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ABSTRACT

NONABELIANIZATION, SPECTRAL DATA AND CAMERAL DATA

Benedict John Roland Morrissey

Ron Donagi

Tony Pantev

This thesis surveys parts of the forthcoming joint work [23] in which the non-abelianization

map of [16] was extended from the case of G = SL(n) and G = GL(n) to the case of

arbitrary reductive algebraic groups. The non-abelianization map is an algebraic map

from a moduli space of certain N -local systems on the complement of a divisor P in a

punctured Riemann surface X, to the moduli space of G-local systems on X.
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Chapter 1

Introduction

Non-abelianization refers to the “co-ordinate charts” in the form of maps from the moduli

of certain Gm-local systems on a curve X\R (for a divisor R ⊂ X) to the moduli of GL(n)

or SL(n) local systems on X, where X → X is an n : 1 cover, and X is a punctured

Riemann surface. These are referred to as coordinate charts because complex analytically

one can describe the moduli space of Gm-local systems via it’s monodromy as (Gm)a/Gm

for some number a, with the action of Gm being trivial1. These co-ordinate charts are

conjectured to be hyperkähler [16, 13, 17] when restricted to holomorphic symplectic

leaves of the Poisson moduli spaces of local systems, and allow one to describe wall

crossing phenomena in the BPS spectrum of a 4d N = 2 field theories of class S with

gauge group SL(n). These wall crossing phenomena were related to coordinate charts

in the series of papers [18, 17, 16, 14, 13, 15]. This thesis surveys the extension of the

non-abelianization construction to the setting of reductive algebraic groups, as developed

in the joint work [23].

1We consider the stacky quotient, so this is not simply equivalent to (Gm)a
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In the case where we consider non-abelianization for the group SL(2), subject to a

modification that involves working on the unit tangent bundle of a punctured Riemann

surface, these coordinates correspond [11, 21, 17] to the Fock–Goncharov coordinates [12]

on the complexification of Teichmuller space. An extension of these methods to compact

surfaces for G = SL(2),R) in [11] recovers Thurston’s shear-bend coordinates [35].

The covers X → X are spectral covers in the sense of [20], and are constructed from

points in the Hitchin base for the group GL(n) or SL(n). Fibers of the Hitchin moduli

space are described in terms of Gm-bundles (line bundles) on the spectral curve in this

setting. This was generalized in the series of works [8, 32, 10, 9]. The paper [9] describes

fibers of the Hitchin system in terms of N -shifted, weakly W -equivariant T -bundles on a

curve called the cameral cover X̃ → X in the case where X̃ is smooth. The curve X̃ is

constructed from a point in the Hitchin base.

Analogously to the case of the description of Hitchin fibers, we can extend the non-

abelianization map of [16] to the setting of arbitrary reductive algebraic groups G by

replacing the moduli space of certain Gm-local systems on2 X\Rρ to the moduli space

of N -shifted weakly W -equivariant T -local systems on X̃\R (for R ⊂ X̃ the ramification

divisor of X̃ → X). We have to reduce to a subset of such T -local systems that satisfy a

condition which we call the S-monodromy condition introduced in 4.2.

We will now describe briefly how the non-abelianization construction works. The

rough idea of non-abelianization is that we modify a local system on what is topologically

a two dimensional surface by “cutting and regluing” along a series of one dimensional loci,

that together form a piece of data called a spectral network. The following is a simplified

2Rρ is here the ramificarion divisor of X → X
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example

Example 1.0.1 (Non-abelianization by “cutting and regluing” on S1.). Suppose we have a

G-local system E → S1. Let [0, 1]
p−→ S1 be the surjective map such that p(0) = p(1), and

the preimage of every point other than p(1) consists of a single element. Informally words

p identifies [0, 1] with the circle S1 being “cut” at the point p(0). We can then consider

p∗E as being the G-local system E “cut” at p(0).

If we have an isomorphism ofG-torsors a : p∗E|0
∼=−→ p∗E|1, then p∗E/{p∗E|0 a−→ p∗E|1} is

a G-local system on S1. Informally we refer to this procedure of gaining a new local system

on S1 as regluing. Note that if the automorphism we reglue by is the monodromy around

the circle, and the direction we glue by is the opposite to the direction with respect to

which we described the monodromy, we will get a G-local system with trivial monodromy,

which can hence be extended to a G-local system on the disc D with boundary ∂D = S1.

In the construction of non-abelianization, the types of G-local system we consider will

be those that have been induced from N -local systems.

When we do this construction on the topological space underlying a punctured Rie-

mann surface X the locus on which we “cut and reglue” can be more complicated. The

locus we use is a spectral network, which [16] described how to construct from certain

points in the Hitchin base for G = GL(n) or G = SL(n), and [27] described how to con-

struct in the case of groups of type ADE, with the exception of E8. The cases of GL(n)

and SL(n) spectral networks had already appeared in the setting of exact WKB analysis

under the name of Stokes graphs, see e.g. [25, 24, 5, 34, 1, 2, 22, 3]. Unfortunately it

is not entirely clear for G �= SL2, PGL2, GL(2) for which points in the Hitchin base

the construction of a spectral network works. We do not resolve this point. We define
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spectral networks for arbitrary reductive algebraic groups G, starting from appropriate

points in the Hitchin base in chapter 3 following [23].

Our main result follows:

Construction–Theorem 1.0.2 (See Construction–Theorem 5.15 of [23], and Construc-

tions 4.3.9, Equation 4.3.1 and Theorem 4.3.10 of this document.). To an abstract spectral

network (see definition 3.2.1) on a punctured Riemann surface X with cameral cover X̃,

the maps sWKB defined in equation 4.3.1, and the reglue map of Construction 4.3.9 pro-

vide a map

Loc
X̃\R,S
N (X\P ) → LocG(X),

where LocX̃,S
N (X\P ) refers to the moduli of N -local systems on X\P corresponding to

the W -bundle X̃\R → X\P , satisfying a restriction on the monodromy called the S-

monodromy condition defined in 4.2.2. Note that P and R are the branch and ramification

divisors of the map X̃ → X, where X̃ is smooth.

The moduli of N -local systems used in Theorem 1.0.2 can instead be described in

terms of T -local systems on the cameral cover X̃\R, as the following theorem shows. We

reference chapter 4 for precise definitions of the moduli spaces involved.

Theorem 1.0.3 (See Theorem 5.14 of [23], and Theorem 4.2.7 of this document.). For

X̃◦ → X◦ a principal W -bundle coming from a smooth cameral cover X̃ → X, there is a

commutative diagram:

LocX̃
◦

N (X◦) LocNT (X̃◦)

LocX̃
◦,S

N (X◦) LocN,S
T (X̃◦)

∼=

∼=
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Here LocX̃
◦

N (X◦) is the moduli space of N -local systems on X◦ which correspond to the W -

bundle X̃◦, LocX̃
◦,S

N (X◦) is the moduli space of such N -local systems which also satisfy the

S-monodromy condition. The space LocNT (X̃◦) is the moduli space of N -shifted, weakly

W -equivariant T -local systems on X̃◦, and LocN,S
T (X̃◦) is the moduli space of T -local

systems which also satisfy the S-monodromy condition.

Finally in chapter 5 we consider how to describe these moduli spaces in spectral terms.

One of the results is the compatibility between the non-abelianization construction

of Construction–Theorem 1.0.2, and the path detour non-abelianization construction of

[16, 27], described here in construction 5.2.2, given by the following commutative diagram.

Theorem 1.0.4 (See Theorem 5.2.3 of this document, and Theorem 6.11 of [23]). In the

setting where both maps are defined, there is a commutative diagram:

LocX̃
◦,S

N (X◦) LocGm(X
ne,◦R
ρ )

LocG(X) LocGL(V )(X
◦)

Spρ

nonab nonabPD

ρ

(1.0.1)

where nonab is the nonabelianization map of Construction–Theorem 1.0.2, and nonabPD

is the path detour nonabelianization map descibed in construction 5.2.2 following [27, 16].

We also give precise descriptions of the moduli spaces of N -local systems we describe

in terms of the moduli space of Gm-local systems on spectral covers for GL(n), and SL(n).

These are summarized in the following theorem:

Theorem 1.0.5 (Spectral descriptions, see Propositions 5.3.5, 5.3.4, 5.3.7, 5.3.3 of this

document and §6.4 of [23].). For G = GL(n) and G = SL(n), the moduli spaces of N -

local systems Loc
X̃\R
N (X\P ) and Loc

X̃\R,α
N (X\P ) are isomorphic to those in the below

table 1.1.
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Group Loc
X̃\R
N (X\P ) Loc

X̃\R,α
N (X\P )

GL(n) LocGm

�
X\π−1

ρ (P )
�

LocGm(X\Rρ)×(Gm/Gm)#Rρ ({−1}/Gm)#Rρ

SL(n) LocGm

�
X\π−1

ρ (P )
�
×LocGm (X\P ) {CX\P } LocGm(X\Rρ)×LocGm (X\P ) {CX\P }

Table 1.1: Spectral descriptions of moduli spaces

Here X is the associated spectral cover, Rρ is the ramification locus of the spectral

cover. The map LocGm(X\Rρ) → (Gm/Gm)#Rρ comes from restricting to loops around

points in Rρ.

We also provide analogous results for the other classical groups in section 5.3.

1.1 Outline

In chapter 2 we provide some background on the moduli of local systems, the Hitchin

base, and some conventions and notation involving Lie algebras and algebraic groups. We

draw attention here to the fact that we use a non-standard sign convention for Chevalley

bases in definition 2.3.1. There is no new material in this section.

In chapter 3 we describe how to construct a spectral network from an appropriate

point in the Hitchin base, for an arbitrary reductive algebraic group G. We stress that it

is not entirely clear when this construction works, though there are many examples. This

generalizes the construction for groups of type ADE in3 [27], which in turn generalizes

the earlier construction of [16] which works for G = SL(n) and G = GL(n). We also give

an abstract formulation of the notion of spectral network, which we use in chapter 4.

In chapter 4 we first provide an alternative description of N -shifted, weakly W -

3With the exception of E8.
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equivariant T -local systems on X̃\R in terms of N -local systems on X\P (where P is

the branch locus), which correspond to the given cameral cover X̃\R. We also describe a

condition that we call the S-monodromy condition, that we also have to apply. We then

describe the construction of the non-abelianization map using the data of an (abstract)

spectral network.

In chapter 5 we describe the moduli spaces of N -shifted, weakly W -equivariant T -local

systems on X̃\R satisfying the S-monodromy condition in terms of Gm-local systems

on spectral covers for the classical groups. We also describe the relation between the

non-abelianization map we construct here and the path detour rule construction of non-

abelianization given in [16] for SL(n) and GL(n), and proposed for simply laced groups

in [27], in section 5.2. .
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Chapter 2

Local Systems, Hitchin base, and

Lie Algebras

The purpose of this chapter is to recall some well known theory about local systems and

their moduli, the Hitchin base, and Lie algebras that will be used in the sequel.

2.1 Local Systems and Their Moduli

Let X = Xc\D be a punctured Riemann surface, where Xc is a compact Riemann surface,

and D ⊂ Xc is a non-zero reduced divisor.

Definition 2.1.1. A G-local system on X is a locally constant sheaf E of sets with right

G-action on X, such that for all x ∈ X, Ex is a G-torsor.

Associated to such a local system, a choice of x ∈ X, and a choice of trivialization

x� ∈ Ex, we can construct a representation ρ : π1(X,x) → G, defined by ρ(γ) = g, where

g ∈ G is the unique element such that x�g is the parallel transport of x� along γ.

8



Changing the choice of x ∈ X, and changing the choice of trivialization of Ex has the

affect of conjugating the representation ρ constructed above.

Conversely given a representation ρ : π1(X) → G, we can construct a G-local system

on X, by taking the quotient Xun ×G/π1(X), where Xun → X is the universal cover of

X, and π1(X) acts diagonally by deck transformations and by the representation ρ.

Definition 2.1.2 (Classical Moduli stack of Local systems). We define the lassical1 mod-

uli space of G-local systems as

LocG(X)cl := HomGrp(π1(X), G)/G,

where we are taking the stacky quotient.

Remark 2.1.3. We note thatHomGrp(π1(X), G) is an affine scheme. This is because we re-

call that there is a choice of generators (called the canonical cycles) α1,β1, ...,αg,βg, γ1, ..., γd

(g is the genus of X, and d = deg(D)) of π1(X), such that we have an isomorphism:

π1(X) =

�
α1,β1, ...,αg,βg, γ1, ..., γd

�����

g�

i=1

[αi,βi]

d�

i=1

γi = Id

�
. (2.1.1)

We hence can write

HomGrp(π1(X), G) �→ G2g+d � (xα1 , xβ1 , ..., xαg , xβg , xγ1 , ..., xγd)

as being cut out by the equation
�g

i=1[xαi , xβi
]
�d

j=1 xγj = Id.

We want to consider the (derived) moduli space of G-local systems on X. Note that

the role of derived geometry in this thesis is very small, and can be ignored if desired,

see remark 2.10 of [23] for a precise statement about when use of derived geometry is

necessary.

1We use classical here in the sense that we are not referring to the derived moduli space.
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Definition 2.1.4 (Betti Stack). The derived stack XB is the constant functor dSchop →

Top, from the opposite category2 of derived schemes to the category of topological spaces,

such that it maps all derived schemes to the topological space underlying the punctured

Riemann surface X.

For � a topological space we denote �B the constant functor dSchop → Top, which

maps all derived schemes to the topological space �.

Definition 2.1.5 (Moduli of G-local systems). We define the moduli space of G-local

systems as the (derived) mapping stack

LocG(X) := HomdSt(X,BG).

See e.g. §19.1 of [28] for an overview of derived mapping stacks.

In [36] it is shown that t0(LocG(X)) = LocG(X)cl, where t0 is the truncation functor

from derived stacks to stacks in the ordinary sense.

2.2 The Hitchin Base

The Hitchin base associated to Xc and the line bundle KXc(D), for D a non-zero reduced

divisor is the space A := Γ(Xc, tKXc (D)/W ), where tKXc (D) := Tot(KXc(D))×Gm t.

Definition 2.2.1. Given a point a ∈ A we define the associated cameral cover X̃c → Xc

as the pullback:

X̃c
a tL

Xc tL/W

ã

π

a

(2.2.1)

2Here category should be understood to mean (∞, 1)-category in the sense of [29].
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We will often simply denote a cameral cover as X̃c if we do not want to emphasize

the point of the Hitchin base it is associated to. We also denote X̃ := X̃c ×Xc X. We

also refer to X̃ as a cameral cover. In the case where X̃ is reduced, we let R ⊂ X̃ and

P ⊂ X be the ramification and branch divisors of X̃. We let X̃◦ := ReBlR(X̃), and

X◦ := ReBlP (X) be the real blow ups at these divisors3. We will also refer to X̃◦ → X◦

as a cameral cover.

The cameral cover X̃ has an action of W induced by the action of W on t. If X̃ is

reduced, and the map X̃ → X is unramified, then X̃ → X is a principal W -bundle. In

particular X̃◦ → X◦ is a principal W -bundle.

Definition 2.2.2. We define the Zariski openA♦ ⊂ A as the subset ofA = Γ(Xc, tKXc (D)/W ),

where X intersects
�
∪α∈Φ (Hα)KXc (D)

�
/W ⊂ tKXc (D)/W transversely.

Here (Hα)KXc (D) denotes Tot(KXc(D))×Gm Hα.

Lemma 2.2.3 (See [10, 30]). For a ∈ A♦, the cameral cover X̃a is smooth. Furthermore

around the ramification points the map is locally modelled on A1
z → A1

w, w �→ z2.

Proof. The transversality condition implies that X̃ does not intersect the singular part

of
�
∪α∈Φ (Hα)KXc (D)

�
, that is to say it does not intersect (Hα)KXc (D) ∩ (Hβ)KXc (D) for

any pair of roots α �= β. Then as each intersection with some (Hα)KXc (D) is transveral,

it is smooth, and the quotient by sα ∈ W is locally modelled on A1
z/{±1} = A1

w, where

w = z2.

Lemma 2.2.4. The set A♦ ⊂ A is non-empty for the genus of Xc satisfying g ≥ 1 (recall

3To take the real blow up we consider the complex analytic manifold associated to the Riemann surface,

and consider the underlying real analytic space.
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we assumed deg(D) ≥ 1). For X = P1 nonemptyness of A♦ holds if deg(D) ≥ 2.

Proof. We modify the proof of Proposition 4.6.1 of [30]. To adapt this proof to our

situation we need only show that KXc(D) is ample. This is the case under the conditions

imposed the lemma.

2.3 Algebraic Groups

Let G be a reductive algebraic group with maximal torus T ⊂ G. We denote by Φ the

root system, and N = NG(T ) the normalizer of T , and W = NG(T )/T the Weyl group.

We denote by

q : N → W (2.3.1)

the quotient map.

We now wish to introduce a version of Chevalley basis with a non-standard choice of

signs, which is more convenient for our purposes.

Definition 2.3.1 (Chevalley basis). Let g be a semisimple Lie algebra with root space

decomposition g = t⊕α∈Φ gα. A Chevalley basis is a set of elements:

• {hα}α a simple root. forming a basis of t.

• An element eα ∈ gα for each α ∈ Φ.

Furthermore for γ =
�

i aiαi, with αi a simple root, we define hγ :=
�

i aihi.

These elements are required to satisfy:

12



[hα, eγ ] = 2
(α, γ)

(α,α)
eγ , (2.3.2)

[eα, e−α] = −hα, (2.3.3)

[eα, eγ ] =





0 if α+ γ not a root,

±(pα,γ + 1)eα+γ if α+ γ is a root.

(2.3.4)

The number pα,γ in equation 2.3.4, denotes the largest integer with the property that

α− pα,γγ is a root.

Choose a Chevalley basis (see [7]) of the semisimple part of g – the Lie algebra of G.

For each root α ∈ Φ, we denote by

Iα : SL2 → G (2.3.5)

be the map of group corresponding to the map of Lie algebras

iα : sl2 → g

specified by the Chevalley basis, with iα(sl2) = span(eα, hα, e−α).

We now introduce some subgroups and elements that will be used in the sequel.

Definition 2.3.2. For a root α ∈ Φ, we define the abelian subgroup: Tα := Iα(TSL2) ⊂ T .

We denote by tα it’s Lie algebra.

Definition 2.3.3. We define nα ∈ N , for a root α ∈ Φ, as

nα := Iα




0 1

−1 0


 .

13



Definition 2.3.4. We define TKer(α) to be the subgroup of T corresponding to the sub

Lie algebra

tKer(α) �→ tα
α−→ C

which is the kernel of α.

14



Chapter 3

Spectral and Cameral Networks

We fix a reductive algebraic group G with chosen maximal torus T ⊂ G. We also fix a

Riemann surface with punctures X = Xc\D (where D �= ∅ is a reduced divisor on the

compact Riemann surface Xc). Spectral networks are a topological object consisting of a

union of oriented lines1 � ⊂ X. These lines are labelled by additional data. The networks

and the data are most easily described using cameral networks, which are topological

objects on a cameral cover X̃ → X, labelled by roots, which are compatible with the

action of W on X̃, and the root system. In this chapter we introduce this construction

following [23].

We also describe how these abstract topological objects can be constructed using

certain points of the Hitchin base associated to the group G, and the line bundle KXc(D).

In the case where G = SL(2) we essentially recover the trajectories of a quadratic

differential. For groups of type ADE, we recover the definitions of [27], and that of [16]

1By lines we mean one dimensional submanifolds. We are here considering the two dimensional real

analytic manifold underlying the complex analytic manifold/scheme X.

15



in the case of G = GL(n) or G = SL(n).

3.1 Abstract Cameral Networks

We firstly introduce the notion of 2d scattering diagrams which provide a local description

of cameral networks when multiple lines in the cameral network intersect.

We first introduce some additional terminology.

Definition 3.1.1. A set of roots C ⊂ Φ is convex if the cone Cone(C) := {a =

�
αi∈C aiαi|ai ∈ R, ai ≥ 0}, does not contain any non-trivial vector subspace of t∨.

Definition 3.1.2. Let C ⊂ Φ be a set of roots, we define

ConvN(C) := {β ∈ Φ|β =
�

i

aiαi, ai ∈ Z, ai ≥ 0}.

Definition 3.1.3. To each root α we let Uα denote the unipotent subgroup of G, with

Lie algebra being the weight space uα �→ g of the adjoint representation corresponding to

α.

Definition 3.1.4. A 2d scattering diagram is a set of oriented rays in the plane2, either

starting or ending at the origin, together with:

• A bijection between the set of incoming rays, and a convex set of roots C ⊂ Φ.

• A bijection between the set of outgoing rays and roots in ConvN(C).

Definition 3.1.5 (Abstract Cameral Networks, Essentially definition 4.4 of [23]). We

fix a smooth cameral cover X̃ → X associated to a ∈ A♦, and denote its branch and

2Considered as an oriented manifold.
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ramification divisors by P and R respectively. We denote by X̃◦ π−→ X◦ the principal W

bundle defined in definition 2.2.1, and also refer to this as the cameral cover.

An abstract cameral network W̃ on X̃◦, is the data of

• A subspace X̃◦� �→ X◦, preserved under the action of W , such that the inclusion is

a homotopy equivalence.

• A union of a finite set of smooth oriented lines with single boundary {�i}i with

�i �→ X̃◦� �→ X̃◦, each labelled by a root αi ⊂ Φ. By a single boundary we

mean that the subset �i ⊂ X◦� can be described by i([0, 1)), for some smooth

i : [0, 1) → X◦� . These are required to have the following property: The closure

of � inside the closure
�
X̃◦�

�
⊂ ReBlR∪π−1(D)(X̃

c) of X̃◦� in the real blow up of

X̃c along both R and π−1(D), has to consist of � ∪ pt, where pt is a single point in

�
X̃◦�

�
\X̃◦� .

These are required to satisfy the following properties:

• Equivariance: Let � ⊂ W̃ be a line in W̃ labelled by α, then w(�) is in W̃, and has

the label w(α), for any w ∈ W .

• Behaviour at ramification points : For p ∈ P , and S1
r ⊂ X̃◦ be a connected com-

ponent of the preimage of S1
p , corresponding to a ramification point r ∈ X̃. There

are 6 lines of the cameral network that intersect S1
r . The labels of these alternate

between α and −α, where these are the two roots such that at the ramification point

r, X̃ intersects the root hyperplane (Hα)KXc(D)
. The orientation of these lines is

coming out of the circle S1
r .
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• Joints We call the intersection points of any pair of lines �i and �j , for i �= j, joints.

The set J̃ of joints is finite. Furthermore at each joint the half of the tangent space

to incoming and outgoing lines that corresponds to the direction the line is either

coming in from or going out towards, together with the labels of their lines form a

2d scattering diagram in the sense of 3.1.4.

• Acyclicity Consider the directed graph, with vertices being the joints J̃ the ramifi-

cation points R and the points d ∈ π−1(D), and edges being connected components

of W̃\J̃ , with the orientation of the line providing the direction of the edge. We

require that this directed graph is acyclic.

• Non-denseness Let f : [0, 1] → X◦� intersect �i transversely at f(1/2) for all lines

�i � f(1/2). Then there is an open set 1/2 ∈ U ⊂ [0, 1], such that f(U)∩ W̃ ⊂ 1/2.

We often abuse notation and write W̃ to denote the topological space ∪i�i. We also

sometimes refer to the lines �i as Stokes lines. We hope this does not cause confusion.

Definition 3.1.6. For X̃◦� as above we can define X◦� := X̃◦�/W , this gives us a principal

W -bundle X̃◦� → X◦� . Furthermore it is clear that the inclusion X◦� �→ X◦ is a homotopy

equivalece.

3.2 Spectral Networks

Definition 3.2.1 (Abstract Spectral Network). An abstract spectral network W is the

set π∗W̃ ⊂ X◦� , for W̃ ⊂ X̃◦� �→ X̃◦ an abstract cameral network.

Note that we can still write W = ∪i�i for some lines �i �→ X◦� . These lines inherit

orientations from their preimages on X̃.
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We can view these line segments �i as being labelled by a W -equivariant section of

Hom(X̃◦� |�i ,Φ).

We denote J = π∗J̃ and call it the set of joints of the spectral network.

Remark 3.2.2. Picking a trivialization of the cameral cover away from a series of branch

cuts, gives labels of the lines by roots by precomposing the homomorphismHom(X̃◦� |�i ,Φ)

with the section trivializing the cameral cover. This recovers the labelling of lines of the

spectral network by roots, given such a choice of trivializations found in earlier work, in

particular in [27, 16].

Lemma 3.2.3 (Acyclicity). The directed graph with vertices being points of J ∪ P ∪D

and, and edges being connected components of W, with orientations inherited from the

orientations of lines of the spectral network. Then this graph is acyclic.

Proof. Suppose otherwise. Then we can lift a cycle in this graph, which includes a point

x ∈ (J ∪ P ∪D) ⊂ X to a cycle in the analogous graph (which we will call the cameral

graph) defined using the cameral network. This gives a path in the cameral graph between

the vertices correpsonding to two preimages x̃1 and x̃2 of x. We can commpose this

with the lift of the cycle starting at x̃2. Iterating this process as there are finitely many

preimages of x we will obtain a cycle contradicting the acyclicity requirement of definition

3.1.5.

Lemma 3.2.4. Consider the directed graph, with vertices being the union of joints J and

branch points P , and edges being connected components of W\J , with the orientation of

the line providing the direction of the edge.
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There is a filtration F•(J ∪P ) on J ∪P (the vertices of this graph), with the property

that F0(J ∪ P ) = P , and the property that any edge ending at a vertex in Fm(J ∪ P )

starts at a vertex in Fm−1(J ∪ P ).

Proof. Lemma 3.2.3 shows that the graph with vertices being the joints and the circles S1
p

(p ∈ P ) and edges being the connected components of W\J is an acyclic directed graph.

The local behaviour of the cameral network around ramification points shows that

there are no incoming edges to the vertices associated to the branch points p ∈ P .

It is well known that in this situation there is a filtration on the edges of the graph

which has the desired properties, in particular a proof can be found in lemma 4.5 of

[23].

Definition 3.2.5. We use the filtration F•J on joints to define a filtration F•W on

connected components of W\J as follows:

We define FiW to consist of all connected components of W\J that start (using the

orientation of the line) at a joint in FiJ .

Note that as there are finitely many joints, and finitely many lines, this filtration is

eventually constant, that is there is N >> 0, such that ∀m ≥ N , we have FmW = FNW.

3.3 WKB Cameral Networks

In this section an iterative procedure to define lines �i ⊂ X̃◦, starting from a point in the

Hitchin base. In good situations, after restricting to X̃◦� �→ X̃◦, this will give an abstract

cameral network in the sense of definition 3.1.5.

20



3.3.1 The Hitchin Base and Differentials

Construction 3.3.1. Let α ∈ Φ be a root, we construct a differential form χα on X̃a.

Consider the map:

X̃c
a

ã−→ tKXc(D)

α−→ Tot(Kc
X(D))

This provides a map X̃c
a → π∗KXc(D) → KX̃c(π∗(D)). We denote this differential, and its

restriction to X̃, by χa.

Associated to the differential χa is a real projective vector field Vα ∈ Γ(X̃, T X̃/R+),

defined as follows:

v ∈ [Vα] ⊂ TX̃ (3.3.1)

if χα(v) ∈ R+.

We now provide what we will call the WKB construction of an abstract cameral

network, starting at certain points a ∈ A♦. We stress that this will not work starting at

an arbitrary point, and for G �= SL(2), PGL(2) the precise nature of the locus of points

where this construction does not work is unclear. However there is a wealth of examples

in e.g. [16, 27] of cases where this construction works for simply laced groups. More

examples can be produced by the software [26] which draws spectral networks for simply

laced groups.

We break this construction into two parts (constructions 3.3.2 and 3.3.7). The first

consists of drawing lines on X̃◦, and the second consists of restricting to a specified subset

X̃◦� ⊂ X̃◦.

Construction 3.3.2 (Part 1 of the WKB Construction). We start with a point a ∈ A♦,

and construct the associated smooth cameral cover X̃. We then construct the modified

21



version X̃◦ → X◦, which is a principal W -bundle.

This part is a two step construction, firstly we draw what we call the“initial” Stokes

lines, which start at the preimages of S1
p , for p ∈ P . We then iteratively draw what we

call “new” Stokes lines which start where Stokes lines intersect.

This part of the construction does not work for arbitrary a ∈ A♦, and we end with a

list of points that can stop the iteration, or in which the produced result is unsuccessful.

• Firstly we take the closure in X̃◦, of for each r ∈ R ⊂ X̃ the trajectories of the

projective vector field χα (as oriented, unparameterized lines), where α is a root

such that ã(r) ∈ (Hα)KX̃c(D)
. We label such a line by the root α.

• We then iterate the following step, assuming that none of the phenomena in the list

below occur. For each intersection J (which we again call a joint), where one of the

lines produced in the previous step intersects another line, we draw new trajectories

of the projective vector field Vα starting at J for each α ∈ ConvNC , where C is the

set of lines passing through the joint J , assuming that these trajectories have not

already been drawn.

The behaviours that can cause the procedure to fail at one of the iterative steps follow:

• A loop forms, that is there is a non-contractible map of oriented manifolds S1 → ∪i�i

to the union of all lines so far produced.

• One of the lines drawn intersects one of the preimages of S1
p , p ∈ P , or equivalently

if considering the line on X̃, contains a ramification point.
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• A line drawn violates the non-denseness requirement of definition 3.1.5, with X◦�

replaced by X◦.

• At an intersection point the labels of the incoming roots do not form a convex set

in the sense of 3.1.1, or the tangent spaces of multiple incoming or outgoing lines

are equal so that the joints condition of definition 3.1.5 is violated.

We take the union of all labelled oriented lines produced in (possibly countably in-

finitely many) steps of the iterative process above.

Furthermore the construction can fail if after taking the union of the lines produced

at all steps of the iteration one of the following phenomena happens:

• The set of joints J̃ has a limit point in X̃◦ (we allow it to have a limit point in X̃c).

Lemma 3.3.3. The set of labelled, oriented curves produced in Construction 3.3.2 (if the

construction does not fail) is W -equivariant in the sense of the equivariance condition of

definition 3.1.5.

Proof. Immediate from the W -equivariance of the map X̃c → tKXc (D), which means that

w∗χα = χwα, and hence w∗Vα = Vwα.

Lemma 3.3.4. The set of labelled, oriented curves produced in Construction 3.3.2 (as-

suming the construction does not fail) satisfies the “behaviour at ramification points”

condition of definition 3.1.5.

Proof. This is partly due to the requirement of terminating the construction if one of the

trajectories on X̃ intersects a ramification point, and partly as a direct computation of
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the local behaviour of the initial Stokes lines shows that this behaviour holds, as shown

in lemma 4.20 of [23].

We furthermore note that the acyclicity condition holds by assumption, if the con-

struction is successful. The finiteness condition on both joints, and on lines does not

necessarily hold, and if there are infinitely many lines the non-denseness condition does

not necessarily hold. Examples of cases where these do not hold are found in §5.5 of [16],

and are the reason for restricting to X◦� .

The idea of the second step of the WKB construction of an abstract cameral network

(construction 3.3.7 see also construction 3.3.2) is to pick a (W -equivariant) subspace

X◦� �→ X◦, such that the inclusion is a homotopy equivalence, and restrict the lines in

construction 3.3.2 to this subset. Before we do this, we prove some more results about

the behaviour of trajectories of Vα for some α near π−1(D) ⊂ X̃c.

3.3.2 Behaviour of Differentials near D ⊂ X̃c

Following the case of the Quadratic differential considered in, for example, [33, 6], we find

a condition (which we call condition R) under which we can appropriately restrict the

lines produced in construction 3.3.2 to a subspace X̃◦� �→ X̃◦.

Definition 3.3.5 (Condition R). We say that a ∈ A = Γ(Xc, tKXc (D)/W ) satisfies con-

dition R if for each d ∈ D using a local coordinate x, at d we can write

a(x) =

�
W • (r̃d

dx

x
)

�
/W,

for r̃d ∈ t\
�
∪α∈Φα−1(iR)

�
.
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Note that as the subset
�
∪α∈Φα−1(iR)

�
of t is W -equivariant, it does not matter which

lift r̃d of an element in t/W we use.

Proposition 3.3.6. Let a ∈ A♦ such that a satisfies condition R, and that construction

3.3.2 applied to a is successful. Then for any d ∈ D, there exists an open set d ∈ Bd ⊂ Xc

such that for any line � produced in construction 3.3.2 entering π−1(Bd) does not leave,

and furthermore any new Stokes line starting at a joint inside π−1(Bd) does not leave

π−1(Bd).

Proof. Note that by condition R, the covering X̃c π−→ Xc is locally trivial around d ∈ D.

We will restrict to such a neighbourhood.

We will first outline how the trajectories of the Vα relate to quadratic differentials.

We note that for α ∈ Φ we factor π as

X̃c → X̃c/sα
πα−→ Xc,

the differential form χα corresponds to a quadratic differential on X̃c/sα:

X̃c/sα → t/sα ⊗ π∗
α(KXc(D)) → KX̃c/sα

(π−1
α (D))/{±1}.

which corresponds to a section

qα ∈ Γ(X̃c/sα, (KX̃c/sα
(π−1(D)))⊗2)

To a quadratic differential q on a Riemann surface Y , we can associate a foliation of

Y by the curves γ : Rt → X such that:

d

ds

� s

t=t0

±√
q(γ(t)) ∈ R. (3.3.2)
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Note that this does not depend on parametrization, and furthermore the lines of this

foliation starting at ramification points correspond to lines of the SL(2) spectral network

associated to (Y, q).

The trajectories labelled by α on X̃ are then, forgetting the orientation, given by the

pullback of sections of the folitation on X̃/sα determined by the quadratic differential qα.

Then by the analysis of the case of quadratic differentials found in [33] or section 3

of [6], for each α there is an open set Bd,α for which every line of the cameral network

labelled by α in π−1(Bd,α) either has tangent direction pointed towards a point in π−1(d)

or away from it3. Taking Bd := ∩αBd,αthe result follows up to the question of orientation

– we need to show that the tangent directions are always oriented towards d ∈ D. This

statement follows by induction on construction 3.3.2, and using lemma 4.14 of [23]. Firstly

note that any line entering the circle will has tangent direction towards d. Secondly lemma

4.14 of [23] says that any line starting at J ∈ Bd has tangent vector between the tangent

vectors of the incoming lines at J which by the induction hypothesis are oriented towards

d, and hence the tangent vector of the new Stokes line is oriented towards d.

See example 4.25 and proposition 4.32 in [23] for more details.

Construction 3.3.7 (Part II of the WKB construction). Starting at a point a ∈ A♦

satisfying condition R, firstly apply construction 3.3.2. Assuming this construction is

successful we then restrict to the lines intersecting X̃◦� := X̃◦\ ∪d∈D π−1(Bd), where Bd

is determined in proposition 3.3.6. We take the restrictions of the lines we keep to the

subset X̃◦� .
3The uncertainty in the direction comes from the fact that the trajectories of a quadratic differential

are unoriented.
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Theorem 3.3.8 (This is Proposition 4.19 in [23]). Apply constructions 3.3.2 and 3.3.7

to a point a ∈ A♦ satisfying condition R. Assume that this is successful, then we have

produced an abstract cameral network in the sense of definition 3.1.5.

Proof. Note that it is clear that X̃◦� �→ X◦ is preserved under the action of W , and is a

homotopy equivalence.

Furthermore by the assumption in construction 3.3.2 the joints J̃ had no accumulation

point in X̃◦, hence there are only finitely many in X̃◦� . Hence there are only finitely many

lines.

We now need to prove the five conditions in definition 3.1.5. Note that the equivariance

and behaviour at ramification points conditions were proved in lemmas 3.3.3 and 3.3.4.

The joints condition follows by construction, and by the assumption about accumulation

points noted above. The acyclicity condition was required for success of construction

3.3.2. The non-denseness condition follows from the fact that there are finitely many

lines, and the non-denseness condition for the success of construction 3.3.2. The result

follows.
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Chapter 4

Nonabelianization

4.1 Moduli Spaces of N and T Local Systems

Consider the short exact sequence

1 → T → N → W → 1

The morphism N → W induces a map LocN (X◦) → LocW (X◦), this allows us to

define the moduli of N -local systems that correspond to a given cameral cover as follows:

Definition 4.1.1 (Moduli N local systems corresponding to a cameral cover LocX̃
◦

N (T )).

Let X̃◦ → X◦ be a principal W -bundle, we define

LocX̃
◦

N (X◦) := LocN (X◦)×LocW (X◦) {X̃◦}.

Consider EN → X◦
B×Y an N -bundle, equipped with an isomorphism EN/T ∼= X̃◦

B×Y .

This gives the map EN → EN/T × Y
∼=−→ X̃◦ × Y the structure of a T -local system (using

the fact T is abelian). Letting Y = LocX̃
◦

N (X◦), and EN be the universal object provides,
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by the universal property, a map

LocX̃
◦

N (X◦) → LocT (X̃
◦). (4.1.1)

Clearly this is not an equivalence. We now follow [9] which considers the analogous

case in the setting of principal bundles rather than local systems to describe how to

upgrade the map in equation 4.1.1 to an isomorphism.

Firstly we make the following definition to be used in the sequel:

Definition 4.1.2. Let ET be a T -local system on X̃◦, we define the local system

AutX◦(ET ) := {(w, ρ)|w ∈ W, ρ : ET
∼=−→ w∗ET },

where we are considering the action of w on X̃◦ given by the fact that X̃◦ → X◦ is a

principal W -bundle.

Definition 4.1.3 (N -shifted weaklyW -equivariant T -local system). AnN -shifted, weakly

W equivariant T -local system on a cameral cover X̃◦ is a T -local system ET → X̃◦ to-

gether with the additional data of a morphism γ : N → AutX◦(ET ), such that the following

diagram of algebraic groups commutes:

1 T N W 1

1 Homlc(X̃
◦, T ) AutX◦(L) W 1.

Δ γ Id (4.1.2)

In the above the map Δ : T → Homlc(X̃
◦, T ), refers to the map from t ∈ T , to the

constant morphism with image t ∈ T , the lc subscript stands for locally constant.

Furthermore this clearly sheafifies over X◦ in the classical topology, and hence gives

a sheaf that we denote AutX◦(ET )
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Definition 4.1.4 (Moduli of N -shifted weakly W -equivariant T -local systems). We have

group objects in the category of (derived) stacks over LocT (X̃
◦)× (X◦)B: corresponding

to N × LocT (X̃
◦) × (X◦)B, and to AutX◦(ET ), where ET → LocT (X̃

◦) × (X◦)B denotes

the universal object. We now define the moduli stack LocNT (X̃◦) of N -shifted, weakly

W -equivariant T -local systems on X◦ as ΓX◦
B
(F), where F is the fiber product:

F HomGrp(dSt/LocT (X̃◦)×X◦
B)

�
N,AutX◦(ET )

�

{Δ, Id} HomGrp(dSt/LocT (X̃◦)×X◦
B)

�
T,Homlc(X̃◦, T )

�
×HomGrp(dSt/LocT (X̃◦)×X◦

B)(W,W )

Note that in the above commutative diagragm we sometimes write e.g. W as shorthand

for the group object W × LocT (X
◦)×X◦

B in dSt/LocT (X◦)×X◦
B
.

Remark 4.1.5. For group objects G,H of dSt/X , the notation HomGrp(dSt/X)(G,H) is

defined as the equalizer (limit):

HomGrp(dSt/X)(G,H) → HomdSt/X(G,H) ⇒ HomdSt/X(G×X G,H)

where the two morphisms HomdSt/X(G,H) ⇒ HomdSt/X(G×X G,H) are given by φ �→

(φ◦mG), and φ �→ (mH ◦ (φ×IdX φ)), for mG and mH the group multiplications of G, and

H respectively, and HomdSt/X(G,H) referring to the derived mapping stack. See §19.1

of [28] and [37] for more about derived mapping stacks.

Proposition 4.1.6. (Proposition 5.8 of [23], cf. [9]) There is an isomorphism of stacks

LocX̃
◦

N (X◦) → LocNT (X̃◦)

Remark 4.1.7. This result is closely related to the unramified case of the result of [9],

which in an entirely analogous way gives a version of this result for principal bundles

rather than local systems.
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Proof. We note that the map of equation 4.1.1 factors as

LocX̃
◦

N (X◦) LocNT (X̃◦)

LocT (X̃
◦)

forget

with the inverse map LocNT (X̃◦) → LocX̃
◦

N (X◦) also being given by the universal

property, taking a T -local system ET → X̃◦
B×Y to the N -bundle ET → X̃◦

B×Y → X◦
B×Y ,

with N -action given by N → AutX◦(ET )

� ET . Applying this to Y = LocNT (X̃◦) gives the

desired inverse map.

4.2 The S-monodromy Condition

In the spectral case of non-abelianization considered in sections 5.2, 5.1 , and in the

original paper [16] we can see that the space of all N -local systems is too large. The

S-monodromy condition is a restriction on the monodromy of N -local systems around

branch points p ∈ P ⊂ X (or equivalently S1
p ⊂ X◦) that rectifies this discrepancy.

Recall definitions 2.3.3 and 2.3.2.

Lemma 4.2.1. The subset
�

α∈O nαTα ⊂ N , where O ⊂ Φ is a W -orbit, is preserved by

the action of N by conjugation.

Proof. See lemma 3.15 in [23].

We can now define the S-monodromy condition for N -local systems. Fix a smooth

cameral cover X̃ → X, and let X̃◦ π−→ X◦ be the unramified cover constructed in definition

2.2.1. For each p ∈ P let Op ⊂ Φ be the subset of roots, such that the W -conjugacy class

corresponding to the monodromy around Sp
1 of X̃◦ corresponds to the set {sα|α ∈ Op}.
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We then define:

Definition 4.2.2. Let EN → X◦, be an N -local system, equipped with an isomorphism

of W -bundles, EN/T
∼=−→ X̃◦. We say that EN satisfies the S-monodromy condition if for

each p ∈ P , the monodromy of EN around S1
p is contained in

�
α∈Op

nαTα with respect to

any choice of trivialization at a point.

Definition 4.2.3. We define the moduli space of N -local system corresponding to X̃◦

satisfying the S-monodromy condition by:

LocX̃
◦,S

N (X◦) := LocX̃
◦

N (X◦)×
Πp∈PLoc

π−1(S1
p)

N (S1
p)
Πp∈P




 �

α∈Op

nαTα


 /N




Remark 4.2.4. Let Cp ⊂ W , be the W -conjugacy class corresponding to the monodromy

of X̃◦ around S1
p . Recall we use q : N → W to denote the quotient map. We then have

that

Loc
π−1(S1

p)

N (S1
p)

∼= q−1(Cp)/N.

We now consider how to describe the S-monodromy condition in terms of N -shifted,

weakly W -equivariant T -local systems on the cameral cover X̃◦. This is less natural,

however we will be able to more or less describe the moduli space of such T -local systems

as a component of a moduli space of N -shifted, weakly W -equivariant T -local systems,

together with a restriction on the monodromy.

Definition 4.2.5. We say that an N -shifted, weakly W -equivariant T -local system satis-

fies the S-monodromy condition if the associatedN -local system satisfies the S-monodromy

condition of definition 4.2.2.

Picking a point on S1
p , and trivializing X̃◦|S1

p
restricted to this point, for each p ∈ P

means we can interpret the S-monodromy condition, as corresponding to a reduction of
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structure of theN -local system on S1
p to SL2, with respect to the morphism Iα : SL2 → G,

where α is the root, such that sα is the monodromy of X̃◦|S1
p
.

For SL2, noting that W ∼= {1, s}, and that for any n ∈ q−1(s), we have n2 = −Id, we

have that in the caseG = SL(2), anN -local system satisfying the S-monodromy condition

is mapped under the map of proposition 4.1.6 to an N -shifted, weakly W -equivariant T -

local system with the property that the monodromy around S1
r is Iα(r)(−Id) for each

r ∈ R, where α(r) is one of the two roots such that X̃ intersects the hyperplane Hα at r.

The reverse does not hold, for example for G = GL(3) the element

g =




0 −1 0

1 0 0

0 0 −1




also squares to Iα(−Id).

We now want to describe all elements n ∈ q−1(sα) ⊂ N that square to Iα(−Id), in

order to describe the subset of these which correspond to the S-monodromy condition.

Recall that we have a map Tα × TKer(α) → T (see definitions 2.3.2, 2.3.3 ) that is either

an isomorphism or has a kernel with two elements (see Lemma 3.11 of [23]). We can

hence write any element in the N such that q(N) = sα in at most two different ways as

n = nαtαtKer(α) with tα ∈ Tα, and tKer(α) ∈ TKer(α). We have that

(nαtαtKer(α))
2 = (nαtα)

2t2Ker(α)

= Iα(−Id)t2Ker(α).

This tells us that the monodromies (in N/N) which correspond to satisfying the S-

monodromy condition form a connected component of the monodromies (in N/N) which
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upon choosing a trivialization of the cameral cover to reduce from N/N to N/T square

to an element Iα(−Id) for α ∈ Op.

Note that for deg(D) > 0 we have that LocX̃N (X) is connected (as the character variety

is connected because D is non-zero). Furthermore it is clear that LocX̃,S
N (X) is connected.

We can hence make the following definition:

Definition 4.2.6. We define the moduli stack of N -shifted, weakly W -equivariant T -

bundles on X̃◦ as the connected component of

LocNT (X̃◦)×LocT (
�

r∈R(S1
r ))

Πr∈R{−Id},

containing the image of LocX̃,S
N (X).

Because nαTα is a connected component of the stack q−1(sα) ×T {−Id}, where the

map q−1(sα) → T is n �→ n2, we gain the following theorem.

Theorem 4.2.7 (Theorem 5.14 in [23].). For X̃◦ → X◦ a principal W -bundle coming

from a smooth cameral cover X̃ → X, there is a commutative diagram:

LocX̃
◦

N (X◦) LocNT (X̃◦)

LocX̃
◦,S

N (X◦) LocN,S
T (X̃◦)

∼=

∼=

where the top arrow is that of proposition 4.1.6.

4.3 The Nonabelianization Map

In this section we give describe the construction of the non-abelianization map from [23].
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By definition 3.2.5 we have a filtration FiW of the connected components ofW\J , with

the property that F0W is the union of the lines emerging from branch points p ∈ P ⊂ X

(or strictly speaking from the associated boundary circles S1
p) as shown in lemma 3.2.4.

The large scale structure of the non-abelianization construction can be seen as fol-

lows. We are going to “cut and reglue” a G local system induced from any given N -local

system, corresponding to X̃◦ satisfying the S-monodromy condition, along the locus W.

To do this we need to produce automorphisms of the G local system restricted to each

connected component of W\J . We will call these automorphisms Stokes factors. We

do this inductively using the filtration F•W. We then define the reglue map (for speci-

fied automorphisms) in construction 4.3.9, which describes “cutting” along W and then

“regluing” by specified automorphisms.

We first define some moduli stacks that parameterize appropriate N -local systems EN ,

together with certain automorphisms of the induced G-local system EG := EN ×N G. Note

that inducing a G-local system provides a map LocN (X◦) → LocG(X
◦), which given the

mapping stack description LocN (X◦) = Map(X◦, BN), corresponds to postcomposing a

map with the map BN → BG induced from the inclusion N �→ G.

We first give a definition of the moduli of G-local systems on X◦ equipped with

automorphisms of the local system restricted to a set of lines1. Firstly note that the

universal bundle pt → BG has the sheaf of automorphisms G/G → BG. Hence we make

the following definition:

1By lines we mean one dimensional topological submanifolds of the topological manifold X◦.
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Definition 4.3.1. For FiW\J =
�

j �j for disjoint line segments �j we define

AutFiW
G (X◦�) := LocG(X

◦�)×LocG(
�

j �j)
Hom(

�

j

(�j)B, G/G).

Similarly for W\J =
�

j �j for disjoint line segments �j we define

AutWG (X◦�) := LocG(X
◦�)×LocG(

�
j �j)

Hom(
�

j

(�j)B, G/G).

Definition 4.3.2. We define

AutFiW,X̃◦�
(X◦�) := LocX

◦� ,S
N (X◦�)×LocG(X◦� ) Aut

FiW
G (X◦�),

where the map LocX
◦� ,S

N (X◦�) → LocG(X
◦�) is the composition of the forgetful map, with

the map coming from inducing from N -local systems to G-local systems;

LocX
◦� ,S

N (X◦�)
forget−−−−→ LocN (X◦�) → LocG(X

◦�).

Definition 4.3.3. Similarly we define

AutW,X̃◦�
(X◦�) := LocX

◦� ,S
N (X◦�)×LocG(X◦� ) Aut

W
G (X◦�).

Note that for N sufficiently large we have AutFNW,X̃◦�
(X◦�) = AutW,X̃◦�

(X◦�).

We now provide a section of the forgetful map

AutW,X̃◦�
(X◦�) → LocX̃

◦� ,S
N (X◦�).

We do this in two steps; firstly we provide a section s0 ofAut
F0W,X̃◦�

(X◦�) → LocX̃,S
N (X◦�),

and secondly for each non-negative integer i we provide a lifting si of the section si−1:

AutFiW,X̃◦�
(X◦�)

LocX̃
◦� ,S

N (X◦�) AutFi−1W,X̃◦�
(X◦�)

forget
si

si−1
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Noting that for N sufficiently large we have AutFNW,X̃◦�
(X◦�) = AutW,X̃◦�

(X◦�), com-

posing the sections obtained above gives a section we denote sWKB of the forgetful map

AutW,X̃◦�
(X◦�) LocX̃

◦� ,S
N (X◦�).

forget

sWKB

(4.3.1)

4.3.1 Stokes Factors for Initial Stokes Lines

We will being by giving a very explicit calculation for G = SL2. We note that for simply

laced groups with a faithful miniscule representation, the path detour rules explained in

section 5.2 provide an alternative construction.

Example 4.3.4 (Stokes factors for SL2). We first note that the monodromy of an N -local

system corresponding to a cameral cover X̃◦ → X◦, will have monodromy around S1
p (for

some p ∈ P upon choosing a trivialization at a point) of the form




0 −a

1/a 0


 .

There are three lines in the spectral network emerging from S1
p . We associate to these

lines the automorphisms2



1 a

0 1


 ,




1 0

−1/a 1


 ,



1 a

0 1


 , (4.3.2)

2We have to say how we which automorphism to associate with a Stokes line. The choice of trivialization

of the N -bundle induces a trivialization of the Cameral cover, so parallel transporting around the circle

S1
p in the direction specified by the orientation allows us to label the lines of the spectral network by roots.

We then assign to a Stokes line labelled by α the parallel transport of the automorphism in the unipotent

subgroup Uα with Lie algebra being the root space gα �→ g.
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which are considered as automorphisms of the local system restricted to this point, by

parallel transport in the clockwise direction around S1
p .

These have the property that



1 a

0 1







1 0

−1/a 1






1 a

0 1


 =




0 −a

1/a 0




−1

,

which means that after cutting and gluing by these automorphisms we will get a local

system with no monodromy around S1
p .

If we were always looking at groups such that all maps Iα : SL2 → G did not factor

through PGL2 we could use the image of the above relations under Iα to define the Stokes

factors for the segments of Stokes lines emerging from S1
p , p ∈ P . However as we need to

work in more generality we do the following:

We note that we can write any n ∈ NSL2 , as n = nαt, t ∈ TSL(2). The map to

the automorphisms in equation 4.3.2 then corresponds to mapping nαt = Adt−1/2nα (see

Lemma 5.22 in [23]) to

Adt−1/2exp(−eα), Adt−1/2exp(−e−α), Adt−1/2exp(−eα),

where the choice of the square root of t is irrelevant, and we note that we can exponentiate

the Chevalley bases elements eα because these are nilpotent elements of the Lie algebra.

Our map is then the manifestly TSL2-equivariant map

Adt−1/2nα �→ (Adt−1/2exp(−eα), Adt−1/2exp(−e−α), Adt−1/2exp(−eα))

Applying this map to SL2, and taking its image under Iα for each α ∈ Op provides a

map of schemes
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�

α∈Op

nαTα →
�

α∈Op

Uα × U−α × Uα.

Furthermore this is N -equivariant (see Lemma 5.24 of [23]), and hence descends to a

map of schemes

 �

α∈Op

nαTα


 /N →


 �

α∈Op

Uα × U−α × Uα


 /N, (4.3.3)

where N acts on the factor on the right by conjugating each factor.

This hence (by applying this to each p ∈ P and translating the automorphisms on the

right hand side in the clockwise direction around S1
p) provides the desired map to Stokes

factors for initial Stokes lines, and the section s0:

AutF0W,X̃◦�
(X◦�) LocX̃,S

N (X◦�)

s0

4.3.2 Stokes Factors for New Stokes Lines

Definition 4.3.5. A decorated 2d scattering diagram is a 2d scattering diagram, such

that for each ray r, labelled by αr we have an element ur ∈ Uα(r).

These elements ur must have the property that

�

Rays r

u±1
r = Id,

where the order in which we take this product is starting at one ray and then moving

around the origin in a clockwise direction3. The orientation on rays, and on the plane

specify a preferred normal direction to each ray. The exponent in the above product is +1

if we cross the ray in this direction, and −1 if we cross the ray in this opposite direction,

as we move clockwise around the origin.
3The direction and the starting point are irrelevant.
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Definition 4.3.6. A solution to a 2d scattering diagram, is a morphism of schemes

�

Incoming rays r

Uα(r)
p−→

�

Outgoing rays r

Uα(r)

with the property that for any

(u1, ..., ui) ∈
�

Incoming rays r

Uα(r),

the labels (u1, ..., ui), p(u1, ..., ui) make the 2d scattering diagram a decorated 2d scattering

diagram.

Theorem 4.3.7 (Theorem 3.35 of [23].). Every 2d scattering diagram has a solution p.

Furthermore, for any (u1, ..., ui), the set (u1, ..., ui), p(u1, ..., ui) is the only decorated 2d

scattering diagram, corresponding to the give 2d scattering diagram, and with the incoming

rays decorated by (u1, ..., ui).

We omit the proof of the above, and refer to [23].

Corollary 4.3.8. For a given 2d scattering diagram, and the scattering diagrams produced

from it by acting on the roots by the Weyl group W , the solutions gives a map:

��

C

��

α∈C
Uα

��
/N →


�

C


 �

β∈ConvN(C)

Uβ




 /N, (4.3.4)

where the disjoint union is taken under the sets C of labels of incoming lines, over the

different scattering diagrams (related by action of W on labels).

Proof. Firstly note that we have a map

��

C

��

α∈C
Uα

�� �
p−−→


�

C


 �

β∈ConvN(C)

Uβ




 , (4.3.5)
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given by the solutions to the 2d scattering diagrams. The N -equivariance follows from

the uniqueness statement of Theorem 4.3.7, because if n ∈ N with q(n) = w ∈ W , and

(u1, ..., ui, ui+1, ..., ui+j) is a decoration of a scattering diagram, then

(nu1n
−1, ..., nuin

−1, nui+1n
−1, ..., nui+jn

−1)

is a decoration of the scattering diagram obtained by acting on all labels of rays by w.

Hence if we denote p1 the solution to the first scattering diagram, and p2 the solution

to the second, we have that

np1(u1, ..., ui)n
−1 = p2(nu1n

−1, ..., nuin
−1),

where by np1(u1, ..., ui)n
−1 we mean acting by conjugation on each of the factors Uβ ,

β ∈ ConvN(C).

Hence the map of equation 4.3.5 is N -equivariant, and descends to the desired map

��

C

��

α∈C
Uα

��
/N →


�

C


 �

β∈ConvN(C)

Uβ




 /N.

Applying the map 4.3.4 to the automorphisms of EN |J ×N G given by the Stokes lines

coming into J for each J such that outgoing line segments are in FiW provides the desired

lift si:

AutFiW,X̃◦�
(X◦�)

LocX̃
◦� ,S

N (X◦�) AutFi−1W,X̃◦�
(X◦�)

forget
si

si−1
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4.3.3 Reglue Map

We now describe the regluing map, which corresponds to “cutting and regluing” a given

G-local system along certain lines, using specified automorphisms of the G-local system.

Construction 4.3.9 (Reglue Map). We construct here a map

AutWG (X◦�)
reglue−−−−→ LocG(X

◦�\J ).

Let X◦�\W = ∪iUi, be the decomposition into connected components. Let Ui denote

the closure of Ui in X◦�\J .

Consider the map
�

i Ui
cut−−→ X◦�\J .

Let the universal object over AutWG (X◦�) be (E , {fi ∈ Aut(E)|AutWG (X◦� )×(�i)B
}). Then

cut∗(E) is the pullback of E to the disjoint union of partially compactified connected

components of X◦�\W.

Along each line li ⊂ W, we identify cut∗(E) restricted to the two preimages of �i\(�i ∩

J ) by fi|�i\(�i∩J ) (when we move in the preferred normal direction to �i specified by the

orientations on X◦ and on �i). We denote this by cut∗(E)/{fi}, it is a G-local system on

X◦�
B ×AutWG (X◦�), and hence by the universal property provides a map

AutWG (X◦�)
reglue−−−−→ LocG(X

◦�\J ),

which we call the reglue map.

Theorem 4.3.10 (See Construction–Theorem 5.15 in [23]). The map

LocX̃
◦,S

N (X◦�)
∼=−→ LocX̃

◦� ,S
N (X◦�)

sWKB−−−−→ AutW,X̃◦�
(X◦�) → AutWG (X◦�)

reglue−−−−→ LocG(X
◦�\J ),
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factors as

LocX̃
◦,S

N (X◦) LocG(X)

LocG(X
◦�\J )

nonab

restriction

This diagram provides the definition of the map nonab : LocX̃
◦,S

N (X◦) → LocG(X).

Proof. To prove this claim we need to show that the monodromy around S1
p for each

p ∈ P , and around each j ∈ J is the identity.

For joints j ∈ J this follows from the definition of a decorated scattering diagram

(definition 4.3.5).

For p ∈ P the monodromy around S1
p of the bundle produced by the reglue map is

given by

Adt−1/2nαAdt−1/2exp(−eα)Adt−1/2exp(−e−α)Adt−1/2exp(−eα)

= Iα


Adt−1/2







0 1

−1 0






1 1

0 1







1 0

−1 1






1 1

0 1










= Iα(Id)

= Id.

The result follows.
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Chapter 5

Spectral Descriptions of

Nonabelianization

5.1 Spectral and Cameral Covers

Let X̃ → X be a cameral cover. We will give alternative descriptions of the data provided

by these, and of the N -bundles corresponding to these in terms of spectral covers, and local

systems of vector spaces on these. This is the ahistorical direction: Spectral covers were

introduced in [20] to describe fibers of the Hitchin moduli space for classical groups. See

[4, 31] for further results in this direction for G = GL(n). Cameral covers were introduced

in [10, 32, 8] as a replacement of spectral covers for arbitrary reductive algebraic groups

G. In [9] the Hitchin fiber for a smooth cameral cover is described in terms of N -shifted,

weakly W -equivariant T -bundles on the cameral cover. Some results on the relation

between descriptions of Hitchin fibers using cameral and spectral covers are found in [8],

and for GL(n) the precise relation for the regular part of Hitchin fibers is found in [9]. In
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this section we are using the unramified cameral cover X̃◦ → X◦, and as such don’t need

to engage with the difficult question of what happens at ramification points, and instead

only need to provide a description of the S-monodromy condition in terms of the local

systems on the spectral covers.

5.1.1 Constructing Spectral Covers from Cameral Covers

Construction 5.1.1 (Spectral covers from unramified Cameral covers.). We work with

a fixed reductive algebraic group G with maximal torus T , and with a cameral cover

X̃ → X.

Let ρ : G → GL(V ) be a representation, with weights Ωρ.

We define the non-embedded spectral cover associated to ρ as

X
ne
ρ := X̃ ×W Ωρ. (5.1.1)

Note that this is equipped with a map π : X
ne
ρ → X

We denote by Rρ ⊂ X
ne
ρ the ramification divisor. We retain P to denote the branch

locus of X̃ → X. Note that the branch locus of X
ne
ρ is a subdivisor of P .

We also define the real blow up

X
ne,◦P
ρ := ReBlπ−1(P )(X

ne
ρ ). (5.1.2)

Note that X
ne,◦P
ρ

∼= X̃ ×W Ωρ.

Finally we define

X
ne,◦R
ρ := ReBlπ−1(Rρ)(X

ne
ρ ). (5.1.3)

We also introduce the following variant:
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Pick decomposition of the induced representation of the normalizer N �→ T , as ρ|N =

⊕iρi where the weight spaces of each ρi are one dimensional. Let Ωρi be the weights of ρi.

Note that there always exists such a decomposition; one can be constructed by taking the

weight space decomposition of ρ, and then for one weight in each W -orbit of the weights,

we pick a basis of the weight space. We then take the ρi to be the representation of N

corresponding to the vector subspace of V spanned by the N -orbit of one of the basis

elements.

Definition 5.1.2. Let G, T , X̃ → X, ρ, ρ|N = ⊕iρi be as above.

We then define:

X
ne,r
ρ :=

�

i

X̃ ×W Ωρi .

We again use Rρ ⊂ X
ne,r
ρ to denote the ramification divisor, we hope this does not

cause confusion.

As in the preceding case we also define the real blow ups:

X
ne,r,◦P
ρ := ReBlπ−1(P )(X

ne,r
ρ ), (5.1.4)

and

X
ne,r,◦R
ρ := ReBlπ−1(Rρ)(X

ne,r
ρ ). (5.1.5)

5.1.2 Local systems on Spectral covers from N-local systems

In this section we describe how to construct local systems of vector spaces on spectral

covers from N -local systems corresponding to a given cameral cover. We also consider

how imposing the S-monodromy condition affects which local systems we produce.
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Construction 5.1.3. We fix T , G, X̃ → X, and ρ as before.

Let EN → X◦ be an N -bundle on X◦, equipped with an isomorphism EN/T
∼=−→ X̃◦ as

W -bundles.

Let V = ⊕ω∈ΩρVω be the decomposition of V as a direct sum of weight spaces Vω of

T .

Define

L := EN ×N


 �

ω∈Ωρ

Vω


 .

Note that the map
��

ω∈Ωρ
Vω

�
→ Ωρ, which maps the weight space Vω to the point

ω provides a map

L → X
ne,◦P
ρ .

This realizes L as a local system of vector spaces on X
ne,◦P
ρ .

Applying this to the universal bundle, and applying the universal property this pro-

vides a map:

LocX̃
◦

N (X◦) → LocV ect(X
ne,◦P
ρ ),

where LocV ect(X
ne,◦P
ρ ) is the indstack of local systems of vector bundles on X

ne,◦P
ρ .

We provide also the following variant:

Construction 5.1.4. We fix T , G, X̃ → X, and ρ as before, together with a decompo-

sition ρ|N = ⊕iρi as in section 5.1.1.

Applying construction 5.1.3 to each representation ρi, noting that we actually only

require an N -representation rather than a G representation in this construction, provides

a map which we denote Spρ:
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LocX̃
◦

N (X◦)
Spρ−−→ LocGm(X

ne,r,◦P
ρ ),

where we are using the equivalence between local systems of one dimensional vector spaces

and Gm local systems.

5.2 Path Detour Rules and Miniscule Representations

For G = GL(n) [16] interpret the automorphisms that we “cut and reglue” by in the

non-abelianization construction of section 4.3 in terms of sums of monodromies on paths

produced from the spectral network by the “path-detour rules.” In the case of a simply

laced group, together with a miniscule and faithful representation, [27] suggest extending

path detour rules to this setting, but leave open the question of the precise maps of moduli

spaces of local systems that one could construct in this way.

In this section we define a version of this which we call path detour non-abelianization

in the case of a simply laced group G, and a miniscule representation ρ : G → GL(V ). We

also show the compatibility of path detour non-abelianization with the non-abelianization

of section 4.3.

Recall:

Definition 5.2.1. A miniscule representation ρ : G → GL(V ) is an irreducible represen-

tation where the Weyl group W acts transitively on the weights of the representation.

We now describe the path detour nonabelianization construction following [16] for

SL(n) and GL(n), and the proposal of [27] to extend this.
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Construction 5.2.2 (Path Detour Nonabelianization, following [16, 27]). Pick a simply

laced reductive algebraic group G, an abstract spectral network W where at all joints

only two Stokes lines intersect, and a miniscule representation ρ : G → GL(V ).

We will construct the path detour non-abelianization map nonabPD as the factoring

of a map reglue ◦ sPD, for a map sPD we will define:

LocGm(X
ne,◦R
ρ ) LocGL(V )(X

◦)

AutGL(V ),W(X◦�) LocGL(V )(X
◦\J )

SPD

nonabPD

reglue

To define SPD we will apply the iterative process as in section 4.3, providing first a map

sPD,0 : LocGm(X
ne,◦R
ρ ) → AutF0W

GL(V )(X
◦�),

and then for each i ∈ N we provide a lift

AutFiW
GL(V )(X

◦�)

LocX̃
◦� ,S

N (X◦�) Aut
Fi−1W
GL(V ) (X

◦�)

forget
sPD,i

sPD,i−1

To define sPD,i for i �= 0 we note that by assumption that there is at most one new

Stokes line coming out of each joint. For Stokes lines entering a joint, we continue the

automorphism (as a locally constant section of Aut(E)) to the segment of this Stokes line

emerging from this joint. For the new Stokes line we assign the unique automorphism,

such that after regluing the monodromy around the joint will be the identity.

To define sPD,0 we do the following: Let xp ∈ S1
p . Choosing a trivialization of X̃◦|xp

gives a labelling of X
ne
ρ ×X {xp} by weights of the representation ρ. For a root α, (note

that −α is also such a root) such that the monodromy of X̃◦ around S1
p is sα with

respect to this trivialization we consider the set of pairs (xi, xj), xi, xj ∈ X
ne
ρ ×X {xp}
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with the property that l(xi) − l(xj) = α, where l(xm) refers to the weight labelling the

branch xm is on, with respect to the chosen trivialization. Note that the set of pairs of

X
ne
ρ ×X {xp} is independent of the choice of trivialization because if l(xi) − l(xj) = α,

then w(l(xi))− w(l(xj)) = w(α).

To a line bundle L on X
ne,◦R
ρ , we define E := π∗L. We define dxi,xj to be the parallel

transport in L attached to the lift starting at xi of the path γp going around p in the

opposition orientation to that of S1
p .

To a Stokes line emitted from S1
p , which is labelled by α with respect to the choice of

trivialization of X̃◦, we let

Sdetour := exp
��

dxi,xj

�
∈ GL(E|xs),

(using dxi,xj for the choice of root α).

Doing this in families, for each initial Stokes line provides the section

sPD,0 : LocGm(X
ne,◦R
ρ ) → AutF0W

GL(V )(X
◦�),

together with the specified lifts sPD,i this specifies the map sPD as the composition:

LocGm(X
ne,◦R
ρ ) AutFNW

GL(V )(X
◦�) AutWGL(V )(X

◦�).

sPD

sPD,N ∼=

Theorem 5.2.3 (See Theorem 6.11 in [23]). In the setting where both maps are defined,

there is a commutative diagram:

LocX̃
◦,S

N (X◦) LocGm(X
ne,◦R
ρ )

LocG(X) LocGL(V )(X
◦)

Spρ

nonab nonabPD

ρ

(5.2.1)

We will use the following lemma:
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Lemma 5.2.4. Let G be a simply laced reductive algebraic group.

Let c : SL(2)
Iα−→ G

ρ−→ GL(V ) be the composition of Iα with a minuscule representation

ρ.

Then the representation c is a direct sum of one and two dimensional irreducible

representations of SL(2).

Proof. If the group G is simple Corollary 6.6.6 of [19] says that the weights λ of the Lie

algebra representation Lie(ρ) have the property that sα(λ) ∈ {λ,λ+ α,λ− α}.

The identification of Λchar �→ tSL(2) with Z �→ C identifies the maps t∨G → t∨SL(2)

with the map t∨G
α∨
−−→ t∨SL(2). The reason for this is that the dual maps are tSL(2) → tG,

hα,SL(2) �→ hα, and C → tG, 1 �→ α∨, and hα = α∨. As α∨(α) = 2, corollary 6.6.6

of [19] implies that the weights λsl(2) of the sl(2) representation c satisfy sα(λsl(2)) ∈

{λ,λ+ 2,λ− 2}. The result follows for G simple.

For a general reductive algebraic group, noting that the result only depends on the

Lie algebras we can assume without loss of generality that G is simply connected. In

this case G = T1 × ΠiGi, where T1 is abelian, and Gi is simple for each i. A miniscule

representation of G is of the form V = VT1 ⊗
�

i Vi of (T1 ×ΠiGi), where Vi is miniscule

representation of Gi for each i, and VT1 is a one dimensional representation of T1. The

result then follows from the simple case.

Proof of Theorem 5.2.3. It is clear that we need only show that the following diagram

commutes:

LocX̃
◦

N (X◦) AutFi−1W,X̃◦�
(X◦�)

LocGm(X
ne,◦R
ρ ) AutF0W

GL(V )(X
◦�)

s0

Spρ

sPD,0

51



where the map on the right hand side of the above commutative square is the composition

AutFi−1W,X̃◦�
(X◦�) → AutF0W

G (X◦�) → AutF0W
GL(V )(X

◦�).

We pick a trivialization of the an N -bundle corresponding to X̃◦� at xp ∈ S1
p ⊂ X◦� ,

such that the monodromy around S1
p (in the direction specified by the orientation of S1

p)

is nα. We then have that the monodromy around the path γp in construction 5.2.2 is

ρ(n−1
α ). By lemma 5.2.4 we have that

ρ(n−1
α ) = ρ(−eα) + ρ(−e−α) + Id⊕ω|ω(α)=0Vω ,

which gives the identification ρ(−eα) =
�

di,j .

We hence have that the Stokes factor assigned by sPD,0 to a line labelled by α with

respect to the chosen trivialization at xp is given by sPD = exp(
�

di,j) = exp(ρ(−eα)) =

ρ(exp(−eα)). The case of lines labelled by −α is analogous.

5.3 Spectral Description of N-Local Systems For Classical

Groups

In this section we describe the relation between the moduli of N -local systems correspond-

ing to a given cameral cover (satisfying the S-monodromy condition) and certain moduli

spaces of Gm-local systems on spectral covers. These results appear in §6.4 of [23].
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5.3.1 The Case of GL(n), and SL(n)

Firstly we note that for GL(n) we can describe the Hitchin base, associated to Xc and

the line bundle KXc(D) as

⊕n
i=1Γ(X, (KXc(D))⊗i) ∼= Γ(Xc, tGL(n),KXc (D)/W ),

by using the basis of C[t]W given by the elementary symmetric polynomials. Specifically

the ith elementary symmetric polynomial gives a map tKXc (D)/W → K⊗i
Xc(D).

For G = SL(n) we have a basis of C[t]W , corresponding under the inclusion tSL(n) →

tGL(n) to the elementary symmetric polynomials with the exception of the trace.

We hence have an isomorphism

⊕n
i=2Γ(X, (KXc(D))⊗i) ∼= Γ(Xc, tSL(n),KXc (D)/W ).

Given a point in the GL(n) Hitchin base, potentially one corresponding to a point in

the SL(n) Hitchin base we can define the spectral curve as follows:

Definition 5.3.1. The spectral cover X
c
associated to (a1, ..., an) ∈ ⊕n

i=1Γ(X, (KXc(D))⊗i)

is the locus in Tot(KXc(D)) where the section

Σn
i=0(−1)n−iλn−iai

(which we call the characteristic polynomial) of p∗(KXc(D))⊗n intersects the zero section.

Here p denotes the map p : Tot(KXc(D)) → Xc, and λ is the tautological section of

p∗(KXc(D)).

This is equipped with the map π = p|Xc : X
c → Xc.

We denote X := X
c ×Xc X. We denote X

◦R := ReBlR(X) the real blow up along

the ramification locus R ⊂ X of X → X. We denote by X
◦P := ReBlP (X) the real blow
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of X up along the preimage π−1(P ) of the branch locus P of X̃ → X along the map

π : X → X.

Proposition 5.3.2. For G = GL(n) or G = SL(n), and a ∈ A♦ there is an isomor-

phism of schemes X
ne
ρ

∼= X between the non-embedded spectral cover for ρ the defining

representation, and the spectral cover.

Proof. Choose an identification t ∼= Cn, that identifies W with Sn acting by permuting

the copies of C. A projection t ∼= Cn → C to one of these copies of C provides a map

tKXc (D) → Tot(KXc(D)) that maps X̃ → X. This factors through the map X
ne
ρ , giving

an isomorphism X
ne
ρ

∼= X.

Proposition 5.3.3 (Spectral and Cameral descriptions of local systems for Gl(n) without

S-monodromy condition, cf. [9]). For G = GL(n) there is an isomorphism of stacks

LocGm(X
◦P ) → LocX̃

◦
N (X◦P )

Proof. Note that for each i ∈ {1, ..., n} we have an inclusion Sn−1 �→ Sn. Let πi : X̃ → X

be the map coming from quotienting by Sn−1, or equivalently in the proof of 5.3.2 comes

from projecting onto the ith copy of C.

Let L ∈ LocGm(X
◦P ), and ET ∈ LocX̃

◦
N (X◦P ). We have inverse maps given by

L �→ ⊕n
i=1π

∗
iL,

and construction 5.1.4.

Note that to realize ⊕π∗
iL as an N -local system we are using proposition 4.1.6, and

that as for GL(n) the sequence 1 → T → N → W → 1 splits, an N -shifted weakly
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W -equivariant T -bundle on X̃◦ is equivalent to a W -equivariant T bundle on X̃◦, which

is what ⊕π∗
iL is.

Proposition 5.3.4 (Spectral and Cameral descriptions of local systems for SL(n), with-

out S-monodromy condition. cf. [8]). We have an isomorphism of stacks:

LocX̃
◦

NSL(n)
(X◦)

∼=−→ LocGm

�
X

◦P �×LocGm (X◦) {CX |X◦}. (5.3.1)

The map LocGm(X
◦P ) → LocGm(X

◦) is given by L �→ det(π∗L) = (π∗L)∧n. The local

system CX is the constant local system on X.

Proof. Firstly note that it is clear that the map of construction 5.1.4 factors through the

map in the above proposition.

We apply the map L �→ ⊕n
i=1π

∗
iL to a Gm-local system on the spectral curve. We

have the additional data of an isomorphism ⊗n
i=1π

∗
iL ∼= CX̃◦ .

Note that TSL(n) can be described as the kernel in the short exact sequence

1 → TSL(n) → TGL(n)
det−−→ Gm → 1.

Hence the data of this isomorphism is a reduction of structure of the TGL(n)-local

system to a TSL(n)-local system ETSL(n)
.

This inclusionNSL(n) → NGL(n)
γ−→ AutX(⊕n

i=1Li) factors through AutX(ET ) as shown

in the diagram:

NSL(n) NGL(n)

AutX◦(ETSL(n)
) AutX◦(⊕n

i=1Li).

This provides an inverse to the map of equation 5.3.1.
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We now consider the modification to the above statements to include the S-monodromy

condition:

Proposition 5.3.5 (Spectral and Cameral descriptions of local systems for SL(n) with

S-monodromy condition.). Let X̃ → X be a smooth cameral cover.

There is an isomorphism of stacks

LocX̃
◦,S

NSL(n)
(X◦)

∼=−→ LocGm(X
◦R)×LocGm (X◦) { CX◦}

Proof. We will show that the maps in proposition 5.3.4 factors as

LocX̃
◦

NSL(n)
(X◦) LocGm(X

◦P )×LocGm (X◦) { CX◦}

LocX̃
◦,S

NSL(n)
(X◦) LocGm(X

◦R)×LocGm (X◦) { CX◦}

Consider a boundary circle S1
p ⊂ X̃◦ for p ∈ P . The restriction on the right hand

side, means that the N -local systems mapped to by the inverse of 5.3.1 have monodromy

of the form: 


0 a 0

−1/a 0 0

0 0 Idn−2




where we are using a basis for the fiber at p corresponding to the branches of the spectral

cover, with the first two being the ramified branches. Note that there are precisely two

such branches, by the assumption that the cameral cover is smooth, and is branched at

p.

This restriction is precisely the S-monodromy condition.

Remark 5.3.6. Proposition 5.3.5 is the motivation for the S-monodromy condition.
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Proposition 5.3.7 (Spectral and Cameral descriptions of local systems for GL(n) with

S-monodromy condition). There is an isomorphism of stacks:

LocX̃
◦,S

NGL(n)
(X◦)

∼=−→ LocGm(X
◦R)×(Gm/Gm)#Rρ ({−1}/Gm)#Rρ ,

where the map

LocGm(X
◦R) → (Gm/Gm)#Rρ

is given by restricting to the preimage of the ramification divisor Rρ under the map X
◦R →

X.

Proof. We will show that the maps in proposition 5.3.3 factors as

LocX̃
◦

NGL(n)
(X◦) LocGm(X

◦P ){ CX◦}

LocX̃
◦,S

NGL(n)
(X◦) LocGm(X

◦R)×(Gm/Gm)#Rρ ({−1}/Gm)#Rρ}

As in the SL(n) case the S-monodromy condition on an N -local system means that

the monodromy of the associated Gm-local system considered as a sheaf on X◦ L →

X
◦P → X◦ must have monodromy in




0 a 0

−1/a 0 0

0 0 Idn−2




where the basis corresponds to the branches of the spectral cover. This corresponds to a

Gm local system that extends to a local system on X◦R with monodromy −1 around each

ramification point R.

Furthermore all such Gm-local systems correspond to an N -local system satisfying the

S-monodromy condition.
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5.3.2 The Case of Sp(2n)

We have that T ∼= Gn
m, and W ∼= Sn � {±1}n.

The defining representation Sp(2n)
ρ−→ GL(2n) induces a map tSp(2n) → tGL(2n), which

induces a map of the Hitchin bases. By the spectral curve associated to a point in the

Sp(2n) Hitchin base we mean the spectral curve associated to the image of this point

in the GL(2n) Hitchin base. The weights of the defining representation form a single

W -orbit, and we can identify X ∼= X
ne
ρ the non-embedded spectral cover and the spectral

cover in this case.

Proposition 5.3.8 (Non-embedded and embedded spectral covers for Sp(2n), [8]). There

is an isomorphism X
ne
ρ

∼= X.

Proof. Identify t ∼= Cn in a way that intertwines W

�

t with Sn � {±1}n � Cn. Projecting

onto one copy of C gives a map tKXc(D)
→ Tot(KXc(D)) that gives rise to the desired

identification.

The involution i : Tot(KXc(D)) → Tot(KXc(D)) coming from the action of−1 preserves

the spectral curve, and hence descends to an involution of X. We also denote the induced

involutions of X
◦P and X

◦R by i.

We denote the quotient map by pi: X
◦P pi−→ X

◦P /i.

Proposition 5.3.9 (Spectral and Cameral Descriptions for Sp(2n) without S-monodromy

condition. Cf. [20, 8]). There is an isomorphism of stacks

LocX̃
◦

N (X◦)

LocGm

�
X

◦P �×LocGm ( X
◦P /i) {CX

◦P /i},

∼= (5.3.2)
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where the map

LocGm(X
◦P ) → LocGm(X

◦P /i)

corresponds to the map L �→ det((pi)∗L) (on one dimensional local systems, which are

equivalent to Gm local systems).

Proof. Consider X̃◦ → X
◦P /i as an Stab({α,−α})-bundle, where Stab({α,−α}) ⊂ W is

the stabilizer of the unordered set of the pair of weights {α,−α}.

There is an isomorphism X̃◦×Stab({α,−α}) (Vα∧V−α) ∼= CX |X◦ because Stab({α,−α}),

acts trivially on Vα ∧ V−α.

Construction 5.1.4 factors through a map as in equation 5.3.2. We will construct an

inverse.

Let L → X
◦P be a locally constant line bundle on X

◦P together with a trivialization

of det((pi)∗L).

Let A :=
�

−n≤i≤n,i�=0Ci be the disjoint union of 2n copies of C. Consider invertible

homomorphisms from A → A that consist of:

• A permutation σ of {−n, ...,−1, 1, ..., n},

• A linear map Ci → Cσ(i) for each i ∈ {−n, ...,−1, 1, ..., n}.

These can be identified with NGL(2n). We will now describe a subset that can be identified

with NSp(2n) �→ NGL(2n).

For each i ∈ {1, ..., n} define the isomorphism Ci ∧C−i
∼=−→ C that sends 1 ∧ 1 to 1 for

i > 0 (and hence 1 ∧ 1 �→ −1 for i < 0).

Define the subset of invertible homomorphisms A → A such that:
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• σ ∈ Sn � {±1}n ∼= WSp(2n) �→ WGL(n)
∼= S2n.

• For 1 ≤ i ≤ n the following diagram commutes:

Ci ∧ C−i

C

Cσ(i) ∧ Cσ(−i)

∼=

∼=

The group of these homomorphisms is NSp(2n).

To L ∈ LocGm

�
X

◦P � ×LocGm ( X
◦P /i) {CX

◦P /i} we define a locally constant sheaf

HomSp(L, A×X◦) on X◦, where over an open set U ⊂ X◦ an element b ∈ HomSp(L, A×

X◦) consists of the data of:

• An invertible morphism b1 : X
◦P |U → {−n, ...,−1, 1, ..., n} × U of locally constant

sheaves of sets over U . We require that b intertwines i and the involution sending

j �→ −j. We denote by b−1
1,K is the map (X◦,P /i)|U → {1, ..., n} × U induced by b1

• Isomorphisms L|w−1
1 (j×X)

b2,j−−→ Cj , of locally constant sheaves of sets such that the

following diagram commutes:

L|b−1
1 ({j}×U) ∧ L|b−1

1 ({−j}×U) CX
◦P /i|b−1

1,K{j}×U

Cj
U
∧ C−j

U
CU

b2,j∧b2,−j ∼=

Postcomposing these morphisms with the morphisms A → A that were identified with

NSp(2n) identifies HomSp(L, A ×X◦) as an NSp(2n) bundle. The associated W bundle is

X̃◦. The map from L to HomSp(L, A×X◦) is an inverse to that of equation 5.3.2.
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We now consider the case where we impose the S-monodromy condition.

The spectral cover has two different types of branch point. The first is where an

eigenvalue, and hence two eigenvalues are equal to zero. We let Rρ,0 ⊂ X be the subdivisor

of the ramification divisor corresponding to these ramification points.

The second type corresponds to R\Rρ,0, This is stable under the involution i, and

hence at the associated branch point, there are two pairs of sheets of the spectral cover

which coalesce. We let Rρ,1 be a subdivisor of the ramification divisor, such that Rρ,1 ∩

iRρ,1 = ∅, Rρ,0 ∩Rρ,1 = ∅ and Rρ,1 ∪ iRρ,1 ∪Rρ,0 = R.

Proposition 5.3.10 (Spectral and Cameral Descriptions for Sp(2n) with S-monodromy

condition.). Construction 5.1.4 applied to G = Sp(2n) induces an isomorphism of stacks:

LocX̃,S
NSp(2n)

(X◦)

LocGm(X
◦R)×

LocGm (X
◦R/i)×(Gm/Gm)#Rρ,1

��
CX

◦R/i

�
× ({−1}/Gm)#Rρ,1

�
.

∼=

The map to (Gm/Gm)Rρ,1 comes from restricting a local system to the preimage of the

divisor Rρ,1 under the map X
◦R → X.

Proof. The case of Rρ,0 is identical to the SL(2) case by just considering the two branches

that are ramified.

For Rρ,1 if we consider just one pair of ramified branches the case is identical to the

GL(2) case. After we impose the requirement that the monodromy is −1 around one of

the ramification points, the monodromy around the other is automatically −1.
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5.3.3 The case of SO(2n)

For G = SO(2n) we have that the maximal torus is T = Gn
m and the Weyl group is

W ∼= Sn �Hn, for Hn the kernel of the short exact sequence

1 → Hn → {±1}n p−→ {±1} → 1.

The map p : {±1}n → {±1} corresponds to taking the product.

We again associate a point in the Hitchin base to a spectral cover, here by taking the

map tSO(2n)/WSO(2n) → tGL(2n)/WGL(n) induced by the map SO(2n) → GL(2n). Here

the coefficients of the characteristic polynomial do not form a basis of C[tSO(2n)]
WSO(2n) ,

though one can upgrrade this to a basis by replacing the determinant with the Pfaffian.

This is the underlying reason that the spectral cover and the embedded spectral cover are

here different [8] (cf. [20]).

Proposition 5.3.11 (Non embedded spectral covers and spectral covers for SO(2n) [8],

[20]). For G = SO(2n) and a ∈ A♦, the spectral cover X associated to a has singularities

on the intersection of the zero section of Tot(KXc(D)) and the vanishing locus of the

Pfaffian. These are nodal 1 singularities.

There is a map X
ne → X from the associated non-embedded spectral cover. This map

corresponds to the blow up along the intersection of X with zero section of Tot(KXc(D)).

Proof. Pick a map t
∼=−→ Cn intertwining the actions of W and of Sn �Hn. The action of

Sn �Hn is that induced as a subgroup of Sn � {±1}1. The projection to one copy of C
1If we removed the assumption of smoothness of the cameral cover there would be other possible

singularities.
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induces a map tL → L which restricts to a map X̃ → X, which factors through a map

X
ne → X.

The characteristic polynomial is given by

p(λ) = λ2n + a2λ
2n−2 + ....+ a2n−2λ

2 + p2f

where p(f) is the Pfaffian in C[t]W . Hence the spectral curve is singular at the inter-

section of the Pfaffian with the zero section of Tot(KXc(D)) [20]. These are accidental

singularities in the sense of [8].

As a smooth cameral cover intersects the locus Pf−1(0) ⊂ tKXc (D) (here 0 denotes the

zero section of KXc(D), and Pf denotes the Pfaffian) transversely, and hence X̃/Sn−1 �

Hn−1 is smooth. Hence as the map X
ne → X is an isomorphism away from this locus, we

have that the map X
ne → X is the blow up along the intersection of X with zero section

of Tot(KXc(D)).

The involution given by the action of −1 on Tot(KXc(D)) induces an involution i :

X → X as in the case of Sp(n). We also denote by i the induced involutions of X
ne
,

X
ne,◦R , and X

ne,◦P . We again have a map pi : X
ne,◦P → X

ne,◦P /i.

Proposition 5.3.12 (Spectral and Cameral Descriptions for SO(2n) without S-mon-

odromy condition). Construction 5.1.4 can be enhanced to an isomorphism of stacks

LocX̃
◦

N (X◦)

LocGm(X
ne,◦P )×LocGm (X

ne,◦P /i)

�
MX

ne,◦P /i

�
,

∼= (5.3.3)

where
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• The map

LocGm(X
ne,◦P ) → LocGm(X

ne,◦P /i))

is given by L �→ det
�
(pi)∗L

�
(applied to the universal object).

• The local system MX
ne,◦P /i on X

ne,◦P /i is defined by MX
ne,◦P /i := X̃◦×Stab({α,−α})

(C). Here the action of Stab({α,−α}) on C is via the map Stab({α,−α}) → {±1}

with kernel Stab(α).

Proof. As locally constant sheaves on X
ne,◦P we have X̃◦ ×Stab({α,−α}) (Vα ∧ V−α) ∼=

MX
◦P /i. Here α is one of the weights of the defining representation of SO(2n), and

we note that X̃◦ → X
ne,◦P is a Stab({α,−α})-bundle. The isomorphism is because

Stab({α,−α}) acts by ±1 on Vα ∧ V−α (with the subgrouop Stab(α) acting trivially).

Consider A as defined in the proof of proposition 5.3.9. Recall the definition of

homomorphisms A → A, and recall that invertible homomorphisms corresponded to

NGL(2n). We will now define a subset of such homomorphisms which correspond to

NSO(2n) �→ NGL(2n).

Consider the isomorphisms Ci ∧ C−i
ρ−→ C that sends 1 ∧ 1 to 1 (for i > 0). Consider

the subset of homomorphisms A → A such that:

• σ ∈ Sn �Hn (identified as a subgroup of S2n via WSO(2n) �→ WGL(2n)).

• The following diagram commutes for all 1 ≤ i ≤ n;

Ci ∧ C−i

C

Cσ(i) ∧ Cσ(−i)

ρ

±ρ
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where we use +1ρ if σ(i) > 0, and −ρ otherwise.

These homomorphisms correspond to NSO(2n) �→ NGL(2n).

We define a locally constant sheaf HomSO(2n)(L, A × X◦) on X◦ associated to each

L ∈ LocGm(X
ne,◦P )×LocGm (X

ne,◦P /i)

�
MX

ne,◦P /i

�
.

Over an open set U ⊂ X◦ an element b ∈ HomSO(2n)(L, A×X◦) consists of the data

of:

• An isomorphism a1 : X
ne,◦P |U → {−n, ...,−1, 1, ..., n} × U of locally constant

sheaves of sets over U . We require that a1 intertwines i and the involution of

{−n, ...,−1, 1, ..., n} given by multiplication by −1. We denote by a−1
1,K the induced

map from (X◦P /i)|U → {1, ..., n} × U induced by a1

• Locally constant isomorphisms L|a−1
1 (j×X)

a2,j−−→ Cj for each j ∈ {−n, ...,−1, 1, ..., n}.

• A morphism of principal Z/2-bundles on a−1
1,K({j} × U) ⊂ X

ne,◦P /i:

X
ne,◦P |a−1

1,K({j}×U)

∼=−→ (a−1
1,K({j} × U))× Z/2

We denote the induced map MX
ne,◦P /i|a−1

1,K({j}×U) → CU by a3,j ,

We require these satisfy the conditions:

• The following diagram commutes:

L|a−1
1 ({j}×U) ∧ L|a−1

1 ({−j}×U) MX
ne,◦P /i|a−1

1,K{j}×U

Cj
U
∧ C−j

U
CU

a2,j∧a2,−j a3,j
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•
2n�

(⊕−n<j<n,j �=0b2,j) = Id.

Postcomposing with the homomorphismsA → A specified above makesHomSO(2n)(L, A×

X◦) a NSO(2n) bundle. The map L �→ HomSO(L, A×X) is the inverse of the map in of

equation 5.3.3.

We now need to consider the S-monodromy condition. The situation is closely related

to that of Sp(2n).

We define the divisor Rρ,1 ⊂ X
ne

as in section 5.3.2. In contrast to that section we

do not define an Rρ,0, the non-embedded spectral cover is the blow up of the locus given

by the intersection of the zero section and the vanishing locus of the pfaffian.

Proposition 5.3.13 (Spectral and Cameral Descriptions for SO(2n) with S-monodromy

condition.). For G = SO(2n) there is an isomorphism of stacks, induced by the isomor-

phism of proposition 5.3.12

LocX̃
◦,S

NSO(2n)
(X◦)

LocGm(X
ne,◦R)×

LocGm (X
ne,◦R/i))×(Gm/Gm)#Rρ,1

��
MX

ne,◦R/i

�
× (−1/Gm)#Rρ,1

�
∼=

where the map to (Gm/Gm)Rρ,1 corresponds to the restricting the local systems to the

preimage of Rρ,1 under the map X
ne,◦R → X

ne
, and MX

ne,◦R/i := X
ne,◦R ×{±1}C, where

we consider X
ne,◦R → X

ne,◦R/i as a {±1}-bundle.

Remark 5.3.14. Note thatMX
ne,◦R/i|Xne,◦P /i

∼= MX
ne,◦R/i (defined in proposition 5.3.12).
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Proof. The analysis is identical to that of Proposition 5.3.10, with the exception of the

fact we do not need to consider Rρ,0 as mentioned above.
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5.3.4 The case of SO(2n+ 1)

For G = SO(2n + 1), the maximal torus is T ∼= Gn
m, and the Weyl group is W ∼=

Sn � {±1}n.

The weights of the defining representations consist of two W -orbits, one consisting of

the single weight 0, and one of all the other weights of this representation

We again associate a spectral cover X to a point in the Hitchin base, by considering

the induced map tSO(2n+1)/WSO(2n+1) → tGL(2n+1)/WGL(2n+1) from the map of groups

SO(2n + 1) → GL(2n + 1). For a ∈ A♦ the associated spectral cover has a partial nor-

malization X0
�

X1 → X, where X0 corresponds to the zero weight, and X1 corresponds

to the other W -orbit. Note that this map is an isomorphism when restricted away from

the locus where X1 → Tot(KXc(D)) intersects the zero section, because X0 corresponds

to the zero section of Tot(KXc(D)).

We can identify this disjoint union with the non-embedded spectral cover:

Proposition 5.3.15. There is an isomorphism

X1

�
X0

∼= X
ne
ρ .

Proof. We use the decomposition of the non-embedded spectral cover coming from de-

composing Ωρ into W -orbits in equation 5.1.1. Denote the orbits by 0, and 1 and write

X
ne,0

and X
ne,1

to denote the corresponding subschemes of the non-embedded spectral

cover X
ne
ρ . Then X

ne,0 ∼= X ∼= X0. The identification of X
ne,1 ∼= X1 is identical to the

identification in proposition 5.3.8.

As in the case of Sp(2n) and SO(2n) we have an involution i : Xρ → Xρ coming from

the action of −1 on Tot(KXc(D)).

68



This involution fixes X0 pointwise. This involution maps X1 to X1.

We decompose the ramification locus as Rρ = Ra
�

Rb where Ra ⊂ X1, and Rb ⊂ X0

be the ramification locus of the map X
ne
ρ → X. We denote by X

◦R
1 and X

◦R
0 the oriented

real blow ups of X1 and X0 at Ra and Rb respectively. The analysis of the ramification

points is closely related to that of Sp(2n); we have two types of branch points, the first is

where X1 intersects the zero section. We note that by the symmetry of X at such a point

X1 → X is ramified. The second is points in R\(R ∩X0). As in the Sp(2n) these come

in pairs, and so as in the Sp(2n) case we decompose Ra = Rρ,0
�

Rρ,1
�

i(Rρ,1), where

Rρ,0, Rρ,1, i(Rρ,1) are effective divisors corresponding to disjoint sets of points.

Proposition 5.3.16 (Spectral and Cameral Descriptions for SO(2n + 1) with S-mon-

odromy condition. Cf. [20, 8]). For G = SO(2n + 1) construction 5.1.4 induces an

isomorphism:

LocX̃
◦,S

NSO(2n+1)
(X◦)

LocGm(X
ne,◦R)×

LocGm (X
ne,◦R/i)×(Gm/Gm)#Rρ,1

�
{M} × (−1/Gm)#Rρ,1

�
,

∼=

where the map

LocGm(X
ne,◦R) → LocGm(X

ne,◦R/i)

corresponds to the map L �→ det((pi)∗L), and the map to (Gm/Gm)#Rρ,1 corresponds to

taking the monodromy around each point in Rρ,1.

The Gm-local system M is defined on X
◦R
0 /i by M|X◦R

0
:= X̃◦×W V0, where V0 is the

representation of W coming from the N -action on the zero weight space of the defining
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representation of SO(2n+1). On X
◦R
1 /i it is defined by M|X◦R

1 /i := X̃◦×Stab({α,−α}) (C),

where Stab({α,−α}) acts on C via the map Stab({α,−α}) → {±1} with kernel Stab(α).

Proof. We first note that the map of 5.1.4 does induce such a map. The argument the

induced line bundle on X
◦R
1 /i is M|X◦R

1 /i is identical to that in the SO(2n) case of

propositions 5.3.12, 5.3.13.

The local system induced on X
◦R
0

∼= X◦ is then given by:

X̃◦ ×W V0,

where V0 is the representation ofW on the zero-weight space of the defining representation

of SO(2n+ 1). Note that this is the representation

Sn � {±1}n → {±1} � C,

where the map corresponds to taking the product of the ±1 factors, and the action on C

is by multiplication.

Consider A as defined in the proof of proposition 5.3.9. Recall the definition of ho-

momorphisms A → A. We will define a subset of the invertible homomorphisms that we

identify with NSO(2n+1.

Consider the isomorphisms Ci ∧C−i
ρ−→ C sending 1∧ 1 to 1 (for i > 0) that were also

defined previously.

Consider the subset of invertible homommorphisms A → A such that.

• σ ∈ Sn � {±1}n (identified as a subgroup of S2n via the map WSO(2n+1) �→

WGL(2n+1) factoring through WGL(2n)).
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• The following diagram commutes for all 1 ≤ i ≤ n;

Ci ∧ C−i

C

Cσ(i) ∧ Cσ(−i)

ρ

±ρ

where we use +1ρ if σ(i) > 0, and −ρ otherwise.

We can identify the homomorphisms satisfying these conditions with NSO(2n+1).

Consider the locally constant sheaf on X◦ associated to

L ∈ LocGm(X
◦P
1 )×LocGm (X

ne,◦P /i) {M}

denoted by HomSO(2n+1)(L|Xne,◦P
1

, A×X◦), where over an open set U ⊂ X◦ an element

a ∈ HomSO(2n)(L, C ×X◦) consists of the data of;

• An isomorphism a1 : X
ne,◦P |U → {−n, ...,−1, 1, ..., n} × U of locally constant

sheaves of sets over U . We require that a1 intertwines i and the involution of

{−n, ...,−1, 1, ..., n} given by multiplication by −1. We denote by a−1
1,K the induced

map from (X◦P /i)|U → {1, ..., n} × U induced by a1

• Locally constant isomorphisms L|a−1
1 (j×X)

a2,j−−→ Cj for each j ∈ {−n, ...,−1, 1, ..., n}.

• Morphisms of principal Z/2-bundles on b−1
1,K({j}×U) ⊂ X

◦P /i fromX
◦P |b−1

1,K({j}×U)

∼=−→

(b−1
1,K({j} × U)) × Z/2. We denote by a3,j : MX

◦P /i|b−1
1,K({j}×U) → CU the induced

map of locally constant sheaves of vector bundles.

We require that;
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• The following diagram commutes:

L|a−1
1 ({j}×U) ∧ L|a−1

1 ({−j}×U) MX
◦P /i|a−1

1,K{j}×U

Cj
U
∧ C−j

U
CU

a2,j∧a2,−j a3,j

Postcomposing withA → A corresponding to n ∈ NSO(2n+1) givesHomSO(2n+1)(L|Xne,◦R
1

, A×

X◦) the structure of a NSO(2n+1) bundle. The map L �→ HomSO(2n+1)(L, A×X) is then

the inverse to the map in proposition 5.3.16.

We now consider the S-monodromy. Considering the effect on the monodromy around

Rρ,1 is analogous to the SO(2n) and Sp(2n) cases in the proof of propositions 5.3.10 and

5.3.13. The effect at Rρ,0 is analogous to that of Sp(2n) in proposition 5.3.10, As the

monodromy of the local system on X0 then restricts the monodromy to be −1, we have

to restrict the monodromy of the system on X1 around r ∈ Rρ,0 to be −1. The result

follows.
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