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ABSTRACT

ESSAYS IN FINANCIAL ECONOMETRICS

Jian Hua

Francis X. Diebold

In the first chapter, I estimate dynamic factors from the term structure of credit

spreads and the term structure of equity option implied volatilities, and I provide

a comprehensive characterization of the dynamic relationships among those credit

spread factors and equity volatility factors. I find strong evidence that the volatil-

ity factors, especially the volatility level factor, Granger cause credit spread levels,

confirming the theoretical predictions of Merton (1974) in a significantly richer

and more nuanced environment than previously achieved. Simultaneously, I also

find evidence of reverse Granger causality from credit spreads to equity volatility,

operating through the slope factors, consistent with the market microstructure

literature such as Fleming and Remolona (1999a, 1999b), which finds that price

discovery often happens first in bond markets. Hence my results extend and unify

both the corporate bond pricing and market microstructure literatures, deepening

our understanding of stock and bond market interaction and suggesting profitable

trading strategies. In the second chapter, which is a joint work with Frank X.
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Diebold, we study the dynamics of the U.S. Treasury yield term structure by

applying the Nelson-Siegel models introduced in Diebold and Li (2006) and its

arbitrage-free version developed by Christensen, Diebold, and Rudebusch (2007).

We analyze in-sample by testing the risk-neutral restrictions, which establish the

absence from arbitrage, on the Nelson-Siegel factors estimated under the physical

measure. We thus compare the term structure modeling between the risk-neutral

measure and the physical measure. Specifically, we show that the risk-neutral

restrictions on the factor dynamics are well-satisfied, and those factors have the

following properties: 1) the level factor is a unit-root process and does not af-

fect the other two factors; 2) the slope and curvature factors are mean-reverting

processes that revert at the same rate; 3) the curvature factor forecasts the slope

factor, but not conversely. Moreover, we find that utilizing these restrictions can

improve out-of-sample forecast performance.
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CHAPTER I

Introduction

Macroeconomists, financial economists, and market participants all have strong

interests in modeling the dynamic evolutions of various financial instruments. Par-

ticularly, they have spent a great effort on interest rates and volatility. In this

dissertation, I conduct a formal econometric analysis of dynamic term structure

models for U.S. Treasury bond yields, corporate bond yields, and equity option

implied volatilities. In the first chapter, titled “Option Implied Volatilities and

Corporate Bond Yields: A Dynamic Factor Approach,” I estimate dynamic fac-

tors from the term structure of credit spreads and the term structure of equity

option implied volatilities, and I provide a comprehensive characterization of the

dynamic relationships among those credit spread factors and equity volatility fac-

tors. I find strong evidence that the volatility factors, especially the volatility

level factor, Granger cause credit spread levels, confirming the theoretical predic-

tions of Merton (1974) in a significantly richer and more nuanced environment

than previously achieved. Simultaneously, I also find evidence of reverse Granger

causality from credit spreads to equity volatility, operating through the slope fac-
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tors, consistent with the market microstructure literature such as Fleming and

Remolona (1999a, 1999b), which finds that price discovery often happens first in

bond markets. Hence my results extend and unify both the corporate bond pric-

ing and market microstructure literatures, deepening our understanding of stock

and bond market interaction and suggesting profitable trading strategies.

The second chapter, which is a joint work with Francis X. Diebold, is titled

“Yield Curve Modeling in Risk-neutral vs. Physical Environments.” We study the

dynamics of the U.S. Treasury yield term structure by applying the Nelson-Siegel

models introduced in Diebold and Li (2006) and its arbitrage-free version devel-

oped by Christensen, Diebold, and Rudebusch (2007). We analyze in-sample by

testing the risk-neutral restrictions, which establish the absence from arbitrage, on

the Nelson-Siegel factors estimated under the physical measure. We thus compare

the term structure modeling between the risk-neutral measure and the physical

measure. Specifically, we show that the risk-neutral restrictions on the factor dy-

namics are well-satisfied, and those factors have the following properties: 1) the

level factor is a unit-root process and does not affect the other two factors; 2) the

slope and curvature factors are mean-reverting processes that revert at the same

rate; 3) the curvature factor forecasts the slope factor, but not conversely. More-

over, we find that utilizing these restrictions can improve out-of-sample forecast

performance.
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CHAPTER II

Option Implied Volatilities and Corporate Bond

Yields: A Dynamic Factor Approach

In the celebrated model of Merton (1974), corporate debt and equity represent

alternative claims on a firm’s assets. The two securities’ common dependence on

the firm’s asset value implies that expected credit spreads are driven (at least

in part) by equity volatility. This is so because, other things equal, high equity

volatility increases the likelihood of a drop in equity value large enough to trigger

default. This is especially interesting and intriguing as it links conditional means

in bond markets to conditional variances in stock markets. This link is displayed

in Figure 2.1, which shows that ten-year spreads of Aa-rated bonds are strongly

correlated with one-year implied volatility.

Most literature thus far has related individual credit spreads (on five-year

bonds, say) to individual equity volatilities, as for example in Campbell and Tak-

sler (2003). More generally, however, the entire term structure of credit spreads

should be linked to the term structure of volatilities, a conjecture that is explored

3



in this chapter.

Despite the fact that both the empirics and the theory of corporate bond pric-

ing suggest that equity volatility affects credit spreads, market microstructure

studies suggest that bond markets affect equity volatility. Using high-frequency

intraday data, these studies document news announcements’ effects on stock and

bond markets and show that in terms of price discovery, bond markets respond

more, and more quickly, than stock markets; see Fleming and Remolona (1999a,

1999b), for example. Hence, I also analyze whether the term structure of volatil-

ities is affected by the term structure of credit spreads. In fact, I examine com-

prehensively the dynamic interaction between volatility and credit spread term

structures.

Using portfolios of investment-grade bonds and equity options from nonfinan-

cial firms with homogeneous credit ratings, I estimate factors from the two term

structures via the Dynamic Nelson-Siegel (DNS) model (Diebold and Li, 2006)

and uncover predictive relationships among those credit spread factors and equity

volatility factors using a vector-autoregression (VAR) analysis. Precisely, I find

strong evidence that the volatility factors, especially the volatility level factor,

Granger cause credit spread levels, confirming the theoretical predictions of Mer-

ton (1974) in a significantly richer and more nuanced environment than previously

achieved. Simultaneously, I also find evidence of reverse Granger causality from

credit spreads to equity volatility, operating through the slope factors, consistent

with the market microstructure literature such as Fleming and Remolona (1999a,

1999b), which finds that price discovery often happens first in bond markets.

This chapter relates to earlier work in both corporate bond pricing and price

4



Figure 2.1: Ten-year corporate spreads vs. one-year implied volatility
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discovery, but at least three features differentiate my analysis from previous results

along important dimensions. These include the focus on the interaction between

two term structures, the focus on implied volatility instead of realized volatility,

and the length and breadth of the options and bond data sample. These will be

discussed briefly in turn.

First, I focus on term structure interactions. Few studies thus far examine the

impact between the two term structures. Most studies concentrate on a single

credit spread or volatility or a few spreads or volatilities from one part of the

maturity spectrum. In particular, the literature still lacks an analysis of the inter-

action between the whole curves. Even if studies analyze the term structure effect,

the literature seems to focus on just one term structure. For example, Fleming

and Remolona (1999c) study the announcements’ effects on the government yield

curve. Moreover, so far there have been no studies on the announcements’ effects

on the term structure of volatilities. This chapter is the first attempt to address

the dynamic relationship between two term structures, and my analysis extend

previous research into a much richer environment.

Second, I use option implied volatility as a measure of equity volatility. One

reason that implied volatility is selected instead of realized volatility is that im-

plied volatility is forward-looking, whereas realized volatility, widely used in many

previous studies, including Campbell and Taksler (2003), is backward looking.

Since the bond yield is forward looking, it is crucial to retain the forward-looking

property for both markets. Moreover, in an efficient market the option price in-

corporates all available relevant information, including past returns. Therefore,

implied volatility is selected for the analysis.
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Third, the dataset used in this chapter spans a comparatively long sample

period, including both recessions and financial crises, and uses the recently devel-

oped model-free implied volatility approach due to its ability to obtain volatility

directly from a whole set of option prices. Instead of applying the Black-Scholes

formula on at-the-money options, the model-free approach aggregates across all

available strike prices, which resolves the skewness problem in the strike dimension

of equity options. Furthermore, I establish the term structures of implied volatil-

ities using portfolios of firms with homogeneous credit ratings. Most previous

research on the term structure of implied volatilities that applies the model-free

approach focuses on index options such as the S&P 500. I undertake the analysis

of the term structure of option implied volatilities by going beyond the overall

index options to portfolio levels grouped by firms’ credit ratings.

Notwithstanding the improvements obtained through the above considerations,

my results not only are consistent with existing work in both corporate bond

pricing and price discovery, but also extend findings from both the corporate

bond pricing and market microstructure literatures into a much richer and more

nuanced environment. Hence my results unify both literatures, deepening our

understanding of stock and bond market interaction. Moreover, there is a simple

explanation for the direction of the predictive relations between the level factors

and the slope factors in the two term structures. For the level interaction, the

predictive relation is from the volatility to the spread. Because the options market

focuses on the short term (less than 2 years), macroeconomic shocks can affect the

entire maturity spectrum. As a result, the level movement in the options market is

apparent first, and the spread level updates as the risk level has changed. For the

7



slope interaction, however, it is the reverse, i.e. the direction is from the spread

to the volatility. Long-term bonds are more sensitive to macroeconomic shocks

than short-term bonds, and thus the spread slope movement is apparent first.

As the bond market updates market prices of risk into the future, the options

market adjust accordingly. In addition, my results also suggest profitable trading

strategies to explore the predictable relationships.

The study proceeds as follows. Subsection 2.1 provides a survey on both the

corporate bond pricing literature and the market microstructure and price discov-

ery literature. Subsection 2.2 describes the bond and options data. Subsection

2.3 states the modeling approach of the two term structures and describes the

properties of each estimated factor. Subsection 2.4 characterizes the dynamic re-

lationship and explores the possible reasons for such interaction. This chapter

concludes in subsection 2.5.

2.1 Research questions and related literature

Before turning to the analysis, I briefly review the literature related to the

following research questions to be addressed:

a) Does the term structure of option implied volatilities impact the term struc-

ture of credit spreads?

b) Does the term structure of credit spreads impact the term structure of

volatilities?

c) What is the dynamic relationship between bond and equity markets?

8



Research on question a) deals with corporate bond pricing studies, whereas ques-

tion b) and c) are related to the market microstructure and price discovery liter-

ature.

Corporate bond pricing

The theoretical literature on the pricing of corporate bonds distinguishes be-

tween structural and reduced-form models. In structural models, a firm is assumed

to default when the value of its liabilities exceeds its asset value, and then bond-

holders assume control of the firm in exchange for its residual value. Black and

Scholes (1973) and Merton (1974) are some of the classic papers in this area.

Huang and Huang (2003) analyze a wide range of structural firm value models

and show that these models typically explain only 20% to 30% of observed credit

spreads, which has emerged as the credit spread puzzle.

The structural models move in an equilibrium framework, where prices and

default probabilities are endogenous to the models, and the market value of assets

and their volatility are exogenous. Reduced-form models, by contrast, assume an

exogenous stochastic process for the default probability and the recovery rate, and

use prices as input. These models can allow for premia to compensate investors

for illiquidity and systematic credit risk, and they can be fitted econometrically

to corporate yield data (See, for example, Jarrow and Turnbull (1995), Duffie

and Singleton (1997, 1999)). The flexibility of the reduced-form approach allows

default risk to play a greater role in corporate bond pricing.

Recently, there have been several less structured econometric studies on cor-

porate bond pricing. Collin-Dufresne et al. (2001) find that a single unobserved
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factor, common to all corporate bonds, drives most variation in credit spread

changes. Kwan (1996) shows that changes in a firm’s stock price are negatively

correlated with contemporaneous and future changes in the yields of its bonds.

Campbell and Taksler (2003) show a strong effect of realized equity volatility on

individual credit spreads.

My study is closely related to that of Campbell and Taksler (2003) and un-

dertakes a less structured econometric approach. It explores whether the entire

term structure of credit spreads is affected by the entire term structure of option

implied volatilities.

Market microstructure and price discovery

Market microstructure studies, using high-frequency intraday price data, are

able to analyze price movements in relation to particular announcement effects.

Fleming and Remolona (1999a, 1999b) analyze the intraday Treasury bond mar-

ket and show that the largest price movements stem from the arrival of news

announcements. They also conclude that bond markets are more responsive than

stock markets.1 Andersen, Bollerslev, Diebold, and Vega (2007) analyze stock,

bond, and foreign exchange markets across multiple countries and qualify earlier

work suggesting that bond markets react most strongly to macroeconomic news.

The existing literature on price discovery focuses on firm level information

1From a theoretical perspective, the link between asset prices and economic news tends to
be more straightforward for the bond market than for the stock market. An upward revision of
expected real activity, for example, raises expected cash flows for stocks while raising discount
rates for both stocks and bonds. The effect on bond prices is clearly negative, while the effect
on stock is ambiguous, depending on whether the cash flow effect dominates the discount rate
effect.
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flow between the credit default swaps (CDS), bond, equity, and equity options

markets. Briefly all areas of the literature are reviewed here.

Longstaff, Mithal, and Neis (2005) show that among the CDS spread changes,

corporate bond spreads, and stock returns, both the stock and CDS markets lead

the corporate bond market, which supports the finding that information seems

to flow first into stock and credit derivative markets and then into the corporate

bond market. Norden and Weber (2004) look at the comovement of the CDS,

bond, and stock markets and find that the stock market generally leads the CDS

and bond markets, that the CDS market is more responsive to the stock market

than to the bond market, and that the CDS market plays a more important role

in price discovery than the bond market does.

For the lead-lag relationships between equity and equity options at the firm

level, Chakravarty, Gulen, and Mayhew (2004) claim that option trading con-

tributes to price discovery in the underlying stock market. Informed traders trade

in both stocks and options, suggesting an important informational role for op-

tions. Easley, O’Hara, and Srinivas (1998) and Pan and Poteshman (2006) find

that signed trading volume in the options market can help forecast future stock

returns. However, when looking at the equity options and CDS markets together,

Berndt and Ostrovnaya (2008) conclude that options prices reveal information

about forthcoming adverse events at least as early as do credit spreads.

Given the monthly data used in this study, it is not possible to identify the

effect of particular news announcement, but I am able to analyze the comovement

between the two term structures. In addition to testing the impact of the term

structure of volatilities on the term structure of spreads, I also explore the reverse

11



impact, i.e., the dynamic impact of the spread term structure on the volatility term

structure. Thus, I present a complete characterization of the dynamics between

the bond and stock markets.

2.2 The data

I use data on nonfinancial firms’ prices of corporate bond transactions in con-

junction with their equity option prices. This section describes their source, con-

struction methods, and summary statistics.

2.2.1 Data description

The corporate bond data are retrieved from the Fixed Income Securities Database

(FISD) and National Association of Insurance Commissioners (NAIC) transac-

tions data for the period spanning January 1996 through September 2008. The

FISD contains bond-specific information such as issue date, bond features, bond

ratings, coupon rate, and payment frequency. The NAIC database2 consists of all

transactions by life insurance companies, property and casualty insurance com-

panies, and health maintenance organizations (HMOs) as distributed by Warga

(2000), and hence the transaction data contain details such as trade date, volume,

and bond price (stated as a percentage of the bond face value). End-of-month

bond prices (i.e., the price at the last transaction of the month) are collected for

all fixed-rate U.S. dollar-denominated bonds.

2This database is an alternative to the no longer available Warga (1998) database used by
Duffee (1998), Blume, Lim, and MacKinlay (1998), Elton et al. (2000, 2001), Hecht (2000), and
Collin-Dufresne et al. (2001).
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A limitation of the NAIC is that it only contains data on transactions con-

ducted by U.S. insurance companies, and thus, this constraint may reduce the

generality of the results since insurance companies tend to focus on long-term and

investment-grade bonds. However, three comments are warranted:

• First, according to the Flow of Funds accounts published by the Federal

Reserve Board, insurance companies hold between 30% and 40% of corporate

bonds.3 Therefore, the NAIC should be adequately representative of entire

credit market.

• Second, bond prices shown in the data are not believed to be biased. As

long as the corporate bond market is competitive, the transaction prices

are arbitrage-free and reflect all publicly available information in an unbi-

ased manner. Therefore, the transaction prices do not reflect any bias to

institutional peculiarities of the insurance industry.

• Finally, the NAIC data are essentially the only source of bond-exchange

transaction data that dates back to the 1990s.4

Yield differences between investment- and non-investment-grade bonds are

quite significant. Insurance companies are often limited or altogether prohibited

from purchasing non-investment-grade debt. Furthermore, the National Associ-

ation of Insurance Commissioners’ Securities Valuation Office requires a modest

reserve ratio of 1% for Aaa-rated bonds and 2% for Baa or better-rated bonds,

3Other important holders include foreign residents (15% to 20%), household (15%), pension
and retirement funds (15%), mutual funds (5% to 10%), and commercial banks (5%).

4Introduced in 2002, TRACE consolidates transaction data for all corporate bonds. One big
weakness of that dataset is that it spans a much shorter time period, since it starts only in 2002.
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but the ratio jumps to 5% for Ba, which is considered a non-investment-grade

debt. The spread on non-investment-grade debt thus appears unattractive to in-

surance companies because yields are determined by the market where no reserve

requirement is in place. Therefore, because insurance companies are not attracted

to this spread on non-investment-grade debt, these transactions are not likely to

be representative of the general market.

The corporate bond dataset covers 5,981 issuers, rated Aa, A, Baa by Moody’s5

and divided into two sector groups: industrial and financial. Out of 5,981 issuers,

3,972 are industrial, and the rest are financial.

I am interested in explaining credit spreads, the difference between corporate

yields and Treasury yields, whose data are also important. The Treasury yields

used in the study are the zero-coupon yields constructed by the method described

in Gürkaynak, Sack, and Wright (2006).6 They fit a Svensson (1994)7 model,

yt(τ) = β0+β1

(
1− e−λ1τ

λ1τ

)
+β2

(
1− e−λ1τ

λ1τ
− e−λ1τ

)
+β2

(
1− e−λ2τ

λ2τ
− e−λ2τ

)
,

to a large pool of underlying off-the-run Treasury bonds. Thus, fitted values of

the four factors (β0(t), β1(t), β2(t), β3(t)) and the two parameters (λ1(t), λ2(t)) are

estimated each day. As demonstrated by Gürkaynak, Sack, Wright (2006), this

model fits the underlying bonds extremely well, which implies that zero-coupon

yields derived from these factors and parameters constitute a good approximation

5Notice Aaa-rated bonds are not considered in the sample. Campbell and Taksler (2003) and
Elton et al. (2000, 2001) also do not include Aaa-rated bonds.

6The Federal Reserve Board updates the factors and parameters of this method daily, and
the data can be downloaded from the Board’s website.

7Svensson model is an extension of the Nelson and Siegel (1987) model.
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Figure 2.2: Term structure of the Treasury yield curves and credit spreads
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Note: Government yield curves and credit spread curves for Aa-, A-, and Baa-
rated firms, 1996.01-2008.09. The sample consists of monthly yield data from
January 1996 to September 2008 at maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30,
36, 48, 60, 72, 84, 96, 108, and 120 months.

to the true Treasury zero-coupon yield curve. If this approach introduces any

bias, the credit spreads across all ratings will be biased in the same direction.

The data used for option implied volatility came from OptionMetrics’ IVY

database. IVY is a comprehensive database of historical prices for the equity

options market and includes daily data of all U.S.-listed equity options for the

time period corresponding to the corporate bond data. Only those options from

the firms existing in the bond dataset are downloaded. Out of 5,981 firms in the

bond database, 1,122 firms have traded options, of which 896 are industrial and

226 are financial. The index option data for the S&P 500 are also obtained for

illustration purposes.
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Figure 2.3: Term structure of option implied volatilities of S&P 500 and Aa, A
and Baa-rated firms
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Note: S&P 500 index option implied volatility curves and option implied volatility
curves for Aa-, A-, and Baa-rated firms, 1996.01-2008.09. The sample consists of
monthly yield data from January 1996 to September 2008 at maturities of 3, 4, 5,
6, 9, 12, 15, and 18 months.

In the final dataset of corporate bonds and equity options, there are 1,122 firms

that have traded options and bonds with an investment-grade rating between Aa

and Baa. Since 896 of them are industrial, the study will focus on industrial firms.

The results for financial firms are similar and available upon request.

2.2.2 Data construction

2.2.2.1 Yield data

I exclude corporate bonds that have special features (callable, putable, and

sinking fund options). For each rating group of each month, following Fama and

Bliss’ (1987) treatment of government bonds, the filtered corporate bond prices are
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converted into unsmoothed forward rates, which, in turn, are converted into un-

smoothed zero yields.8 In order to simplify the process of obtaining credit spreads,

the corporate zero yields are linearly interpolated into fixed maturities of 3, 6, 9,

12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months for each rating

group, where a month is defined as 30.4375 days.9 For the government yields,

the four factors and two parameters of the Svensson model for the corresponding

periods are obtained from the Federal Reserve Board website.10 The zero yields

of the same fixed maturities are calculated by fitting the Svensson model with the

four factors, two parameters, and maturities.

2.2.2.2 Volatility data

Based on option prices, strikes, and types (call or put), the implied volatility

is calculated using the same method used by the new VIX, 11 which is a ticker

symbol for the Chicago Board Options Exchange Volatility Index that measures

the implied volatility of S&P 500 index options over the next 30-day period.

Papers by Jiang and Tian (2003) and Carr and Wu (2009) show that

σ2
T ≡ 1

T
EQ

0 [V (o, T )], (2.1)

8See the appendix for detailed discussion of the construction method.
9For corporate bond transactions, there are significantly fewer trades for maturity of less

than one year, and the resulting bias is minimal, since the dynamic factors are going to fit the
entire term structure.

10The web address is http://www.federalreserve.gov/pubs/feds/2006/index.html.
11For a detailed discussion of VIX, see Jiang and Tian (2003) and Carr and Wu (2009). The

method is shown with an example on the Chicago Board Options Exchange’s (CBOE) website,
http://www.cboe.com/micro/vix/vixwhite.pdf.
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which is the risk-neutral expectation of variance over the next 30 days under risk-

neutral measure Q, and the value of the variance can be replicated by all available

call and put options,

EQ
0 [V (0, T )] = 2erT

 F∫
L

P (K,S0, T )

K2
dK +

H∫
F

C(K,S0, T )

K2
dK

 . (2.2)

Such an approach encompasses all strike prices that result in two-dimensional

curves rather than three-dimensional surfaces. The discretized version of equation

(2) under the physical measure used to construct the volatility of various horizons

is:

σ2
T =

2

T

∑
i

∆Ki

K2
i

erTQ(Ki)−
1

T

[
F

K0

− 1

]2
, (2.3)

where

• σT : implied volatility (V OL/100)

• T : time to expiration

• F : forward price level derived from option prices

• Ki: strike price of ith out-of-money option; a call if Ki > F and a put if

Ki < F

• ∆Ki: interval between strike prices

• K0: first strike below the forward price, F
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• r: risk-free interest rate to expiration12

• Q(Ki): the midpoint of the bid-ask spread for each option with strike Ki.

The forward level, F , is based on at-the-money option prices. The strike price of

the at-the-money options is the price at which the difference between the call and

put prices is smallest. Then the forward level is obtained via put and call parity,

F = Strike Price + erT × (Call Price− Put Price), (2.4)

and K0 is the strike price immediately below the forward level F .

I adopt this approach for individual equity options.13 This approach of implied

volatility construction has several advantages over applying the Black-Scholes for-

mula directly on at-the-money options, widely used in previous studies. First,

the implied volatility does not depend on any particular option pricing model but

is derived directly from option prices. Second, a wider range of strike prices is

used for the construction, and thus, the skewness issue is resolved. Finally, at

each point in time, there is a two-dimensional volatility curve rather than a three-

dimensional volatility surface to be modeled, as in Haerdle and Benko (2005) and

Haerdle et al. (2005).

12In the construction process, the Treasury zero-coupon yields are considered to be the risk-
free rate for corresponding expiration.

13The option exercise style could potentially negatively affect the implied volatility calculation.
The VIX is based on European index options, but individual equity options are mostly American.
Since Jiang and Tian (2003) develop the model-free implied volatility based on European options,
potentially it might be problematic to apply it to American options. However, for non-dividend
paying stock, it is never optimal to exercise American call options before expiration, so they
are equivalent to European calls. Although American put options do not have this property,
studies have shown that using the Black-Scholes formula to obtain implied volatility yields
minimal errors. The VIX method aggregates both calls and puts across strike prices. Therefore,
applying the VIX method to equity options should also result in negligible errors.
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After calculating V OL for each firm on each trading day, the last observed

V OL in each month is considered to be the volatility of that month. The firms

are grouped by the corresponding rating of their debt; i.e., a firm that has an A-

rated bond is considered to be an A-rated firm. In each month, the latest rating of

the bond issue is assumed to be the rating of the issuer. So if there is a change to

one of the bonds of a firm, the updated rating is the firm’s overall new rating. For

some firms with equity option transactions that occur before their debt issuance,

they presumably receive the rating when the debt is issued. Given each rating

category, the volatilities are interpolated to the fixed expirations of 3, 4, 5, 6, 9,

12, 15, 18 months, where a month is again defined as 30.4375 days. This facilitates

comparisons across ratings and also across the two term structures.

2.2.3 Summary statistics

Figure 2.2 provides three-dimensional plots of the government yields and yield

spreads for each rating category. For the Treasury yields, the large amount of tem-

poral variation in the level is visually apparent. For credit spreads, the temporal

variation in the level becomes more sudden and volatile when moving from the

higher rating groups to the lower ones. The slope and curvature variation for the

government yields is still quite apparent, but less obvious for the credit spreads.

Table 2.1 presents the descriptive statistics of the credit spreads. For each rating

group, the credit spreads are, on average, upward sloping, more volatile in the

short end than in the long end, and less persistent for the short maturity than

for the long maturity. For a given maturity, the credit spreads are, on average,

higher, more volatile and less persistent for the lower rated groups than for the
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Table 2.2: Descriptive statistics: industrial sector option implied volatility

3m 4m 5m 6m 9m 12m 15m 18m

Aa
Mean 29.786 28.666 27.545 26.196 26.066 27.526 27.742 27.312
Stdev 7.614 7.360 7.261 7.244 7.320 7.197 7.116 6.997
Min 5.597 3.105 11.005 7.260 8.627 13.441 16.938 14.388
Max 47.373 45.217 45.575 44.446 43.933 43.713 45.651 44.842
ρ(1) 0.807 0.842 0.844 0.747 0.751 0.895 0.942 0.960

(4.51) (3.96) (3.89) (4.83) (4.84) (3.20) (2.35) (1.91)
A
Mean 30.800 31.817 29.224 26.276 28.705 31.524 31.875 31.616
Stdev 8.575 14.208 10.372 9.795 11.490 12.068 10.121 10.792
Min 10.701 7.946 5.748 9.138 8.014 12.754 17.172 8.955
Max 59.650 97.540 84.748 79.458 89.982 88.270 78.523 88.120
ρ(1) 0.480 0.337 0.366 0.528 0.470 0.633 0.680 0.600

(7.45) (13.46) (9.72) (8.35) (10.20) (9.38) (7.42) (8.65)
Baa
Mean 37.238 34.566 32.040 29.535 30.621 33.165 33.976 34.230
Stdev 13.526 14.255 10.897 13.166 9.956 8.140 7.347 10.014
Min 12.351 8.688 7.578 6.290 9.329 13.756 19.283 9.566
Max 83.127 88.282 69.519 70.898 61.869 55.654 56.010 88.882
ρ(1) 0.426 0.239 0.329 0.236 0.312 0.676 0.811 0.245

(12.27) (13.95) (10.31) (12.89) (9.52) (6.02) (4.27) (9.75)

Note: Descriptive statistics of industrial sector option implied volatility at dif-
ferent maturities. Standard errors of the AR(1) regression appear in parenthesis.
The ρ(1) indicates the first-order serial correlation coefficient. The sample period
is 1996:01-2008:09.

22



higher rated ones.

Table 2.2 presents the descriptive statistics of option implied volatilities. For

any given rating, the typical implied volatility curve is downward sloping or close

to flat. At the short end, the volatilities are usually higher, since the options are

about to expire. The long-term implied volatilities possess less fluctuation and are

more persistent than the short-term ones. Figure 2.3 provides three-dimensional

plots of option implied volatilities for the S&P 500 index and firms in this study.

For the S&P 500 index, its option implied volatilities have a substantial amount

of temporal variation in the level. For the slope, the amount is less but still

apparent. Aa-rated firms seem to follow the overall shape of the index, but it is

less apparent for A- and Baa-rated firms. There are spikes in those two groups,

especially at the short end.

Figure 2.7 presents a time series plot of 5-year credit spreads for Baa-rated

bonds. The credit spreads widen around the third quarter of 2000 and at the

end of 2001 and rise sharply in 2008. It seems that the spreads are sensitive to

economic contractions such as the ones in 2001 and 2008.

Unlike credit spreads, which are mostly correlated with business cycle con-

ditions, implied volatilities are also affected by other shocks, such as corporate

scandals and financial crises. In Figure 2.6, the 3-month and 6-month implied

volatilities from Aa-rated firms are plotted against the VIX, which is the 30-day

implied volatility of the S&P 500 index options. The firms in this study must have

both bonds and options traded and are grouped into corresponding ratings, but

these firms are not necessarily part of the S&P 500, so they could be more volatile

than the overall index. The implied volatilities of Aa-rated firms still rise sharply
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during market turbulence such as the 1998 Asian financial crisis and 2002-03 cor-

porate scandals. For firms that are rated lower than Aa, their volatilities have

a more dramatic variation during those periods. The empirical observations of

implied volatilities are that they react quickly to shocks but do not always move

correspondingly with economic expansions and recessions, as credit spreads do.

Similar to credit spreads, implied volatilities rise as the rating moves from

high to low for any given expiration. This indicates that ratings affect volatilities,

which, of course, affect credit spreads; however, WITHIN a rating group, the

linkage between volatilities and spreads can be weak. In addition, the focus of this

study is on the aggregate level analysis of the bond and equity options markets.

Therefore, it is appealing to analyze the dynamics by pooling across all ratings.

2.3 Modeling the term structures

In order to capture the variation of the entire term structure, the study extracts

dynamic factors from each term structure. This section describes how this is

achieved and illustrates the properties of those estimated factors.

2.3.1 Dynamic Nelson-Siegel (DNS) model

The Nelson and Siegel (1987) framework that Diebold and Li (2006) made

dynamic,

yt(τ) = β1t + β2t

(
1− e−λτ

λτ

)
+ β3t

(
1− e−λτ

λτ
− e−λτ

)
+ εt, (2.5)
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is the workhorse of term structure modeling. β1 changes all yields uniformly and

it can be called the level factor (Lt); β2 loads the short rate more heavily, its

loading decays to zero as maturity lengthens, and it can be called the slope factor

(St); β3 loads the medium term more heavily, its loading starts at zero and decays

back to zero as maturity increases, and it can be called the curvature factor (Ct).

λ determines the maturity at which the medium-term (or the curvature factor)

loading achieves its maximum.

I apply the Dynamic Nelson-Siegel (DNS) framework to distill the term struc-

tures of credit spreads and volatilities into sets of level, slope, and curvature

factors for each rating group. The aim of a factor approach is to capture and

model the dynamics of spreads and volatilities. Going back at least to Litter-

man and Scheinkmann (1991), it is an established fact that close to 99.9% of the

variation in Treasury yields can be explained by three latent variables referred

to as a level, a slope, and a curvature factor. Principal analysis of the volatility

curve shows that three factors can explain 81%, 84%, and 96% for each of the

three rating categories. Thus, Thus, the DNS model provides a robust yet flex-

ible method to decompose both credit spreads and volatilities while having the

compelling interpretation of level, slope and curvature factors.14

14The DNS model not only is able to fit curves of various shapes, including upward sloping,
downward sloping, humped, and inverted humped, but also has a theoretical foundation for yield-
curve modeling. Krippner (2009) shows that the Nelson-Siegel class of models is effectively a
reduced-form representation of the affine model in Dai and Singleton (2002), which makes the
DNS model both a theoretically and empirically appealing model for the yield curve.
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2.3.2 Corporate bond modeling

Credit spreads, the corresponding difference between the Treasury yield (yG(τ))

and corporate yield (yjt (τ)) at given maturity τ , where j can be Aa, A or Baa

rated, are modeled following the DNS approach, i.e.

CSj
t (τ) = yjt (τ)− yGt (τ)

= Lj
s,t + Sj

s,t

(
1− e−λsτ

λsτ

)
+ Cj

s,t

(
1− e−λsτ

λsτ
− e−λsτ

)
+ εs,t.

A set of three factors (Lj
t , S

j
t , and Cj

t ) with a parameter λs is to be estimated

for rating j. Following the recommendation by Diebold and Li (2006), the λs

value is fixed at 0.0609. Two- or three-year maturities are commonly used as the

maturity at which the curvature factor achieves a maximum. The average is 30

months, so the corresponding λs value that maximizes the curvature factor load-

ing at 30 months is 0.0609. Therefore, the factors can be estimated via ordinary

least squares (OLS).15 Doing a two-step procedure like this enhances simplicity

and numerical credibility and eliminates the potential problem of numerical opti-

mizations.16

The descriptive statistics for the credit spread factors are in Table 2.3. From

the autocorrelation perspective, the level factor is generally the most persistent,

15When λ is not preselected, a nonlinear estimation or a Kalman filter via a state space model
can be performed. Moreover, λ is implicitly assumed to be the same for both Treasury and
corporate bonds. Fitting DNS to the Treasury and corporate yield curves, respectively, shows
that estimated λts are not significantly different from each other.

16Another popular approach is to transform the system into a state-space representation and
estimate λ and the factors via a Kalman filter. Dieobld, Rudebusch and Aruoba (2006) take
that approach. However, the numerical optimization is challenging. The results using factors
estimated via a Kalman filter are generally similar and available upon request.
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Figure 2.4: Estimated factors of the credit spread term structure
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Note: The figure plots estimated level, slope, and curvature factors of the credit spreads for
Aa-, A-, and Baa-rated firms between 1996:1 and 2008:09. The shaded regions are the official
recession periods according to the NBER. These factors are estimated from the DNS model,

CSj
t (τ) = yjt (τ)− yGt (τ)

= Lj
s,t + Sj

s,t

(
1− e−λτ

λτ

)
+ Cj

s,t

(
1− e−λτ

λτ
− e−λτ

)
,

The λ is fixed at 0.0609, which corresponds to maximizing the curvature factor loading at 30
months, to facilitate the estimation process. It is important to note that the slope factor plotted
is the negative of the estimated Ss,t, i.e., Slopet = −Ss,t because in the DNS model a negative
value of Ss,t indicates an upward-sloping curve.
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Table 2.3: Descriptive statistics, estimated credit spread factors

L̂t Ŝt Ĉt

Mean ρ(1) ADF Mean ρ(1) ADF Mean ρ(1) ADF

Aa 1.165 0.333 -3.61 -0.383 0.270 -6.30 -2.723 0.007 -11.28
(0.716) (1.651) (3.870)

A 1.472 0.316 -9.79 -0.961 0.356 -2.26 -2.558 0.055 -4.61
(0.717) (1.990) (4.191)

Baa 1.918 0.297 -10.03 -1.202 0.006 -11.79 -2.644 -0.077 -12.28
(0.833) (2.243) (4.686)

Note: Fit the three-factor Nelson-Siegel model,

CSj
t (τ) = Lj

s,t + Sj
s,t

(
1− e−λsτ

λsτ

)
+ Cj

s,t

(
1− e−λsτ

λsτ
− e−λsτ

)
+ εs,t,

for Aa, A, and Baa ratings, respectively, using monthly yield data 1996:01-2008:09
with λs fixed at 0.0609. This table presents descriptive statistics for the three
estimated factors (L̂t, Ŝt, and Ĉt). The ADF column contains Augmented Dickey-
Fuller (ADF) unit root test statistics and the column to the left contains sample
autocorrelations at a displacement of one month. The standard errors are reported
in parenthesis.
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except for the A-rated group where the slope is more persistent than the level. For

the level factors, the degree of persistent decreases as ratings deteriorate, and the

variations increase. On average, the slopes are more negative as ratings worsen.

Since the negative slope factor indicates an upward-sloping curve, the actual credit

spread curves are usually more upward-sloping for the lower-rated group, which

compensates for the greater risk of a long-maturity lower-rated bond. Table 2.4

describes the in-sample fit. The DNS model fits remarkably well, especially on

the long end of the curve. The residual sample autocorrelation indicates that the

pricing errors are not persistent. Principal component analysis of the residuals

reveals no common factors dominant in the fitting errors.

2.3.3 Volatility modeling

Since the DNS model has been shown to be flexible in modeling curves of

various shapes and its estimated factors have an intuitive interpretation as level,

slope, and curvature, the same framework is also used to fit implied volatility

curves. For firms with rating j, the implied volatility 17 (volt) of maturity τ is

modeled as,

V OLj
t(τ) = Lj

v,t + Sj
v,t

(
1− e−λvτ

λvτ

)
+ Cj

v,t

(
1− e−λvτ

λvτ
− e−λvτ

)
+ εv,t,

and the same level, slope, and curvature factor interpretations are preserved.

Estimating the parameters θ = {λv, Lv,t, Sv,t, Cv,t} by nonlinear least squares

is definitely feasible. However, λv is also being pre-specified because OLS has

17One can also use other methods, such as principal components, to extract factors, and the
results are similar.
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Table 2.5: Descriptive statistics, estimated implied volatility factors

L̂t Ŝt Ĉt

Mean ρ(1) ADF Mean ρ(1) ADF Mean ρ(1) ADF

Aa 28.719 0.873 -2.13 25.709 0.065 -5.01 -37.123 0.119 -10.06
(7.927) (24.898) (38.003)

A 35.065 0.513 -2.52 32.242 0.065 -10.70 -62.990 0.169 -9.61
(14.447) (59.629) (109.825)

Baa 38.066 0.167 -9.64 58.561 0.060 -10.73 -95.828 -0.023 -11.65
(12.467) (84.728) (140.806)

Note: Fit the three-factor Nelson-Siegel model,

V OLj
t(τ) = Lj

v,t + Sj
v,t

(
1− e−λvτ

λvτ

)
+ Cj

v,t

(
1− e−λvτ

λvτ
− e−λvτ

)
+ εv,t,

for Aa, A, and Baa ratings, respectively, using monthly volatility data for the
period 1996:01-2008:09 with λv fixed at 0.56. This table presents descriptive
statistics for the three estimated factors (L̂t, Ŝt, and Ĉt). The ADF column
contains Augmented Dickey-Fuller (ADF) unit root test statistics and the column
to the left contains sample autocorrelations at a displacement of one month. The
standard errors are reported in parenthesis.

the edge in convenience and trustworthiness of the estimation results.18 The pre-

specified value for λv is 0.56, which corresponds to the maximization of the loading

on the medium-term factor at exactly 6 months.

Table 2.5 displays the descriptive statistics for the estimated factors of the

term structure of the industrial sector’s option implied volatility. The factors

usually rise when moving from higher ratings to lower ones, and their variability

also increases. As for the autocorrelations of the three factors, only the first factor

is strongly autocorrelated, and the persistent level is greater for the higher rated

18Again we can transform it into a state-space model and estimate using a Kalman filter, and
the estimated factors are similar to those from OLS. The results are available upon request.
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Figure 2.5: Estimated factors of the option implied volatility term structure
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Note: The figure plots estimated level, slope, and curvature factors of the option implied volatil-
ity for Aa-, A-, and Baa-rated firms between 1996:1 and 2008:09. The shaded regions are the
official recession periods according to the NBER. These factors are estimated from the DNS
model,

voljt (τ) = Lj
v,t + Sj

v,t

(
1− e−λτ

λτ

)
+ Cj

v,t

(
1− e−λτ

λτ
− e−λτ

)
,

The λ is fixed at 0.56, which corresponds to maximizing the curvature loading at 30 months,
to facilitate the estimation process. It is important to note that the slope factor plotted is the
negative of the estimated Sv,t, i.e., Slopet = −Sv,t because in the DNS model a negative value
of Ss,t indicates an upward-sloping curve.
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group. Augmented Dickey-Fuller tests suggest that L̂v may have a unit root,

whereas Ŝv and Ĉv do not have a unit root and are less persistent. The typical

slope factors are positive, which indicate downward-sloping curves, of which the

steepness is elevated as ratings deteriorate. Table 2.6 describes the in-sample fit.

The fit of the DNS model on the volatility curve is good given that, for a particular

maturity, the volatility is usually several times that of the spreads. The residual

sample autocorrelation indicates that the pricing errors are not persistent. After

checking the principal component of the residuals, there seems to be no dominant

common factors affecting fitting errors.

2.3.4 Factor descriptive analysis

Principal component analysis of the data reveals that the first two factors (level

and slope) can explain as much as 72% of the variation in credit spreads in the

Aa-rated group and 94% of the variation in volatilities. For other rating groups,

the percentages are slightly lower, but the level and slope factors can still explain

significant portions of the variation in both term structures, and thus they are

the focus of the intertemporal analysis. Representations of the two term structure

factors are in Figures 2.4 and 2.5. Table 2.7 reports the cross-correlation between

the credit spread level and the Auroba-Diebold-Scotti (ADS) index.19

The credit spread level factors, the most persistent ones, seem to follow the

19The ADS index, initiated by Auroba, Diebold and Scotti (2009), tracks real business condi-
tions at high frequency by using the release of various economic indicators. The average value of
the ADS index is zero. Bigger positive values indicate better than average conditions, whereas
more negative values indicate worse than average conditions. The ADS index is updated as data
on the underlying components are released and is maintained by the Federal Reserve Bank of
Philadelphia.
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Table 2.6: Descriptive statistics, volatility curve residuals
Maturity 3m 4m 5m 6m 9m 12m 15m 18m

Aa
Mean 0.281 -0.460 -0.363 0.439 0.608 -0.405 -0.343 0.246
Std.Dev. 1.025 2.158 1.976 2.836 2.420 1.090 0.605 1.264
MAE 0.720 1.514 1.310 1.874 1.770 0.873 0.472 0.888
RMSE 1.059 2.199 2.002 2.861 2.487 1.160 0.694 1.284
ρ̂(1) -0.017 -0.139 -0.259 -0.266 0.125 0.375 0.397 0.220
A
Mean 0.927 -1.899 -0.663 1.915 0.685 -0.993 -0.479 0.514
Std.Dev. 3.402 8.018 5.827 6.562 5.730 4.022 2.826 4.287
MAE 2.084 4.550 3.552 4.508 3.401 2.210 1.433 2.173
RMSE 3.516 8.214 5.846 6.815 5.752 4.130 2.858 4.303
ρ̂(1) 0.001 -0.014 -0.124 -0.017 0.166 0.309 0.011 0.120
Baa
Mean 0.582 -1.082 -0.573 1.078 0.775 -0.697 -0.442 0.364
Std.Dev. 4.248 9.162 6.750 8.802 6.084 3.231 3.431 5.161
MAE 3.068 6.689 5.134 6.503 4.292 2.258 1.737 2.989
RMSE 4.273 9.196 6.753 8.839 6.113 3.295 3.448 5.157
ρ̂(1) -0.136 -0.107 -0.163 -0.059 -0.049 0.104 -0.098 -0.112

Note: The study fits the three-factor model,

V OLj
t (τ) = Lj

v,t + Sj
v,t

(
1− e−λvτ

λvτ

)
+ Cj

v,t

(
1− e−λvτ

λvτ
− e−λvτ

)
+ εv,t,

for Aa, A, and Baa ratings, respectively, using monthly implied volatility data 1996:01-
2008:09 with λ fixed at 0.56. The table presents descriptive statistics for the corre-
sponding residuals at various expiration horizons. The last row in each rating contains
residual sample autocorrelations at a displacement of one month.
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Figure 2.6: Aa-rated implied volatilities vs. the VIX
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Note: The three- and six-month implied volatility measures from Aa-rated firms
are plotted against the VIX for the sample period 1996:01-2008:09.
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Table 2.7: Cross-correlogram of ADS index and spread/volatility factors
Spread Level Spread Slope Vol Level Vol Slope

lag Aa A Baa Aa A Baa Aa A Baa Aa A Baa
-12 -0.27 -0.20 -0.25 -0.19 -0.26 -0.19 -0.43 -0.22 -0.20 -0.01 -0.13 0.00
-11 -0.25 -0.20 -0.24 -0.29 -0.31 -0.23 -0.47 -0.23 -0.25 0.06 -0.16 0.06
-10 -0.28 -0.20 -0.23 -0.20 -0.37 -0.27 -0.51 -0.22 -0.30 0.03 -0.15 0.05
-9 -0.28 -0.23 -0.20 -0.22 -0.36 -0.26 -0.53 -0.21 -0.27 0.05 -0.17 0.06
-8 -0.32 -0.25 -0.25 -0.20 -0.41 -0.32 -0.52 -0.22 -0.34 0.07 -0.16 0.10
-7 -0.31 -0.25 -0.24 -0.16 -0.45 -0.35 -0.52 -0.25 -0.29 0.07 -0.17 0.12
-6 -0.29 -0.16 -0.27 -0.10 -0.49 -0.37 -0.52 -0.25 -0.28 0.05 -0.19 0.02
-5 -0.28 -0.21 -0.25 -0.08 -0.47 -0.35 -0.55 -0.27 -0.24 -0.03 -0.13 -0.02
-4 -0.27 -0.22 -0.27 -0.10 -0.43 -0.29 -0.59 -0.28 -0.28 -0.13 -0.19 0.10
-3 -0.25 -0.23 -0.33 -0.07 -0.48 -0.33 -0.61 -0.36 -0.24 -0.05 -0.20 0.07
-2 -0.29 -0.25 -0.35 0.01 -0.42 -0.32 -0.54 -0.38 -0.34 -0.10 -0.17 0.07
-1 -0.36 -0.33 -0.31 0.08 -0.41 -0.30 -0.50 -0.34 -0.39 -0.17 -0.14 0.05
0 -0.38 -0.34 -0.35 -0.01 -0.41 -0.27 -0.47 -0.31 -0.35 -0.19 -0.22 -0.02
1 -0.34 -0.29 -0.29 0.01 -0.29 -0.13 -0.46 -0.35 -0.30 -0.15 -0.21 0.06
2 -0.29 -0.16 -0.24 -0.07 -0.27 -0.13 -0.44 -0.35 -0.24 -0.10 -0.16 0.08
3 -0.22 -0.07 -0.12 -0.12 -0.23 -0.14 -0.40 -0.30 -0.29 -0.05 -0.15 0.04
4 -0.21 -0.12 -0.11 0.02 -0.20 -0.13 -0.37 -0.27 -0.27 -0.01 -0.15 0.04
5 -0.26 -0.07 -0.12 0.04 -0.13 -0.08 -0.34 -0.34 -0.31 -0.06 -0.08 0.05
6 -0.24 0.00 -0.09 -0.09 -0.07 -0.02 -0.31 -0.33 -0.26 0.03 -0.07 0.03
7 -0.16 -0.02 -0.04 0.04 0.02 0.04 -0.30 -0.29 -0.25 -0.05 -0.05 0.14
8 -0.16 -0.02 0.00 0.03 -0.02 0.01 -0.35 -0.33 -0.22 -0.06 -0.02 0.17
9 -0.14 -0.04 -0.04 0.09 -0.04 0.01 -0.37 -0.30 -0.25 -0.01 -0.04 0.08

10 -0.19 -0.06 -0.03 0.15 0.03 0.05 -0.36 -0.28 -0.22 -0.02 -0.07 0.08
11 -0.20 -0.05 -0.03 0.12 0.10 0.11 -0.36 -0.26 -0.27 -0.10 -0.08 0.08
12 -0.15 -0.07 -0.03 0.09 0.17 0.16 -0.36 -0.31 -0.29 -0.11 0.04 0.11

Note: Sample period: 1996:01-2008:09. The cross correlogram of Aruoba-Diebold-
Scotti (ADS) business conditions index with up to 12-month lags and leads of the
level and slope factors for credit spreads and implied volatility.
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same general pattern for all three rating categories. There is significant upward

movement before recessions. As the recession in 2001 looms, the level of the A-

rated spreads widens dramatically, and the levels of Aa and Baa also increase.

Since the ADS index represents real economic conditions, a negative correlation

between the ADS index and the credit spread level is expected from theory and

is also confirmed here. That is, during recessions there are higher probabilities of

a credit downgrade or default, so the spreads should rise to adjust for more risk.

The slope factors of the credit spreads have stronger business cycle correlations.

Specifically, as the economy is about to enter a recession in 2001, the slopes of

A- and Baa-rated spreads steepen substantially, but Aa-rated firms seem to be

less affected. This interesting observation indicates that the market is expecting a

bigger increase in the default risk for the A- and Baa-rated long-term bonds than

the short-term ones. This is consistent with Gilchrist, Yankov, Zakraǰsek (2009),

who find that the long-term yield spreads of medium risk (i.e., A-, Baa-, Ba-rated)

bonds contain substantial predictive power for economic activity and outperform

standard indicators. The cross correlogram also indicates that a strong correlation

with the ADS index arrives as early as six months ahead of the tough. Table 2.7

shows that both the A- and the Baa-rated groups have cross-correlations of -0.49

and -0.37 six months ahead of the trough.

The level of the option implied volatility of higher-rated firms, such as Aa-

rated firms, exhibits a pattern similar to that of an overall market indicator such

as the VIX, but the lower-rated firms (Baa-rated) have quite a different time series

plot. The variability of the level increases as ratings decrease. Comparing them

with business conditions, the Aa-rated group has a cross-correlation of -0.61, the
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strongest of all three rating categories, three months ahead of the trough. The

other two grades have a significant correlation one or two months ahead of the

trough.

The slope of implied volatilities, which captures the difference between the

short-run and long-run volatilities, are mostly downward sloping for all ratings

groups. The reason for the downward-sloping volatility across maturities could

be the following: movements in stock price will affect short-term options more

and trigger a bigger increase in short-term volatility, while the effect on long-term

contracts are smaller and long-term volatility remains less affected, thus result-

ing in a downward-sloping curve. The downward-sloping shape of the volatility

curve is consistent with the established empirical fact that stocks are usually more

volatile in the short-run and more stable in the long-run. However, during reces-

sions or financial crisis, the slope might be upward sloping because the market

worries about the economic conditions in the future (say one year from now). The

variation of the slope factors is highest for Baa-rated firms and lowest for A-rated

firms. Once again, as the economy expands or contracts, the slope factor does not

seem to react much. There are fairly weak cross-correlations between the slope of

the credit spreads and the ADS index.

In summary, the level and slope factors capture a significant portion of the

variation and they are the focus of the rest of the analysis. Similar to previous

findings, the slope of the credit spread curve possesses strong predictive power

for the deterioration of real business conditions, whereas the volatility slope does

not seem to have that property. However, the volatility level does widen before

business cycles. Therefore, the volatility level and spread slope seem to be more
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Figure 2.7: 60-month Baa-rated credit spreads vs. the ADS index
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Note: The 60-month credit spreads of the Baa-rated group are plotted against the
Auroba-Diebold-Scotti (ADS) index for the sample period 1996:01-2008:09. The
ADS index tracks real business conditions at high frequency by using the release
of various economic indicators. See Auroba, Diebold, and Scotti (2009) or the
website of the Federal Reserve Bank of Philadelphia for more details.
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responsive to new information.

2.4 Intertemporal analysis between the two markets

The previous section estimates dynamic factors for each section. This section

analyzes the dynamic interaction among the factors and the relationship between

the bond and equity markets.20 The dynamic relation is examined through a series

of different analyses to ensure the consistency and robustness of the results. They

are (i) a panel VAR, (ii) Granger causality analysis, and (iii) impulse response

functions.

2.4.1 The panel VAR estimation

The model for the intertemporal analysis uses a VAR framework. More specif-

ically, a VAR model that combines spread and volatility factors is compared with

models using only the credit spread factors or only the volatility factors. A VAR

approach is appropriate for this purpose because it has been developed precisely

to capture lead-lag relationships within or between variables. Moreover, it repre-

sents a simultaneous equation estimation. As a result, it is unnecessary to esti-

mate single-equation distributed models that include lags and leads, since a VAR

model captures all intertemporal relationships simultaneously. There are three

ratings categories in the sample and the specific VAR set-up is a panel VAR21

20The procedure used in this chapter is a two-step approach. The first step extract factors from
the data, and the second step analyzes the intertemporal relations of the factors. A two-step
approach is easy to implement, whereas a one-step procedure would be numerically challenging
and require more parameters to be estimated.

21This approach was initiated by Holtz-Eakin, Newey, Rosen (1988).
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structure so that rating-specific fixed effects are controlled for and standard es-

timation techniques can be applied. For all model specifications, a lag order of

one is used,22 which seems reasonable for monthly data, and the Durbin-Waston

statistics reported subsequently also confirm that.

The model specification for the combined spread and volatility system is the

following:

Spread
Vol

 =

 ass avs

asv avv


Spread(−1)

Vol(−1)

+ C1Di=Aa + C2Di=A + C3Di=Baa

+

νst
νvt

 ,

where Spread is the set of three factors of the credit spreads (Ls, Ss, Cs), Vol is

the set of three factors of the implied volatilities (Lv, Sv, Cv), and D is a dummy

variable corresponding to each rating category. This joint panel VAR is called a

Volatility-Spread system. The individual market panel VAR is also estimated for

comparison purpose. The individual market model is the Volatility system and

the Spread system, which uses factors from the bond market or the equity options

market alone. The specification for the Spread system is


Ls

Ss

Cs

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33



Ls(−1)

Ss(−1)

Cs(−1)

+ C4Di=Aa + C5Di=A + C6Di=Baa + ϵst,

22When including one more lag, almost all coefficients on the second lag are not significant.
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Table 2.8: Spread-volatility system panel VAR(1)
Ls Ss Cs Lv Sv Cv

Ls(−1) 0.282** -0.490 1.180 5.341*** 5.037 -9.947
(0.03) (0.15) (0.12) (0.00) (0.65) (0.60)

Ss(−1) 0.03 0.067 0.146 1.558*** 7.342** -13.671**
(0.47) (0.54) (0.54) (0.01) (0.04) (0.02)

Cs(−1) 0.043 0.003 0.161 0.934** 1.573 -2.508
(0.13) (0.97) (0.34) (0.02) (0.52) (0.55)

Lv(−1) 0.018*** -0.045*** 0.052 0.681*** 0.145 -0.365
(0.01) (0.01) (0.16) (0.00) (0.79) (0.69)

Sv(−1) 0.007*** -0.018*** 0.010 0.105*** 0.176 0.078
(0.00) (0.00) (0.48) (0.00) (0.37) (0.82)

Cv(−1) 0.005*** -0.014*** 0.012 0.097*** 0.093 0.050
(0.01) (0.00) (0.20) (0.00) (0.50) (0.83)

Fixed Effect
Aa 0.452 1.436 -4.906 6.993 21.708 -27.289
A 0.636 1.077 -5.090 10.001 31.520 -55.337
Baa 0.886 1.212 -5.671 9.422 55.415 -86.460

Adj R2 0.276 0.108 0.026 0.384 0.079 0.071
SER 0.722 1.883 4.209 9.825 60.925 104.07
DW 2.027 2.054 1.971 2.225 2.004 2.009

F Test
Test statistics 3.962 3.622 1.756 4.225 3.850 5.030
P-value 0.013 0.009 0.155 0.006 0.010 0.002

Note: The results of the spread-volatility system panel regression are reported
for the sample period 1996:01-2008:09. The p-values are reported in parenthesis.
***, **, and * indicate significance at 1%, 5%, and 10%, respectively. SER is
the standard error of the regression. DW is the Durbin-Watson statistics. The F
test is implemented to check if the coefficients on the volatility factors are jointly
significant in explaining the spread factors, i.e., the null is avs = 0; the same test
is carried out for the reverse direction as well, i.e., the null is asv = 0.
The spread volatility system specification is[

Spread
Vol

]
=

(
ass avs
asv avv

)[
Spread(−1)
Vol(−1)

]
+ C1Di=Aa + C2Di=A + C3Di=Baa +

[
νst
νvt

]
.
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and the Volatility system is,


Lv

Sv

Cv

 =


b11 b12 b13

b21 b22 b23

b31 b32 b33



Lv(−1)

Sv(−1)

Cv(−1)

+ C7Di=Aa + C8Di=A + C9Di=Baa + ϵvt.

Comparisons of the individual market with the two joint markets indicates how

much additional explanatory or predictive powers one market can bring to the

other. Table 2.8 reports the results for the joint Spread-Volatility system panel

VAR, and Table 2.9 reports results for the individual system panel VAR. Based

on the results in those tables, most of the interactions are between the level and

slope factors, and the corresponding results are discussed below.

First, I examine the impact of volatilities on credit spreads. The level of the

credit spread is the most persistent factor among all three credit spread factors.

When the volatility factors are added, the persistent level decreases. A positive

coefficient between the two level factors is consistent with theory; i.e., when the

level of the volatility rises, the credit spread level increases. When the slope of

the volatility steepens, the credit spread level also widens, but to a much lesser

degree than the impact from the volatility levels. When the volatility factors are

added to the VAR, the adjusted R2 of the credit spread level increases by about

7% from around 20% to 27.6%. The F-test confirms the joint significance of the

volatility factors. However, there is a much smaller improvement in explaining the

slope of the credit spreads by adding volatility factors, although all coefficients on

the volatility factors are statistically significant, and the F-test also confirms the
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Table 2.9: Individual system panel VAR(1)
Spread System Volatility System

Ls Ss Cs Lv Sv Cv

Ls(−1) 0.539*** -1.096*** 1.792*** Lv(−1) 0.828*** 0.042 -0.159
(0.00) (0.00) (0.00) (0.00) (0.92) (0.82)

Ss(−1) 0.093** -0.061 0.245 Sv(−1) 0.151*** 0.187 0.056
(0.01) (0.52) (0.25) (0.00) (0.27) (0.85)

Cs(−1) 0.097*** -0.117* 0.277** Cv(−1) 0.130*** 0.080 0.072
(0.00) (0.05) (0.04) (0.00) (0.48) (0.71)

Fixed effect
Aa 0.842 0.546 -3.972 Aa 5.919 22.713 -31.375
A 1.015 0.283 -4.227 A 9.466 30.392 -55.646
Baa 1.256 0.503 -5.043 Baa 10.268 54.247 -86.991

Adj R2 0.204 0.098 0.020 Adj R2 0.368 0.045 0.042
SER 0.729 1.904 4.221 SER 9.947 61.594 105.68
DW 2.072 2.039 1.982 DW 2.266 2.014 2.010

Note: The results of the spread volatility system and volatility system panel
regression are reported for the sample period 1996:01-2008:09. The p-values are
reported in parenthesis. ***, **, and * indicate significance at 1%, 5%, and 10%,
respectively. SER is the standard error of the regression. DW is the Durbin-
Watson statistics.
The spread system specification is[

Spread
]

= b
[
Spread(−1)

]
+ C1Di=Aa + C2Di=A + C3Di=Baa + ϵst.

The volatility system specification is[
Vol

]
= b

[
Vol(−1)

]
+ C1Di=Aa + C2Di=A + C3Di=Baa + ϵvt.
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joint significance.

Second, I explore the impact of credit spreads on volatilities. The level factor of

the volatility is highly persistent. When the volatility level is regressed with either

volatility factors alone or both volatility and spread factors, all coefficients are

positive and statistically significant, and the F-test supports the joint significance

of the spread factors. But the improvement from the adjusted R2 perspective

to explain the volatility level is small, around 1.6%. Therefore, comparing these

results with the results from the direction of volatilities to credit spreads, it seems

that the impact from volatility to spreads is stronger than the impact in the other

direction.

However, from the perspective of volatility slope, there is a significant impact

from the spread factors to the volatility factors and the improvement from the

adjusted R2 is more than 3% when adding spread factors to the regression. More-

over, the only statistically significant coefficient is that of the credit spread slope

factor, and the F-test supports the importance of the spread factors.

In summary, the panel VAR results suggest that there are bi-directional im-

pacts among the credit spread and volatility factors, and the results also indicate

that the effects from the volatility level to the spread level and from the spread

slope to the volatility slope are stronger than others.

2.4.2 Granger causality analysis

For each ratings group, a Granger causality test is carried out for direct com-

parisons between the two level factors and the two slope factors. The aim of the

test is to confirm the dynamic relationship, especially the predictive potential,
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Table 2.10: Granger causality test for the level and slope factors

Null Aa A Baa
Level factors
Vol Level NOT Granger cause Spread Level 14.396 4.994 3.763

(0.00) (0.03) (0.06)
Spread Level NOT Granger cause Vol Level 0.527 1.011 6.269

(0.47) (0.32) (0.01)

Slope factors
Vol Slope NOT Granger cause Spread Slope 0.879 0.017 0.002

(0.35) (0.90) (0.96)
Spread Slope NOT Granger cause Vol Slope 4.871 8.647 5.528

(0.03) (0.00) (0.02)

Note: Sample period: 1996:01-2008:09. The one-lag Granger causality test statis-
tics and the corresponding P-values are reported. The P-values are in parenthesis.

between the factors for each ratings group.

Table 2.10 reports the Granger causality test between the credit spread factors

(level and slope) and the implied volatility factors (level and slope). The level of

the volatility Granger causes the level of the credit spread, whereas the slope of

the credit spread consistently Granger causes the slope of the implied volatility.

These results imply that the volatility level has predictive power for the level of

corporate yield spreads. In addition, the shape of the credit spread curve does

not correspond with the movement in the shape of the volatility curve; instead,

the predictive power is the opposite, i.e., the spread slope has predictive power

for the volatility slope. One interesting result of the Granger causality test is that

for Baa-rated firms, the Granger causality test rejects the null hypothesis for both

directions.
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These results are generally consistent with the results from the panel VAR

model, which indicates that the direction of the impact is consistent among all

ratings.

2.4.3 Impulse response analysis

Another way to examine the dynamics is to use impulse response functions of

the Volatility-Spread system. Figure 2.8 presents the responses of one-standard-

deviation shocks using a Cholesky decomposition. I consider four groups of im-

pulse responses: spread responses to spread shocks, spread responses to volatility

shocks, volatility responses to spread shocks, and volatility responses to volatility

shocks.

The volatility components add an interesting element to the credit spread

responses: an increase in the volatility level shock is followed by a persistent and

dramatic rise in the credit spread level. That is, there is a close connection between

the level of the volatility and the level of the credit spread. Thus, it is consistent

with corporate bond pricing theory when focusing on the level of the two term

structures. An increase in the shock to the volatility slope is not persistent and

is followed by a significant upward shift of the credit spread slope, but the shift

does not last longer than 3 months.

Now consider the responses of the volatility curve to the credit spread factor

shocks. While the volatility level factor shows very little response, the volatility

slope factor responds directly to positive shocks in the credit spread factors. This

implies that when the credit spread curve changes its slope, the volatility curve

also changes its slope. This is consistent with the Granger causality test results
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reported earlier.

Let us consider the block of own-dynamics of the two term structures. The

spread level is more persistent than the spread slope, the volatility level factor

exhibits significant persistence, and most of the off-diagonal responses are in-

significant.

In summary, impulse response results suggest the following dynamics between

the bond and equity options markets. The level shocks from volatility are asso-

ciated with persistent responses from the credit spread levels, whereas the slope

shocks from volatility do not appear to have persistent effect on other factors.

Shocks from the bond market have a different dynamic. The slope shocks from the

credit spread are associated with persistent responses from the volatility slopes,

while the level shocks from the credit spread do not trigger significant responses

from other factors. These results are consistent with the findings in the panel

VAR estimation and the Granger causality test.

2.4.4 Summary of results and explanation

The analysis of the panel VAR estimation, Granger causality tests, and impulse

response functions points to the same empirical results. That is, the options

market leads the bond market in terms of level shifts, while the bond market

leads the options market in slope changes. Another way to state the results is

that the volatility level affects all maturity of the credit spreads, but the shape

of the volatility curve does not affect the shape of the credit spread. In fact it is

the reverse, i.e., the bond market slope impacts the next period’s volatility curve

slope.
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Fundamentally the bond market and the equity options market represent the

same underlying process of determining a firm’s value and both should reflect

changes in that process. Thus it is reassuring that the empirical results support

the theory that both markets react to the arrival of information. However, from

the movement of the two term structures, it seems that the two markets adjust to

the new information differently. The volatility level and the spread slope respond

to news earlier than the other two factors, consistent with results from the cross-

correlation analysis with the ADS index in Table 2.7. The following discussion

provides a possible explanation of the leading role of the credit spread slope and

the volatility level.

For the bond market, the more responsive maturity spectrum is toward the

long end. The risk of default and the associated market price of such risk are

greater, since most of the coupon payments for those bonds have not been made,

and the further one has to look into the future, the harder it is to predict business

conditions. Unlike long-term bonds, which have a longer duration, short-term

bonds carry much smaller associated risks, since most of their coupon payments

have been made, and from the firm’s accounting statements, the risk of default can

be assessed with a greater degree of certainty. Therefore, when new information

is released, the prices of long-term bonds are more likely to change. Since the long

end of the curve is more sensitive to shocks than the short end, the slope movement

should be apparent first. Similar results are found in Fleming and Remolona

(1999c). They analyze the effects of announcements on the term structure for

maturities from 3 months to 30 years and find that the effects are weak for the

short term and strong for the intermediate term, 5 to 10 years, which corresponds
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to the long end of the spread curve in this analysis. In addition, Gilchrist, Yankov,

Zakraǰsek (2008) conclude that the 10-year Baa- or A-rated corporate bond has

strong predictive power for business cycles, and thus they are the more responsive

maturities of the credit spread curve.

On the contrary, the level in the volatility term structure moves first because

the equity option prices across all maturities are affected by the new informa-

tion. Since the options market consists mostly of short-term contracts (less than

2 years), aggregate shocks can have an impact for the entire maturity spectrum,

and thus the level change in that term structure is apparent. Previous studies

have documented volatility’s response to aggregate shocks. Some papers report

a connection between equity volatility and macroeconomic conditions. Hamilton

and Susmel (1994) and Sinha (1996) estimate GARCH models of monthly U.S.

equity returns with high and low volatility regimes depending on economic con-

ditions. They conclude that macro conditions significantly affect equity returns

in the sense that equity volatility is more likely to become (remain) high during

a recession. Moreover, recent studies have started to analyze the impact of par-

ticular macro announcements on equity market return volatility, e.g. Flannery

and Protopapadakis (2002). They estimate a GARCH model of equity returns

and show that conditional volatility varies with macroeconomic series’ announce-

ments. However, research studies on the impact of the entire volatility term

structure seem non-existent. I fill that gap and show that the entire volatility

term structure moves when aggregate information arrives.

After movement in the spread slope and volatility level, the volatility slope

and spread level will adjust accordingly. As the level of volatility rises, the credit
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risk increases, so the spread level should widen. The volatility slope indicates

the direction in which the market’s expected future volatility is heading. As the

spread slope steepens, the associated future risk also rises, and thus the volatility

slope needs to adjust and reflect the increasing expected future volatility.

These findings suggests the potential of segmentation between the corporate

bond market and equity options market. The investors for the corporate bonds

tend to focus on the status of longer horizon investments, whereas options market

participants are more concerned about the short-term hedging. Moreover, these

results reconcile results from corporate bond pricing and market microstructure

and suggest that both bond and equity markets are responsive and they affect

each other. Bond markets have a slope movement first, whereas equity options

markets have a parallel movement first. This simple explanation could be the

reason why Berndt and Ostrovnaya (2008) conclude that there is no clear leader

in terms of news announcements between spreads and equity options. Moreover,

my results also enhance understanding of the stock and bond relationship from a

term structure perspective, which has never been studied previously.

2.5 Concluding remarks

This study has characterized the dynamic relationship between the bond mar-

ket and the equity options market by analyzing the portfolios of investment-grade

firms that have both bonds and equity options. From the two term structures, I

found that the level of the option implied volatility Granger causes the level of

the credit spread, while the slope of the credit spread Granger causes the slope of
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the implied volatility.

My results are especially interesting and intriguing since they consolidate and

enhance findings from the corporate bond pricing and the market microstructure

literatures. The theoretical predictions of Merton (1974) are confirmed through

the level of the two term structures. Simultaneously, the impact from credit

spreads to equity volatility, as concluded from the market microstructure liter-

ature, operates through the slope factor interactions. The term structure rep-

resentation presents a significantly richer and more nuanced environment than

achieved previously, and the intertemporal relationships between the two term

structures extend and unify the two literatures. Therefore, my analysis deepens

our understanding of stock and bond market interactions in a new perspective.

In addition to contributing to the academic literature, this chapter also has

implications for practitioners. It suggests that trading strategies can possibly be

formed by taking advantage of the predictive powers one market has on the other.

Specifically, one could use the level factor in the options market as a signal to

buy or sell corporate bonds, or could use information on the slope of the credit

spreads to exploit the relative price of long- and short-term options.
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CHAPTER III

Yield Curve Modeling in Risk-neutral vs.

Physical Environments

Modeling of the dynamic evolution of the yield curve has long been a very

important subject of research. Such models should not only allow for accurate

pricing of financial derivatives, but also produce accurate forecasts of yields. Lit-

terman and Scheinkman (1991) and Litterman, Scheinkman, and Weiss (1991)

initiate the tradition of level, slope and curvature factor analysis of the yield

curve modeling. Most studies suggest the level factor is highly correlated with in-

flation, whereas the slope factor is highly correlated with real activity. However,

despite the significant correlations of the level and slope factors, the curvature fac-

tor appears unrelated to any of the main macroeconomic variables and remains

poorly understood. Christensen, Diebold, and Rudebusch (2007, 2008) derive a

dynamic affine term structure that rules out opportunities for riskless arbitrage.

They work under the risk-neutral measure and impose restrictions on the transi-

tion dynamics. Specifically, under such a measure there is an impact of curvature
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factor on other factors, which operates through the slope factor. Many literature

also proceed their work under the Q-measure, such as prediction markets, options

densities, forward rates, etc. However, there is risk-premium associated with the

risk-neutral measure and the physical measure. Our goal is to find a dynamic

term structure model that fits the observed yields in-sample while predicts future

yields. Moreover, such a model also reveals the dynamics of the three factors that

drive the Treasury yield curve and, more importantly, the associated risk-premium

between the two measures.

In this chapter, we estimate Nelson-Siegel models with or without freedom from

arbitrage, as done in Diebold and Li (2006) and Christensen, Diebold, and Rude-

busch (2007), respectively. In the process of making dynamic Nelson-Siegel model

without arbitrage opportunities, Christensen, Diebold, and Rudebusch (2007) im-

pose restrictions on the transition dynamics of the three factors under the risk-

neutral measure. We test these risk-neutral restrictions on the factors estimated

from Nelson-Siegel models with or without absence of arbitrage imposed. Since

these factors are obtained in the physical measure, by testing these factors in-

sample we shred some light on the difference between the risk-neutral measure

and the physical measures of the term structure modeling. In addition, we also

utilize these restrictions for out-of-sample forecasting. Therefore, we provide a

comprehensive analysis of the dynamic term structure model for the Treasury

yield curve.

Our test results indicate the risk-neutral restrictions are well satisfied under

the physical measure, so the Treasury bond market is close to be risk-neutral

during our sample period. Precisely, we are able to show that the three factors
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have the following properties. First, the level factor is a unit-root process and

does not affect the other two factors. Second, the slope and curvature factors are

mean-reverting processes that revert at the same rate. Third, the curvature factor

forecasts the slope factor, and not conversely, which implies the curvature factor

is a leading indicator of the slope factor. Moreover, imposing these properties in

the forecast construction can enhance out-of-sample performance for horizons of

6-month or longer. The Nelson-Siegel model with all the risk-neutral restrictions

is consistently the preferred choice among all Nelson-Siegel models.

The way we proceed is as follows. Subsection 3.1 describes the dynamic Nelson-

Siegel models we use. Subsection 3.2 describes the U.S. Treasury yield data and

introduces specific dynamic Nelson-Siegel models used for estimation. Subsection

3.3 analyzes the estimation results, whereas Subsection 3.4 describes the forecast

exercise and its results. Subsection 3.5 introduces an alternative estimation via

a two-step procedure. Subsection 3.6 analyzes the model-free factors (i.e. con-

structed directly from the yields). Finally, Subsection 3.7 concludes the chapter.

3.1 Dynamic Nelson-Siegel Models

The underlying workhorse of the yield curve modeling is the representation

introduced by Nelson and Siegel (1987), which fits the cross section of the yield

curve. The functional form is

y(τ) = β1 + β2

(1− e−λτ

λτ

)
+ β3

(1− e−λτ

λτ
− e−λτ

)
, (3.1)
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where y(τ) is the zero coupon yield with maturity τ , and β1, β2, β3, and λ are

model parameters. It is the most parsimonious model to generate a level, a slope,

and a curvature factor property using just a single parameter λ. Consequently, this

model is popular with central bank researchers and financial market practitioners.

In order to understand the evolution of the bond returns over time, Diebold

and Li (2006) develop a dynamic version of the Nelson-Siegel Model (DNS) that

yields three latent factors with the same level, slope, and curvature interpretation.

Essentially, they make the coefficient β’s as time varying factors of level Lt, slope

St, and curvature Ct, so

yt(τ) = Lt + St

(1− e−λτ

λτ

)
+ Ct

(1− e−λτ

λτ
− e−λτ

)
. (3.2)

An autoregressive structure is assumed for each of these three factors,


Lt − µL

St − µS

Ct − µC

 = A


Lt−1 − µL

St−1 − µS

Ct−1 − µC

+


ηt(L)

ηt(S)

ηt(C)

 , (3.3)

so it is a fully dynamic specification. Due to the DNS model’s simplicity, it

is easy to estimate, forecasts remarkably well, and delivers very robust results

across different data sets.1

Despite its good performance, this model is incompatible with desirable the-

oretical restrictions that rule out opportunities for riskless arbitrage. Chris-

1Diebold, Li, and Yue (2008) extend dynamic Nelson-Siegel to a global context, modeling a
large set of country yield curves in a framework that allows for both global and country-specific
factors.
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tensen, Diebold, and Rudebusch (2007) resolve this problem, by deriving the

affine arbitrage-free class of dynamics Nelson-Siegel (AFNS) term structure mod-

els. The AFNS model is based on standard continuous time affine arbitrage-free

structure as in Duffie and Kan (1996), resulting the following affine arbitrage-free

model that satisfies a set of ordinary differential equations.

The instantaneous risk-free rate is defined by

rt = X1
t +X2

t . (3.4)

The state variables Xt = (X1
t , X

2
t , X

3
t ) are described by a system of stochastic

differential equations (SDEs) under the risk-neutral measure


dX1

t

dX2
t

dX3
t

 =


0 0 0

0 λ −λ

0 0 λ


︸ ︷︷ ︸

KQ


θQ1 −X1

t

θQ2 −X2
t

θQ3 −X3
t

 dt+ Σ


dW 1,Q

t

dW 2,Q
t

dW 3,Q
t

 , λ > 0. (3.5)

The matrix KQ restricts cross interactions between X1
t , X

2
t , and X3

t . This cross

restriction matrix is the key element to establish the freedom from arbitrage.

Then, the zero coupon bond prices are given by

P (t, T ) = EQ
t [exp(−

T∫
t

rudu)] = exp
(
B1(t, T )X1

t +B2(t, T )X2
t +B3(t, T )X3

t +C(t, T )
)
,

(3.6)

where B1(t, T ),B2(t, T ),B3(t, T ) and C(t, T ) are the unique solutions to the fol-
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lowing system of ordinary differential equations (ODEs):


dB1(t,T )

dt

dB2(t,T )
dt

dB3(t,T )
dt

 =


1

1

0

+


0 0 0

0 λ −λ

0 0 λ




B1(t, T )

B2(t, T )

B3(t, T )

 , (3.7)

and

dC(t, T )

dt
= −B(t, T )′KQθQ − 1

2

3∑
j=1

(Σ′B(t, T )B(t, T )′Σ)j,j′ (3.8)

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = C(T, T ) = 0.

Finally, after solving these ODEs, zero coupon bond yields are given by

y(t, T ) = X1
t +X2

t

(1− e−λτ

λτ

)
+X3

t

(1− e−λτ

λτ
− e−λτ

)
− C(t, T )

T − t
, (3.9)

where

C(t, T ) = (KQθQ)2

T∫
t

B2(s, T )ds+ (KQθQ)3

T∫
t

B3(s, T )ds

+
1

2

3∑
j=1

T∫
t

(Σ′B(t, T )B(t, T )′Σ)j,j′ds. (3.10)

The result above defines the class of AFNS models. In the AFNS model, the

factor loadings exactly match the DNS ones, but there is an adjustment term

C(t, T ) in the yield function, which only depends on maturity of the bond. Thus,

the Xt’s have the same level Lt, slope St, curvature Ct factor interpretation as

those in the DNS model. Also, we note that the level factor is a unit-root process
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under the Q-measure, while the curvature factor has the same mean reverting rate

as the slope factor under the pricing measure. Moreover, under the same pricing

measure the curvature factor affects the slope factor. As we will demonstrate,

these properties are preserved under the P -measure as well.

As in Christensen, Diebold, and Rudebusch (2007), the AFNS model is for-

mulated in the continuous-time framework, and thus the relationship between the

real world dynamics and the risk-neutral dynamics is given by a measure change

dWQ
t = dW P

t + Γtdt, (3.11)

where Γt represents the risk premium. The stochastic differential equation for the

state variables under the P -measure,

dXt = KP [θP −Xt]dt+ ΣdW P
t , (3.12)

remains affine. Because of the flexible specification Γt, any mean vector θP and

mean reversion matrix KP under P -measure can be chosen while the Q-dynamics

is preserved. Moreover, one specific KP that satisfies arbitrage free under the

physical measure could be

KP = KQ =


0 0 0

0 λ −λ

0 0 λ

 . (3.13)

Thus from equation (3.7), we can obtain the following discrete version of the state
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equation under the physical measure:


Lt − µL

St − µS

Ct − µC

 =


1 0 0

0 1− λ λ

0 0 1− λ


︸ ︷︷ ︸

A


Lt−1 − µL

St−1 − µS

Ct−1 − µC

+


ηt(L)

ηt(S)

ηt(C)

 , (3.14)

which corresponds to imposing restrictions on autoregressive dynamics through

the matrix A. There are essentially 8 restrictions.2 6 are obvious and can be

investigated using t-type tests, and they are a11 = 1, a12 = 0, a13 = 0, a21 = 0,

a31 = 0, and a32 = 0. The other two are a22 + a23 = 1 and a23 + a33 = 1, which

should be tested jointly using an F type test. Moreover, combinations of these

restrictions should be analyzed jointly as well. We can interpret these constraints

as the following:

(1) The level factor is a random walk and does not affect the other two factors;

(2) The curvature factor and slope factor are mean reverting, and they are

reverting at the same rate;

(3) The lagged curvature factor impacts the slope factor, which implies the

curvature factor can forecast the slope factor;

(4) The mean reverting rate of the slope factor (or the curvature factor) and

the impact of the lagged curvature factor on the slope factor sum to one.

2Another way to think about these restrictions is that the eigenvalues of matrix A have to
be 1 and 1− λ precisely.
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The main task of the chapter is to show empirically whether these properties

are preserved in-sample under the physical measure and whether we can improve

out-of-sample performance by utilizing these properties.

3.2 Specific Models and Estimation

In general, the DNS and AFNS models are silent about the appropriate spec-

ifications of the P -dynamics of the state variables, so the number of possible

specifications is infinite. Here, we limit our focus to affine models, that is, the

dynamics in all the models considered here are unrestricted VAR(1) processes,

which allow for the most amount of flexibility.

3.2.1 The Treasury Bond Yield Data

The specific Treasury bond yields we use are zero-coupon Treasury bond yields

calculated based on the unsmoothed Fama-Bliss (1987) method. These yields are

observed at a monthly frequency over the period of January 1987 to December

2002 with maturities covering the entire spectrum from three months up to thirty

years in the Treasury bond market. Table 1 presents summary statistics for all 16

maturities.

3.2.2 The General DNS Model

Under general specification as in Diebold, Rudebusch, and Aruoba (2006), the

state equation has an unconstrained VAR(1) processes. Thus, the state equation

is given by
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Table 3.1: Summary Statistics for the Unsmoothed Fama-Bliss Treasury Zero
Coupon Bond Yields.

Maturity Mean St.dev. Skewness Kurtosis Minimum Maximum
3 5.09 1.74 -0.06 2.85 1.18 9.13
6 5.22 1.75 -0.14 2.82 1.20 9.32
9 5.33 1.76 -0.17 2.77 1.19 9.34
12 5.48 1.78 -0.20 2.79 1.21 9.63
18 5.70 1.74 -0.20 2.79 1.37 9.66
24 5.81 1.66 -0.18 2.77 1.58 9.53
36 6.06 1.55 -0.12 2.72 2.03 9.46
48 6.26 1.48 -0.08 2.61 2.40 9.35
60 6.36 1.44 -0.02 2.46 2.67 9.29
84 6.60 1.38 0.05 2.22 3.35 9.40
96 6.70 1.37 0.06 2.14 3.52 9.52
108 6.74 1.36 0.06 2.07 3.66 9.59
120 6.74 1.36 0.06 1.99 3.75 9.53
180 7.16 1.24 0.21 1.89 4.94 9.95
240 7.25 1.13 0.08 1.78 5.22 9.73
360 6.77 1.21 0.06 1.74 4.72 9.46

The summary statistics for the sample of monthly observed Fama-Bliss zero-coupon Treasury
bond yields spanning the period from January 1987 to December 2002.
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
Lt − µL

St − µS

Ct − µC

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33


︸ ︷︷ ︸

A


Lt−1 − µL

St−1 − µS

Ct−1 − µC

+


ηt(L)

ηt(S)

ηt(C)

 . (3.15)

Here, the innovations ηt(L), ηt(S), and ηt(C) are allowed to be correlated with a

conditional covariance matrix given by Q = qq′, where the Cholesky factor q of

the covariance matrix is

q =


q11 0 0

q21 q22 0

q31 q32 q33

 . (3.16)

The measurement equation takes the form



yt(τ1)

yt(τ2)

...

yt(τn)


=



1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτn

λτn
1−e−λτn

λτn
− e−λτn




Lt

St

Ct

+



εt(τ1)

εt(τ2)

...

εt(τn)


, (3.17)

where the measurement errors for each maturity, εt(τi), are assumed to be white

noise.

3.2.3 The General AFNS Model

The state space representation of the AFNS model is very similar to the DNS

model, but it is in the continuous-time framework. The state equation also indi-
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cates unconstrained VAR(1) processes,


dLt

dSt

dCt

 =


κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33


︸ ︷︷ ︸

KP


θPL − Lt

θPS − St

θPC − Ct

 dt+


σ11 0 0

σ21 σ22 0

σ31 σ32 σ33




dWL,P
t

dW S,P
t

dWC,P
t

 .

(3.18)

This is the arbitrage-free equivalent of the general DNS model.

The measurement equation for the general AFNS model has an additional

adjustment term,



yt(τ1)

yt(τ2)

...

yt(τn)


=



1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτn

λτn
1−e−λτn

λτn
− e−λτn




Lt

St

Ct

+



εt(τ1)

εt(τ2)

...

εt(τn)


−



c(τ1)/τ1

c(τ2)/τ2
...

c(τn)/τn


.

(3.19)

3.2.4 Estimation Methods

In the estimations, all maturities in the Treasury yield data are used through-

out. Diebold and Li (2006) use a two-step procedure. They fix λ at 0.0609, which

implies that the loading on the curvature factor achieves maximum at 30-month

maturity, and once λ is fixed, the ordinary least squared can produce the three

factors. We will show the results following such a procedure later as a robustness

check. Here, we adopt a one-step procedure. We estimate them by maximizing

the likelihood function in the standard Kalman filter algorithm since all the mod-
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Table 3.2: Descriptive Statistics, Estimated Factors
Factor Mean Std. Dev. Minimum Maximum ρ̂(1) ρ̂(12)

DNS factors

β̂1t 7.213 1.211 5.009 9.817 0.976 0.755

β̂2t -2.235 1.658 -5.547 0.802 0.976 0.376

β̂3t -0.787 2.026 -7.373 3.480 0.889 0.211

AFNS factors

β̂1t 7.414 1.337 4.874 10.061 0.982 0.748

β̂2t -2.425 1.753 -6.127 0.618 0.980 0.414

β̂3t -0.695 1.560 -5.651 2.507 0.860 0.160

We fit the three factor DNS model and AFNS model using monthly yield data 1987:01-2002:12,
and we present descriptive statistics for the corresponding three estimated factors β̂1t, β̂2t, and
β̂3t. The last two columns contain sample autocorrelations at displacements of 1 and 12 months.

els are affine Gaussian and Kalman filter algorithm is an efficient and consistent

estimator in this setting.3

For the DNS model, we follow Diebold, Rudebusch, and Aruoba (2006), so we

start the algorithm at the unconditional mean and variance of the state variables.

We also impose the constraint such that the eigenvalues of A are smaller than 1

to ensure the state variables are stationary.

For the AFNS model, the conditional mean vector and conditional covariance

3All models considered here are Gaussian with constant volatility, so the Kalman filter is
both consistent and efficient. The disadvantage is that the stochastic volatility of bond yields
is not taken into consideration. However, its impact on forecast performance should be relative
modest.

66



matrix are given by

EP [XT |Ft] = (I − exp(−KP∆t))θP + exp(−K∆t)Xt, (3.20)

V P [XT |Ft] =

∆t∫
0

e−KP sΣΣ′e−(KP )′sds, (3.21)

where ∆t = T − t. By discretizing the continuous dynamics under the P -measure,

we obtain the state equation

Xt = (I − exp(−KP∆t))θP + exp(−K∆t)Xt−1 + ηt, (3.22)

The conditional covariance matrix for the shock terms is given by

Q =

∆t∫
0

e−KP sΣΣ′e−(KP )′sds. (3.23)

The real component of each eigenvalue of KP is restricted to be positive to ensure

stationarity of the system. The Kalman filter for the AFNS model also starts at

the unconditional mean and covariance. The measurement equation is similar to

the DNS model with the adjustment term.

For all models the error structure is ηt

εt

 ∼ N


 0

0

 ,

 Q 0

0 H


 , (3.24)
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Table 3.3: The General DNS Model Parameter Estimates
Lt−1 St−1 Ct−1 U

Lt 0.984∗ 0.000 -0.004 7.093∗

(0.020) (0.022) (0.020) (1.423)
St 0.004 0.934∗ 0.078∗ -3.023

(0.027) (0.023) (0.025) (2.031)
Ct 0.027 0.054 0.883∗ -1.345

(0.056) (0.047) (0.040) (1.379)

Note: Each row presents coefficients from the transition equation for the respective state variable.
The standard errors are reported in parenthesis.The parameter values with an asterisk are
significant at the 5% level.

where H is a diagonal matrix

H =


σ2(τ1) . . . 0

...
. . .

...

0 . . . σ2(τN)

 . (3.25)

3.3 Estimation Results

In this section, we present the results from the Kalman filter algorithm and de-

tail the analysis of the risk-neutral restrictions. In Figure 3.1, we plot {β̂1t, β̂2t, β̂3t}

of the DNS model along with the AFNS estimated factors. In table 3.2, we report

the descriptive statistics of the estimated factors for both the DNS and the AFNS

models. Despite the imposition of freedom from arbitrage, the estimated factors

appear to be quite similar from both models.
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Figure 3.1: Estimated DNS factor and Estimate AFNS factors.
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Estimated DNS factors are plotted along with estimated AFNS factors using the Treasury yield
data from January 1987 to December 2002.
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3.3.1 The DNS Model

In Table 3.3 we present estimation results for the general DNS model. The

estimate of the A matrix indicates highly persistent own dynamics of Lt, St, and

Ct with estimated own-lag coefficients of 0.98, 0.93 and 0.88, respectively. Cross-

factor dynamics appear mostly unimportant, with the exception of statistically

significant effect of Ct−1 on St.

The risk-neutral restrictions on the factor dynamics present a different set of

models from the general DNS model, which is the DNS model with unconstrained

factor dynamics. In order to assess the satisfaction of these restrictions, we proceed

to test them via likelihood ratio tests. The restricted models have the following

risk-neutral dynamics:

• Univariate AR, A =


a11 0 0

0 a22 0

0 0 a33



• Curvature added, A =


a11 0 0

0 a22 a23

0 0 a33



• λ restriction, A =


a11 0 0

0 1− a23 a23

0 0 a33


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Table 3.4: Test for DNS Models with Risk-Neutral Restrictions
Test statistics P -value

Likelihood ratio of restricted models

Univariate AR 25.696 0.000
Curvature added 1.876 0.866
λ restriction 2.664 0.850
Cross λ restrictions 2.754 0.907
All restrictions 6.148 0.631

Granger causality test

Ct−1 does not Granger cause St 23.710 0.000
St−1 does not Granger cause Ct 1.580 0.210

We present likelihood ratio test statistics for DNS models that possess various combinations
of the risk-neutral restrictions in the factor dynamics, and the corresponding test statistics are
Chi-square distributed. In the second panel, we also present Granger casuality test between the
slope and curvature factors.

• Cross λ restrictions, A =


a11 0 0

0 1− a23 a23

0 0 1− a23



• All restrictions, A =


1 0 0

0 1− a23 a23

0 0 1− a23

 .

Therefore, the test statistics are LR = 2(l(θ̂unrestricted)− l(θ̂restricted)).

Table 3.4 presents likelihood ratio test statistics and corresponding P -values

under the Chi-square distribution. The LR tests support the risk-neutral restric-

tions overwhelmingly, and the test also suggests univariate AR dynamics are not

satisfied. In the second panel of the table, the Granger casuality test suggests
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the DNS curvature factor can forecast the DNS slope factor. The results are

summarized as the following

• The level factor is block super exogenous.

• The level factor is random walk.

• The slope and curvature factors are mean-reverting at the same rate.

• The curvature factor is block exogenous.

• There is cross factors interaction between slope and curvature factors.

• The curvature factor Granger-cause slope factor, but not conversely.

Although all of those properties are driven theoretically under the risk-neutral

dynamics, empirically they are all complied in the physical measure. These results

suggest the risk premium between the physical and risk-neutral measures is quite

low, and thus the Treasury bond market appears to close be risk-neutral.

3.3.2 The AFNS Model

In Table 3.5 we present estimation results for the general AFNS model. The

estimate of the A matrix also indicates highly persistent own dynamics of Lt, St,

and Ct with estimated own-lag coefficients of 0.99, 0.96, and 0.91, respectively.

Cross-factor dynamics appear mostly unimportant, and there is statistically sig-

nificant effect of Ct−1 on St as well.

Similar to the DNS model, the risk-neutral restrictions on the factor dynamics

also present a different set of models from the general AFNS model, which is
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Table 3.5: The General AFNS Model Parameter Estimates
Lt−1 St−1 Ct−1 U

Lt 0.994∗ 0.108 -0.138 7.309∗

(0.093) (0.065) (0.067) (2.892)
St 0.029 0.964∗ 0.054∗ -2.560

(0.029) (0.074) (0.029) (3.109)
Ct -0.070 -0.012 0.908∗ -0.669

(0.118) (0.108) (0.100) (0.974)

Note: Each row presents coefficients from the transition equation for the respective state variable.
The standard errors are reported in parenthesis. The parameter values with an asterisk are
significant at the 5% level.

the AFNS model with unconstrained factor dynamics. In continuous-time frame,

the arbitrage-free equivalent of the DNS models is the following set of restricted

models.

• Univariate AR, KP =


κ11 0 0

0 κ22 0

0 0 κ33



• Curvature added, KP =


κ11 0 0

0 κ22 κ23

0 0 κ33



• λ restriction, KP =


κ11 0 0

0 κ22 −κ22

0 0 κ33



• Cross λ restrictions, KP =


κ11 0 0

0 κ22 −κ22

0 0 κ22


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Table 3.6: Test for AFNS Models with Risk-Neutral Restrictions
Test statistics P -value

Likelihood ratio of restricted models

Univariate AR 13.420 0.037
Curvature added 8.340 0.138
λ restriction 2.380 0.882
Cross λ restrictions 10.100 0.183
All restrictions 9.000 0.342

Granger causality test

Ct−1 does not Granger cause St 15.005 0.000
St−1 does not Granger cause Ct 1.956 0.164

We present likelihood ratio test statistics for AFNS models that possess various combinations
of the risk-neutral restrictions in the factor dynamics, and the corresponding test statistics are
Chi-square distributed. In the second panel, we also present Granger casuality test between the
slope and curvature factors.

• All restrictions, KP =


10−7 0 0

0 κ22 −κ22

0 0 κ22

 .

Table 3.6 presents likelihood ratio test statistics and corresponding P -values

under the Chi-square distribution. The LR tests present similar results as the

DNS model does. The test supports the risk-neutral restrictions overwhelmingly,

and the test also suggests univariate AR dynamics are not satisfied. In the second

panel of the table, the Granger casuality test also suggests the curvature factor

can forecast the slope factor under the AFNS model.
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3.4 Forecast Performance

In this section, we investigate out-of-sample forecast accuracy. First, describe

the recursive estimation and forecasting procedure; then results are compared and

contrasted.

3.4.1 Forecast Construction

The DNS model has been proven to have great forecasting performance. Diebold

and Li (2006) have done extensive comparison to show that in their data sample

for 6-month ahead and above the DNS model with uncorrelated factors (only a

diagonal matrix A, i.e. a univariate AR model) outperforms many competitors

including the random walk. The random walk was considered by Duffee (2002)

to dominate those Dai and Singleton (2000) affine model.

The AFNS model also performs well as demonstrated by Christensen, Diebold,

and Rudebusch (2007). Using a slightly different data sample from Diebold and

Li (2006), they find that improvements in predictive performance are achieved

by the imposition of absence of arbitrage. We, therefore, not only compare the

performance between the general DNS and the general AFNS models, but im-

pose restrictions on the transition dynamics to see whether those restrictions can

improve the forecasts even further.

After extensive testing in the last section, we have strong reason to believe that

for both DNS and AFNS models the curvature factor impacts the slope factor,

and adding curvature factor into the specification could improve the forecasting

performance. We also find other restrictions like the unit-root process of the level
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factor are also satisfied, so adding those restrictions could be beneficial to the

forecasting performance as well. As great in-sample fit does not necessarily lead

to the best out-of-sample performance, we proceed by imposing various combina-

tions of the restrictions on the matrix A to evaluate the out-of-sample forecasting

performance. Therefore, we estimate and forecast recursively, using data from

1987:1 to the time that the forecast is made, beginning in 1997:1 and extending

through 2002:12.

We compare h-month ahead out-of sample forecasting results from both the

DNS and the AFNS models with various combinations of the restrictions for ma-

turities 3, 12, 24, 36, 60, 120, 240, and 360 months, and forecast horizons of h=1,

6, 12, 24, and 36 months. First let us describe how various forecasts are generated.

All yield forecasts are produced by the Nelson-Siegel model, but β forecasts are

specified by various specifications, i.e. for the DNS model,

ŷt+h/t(τ) = β̂1,t+h/t + β̂2,t+h/t

(1− e−λτ

λτ

)
+ β̂3,t+h/t

(1− e−λτ

λτ
− e−λτ

)
, (3.26)

where β̂’s are the DNS factor forecasts made by VAR(1) specifications; for the

AFNS model,

ŷt+h/t(τ) = β̂1,t+h/t + β̂2,t+h/t

(1− e−λτ

λτ

)
+ β̂3,t+h/t

(1− e−λτ

λτ
− e−λτ

)
− C(t, T )

T − t
,

(3.27)

where β̂’s are the AFNS factor forecasts made by VAR(1) specifications. There are

6 different VAR model specifications, which correspond to various combinations

of the risk-neutral restrictions on the transition dynamics.
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1. Model A: unrestricted VAR
β̂1,t+h/t

β̂2,t+h/t

β̂3,t+h/t

 =


ĉ1

ĉ2

ĉ3

+


γ̂11 γ̂12 γ̂13

γ̂21 γ̂22 γ̂23

γ̂31 γ̂32 γ̂33




β̂1,t

β̂2,t

β̂3,t

 (3.28)

2. Model B : univariate AR

β̂i,t+h/t = ĉi + γ̂iβ̂it i = 1, 2, 3. (3.29)

This is a special case of the unrestricted VAR with all the off-diagonal terms

to be zero. Diebold and Li (2006) conclude this is the benchmark in terms

of forecast.

3. Model C : curvature added

β̂1,t+h/t = ĉ1 + γ̂1β̂1t

β̂2,t+h/t = ĉ2 + γ̂2β̂2t + γ̂4β̂3t

β̂3,t+h/t = ĉ3 + γ̂3β̂3t (3.30)

4. Model D : λ restriction on slope

β̂1,t+h/t = ĉ1 + γ̂1β̂1t

β̂2,t+h/t = ĉ2 + (1− γ̂2)β̂2t + γ̂2β̂3t

β̂3,t+h/t = ĉ3 + γ̂3β̂3t (3.31)
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5. Model E : cross λ restrictions on slope and curvature

β̂1,t+h/t = ĉ1 + γ̂1β̂1t

β̂2,t+h/t = ĉ2 + (1− γ̂2)β̂2t + γ̂2β̂3t

β̂3,t+h/t = ĉ3 + (1− γ̂2)β̂3t (3.32)

6. Model F : all restrictions

β̂1,t+h/t = ĉ1 + β̂1t

β̂2,t+h/t = ĉ2 + (1− γ̂2)β̂2t + γ̂2β̂3t

β̂3,t+h/t = ĉ3 + (1− γ̂2)β̂3t (3.33)

In addition, random walk is also included for completeness.

ŷt+h,t(τ) = yt(τ), (3.34)

so the forecast is always ”no change.”

3.4.2 DNS Forecasts

Table 3.7 to 3.11 present the forecasting root mean squared errors (RMSE) for

1-month, 6-month, 1-year, 2-year, and 3-year into the future for the 6 different

dynamic specifications using the DNS setup. Table 3.12 to 3.16 present the re-

sults in terms of RMSE rankings. The 1-month-ahead forecasting results for the

DNS model, reported in Table 3.7, appear suboptimal. In relative terms, RMSE
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Table 3.7: DNS Out-of-Sample 1-Month-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 0.235 0.259 0.290 0.300 0.288 0.257 0.211
Unrestricted VAR 0.213 0.261 0.307 0.302 0.310 0.314 0.419
Univariate AR 0.248 0.282 0.315 0.301 0.311 0.314 0.418
Curvature added 0.200 0.260 0.303 0.299 0.304 0.308 0.417
λ restriction 0.198 0.266 0.305 0.299 0.305 0.309 0.417
Cross λ restrictions 0.189 0.265 0.303 0.300 0.302 0.307 0.417
All restrictions 0.186 0.267 0.302 0.298 0.293 0.291 0.397

Note: We present the results of out-of-sample 1-month-ahead forecast using different specifica-
tions of the DNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.

Table 3.8: DNS Out-of-Sample 6-Month-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 0.910 0.904 0.908 0.857 0.813 0.651 0.486
Unrestricted VAR 0.909 1.050 1.078 0.999 0.949 0.796 0.717
Univariate AR 0.972 1.030 1.001 0.912 0.868 0.740 0.706
Curvature added 0.783 0.941 0.972 0.909 0.875 0.745 0.708
λ restriction 0.780 0.934 0.973 0.911 0.879 0.750 0.710
Cross λ restrictions 0.728 0.918 0.976 0.926 0.893 0.758 0.712
All restrictions 0.694 0.890 0.938 0.881 0.827 0.655 0.570

Note: We present the results of out-of-sample 6-month-ahead forecast using different specifica-
tions of the DNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.

Table 3.9: DNS Out-of-Sample 1-Year-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 1.552 1.505 1.343 1.190 1.065 0.858 0.615
Unrestricted VAR 1.643 1.731 1.641 1.483 1.338 1.123 0.979
Univariate AR 1.510 1.533 1.394 1.237 1.124 0.974 0.900
Curvature added 1.388 1.466 1.367 1.225 1.124 0.977 0.900
λ restriction 1.457 1.497 1.392 1.244 1.144 0.997 0.910
Cross λ restrictions 1.433 1.487 1.396 1.253 1.153 1.002 0.910
All restrictions 1.383 1.445 1.338 1.182 1.041 0.819 0.622

Note: We present the results of out-of-sample 1-year-ahead forecast using different specifications
of the DNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.
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Table 3.10: DNS Out-of-Sample 2-Year-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 2.063 2.094 1.847 1.606 1.336 1.002 0.762
Unrestricted VAR 1.914 1.843 1.604 1.389 1.197 1.055 1.059
Univariate AR 1.737 1.654 1.403 1.207 1.010 0.855 0.855
Curvature added 1.943 1.797 1.494 1.265 1.034 0.855 0.852
λ restriction 2.114 1.928 1.600 1.349 1.108 0.912 0.883
Cross λ restrictions 2.257 2.054 1.696 1.422 1.146 0.922 0.883
All restrictions 2.364 2.172 1.805 1.514 1.180 0.840 0.654

Note: We present the results of out-of-sample 2-year-ahead forecast using different specifications
of the DNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.

Table 3.11: DNS Out-of-Sample 3-Year-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 1.643 1.717 1.543 1.375 1.205 1.060 0.938
Unrestricted VAR 2.046 1.928 1.724 1.609 1.568 1.642 1.829
Univariate AR 1.713 1.426 1.107 0.950 0.875 0.991 1.214
Curvature added 1.777 1.462 1.120 0.953 0.870 0.986 1.213
λ restriction 1.545 1.367 1.085 0.912 0.852 0.988 1.222
Cross λ restrictions 1.710 1.482 1.166 0.983 0.887 0.995 1.222
All restrictions 2.240 1.984 1.591 1.322 0.980 0.702 0.670

Note: We present the results of out-of-sample 3-year-ahead forecast using different specifications
of the DNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.
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comparison at various maturities reveals forecasts with all the restrictions perform

similarly as the random walk model and the DNS with univariate AR setting. For

maturity beyond 10-year, the random walk model clearly outperforms.

Matters improve as the forecast horizon lengthens. The 1-year-ahead forecast

results, reported in Table 3.9, reveal that the DNS model with all restrictions

consistently outperforms the DNS with univariate AR setup for all maturities less

or equal to 10-year.

However, when we lengthen the horizon to longer than 1 year, the DNS with

all restrictions does not have the lead while the DNS with univariate AR becomes

the superior model. From table 3.10, the DNS model with univariate AR setup

outperforms all competitors for maturities up and including 10-year, whereas the

DNS models with curvature restrictions (i.e. curvature factor is added to the slope

equation) are now the best for maturities of more than 10-year.

When we lengthen the horizon to 3-year, the DNS models with curvature factor

imposed on the slope equation have great forecast performance. For example, the

DNS model with λ restriction has a RMSE of 1.545, 1.085, 0.912, and 0.852 for

3-, 24-, 36-, and 60-month, respectively. Moreover, the DNS model with all the

restrictions has a RMSE of 0.67 for 30-year maturity.

Clearly, the DNS curvature factor has substantial forecasting power, and im-

posing restriction on the vector auto-regression can lead to improvement. The

random walk is hard to beat for near-term forecasting, but we can do much bet-

ter by utilizing the risk-neutral restrictions for longer horizons. Moreover, the

DNS model with all restrictions are the preferred choice among all 6 dynamic

specifications.
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Table 3.12: DNS Out-of-Sample 1-Month-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 6 1 1 5 1 1 1
Unrestricted VAR 5 3 6 7 6 7 7
Univariate AR 7 7 7 6 7 6 6
Curvature added 4 2 4 3 4 4 3
λ restriction 3 5 5 2 5 5 4
Cross λ restrictions 2 4 3 4 3 3 5
All restrictions 1 6 2 1 2 2 2

Note: We present the results of out-of-sample 1-month-ahead forecast using different specifica-
tions of the DNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t + h as yt+h(τ) − ŷt+h/t(τ) and report the rankings in terms of root mean
square errors. 1 is the best, whereas 7 is the worst.

Table 3.13: DNS Out-of-Sample 6-Month-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 6 2 1 1 1 1 1
Unrestricted VAR 5 7 7 7 7 7 7
Univariate AR 7 6 6 5 3 3 3
Curvature added 4 5 3 3 4 4 4
λ restriction 3 4 4 4 5 5 5
Cross λ restrictions 2 3 5 6 6 6 6
All restrictions 1 1 2 2 2 2 2

Note: We present the results of out-of-sample 6-month-ahead forecast using different specifica-
tions of the DNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t + h as yt+h(τ) − ŷt+h/t(τ) and report the rankings in terms of root mean
square errors. 1 is the best, whereas 7 is the worst.
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Table 3.14: DNS Out-of-Sample 1-Year-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 6 5 2 2 2 2 1
Unrestricted VAR 7 7 7 7 7 7 7
Univariate AR 5 6 5 4 4 3 4
Curvature added 2 2 3 3 3 4 3
λ restriction 4 4 4 5 5 5 5
Cross λ restrictions 3 3 6 6 6 6 6
All restrictions 1 1 1 1 1 1 2

Note: We present the results of out-of-sample 1-year-ahead forecast using different specifications
of the DNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t+1 as yt+h(τ)− ŷt+h/t(τ) and report the rankings in terms of root mean square errors.
1 is the best, whereas 7 is the worst.

Table 3.15: DNS Out-of-Sample 2-Year-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 4 6 7 7 7 6 2
Unrestricted VAR 2 3 4 4 6 7 7
Univariate AR 1 1 1 1 1 3 4
Curvature added 3 2 2 2 2 2 3
λ restriction 5 4 3 3 3 4 5
Cross λ restrictions 6 5 5 5 4 5 6
All restrictions 7 7 6 6 5 1 1

Note: We present the results of out-of-sample 2-year-ahead forecast using different specifications
of the DNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t+1 as yt+h(τ)− ŷt+h/t(τ) and report the rankings in terms of root mean square errors.
1 is the best, whereas 7 is the worst.
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Table 3.16: DNS Out-of-Sample 3-Year-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 2 5 5 6 6 6 2
Unrestricted VAR 6 6 7 7 7 7 7
Univariate AR 4 2 2 2 3 4 4
Curvature added 5 3 3 3 2 2 3
λ restriction 1 1 1 1 1 3 5
Cross λ restrictions 3 4 4 4 4 5 6
All restrictions 7 7 6 5 5 1 1

Note: We present the results of out-of-sample 3-year-ahead forecast using different specifications
of the DNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t+1 as yt+h(τ)− ŷt+h/t(τ) and report the rankings in terms of root mean square errors.
1 is the best, whereas 7 is the worst.

One very interesting observation is that the unit root restriction on the level

factor plays an important role for forecasting horizon up to 1-year. When the

restriction is added, we can see a large reduction in RMSE.

These results are slightly different from Dieobld and Li (2006). Diebold and Li

(2006) have a great success in forecasts using a different dataset with maturities up

to 10-year, whereas we have maturities up to 30-year. The original Nelson-Siegel

framework might fit the long maturities suboptimally. 4

Overall, we are able to improve the forecasting ability by imposing all the re-

strictions on the VAR structure compared to the DNS model with univariate AR

framework. Although among various specifications we cannot see a clear winner,

we can conclude imposing some restrictions definitely improves the forecast per-

formance beyond what Diebold and Li (2006)’s suggestion of univariate AR factor

dynamics.

4Svensson (1995) introduces a variation of the Nelson-Siegel model to allow better fit at the
long maturities.
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Table 3.17: AFNS Out-of-Sample 1-Month-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 0.235 0.259 0.290 0.300 0.288 0.257 0.211
Unrestricted VAR 1.021 1.696 1.596 1.377 1.085 0.674 0.326
Univariate AR 1.002 1.691 1.593 1.374 1.081 0.671 0.323
Curvature added 1.009 1.690 1.591 1.373 1.081 0.670 0.323
λ restriction 1.014 1.692 1.593 1.374 1.081 0.671 0.323
Cross λ restrictions 1.029 1.692 1.591 1.373 1.080 0.670 0.323
All restrictions 1.029 1.692 1.591 1.373 1.080 0.670 0.323

Note: We present the results of out-of-sample 1-month-ahead forecast using different specifica-
tions of the AFNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.

3.4.3 AFNS Forecasts

For the AFNS model, we estimate and forecast recursively, using data from

1987:1 to the time that the forecast is made, beginning in 1997:1 and extending

through 2000:12. We adapt the same 6 forecasting specifications (Model A to

F ) used in the DNS model, and their corresponding root mean square errors are

reported in table 3.17 to 3.21. The forecasts are constructed using the 6 different

dynamic specifications under the AFNS setup. Table 3.22 to 3.26 present the

results in terms of RMSE rankings.

The results of those forecasting exercises indicate that the AFNS factors do

suboptimal job across maturities for the horizons less than 1-year. It starts to

outperform the random walk after 1-year.

The forecast results seem to suggest imposing restrictions on the transition

dynamics also improve the forecast performance when we forecast beyond 1-year

ahead. It is similar to what we see from the DNS models. However, the AFNS

improves the forecasts of the long-maturity yields more than the DNS model does.
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Table 3.18: AFNS Out-of-Sample 6-Month-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 0.910 0.904 0.908 0.857 0.813 0.651 0.486
Unrestricted VAR 1.533 1.956 1.797 1.563 1.290 0.910 0.509
Univariate AR 1.411 1.935 1.802 1.578 1.309 0.928 0.535
Curvature added 1.422 1.942 1.806 1.581 1.312 0.930 0.536
λ restriction 1.432 1.945 1.808 1.582 1.312 0.930 0.536
Cross λ restrictions 1.458 1.951 1.812 1.586 1.315 0.932 0.537
All restrictions 1.347 1.838 1.697 1.472 1.200 0.815 0.501

Note: We present the results of out-of-sample 6-month-ahead forecast using different specifica-
tions of the AFNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.

Table 3.19: AFNS Out-of-Sample 1-Year-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 1.552 1.505 1.343 1.190 1.065 0.858 0.615
Unrestricted VAR 2.161 2.315 2.089 1.836 1.565 1.205 0.735
Univariate AR 1.791 2.137 1.990 1.767 1.521 1.174 0.713
Curvature added 1.594 2.087 1.971 1.757 1.518 1.176 0.714
λ restriction 1.777 2.136 1.992 1.769 1.524 1.177 0.714
Cross λ restrictions 1.762 2.131 1.990 1.769 1.524 1.178 0.715
All restrictions 1.522 1.846 1.703 1.484 1.246 0.912 0.611

Note: We present the results of out-of-sample 1-year-ahead forecast using different specifica-
tions of the AFNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.

Table 3.20: AFNS Out-of-Sample 2-Year-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 2.063 2.094 1.847 1.606 1.336 1.002 0.762
Unrestricted VAR 2.206 2.363 2.157 1.944 1.709 1.426 1.059
Univariate AR 1.741 2.022 1.873 1.673 1.444 1.166 0.840
Curvature added 1.795 2.034 1.877 1.676 1.446 1.166 0.840
λ restriction 2.074 2.141 1.931 1.709 1.464 1.174 0.841
Cross λ restrictions 2.064 2.138 1.929 1.708 1.464 1.174 0.841
All restrictions 1.981 1.895 1.653 1.414 1.154 0.856 0.710

Note: We present the results of out-of-sample 2-year-ahead forecast using different specifica-
tions of the AFNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.
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Table 3.21: AFNS Out-of-Sample 3-Year-Ahead Forecast Errors
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 1.643 1.717 1.543 1.375 1.205 1.060 0.938
Unrestricted VAR 2.319 2.457 2.308 2.146 1.982 1.823 1.542
Univariate AR 1.295 1.784 1.809 1.706 1.593 1.462 1.216
Curvature added 1.307 1.784 1.809 1.706 1.594 1.462 1.216
λ restriction 1.482 1.893 1.861 1.738 1.609 1.467 1.216
Cross λ restrictions 1.458 1.894 1.862 1.738 1.609 1.467 1.216
All restrictions 1.536 1.501 1.351 1.179 0.991 0.805 0.720

Note: We present the results of out-of-sample 3-year-ahead forecast using different specifications
of the AFNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t+ h as yt+h(τ)− ŷt+h/t(τ) and report the root mean square errors.

Table 3.22: AFNS Out-of-Sample 1-Month-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 1 1 1 1 1 1 1
Unrestricted VAR 7 7 7 7 7 7 7
Univariate AR 2 3 5 5 6 6 5
Curvature added 3 2 2 2 4 3 2
λ restriction 4 5 6 6 5 5 4
Cross λ restrictions 6 6 4 4 3 4 6
All restrictions 5 4 3 3 2 2 3

Note: We present the results of out-of-sample 1-month-ahead forecast using different specifica-
tions of the AFNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t + h as yt+h(τ) − ŷt+h/t(τ) and report the rankings in terms of root mean
square errors. 1 is the best, whereas 7 is the worst.

Moreover, among different model specifications (Model A−F ), the superior per-

formance is obtained when we impose all restrictions, i.e. Model F , and thus

the restricted transition matrix do help the forecast for AFNS models. Further-

more, excluding the random walk results, the All restrictions specification is the

preferred choice among the 6 dynamic specifications for almost all horizons of

6-month or longer.
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Table 3.23: AFNS Out-of-Sample 6-Month-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 1 1 1 1 1 1 1
Unrestricted VAR 7 7 7 3 3 3 3
Univariate AR 3 3 3 4 4 4 4
Curvature added 4 4 4 5 5 5 5
λ restriction 5 5 5 6 6 6 6
Cross λ restrictions 6 6 6 7 7 7 7
All restrictions 2 2 2 2 2 2 2

Note: We present the results of out-of-sample 6-month-ahead forecast using different specifica-
tions of the AFNS factors described in the text. We estimate all models recursively from 1987:1
to the time forecast is made, beginning in 1997:1 and extending through 2002:12. We define
forecast errors at t + h as yt+h(τ) − ŷt+h/t(τ) and report the rankings in terms of root mean
square errors. 1 is the best, whereas 7 is the worst.

Table 3.24: AFNS Out-of-Sample 1-Year-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 2 1 1 1 1 1 2
Unrestricted VAR 7 7 7 7 7 7 7
Univariate AR 6 6 5 4 4 3 3
Curvature added 3 3 3 3 3 4 4
λ restriction 5 5 6 5 5 5 5
Cross λ restrictions 4 4 4 6 6 6 6
All restrictions 1 2 2 2 2 2 1

Note: We present the results of out-of-sample 1-year-ahead forecast using different specifications
of the AFNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t + h as yt+h(τ) − ŷt+h/t(τ) and report the rankings in terms of root mean square
errors. 1 is the best, whereas 7 is the worst.
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Table 3.25: AFNS Out-of-Sample 2-Year-Ahead Forecast Rankings
3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 4 4 2 2 2 2 2
Unrestricted VAR 7 7 7 7 7 7 7
Univariate AR 1 2 3 3 3 4 4
Curvature added 2 3 4 4 4 3 3
λ restriction 6 6 6 6 5 6 5
Cross λ restrictions 5 5 5 5 6 5 6
All restrictions 3 1 1 1 1 1 1

Note: We present the results of out-of-sample 2-year-ahead forecast using different specifications
of the AFNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t + h as yt+h(τ) − ŷt+h/t(τ) and report the rankings in terms of root mean square
errors. 1 is the best, whereas 7 is the worst.

Table 3.26: AFNS Out-of-Sample 3-Year-Ahead Forecast Rankings
Output-of-sample 3-year-ahead forecast rankings

3-month 1-year 2-year 3-year 5-year 10-year 30-year

Random walk 6 2 2 2 2 2 2
Unrestricted VAR 7 7 7 7 7 7 7
Univariate AR 1 4 4 4 3 4 4
Curvature added 2 3 3 3 4 3 3
λ restriction 4 5 5 5 5 5 5
Cross λ restrictions 3 6 6 6 6 6 6
All restrictions 5 1 1 1 1 1 1

Note: We present the results of out-of-sample 3-year-ahead forecast using different specifications
of the AFNS factors described in the text. We estimate all models recursively from 1987:1 to the
time forecast is made, beginning in 1997:1 and extending through 2002:12. We define forecast
errors at t + h as yt+h(τ) − ŷt+h/t(τ) and report the rankings in terms of root mean square
errors. 1 is the best, whereas 7 is the worst.
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3.5 Alternative Estimation Method

In this section, we estimate factors via a two-step procedure as a support to

the results presented earlier. We then impose a VAR on the estimated factors

(Xt = {Lt, St, Ct}), and we test whether the risk-neutral restrictions are satisfied

for these factors, which are obtained under the physical measure.

3.5.1 The DNS Model

Following Diebold and Li (2006), we also use a two-step procedure to estimate

the factors. We fix λ at 0.0609, which implies that the loading on the curvature

factor achieves maximum at 30-month maturity, and once λ is fixed, the ordinary

least squared can produce the three factors.

A standard VAR(1) structure is imposed on these estimated DNS factors,

X̂t = U + AX̂t−1 + ηt, (3.35)

and the estimated parameter values are reported in Table 3.27.

The DNS level factor appears to be a unit-root process, and it is the most

persistent factor. The DNS slope and curvature factors are both mean-reverting.

Importantly, the only significant off diagonal element (a23 = 0.072) in the esti-

mated A matrix is ASt,Ct−1 , which is the key non-zero off-diagonal element required

for arbitrage free version of the specification. In addition, ASt,Ct−1 corresponds to

the λ, which is prefixed at the value of 0.0609 in Diebold and Li (2006). Given

the standard error of 0.015, they are statistically indifferent from each other.

Since the restriction on the KQ matrix is key to establish the arbitrage-free
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Table 3.27: Two-Step VAR Estimation Results for Lt, St, Ct Factors from the
DNS Model

Lt−1 St−1 Ct−1 U
Lt 0.989∗ 0.005 -0.004 5.946
2 (0.017) (0.013) (0.011) (11.073)
St -0.016 0.937∗ 0.072∗ -5.712

(0.022) (0.018) (0.015) (20.182)
Ct 0.075 0.060 0.895∗ -3.923

(0.059) (0.049) (0.040) (19.401)

Note: VAR estimation results for Lt, St, Ct factors from the DNS model from 1987:1 to 2002:12.
The standard errors are reported in parenthesis. The parameter values with an asterisk are
significant at the 5% level.

Table 3.28: Two-Step DNS Factors Test Results

Test statistics P-value
F test

Univariate AR 14.410 0.025
Curvature added 5.481 0.360
λ restriction 0.401 0.527
Cross λ restrictions 1.105 0.576
All restrictions 4.564 0.803

Granger causality test

Ct−1 does not Granger cause St 11.403 0.000
St−1 does not Granger cause Ct 1.114 0.330

The DNS factors are tested via an F type test for various combinations of the restrictions on
the A matrix and Granger casuality test between the slope and curvature factors. The sample
period is 1987:01-2002:12. The values with asterisk indicate a reject of the null hypothesis.
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Table 3.29: Two-Step VAR Estimation Results for Lt, St, Ct Factors from the
AFNS Model

Lt−1 St−1 Ct−1 U
Lt 0.989∗ -0.001 0.002 6.688

(0.015) (0.014) (0.014) (9.026)
St 0.015 0.967∗ 0.060∗ -7.416

(0.022) (0.018) (0.015) (30.616)
Ct 0.018 0.054 0.873∗ -3.058

(0.047) (0.035) (0.040) (14.272)

Note: VAR estimation results for Lt, St, Ct factors from the AFNS model from 1987:1 to
2002:12. The standard errors are reported in parenthesis. The parameter values with an asterisk
are significant at the 5% level.

dynamic Nelson-Siegel Model, we perform F test on the estimated transition ma-

trix A. The testing of corresponding hypotheses is thus to check whether those

risk-neutral restrictions are satisfied under the physical measure.

Table 3.28 illustrates the F test of the validity of the restrictions imposed on

the transition dynamics. By wide margins, various combinations of the restrictions

are well accepted by the data. The Granger casuality test confirms the ability of

the curvature factor to predict the slope factor, and not conversely. Therefore,

we can confirm the properties stated earlier are indeed satisfied for the estimated

factors.

3.5.2 The AFNS Model

A standard VAR(1) structure, same as the one imposed on the DNS factors,

is established for the AFNS factors and the corresponding results are reported in

table 3.29.

The AFNS level factor appears closely to be an unit root process, and it is
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Table 3.30: Two-Step AFNS Factors Test Results

Test statistics P-value
F test

Univariate AR 11.159 0.084
Curvature added 5.227 0.389
λ restriction 2.788 0.095
Cross λ restrictions 6.918 0.032
All restrictions 10.811 0.213

Granger causality test

Ct−1 does not Granger cause St 14.674 0.000
St−1 does not Granger cause Ct 1.910 0.169

The AFNS factors are tested via an F type test for various combinations of the restrictions on
the A matrix and Granger casuality test between the slope and curvature factors.

the most persistent factor. The AFNS slope and curvature factors are both mean

reverting. Importantly, the only significant off diagonal element5 in the estimated

A matrix is ASt,Ct−1 , which is the key non-zero off-diagonal element required for

arbitrage free version of the specification.

In table 3.30, all the test statistics and corresponding P-values are reported.

All the null hypothesis are accepted at 5% level except for the combination restric-

tions on a22, a23, a33, which requires a significance level of 1% to accept the null

hypothesis. The Granger causality test also supports one direct and the other,

i.e. curvature Granger causes the slope and not vice verse. Similar to the results

obtained for the DNS factors, we can conclude the same set of properties are also

well satisfied for the AFNS factors.

5Its value is 0.06, which is also statistically indifferent from 0.0609 in the DNS setup.
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3.6 Model-free factors

The Lt, St, Ct estimated from the DNS and the AFNS models are model-based

factors, while following the literature such as Frankel and Lown (1994) model-

free factors of level, slope and curvature (Lf
t , S

f
t and Cf

t ) can be constructed.

For robustness, we also test those restrictions on the model-free factors. The

model-free level factor is the long term yield yt(∞), the model-free slope factor is

difference of the long term and short term yield yt(∞))−yt(0), and the model free

curvature factor is twice of the medium term yield minus the sum of the long term

and short term yields. Therefore, model-free factors are defined as the follows:

Lf
t = yt(360),

Sf
t = yt(360)− yt(3),

Cf
t = 2yt(36)− y(360)− y(3). (3.36)

We impose the same VAR(1) structure on the model free factors (Xf
t = {Lf

t , S
f
t , C

f
t })

as

Xt = U + AXt−1 + ηt. (3.37)

The estimation results are reported in table 3.31.

The model-free level factor also appears to be a unit root process, and it is

the most persistent factor. The model-free slope and curvature factors are both

mean reverting as well. Moreover, the only significant off diagonal element (the

0.113) in the estimated A matrix is ASf
t ,C

f
t−1

, which corresponds to λ and is the

key non-zero off-diagonal element required for arbitrage-free specifications.
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Table 3.31: VAR Estimation Results for Model-Free Level, Slope, Curvature Fac-
tors

Lf
t−1 Sf

t−1 Cf
t−1 U f

Lf
t 0.983∗ 0.003 0.012 4.689

(0.020) (0.017) (0.030) (11.519)

Sf
t 0.003 0.967∗ 0.113∗ -5.887

(0.021) (0.017) (0.033) (20.095)

Cf
t 0.024 0.015 0.865∗ -0.615

(0.028) (0.021) (0.039) (0.689)

Note: VAR estimation results for model free factors Lf
t , Sf

t , Cf
t . The standard errors are

reported in parenthesis. The parameter values with an asterisk are significant at 1%.

Table 3.32: Model-free Factors Test Results
Test statistics P-value

F test

Univariate AR 13.638 0.034
Curvature added 2.702 0.746
λ restriction 2.460 0.620
Cross λ restrictions 10.765 0.005∗

All restrictions 23.182 0.003∗

Granger causality test

Cf
t−1 does not Granger cause Sf

t 26.709 0.000

Sf
t−1 does not Granger cause Cf

t 0.526 0.469

Note: The model free factors are tested via an F type test for various combinations of the
restrictions on the A matrix and Granger casuality test between the slope and curvature factors.
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Table 3.32 reports the results from F tests and Granger causality tests. Most

of the properties for the model-based factors are also satisfied for the model free

factors. The restrictions that are violated are the λ restrictions on the slope and

curvature factors. Therefore, the results from the model-free factors confirm an

almost identical set of properties as the model-based factors.

3.7 Concluding Remarks

In this chapter, we have comprehensively analyzed DNS and AFNS models.

We found that risk-neutral restrictions are satisfied in-sample for factors estimated

from both DNS and AFNS models in the physical measure, and out-of-sample

performance is improved by imposing these restrictions. This leads us to conclude

the risk premium for the U.S. Treasury bond market is quite low. Empirically,

we show that: 1) the level factor is a unit-root process and does not affect the

other two factors; 2) the slope and curvature factors are mean-reverting processes

that reverts at the same rate; 3) the curvature factor forecasts the slope factor.

Moreover, these properties also facilitate out-of-sample forecasting for 6-month

ahead and above. Given the good performance of the Nelson-Siegel models both

in-sample and out-of-sample, we consider the Nelson-Siegel class of models an

excellent model for the U.S. Treasury yields.

We have also enhanced the understanding of the risk-neutral dynamics. These

risk-neutral restrictions are well complied in-sample, and utilizing them also im-

proves forecasts. Moreover, we do not actually explain the determinants of the

curvature factor; rather, we explain what the curvature factor determines, which
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is the one-way Granger causality from the curvature factor to the slope factor.

The performance of Nelson-Siegel models are impressive, and we have estab-

lished several stylized facts about this class of term structure models. In the future

it is desirable to compare its performance against affine term structure models.
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APPENDIX A

Chapter II: “Raw” yields construction

This section describes the construction method for corporate bond yields. Let

Pt(τ) be the price of a τ -period discount bond and yt(τ) denote its continuously

compounded zero-coupon nominal yield to maturity. Thus, the discount curve is,

Pt(τ) = e−τyt(τ).

From the discount curve, the forward rate curve is,

ft(τ) = −P ′
t(τ)/Pt(τ).

Therefore, the relationship between the yield to maturity and the forward rate is,

yt(τ) =
1

τ

τ∫
0

fτ (u)du,
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which implies that the zero-coupon yield is an equally weighted average of forward

rates. Once the yield curve or the forward curve is given, any coupon bond can be

priced as the sum of the present values of future coupon and principal payments.

However, in practice, neither yield curves nor forward curves are observed,

so they must be estimated from observed bond prices. Fama and Bliss (1987)

establish a popular yield curve construction method. They construct yields not

via an estimated discount curve, but rather via estimated forward rates at the

observed maturities. Their method sequentially constructs the forward rates nec-

essary to price successively longer-maturity bonds, often called an “unsmoothed

Fama-Bliss” forward rate, and then constructs “unsmoothed Fama-Bliss yields”

by averaging the appropriate unsmoothed Fama-Bliss forward rates. The un-

smoothed Fama-Bliss yields price the included bonds exactly. Throughout the

chapter, unsmoothed Fama-Bliss yields are adapted for corporate bonds.

100



APPENDIX B

Chapter II: Theory of corporate bond pricing

This section briefly discusses the theory of corporate bond pricing.1 In Mer-

ton’s model, the value of the firm’s assets is assumed to obey a lognormal diffusion

process with constant volatility, and the firm issues two classes of securities: debt

and equity, where debt is a pure discount bond of payment D promised at time

T , and the equity, E, pays no dividends. If at time T the firm’s asset value ex-

ceeds the promised payment, D, the lenders are paid the promised amount and

the shareholders receive the residual asset value. If the asset value is less than D,

the firm defaults, and the lenders receive a payment equal to the asset value while

the shareholders get nothing.

1See Hull, Nelken, White (2004) for more detailed reviews.
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B.1 Default probability and equity value

Define A as the value of the firm’s assets, let E0 and A0 be today’s value of

E and A, and let ET and AT be their values at time T . According to Merton’s

framework, the payment to shareholders at time T is given by

ET = max{AT −D, 0}.

The equity is a call option on the firm’s assets with the strike price equal to the

promised debt payment. Define D∗ = De−rT as the present value of the debt and

let L = D∗/A0 be the leverage ratio. Hence, using these definitions the current

(t = 0) equity price is

E0 = A0[N(d1)− LN(d2)], (B.1)

where

d1 =
ln(L)

σA

√
T

+ 0.5σA

√
T ,

d2 = d1 − σA

√
T ,

σA is the volatility of the asset value, and r is the risk-free interest rate, both of

which are assumed to be constant.

As shown by Jones et al. (1984), Ito’s Lemma relates the equity volatility as

a function of the asset volatility,

E0σE =
∂E

∂A
A0σA,
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where σE is the volatility of the firm’s equity at time zero. From equation (1),

this leads to

σA = σE
N(d1)− LN(d2)

N(d1)
. (B.2)

Equations (1) and (2) allow A0 and σA to be obtained from E0, σE, L and T .2

The risk-neutral probability of default is given by P = N(−d2), which depends

on the leverage, L, the asset volatility, σA, and the time to repayment, T .

B.2 Spreads of risky debt

The credit risk premium measured by the spread over comparable maturity

U.S. Treasury securities can be explained by Merton’s model. Define B0 as the

market price of the debt at time zero. The firm’s assets at any time equal the

total value of the two financing sources, bond and equity, and thus

B0 = A0 − E0. (B.3)

Using equation (1), (3) becomes

B0 = A0[N(−d1) + LN(d2)]. (B.4)

The yield to maturity of the debt, y, is defined by

B0 = De−yT = D∗e(r−y)T . (B.5)

2This implementation has been used by many practitioners. Moody’s KMV uses it to estimate
relative default probability. CreditGrades, a venture supported by major banks such as Goldman
Sachs, JP Morgan, and Deutsche Bank, uses it to estimate credit default swap spreads.
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Substituting this into the equation and applying A0 = D∗/L gives the credit

spread, CS, as

CS = y − r = −ln[N(d2) +N(−d1)/L]T. (B.6)

The credit spread derived from Merton’s model, like the risk-neutral default prob-

ability, depends only on the leverage, L, the asset volatility, σA, and the time to

repayment, T . Since asset volatility can be estimated from equity volatility, the

credit spread is linked with the equity volatility: the higher the volatility, the

higher the spread.
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