
Scaling the Tower of Babel: Data Integration and Warehousing with the WWW

Susan B. Davidson
University of Pennsylvania

The Web can be thought of as one large,
disorganized database. Within it there are
several related files (web pages), some of which
are functions that take input from the user and
provide another web page as output. For
example, query interfaces to databases such as
GenBank and SWISS-PROT can be thought of
as such functions. Some of the web pages
contain explicit pointers (hot links) to other web
pages; other contain implicit pointers (for
example, accession numbers) to components of
other web pages.

However, the Web as a database is disorganized
(no integrity constraints are enforced) and highly
heterogeneous. Researchers wishing to query
the web cannot do so easily, and two primary
approaches have been taken within
Bioinformatics to deal with this:

1) Developing federations of databases
accessible over the Web, as with SRS.

2) Developing tools to allow database
integration over (and often under) the Web,as
with Kleisli/K2.

The second approach can either be used in a
dynamic sense, in which queries are executed
on-the-fly agains the underslying databases, or
in a static sense by creating data warehouses.
Warehousing has the benefit of allowing
cleansing to occur (enforcing certain forms of
integrity constraints), as well as the addition of
annotation and new information.

Creating and maintaining these "value-added"
warehouse databases raise a number of
problems:

1. How can we detect when data in the
underlying data sources has changed?

2. How can we automate the refresh process?

0-7803-6449-W00/$10.00 0 2000 IEEE 382

3. How can we track the origins or "provenance"
of data?

Determining exactly what changes have
occurred to the source databases is complicated
by the fact that updates to biomedical databases
are typically propagated in one of three ways:

1. Producing periodic new versions which can
be uploaded by the user community;

2. Timestamping data entries so that users can
infer what changes have occurred from the
last time they accessed the data; and

3. Keeping a list of additions and corrections;
each element of the list is a complete entry.
The list of additions can be uploaded by the user
community. None of these methods precisely
describe the minimal changes that have been
made to the data, resulting in potentially very
expensive update techniques.

Part of the second problem, automating the
refresh process, has received a lot of attention by
the database community in the context of
updating materialized views of relational
databases. However, the results have not been
applied to biomedical databases. The result is
that the update process for many secondary
databases rely on hand-written scripts, and are
therefore quite expensive to write and are
difficult to modify as the primary or secondary
data source schemas evolve. This affects the
periodicity with which refreshing occurs, since
the need for information that is as current as
possible must be balanced with the expense of
keeping the view current.

The last problem, tracking the origin or
provenance of data, is also very important. For
example, suppose that one form of annotation in
our warehouse is to assign function to sequences
based on similarity (e.g. using BLAST

searches). This annotation could then be
transitively inherited by other sequences. If the
original annotation is determined to be incorrect
through experimentation, all subsequent
annotations would also have to be undone. It is
therefore important to track the origins of the
annotation by keeping detailed information
about what information the annotation was
based on.

To realize the full potential of the WWW, we
must have protocols, procedures, exchange
formats, and tools to facilitate the above
problems.

383

