocks (uit) may induce correlation between the regressors and past values

of the error term. A potential violation to (A.2) occurs when uit predicts job transitions

or observables like education. For example, a persistent positive shock to earnings may

yield transitions to higher earning jobs if the shock occurs early in life, allowing a worker

to invest in more education. An education decision based on a past uit induces correlation

between the regressors and past values of the error term, which biases the match effect and

γ estimates. We will also have this same bias spread among the worker and firm fixed effects

in an AKM regression. As Card, Heining, and Kline (2013) note, decisions that determine

current observables based on past values of the fixed effects will not violate the exogeneity

assumption. If such shocks to earnings (inducing more education) are due to match effects

components, then the identification assumption will not be violated. However, if workers

move to firm on the basis of unobserved, idiosyncratic productivity shocks, for example,
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then this assumption will surely be violated as the fixed effect(s) will be correlated with the

error (i.e. E[ϕijuit] 6= 0 ∀i, j, t).

Second, the match effect regression introduces more multicollinearity than the more par-

simonious worker-firm fixed effect regression. This multicollinearity may make estimation of

γ less precise. When a worker moves to a new firm but acquires more education in between

jobs, then the wage increase will be attributed to both the match effect and the new edu-

cation value. This occurs because match effects saturate the regression, making estimating

parameters on observables less precise. Assuming (A.2), we still lose efficiency in estimating

the coefficients on observables like education when moving from an AKM regression to a

match effect regression. However, we do not consider efficiency loss in estimating γ to be a

concern, because our test relies solely on the consistency of γ̂. Despite the potential for the

match effect to absorb most of the effects on education and experience, consistency of γ̂ in

the worker-firm dimension. Assuming we consistently estimate AKM and the match effect

regression, we find that the estimates on returns to education and experience to be highly

correlated (0.94) across the two regressions. In short, the bias-variance tradeoff between the

match effect and AKM estimators for γ appears to be relatively moderate.

A.3.2. Parametric Inference

We specify the composite error process (uit) and derive the resulting standard errors for

∆ijϕ̂ to do parametric inference. Our parametric model for uit consists of an orthogonal

match quality shock ηi,J (i,t) and an exogenous AR(1) process (εit). J (i, t) denotes the firm

of worker i at time t and ρ is the degree of persistent in the AR process.

uit = ηi,J (i,t) + εit

εit = ρεi,t−1 + νit

ηi,J (i,t) ∼ i.i.d.N(0, σ2
η) ∀i, j, t

νit ∼ i.i.d.N(0, σ2
ν) ∀i, t
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We impose the restriction that ρ < 1, which allows for an arbitrarily persistence process but

not an exact unit root process. It can be shown that the test statistic under H0 (∆ijϕ = 0)

is

∆ijϕ̂ = ∆ij x̄
′(γ − γ̂) + ∆ijη +

1

∆tij︸︷︷︸
=Tij−tij

+ 1

Tij∑
s=tij

s∑
k=0

ρkνs−k + ...

+
1

∆ti′j′ + 1

Ti′j′∑
s=ti′j′

s∑
k=0

ρkνs−k,

dropping subscripts for η and x where x̄ is the within match average. Under our parametric

assumptions, we have the following distributions for the components of ∆ijϕ̂

∆ij x̄
′(γ − γ̂) ∼ N(0,∆ij x̄

′V(γ̂)∆ij x̄) (Estimation Error)

∆ijη ∼ N(0, 4σ2
η) (Match Quality Shock)

∑
i

∑
j

1

∆tij + 1

Tij∑
s=tij

s∑
k=0

ρkνs−k ∼ N(0,Ω) (AR(1) Error Process)

where Ω = V

[
1

∆tij+1

Tij∑
s=tij

s∑
k=0

ρkνs−k + ...

]
.

It can also be shown that

V

[
T∑
s=t

s∑
k=0

ρkνs−k

]
= σ2

ν

([
1− ρ∆t+1

1− ρ

]2
(
ρ2 − ρ2(t+1)

1− ρ2

)
+

(
1

1− ρ

)2
(

1 + ∆t− 2ρ · 1− ρ∆t+1

1− ρ
+ ρ2 · 1− ρ2(∆t+1)

1− ρ2

))
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and

cov

(
T1∑
s=t1

s∑
k=0

ρkνs−k,

T2∑
s=t2

s∑
k=0

ρkνs−k

)
=

σ2
ν ·
[(

1− ρ∆t1+1

1− ρ

)
·
(

1− ρ∆t2+1

1− ρ

)
· ρ2 · ρ

t1+t2 − ρt2−t1
1− ρ2

+(
1− ρ∆t2+1

1− ρ

)
·
(

1

1− ρ

)
·

(
ρt2−T1 − ρt2−t1+1

1− ρ
− ρt2−T1+1 − ρ∆t1+(t2−t1)+3

1− ρ2

)]
.

Hence, we have the variance and covariance terms to construct Ω. γ̂ →p γ as n→∞, thus

we obtain the following approximate distribution

∆ijϕ̂|x ≈ N
(
0, 4σ2

η + Ω
)

under H0. Ω depends on (ρ, σ2
v) and the start and end dates of the matches in the quartet

(i, i′, j, j′), so we need (ρ, σ2
v , σ

2
η) to compute the standard error

(√
4σ2

η + Ω
)
. In practice,

we discretize a grid over ρ and σ2
η over which we conduct our test, because of the difficulty of

obtaining a consistent estimates of (ρ, σ2
η).2 We present results for persistency ranging from

0 (i.i.d. errors) to 0.65. The rejection rate does not vary greatly in the degree of persistence,

so our parametric results are robust to persistence in the AR error process. We discretize

the variance of match quality shocks (σ2
η) using a grid of the share of variance due to match

quality shocks. The grid ranges from 0 to 30% of wage variance. Tables 25, 26, and 27

show that the orthogonal match quality shocks need to be 15 to 20% of wage variance to

not reject the null of additive separability under our parametric specification. This range

exceeds our prior on the share of variance attributable to orthogonal match quality shocks

in our dataset by an order of at least 5.3

2See Nickell (1981) for an explanation of the bias in estimating persistency (ρ) by standard least squares
methods. See Woodcock (2015) for an argument on the bias in estimating σ2

η by standard least squares
methods.

3Woodcock (2015) provides estimates of the variance of match quality for the US, which ranges from 2%
in the case of orthogonal match quality shocks to 18% of wage variance using a mixed effects estimator. The
mixed effects estimator assumes worker effects, firm effects and match quality shocks are random effects and

145



Table 25: ∆ijϕ Parametric Rejection Rate at 10% level

ρ\η 0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 43.67 23.62 14.72 9.64 6.54 4.56 3.26

0.10 43.03 23.43 14.61 9.57 6.50 4.54 3.24

0.20 42.53 23.28 14.52 9.52 6.46 4.52 3.22

0.30 42.15 23.16 14.45 9.48 6.44 4.50 3.21

0.40 41.88 23.08 14.41 9.45 6.42 4.49 3.21

0.50 41.76 23.06 14.39 9.43 6.41 4.48 3.20

0.65 41.96 23.17 14.46 9.48 6.44 4.50 3.22

Notes: The sample size is 1,225,892 observations, 11,120 workers, and 793 firms. The rows show rejection

rates for different values of ρ. The columns show reject rates for different values of σ2
η/V ar(logwijt). The

match quality shock variance is discretized as a share of wage variance. The the grid for σ2
η in levels is

{0.00, 0.01, 0.02, 0.04, 0.05, 0.06, 0.07}.

Table 26: ∆ijϕ Parametric Rejection Rate at 5% level

ρ\η 0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 36.96 17.14 9.29 5.41 3.32 2.09 1.34

0.10 36.30 16.95 9.20 5.37 3.30 2.08 1.34

0.20 35.78 16.80 9.12 5.34 3.28 2.07 1.33

0.30 35.38 16.67 9.07 5.30 3.26 2.06 1.33

0.40 35.10 16.58 9.03 5.29 3.25 2.05 1.32

0.50 34.97 16.55 9.02 5.28 3.25 2.05 1.32

0.65 35.21 16.67 9.07 5.31 3.27 2.06 1.33

Notes: See Table 25.

have zero covariance conditional on the error term and γ̂. No similar estimates exist to our knowledge for
Germany on the LIAB M3 panel, however our estimate in the case of orthogonal match quality shocks is
around 2% of wage variance. This estimate is also subject to upward bias as Woodcock shows.
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Table 27: ∆ijϕ Parametric Rejection Rate at 1% level

ρ\η 0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 26.23 8.50 3.49 1.57 0.76 0.41 0.25

0.10 25.54 8.36 3.45 1.56 0.75 0.41 0.25

0.20 24.99 8.24 3.40 1.54 0.75 0.41 0.25

0.30 24.58 8.15 3.37 1.53 0.75 0.40 0.25

0.40 24.31 8.09 3.35 1.52 0.74 0.40 0.25

0.50 24.20 8.06 3.35 1.52 0.74 0.40 0.25

0.65 24.45 8.14 3.38 1.54 0.75 0.41 0.25

Notes: See Table 25.

A.3.3. Subsampling Asymptotic and Finite Sample Inference

Assuming a stationary error process yields the asymptotically pivotal test statistic

TSij =
∆ijϕ̂

SE(∆ijϕ̂)
→d N(0, 1)

by the Lindenberg-Lévy Central Limit Theorem. This standardized test statistic converges

to a standard normal distribution as T → ∞. Therefore, we can conduct inference using

the asymptotic critical values. This inference requires knowing the error process in order

to calculate exact standard errors as was the case in our parametric inference. We can also

make allowances for error processes more general than the AR(1). We use block subsampling

to obtain a finite sample approximation of the standard errors, which is identical to block

bootstrapping using a sample smaller than the original sample. We also obtain consistent

finite sample approximations to the critical values of the test-statistic (TSij) using block

subsampling with replacement.

The subsampling technique mirrors block bootstrapping on a subsample (Horowitz,

2001). Politis and Romano (1994) provide weak conditions under which subsampling yields

consistent estimates of aspects of the cumulative distribution function like critical values.
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These conditions amount to the existence of a limiting distribution for the appropriately

normalized test statistic under the true model. Consistency requires that T →∞, B →∞,

and B
T → 0 where B is the number of random subsamples. In our case, a random subsample

is a subset of individual histories. The Politis and Romano (1994) consistency theorem holds

for stationary data. Hence, we can consistently estimate finite distribution critical values for

TSij , and we can consistently estimate the asymptotic standard error of ∆ijϕ assuming only

an arbitrary stationary error process. We use a parametric version of random subsampling

with replacement where we block resample the residual to preserve the correlation structure

of the errors.

Our random subsampling procedures draws a subset of individual histories and resamples

residuals using the specification in Equation (A.1) to obtain approximate finite sample distri-

butions of {ϕ̂ij} for all available (i, i′, j, j′) quartets in addition to an estimate of SE(∆ijϕ̂).

We resample a normal (lognormal in levels) match quality shock over different variance

parameterizations and resample the stationary error from the residuals of equation (A.1).

We resample so that each quartet (i, i′, j, j′) appears at least 100 times. The full random

subsampling with replacement procedure goes as described in Politis and Romano (1994)

and Horowitz (2001). In practice, we set B to be 500 worker histories. In simulation, we find

that the rejection region bounds converge to their true finite sample rejection bounds within

200 draws for log wages generated from a model with additively separable worker and fixed

fixed effects, match quality shocks, and a normal i.i.d. error. We use the estimates from each

subsample {{ϕ̂bij}Bb=1}ij to obtain finite sample approximations to the asymptotic standard

error and the distribution of each TSij for every quartet. We report the main results of

this procedure in Section 1.6, and Tables 28 and 29 report full results. Our subsampling

inference yields similar conclusions as the parametric inference. Orthogonal match quality

shocks need to be 15 to 20% of wage variance to not reject the null of additive separability

for an arbitrary error process and lognormal match quality shocks.
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Table 28: Rejection Rates using Bootstrapped Standard Errors

η 10% 5% 1%

0.00 41.10 34.27 23.52

0.01 37.03 30.18 19.67

0.02 33.80 26.95 16.69

0.05 26.37 19.76 10.51

0.10 18.45 12.44 5.34

0.15 13.46 8.33 3.02

0.20 9.96 5.66 1.69

0.25 7.47 3.94 0.99

0.30 5.72 2.80 0.60

Notes: The sample size is 1,225,892 observations, 11,120 workers, and 793 firms. The rows show reject

rates for different values of σ2
η/V ar(logwijt. The match quality shock variance is discretized on a grid as a

share of wage variance.

Table 29: Rejection Rates using Bootstrapped Empirical Distribution

η 10% 5% 1%

0.00 42.60 33.72 17.94

0.01 38.30 29.98 15.69

0.02 34.80 26.81 13.83

0.05 26.96 19.80 9.53

0.10 18.79 12.52 5.00

0.15 13.69 8.41 2.99

0.20 10.09 5.72 1.73

0.25 7.63 4.02 1.05

0.30 5.85 2.89 0.67

Notes: See Table 28.
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Chapter B : Appendix Chapter 2

B.1. Model Appendix

B.1.1. Occupational Wages, Employment Shares, and Wages

Typically, workers in the low, medium and high wage occupational groups populate the 10th,

50th, and 90th wage percentiles, respectively (Appendix Figure 53). Wages overall reflect

wage changes between these occupation groups. Thereby, wage polarization between occu-

pational groups may induce wage polarization overall. However, neither job polarization nor

occupational wage polarization serve as necessary nor sufficient conditions to generate wage

polarization. Workers switching ranks in the wage distribution may undo wage polarization.

To illustrate, suppose there exists 3 workers in low, medium and high-paying jobs. The

high-earning worker earns 10 units, the medium worker earns 5 units, and the low worker

earns 4 units. Now suppose the low worker gains 3 units, the high worker gains 10, and the

medium worker gains none. The low worker earns 75% more and the high worker earns 50%

more. Clearly, occupation wage polarization occurs. However, the change in wages for the

1st ranked worker is only 20% (4→5), the change for the 2nd ranked worker is 40% (5→7),

and the change for the highest ranked worker remains 50%. Wages overall do not polarize

even though occupational wages polarize, because the low worker overtakes the medium

worker. If the low worker gains any amount within the interval (0, 2), then wages polarize.

Such complications necessitate using the model to isolate what generates wage polarization

in the 1990s.

Clearly, occupational wage polarization is not sufficient to ensure wage polarization.

Furthermore, it is not even necessary. Wages may polarize mainly due to changes in the

occupational distribution. Suppose the medium occupation expands to populate the 10th

percentile and its wage increases slightly. Meanwhile, the low occupation shrinks and its

wages stagnate. Call this phenomenon “occupational upgrading.” The increased presence

of medium earners compresses wages in the bottom half of the wage distribution. The

higher wage now at the 10th percentile disproportionately increases the wage growth at
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lower percentiles while only increasing wage growth slightly at the 50th percentile. If wages

in the high occupational group grow enough at the 90th percentile, then wage polarization

occurs but neither occupational wage polarization nor job polarization occur. Again, these

complications necessitate using the model to isolate what generates the patterns of wage

expansion and polarization we observe.

B.1.2. Bargaining Protocol

The bargaining protocol described in Section 2.2.1 serves several purposes. First, it is

empirically relevant. Cahuc, Postel-Vinay, and Robin (2006b) present evidence that this

intra-employer competition or “job ladder" effect matters for wage determination. Second,

this effect may also be important to explain changes across the wage and occupational

wage distribution. For example, the average wage in a low-skilled occupation may rise due

to a disproportionate number of workers in that occupation climbing the job ladder. We

may attribute a wage increase due to wage dynamics to demand shifts if we ignore this

effect. Third, this protocol delivers a value to the worker beyond their outside option, which

enables the model to generate more realistic wage dynamics and wage levels. In Lise and

Postel-Vinay (2016), even highly skilled workers can receive low and perhaps negative wages

when the surplus is sufficiently large. In such a case, the high-skilled worker stands to gain

significantly upon a job-to-job move due to the intra-employer competition. Consequently,

the employer has a strong incentive to backload wage payments as much value to the high-

skilled worker will be delivered upon a job-to-job transition. In fact, Lise and Postel-Vinay

(2016) drop wages out of unemployment in their estimation due to the strength of this

mechanism.1 I give the worker some explicit bargaining power (λ > 0) to dampen this

effect.

This bargaining protocol also which distinguishes this model from Lise and Postel-Vinay

(2016) who use the bargaining protocol of Postel-Vinay and Robin (2002). Future gains

beyond S(x,y) accrue to the new employer Lise and Postel-Vinay (2016), because λ is zero.

This assumption results in the worker and the employer not taking the gains from a future
1See Footnote 25 in Lise and Postel-Vinay (2016).
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job-to-job move into account when determining whether to form the match. Here, expected

gains from future moves not only affect wages today as in Lise and Postel-Vinay (2016), but

they also affect the job selection decision of the worker.2 This occurs because the worker’s

expectation over future gains from a move affects the continuation value of a match when λ

is not zero. In this way, workers care about their potential career path when accepting and

declining job offers. Furthermore, employers care about the risk of a worker being poached

when forming a match. Whereas in Lise and Postel-Vinay (2016), the match value does not

take future moves into account, because the gains from a job-to-job move accrue entirely to

the new employer.3

B.1.3. Surplus and Wages with No Offer Writing Cost

In this appendix, I derive the surplus and wage function in the case where a meeting that

fails to deliver a job-to-job transition may still bid up the wage at the current employer. In

this case, the renegotiated share of the surplus (σ′) is

σ′ = σ(x,y,y′) = λ+ (1− λ)
S(x,y′)

S(x,y)
∈ (0, 1]. (B.1)

and the value to the employed worker is

Wt(x,y, σ) = wt(x,y, σ)− c(x,y) + βaEtUt+1(x′) + βa(1− δ)(1−Me,t)σEtS̃t+1(x′,y) +

βa(1− δ)Me,t ×

Et
∫
Y

max{λSt+1(x′,y) + (1− λ)Ŝt+1(x′,y′), λSt+1(x′,y′) + (1− λ)Ŝt+1(x′,y)]}dFt(y′)

(B.2)
2Risk neutrality (i.e. linear preferences) makes the total surplus independent of the time profile of wage

payments in Lise and Postel-Vinay (2016). Workers accept and reject offers based on the total surplus which
does not depend on expectations over future gains from offers on-the-job.

3In Lise and Postel-Vinay (2016), workers and employers do care about how workers’ skills evolve as a
result of forming the match as they do here. In this way, workers care about their potential skill evolution
when selecting a job. However, the path of future skill requirements does not affect the value of match and
thus does not affect job selection.
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where

Ŝt+1(x,y) = max{St+1(x,y), 0}

S̃t+1(x′,y) =(1− ω)Ŝt+1(x′,y) + ω

∫
Y

max{St+1(x′,y′), 0}dFt(y′)

subject to (2.1). We can now derive the following surplus and wages as in the main section.

The value of producing now solves

Pt(x,y, σ) = ft(x,y)− wt(x,y, σ) + βa(1− δ)(1−Me,t)(1− σ)EtS̃t+1(x′,y) +

β(1− δ)Me,t(1− λ)Et
∫
Y

max{0, St+1(x′,y)− Ŝt+1(x′,y′)}dFt(y′). (B.3)

We can show that the surplus which follows is

St(x,y) = ft(x,y)− c(x,y)− b(x) + βa(1− δ)Et
[
− λMu,t

∫
Y

max{0, St+1(x′, ỹ)} dFt(ỹ) +(
1−Me,t

)
·max{0, S̃t+1(x′,y)}+

Me,t ·max{0, St+1(x′,y)}+

Me,t · (1− ρ(x,y)) ·
[
λ
(
S̄t+1(x′,y)− Ŝt+1(x′,y)

)]]
, (B.4)

S̄t+1(x′,y) =

∫
Y
1{Ŝt+1(x′,y) < St+1(x′, ỹ)} · St+1(x′, ỹ) dFt(ỹ)∫

Y
1{Ŝt+1(x′,y) < St+1(x′, ỹ)}dFt(ỹ)

.

(B.4) is identical to (2.12). Intuitively, the surplus should not change, because this modifi-

cation changes the split of the surplus but not the surplus itself. If employers (who draw y′

such that they cannot poach the employer) engage in Bertrand competition anyway, then

they merely bid up the share of the surplus the worker’s receives in the current match. These

employers do not change the total value of the current match. However, wages depend on

how the worker and employer split the surplus. Hence, the wage function changes to the
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following.

wt(x,y, σ) = σft(x,y) + (1− σ)c(x,y) + (1− σ)b(x) + (1− σ)βa(1− δ)×

Et
[
λMu,t

∫
Y

max{0, St+1(x′,y)} dFt(y)−Me,t ·max{0, St+1(x′,y)} −

Me,t · (1− ρ(x,y)) · λ ·
(
S̄t+1(x′,y′)− Ŝt+1(x′,y)

)]
+

βa(1− δ)Me,t(1− λ)Et
[
ρ(x,y) ·

(
St+1(x′,y′)− St+1(x′,y′)

)]
. (B.5)

where

St+1(x′,y) =

∫
Y
1{St+1(x′,y) ≥ Ŝt+1(x′, ỹ)} · St+1(x′, ỹ) dFt(ỹ)∫

Y
1{St+1(x′,y) ≥ Ŝt+1(x′, ỹ)}dFt(ỹ)

.

We can also rewrite (2.13) as

wt(x,y, σ) = σft(x,y) + (1− σ)c(x,y) + (1− σ)b(x) + (1− σ)βa(1− δ)×

Et
[
λMu,t

∫
Y

max{0, St+1(x′,y)} dFt(y)−Me,t ·max{St+1(x′,y), 0} −

Me,t · (1− ρ(x,y)) · λ ·
(
S̄t+1(x′,y′)− Ŝt+1(x′,y)

)]
+

βa(1− δ)Me,t(1− σ)Et
[
ρ(x,y) ·max{St+1(x′,y), 0}

]
. (B.6)

(B.6) is almost identical to (2.13) but (1 − λ)Me,tρ(S − S) replaces (1 − σ)Me,tρS in the

continuation value. The difference in these terms comes from the difference in the bargaining

protocols with and without offer writing costs. Without offer writings costs, the potential

outside offers which will not steal the worker still affect the value of the surplus delivered to

the worker in the current match. These potential offers affect the worker’s expected share

of the surplus tomorrow and hence affect the value of the current match. Consequently, the

wage adjusts downward when the expected value for a bidding up offer (S) increases to deliver

the surplus split σ today. In essence, the worker takes lower wages today with a greater

expectation that the wage will be bid up on the job. With offer writing costs, no employer

who draws skill requirements with lower surplus than the current match bids for the worker
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and hence the worker’s value in the current match remains the same. As mentioned in section

2.2.2, this restriction prevents bidding up of wages on-the-job in order to restrict attention

to human capital evolution over job shopping in the model. Both mechanisms can produce

wage growth over a job’s tenure. However quantitatively, the job shopping mechanism tends

to generate large, counterfactual wage jumps on-the-job compared to more gradual wage

changes due to human capital evolution. It also generates counterfactually low and negative

wages due to promises of the wages being bid up over the job tenure. Hence, I assume the

offering writing cost to preclude these counterfactuals.

B.1.4. Nash Bargaining Protocol

In this section, all workers with power λ ∈ [0, 1] bargain with employers à la Nash. Again,

I assume the share of the surplus stays constant until an on-the-job meeting triggers rene-

gotiation. I also assume unemployed workers accept job offers when indifferent. Hence,

workers take a share of the surplus equal to λ. Again, a job-to-job transition only occurs

when the surplus for the poaching employer exceeds that of the current employer. The un-

employed worker’s value function Ut(x) imposing the bargaining protocol does not change

as all unemployed workers Nash bargain in the benchmark model. The employed worker’s

value function Wt(x,y, λ), imposing the bargaining protocol, solves

Wt(x,y) = wt(x,y)− c(x,y) + βaEtUt+1(x′) + βa(1− δ)(1−Me,t)λEtS̃t+1(x′,y) +

βa(1− δ)Me,t ×

λEt
∫
Y

max{Ŝt+1(x′,y), St+1(x′,y′)}dFt(y′), (B.7)

where

Ŝt+1(x,y) = max{St+1(x,y), 0}

S̃t+1(x′,y) =(1− ω)Ŝt+1(x′,y) + ω

∫
Y

max{St+1(x′,y′), 0}dFt(y′).
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The value of a vacancy Vt solves

Vt = −τt + (1− δ)Mv,tCu,tλEt
∫
Y

∫
X|u

βa max{0, St+1(x,y)}dFt(y)dWt(x|u) +

(1− δ)Mv,tCe,t(1− λ)×

Et
∫
Y

∫
X|e

βa max{0, St+1(x,y)}dFt(y)dWt(x|e) (B.8)

where Wt(x|u) and Wt(x|e) are the distributions of unemployed and employed workers at

time t, respectively. (B.8) differs from (2.7) in that employer do not need to compute

expectations over all matches, because the bargaining power stays the same for all workers.

I assume free entry of employers which drives the value of vacancy to zero so that

τt = (1− δ)Mv,tCu,tλEt
∫
Y

∫
X|u

βa max{0, St+1(x,y)}dFt(y)dWt(x|u) +

(1− δ)Mv,tCe,t(1− λ)×

Et
∫
Y

∫
X|e

βa max{0, St+1(x,y)}dFt(y)dWt(x|e). (B.9)

The value of producing solves

Pt(x,y) = ft(x,y)− wt(x,y) + βa(1− δ)(1−Me,t)(1− λ)EtS̃t+1(x′,y) +

βa(1− δ)Me,t(1− λ)Et
[

max{0, St+1(x′,y)} · ρ(x,y)
]

(B.10)

where

ρ(x,y) =

∫
Y

1{St+1(x′, ỹ) < St+1(x′,y)}dFt(ỹ).

ρ(x,y) is the probability the worker at y does not draw an employer with higher surplus.

1{·} denotes the indicator function. We can now derive the surplus function using (2.5),

(B.7), (B.10), and the free entry assumption which implies that Vt equals zero. For non-
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retiring workers, the surplus is

St(x,y) = ft(x,y)− c(x,y)− b(x) + βa(1− δ)Et
[
− λMu,t

∫
Y

max{0, St+1(x′, ỹ)} dFt(ỹ) +(
1−Me,t

)
S̃t+1(x′,y) + Me,t · ρ(x,y) ·max{0, St+1(x′,y)}+

λ ·Me,t · (1− ρ(x,y)) · S̄t+1(x′,y)

]
, (B.11)

S̄t+1(x′,y) =

∫
Y
1{Ŝt+1(x′,y) < St+1(x′, ỹ)} · St+1(x′, ỹ) dFt(ỹ)∫

Y
1{Ŝt+1(x′,y) < St+1(x′, ỹ)}dFt(ỹ)

.

This surplus takes on the same form as (2.12), but the final continuation value consists

solely of a fraction of expected future surplus of the leaving worker. Combining (B.11),

Wt(x,y) = λSt(x,y) + Ut(x), and (B.7) produces the following wage equation

wt(x,y) = λft(x,y) + (1− λ)c(x,y) + (1− λ)b(x) + λ(1− λ)βa(1− δ)×

Et
[
Mu,t

∫
Y

max{0, St+1(x′,y)} dFt(y)−

Me,t · (1− ρ(x,y))S̄t+1(x′,y′)

]
. (B.12)

This wage equation mirrors (2.13), however the final continuation value differs. The sequen-

tial auction results in a value that is the convex combination of the competing employers’

surpluses.

B.1.5. Equilibrium Concept

Here, I define the general rational expectations equilibrium and explain the difficulties in

solving for it outside of a steady state. I then make the case for a more restrictive but more

easily solved partial equilibrium, which I use to take the model to the data. An equilibrium

must consist of the solutions to (2.5), (2.6), and (2.9) which characterize equilibrium wages

(2.13) given that free entry assumption drives equilibrium Vt (2.7) to zero. In general

equilibrium, meeting probabilities arise from the measures of employed, unemployed, and

vacancies and the matching function. Hence, we add the t subscript to Mu,t, Mv,t, and Me,t
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in all the value functions and include these probabilities in the aggregate state zt. Now we

can define the general rational expectation equilibrium path as follows:

Definition B.1.1 (Rational Expectations Equilibrium Path). Let ut be measure of unem-

ployed workers at time t, et be measure of employed workers at time t, vt be the measure of

vacancies at time t, φ be the on-the-job search effort, and m : [0, 1]2 → [0,min(ut + φet, vt)]

be a matching function. LetWt(x|e) =
∫
Y
Wt(x,y)dy. Given {Ft(y)}Tt=0, {ft(x,y)}Tt=0, and

initial {e0, u0,W0(x|u),W0(x|u)}, the tuple

{Ut(x),Wt(x,y, σ), Pt(x,y, σ), Vt, wt(x,y, σ),Wt(x|u),Wt(x,y|e)}

form a rational expectations equilibrium path from time 0 to time T if the following hold.4

i) (2.5), (2.6), and (2.9) solve Ut(x), Wt(x,y, σ), and Pt(x,y, σ), respectively

ii) wt(x,y, σ) satisfies (2.13) for all employed workers

iii) Vt = 0 at every period t and vt satisfies (2.8) [Free Entry]

iv) Agents form expectations using {Ft(y)}Tt=0 and {ft(x,y)}Tt=0 [Rational Expectations]

v) Mu,t = m(vt,ut+φet)
ut+φet

, Me,t = φMu,t, Mv,t = m(vt,ut+φet)
vt

vi) et and ut evolve according to (B.13) and (B.15), respectively

vii) Wt evolves by (2.1) and according to the transitions in (B.13) and (B.15)

The main difficulty with for this equilibrium arises from the last condition. The difficulty

lies in the fact that this worker distribution (Wt) is endogenous and a part of the state space

due to the meeting probabilities (Me,t,Mu,t,Mv,t). Wt evolves in a complicated way even

without human capital evolution. We must track Wt in order to pin down et and ut and

thus vt from (2.8) and consequently everything else dependent on the meeting probabilities,

{Ut,Wt, Pt, Vt, wt}. All these objects must be solved simultaneously, making this equilibrium

intractable to solve for over a multidimensional state space. Here I only note the difficulty

in finding such an equilibrium if one exists. Establishing a proof of existence or uniqueness
4For completeness, Cu,t = ut

ut+φet
, Ce,t = φet

ut+φet
.
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of this equilibrium stands as even more challenging. As noted by Menzio and Shi (2011),

random search models like the one here remain difficult to solve outside a steady state,

because number of employed workers (et) and unemployed workers (ut) depend on the entire

distribution of workers across employment states and types.5 This distribution is not fixed

outside of a steady state.

et+1 =

∫
Y

∫
X|u

(1− ξa)Mu,t1{St+1(x,y) > 0}dFt(y)dWt(x|u)

︸ ︷︷ ︸
U2E

+ (B.13)

∫
X|e

(1− ξa)(1− δ)Me,tetdWt(x|e) +∫
X|e

(1− ξa)(1− δ)(1−Me,t)(1− ω)etdWt(x|e) +∫
X|e

(1− ξa)(1− δ)(1−Me,t)ωet1{St+1(x,y) > 0}dFt(y)dWt(x|e)−[ ∫
X|e

(1− ξa)δet dWt(x|e)

︸ ︷︷ ︸
Exogenous E2U

+

∫
Y

∫
X|e

(1− ξa)(1− δ)(1−Me,t)ωet1{St+1(x,y) ≤ 0}dFt(y)dWt(x|e)

︸ ︷︷ ︸
Endogenous E2U

+

∫
X|e

ξaetdWt(x|e)

︸ ︷︷ ︸
E2I

]
(B.14)

5it in Equation B.16 exists for accounting purposes, since et + ut + it = N where N is the number of
agents in the model. There is no population growth, so a new agent fills the place of a dead agent − often
referred to as cloning in the search and matching literature.
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ut+1 = µait︸︷︷︸
Entrants

+

∫
X|e

(1− ξa)δet dWt(x|e)

︸ ︷︷ ︸
Exogenous E2U

+

∫
Y

∫
X|e

(1− ξa)(1− δ)(1−Me,t)ωet1{St+1(x,y) ≤ 0}dFt(y)dWt(x|e)

︸ ︷︷ ︸
Endogenous E2U

+

∫
X|u

(1− ξa)(1−Mu,t)utdWt(x|u)

︸ ︷︷ ︸
U2U

+

∫
Y

∫
X|u

(1− ξa)Mu,t1{St+1(x,y) ≤ 0}dFt(y)dWt(x|u)

︸ ︷︷ ︸
U2U

−

[∫
Y

∫
X|u

(1− ξa)Mu,t1{St+1(x,y) > 0}dFt(y)dWt(x|u)

︸ ︷︷ ︸
U2E

+

∫
X|u

ξautdWt(x|u)

︸ ︷︷ ︸
U2I

]
(B.15)

it+1 = (1− µa)it +

∫
X|e

ξaetdWt(x|e)

︸ ︷︷ ︸
E2I

+

∫
X|u

ξautdWt(x|u)

︸ ︷︷ ︸
U2I

(B.16)

The directed search literature circumvents this problem, because directed search makes the

meeting probabilities independent of the distribution of worker types across employment

states and types (Menzio and Shi, 2011; Menzio, Telyukova, and Visschers, 2016). Employers

post wages to induce a self-selection of job applicants. Job applicants self-sort and apply

in different submarkets, making the meeting probabilities depend only on the number of

applicants as all applicants are the same type.
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However, this achievement comes at some costs. First, employers attract specific worker

types rules out any notion of skill mismatch, which some evidence suggests plays a significant

role in wage dispersion (Slonimczyk, 2013). Second, the most recent innovations in directed

search models with worker heterogeneity like Menzio, Telyukova, and Visschers (2016) only

introduce discrete skills (i.e. age and experience) to my knowledge, which appear ill-equip to

handle continuous multidimensional skill like cognitive and manual skills. While seemingly

not discussed in the literature, this discreteness appears to contribute significantly to the

existence of the block recursive equilibrium. An infinite number of submarkets would need to

exist given a continuum of worker types in cognitive and manual skills in order to separate

out each multidimensional skill type across submarkets. However, an infinite number of

submarkets and no mass points for any one worker type suggests that in the limit there will

be only one worker in each submarket queue who is hired with certainty. In this limiting

case, it seems directed search implements the outcome from an assignment model with job

destruction and productivity shocks, because search frictions do not emerge in submarkets

with a continuum of types. Overcoming this drawback likely requires discretizing the skill

types, which reenforces the first drawback. Wage differentials due to skill mismatch will be

attributed to noise in such a model after collapsing the support of worker types.

Workers and employers face the same distribution of skill requirements in this model,

because employer draw skill requirements after meeting the worker. This assumption along

with free entry and exogenous meeting probabilities remove the endogenous distribution of

worker types or employer types from the state space along a rational expectations equilibrium

path. These assumptions eliminate the problem of tracking the endogenous distribution of

worker types, however they make the model a partial equilibrium model. While restrictive,

these assumptions keep the model tractable while permitting enrichment of the model with

multidimensional skills (a necessity to generate secular, non-monotonic changes in the wage

distribution). Postel-Vinay and Moscarini (2009) and Robin (2009) also assume exogenous

meeting rates to examine labor market dynamics in response to aggregate productivity

shocks.
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Hawkins and Acemoglu (2014) state that exogenous meeting rates make such a model

unsuitable for general equilibrium analysis. In this model, the partial equilibrium misses out

on general equilibrium feedback to the meeting rates.6 Estimating meeting rates (Me,t, Mu,t)

which change over time may approximate to the general equilibrium solution. However, it

is difficult to say how well such a solution approximates the general equilibrium solution

without computing the general equilibrium solution. But the general equilibrium solution

will also have to generate the same moments (i.e. transition rates) as the partial equilibrium

solution to estimate its structural parameters, thus estimating (Me,t, Mu,t) to match a target

over time may improve the approximation.

B.1.6. Identification

Provided a sufficiently rich panel data set, we can jointly identify the parameters of the

parametric model in Section 2.4. The following argument only serves to show an identifica-

tion strategy of the estimated parameters and provide guidance on what moments to target

in lieu of the necessary, rich data to implement such a strategy. I target moments carry-

ing much of the same information as the argument ascribes. This identification argument

assumes known values for the externally calibrated parameters discussed in Section 2.4.3

(β̃, θ0, ξa) and a given λ. It builds on the argument in Lise and Postel-Vinay (2016) but

exploits workers in the terminal period of work life rather than a closed form solution. The

data necessary parallels the NLSY panel described in Appendix B.2.5 but includes workers

in the terminal period of work life and their terminal x as well as gives the reason for a job

separation.7

Assume we observe initial and terminal x’s (with age) in the data as well as wages

without measurement error, yt, and employment status. Let ti be the first period a worker

i’s work life and Ti be the last possible period of a worker’s work life. The maximum wage
6Hawkins and Acemoglu (2014) do not provide any evidence as to how important this feedback is, let

alone whether it is important enough to make the partial equilibrium analysis unsuitable for long-run macro
level analysis of wages and job selection. This question along with how directed search may resolve this issue
are future avenues for research.

7The CPS identifies “leavers" and “losers" as the reason for unemployment, referring to voluntary and
involuntary unemployment on the part of the worker (IPUMS-CPS, University of Minnesota, 2016).
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possible for workers age Ti−ti+1 at time t is wt(x,y, σ) = ft(y,y;αt) = xG

[
α0,t+yC(αC,t+

αCC,txC) + yM (αM,t + αMM,txM )
]
. Given xG, wage differentials of maximum wages across

y for worker’s age Ti − ti + 1 at time Ti identify αC,t, αCC,t, αM,t, αMM,t at Ti. The level

(average) of these maximum wages for worker’s age Ti− ti+ 1 pins down α0,t conditional on

xG. This argument gives αt’s conditional on xG. Implicitly, we align the model to the data

assuming maximum wages across y in the model correspond to maximum wages in the data.

This imposition and the level of maximum wages also pin down the alignment parameters

(ζC , ζM ) conditional on xG, because x̂
ζi
i = yi at the maximum wage for i = C,M .8

Wage differentials of identical workers (xC , xM , age,y) pin down the θ1 parameter for the

i.i.d. random variable ε. Wage differences for such terminal period workers only arise due to

ε. Knowing the distribution of ε, wage differentials of workers (xC(0), xM (0),y) age t and

t+1 hired upon entry pin down (γ1, γ2). With (θ1, γ1, γ2), the distribution of xG is identified

at time t up to some constant γ0 given the observed Vt(x). Thus, the maximum wages for

workers age Ti− ti + 1 at time t along with wage differentials for entering workers where the

unemployment duration approaches zero (i.e. hired upon entry) separately identify αt and

the parameters of xG upon to some constant γ0.

Thus, sufficient wage and (x,y) observations for workers in their initial period provide

information to identify (γ1, γ2, θ1). While, sufficient wage and (x,y) observations for work-

ers in their terminal period provide information to identify αt, ν’s, and κ’s. Ultimately,

wage differentials across y help determine αt and conditional wage moments help determine

(γ1, γ2). I capture these features with changes in wage percentiles, mean wages, wage vari-

ance, changes in occupational wages, and the coefficients of age and age2 in a regression

of initial skills and skill requirements. These moments provide information on wage differ-

entials across y. θ1 affects the dispersion of wages of similarly skilled workers in high skill

requirement occupations, thus the right tail of wages serve to capture this information on

θ1.

Given (αt, λ,x,y), comparisons of wage differentials and employment matches for work-
8This argument requires maximum wages across y correspond to some workers in the terminal period so

that we observe x̂ in the data.

163



ers age Ti − ti + 1 hired from unemployment separately identify (νC , νM , κC , κM ).9 For

example, consider age Ti − ti + 1 workers hired from unemployment identical in (y, ε, xM )

but not xC where xC < yC for some and xC = yC for the others. The wage differential

(conditional on xC and αt) between these two groups at time Ti identifies κC .10 Alterna-

tively, we can identify (νC , νM , κC , κM ) using the set of all observed matches for workers

age Ti − t1 + 1. St for a worker in the terminal period can be written as

St(x,y) = xG

[
α0,t + αC,tyC + αM,tyM + αCC,tyCxC + αMM,tyMxM − b0 +

−νC(xC − yC)2 − ν(xM − yM )2 +

−(κC − νC) min{xC − yC , 0}2 − (κM − νM ) min{xM − yM , 0}2
]
.

We observe the set of acceptable offers given x {y : St(x,y) ≥ 0} and thereby observe its

boundary set {y : St(x,y) = 0}. We observe x from workers initial and terminal skills.

Consider a case where xC > yC , xM = yM , and y ∈ {y : St(x,y) = 0}, then we have

0 = α0,t + αC,tyC + αM,tyM + αCC,tyCxC + αMM,ty
2
M − b− νC(xC − yC)2

which identifies νC up to the scalar b0 given αt. Similar comparisons yield (νM , κC , κM ) up to

scale, hence comparisons of acceptable jobs to workers with similar x provides information

to identify (νC , νM , κC , κM ). I incorporate this information through the observed cross

correlations of (xC(0), xM (0), yC , yM ).

Conditional on the rest of the model parameters, Γd is identified by comparing the

set of accepted jobs for entering workers with the same starting x(0) but different initial

unemployment spell lengths. Skills depreciate during unemployment spells, thus the job a

worker obtains out of unemployment carries information about how fast skill depreciate.
9Obviously, we are unlikely to observe workers hired out of unemployment in the period before retirement

in the data, making the direct application of this strategy impractical. This argument only serves to argue
identification of the estimated parameters exists.

10Coming out of unemployment wipes the history of workers. Thus knowing λ, it is possible to identify
(νC , νM , κC , κM ) with all wages of workers coming out of unemployment given x. However, such an argument
also requires knowledge of other parameters like Γd, Γh and those of Ft(y). Using workers in the terminal
period eliminates the need to know parameters that enter the continuation value to identify (νC , νM , κC , κM ).
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Intuitively, skills could not have depreciated to the point where the worker’s x does not

generate positive surplus with the employer y. Conditional on the rest of the model’s

parameters, differences in the set of jobs for initially identical workers come from x, which

consists of known x(0), known unemployment spell duration, and unknown Γd. Observing

{y : St(x,y) = 0}, Γd is identified conditional on all the other parameters. In practice, I

target the average level and dispersion of wage drops following an unemployment spell to

estimate the two parameters of Γd. Conditional on the other model parameters, Γd governs

wage drops following an unemployment spells in the same spirit as comparisons of acceptance

sets for identical workers.

Identification of Γh comes from again comparing workers with similar starting skills

but experience different employment-unemployment spell lengths. Given the other model

parameters (∆) and the observed set {y : St(x,y) = 0}, we can write the surplus func-

tion for an entering worker who experiences as unemployment spell one period followed by

employment as

0 = ft(x,y)− c(x,y)− b(x) + Ω(x′,y; ∆),

x = x(0) + ΓD ·max{x(0),0},

x′ = x + ΓH ·max{y − x,0}+ ΓD ·max{x− y,0}

where Ω is the continuation value solving backwards to obtain St+1 given model parameters

∆. Given Γd, the only unknown is Γh which is identified up to scale with the observed set

{y : St(x,y) = 0}. Given Γh and Γd, the sequence {x(t)}Tit=ti can be identified for each

worker based on (2.17).11

11

Ω(x′,y; ∆) = βa(1− δ)
[
− λMu,t

∫
Y

max{0, St+1(x′, ỹ)} dFt(ỹ) +

(
1−Me,t

)
S̃t+1(x′,y) + Me,t · ρ(x,y) ·max{0, St+1(x′,y)} +

Me,t · (1− ρ(x,y)) ·
[
Ŝt+1(x′,y) + λ

(
S̄t+1(x′,y)− Ŝt+1(x′,y)

)]]
.
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Conditional on the other parameters, Ft(y) is identified over the union of all sets where

y is acceptable to an x, i.e.
⋃
Y {y : St(x,y) ≥ 0}. All potential employers draw skill

requirements from the same distribution independently, however changes in skill require-

ments do not map one-to-one to changes in employment shares over
⋃
Y {y : St(x,y) ≥ 0}.

Nonetheless, employment shares across y map out Ft(y) given the other model parame-

ters that define St. Thus, I target changes in employment shares for occupational group in

practice.

All endogenous separations are mutual through the lens of the model and result from

changes in Ft(y) and a permanent productivity shock (ω). Thus, δ shocks create involun-

tary unemployment whereas ω shocks may result in voluntary unemployment. Thus, the

average ratio of voluntary to involuntary unemployment and the average employment-to-

unemployment (E2U) transition rate identify δ and ω given Ft(y). The unemployment-to-

employment (U2E) transition rate at time t identifies Mu,t given all other parameters. The

employment-to-employment (E2E) transition rate at time t identifies Me,t given all other

parameters.

Finally, we can solve backwards and write the wage continuation value as a function Ω

of b0 given all other parameters ∆. Wages out of unemployment then identify b0 given ∆

and x as shown in (B.17).

(1− λ)b(x) + Ω(b0; ∆) = wt(x,y, λ; ∆)− λft(x,y; ∆) + (1− λ)c(x,y; ∆). (B.17)

Thus, b0 is identified up to scale conditional on all other parameters. This completes the

argument for joint identification of the parameters. As mentioned, I target moments related

to the information contained in such an identification strategy even though the data does

not permit its full implementation.
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B.2. Data Appendix

B.2.1. Current Population Survey (1979-2010)

I use the Current Population Survey’s Outgoing Rotation Group (CPS ORG), because of

its timespan, informational content, frequency, and comparability over time. These features

make it more appropriate for my use than other nationally representative surveys like the

SIPP, PSID, or SCF. The CPS ORG provides monthly data from as far back as 1979

and covers every year up to 2016 (National Bureau of Economic Research, 2016). I make

use of the CEPR Uniform Data Extracts for the CPS ORG (Center for Economic and

Policy Research, 2017). The CEPR constructs monthly extracts from the NBER Merged

ORG extracts from 1979 to 1993 and the CPS Basic data from 1994 onwards. I use these

extracts from CEPR and their publicly available programs to construct a consistent, monthly

dataset from 1979 to 2010 of the CPS Outgoing Rotation Group year by year. These

extracts contain monthly cross-sectional data on earnings, employment status, occupation

and industry codes, age, educational attainment, gender, and self-employment status among

other variables. These CPS ORG extracts contain about 25,000 records each month before

merging with the occupational skill scores and imposing sample restrictions, which I describe

later.

Wage Measurement, Top-Coding, and Imputation

Schmitt (2003) provides a detailed discussion of issues related to measuring hourly wages

with the CPS ORG. I summarize the main issues here with respect to wage measurement,

top-coding (commonly known as censoring), and imputation.

The CPS ORG wage records arguably provide a more accurate wage measure than the

CPS March Supplement as they measure most wages (approximately 60%) at a point in time

(Mishel, Bivens, Gould, and Shierholz, 2012; Lemieux, 2006).12 For consistency purposes,

I exclude overtime, tips, and commission (otc) from hourly wage records. The complicated

nature of when and how the CPS reports this compensation makes it intractable to create
12These hourly wage records also rarely cross the top-coding threshold of 99.99, so I follow Schmitt (2003)

and make no top-coding adjustment on them.
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a sensible series including otc for these records over more than a few years as noted in

Mishel, Bivens, Gould, and Shierholz (2012) and Schmitt (2003).13 The remaining 40% of

ORG records report a constructed measure of hourly wages using weekly earnings and usual

hours worked per week, which includes otc by the construction of weekly earnings. This

measurement contains substantially more measurement error compared to the point in time

measure (Lemieux, 2006). The March CPS permits only a constructed measure of hourly

or weekly earnings from total earnings, weeks worked, and usual hours worked each week.

Consequently, the measurement error in the March CPS wages seems significantly higher

than the ORG as documented by Lemieux (2006). Hence, ORG wage records arguably

provide a more accurate wage measure even though they do not measure all wages at a

point in time.

Each year, 1-3% of these 40% of ORG records exceed the top-code threshold except in

the 1980s where the share grows due to nominal earnings growth with no increase in the

top-code threshold. Following Schmitt (2003) with the CEPR programs, I impute these top-

coded weekly earnings using a log-normal imputation. The imputation estimates the mean

of the wage distribution by gender above the top-code threshold and replaces the top-coded

wage with this value. The log-normal imputation procedure provides for a smoother wage

series over time in terms of mean and variance than the commonly used Pareto imputation

(Schmitt, 2003). As seen in Schmitt (2003), these top-coded records have little impact on

wage percentiles − a key measurement of interest here − compared to the wage mean and

variance.

Occupational Code Harmonization

The CPS employs the Census occupational coding structure which is derived from the Stan-

dard Occupational Classification (SOC) and the North American Industry Classification

System (NAICS). Major occupational coding changes in 1983 and 2003 and a minor change

in 1992 complicate the construction of a consistent set of occupational code from 1979 to
13In many cases, reconstructing hourly wages from weekly earnings in order to include otc for these records

produces hourly wages that imply otc is counterfactually negative.
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2010. These changes introduces discontinuities in employment shares and average wages

by occupation over time. The coding change in 1983 introduces 64 new occupational titles

while the 2003 coding change reduces the number of titles by collapsing and expanding

occupational categories.14 Dorn (2009) provides a crosswalk to create a balanced panel of

occupations from 1983 onward. This balanced panel consists of aggregated occupational

categories shown in his Appendix Table 2. I use this occ1990dd crosswalk to harmonize

the occupational titles from 1979 to 2010, which results in 246 occupations on which to

construct DOT/ONET scores. From 1979 to 1983, occupational employment shares and

average wages cannot be constructed for 64 occupations, because they only begin to appear

in 1983. These occupational titles range from human resource managers to occupational

therapists to locksmiths to machine feeders. Discontinuities persist in occupational series

(e.g. cognitive skills, employment shares) with this harmonized set of occupational titles.

I apply the method of Mishel, Schmitt, and Shierholz (2013) and smooth any occupation

related series at the major coding break years 1983 and 2003. This adjustment produces

series similar to the original series overall but with slight differences. For example, Figure 30

shows the slight magnitude differences in employment share and occupational wage changes.

The only patterns change comes from average low-skilled wages falling in the 2000s while

still maintaining their relative distance from medium and high-skilled average wages.

B.2.2. Dictionary of Occupational Titles (1977, 1991)

The Dictionary of Occupational Titles (DOT) provides measures related to the job require-

ments for 12,099 occupational titles (U.S. Department of Labor, 1991). Job analysis reports

serve as the source of the measures, and these reports come from combinations of on-site

observation, interviews, and external information (e.g. information from trade associations)

(Yamaguchi, 2012). Job analysis measures the “worker attributes that contribute to success-

ful job performance" (U.S. Department of Labor, 1991). However, the DOT measures these

attributes based on tasks the worker performs rather than the worker skills. This distinc-

tion along with the use of external information arguably justifies treating DOT measures as
14See Dorn (2009) Appendix Table 1.
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Figure 30: Occupational Coding Break Adjustment

constructed independently of the workers’ skills at the time of measurement. Thus, these

measures allow me to construct cognitive and manual measure analogous to y in the model.

In contrast, DOT’s modern replacement O*NET (Occupational Information Network) col-

lects data directly from incumbent workers, making it more difficult to argue independence

of worker skills at the point of measurement (O*NET, 2016). The DOT is also updated over

the time period of interest as a Revised Fourth Edition emerged in 1991 in addition to the

Fourth Edition in 1977 whereas O*NET provides no time variation in task measurements

over the period considered.15

Of course, the DOT is not without its own shortcomings − many of which O*NET

aims to improve upon. Miller, Treiman, Cain, and Roos (1980) provide a critical review

of the DOT. These criticisms include the limited time dimension of DOT updates and its

outmoded nature with respect to new occupations. The occupation coding change in 2003

presents a challenge for using the DOT beyond 2000 as it introduces new occupational titles.
15O*NET provides waves for only 2008 and 2013 as of now. I explore the possibility of mapping the

DOT to O*NET over time using job attributes that appear in both datasets. I conclude that the differences
between the DOT and O*NET are too vast to permit a full, consistent mapping of task measures across
these two datasets.
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Yamaguchi (2012) drops observations beyond the year 2000 for this reason. However, this

work aims to understand wage and occupational structure changes up to 2010. Hence, I

construct DOT measures for these new occupations using weighted combinations of older

but similar occupational titles and validate these imputed measures with O*NET measures.

These new occupational titles consists mainly of informational and technology occupations

like computer support specialists and computer software engineers.

The ICPSR distributes DOT measures for the 1980 and 1990 Census occupational codes

for DOT (1977) and DOT (1991), respectively. England and Kilbourne (1980) and the

U.S. Department of Labor, U.S. Employment Service, and the North Carolina Occupational

Analysis Field Center (1991) produce these DOT measures by aggregating the 12,099 oc-

cupational titles of the DOT to the Census occupation level. To do so, they make use of

the April 1971 CPS Monthly File and the so-called Treiman file, which ultimately record a

sample of the Census in DOT and Census 1970 and 1980 occupational titles.16 Using this

matching file, they take weighted averages of the DOT measures to aggregate to the Census

occupational level. I match these Census occupational codes to the occ1990dd harmonized

occupational code and aggregate again, taking weighted averages of the DOT measure to

reach the occ1990dd level. I use the respective Census weights for this procedure. This pro-

cedure compresses the variance in these measures, thus it likely leads to underestimating the

true level of dispersion among the DOT task measures. However, the literature commonly

uses such averaging to aggregate the DOT or O*NET to a level to merge with the NLSY

or CPS (Dorn, 2009; Acemoglu and Autor, 2011; Yamaguchi, 2012; Lise and Postel-Vinay,

2016).17 I retain the measures from the DOT shown in Table 30 and a measure of the

physical strength a job requires. These measures range from 1 to 5 where 1 indicates the

most complex usage of the ability and 5 indicates the least complex.
16Autor, Levy, and Murnane (2003) describe this procedure thoroughly in their Section A.2.
17Sanders (2016) puts all weight on the disaggregated occupation with the highest employment share when

aggregating up to the Census level to merge the NLSY and O*NET.
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Table 30: DOT Task Complexity Measures

Name Ability
G General Learning Ability Learn, reason, and make judgments
V Verbal Ability Understand use words effectively
N Numerical Ability Understand and perform mathematical functions
S Spatial Ability Visualize three dimensional objects from two dimensions
P Form Perception Perceive and distinguish graph detail
Q Clerical Perception See and distinguish verbal details
K Motor Coordination Coordinate eyes, hands, fingers
F Finger Dexterity Finger and manipulate small objects
M Manual Dexterity Handle placing and turning motions
E Eye-Hand-Foot Coordination Motor responsiveness to visual stimuli
C Color Discrimination Match and discriminate colors

Source: U.S. Department of Labor (1991).

B.2.3. CPS-DOT Construction and Sample Restrictions

I construct an annual CPS-DOT dataset to analyze wage and employment share trends. I

impose some restrictions on the data, which can be followed in Table 31. First, I restrict

the sample to the population aged 18 to 65. Second, I restrict the sample to include only

observations with a valid wage and occupational code. This restriction eliminates all un-

employed workers and workers out of the labor force. Third, I merge the DOT to the CPS

based on the harmonized occ1990dd occupational code. I impute occupations with missing

scores using weighted average DOT scores from similar occupations based on occupational

descriptions. For example, I impute the DOT measures for occupation “secretary (not spe-

cific)" using all other types of secretaries.18 I drop some observations after merging in the

DOT or O*NET due to dropping armed forces members and unpaid family farm workers.

Finally, I keep all non-self-employed workers aged 18 to 64, and I follow the literature in

eliminating implausibly low or high values by dropping wage records below $1 or above $100

in 1989 terms (Lemieux, 2006). I show the remaining number of valid cases per annum in

the last column of Table 31. Table 33 present demographic and distributional statistics for
1890% of all missing scores come from this one occupational title.
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Figure 31: DOT to O*NET from 1992 to 2002

the sample at the start and end years.

B.2.4. O*NET Comparability

I use the same procedure described for DOT to construct a CPS-O*NET dataset. O*NET

lists occupations using the Standard Occupation Classification (SOC) system. I use a cross-

walk from National Crosswalk Service Center (2016) to map SOC codes from 2000 and 2010

into Census occupation codes and hence the occ1990dd harmonized code.19 I select measures

from O*NET that align with the DOT measurements based on their descriptions. In some

cases, multiple O*NET measures correspond to the DOT measure. For instance, O*NET

element IDs 1A1a1-1A1a4 correspond to verbal ability. In other cases, a single O*NET

measure corresponds to the DOT measure like manual (M) and finger (F) dexterity and

color discrimination (C). As described in 2.3.2, I use the first principle component of general

learning ability, verbal ability, and numerical ability measures to construct the cognitive

skill score weighted using the CPS ORG weight. I use the first principle component of the

other measures (S, P, Q K, M, F, E, C, Strength) to construct the manual skill score. I then

linearly rescale the scores into the interval [0, 1]. The U.S. Department of Labor updated

the DOT in 1991, and O*NET replaced it in the 2000s. I show the DOT and O*NET cog-

nitive and manual skill scores at all occupations with both scores during the 1990s decade

of transition in Figure 31.
19I modify the crosswalk manually like Sanders (2016) and impute some O*NET measures as some SOC

codes correspond to multiple Census codes and vice versa. Approximately, 70% of the codes map one-to-one.
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Table 31: Sample Size Post-Restrictions

Year Ages 18-65 Valid Wage/Occupation DOT/O*NET Additional Restrictions
1979 266,575 161,561 161,561 160,648
1980 313,645 188,230 188,230 187,097
1981 295,931 176,963 176,963 176,031
1982 285,736 167,249 167,249 166,322
1983 283,371 165,764 165,653 164,598
1984 279,684 168,976 168,878 167,839
1985 279,892 172,193 172,086 171,046
1986 273,846 170,856 170,757 169,673
1987 272,186 171,887 171,780 170,693
1988 258,132 164,745 164,647 163,629
1989 262,498 168,233 168,122 167,308
1990 276,736 176,903 176,769 175,820
1991 273,160 171,936 171,797 170,900
1992 268,355 169,499 169,484 168,702
1993 264,119 167,325 167,304 166,438
1994 256,178 162,647 162,623 161,749
1995 252,855 162,280 162,265 161,409
1996 223,258 144,821 144,820 144,070
1997 225,572 147,579 147,579 146,857
1998 225,754 149,332 149,332 148,563
1999 227,599 151,478 151,478 150,783
2000 229,056 153,224 153,224 152,441
2001 244,931 163,121 163,121 162,174
2002 266,531 175,260 175,260 174,243
2003 265,775 172,124 172,124 171,090
2004 261,571 169,246 169,246 168,189
2005 261,116 170,297 170,297 169,159
2006 258,747 169,606 169,606 168,540
2007 256,367 167,882 167,882 166,600
2008 255,574 165,984 165,984 164,588
2009 258,110 161,110 161,110 159,837
2010 257,936 159,431 159,431 158,209
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Table 32: CPS-DOT Summary Statistics

1979 2010

Age Shares (%)
Age 18-24 22.29 12.95
Age 25-34 28.84 23.98
Age 35-44 20.03 23.18
Age 45-54 17.11 24.47
Age 55-64 11.73 15.42

Education Attainment (%)
Less than High School 19.94 7.48
High School Diploma 38.62 29.37
Some college 22.82 30.08
College 12.94 21.98
Advanced 5.67 11.08

Female Share (%) 43.44 48.71

Occupation (%)
Management & Professional 27.83 40.27
Administrative & Retail Sales 25.06 22.14
Low-Skill Services 12.02 16.32
Production & Craft 4.46 2.64
Operators, Assemblers & Inspectors 11.99 3.81
Transportation, Construction, & Mining 18.65 14.82

Distribution of y
Mean of yC 0.388 0.436
Mean of yM 0.445 0.413
Standard Deviation of yC 0.206 0.208
Standard Deviation of yM 0.143 0.150
Correlation (yC , yM ) -0.017 -0.111

Mean of Log Wage 2.810 2.906
Variance of Log Wage 0.261 0.376

Sample Size 160,648 158,209
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The DOT and O*NET cognitive scores line up well. It is not unreasonable to allow

the O*NET score to be an affine transformation of the DOT score as shown by the red

line in the left panel of Figure 31. However, the manual scores do not line up well. The

noise introduced by numerous O*NET measures corresponding to the (S, P, Q K, M, F,

E, C, Strength) measures accounts for some of this difference. In additional, improvements

made to measurement on these task aptitudes and possible changes in task content within

occupational titles over time account for some of this difference. However, the data does not

permit us to distinguish these three items even with identical occupational titles and their

DOT and O*NET measures. From this exercise, I conclude that mapping DOT to O*NET

appears only reasonable in the case of a limited set of task measurements − in particular the

cognitive measurement and measurements that correspond exactly (e.g. manual and finger

dexterity). Thus, they do not permit a full mapping across time. A trade off exists between

losing information and losing consistency over time. For the reasons described in B.2.2, I

use the DOT for estimation of the model.

Constructing cognitive and manual skill requirement scores from DOT versus O*NET

results in a different distribution of equilibrium y. However, the main differences occur in

the levels and not the evolution of the series as Figure 32 shows.20 The left panel of Figure 32

indicates moments of y according to the DOT task measures and the right panel indicates

those same moments according to analogous O*NET measures. The mean of cognitive

(manual) skills increases (decreases), and cognitive skills become more dispersed over time

for both. They also agree as to the decelerating decline in the correlation between cognitive

and manual skills. However, they contradict in terms of whether manual skills become more

dispersed over time. This difference comes at no surprise given the right panel of Figure 31.

B.2.5. National Longitudinal Survey of Youth (1979, 1997)

The National Longitudinal Survey of Youth (NLSY) provides ability measures analogous to

the DOT task complexity measures. These measures provide a means to construct Vt(x) and
20I smooth the time series of the moments to reduce sampling noise using Lowess with the optimal

bandwidth.
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Figure 32: DOT v. O*NET (1979 to 2010)
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examine the joint distribution of (x(0),y). The panel and national representative features

of the NLSY also provide a means to estimate other data features like the average fall

in wages following an unemployment spell. The 1979 cohort consists of 12,686 males and

females (Bureau of Labor Statistics, U.S. Department of Labor, 2014a), while the 1997 cohort

consists of 8,984 (Bureau of Labor Statistics, U.S. Department of Labor, 2014b). Around half

of the observations in each cohort come from an oversample of blacks, Hispanics, and non-

black/non-Hispanic economically disadvantaged youth. I drop these respondents, leaving

8,998 and 7,127 respondents for the NLSY79 and NLSY97, respectively.

Construction of Vt(x)

As described in 2.3.3, I use the Armed Services Vocational Aptitude Battery (ASVAB) test

scores to construct x(0). The ASVAB test consists of scores for mathematics knowledge,

arithmetic reasoning, word knowledge, paragraph comprehension, numerical operations, gen-

eral science, coding speed, auto and shop information, mechanical comprehension, and elec-

tronics information (Bureau of Labor Statistics, U.S. Department of Labor, 2014a,b). Raw

scores between NLSY79 and NLSY97 are not readily comparable for two reasons. First,

NLSY79 respondents did a pencil and paper test whereas their 97 counterparts did a com-

puterized test. Segall (1997) accounts for this difference and provides comparative ASVAB

scores and weights which I use. Second, the two cohorts took the exam at different ages.

NLSY79 took the exam from aged 15 to 22 while NLSY97 took the exam aged 12 to 17. I

follow Altonji, Bharadwaj, and Lange (2012) and do a percentile based age mapping of the

Segall scores to make the two cohort scores comparable.

Taking these transformed scores, I extract the first two principle components of all

the ASVAB scores, and rotate them using the two restrictions on the loading matrix. I

restrict mathematical knowledge to load only on cognitive skills, and I restrict auto and

shop information to load only on manual skills. Then I linearly rescale these rotated scores

into the interval [0, 1] to form (x̃C(0), x̃M (0)). I employ principle component analysis here

instead of separating the measures into categories, because some of the ASVAB measures do

not categorize as easily as the DOT or O*NET measures like electronics information. This
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Figure 33: NLSY79 v. NLSY97 Marginal Distributions

x̃(0) does not necessarily align with the estimate y. I perform the following steps to align

x̃(0) with y. First, I merge y from the first recorded occupation for the 1979 respondents.

Next, I run a log-log regression aimed at minimizing the discrepancy between initial skills

and initial job requirements. This step normalizes the level of potential skill mismatch (i.e.

the gap between worker skill and job skill requirements). Then, I take the fitted values of

x̃(0) − call them x̂(0) − and use them to construct V(x) for the two cohorts.21 I show the

marginal distributions for this V̂1979(x) and V̂1997(x) in Figure 33.22

The comparable distributions of initial skill show some small changes between the two

cohorts. However, the striking similarity of x(0) across cohorts also suggests that it remains

reasonable to treat the distribution of x(0) as fixed given educational attainment and gender

shares. This result is not surprising given that Boehm (2017) uses a similar approach to

measure his x(0) and finds little change in the correlation structure of skill scores between the

two cohorts. Thus, V̂1979(x) forms the basis for V0(x). I reweigh V̂1979(x) to reflect changing

educational attainment and rising female labor force participation to obtain Vt(x) over time.

This approach remains sensible only if the distribution of cognitive and manual skill remains

similar within education-gender cells of cohorts. Figure 34 shows that this appear to be the

case in terms of gender. The marginal distributions for females look similar between the

two cohorts although manual skills appear to skew more positively for the 1997 cohort. The
21I also allow a transformation of x̂(0) into x(0) in the estimation to better align it with y.
22I use an Epanechnikov kernel with the optimal bandwidth selected for Figure 33.
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Figure 34: NLSY79 v. NLSY97 Marginal Distributions for Females

two cohorts also appear similar with respect to the marginal distribution given an education

level. For example, the comparable marginal distributions for cognitive skills at different

education attainment levels look similar after adjusting for the time of the ASVAB test

shown in Figure 35.

My estimate of Vt(x) only reflects changes in the initial skill distribution due to changes

between shares of education and gender groups rather than changes in the distribution of

skill within gender and education groups. Thus, Vt(x) amplifies the initial manual skill

bias between males and females shown in Figure 36 as the share of females rises as shown

in Figure 38. It also yields an increase in worker cognitive skills shown in Figure 37 as

education attainment rises as shown in Figure 38. Comparing NLSY cohorts shows that

changes in initial skill within these groups (Figures 34, 35) appear less dramatic than changes

in the shares of these groups (Figure 38). This evidence suggests my construction of Vt(x),

holding the within group distribution fixed, reasonable. However, we need more cohorts to

definitively argue for this restriction, which are unavailable at this time.

Construction of Monthly Panel and Sample Restrictions

I construct a monthly panel of workers from the NLSY79 job array. The job array reports

the weekly start and end dates of job spells and identifying job numbers. I merge in the

corresponding wages, Census occupational codes, and usual hours worked associated with

the job numbers. I also merge in demographic data, including gender, race, age, years of
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schooling, and highest grade completed. I drop oversampled black, Hispanic, and economi-

cally disadvantaged workers. I convert monthly-level wages to real 2014 dollar wages using

the CPI-U-RS series to make NLSY wages comparable to the CPS-DOT wages. I impute

top-coded wages using the same method described in B.2.3, and trim wages below $1 or

above $100 in 1989 terms. For workers with multiple jobs within a month, I select the job

with the highest earnings that month. I merge in workers’ initial cognitive and manual skills

along with DOT and O*NET job skill requirements constructed in the previous section.

Due to accelerating attrition, I limit the panel to cover only up to 1993 as discussed in Lise

and Postel-Vinay (2016). Finally, I reconstruct the sampling weight as in Boehm (2017) and

Altonji, Bharadwaj, and Lange (2012) to produce a final weight accounting for attrition,

missing ASVAB scores, and hours worked at the job. This process results in a monthly panel

of 5,747 male and female workers from 1979 to 1993. Table 33 presents summary statistics

of the sample.

B.2.6. Occupational Wage and Employment Changes

The literature commonly presents job polarization as changes in employment shares across

the occupational skill distribution. Authors typically rank disaggregated occupations by

their mean wage, median wage or education attainment rather than grouping occupations

into major categories. They then plot smoothed changes in employment shares across these

ranks. A U-shape plot rising at the bottom and the top reveals job polarization either in

absolute or relative terms. Absolute means that the bottom and top employment shares rise.

Relative means either the top or the bottom employment shares rise, while the middle-skill

employment shares shrink the most.

Mishel, Schmitt, and Shierholz (2013) and Lefter and Sand (2011) analyze evidence

regarding job and polarization. Both conclude that the evidence fails to some extent to

support the narrative of routine-biased technical change as put forward by Autor, Levy, and

Murnane (2003) and developed in Acemoglu and Autor (2011) and Boehm (2017) among

others. Their critique centers on two pieces of evidence. First, job polarization appears to

show similar patterns in the 1980s and 1990s. Thus, factor driving job polarization seem
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Table 33: NLSY79-DOT Summary Statistics

1979-1993

Female Share (%) 52.20

Educational Attainment (%)
Less than High School 8.49
High School Diploma 34.37
Some college 25.06
College+ 32.08

Occupation (%)
Management & Professional 29.89
Administrative & Retail Sales 22.71
Low-Skill Services 16.43
Production & Craft 3.15
Operators, Assemblers & Inspectors 8.16
Transportation, Construction, & Mining 19.65

Distribution of x̂(0)

Mean of x̂C(0) 0.439
Mean of x̂M (0) 0.611
Standard Deviation of x̂C(0) 0.191
Standard Deviation of x̂M (0) 0.129
Correlation of (x̂C(0), x̂M (0)) 0.427

Joint Distribution of (y, x̂(0))

Correlation of (yC , x̂C(0)) 0.354
Correlation of (yM , x̂M (0)) 0.080
Correlation of (yC , x̂M (0)) 0.122
Correlation of (yM , x̂C(0)) -0.041

1979 1993
Mean of Log Wage 2.462 2.889
Variance of Log Wage 0.148 0.338

Sample Size (Individuals) 5,747
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unlikely candidates to account for the abrupt switch from expansion to contraction in the

lower half of the wage distribution from the 1980s to the 1990s. Second, the weak correlation

between occupational wages and employment shares does not intuitively support a demand-

driven story of technological change. Lefter and Sand (2011) use the CPS March supplement

and the decadal Census. Mishel, Schmitt, and Shierholz (2013) use the CPS ORG as I do.

I replicate and extend their figures to 2010, ranking occupation using 1979 average wages.

Like Mishel, Schmitt, and Shierholz (2013), I smooth over occupational breaks in 1983 and

2003, replacing the wage and employment share changes for each occupation those years

with the average change two years before and after the coding break. I exclude farmers

and other small sized occupations like wall paper hangers. I extrapolate employment shares

and average wages in 1979 for the new 64 occupations that appear in 1983 in order to rank

them.23 I extrapolate using a fractional polynomial time trend. I validate this procedure

by extrapolating employment shares and average wages for occupations observed in 1979

and comparing the predictions to their actual values in 1979. This procedure generates

predictions with a correlation of 0.91 for the true average occupational wage and 0.95 for

the true occupational employment share in 1979. I interpret these correlation as strong

support for the procedure. I then rank these occupations using their predicted 1979 wages.

The top left panel of Figure 39 confirms the findings of Mishel, Schmitt, and Shierholz

(2013) and Lefter and Sand (2011). Job polarization in the 1980s evolved similarly to the

1990s. The main difference comes from job polarization becoming absolute in the 1990s

whereas it is only relative in the 1980s. In other words, the middle-ranked or middle-skilled

occupations still shrank relative to the lowest ranked occupations even though these lowest

ranked occupations contracted relative to all occupations in the 1980s. In the second row of

left panel, I show the figure for the period covered by Mishel, Schmitt, and Shierholz (2013).

In the third row of left panel, I add the extended years to this figure. In the last row of the left

panel, I show changes in employment shares from the dates of occupational coding breaks.

Thus, the smoothing the breaks plays no role in shaping this figure. All of these figures
23These occupations compose roughly 10-20% of all occupations from 1983 onwards. Excluding them due

to their absence in 1979 is misleading. Figures without them show no relative job polarization in the 1980s.
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suggest a long-run trend towards job polarization. However, the lack of job polarization

from 1983 to 1991 suggests this change accelerates in shorter episodes as Hershbein and

Kahn (2016) suggests. Figure 40 shows that primarily men drive these patterns across the

occupational skill distribution as the patterns become more pronounced if looking at only

men.

The right panel of Figure 39 shows corresponding changes in occupational wages.

Changes in occupational wages appear to be similar across occupations in the 2000s, polar-

izing in the 1990s, and expanding in the (early) 1980s. This change parallels wages overall.

However, changes in the overall wage distribution will be affected by wage changes within

occupational ranks and the concentration of workers across occupations (shown in Figure

41). The latter of which does not appear to change much. In contrast to employment

shares, Figure 40 shows that women primarily drive patterns in occupation wages across the

occupational skill distribution in the 1980s.
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Figure 39: Occupational Employment and Wage Evolution
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Figure 40: Occupational Employment and Wage Evolution (Men Only)
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Table 34: Model Variants

I Perfect Foresight Benchmark
II No Foresight (Et[zt+1] = zt ∀t)
III Fixed skill supply distribution (Vt(x) = V0(x) ∀t)
IV Fixed human capital (ΓH = 0, ΓD = 0)
V No matching frictions/Homogeneous specific human capital)
VI F(y) fixed
VII f(x,y) fixed
VIII αM = 0, αMM = 0, νM = 0, κM = 0
IX Nash Bargaining
X Vt(x) not adjusted for female labor force participation
XI Repeated Stationary Model, ΓD = 0, ΓH = 0

B.3. Additional Results
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Table 35: Model Accuracy on Targets

RMSE Goodness of Fit

I 0.02740 0.946
II 0.02817 0.943
III 0.02532 0.954
IV 0.02370 0.960
V 0.08812 0.445
VI 0.03872 0.893
VII 0.03679 0.903
IX 0.02760 0.946
X 0.02741 0.946

Note: RMSE refers to the root-mean squared error of the model and target moments. Goodness of fit
refers to the share of variation in the targets explained by the model.
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Table 36: Model Fit (1/2)

Data I II III

Log Change in Employment Shares
1979-1989

High 0.159 0.156 0.162 0.164
Medium -0.102 -0.098 -0.107 -0.111
Low 0.034 0.014 0.020 0.034

1989-2000
High 0.171 0.167 0.186 0.170
Medium -0.125 -0.132 -0.146 -0.135
Low 0.003 0.009 -0.011 0.009

2000-2010
High 0.026 0.017 0.034 0.021
Medium -0.039 -0.042 -0.049 -0.041
Low 0.031 0.031 0.025 0.031

Log Change in Occupational Wage
1979-1989

High 0.011 0.025 0.016 0.033
Medium -0.056 -0.023 -0.049 -0.034
Low -0.078 -0.079 -0.096 -0.080

1989-2000
High 0.100 0.142 0.090 0.120
Medium 0.050 0.058 0.064 0.052
Low 0.079 0.093 0.115 0.077

2000-2010
High 0.031 0.057 0.048 0.058
Medium 0.029 0.043 0.030 0.033
Low -0.029 -0.001 0.010 0.004

Log Change in Wage Percentiles
1979-1989

90 0.053 0.034 0.035 0.046
50 -0.018 -0.021 -0.034 -0.032
10 -0.137 -0.127 -0.121 -0.136

1989-2000
90 0.133 0.130 0.120 0.132
50 0.065 0.112 0.105 0.087
10 0.115 0.114 0.092 0.108

2000-2010
90 0.091 0.060 0.048 0.065
50 0.026 0.039 0.039 0.029
10 0.011 -0.005 0.002 -0.018
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Table 37: Model Fit (2/2)

Data I II III
Distribution of y

Mean of yc
1980s 0.401 0.405 0.420 0.423
1990s 0.419 0.417 0.449 0.430
2000s 0.432 0.430 0.473 0.442

Standard Deviation of yc
1980s 0.204 0.180 0.199 0.193
1990s 0.205 0.182 0.201 0.193
2000s 0.207 0.183 0.203 0.196

Mean of ym
1980s 0.436 0.417 0.445 0.432
1990s 0.422 0.403 0.426 0.412
2000s 0.416 0.387 0.409 0.397

Standard Deviation of ym
1980s 0.143 0.158 0.144 0.140
1990s 0.146 0.158 0.145 0.141
2000s 0.149 0.159 0.144 0.139

Correlation of (yc, ym)
1980s -0.031 -0.029 -0.030 -0.022
1990s -0.079 -0.074 -0.078 -0.080
2000s -0.114 -0.107 -0.094 -0.112

Log WageMean
1980s 2.783 2.782 2.790 2.800
1990s 2.799 2.810 2.822 2.816
2000s 2.896 2.910 2.908 2.891

Standard Deviation
1980s 0.549 0.578 0.589 0.581
1990s 0.575 0.615 0.620 0.613
2000s 0.598 0.624 0.637 0.629

Distribution of x(0) and y
corr(xc(0), yc)

1980-1987 0.303 0.403 0.382 0.399
1988-1993 0.457 0.430 0.408 0.419

corr(xm(0), ym)
1980-1987 0.078 0.083 0.064 0.065
1988-1993 0.083 0.053 0.050 0.040

Aggregate Job Flows
Job-to-Job 0.032 0.024 0.035 0.032
Employment-to-Unemployment 0.015 0.016 0.015 0.017
Unemployment-to-Employment 0.261 0.266 0.277 0.262

UE Wage Differential (%) -0.205 -0.234 -0.273 -0.243
Post-Unemployment Average Wage Drop (%) -0.264 -0.430 -0.447 -0.417
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B.3.1. Demographic Heterogeneity

The model has two demographic dimensions− gender and age. Generally, the model matches

aggregate features and changes well but performs less well in capturing the patterns of

young workers and different outcomes by gender. For example, the model replicates the

pattern of rising and flattening wage dispersion over age (Figure 16). However, it does not

match the magnitude of the increase in wage dispersion for young workers compared to

the increase seen in the NLSY79 cohort (Appendix Figure 43). The model also replicates

average mobility rates and their decline over age but fails to match the initial sharp decline

in the job-to-job and employment-to-unemployment rates among young workers (Appendix

Figure 44).24 In addition, the model matches the correlation between initial cognitive and

manual skills and skill requirements for prime age (30-54) workers. But it fails to capture the

increase in this correlation for younger workers as they age (Appendix Figure 42). In essence,

young workers appear indistinguishable from prime age workers in terms of endogenous labor

market transitions and sorting. Importantly, the employment and wage trends observed

remain when restricting to prime age workers in the data, which makes accounting for youth

outcomes non-pivotal.

The model distinguishes genders only in the sense that their endowment distributions of

cognitive and manual skills differ (Appendix Figure 36). This distinction along these skill

dimensions remains insufficient to account for differing occupational employment and wage

outcomes between genders as Appendix Figures 45, 46, 47, and 48 show.25 Only slight differ-

ences in emerge for the genders in the model for their pay and allocation of jobs. Whereas

the data shows large differences in changes in their occupational wage and employment.

For instance, middle-skilled wages rose for women each decade but declined for men in the
24The decline in job-to-job and employment to unemployment switching occurs naturally with ageing,

because workers settle into better matches (via human capital accumulation or transitions) as seen in Lise
and Postel-Vinay (2016) and Menzio, Telyukova, and Visschers (2016). The decline in unemployment to
employment occurs over age, because workers’ life expectancy declines. This decline lowers the value of the
surplus at any job and increases the chances of exit before finding a job, reesulting in less unemployment to
employment transitions with age.

25Cortes, Jaimovich, and Siu (2016) document gender differences in terms of exiting the labor market
across education levels, which accounts for some of these differences across genders. Workers do not exit
based on gender here.
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1980s. Naturally, only slight differences emerge in the model, because their within-gender

marginal distributions of cognitive skills look almost identical. Endowed manual skills differ,

but the model judges cognitive skills as far more valuable than manual skills. Furthermore,

manual skills adjust rather quickly as we shall see next. Thus, the gender-education based

endowment of skills input into the model fails to result in dramatically different outcomes

for men and women.26

26Another factor like job preferences (Yamaguchi, 2012) or another skill like interpersonal skills (Jaimovich,
Siu, and Cortes, 2017) may reconcile differences in occupational wage and employment outcomes for men
and women.
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Figure 47: Wage Changes: Men
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Table 40: ft(x,y) Parameters at Sample Dates

I II III IV V VI VII VIII IX X

α0,t=0 1.314 -8×10−5 1.306 0.794 0.176 1.918 -1.970 3.067 1.314 1.306
α0,t=121 -1.495 -1.905 -1.479 -1.846 -1.713 -1.082 − 0.744 -1.583 -1.566
α0,t=267 -1.950 -1.542 -1.090 -1.985 -3.352 -0.932 − 0.555 -2.040 -1.614
α0,t=335 -2.376 -1.348 -1.441 -2.358 -3.505 -1.273 − 0.0373 -2.572 -2.327
α0,t=384 -2.683 -1.208 -1.694 -2.627 -3.615 -1.518 − -0.336 -2.956 -2.841

αC,t=0 20.26 19.56 19.23 17.08 1.111 16.11 24.17 17.79 20.26 18.73
αC,t=121 20.27 19.77 19.37 17.67 -0.792 14.84 − 18.54 20.27 17.95
αC,t=267 19.80 18.18 19.36 17.42 -3.211 14.06 − 18.54 20.51 18.51
αC,t=335 19.65 18.16 18.87 17.11 -4.360 13.69 − 18.34 20.73 18.29
αC,t=384 19.54 18.14 18.51 16.88 -5.187 13.43 − 18.19 20.90 18.13

αM,t=0 -0.775 1.247 -1.283 -0.110 -2.492 0.0360 -0.0169 0 -0.702 -1.283
αM,t=121 -0.853 0.646 -1.423 -0.575 0.392 0.0507 − 0 -0.661 -1.491
αM,t=267 -0.516 0.571 -1.423 -0.250 7.762 -0.00679 − 0 -1.644 -1.564
αM,t=335 -0.0161 0.403 -0.817 0.140 9.815 -0.252 − 0 -1.143 -0.943
αM,t=384 0.344 0.282 -0.379 0.421 11.29 -0.429 − 0 -0.783 -0.496

αCC,t=0 9.914 10.62 8.379 6.067 25.57 8.373 -2.501 7.444 10.41 9.063
αCC,t=121 21.23 16.62 21.01 17.74 35.39 22.77 − 15.76 20.84 22.48
αCC,t=267 31.83 24.52 32.68 29.33 41.19 36.96 − 28.82 32.26 33.44
αCC,t=335 33.37 26.56 34.95 30.75 43.01 38.21 − 30.58 33.90 35.85
αCC,t=384 34.48 28.04 36.58 31.77 44.32 39.12 − 31.85 35.07 37.59

αMM,t=0 8.427 8.877 8.615 11.88 -3.117 11.25 7.914 0 8.552 8.631
αMM,t=121 9.055 10.14 10.46 12.61 -8.731 12.70 − 0 9.023 11.40
αMM,t=267 6.261 6.174 8.193 6.352 -17.44 12.77 − 0 6.228 10.00
αMM,t=335 6.069 4.174 7.701 6.305 -19.99 13.81 − 0 6.036 10.24
αMM,t=384 5.930 2.733 7.347 6.271 -21.83 14.57 − 0 5.897 10.41
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Table 41: Ft(y) Parameters at Sample Dates

I II III IV V VI VII VIII IX X

rt=0 -0.160 -0.0464 -0.0700 -0.110 -0.264 -0.238 -0.103 -0.0100 -0.169 -0.0700
rt=121 -0.240 -0.0974 -0.150 -0.199 -0.405 − -0.182 0.884 -0.249 -0.135
rt=267 -0.313 -0.313 -0.277 -0.303 -0.482 − -0.199 -0.405 -0.323 -0.342
rt=335 -0.236 -0.175 -0.192 -0.142 -0.505 − -0.199 -0.123 -0.303 -0.193
rt=384 -0.181 -0.0753 -0.130 -0.0254 -0.521 − -0.199 0.0808 -0.290 -0.0850

aC,t=0 1.200 1.100 1.200 1.198 1.568 1.200 1.200 1.169 1.231 1.200
aC,t=121 1.188 1.100 1.173 1.150 1.556 − 1.285 1.187 1.219 1.113
aC,t=267 1.421 1.228 1.405 1.437 1.784 − 1.487 1.331 1.453 1.330
aC,t=335 1.387 1.140 1.390 1.385 1.758 − 1.466 1.327 1.418 1.315
aC,t=384 1.361 1.076 1.379 1.347 1.738 − 1.451 1.324 1.393 1.304

bC,t=0 2.625 2.062 2.156 2.505 4.964 2.500 2.250 1.942 2.656 2.156
bC,t=121 2.667 2.062 2.108 2.505 4.960 − 2.194 1.942 2.698 2.123
bC,t=267 2.659 2.032 2.062 2.495 5.008 − 2.255 1.940 2.690 2.079
bC,t=335 2.614 1.955 1.969 2.388 5.010 − 2.255 1.820 2.646 2.079
bC,t=384 2.582 1.900 1.902 2.311 5.012 − 2.255 1.733 2.614 2.079

aM,t=0 2.765 3.450 3.242 3.200 3.942 2.820 3.712 3.080 2.765 3.250
aM,t=121 2.755 3.306 3.141 3.260 3.924 − 3.579 2.930 2.755 3.164
aM,t=267 2.484 3.269 2.873 2.828 3.730 − 3.363 2.758 2.484 2.929
aM,t=335 2.454 3.246 2.843 2.773 3.740 − 3.354 2.770 2.454 2.899
aM,t=384 2.432 3.229 2.821 2.734 3.746 − 3.347 2.778 2.432 2.877

bM 6.073 8.987 9.813 8.004 10.87 8.773 14.83 7.913 6.018 9.828
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Figure 50: Creating Lower Tail Compression in II
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Table 42: Learning Frictions Decomposition (1/2)

Data I IV V

Log Change in Employment Shares
1979-1989

High 0.159 0.156 0.159 0.150
Medium -0.102 -0.098 -0.094 -0.113
Low 0.034 0.014 0.049 0.028

1989-2000
High 0.171 0.167 0.181 0.142
Medium -0.125 -0.132 -0.111 -0.129
Low 0.003 0.009 0.006 0.001

2000-2010
High 0.026 0.017 0.029 0.029
Medium -0.039 -0.042 -0.041 -0.044
Low 0.031 0.031 0.037 0.030

Log Change in Occupational Wage
1979-1989

High 0.011 0.025 0.042 0.040
Medium -0.056 -0.023 -0.052 -0.050
Low -0.078 -0.079 -0.051 -0.102

1989-2000
High 0.100 0.142 0.136 0.119
Medium 0.050 0.058 0.071 0.033
Low 0.079 0.093 0.083 0.058

2000-2010
High 0.031 0.057 0.070 0.038
Medium 0.029 0.043 0.036 0.028
Low -0.029 -0.001 -0.005 -0.031

Log Change in Wage Percentiles
1979-1989

90 0.053 0.034 0.037 0.093
50 -0.018 -0.021 -0.028 -0.030
10 -0.137 -0.127 -0.140 -0.162

1989-2000
90 0.133 0.130 0.129 0.122
50 0.065 0.112 0.108 0.127
10 0.115 0.114 0.102 0.098

2000-2010
90 0.091 0.060 0.061 0.081
50 0.026 0.039 0.044 0.025
10 0.011 -0.005 -0.007 0.008
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Table 43: Learning Frictions Decomposition (2/2)

Data I IV V
Distribution of y

Mean of yC
1980s 0.401 0.405 0.410 0.496
1990s 0.419 0.417 0.422 0.499
2000s 0.432 0.430 0.437 0.508

Standard Deviation of yC
1980s 0.204 0.180 0.183 0.110
1990s 0.205 0.182 0.187 0.112
2000s 0.207 0.183 0.190 0.115

Mean of yM
1980s 0.436 0.417 0.449 0.439
1990s 0.422 0.403 0.436 0.420
2000s 0.416 0.387 0.420 0.401

Standard Deviation of yM
1980s 0.143 0.158 0.147 0.143
1990s 0.146 0.158 0.148 0.144
2000s 0.149 0.159 0.149 0.142

Correlation of (yC , yM )
1980s -0.031 -0.029 -0.044 -0.007
1990s -0.079 -0.074 -0.100 -0.080
2000s -0.114 -0.107 -0.105 -0.108

Log Wage
Mean

1980s 2.783 2.782 2.792 2.787
1990s 2.799 2.810 2.831 2.810
2000s 2.896 2.910 2.914 2.892

Standard Deviation
1980s 0.549 0.578 0.577 0.504
1990s 0.575 0.615 0.615 0.565
2000s 0.598 0.624 0.632 0.589

Distribution of x(0) and y
corr(xC(0), yC)

1980-1987 0.303 0.403 0.394 .
1988-1993 0.457 0.430 0.446 .

corr(xM (0), yM )
1980-1987 0.078 0.083 0.094 .
1988-1993 0.083 0.053 0.095 .

Aggregate Job Flows
Job-to-Job 0.030 0.019 0.030 0.009
Employment-to-Unemployment 0.015 0.016 0.016 0.021
Unemployment-to-Employment 0.261 0.266 0.270 0.104

U-to-E Wage Differential (%) -0.205 -0.234 -0.243 -0.152
Unemployment Spell Average Wage Drop (%) -0.264 -0.430 -0.381 -0.504
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Table 44: Ft(y) and ft(x,y) Decomposition (1/2)

Data I VI VII

Log Change in Employment Shares
1979-1989

High 0.159 0.156 0.157 0.167
Medium -0.102 -0.098 -0.037 -0.094
Low 0.034 0.014 -0.060 -0.005

1989-2000
High 0.171 0.167 0.075 0.158
Medium -0.125 -0.132 -0.046 -0.111
Low 0.003 0.009 -0.006 -0.013

2000-2010
High 0.026 0.017 -0.053 0.044
Medium -0.039 -0.042 0.021 -0.038
Low 0.031 0.031 0.016 -0.002

Log Change in Occupational Wage
1979-1989

High 0.011 0.025 0.045 0.028
Medium -0.056 -0.023 -0.016 0.018
Low -0.078 -0.079 -0.080 0.006

1989-2000
High 0.100 0.142 0.119 0.037
Medium 0.050 0.058 0.099 0.086
Low 0.079 0.093 0.082 0.088

2000-2010
High 0.031 0.057 0.059 0.032
Medium 0.029 0.043 0.010 0.028
Low -0.029 -0.001 0.038 0.030

Log Change in Wage Percentiles
1979-1989

90 0.053 0.034 0.054 0.049
50 -0.018 -0.021 -0.027 0.044
10 -0.137 -0.127 -0.137 0.015

1989-2000
90 0.133 0.130 0.088 0.067
50 0.065 0.112 0.107 0.097
10 0.115 0.114 0.154 0.121

2000-2010
90 0.091 0.060 0.043 0.031
50 0.026 0.039 0.025 0.036
10 0.011 -0.005 0.002 0.063
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Table 45: Ft(y) and ft(x,y) Decomposition (2/2)

Data I VI VII
Distribution of y

Mean of yC
1980s 0.401 0.405 0.383 0.404
1990s 0.419 0.417 0.392 0.426
2000s 0.432 0.430 0.391 0.444

Standard Deviation of yC
1980s 0.204 0.180 0.176 0.192
1990s 0.205 0.182 0.176 0.194
2000s 0.207 0.183 0.176 0.194

Mean of yM
1980s 0.436 0.417 0.390 0.421
1990s 0.422 0.403 0.388 0.409
2000s 0.416 0.387 0.388 0.398

Standard Deviation of yM
1980s 0.143 0.158 0.141 0.121
1990s 0.146 0.158 0.142 0.122
2000s 0.149 0.159 0.141 0.122

Correlation of (yC , yM )
1980s -0.031 -0.029 -0.066 -0.049
1990s -0.079 -0.074 -0.057 -0.085
2000s -0.114 -0.107 -0.071 -0.118

Log Wage
Mean

1980s 2.783 2.782 2.783 2.796
1990s 2.799 2.810 2.823 2.859
2000s 2.896 2.910 2.897 2.933

Standard Deviation
1980s 0.549 0.578 0.567 0.596
1990s 0.575 0.615 0.583 0.589
2000s 0.598 0.624 0.582 0.578

Distribution of x(0) and y
corr(xC(0), yC)

1980-1987 0.303 0.403 0.447 0.400
1988-1993 0.457 0.430 0.475 0.424

corr(xM (0), yM )
1980-1987 0.078 0.083 0.107 0.164
1988-1993 0.083 0.053 0.097 0.123

Aggregate Job Flows
Job-to-Job 0.030 0.019 0.026 0.001
Employment-to-Unemployment 0.015 0.016 0.016 0.017
Unemployment-to-Employment 0.261 0.266 0.253 0.251

U-to-E Wage Differential (%) -0.205 -0.234 -0.267 -0.185
Unemployment Spell Average Wage Drop (%) -0.264 -0.430 -0.401 -0.393
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Table 46: Skil Content Decomposition (1/2)

Data I III X VIII

Log Change in Employment Shares
1979-1989

High 0.159 0.156 0.164 0.151 0.189
Medium -0.102 -0.098 -0.112 -0.102 -0.107
Low 0.034 0.014 0.035 0.038 0.021

1989-2000
High 0.171 0.167 0.171 0.165 0.148
Medium -0.125 -0.132 -0.135 -0.128 -0.120
Low 0.003 0.009 0.009 0.016 0.033

2000-2010
High 0.026 0.017 0.022 0.021 0.036
Medium -0.039 -0.042 -0.040 -0.036 -0.044
Low 0.031 0.031 0.030 0.027 0.023

Log Change in Occupational Wage
1979-1989

High 0.011 0.025 0.032 0.032 0.051
Medium -0.056 -0.023 -0.035 -0.015 -0.014
Low -0.078 -0.079 -0.081 -0.079 -0.111

1989-2000
High 0.100 0.142 0.121 0.135 0.144
Medium 0.050 0.058 0.052 0.066 0.038
Low 0.079 0.093 0.077 0.090 0.137

2000-2010
High 0.031 0.057 0.059 0.053 0.091
Medium 0.029 0.043 0.036 0.044 0.055
Low -0.029 -0.001 0.006 0.016 -0.023

Log Change in Wage Percentiles
1979-1989

90 0.053 0.034 0.045 0.041 0.053
50 -0.018 -0.021 -0.033 -0.017 -0.008
10 -0.137 -0.127 -0.137 -0.099 -0.154

1989-2000
90 0.133 0.130 0.132 0.133 0.152
50 0.065 0.112 0.087 0.099 0.087
10 0.115 0.114 0.107 0.116 0.105

2000-2010
90 0.091 0.060 0.066 0.062 0.095
50 0.026 0.039 0.030 0.039 0.045
10 0.011 -0.005 -0.015 0.005 -0.001
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Table 47: Skill Content Decomposition (2/2)

Data I III X VIII
Distribution of y

Mean of yC
1980s 0.401 0.405 0.423 0.419 0.419
1990s 0.419 0.417 0.430 0.426 0.426
2000s 0.432 0.430 0.442 0.439 0.429

Standard Deviation of yC
1980s 0.204 0.180 0.193 0.191 0.196
1990s 0.205 0.182 0.193 0.193 0.198
2000s 0.207 0.183 0.196 0.194 0.199

Mean of yM
1980s 0.436 0.417 0.432 0.437 0.449
1990s 0.422 0.403 0.413 0.416 0.431
2000s 0.416 0.387 0.397 0.401 0.405

Standard Deviation of yM
1980s 0.143 0.158 0.140 0.140 0.144
1990s 0.146 0.158 0.141 0.140 0.146
2000s 0.149 0.159 0.139 0.140 0.149

Correlation of (yC , yM )
1980s -0.031 -0.029 -0.022 -0.018 0.141
1990s -0.079 -0.074 -0.080 -0.080 0.133
2000s -0.114 -0.107 -0.112 -0.117 -0.138

Log Wage
Mean

1980s 2.783 2.782 2.799 2.797 2.781
1990s 2.799 2.810 2.815 2.829 2.827
2000s 2.896 2.910 2.890 2.912 2.905

Standard Deviation
1980s 0.549 0.578 0.581 0.579 0.573
1990s 0.575 0.615 0.613 0.605 0.610
2000s 0.598 0.624 0.630 0.620 0.633

Distribution of x(0) and y
corr(xC(0), yC)

1980-1987 0.303 0.403 0.398 0.407 0.371
1988-1993 0.457 0.430 0.419 0.415 0.406

corr(xM (0), yM )
1980-1987 0.078 0.083 0.063 0.074 0.026
1988-1993 0.083 0.053 0.040 0.037 0.030

Aggregate Job Flows
Job-to-Job 0.030 0.019 0.021 0.020 0.027
Employment-to-Unemployment 0.015 0.016 0.017 0.017 0.014
Unemployment-to-Employment 0.261 0.266 0.262 0.256 0.267

U-to-E Wage Differential (%) -0.205 -0.273 -0.243 -0.247 -0.291
Unemployment Spell Average Wage Drop (%) -0.264 -0.447 -0.417 -0.430 -0.417
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Table 48: Nash Bargaining (1/2)

Data I IX

Log Change in Employment Shares
1979-1989

High 0.159 0.156 0.154
Medium -0.102 -0.098 -0.108
Low 0.034 0.014 0.026

1989-2000
High 0.171 0.167 0.161
Medium -0.125 -0.132 -0.117
Low 0.003 0.009 -0.011

2000-2010
High 0.026 0.017 0.020
Medium -0.039 -0.042 -0.046
Low 0.031 0.031 0.033

Log Change in Occupational Wage
1979-1989

High 0.011 0.025 0.019
Medium -0.056 -0.023 -0.018
Low -0.078 -0.079 -0.059

1989-2000
High 0.100 0.142 0.120
Medium 0.050 0.058 0.046
Low 0.079 0.093 0.093

2000-2010
High 0.031 0.057 0.057
Medium 0.029 0.043 0.030
Low -0.029 -0.001 0.013

Log Change in Wage Percentiles
1979-1989

90 0.053 0.034 0.040
50 -0.018 -0.021 -0.007
10 -0.137 -0.127 -0.127

1989-2000
90 0.133 0.130 0.112
50 0.065 0.112 0.107
10 0.115 0.114 0.105

2000-2010
90 0.091 0.060 0.057
50 0.026 0.039 0.039
10 0.011 -0.005 0.001
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Table 49: Nash Bargaining (2/2)

Data I IX
Distribution of y

Mean of yC
1980s 0.401 0.405 0.411
1990s 0.419 0.417 0.422
2000s 0.432 0.430 0.435

Standard Deviation of yC
1980s 0.204 0.180 0.176
1990s 0.205 0.182 0.178
2000s 0.207 0.183 0.180

Mean of yM
1980s 0.436 0.417 0.415
1990s 0.422 0.403 0.402
2000s 0.416 0.387 0.387

Standard Deviation of yM
1980s 0.143 0.158 0.158
1990s 0.146 0.158 0.157
2000s 0.149 0.159 0.158

Correlation of (yC , yM )
1980s -0.031 -0.029 -0.014
1990s -0.079 -0.074 -0.066
2000s -0.114 -0.107 -0.129

Log Wage
Mean

1980s 2.783 2.782 2.760
1990s 2.799 2.810 2.782
2000s 2.896 2.910 2.882

Standard Deviation
1980s 0.549 0.578 0.567
1990s 0.575 0.615 0.603
2000s 0.598 0.624 0.605

Distribution of x(0) and y
corr(xC(0), yC)

1980-1987 0.303 0.403 0.426
1988-1993 0.457 0.430 0.442

corr(xM (0), yM )
1980-1987 0.078 0.083 0.089
1988-1993 0.083 0.053 0.054

Aggregate Job Flows
Job-to-Job 0.030 0.019 0.018
Employment-to-Unemployment 0.015 0.016 0.016
Unemployment-to-Employment 0.261 0.266 0.254

U-to-E Wage Differential (%) -0.205 -0.273 -0.234
Unemployment Spell Average Wage Drop (%) -0.264 -0.447 -0.431
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Table 50: Repeated Stationary Model (1/3)

Data XI

Log Change in Employment Shares
1979-1989

High 0.159 0.167
Medium -0.102 -0.082
Low 0.034 -0.021

1989-2000
High 0.171 0.202
Medium -0.125 -0.159
Low 0.003 0.011

2000-2010
High 0.026 -0.082
Medium -0.039 0.081
Low 0.031 -0.021

Log Change in Occupational Wage
1979-1989

High 0.011 0.031
Medium -0.056 -0.105
Low -0.078 -0.041

1989-2000
High 0.100 0.053
Medium 0.050 0.093
Low 0.079 0.078

2000-2010
High 0.031 0.045
Medium 0.029 0.022
Low -0.029 0.031

Log Change in Wage Percentiles
1979-1989

90 0.053 0.005
50 -0.018 -0.026
10 -0.137 -0.214

1989-2000
90 0.133 0.153
50 0.065 0.062
10 0.115 0.128

2000-2010
90 0.091 0.016
50 0.026 0.022
10 0.011 -0.027
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Table 51: Repeated Stationary Model (2/3)

Data XI

Distribution of y
Mean of yC

1979 0.388 0.402
1989 0.411 0.419
2000 0.426 0.439
2010 0.436 0.436

Standard Deviation of yC
1979 0.206 0.189
1989 0.203 0.197
2000 0.206 0.208
2010 0.208 0.208

Mean of yM
1979 0.445 0.447
1989 0.428 0.441
2000 0.418 0.417
2010 0.413 0.437

Standard Deviation of yM
1979 0.143 0.139
1989 0.144 0.151
2000 0.148 0.138
2010 0.150 0.164

Correlation of (yC , yM )
1979 -0.017 0.017
1989 -0.068 -0.068
2000 -0.118 -0.118
2010 -0.111 -0.017

Log Wage
Mean

1979 2.810 2.827
1989 2.783 2.763
2000 2.872 2.859
2010 2.906 2.876

Standard Deviation
1979 0.511 0.515
1989 0.572 0.609
2000 0.583 0.609
2010 0.613 0.620
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Table 52: Repeated Stationary Model (3/3)

Data XI

Aggregate Job Flows
Job-to-Job

1979 0.030 0.022
1989 0.030 0.027
2000 0.030 0.020
2010 0.030 0.019

Employment-to-Unemployment
1979 0.015 0.015
1989 0.014 0.012
2000 0.011 0.012
2010 0.016 0.019

Unemployment-to-Employment
1979 0.291 0.258
1989 0.299 0.290
2000 0.323 0.365
2010 0.162 0.166
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Table 53: Repeated Stationary Model Parameters

1979 1989 2000 2010

ζC 0.787 0.892 0.900 0.892
ζM 1.100 1.100 1.100 1.100
b0 2.544 0.002 2.419 2.456
λ 0.425 0.312 0.412 0.482
γ0 -1.165 -1.339 -1.153 -1.224
γ1 14.671 15.014 14.917 15.014
γ2 -15.527 -16.331 -15.983 -16.194
α0 0.530 1.059 2.303 0.383
αC 14.266 15.781 3.500 11.220
αM 0.049 -0.332 1.222 0.287
αCC 12.055 22.512 28.714 32.897
αMM 12.758 7.435 6.980 5.155
νC 25.529 39.409 28.561 27.645
νM 20.000 0.000 5.888 19.751
κC 92.232 109.517 124.606 149.196
κM 59.777 38.885 92.336 71.590
Mu 0.600 0.417 0.867 0.482
Me 0.120 0.120 0.120 0.120
r -0.285 -0.317 -0.500 -0.450
aC 0.800 1.102 0.700 0.500
bC 2.400 2.337 1.700 1.550
aM 3.500 3.071 3.400 2.951
bM 7.700 6.000 6.984 4.000
θ0 0.044 0.001 0.087 0.062
θ1 2.035 1.008 4.516 14.610
ω 0.010 0.000 0.000 0.019
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Figure 58: Explantory Factors for ∆F(y)

Table 54: Average Task Content by Occupational Group (1979)

High Medium Low

Offshoring Vulnerability 0.425 -0.310 0.148
Routine Intensity -1.246 0.900 -0.025
Interpersonal Intensity 0.863 -0.613 -0.678

B.3.2. ∆Ft(y) vs. ∆ in Equilibrium Distribution of y

The distribution of skill demand, Ft(y), serves as the object of interest to infer why skill

demand changed here, because the distribution of y may not reflect skill demand changes.

Most reduced-form studies infer demand changes from the equilibrium wage and employment

share changes. If Ft(y) governs the equilibrium distribution of y, then why estimate at

Ft(y)? After all, the object remains difficult to estimate and the equilibrium distribution

of y is available with some caveats. However, selection effects (or sorting) in equilibrium

lead to changes in the equilibrium distribution of y. Also, skill mismatch, changes in the
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Table 55: Correlation in Task Content (1979)

Offshoring Vulnerability Routine Intensity

Routine Intensity -0.200
Interpersonal Intensity -0.060 -0.608

Table 56: Average Industry Concentration by Occupational Group (1979)

High Medium Low

Agriculture, Forestry, Fishing, & Hunting 0.001 0.004 0.003
Mining 0.009 0.013 0.003
Construction 0.016 0.096 0.006
Manufacturing 0.151 0.351 0.161
Wholesale & Retail Trade 0.047 0.113 0.379
Transportation & Utilities 0.027 0.071 0.070
Information Services 0.014 0.021 0.006
Financial, Professional, & Business Services 0.230 0.086 0.068
Education and Health Services 0.427 0.156 0.144
Leisure & Hospitality 0.005 0.006 0.006
Other Services 0.005 0.030 0.130

Table 57: 1979 Task Content Variance Decomposition on ∆F(y)

I II III

Offshoring Vulnerability 0.051 0.058 0.128
Routine Intensity 0.025 0.007 0.023
Interpersonal Intensity 0.139 0.070 0.239

Total Variance Contribution 21.9% 10.9% 33.5%
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Table 58: Capital Input and Imports Variance Decomposition on ∆F(y)

I II III

∆ Chinese Manufacturing Import Penetration 0.000 0.014 0.003

∆ Capital Investment
Information & Communications Technology 0.001 0.002 0.006
Machinery 0.026 0.023 0.039
Research & Development 0.076 0.047 0.094
Transportation Equipment 0.050 0.001 0.104

Total Variance Contribution 58.8% 28.4% 56.9%

distribution of x, and search frictions all affect the equilibrium distribution of y. Hence,

the observed equilibrium distribution does not necessarily reflect concurrent skill demand

everywhere. Figure 59 shows contour plots of the change in the distribution of equilibrium

skill requirements and Ft(y) for the model (III). The model equilibrium distribution of y

appears rather misleading compared to Ft(y). Skill demands in the model polarize much

more than the equilibrium distribution of y suggests. This difference illustrates why we

must look at Ft(y) directly to judge how skill demands evolved.
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Figure 59: ∆Ft(y) vs. ∆ in Equilibrium y from 1979 to 2010 (III)

The data’s equilibrium distribution of y exhibits polarization although not as strong as
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the model’s skill demands suggests (Figure 60).27 One interpretation of this difference is the

model overestimates the importance of frictions and selection effects, making the equilibrium

distribution of y an imperfect but suitable proxy for Ft(y). Another interpretation of this

difference comes from the construction of y in the data versus the model. y changes little

within occupations in the data over time, because the DOT waves only took place in 1977

and 1991. We also do not observe dispersion in y within occupations due to its construction

at the occupational level. This aggregation means any change in the area will occur roughly

in the same place in the data, whereas changes in an area can be more spread out in

the model. This spreading out within occupations makes skill demand polarization more

difficult to see.28 On one hand, aggregation causes the data to better reflects polarizing in

skill demands. On the other, it reduces our power to distill between various theories as well

as demand shifts and selection effects, lessening the credibility of inference directly from y

in the data.
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Figure 60: ∆ in Equilibrium y from 1979 to 2010 (Data)

27The model only matches the first and second moments of this distribution.
28Collapsing the model’s equilibrium distribution of y into (yC , yM ) cells shows more polarization. Hence,

Figure 60 cannot rule out the possiblity of a strong role for frictions and selection given the strong possibility
that data construction drives it.
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