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ABSTRACT

LIFELONG REINFORCEMENT LEARNING

ON MOBILE ROBOTS

David Isele
Eric Eaton
C.J. Taylor

Machine learning has shown tremendous growth in the past decades, unlocking new

capabilities in a variety of fields including computer vision, natural language process-

ing, and robotic control. While the sophistication of individual problems a learning

system can handle has greatly advanced, the ability of a system to extend beyond an

individual problem to adapt and solve new problems has progressed more slowly. This

thesis explores the problem of progressive learning. The goal is to develop method-

ologies that accumulate, transfer, and adapt knowledge in applied settings where

the system is faced with the ambiguity and resource limitations of operating in the

physical world.

There are undoubtedly many challenges to designing such a system, my thesis looks

at the component of this problem related to how knowledge from previous tasks can

be a benefit in the domain of reinforcement learning where the agent receives rewards

for positive actions. Reinforcement learning is particularly difficult when training on

physical systems, like mobile robots, where repeated trials can damage the system

and unrestricted exploration is often associated with safety risks. I investigate how

knowledge can be efficiently accumulated and applied to future reinforcement learning

problems on mobile robots in order to reduce sample complexity and enable systems to
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adapt to novel settings. Doing this involves mathematical models which can combine

knowledge from multiple tasks, methods for restructuring optimizations and data

collection to handle sequential updates, and data selection strategies that can be

used to address resource limitations.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Any robotic system deployed outside a carefully engineered environment will en-

counter a large variety of operating conditions. As the complexity of the robotic

system increases, it will become more difficult for engineers to anticipate and design

for every possible circumstance. This motivates the design of robots that can learn

from their environment and leverage that prior learning to modify their behavior on

new challenges. To further motivate the importance of robots that are capable of

lifelong learning, consider the following motivating examples:

Disaster Relief As a motivating example, consider the problem of disaster relief.

In 2011, a magnitude 8.9 earthquake and tsunami hit Fukushima, Japan (BBC, 2011).

One of the many facilities damaged by the earthquake was the Daiichi nuclear power

1
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plant. For safety reasons, robots could have been invaluable in inspecting the area and

addressing radiation leaks and chemical spills, however this technology was beyond

the state-of-the-art. Broken doors and toppled obstacles would not only likely require

a robot to re-route several times, but would also make re-routing a difficult problem

solving task: which obstacles are movable, and how are they best manipulated? A

tele-operated robot could outsource difficult aspects to the human operator1, however,

in disasters, it is frequently the case that communications lines go down and any

remaining channels are often congested due to increased use, placing the problem

largely in the domain of fully autonomous and adaptive agents.

Planetary Exploration Many challenges in disaster relief relate to difficulty in

handling the unknown. However, operating in unknown environments is one of the

most compelling use-cases for robotics. Unknown environments can be dangerous,

difficult, or time consuming to explore and robots can be designed to handle the

harsh and tedious conditions without the risk to human life. For example, a planetary

exploration robot on a data collection mission may encounter new objects that are

of scientific interest, but that its human programmers did not anticipate it would

find. With a limited carrying capacity, the robot cannot collect every unidentifiable

object that it encounters, so it will need to learn in-situ which objects are potentially

of interest and which are not. Moreover, an ability to make unanticipated decisions

might not only improve the effectiveness of a robot, but may be necessary to a robot’s

continued operation. In 2009, the NASA’s Spirit rover became stuck in soft soil and

when the programmers were not able to design successful maneuvers to escape the soil,

the rover was lost (Jaggard, 2010). Had Spirit been able to learn how its behaviors
1A few years after the Fukushima earthquake, the DARPA robotics challenge (Pratt and Manzo,

2013) looked at addressing various disaster relief scenarios through tele-operation.
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affected the mechanics of operating on different types of soil it might have been able

to learn how to either avoid or escape the soil that trapped it.

Repair As evidenced in the case of the Mars rover, deployed robots are going to

break down and the ways in which they break will often be difficult to predict. An-

other case where a robot capable of learning and adapting would be useful is in

self-diagnosing failure and managing recovery. If a robot’s leg or wheel stops work-

ing, the dynamics of motion will change. By identifying that the dynamics have

changed and learning an altered gate or other corrective method for navigating in an

impaired state, the robot could navigate to a facility for repairs.

Bootstrapping and Curriculum The previous motivating scenarios are blue sky

ideas which will likely not be achievable for some time. While there are currently some

examples of robots that can be deployed for extended periods of time (Biswas and

Veloso, 2013), generally speaking, robots still need supervision. However, there are

also more immediate gains available for a robotic system that can learn over time and

leverage that accumulated knowledge. A progressively learning robot might be able

to learn tasks that are too difficult or take too long to learn otherwise. A learning

problem may be difficult for any number of reasons: a highly complex objective

function with many poor local optima, a large cost to collect data, the presence of

only sparse rewards with very long time delays for guiding learning, or a problem

that is very difficult to specify formally may all be contributing factors that make a

task difficult. One possible strategy for approaching these difficult problems is to use

a lifelong learning agent. Existing knowledge can be bootstrapped to acquire new

information that might be helpful in acquiring yet more information that ultimately
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enables the system to solve the problem. An example of this is the use of a curriculum

(Bengio et al., 2009; Narvekar et al., 2016): the robot starts by learning simple skills

and then uses those skills to learn more advanced skills, eventually building up to

complex behaviors.

Sample Complexity A large cost to collecting data was one reason mentioned for

why a task might be difficult to learn. There may literally be a large cost associated

with collecting data. This is the case when an expensive medical test needs to be

conducted to predict the outcome of a treatment. On robotic systems, large costs

might take the form of time spent training or wear on the physical components. By

leveraging previously learned knowledge, a robot may be able to reduce the amount

of training required to learn a task. If the savings are substantial enough, it can be

the difference between whether or not the task is feasible for a robot to learn.

To move away from discussing knowledge and learning as abstract terms, I will focus

on reinforcement learning (RL) specifically. Originally a component of operant condi-

tioning in the field of psychology (Ferster and Skinner, 1957), RL is a learning process

in which rewards are used to shape behavior. In computer science, it was shown that

algorithms could be designed that couple exploratory behavior with environmental

rewards (Sutton and Barto, 1998). These algorithms incrementally learn policies for a

robot or artificial agent that maximize reward in that environment. In an RL context,

learning is the process of finding a policy, and knowledge is the information (such as

learned parameters) relating to the policy that generates behaviors.

The problem statement of this thesis is to identify how knowledge can be efficiently

accumulated and shared to facilitate improved learning on future RL problems. This
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is done specifically in the context of mobile robots. RL is appealing as a general

learning framework because many tasks can be phrased as RL problems. However,

RL is particularly difficult when training on physical systems, like mobile robots,

because repeated trials can damage the system, and unrestricted exploration is often

associated with safety risks. For this reason, I specifically focus on how knowledge

from previous tasks can be used in order to reduce sample complexity and enable the

safe learning of a robotic system in novel settings. In the next section, I elaborate

on the problem statement of my thesis by identifying the fundamental questions that

my work addresses.

1.2 Fundamental Questions

There are several fundamental questions related to the process of a robotic system

learning over the course of its lifetime. Identifying these questions is a first step in

developing systems capable of lifelong machine learning. By the end of the thesis, I

will address the following fundamental questions:

• How can a system continually accumulate prior knowledge and incor-

porate it into the learning process and behavior of future tasks?

A deployed robot can easily acquire terabytes of data in a single day. This

presents challenges both in storing and accessing the data as needed. The raw

data is in many cases highly compressible and perfect recall is likely not needed

for the system to perform optimally. If the raw data is compressed, or only the

model learned on the data is stored, it is likely that some of the original data will

be lost. This raises the question of whether some experiences more important
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than others, and if so, how can the important experiences be identified?

Assuming some experiences are more important than other experiences, it is

possible that importance is an invariant of the experience, but it is more likely

that the importance of an experience is relative to the system. Since we are

designing the system to change over time, does the importance of an experience

change over time, and if so, how can the stored data change accordingly?

Additionally, there is only partial knowledge as the system makes choices con-

cerning the data. Since data arrives as a stream, any techniques used must

function online with no knowledge of future data. What methods enable data

to be accumulated in a fully online manner?

• How effectively does the incorporation of knowledge from past rein-

forcement learning tasks reduce sample complexity of new tasks?

The rationale for incorporating prior knowledge is to improve performance.

This improvement may come in the form of reducing the time to learn, or by

increasing the system’s ability to generalize and therefore perform better at test

time. This raises a question of impact: how many experiences are needed to

learn a new task?

The fewer experiences a system needs to learn, the less resources need to be

spent on the learning process. In the ideal case, the system could figure out

how to successfully perform tasks it has never encountered. If this is possible,

how can knowledge be transferred without any training data?

There are also questions that can be asked concerning what should be transfered

and how is that transfer carried out. Perhaps there are reasons why transferring

one form of knowledge would be preferable. What changes if you transfer general

vs. specific information for a task?
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• What novel situations can a robotic system handle as a result of its

previously learned experience?

When a lifelong learning system is transferring knowledge to new situations,

judging the effectiveness of the algorithm requires understanding how much the

new situation differs from previous tasks. In the simplest case, transfer might

improve a system’s ability to generalize. A similar task is performed, and an

improved model is learned by not over-fitting the noise. Better lifelong learners

will be able to transfer their knowledge to a more diverse set of tasks. Targeting

the greater capability of the latter, one could ask, “How can source robots with

different dynamics be used to correct a disturbance on a target robot” This

would involve learning some foundational relationship between the underlying

dynamic systems.

Transfer may take place on a single robot that moves between tasks, or the

transfer might take place across different robots. For example, transfer can

occur between simulated and real robots. What differences exist between trans-

ferring between tasks on a single robot platform and transferring knowledge

between platforms?

The next section describes my technical approaches to answering these questions.

1.3 Technical Approach and Contributions

One of the contributing factors to the success of recent machine learning techniques

has been the increasing ability to process large amounts of data. This helps break

incidental correlations of the sampling process, and encourages general and robust
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models. When large amounts of data are not available, it has been shown that

using related data (Raina et al., 2007; Ham et al., 2005), or learning related tasks

simultaneously (Caruana, 1997) can provide similar generalization.

The principal claim of my thesis is that sharing knowledge across tasks increases the

capabilities and efficiency of training mobile robots. For my dissertation, I investigate

various methods for accumulating knowledge, including both learned linear and non-

linear latent spaces, and memory storage techniques. The accumulated knowledge is

then shared with new tasks using techniques including sparse coding, task descriptors,

and mappings to shared latent spaces. I present lifelong learning systems that enable

learning in the presence of disturbances, systems without training data, systems with

changing state and action distributions, and systems that need to adhere to safety

constraints.

I approach lifelong RL by examining the way one task relates to another. In RL,

which I describe in greater detail in Chapter 2.1, a learning problem takes the form

of learning a policy that maps states to actions πθ : x→ a. For a single problem, we

assume that each state is drawn from a distribution x ∼ Dt(X ). Consider a robot that

first encounters a problem with states drawn from Dt(X ) and then encounters a second

learning problem with states drawn from Dt+1(X ), where both Dt(X ) and Dt+1(X ) are

distributions that sample from a global distribution Dglobal(X ). A first observation

is that knowledge of Dt(X ) and Dt+1(X ) can be used to approximate Dglobal(X ).

The greater number of tasks observed, the more accurate that prediction will be. A

second observation is that the optimal policy for a robot that first encounters task

Z(t) (corresponding to samples drawn from Dt(X )) and then encounters task Z(t+1) is

not necessarily optimizing for Dt(X ), Dt+1(X ), or Dglobal(X ). Rather, the robot needs

to adjust so that it performs optimally on Dt(X ) when the robot is faced with Z(t),
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and then performs optimally on Dt+1(X ) when facing with Z(t+1). This is a difficult

problem, as it requires performing optimally on tasks that have not been trained on.

Given a robot in this setting, I investigate how Dglobal(X ) can be approximated. I

then show how knowledge of Dglobal(X ), and various subsets of Dglobal(X ), can be

used to efficiently and safely switch to a new task on a robot system. While the

target distribution for any given task may not be Dglobal(X ), knowing Dglobal(X ) is

not useless. Just like large datasets prevent over-fitting noise, Dglobal(X ) is a powerful

prior that will likely be a good policy. Here good means both that the policy serves

as a starting point that can learn an optimal policy quickly, and that the policy

will perform reasonably well as the robot acquires data about its new task. Having

experienced many prior tasks, the knowledge of those prior tasks can be shared with

a new task to assist the learning process.

Often, in transfer, it is assumed that tasks are related, but when dealing with multiple

tasks, it becomes important to have an approach that is more expressive at describing

the nuanced relationships between different tasks. In the general case, tasks can either

be related, unrelated, or conflict. Knowledge sharing for the general case must be

done more selectively to prevent the negative transfer that occurs when tasks conflict.

To show how knowledge can selectively be shared between tasks, I adopt the method

of PG-ELLA(Bou Ammar et al., 2015), described in detail in Chapter 2.2.5, and

apply it to robots. This method uses sparse coding to decompose policies, which

allows the learning process to identify and share knowledge between similar tasks,

while isolating that knowledge from being corrupted by dissimilar tasks.

My first contribution, is to show that the process can be applied to robotic systems. I

demonstrate that PG-ELLA reduces the sample complexity and saves experimenters’
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time. I also identify disadvantages specific to using PG-ELLA on robotic systems.

While it is important to reduce the sample complexity of training on a robotic system,

some trials are more dangerous than others. PG-ELLA generally focuses training

the system on these more dangerous trials because transfer is done as a refinement

to a partially learned policy, and each partially learned policy starts from random

initializations which can produce unpredictable behavior.

Having identified this shortcoming, I present a new algorithm, TaDeLL, to address

how knowledge is being transfered. TaDeLL uses sparse coding techniques which

elegantly couple similar policies (and similar components of different policies) like

PG-ELLA, while additionally predicting policies for new tasks. This allows general

models to be learned that fit similar subregions of Dglobal(X ), while also allowing those

general models to be used as initializations. This provides a robotic system with a

starting policy which is already near optimal and therefore safer and more predictable.

Having such a policy allows a robot to quickly adapt and perform optimally on a new

task when switching from task Z(t) to task Z(t+1). This is a desired property for fast

switching between tasks alluded to earlier.

TaDeLL is a powerful model for transferring knowledge, but it is of limited use on

many more complex robotics problems. If we actually hope to handle many tasks,

we must have a base learner that is very general and flexible. RL meets this need.

It is a general framework that accommodates a large family of problems, but the

linear function approximation used for PG-ELLA and TaDeLL greatly limits the

classes of problem that can be handled. Robotic learning problems will often have

high-dimensional input spaces as a result of being outfitted with numerous high-

dimensional sensors. High dimensional features are often less strongly correlated with

the robot’s state, which in practice makes policies both harder to learn, and less likely
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to be represented well by a linear policy. This brings me to my next contribution —

modifying a deep network to handle multiple tasks.

Deep networks are capable of representing arbitrary functions (Hornik et al., 1989)

and it has been shown that an effective way to transfer knowledge in deep networks

is fine-tuning (Razavian et al., 2014; Yosinski et al., 2014). Fine-tuning involves pre-

training a network on one task and then retraining the network or fine-tuning it for a

different task. It provides a good initialization for learning a new task, while preserv-

ing a deep network’s ability to represent highly non-linear functions. I present several

experiments that elucidate the behavior of fine-tuning deep networks, including stud-

ies of retention and the effects of training time on transferability. Unfortunately, one

of the properties I demonstrate, is that deep networks forget previous tasks and are

not immediately applicable to learning multiple tasks. To address this shortcoming,

I contribute a limited memory buffer that can be used to preserve performance on

multiple tasks.

By learning near optimal initializations, we can drastically minimize the number

of dangerous trials. Machine learning techniques can rarely achieve 100% accuracy,

especially without first failing and subsequently learning from those failures. However,

on many robotic systems, certain states should never be visited. This is the case with

autonomous driving, where collision cases should neither be observed nor required to

learn.

The final contribution of my thesis, which allows RL policies to be safely run on an

autonomous vehicle, shows how to incorporate prediction as a safety constraint into

the learning process. Since the safety constraints are designed to be provided by

an expert, or are initially trained as an offline task, the information is incorporated
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without having to perform exploratory trials that will put the system at risk.

This section outlined my contribution of several frameworks for implementing learning

algorithms. In the next section, I describe how these contributions are organized in

my thesis.

1.4 Thesis Organization

Several aspects of this thesis have been previously published (Isele et al., 2016a; Isele

and Cosgun, 2017b, 2018; Isele et al., 2016b, 2017, 2018a), with most of the work being

expanded to include more in-depth experiments and analysis. The rest of thesis is

organized as follows:

Chapter 2 – Background formally introduces reinforcement learning, Markov

decision processes, and several popular reinforcement learning algorithms used in this

thesis. Additionally, lifelong machine learning is discussed and several state-of-the-art

methods are presented.

Chapter 3 – Lifelong Reinforcement Learning on Mobile Robots applies

the PG-ELLA algorithm (Ruvolo and Eaton, 2013b; Bou Ammar et al., 2014) to

the task of disturbance rejection on mobile robots. I show how knowledge can be

shared between a collection of mobile robots, and identify pros and cons of using this

approach on physical systems.
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Chapter 4 – Predicting Policies presents my contribution TaDeLL, which cou-

ples task knowledge with task descriptions to predict models for novel tasks. By using

a coupled dictionary that works with a sparse coding framework, I show that a new

policy can be predicted using only a description of the task.

Chapter 5 – Fine-Tuning as Transfer in Deep Learning explores properties of

fine-tuning deep networks, specifically probing aspects related to the online learning

of multiple tasks.

Chapter 6 – Preserving Experiences describes a series of experiments that

probe the selection processes related to storing experiences when learning multiple

tasks. I identify a strategy that preserves memories over the lifetime of the system

and can be used to prevent forgetting previously learned abilities while acquiring new

skills.

Chapter 7 – Safe Training presents methods to enable the deep learning tech-

niques to be applied on real robotic systems. I investigate how predictions can be

used to provide safety constraints during the learning process.

Chapter 8 – Conclusions and Contributions revisits my research questions,

answering them in the context of my thesis work. I then discuss future directions for

this research before finally concluding.



Chapter 2

Background

A mobile robot that learns from past experiences, bootstrapping its knowledge to new

situations, is a challenge under a variety of different machine learning paradigms. To

make the investigation more tractable, I focus specifically on sharing knowledge when

reinforcement learning is used as a base learner. This chapter presents background in-

formation on reinforcement learning, going into detail on policy gradient methods and

Q-learning — two types of reinforcement learning algorithms used on robotic systems.

Then a discussion of existing knowledge sharing and lifelong learning techniques is

presented. This overview aims at giving a basic background while emphasizing the

particular techniques which later chapters build upon.

14
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2.1 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 1998; Kober et al., 2013) is a popular

method for autonomous learning, where a system seeks to select appropriate actions in

order to optimize rewards. One of the main difficulties of performing this optimization

is that actions should not only be chosen to optimize an immediate reward, but should

be selected to position the system to receive future rewards that may only result

after long sequences of actions. Since the reward of taking a good action might not

manifest for many time steps, there is an inherent difficulty in assigning credit to

good actions taken in the past. Additionally, as the path to high rewarding states

is often not known in advance, trying to optimize in the absence of information can

cause conflicting objectives. Does the system try to improve based on its current

knowledge or does it try to gather more knowledge? The challenge of addressing the

exploration versus exploitation trade-off has led to a variety of techniques in RL. I will

first review the typical formalization of RL problems as a Markov Decision Processes

(MDP) and then describe two popular RL techniques: policy gradients (PG) and

Q-learning.

2.1.1 Markov Decision Processes

In the reinforcement learning framework, at time h the system in state xh ∈ Rdx takes

an action ah according to the policy πθ parameterized by θ. The agent transitions to

the state xh+1, and receives a reward rh. The sequence of states, actions, and rewards

is given as a trajectory τ = {(x0, a0, r0), . . . , (xH , aH , rH)} over a horizon H. And the

set associated with a single transition is an experience eh = (xh, ah, rh,xh+1).
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A reinforcement learning task is typically formulated as a Markov Decision Process

(MDP) 〈X ,A, P,R, γ〉, where X is the set of states, and A is the set of actions that

the agent may execute. The state transition function P : X × A → X describes the

systems dynamics, the reward function R : X × A × X → R gives the real-valued

reward for a given time step, and γ ∈ (0, 1] is a discount factor that adds preference

for earlier rewards and provides stability in the case of infinite time horizons. MDPs

follow the Markov assumption that the probability of transitioning to a new state

given the current state and action is independent of all previous states and actions

p(xh+1|xh, ah, . . . ,x0, a0) = p(xh+1|xh, ah).

The goal of RL is to find the optimal policy π∗ with parameters θ∗ that maximizes the

expected return R = E
[∑H

h=0 γ
hrh

]
over a sequence of actions. In some sections the

term −R is replaced with L denoting a loss function. While the focus is on reinforce-

ment learning, many of the techniques developed are designed to be general enough to

handle classification and regression tasks. The use of a loss function L accommodates

this generalization. The next section describes several specific approaches to solving

RL problems.

2.1.2 Policy Gradients

Learning on robots often requires working in high-dimensional state spaces, where

the curse of dimensionality (Bellman, 1961) can make many optimization approaches

intractable. One set of optimization strategies that lends itself to high-dimensional

state spaces is policy gradient methods. Policy gradient (PG) methods (Sutton et al.,

1999a) are a class of RL algorithms that are effective for solving high dimensional

problems with continuous state and action spaces, such as robotic control (Peters and
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Schaal, 2008). The goal of PG is to optimize the expected return R(θ):

R(θ) = E

[
H∑
h=0

γhrh

]
=

∫
T
pθ(τ )R(τ )dτ , where

R(τ ) =
H∑
h=0

γhrh , and

pθ(τ ) = P0(x0)
H∏
h=0

p(xh+1 | xh,ah) πθ(ah | xh) .

Here T is the set of all possible trajectories, the reward on trajectory τ is given by

R(τ ), and pθ(τ ) is the probability of τ under initial state distribution P0 : X 7→ [0, 1].

Most PG methods (for example episodic REINFORCE (Williams, 1992), PoWER

(Kober and Peters, 2009), and Natural Actor Critic (Peters and Schaal, 2008)) opti-

mize the policy by employing supervised function approximators to maximize a lower

bound on the expected return. This optimization is carried out by generating trajec-

tories using the current policy πθ, and then comparing the result with a new policy

πθ̃. Jensen’s inequality can then be used to lower bound the expected return (Kober

and Peters, 2009):

logR
(
θ̃
)

= log

∫
T
pθ̃(τ ) R(τ ) dτ

= log

∫
T

pθ(τ )

pθ(τ )
pθ̃(τ ) R(τ ) dτ

≥
∫
T
pθ(τ ) R(τ ) log

pθ̃(τ )

pθ(τ )
dτ + constant

∝ −DKL(pθ(τ ) R(τ ) || pθ̃(τ )) = J
(
θ̃
)
,

where

DKL(p(τ ) || q(τ )) =

∫
T
p(τ ) log

p(τ )

q(τ )
dτ .
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This is equivalent to minimizing the KL divergence between the reward-weighted

trajectory distribution of πθ and the trajectory distribution pθ̃ of the new policy πθ̃.

2.1.3 Q-learning

Policy gradient methods directly work to optimize the policy that governs behavior.

An alternate approach to RL is Q-learning (Watkins and Dayan, 1992) which learns

the value of taking a particular action at a given state. When the value of each

state-action pair is known, an optimal policy falls out trivially. Q-learning defines

an optimal action-value function Q∗(x, a) as the maximum expected return that is

achievable following any policy given a state xh and action ah,

Q∗(x, a) = max
π

E

 H∑
h=ĥ

γh−ĥrh | xĥ = x, aĥ = a, π

 . (2.1)

This follows the dynamic programming properties of the Bellman equation, which

state that if the values Q∗(xh+1, ah+1) are known for all ah+1 then the Q-value of

an experience eh can be calculated by selecting the action ah+1 that maximizes the

expected value of rh + γQ∗(xh+1, ah+1):

Q∗(x, a) = E[rh + γmax
ah+1

Q∗(xh+1, ah+1) | xh = x, ah = a] . (2.2)

In Deep Q-learning (Mnih et al., 2013), the optimal value function is approximated

with a neural network Q∗(x, a) ≈ Q(x, a;θ). The parameters θ are learned by using

the Bellman equation as an iterative update

Qi+1(xh, ah) = E[rh + γmax
ah+1

Qi(xh+1, ah+1) | xh, ah] , (2.3)
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and minimizing the temporal difference (TD) error between the expected return and

the state-action value predicted by the network. This gives the loss for an individual

experience in a deep Q-network (DQN)

L(eh,θ) =

(
rh + γmax

ah+1

Q(xh+1, ah+1;θ)−Q(xh, ah;θ)

)2

. (2.4)

Given a learned Q-function, at every time step the optimal policy executes the action

that has the maximum value given the current state. During learning, an ε-greedy

policy is often followed by selecting a random action with probability ε to promote

exploration and otherwise greedily selecting the best action maxaQ(x, a;θ) according

to the current Q-function.

The next sections describe extensions to the MDP framework that accommodate

domains with multiple agents and handle learnable skills that allow for hierarchical

actions.

2.1.4 Stochastic Games

Stochastic games generalize MDPs to handle multiple agents. Since other agents can

change their policies over time, the distribution of states is non-stationary, which

forces the agent not just to learn but also to adapt. In a stochastic game, at time h

each agent i in the world state χh takes an action aih according to the policy πi. All

the agents then transition to the state χh+1 and receive a reward rih. Stochastic games

can be described by the tuple 〈X ,A , P,R〉, where X is the set of world states, and

A = {A1, . . . ,Aκ} is the joint action space consisting of the set of each agent’s ac-

tions, where κ is the number of agents. The reward functions R = {R1, . . . ,Rκ}
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describe the reward for each agent X × A × X → Rκ. The transition function

P : X ×A →X describes how the state evolves in response to all the agents’ col-

lective actions. Stochastic games are an extension to MDPs which generalize to

multiple agents, each of which has its own policy and reward function.

2.1.5 Options

In order to scale RL to handle complex tasks over long time horizons, it is helpful

to group sets of actions that are often repeated in sequence into a single high-order

action or skill. Skills can also be grouped, allowing for hierarchical action learning.

Learning with skills (also referred to as options in the literature) is formalized as a

Semi-Markov Decision Process (SMDP) (Sutton et al., 1999b; Precup, 2000). The

MDP, as defined earlier, forms the basis of the SMDP, which formalizes temporally

extended actions as a Markovian option æ∈ Æ, where Æ is the triple 〈Iæ, πæ, βæ〉,

where Iæ ⊆ X is the initiation set, πæ is the intra-option policy, and βæ : X → [0, 1]

is the termination function.

The next sections describe how an RL problem can be incorporated into a lifelong

learning setting, where an agent learns many tasks over the course of its lifetime.

2.2 Lifelong Machine Learning

In RL, a system explores and subsequently learns from its own experience. This

draws parallels to the lifelong learning problem — past experiences are used to shape

behavior and improve learning. A system that continues to accumulate knowledge
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over the course of its lifetime has been called lifelong machine learning (Thrun, 1996;

Ruvolo and Eaton, 2013b), continual learning (Ring, 1998; Rafols et al., 2005), and

never-ending learning (Mitchell et al., 2015) by different groups of researchers. In

this thesis, I will use lifelong machine learning or lifelong learning for short when it

is clear from context that the learning relates to machines.

In a lifelong machine learning setting, a learner faces multiple, consecutive tasks

and must rapidly learn each new task by building upon its previous experience. The

learner may encounter a previous task at any time, and so must optimize performance

across all tasks seen so far. A priori, the agent does not know the total number of

tasks Tmax, the task distribution, or the task order.

At time t, the lifelong learner encounters task Z(t). A task can take many forms; for

example, a task may be a regression problem Z(t) = 〈X(t),y(t)〉, or a classification

problem Z(t) = 〈X(t),y(t)〉. In this thesis, I focus on RL tasks where Z(t) is specified

by an MDP 〈X ,A, P,R, γ〉. I do not consider mixed learning paradigms—if a life-

long learning agent learns reinforcement learning tasks it will only face reinforcement

learning problems during its lifetime. The agent will learn each task consecutively,

acquiring training data (i.e., trajectories or samples) in each task before advancing

to the next. The agent’s goal is to learn the optimal models {f ∗
θ(1)

, . . . , f ∗
θ(T )} or

policies {π∗
θ(1)

, . . . , π∗
θ(T )} with corresponding parameters {θ(1), . . . ,θ(T )}, where T is

the number of unique tasks seen so far (1 ≤ T ≤ Tmax). Ideally, knowledge learned

from previous tasks {Z(1), . . . ,Z(T−1)} should accelerate training and improve per-

formance on each new task Z(T ). Also, the lifelong learner should scale effectively to

large numbers of tasks, learning each new task rapidly from minimal data.
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2.2.1 HORDE

The Horde architecture (Sutton et al., 2011) generalizes value function approximation

techniques from reinforcement learning to span across multiple learners (demons in

the authors’ verbage) with differing objectives which collectively amass the knowledge

of a shared experience stream. Each target policy is learned off-policy from the

experiences generated by the behavior policy. The behavior policy may be a policy

unrelated to the different demons being learned, or it might alternate between different

behavior policies of demons in the horde.

For example, the behavior policy may be a policy designed to explore the environment,

one demon might be using the experience to learn motion primitives, a second demon

might be learning to navigate to a specific goal, a third demon might be learning

to predict collisions, and a final demon might be learning to predict changes in the

lighting conditions of the environment. The idea behind Horde is that by using off-

policy learning, many different value functions (policies) can be learned from the same

behavior.

Concretely, each demon corresponds to a generalized value function Q : X ×A→ R.

While it’s common to denote Q as Qπ since the value is conditioned on the policy,

the generalized value function would be more accurately written Qπ,Υ,R,Z since it is

conditioned on four auxiliary question functions : a policy function π : X×A→ [0, 1],

a termination function Υ : X → [0, 1], a per step reward function R : X → R, and

terminal reward Z : X → R.

A value function can be used to describe a policy (repeatedly choosing the actions

that maximizes a value produces a behavior) so a value function is often thought
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of as being synonymous with a policy. However the Horde framework points out

that a value function is more general. Value functions may be related to behavior

functions that guide an agent for a particular task, but they can also be used to make

predictions about the environment. For example, the value can learn an answer to the

question, “If I’m in this state and take this action, how many steps should I expect to

take before I crash?” With each different value function learning a different aspect of

the environment, the collective Horde has a rich understanding of the world informed

by the perspectives of each individual demon.

2.2.2 Meta-Learning

The framework of learning to learn (or meta learning) considers the problem of learn-

ing how to model an agent that is capable learning. In the work of Finn et al. (2017),

a learner is exposed to many tasks, during which time the learner learns a model that

maximizes the performance on each task after a single gradient update. Formally, on

task t the model parameters are

θ(t) = θ − υ∇θLZ(t)(θ) , (2.5)

where θ is the global parameters being optimized. The meta-objective is then defined

min
θ

∑
Z(t)∼p(T )

LZ(t)(θ(t)) . (2.6)

This process learns a model that can be quickly adjusted, enabling one-shot learning.
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2.2.3 Never-Ending Language Learner

Never Ending Learning (Mitchell et al., 2018) provides a very general framework for an

agent that learns over time. In the never ending learning framework, a never-ending

learning problem L consist of set of tasks T and constraints C ,

L = (T ,C ) . (2.7)

Each task Z(t) ∈ T consists of a pair describing the input and output space 〈Xt,Yt〉,

a performance metric Mt, and a collection of experiences Et,

T = {〈Z(t),Mt, Et〉} . (2.8)

The performance metric Mt : f → R defines the optimal learned function

f ∗t : Xt,→ Yt for the tth learning task:

f ∗t ≡ argmax
f

Mt(f) . (2.9)

The coupling constraints C consist of a coupling function Ok, which specifies how

well the constraints are satisfied between the solutions of multiple learning tasks, and

a vector of indices νk specifying the inputs to Ok:

C = {〈Ok, νk〉} . (2.10)

The example the authors provide is the Never Ending Language Learner (NELL)
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(Mitchell et al., 2018) which applies the Never Ending Learning Framework to the

problem of language understanding. The system is provided a set of categories (e.g.,

Sport, Athlete), a set of binary relations (e.g., AthletePlaysSport(x,y)), a small num-

ber of labeled training examples for each category and relation (e.g. Sport includes

the noun phrases baseball and soccer), the internet (represented as an initial 500 mil-

lion web pages from the ClueWeb 2009 collection (Callan et al., 2009), and access to

100,000 Google API search queries each day), and occasional interaction with humans

(through NELL’s public website http://rtw.ml.cmu.edu).

The goal is to endlessly learn new data from the internet. This takes the form

of classifying new members of categories, and identifying new examples of binary

relations. Additionally, the learner identifies new categories and binary relations,

increasing confidences of previous beliefs, and removing incorrect beliefs.

2.2.4 Efficient Lifelong Learning Algorithm

One particular lifelong learning approach which has been shown to be quite versatile

and which my thesis work builds upon is the Efficient Lifelong Learning Algorithm

(ELLA) proposed by Ruvolo and Eaton (2013b).

ELLA assumes the parameters for each task model can be factorized using a shared

knowledge base L, facilitating transfer between tasks. Specifically, the model pa-

rameters for task Z(t) are given by θ(t) = Ls(t), where L ∈ Rd×k is a shared basis

over the model space, and s(t) ∈ Rk are the sparse coefficients over the basis. This

factorization, depicted in Figure 2.1, has been effective for transfer in both lifelong

and multi-task learning (Kumar and Daumé, 2012; Maurer et al., 2013).
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s(t)

= 

shared	
basis	

task-specific	coeffi
cients	

✓(t) L

Figure 2.1: The task-specific model (or policy) parameters θ(t) are factored into a
shared knowledge repository L and a sparse code s(t). The repository L stores chunks
of knowledge that are useful for multiple tasks, and the sparse code s(t) extracts the
relevant pieces of knowledge for a particular task’s model (or policy).

Under this assumption, the multi-task learning (MTL) objective is:

min
L,S

1

T

T∑
t=1

[
L(θ(t)) + s(t)‖1‖מ

]
+ λ‖L‖2

F , (2.11)

where S = [s(1) · · · s(T )] is the matrix of sparse vectors, L is the task-specific loss

for task Z(t), and ‖·‖F is the Frobenius norm. The L1 norm is used to approximate

the true vector sparsity of s(t), and מ and λ are regularization parameters. Note that

for a convex loss function L(·), this problem is convex in each of the variables L and

S. Thus, one can use an alternating optimization approach to solve it in a batch

learning setting. To solve this objective in a lifelong learning setting, Ruvolo and

Eaton (2013b) take a second-order Taylor expansion to approximate the objective

around an estimate α(t) ∈ Rd of the single-task model parameters for each task Z(t),

and update only the coefficients s(t) for the current task at each time step. This

process reduces the MTL objective to the problem of sparse coding the single-task

policies in the shared basis L, and enables S and L to be solved efficiently by the

following alternating online update rules that constitute ELLA (Ruvolo and Eaton,
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2013b):

s(t) ← arg min
s
‖α(t) −Ls‖2

Γ(t)+מ‖s‖1 (2.12)

A← A+ (s(t)s(t)>)⊗ Γ(t) (2.13)

b← b+ vec
(
s(t)> ⊗

(
α(t)>Γ(t)

))
(2.14)

L← mat
((

1

T
A+ λIkd

)−1
1

T
b

)
, (2.15)

where ‖v‖2
A= v>Av, the symbol ⊗ denotes the Kronecker product, Γ(t) is the Hessian

of the loss L(α(t)), Im is the m × m identity matrix, A is initialized to a kd × kd

zero matrix, and b ∈ Rkd is initialized to zeros. Here A−1b forms a column-wise

vectorization of L in order to allow L to be constructed incrementally, reducing the

computational complexity of the update.

ELLA was designed for classification and regression tasks. The next section describes

how ELLA was extended to RL by Bou Ammar et al. (2014).

2.2.5 Policy Gradient Efficient Lifelong Learning Algorithm

Bou Ammar et al. (2014) showed that ELLA can be extended to handle policy gra-

dient reinforcement learning. The resulting algorithm is named the Policy Gradient

Efficient Lifelong Learning Algorithm (PG-ELLA). By letting θ(t) describe the param-

eters of a Gaussian policy and assuming the same factorization as ELLA: θ(t) = Ls(t),
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the multi-task objective for RL tasks becomes:

argmin
L,S

1

T

∑
t

[
−J

(
θ(t)
)

+ מ
∥∥s(t)

∥∥
1

]
+ λ‖L‖2

F , (2.16)

where S =
[
s(1) · · · s(T )

]
is the matrix of all coefficients, the L1 norm ‖·‖1 enforces

sparsity of the coefficients, and the Frobenious norm ‖·‖F regularizes the complexity

of L with regularization parameters ,מ λ ∈ R. PG-ELLA solves (3.4) by first approx-

imating the RL multi-task objective by substituting in the lower-bound of the PG

objective J (α(t)) in order to transform the expected return into a convex term. The

lower bound is then approximated with a second-order Taylor expansion around an

estimate α(t) of the single-task policy parameters for task Z(t). Finally, to prevent the

computation cost of the update from increasing linearly with the number of tasks,

PG-ELLA optimizes s(t) only when training on task Z(t). These steps reduce the

learning problem to a series of on-line update equations that constitute PG-ELLA

(Bou Ammar et al., 2014) given as Algorithm 1. Note that T is the set of all trajec-

tories.

The next section shows how PG-ELLA and other lifelong learning algorithms compare

to each other. In this comparison, I show where the contribution of my thesis fit in

with the current state of the art.

2.2.6 Comparisons

There are advantages and disadvantages to the existing state-of-the-art lifelong rein-

forcement learning approaches. In this thesis I build upon the existing approaches,

presenting new algorithms with increased capabilities. Table 2.1 provides a compari-
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Algorithm 1 PG-ELLA (k, λ, (מ (Bou Ammar et al. 2014)
1: T ← 0
2: A← zerosk×d,k×d, b← zerosk×d,1
3: L← RandomMatrixd,k
4: while some task Z(t) is available do
5: if isNewTask(Z(t)) then
6: T ← T + 1
7:

(
T(t), R(t)

)
← getRandomTrajectories()

8: else
9:

(
T(t), R(t)

)
← getTrajectories

(
α(t)

)
10: A← A−

(
s(t)s(t)T

)
⊗ Γ(t)

11: b← b− vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))
12: end if
13: Compute α(t) and Γ(t) from T(t) using PG
14: s(t) ← arg mins

∥∥α(t) −Ls(t)
∥∥2

Γ(t) + מ ‖s‖1

15: A← A +
(
s(t)s(t)T

)
⊗ Γ(t)

16: b← b + vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))
17: L← mat

((
1
T
A + λIk×d,k×d

)−1 1
T
b
)

18: for t ∈ {1, . . . , T} do: θ(t) ← Ls(t)

19: end while

son of the different approaches. My contributions are highlighted in bold.
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Chapter 3

Lifelong Reinforcement Learning on

Mobile Robots

The lifelong learning method ELLA (Ruvolo and Eaton, 2013b), described in sec-

tion 2.2.4, sequentially receives and incorporates task information into a knowledge

repository, sharing knowledge between all tasks. As described in section 2.2.5, this

method has been extended to RL (Bou Ammar et al., 2015) to accelerate learning

of the control policies for a variety of dynamical systems using PG methods (Sutton

et al., 1999a; Williams, 1992). To understand how a state-of-the art lifelong learning

algorithm can be applied to mobile robots, this chapter applies PG-ELLA to robotic

control problems in simulation and on real systems.

PG-ELLA has only previously been applied to benchmark problems with known dy-

namics to demonstrate knowledge sharing, and not yet to more complex robotic con-

trol problems. My work significantly scales up the complexity of experiments by

applying lifelong learning techniques to a set of Turtlebot 2 (Turtlebot 2, 2016) and

31
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AR.Drone (Parrot AR.Drone 2, 2016) robots, each with their own control distur-

bances, in both the high-fidelity Gazebo simulator and on real robotic platforms.

As such, this work represents a milestone in validating a prominent lifelong learning

approach on physical robotic platforms, while also exposing new challenges to using

lifelong learning techniques on physical systems.

In this work, different tasks correspond to control problems on different robots. No

two robots are exactly the same—even for a given model of robot, different units will

require slightly different controllers. This work leverages lifelong learning in order to

learn controllers for different robots. In particular, it is shown that by learning a set

of control policies over robots with different (unknown) motion models, a controller

for a new robot with a unique set of disturbances can be learned more quickly. The

approach is completely model-free, allowing us to apply this method to robots that

have not, or cannot, be fully modeled.

RL is often used to learn controllers in a model-free setting. Among RL algorithms,

policy gradient methods are popular in robotic applications (Kober and Peters, 2009;

Peters and Schaal, 2008) since they accommodate continuous state/action spaces

and can scale well to high-dimensional problems. The goal of lifelong learning is to

learn a set of policies from consecutive tasks. By leveraging similarities between the

tasks, it should be possible to learn the set of tasks much faster than if each task was

learned independently. Previous work showed that lifelong learning could successfully

leverage policy gradient methods (Bou Ammar et al., 2015), but had been applied

only to simple dynamical systems and not more complex robotic control problems.

There have been some successful examples of lifelong learning on robots, but and with

few exceptions (White et al., 2012), they have mostly focused on skill refinement for

a single robot (Kleiner et al., 2002; Thrun and Mitchell, 1995) and have not looked
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at sharing information across multiple tasks.

Each different robot in our problem has a different unknown disturbance. In distur-

bance rejection problems, a controller is designed to complete a task while compen-

sating for a disturbance that modifies its nominal dynamics. As long as there is an

accurate model of the robot, current methods can handle constant, time-varying, and

even stochastic disturbances (Khalil, 1996; Lewis and Syrmos, 2012; Dorato et al.,

1994). However, such methods are generally inapplicable when the robot model is

unknown, even if the disturbances are relatively simple. This work is motivated by

control theory approaches, but focuses on leveraging model-free RL techniques.

3.1 Background

This approach uses PG RL as described in Section 2.1.2. PG is selected for this

problem, because PG methods are well-suited for solving high dimensional problems

with continuous state and action spaces, including robotic control (Peters and Schaal,

2008). Recall that the goal of PG is to use gradient steps to optimize the expected

average return, given by

R(θ) =
∫
T pθ(τ)R(τ)dτ .

Most PGmethods (e.g., episodic REINFORCE (Williams, 1992), Natural Actor Critic

(Peters and Schaal, 2008), and PoWER (Kober and Peters, 2009)) optimize the policy
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by maximizing a lower bound on the return, comparing trajectories generated by

different candidate policies π. In this particular application, the PG method used in

our experiments is finite differences (FD) (Kober et al., 2013) which optimizes the

return directly.

3.1.1 Finite Differences for Policy Search

The FD method (Kober et al., 2013), which has shown past success in robotic control,

optimizes the policy πθ directly by computing small changes ∆θ in the policy pa-

rameters that will increase the expected reward. This process estimates the expected

return for each policy parameter variation (θj + ∆θi) given the sampled trajectories

via

∆R̂i = R(θj + ∆θi)−Rref , (3.1)

where the estimate is taken over n small perturbations in the policy parameters

{∆θi}ni=1. The policy parameters at training iteration j are given by θj, and Rref is

a reference return, which is usually taken as the return of unperturbed parameters

R(θ). The FD gradient method then updates the policy parameters, following the

gradient of the expected return R with a learning rate υ, as given by

θj+1 = θj + υ∇θR . (3.2)

For efficiency, the gradient ∇θR is estimated using the pseudoinverse

∇θR ≈
(
∆ΘT∆Θ

)−1
∆ΘT∆R̂ , (3.3)
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where ∆R̂ contains all the stacked samples of ∆R̂i and ∆Θ contains the stacked

perturbations ∆θi. This approach is sensitive to the type and magnitude of the

perturbations, as well as to the learning rate υ. Since the number of perturbations

needs to be as large as the number of parameters, this method can be noisy and

inefficient for problems with large sets of parameters (Kober et al., 2013), although

it was found to work well and reliably in our setting.

The process is capable of optimizing a policy for a single RL task via repeatedly

sampled trajectories, i.e., n trajectories for each j ∈ {1, . . . , J} iteration. In order to

share information between different policies that are learned consecutively, the PG

learning process using FD is incorporated into a lifelong learning setting, as described

next.

3.2 Lifelong Learning with Policy Gradients for Dis-

turbance Rejection

Section 2.2.5 described an efficient algorithm for lifelong learning with policy gradients

known as PG-ELLA (Bou Ammar et al., 2014). I apply PG-ELLA to the multi-robot

setting using FD methods as the base learner. Recall that the lifelong learner’s goal

is optimizing the policies for all known tasks and can be formulated as the following

multi-task objective:

argmin
L,S

1

T

∑
t

[
−R

(
θ(t)
)

+ מ
∥∥s(t)

∥∥
1

]
+ λ‖L‖2

F , (3.4)
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where S =
[
s(1) · · · s(T )

]
is the matrix of all coefficients, the L1 norm ‖·‖1 enforces

sparsity of the coefficients, and the Frobenious norm ‖·‖F regularizes the complexity

of L with regularization parameters ,מ λ ∈ R. To solve (3.4) efficiently, PG-ELLA

1. replaces R(·) with an upper bound as done in typical PG optimization,

2. approximates the first term with a second-order Taylor expansion around an

estimate α(t) of the single-task policy parameters for task Z(t), and

3. optimizes s(t) only when training on task Z(t).

These steps reduce the learning problem to a series of on-line update equations dis-

cussed in Section 2.2.5. These techniques are applied to disturbance rejection on both

simulated and real Turtlebots, as well as simulated AR.Drones.

In disturbance rejection, it is assumed that the nominal dynamics of the plant are

additively disturbed by a signal ω. The system dynamics are given by ẋ = f(x)+ω,

where f : Rdx × R → Rdx , and ω ∈ Rdx . The goal is to determine the control input

that minimizes the effect of the disturbance in the return function, so that the plant

can execute this task.

There are well known optimal control (Lewis and Syrmos, 2012; Dorato et al., 1994)

techniques to solve this problem, if there is an available mathematical model. How-

ever, if such a model is not available, or there is only partial knowledge of the model,

formal solutions are not effective. RL offers one alternative solution to this prob-

lem, but only in a single-task setting, and it requires numerous interactions with the

environment to learn an effective control policy to compensate for the disturbance.

However, in a lifelong learning setting, the learner could build upon its existing knowl-
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edge in controlling other systems, each with their own disturbances, to rapidly learn

a control for a system with a novel disturbance. It is assumed that the learner at-

tempts to optimize control policies for a set of robots, all of which have the same

nominal dynamics, given by ẋ = f(x). Each robot is affected by a different distur-

bance function ω(t). All ω(t) share the same structure but different parameters, e.g.,

all the disturbances are constant but different, all are sinusoidal with different phases

or amplitudes, etc.

Lifelong machine learning takes advantage of the potential for knowledge transfer

among the different tasks, learning how to compensate for the disturbance without

requiring a mathematical model describing the system dynamics. A reward function is

designed so that the lifelong learner penalizes the effect of the disturbance over either

a realistic simulated robot or an actual one. In the next section, our application of

lifelong learning to the problem of robotic control under disturbances is presented.

3.3 Experimental Design

In our disturbance rejection scenario, the focus was on learning control policies for

navigating vehicles to a goal location as the vehicle experienced disturbances in

its actuators. Two case studies are covered using two different commercial robotic

platforms: the Turtlebot 2 (Turtlebot 2, 2016) and the AR.Drone quadrotor (Par-

rot AR.Drone 2, 2016). A simulated turtlebot is shown in 3.1(a) and a simulated

AR.Drone is pictured in 3.4(a). Disturbances are emulated in the actuators, namely,

wheel servos and propellers, respectively. Each case study involves multiple robots

from a single platform, and the disturbances are assumed to be different for each
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robot. The main goal in both case studies is to build a knowledge base from previ-

ously learned policies that allows each robot to compensate for the disturbance and

fulfill its goal, while transferring this knowledge to new robots with different dis-

turbances. This section describes the validation procedure of our lifelong machine

learning approach. In order to obtain the simulation and experimental results, the

Hydro version of the Robot Operating System (ROS) (System, 2016) is used.

3.3.1 Disturbance Rejection on Turtlebots

In this scenario, each Turtlebot faces a disturbance consisting of a bias on its angular

and linear velocity, forcing the robots to compensate for the induced failure to navigate

successfully. Note that this type of disturbance in actuation is common in physical

robots and autonomous ground vehicles, stemming from a variety of sources, such as

calibration issues, wear in the drive train, or interference from debris. To simulate

these disturbances, a random and constant disturbance is introduced to the control

signal. The disturbance is drawn uniformly from [−0.1, 0.1] ⊂ R for each robot and

measured in m/s. These limits were selected to provide a large noise that was within

the bounds of the Turtlebot control system.

To simulate lifelong learning on numerous Turtlebots, each with their own distur-

bances, simulations were conducted using the high-fidelity Gazebo simulator (Gazebo,

2016; System, 2016). To show that lifelong learning is similarly effective on real robots,

our approach was also evaluated on five real Turtlebots.

We assume little knowledge of the Turtlebot’s dynamics is assumed. In our applica-

tion, each robot’s state is defined as x = (ρ, ξ, ψ)T, with ρ, ξ and ψ as illustrated in
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Figure 3.1(b). To extract state features for learning, the following nonlinear trans-

formation of the position and heading angle was used:

φ(x) =



ρ cos(ξ)

ξ

cos(ξ) sin(ξ)
ξ

(ξ + ψ)

1


. (3.5)

Given the stochastic policy πθ(t) ∼ N (a(t),Σ) for the t-th Turtlebot, the control action

is then specified by a(t) = θ(t)Tφ(x) = (u,w)T where u and w are the linear and

angular velocities of the robots. This particular choice of nonlinear transformation is

inspired by a simplified kinematic model for unicycle-like vehicles in polar coordinates

(Aicardi et al., 1994). In this model, the state space is given by X ⊂ R3 and the action

space is described by A ⊂ R2. This simplified kinematics model ignores contributions

to the dynamics of the system from the robot’s mass, damping and friction coefficients,

as well as inputs such as forces and torques.

Simulation Methodology

In these experiments, FD (Kober et al., 2013) was used as the base learner in PG-

ELLA for its simplicity and good performance in simulation, despite its known sta-

bility issues (which were not not experienced). Twenty simulated Turtlebots were

generated, each with a different constant disturbance and a unique goal, both se-

lected uniformly. This number of robots provided a large task diversity, while still

being small enough to simulate practically.
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(a) Turtlebot (b) State variables

Figure 3.1: (a) The Turtlebot 2 model in Gazebo, and (b) its state variables in the
simplified go-to-goal problem.

To evaluate the system performance, FD was used as our PG method to train 19

robots’ initial policies for J = 100 iterations with n = 21 roll-outs per iteration and

H = 70 time steps per roll-out. If the robot reached the goal in less than 70 time

steps, the experiment continues to run to completion ensuring that a good policy

reaches the goal and stops. The 20th robot is initialized with the mean policy of

the observed tasks and trained for only J = 10 iterations. Note that all systems in

our experiment require more than 10 iterations to converge to a good controller, so

subsequent policy improvement is essential for decent performance. These policies

are then used as the α(t) estimates for PG-ELLA. The number of roll-outs and time

steps were selected to allow for successful learning while minimizing the runtime.

PG-ELLA trains the shared knowledge repository L and sparse policy representations

s(t) using the update equations given by (2.12)–(2.15). For our experiments, the

Hessian is approximated with the identity matrix because it reduced the number of

roll-outs with little effect on performance. For PG-ELLA’s parameters, k = 4 columns

were used in the shared basis, sparsity coefficient מ = 1 × 10−5, and regularization
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coefficient λ = 1× 10−3. The learning rate was set to υ = 1× 10−6 and the policy’s

standard deviation was σ = 0.001.

Application to Physical Robots

To demonstrate our method on a real Turtlebot, four tasks were learned using conven-

tional PG and then transfer was evaluated on the fifth task. The number of roll-outs

is reduced to n = 11 and the number of learning iterations to J = 30 to minimize the

experimentation time. In contrast to simulation, physical robots have battery limita-

tions, and the continuous generation of random trajectories require a human presence

to guarantee correct execution of the experiments. All other parameters, including

the added noise, are kept the same as the simulation. To get position information,

a beacon which can easily be segmented from camera data is used to mark the goal.

The Turtlebot is equipped with a Kinect whose depth information provides the angle

and distance. If the robot loses sight of the goal, it enters a recovery mode which

rotates it toward the last known goal location, and a penalty is applied for each time

step spent in recovery mode. With the fewer number of iterations, only one of the

four Turtlebots used as source tasks reached the goal. However, all four systems did

exhibit learning improvement.

Turtlebot Results

The left plot in Figure 3.2 compares the reward for policies learned by PG-ELLA

on the 20th task against PG, averaged over 20 trials. Performance for PG-ELLA is

shown beginning at 10 iterations, since the initial seed policies for PG-ELLA were

learned using those first 10 iterations. The learning curves are plotted as the polices
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Figure 3.2: (Left) Learning curves for PG and PG-ELLA in the Turtlebot simulation,
averaged over 20 trials. (Right) Change in reward as a measure of positive transfer
achieved by lifelong learning on Turtlebots.

are improved by PG for an additional 90 learning iterations.

These results show that PG-ELLA is able to both successfully reconstruct and improve

the control policies through positive transfer with respect to PG. This is clearly

shown by both the initial jump-start improvement at the 10th iteration, and the

consistently better learning performance over the first 100 iterations. The right plot

in Figure 3.2 depicts the change in reward over the learning curve, showing positive

transfer between tasks. After only 10 iterations to initialize α(t), an improved initial

performance and better reward are obtained using PG-ELLA via transfer from the

shared knowledge base.

Figure 3.3 shows the results of learning on real Turtlebots with the effect of dis-

turbances, confirming the improvement from PG-ELLA on physical systems. These

results compare the performance of PG-ELLA (red line) on a new Turtlebot to the

performance of PG on four systems (light blue lines) and their mean (dark blue line).

The PG policy exhibiting the best performance is the robot that with the smallest dis-

turbance, yet this system is still out-performed by PG-ELLA. These results also show
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Figure 3.3: Learning curves on the real Turtlebots. PG-ELLA (red line) on a new
Turtlebot performs better than PG on five other systems (light blue line) and their
mean (dark blue line).

that in many cases, PG is negatively affected by the disturbances while PG-ELLA

exhibits better and more consistent learning.

One possible explanation for this is that PG’s learning is hindered on the real Turtle-

bots due to the noisy environment of the physical robots, the added complexity of the

empirical reward function, and the presence of local optima in the objective function.

By sharing knowledge from other tasks, PG-ELLA is able to compensate for these

aspects and exhibit more rapid learning. This hypothesis agrees with our results on

the larger set of simulated Turtlebots.

3.3.2 Disturbance Rejection on AR.Drones

Aerial vehicles are a compelling domain that allows us to demonstrate our approach

generalizes to vastly different platforms. The AR.Drone quadrotor is evaluated us-

ing the TUM AR.Drone Simulator (Huang and Sturm, 2016) and Gazebo in order

to simulate lifelong learning over numerous quadrotors, each with their own distur-
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(a) Z state (b) X,Y state

Figure 3.4: (a) The AR.Drone 2 model in Gazebo, and (b) downward-facing camera
feed used for localization.

bance. For each quadrotor, our approach learns a policy to land the AR.Drone on a

marker, while the quadrotor is affected by a disturbance in its propellers that bias its

motion. The disturbance is emulated by a bias on the linear velocities in the x and y

coordinates, ux and uy, as may commonly be caused by wind or wear on the rotors.

To simulate these disturbances, a random and constant disturbance drawn uniformly

from [−0.15, 0.15] ⊂ < was added to each robot, measured in m/s.

The quadrotors are localized using a downward-facing camera with the assumption

that the landing pad marker is visible. Each robot’s state is defined as x = (x, y, z)T,

where x and y are the Cartesian coordinates of the goal relative to the center of the

camera as the origin. The difference between the quadrotor’s altitude and the landing

altitude is given as z, measured using the robot’s on-board sonar height sensor. The

state features for learning are the normalized values of the robot’s state. The normal

range of values for x and y are ±2 and ±1.5, respectively. If the landing pad marker

is not visible, the (x, y) state is represented as xh = 4 and yh = 3, which is double

the maximum possible state. During the learning phase, at time-step h, when the

quadrotor is at zh = 0 (0.4 m in altitude) and positioned over the landing pad marker
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at xh = [−0.7, 0.7] and yh = [−0.8, 0.6], the landing action is triggered. There is

an offset in y since the downward-facing camera underneath the quadrotor is not

centered. The landing altitude was selected to accommodate the specifications for

the sonar which have 0.4 m as the lowest altitude that the sensor can accurately

measure.

Figure 3.5: (Left) Learning curves for PG and PG-ELLA in the AR.Drone simulation,
averaged over 20 trials. (Right) Change in reward as a measure of positive transfer
achieved by lifelong learning on AR.Drones.

Landing occurs regardless of the quadrotor’s orientation. The system sends signals

in the format of a ROS Twist message, which consists of the instructions to control

the linear velocity of the quadrotor in the x, y, and z directions. Valid actions are in

the range of ±1m/s for each axis of control.

Simulation Methodology

20 simulated quadrotors were generated, each with a different constant disturbance

selected uniformly. Using FD as our PG learner, 19 robot’s initial policies were trained

for J = 100 iterations with n = 15 roll-outs per iteration and H = 150 time steps

per roll-out. The 20th robot is initialized with the mean policy over the 19 observed
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policies and is trained for only J = 10 iterations. However, out of the 19 robots with

100 learning iterations, 3 systems did not converge to a good controller1.

The same methodology used to train PG-ELLA on Turtlebots is followed for the

quadrotors. The hyper-parameters are k = 4, מ = 1 × 10−5, and λ = 1 × 10−6. The

learning rate was υ = 1× 10−6 and the policy’s standard deviation was set to σ = 0

to make it deterministic.

AR.Drone Results

Since the 20th task is trained for 10 iterations and then given a policy reconstructed

from PG-ELLA, comparing PG-ELLA with PG starts after those 10 iterations. Learn-

ing is then continued for 90 more iterations using PG. The left plot in Figure 3.5

shows the learning curve for policies trained by PG-ELLA (red line) against those

learned by PG (blue line), averaged over 20 tasks. The results show that PG-ELLA

is also effective in the quadrotor domain for both reconstructing and improving the

learned policies. Similar to the Turtlebots, improved initial jump-start performance

and more rapid learning than PG are observed. The right plot in Figure 3.5 depicts

the gain in reward.

3.4 Discussion

This work demonstrates the effectiveness of lifelong reinforcement learning at reducing

training time in both simulated 3D environments and on real robots. The approach
1AR.Drone experiments were conducted by my co-authors at WSU (Isele et al., 2016a).
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is not platform specific — the same algorithm is used on two very different platforms:

Turtlebots and AR.Drones. My investigation showcased a moderate amount of diver-

sity, sharing knowledge between robots with different goals and different disturbances.

Additionally, the boost in performance is sustained after additional training, allow-

ing policies to be further improved. While the gains were modest, PG-ELLA giving

comparable performance with 10 to 20 fewer iterations equates to saving hundreds of

trials.

While the number of trials was reduced using this method, the number of trials re-

quired for training a physical robot is still prohibitively expensive. Currently this

approach is limited to linear function approximation. This limits the types of prob-

lems that the algorithm can handle, and suggests that a move to more expressive

models will have an even greater issue concerning sample complexity. This makes

reducing the number of trials absolutely crucial for physical systems.

An online sparse coding framework was used to learn task relationships. This de-

composition of knowledge into a shared repository and a task specific code suggests a

modular approach to thinking about knowledge: there is general knowledge that can

be acquired from similar tasks, and there is task specific knowledge that needs to be

learned separately. This is a simplification: different tasks will likely have different

aspects in common. However, this simplification provides some insight. Assuming

that general information is learned during the early stages of training, the general

knowledge accumulated by the system is not being utilized when a new system is

trained from scratch in order to identify its relation to other tasks. This suggests

that our gains were far less than they could be, and suggests that a better approach

might be to predict an initialization from our prior knowledge and subsequently refine

that knowledge with task specific training. In the next chapter, I not only show that
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such a strategy is possible, but also confirm that it produces a much greater transfer

of knowledge.



Chapter 4

Predicting Policies

Selecting the appropriate knowledge to transfer requires an accurate estimate of the

inter-task relationships to identify relevant knowledge. Inter-task relationships are

typically estimated based on training data for each task (Baxter, 2000; Ando and

Zhang, 2005; Bickel et al., 2009a; Maurer et al., 2013). For example, in Chapter

3, a turtlebot with an unknown disturbance was trained on a go-to-goal target task.

The learned policy was then compared against other learned policies, and an improved

policy was constructed. Before transfer could take place, the system needed to gather

experience on the new task.

This means that in a lifelong learning setting, before a new task can be addressed,

the system must stop, collect data, and train on the new task to identify appropri-

ate information to transfer. To reduce this burden, this chapter develops a lifelong

learning method that utilizes high-level task descriptions to model the inter-task rela-

tionships. I show that using task descriptors improves the performance of the learned

task policies, which is justified theoretically and demonstrated empirically. More im-

49
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portantly, given only the description for a new task, the lifelong learner is able to use

the coupled dictionary and task description to accurately predict a model for the new

task, eliminating the need to gather training data in order to identify the inter-task

relationships.

To make our approach more clear, consider the human ability to rapidly bootstrap

a model for a new task, given only a high-level task description—before obtaining

experience on the actual task. For example, viewing only the image on the box of

a new IKEA chair, previously related assembly tasks can immediately be identified

and a plan to begin assembling the chair can be formulated. In the same manner, an

experienced inverted-pole-balancing agent may be able to predict the controller for

a new pole given its mass and length, prior to interacting with the physical system.

These examples suggest that an agent could similarly use high-level task information

to bootstrap a model for a new task more efficiently.

I investigate how a high-level task description can be incorporated into a lifelong

learning process. The resulting algorithm, Task Descriptors for Lifelong Learning

(TaDeLL), encodes task descriptions as feature vectors that identify each task, treat-

ing these descriptors as side information in addition to training data for individual

tasks (Isele et al., 2016b, 2017). Several other works have explored the use of high-

level task descriptors to model the inter-task relationships in MTL and transfer learn-

ing settings. Task descriptors have been used in combination with neural networks

(Bakker and Heskes, 2003) to define a task-specific prior and to control the gating

network between individual task clusters. Bonilla et al. (2007) explore similar tech-

niques for multi-task kernel machines, using task features in combination with the

data for a gating network over individual task experts to augment the original task

training data. These papers focus on multi-task classification and regression in batch
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settings where the system has access to the data and features for all tasks. Work by

Sinapov et al. (2015) uses task descriptors to estimate the transferability between each

pair of tasks for transfer learning. Given the descriptor for a new task, they identify

the source task with the highest predicted transferability, and use that source task for

a warm start in reinforcement learning. Though effective, their approach is computa-

tionally expensive, since they estimate the transferability for every task pair through

repeated simulation. Their evaluation is also limited to a transfer learning setting,

and they do not consider the effects of transfer over consecutive tasks or updates to

the transferability model, which is done in the lifelong setting. In comparison, our

approach operates online over consecutive tasks and is much more computationally

efficient.

To model the inter-task relationships between the task descriptions and the individual

task policies in lifelong learning, coupled dictionary learning is used. Coupled dictio-

nary learning has been used in image processing (Yang et al., 2010) and was recently

explored in the machine learning literature (Xu et al., 2016). The core idea is that

two feature spaces can be linked through two dictionaries that are coupled by a joint

sparse representation. The coupled dictionary enforces the notion that tasks with

similar descriptions should have similar policies, but still allows dictionary elements

the freedom to accurately represent the different types of information.

In addition to improving the task models, by modeling the relationship between task

descriptions and task policies, accurate predictions of new policies for unseen tasks

can be created given only their description. This process of learning without data

is known as zero-shot learning. Zero-shot learning seeks to successfully label out-

of-distribution examples, often by learning an underlying representation and using

outside information to learn appropriate mappings to the latent space (Palatucci
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et al., 2009; Socher et al., 2013). This capability is particularly important in an

online setting where it enables the system to accurately predict policies for new tasks,

without requiring the system to pause to gather training data on the new task. This

chapter presents and extends work that I have previously published (Isele et al.,

2016b, 2017).

4.1 Task Descriptors

While most MTL and lifelong learning methods use task training data to model inter-

task relationships, high-level descriptions can describe task differences. For example,

in multi-task medical domains, patients are often grouped into tasks by demographic

data and disease presentation (Oyen and Lane, 2012). In control problems, the system

parameters (e.g., the spring, mass, and damper constants in a spring-mass-damper

system) can be used to describe the task (Isele et al., 2016b). When a large set of tasks

are being generated for an agent, the generator variables can also serve as task features

(Sinapov et al., 2015). Task descriptors can also be used to provide the designer of

the system a way to influence or control the agent. Goals or instructions can be

encoded with task features (Schaul et al., 2015a). For example, variables represent

the action to be performed, the object that receives the action, and the number of

times the action is meant to be repeated (Oh et al., 2017). Descriptors can also be

derived from external sources, such as natural language descriptions (Pennington

et al., 2014; Huang et al., 2012) or Wikipedia text associated with the task (Socher

et al., 2013).

While there are many methods for selecting task features, selecting the best and
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most relevant features is not straightforward. Feature selection is a problem faced by

the broader machine learning community (Guyon and Elisseeff, 2003), with notable

recent approaches that learn the features representations (Lee et al., 2009). Very

recently, Higgins et al. (2017) has shown that learning approaches can also be used

to discover task features. While the selection and learning of task features is an

important concern relating to the adoption of task features for lifelong learning, it is

an open problem. I assume that task features are provided as part of the learning

problem so that the focus can be on policy generation.

To incorporate task descriptors into the learning procedure, I assume that each task

Z(t) has an associated descriptor m(t) that is given to the learner upon first presen-

tation of the task. The learner has no knowledge of future tasks, or the distribution

of task descriptors. The descriptor is represented by a feature vector φ
(
m(t)

)
∈ Rdm ,

where φ(·) performs feature extraction and (possibly) a non-linear basis transforma-

tion on the features. I make no assumptions on the uniqueness of φ
(
m(t)

)
, although

in general, tasks will have different descriptors.1 Additionally, each task also has

associated training data X(t) to learn the model. In the case of RL tasks, the data

consists of trajectories that are dynamically acquired by the agent through experience

in the environment.

4.2 Coupled Dictionary Optimization

As described previously in Section 2.2.4 and Section 3, many multi-task and lifelong

learning approaches have found success with factorizing the policy parameters θ(t) for
1This raises the question of what descriptive features to use, and how task performance will

change if some descriptive features are unknown. I explore these issues in Section 4.6.1.
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each task as a sparse linear combination over a shared basis: θ(t) = Ls(t). In effect,

each column of the shared basis L serves as a reusable model or policy component

representing a cohesive chunk of knowledge. In a lifelong learning setting, the basis

L is refined over time as the system learns more tasks. The coefficient vectors for

each task S = [s(1) . . . s(T )] encode the task policies in this shared basis, providing an

embedding of the tasks based on how their policies share knowledge. This assumes

each policy is a linear combination of basis vectors. This assumption creates a clearly

defined method for relating one task to another, but in cases where the policies are not

related linearly, many basis vectors may need to be learned in order to approximate

the non-linear relations.

I make a similar assumption about the task descriptors: that the descriptor features

φ
(
m(t)

)
can be linearly factored2 using a latent basis D ∈ Rdm×k over the descriptor

space. This basis captures relationships among the descriptors, with coefficients that

similarly embed tasks based on commonalities in their descriptions. From a co-view

perspective (Yu et al., 2014), both the policies and descriptors provide information

about the task, and so each can augment the learning of the other. Each underlying

task is common to both views, and task embeddings are sought that are consistent

for both the policies and their corresponding task descriptors. As depicted in Figure

4.1, coupling can be enforced between the two bases L and D, by sharing the same

coefficient vectors S to reconstruct both the policies and descriptors. Therefore, for

task Z(t),

θ(t) = Ls(t) φ
(
m(t)

)
= Ds(t) . (4.1)

2This is potentially non-linear w.r.t m(t), since φ can be non-linear.
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Figure 4.1: The coupled dictionaries of TaDeLL, illustrated on an RL task. Policy
parameters θ(t) are factored into L and s(t) while the task description φ

(
m(t)

)
is

factored into D and s(t). Because both dictionaries are forced to use the same sparse
code s(t), the relevant pieces of information for a task become coupled with the
description of the task.

To optimize the coupled bases L and D during the lifelong learning process, coupled

dictionary optimization methods are employed from the sparse coding literature (Yang

et al., 2010). These techniques optimizes the dictionaries for multiple feature spaces

that share a joint sparse representation. The notion of coupled dictionary learning

has led to high-performance algorithms for image super-resolution (Yang et al., 2010),

and allowing the reconstruction of high-resolution images from low-resolution samples

for both multi-modal retrieval (Zhuang et al., 2013) and cross-domain retrieval (Yu

et al., 2014). The core idea is that features in two independent subspaces can have

the same representation in a third subspace.

Given the factorization in Eq. 4.1, the multi-task objective (Eq. 2.11) can be re-

formulated for the coupled dictionaries as

min
L,D,S

1

T

∑
t

[
L
(
θ(t)
)

+ ζ
∥∥φ (m(t)

)
−Ds(t)

∥∥2

2
+ מ

∥∥s(t)
∥∥

1

]
+ λ(‖L‖2

F+‖D‖2
F) , (4.2)
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where ζ balances the model’s or policy’s fit to the task descriptor’s fit.

To solve Eq. 4.2 online, L(·) is approximated by a second-order Taylor expansion

around α(t), the minimizer for the single-task learner. In reinforcement learning,

πα(t) is the single-task policy for Z(t) based on the observed trajectories.

Approximating Eq. 4.2 leads to

min
L,D,S

1

T

∑
t

[∥∥α(t)−Ls(t)
∥∥2

Γ(t) + ζ
∥∥φ (m(t)

)
−Ds(t)

∥∥2

2
+ מ

∥∥s(t)
∥∥

1

]
+λ(‖L‖2

F+‖D‖2
F) . (4.3)

I can merge pairs of terms in Eq. 4.3 by choosing:

β(t) =

 α(t)

φ
(
m(t)

)
 K=

L
D

 V (t) =

Γ(t) 0

0 ζIdm

 ,

where 0 is the zero matrix, letting us rewrite Eq. 4.3 concisely as

min
K,S

1

T

∑
t

[∥∥β(t)−Ks(t)
∥∥2

V (t)+ מ
∥∥s(t)

∥∥
1

]
+λ‖K‖2

F . (4.4)

This objective can now be solved efficiently online, as a series of per-task update

rules given in Algorithm 2, which is called TaDeLL (Task Descriptors for Lifelong

Learning). L and D are updated independently using Equations 2.13–2.15, following

a recursive construction based on an eigenvalue decomposition.

In an RL setting, at each timestep TaDeLL receives a new RL task and samples

trajectories for the new task. The single-task policy is computed using a twice-

differentiable policy gradient method as α(t). The Hessian Γ(t), calculated around the
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Algorithm 2 TaDeLL (k, λ, (מ
1: L← RandomMatrixd,k, D ← RandomMatrixm,k
2: while some task

(
Z(t), φ

(
m(t)

))
is available do

3: T(t) ← collectData(Z(t))
4: Compute α(t) and Γ(t) from T(t)

5: s(t) ← arg mins
∥∥β(t)−Ks

∥∥2

V (t) + s‖1‖מ

6: L← updateL(L, s(t),α(t),Γ(t), λ) Eq. 2.13–2.15
7: D ← updateD(D, s(t), φ

(
m(t)

)
, ζIdm , λ) Eq. 2.13–2.15

8: for t ∈ {1, . . . , T} do: θ(t) ← Ls(t)

9: end while

point α(t), is derived according to the particular policy gradient method being used.

Bou Ammar et al. derive it for the cases of Episodic REINFORCE (Williams, 1992)

and Natural Actor Critic (Peters and Schaal, 2008). The reconstructed θ(t) is then

used as the policy for the task Z(t). For completeness, the Hessian calculations follow.

Episodic REINFORCE Hessian (Bou Ammar et al., 2014) In episodic RE-

INFORCE (Williams, 1992), the stochastic policy for task t is chosen according

a(t) = θ(t)Tx
(t)
h + εh, with εh ∼ N (0, σ2), and so π

(
a

(t)
h | x

(t)
h

)
∼ N

(
θ(t)Tx

(t)
h , σ

2
)
.

Recall from 2.1.2 that J
(
θ̃(t)
)

is the KL divergence used to bound the log of the

expected return, and its gradient

∇θ̃(t)J
(
θ̃(t)
)

= −E

[
R(t)(τ )

H(t)∑
h=1

σ−2
(
a(t)−θTx(t)

h

)]
,

is used to minimize the KL-divergence, equivalently maximizing the total discounted

pay-off. The second derivative for episodic REINFORCE is given by

Γ(t) = E

H(t)∑
h=1

σ−2x
(t)
h x

(t)T
h

 .
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Natural Actor Critic Hessian (Bou Ammar et al., 2014) In episodic Natural

Actor Critic (eNAC), the stochastic policy for task t is chosen in a similar fashion

to that of REINFORCE: π
(
a

(t)
h | x

(t)
h

)
∼ N

(
θ(t)Tx

(t)
h , σ

2
)
. The change in the prob-

ability distribution is measured by a KL-divergence that is approximated using a

second-order expansion to incorporate the Fisher information matrix. Accordingly,

the gradient follows: ∇̃θJ = G−1∇θJ (θ), where G denotes the Fisher information

matrix. The Hessian can be computed in a similar manner to the REINFORCE

Hessian.

4.3 Zero-Shot Transfer Learning

In a lifelong setting, when faced with a new task, the agent’s goal is to learn an

effective policy for that task as quickly as possible. At this stage, previous multi-task

and lifelong learners incurred a delay before they could produce a decent policy, since

they needed to acquire data from the new task in order to identify related knowledge

and train the new policy via transfer.

Incorporating task descriptors enables our approach to predict a policy for the new

task immediately, given only the descriptor. This ability to perform zero-shot transfer

is enabled by the use of coupled dictionary learning, which allows us to observe a

data instance in one feature space (i.e., the task descriptor), and then recover its

underlying latent signal in the other feature space (i.e., the policy parameters) using

the dictionaries and sparse coding.

Given only the descriptor m(tnew ) for a new task Z(tnew ), the embedding of the task

in the latent descriptor space can be estimated via LASSO on the learned dictionary
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Algorithm 3 Zero-Shot Transfer to a New Task Z(tnew )

1: Inputs: task descriptor m(tnew ), learned bases L and D
2: s̃(tnew ) ← arg mins

∥∥φ (m(tnew )
)
−Ds

∥∥2

2
+ מ ‖s‖1

3: θ̃(tnew ) ← Ls̃(tnew )

4: Return: πθ̃(tnew )

D:

s̃(tnew ) ← arg min
s

∥∥φ (m(t)
)
−Ds

∥∥2

2
+ מ ‖s‖1 . (4.5)

Since the estimate given by s̃(tnew ) also serves as the coefficients over the latent policy

space L, a policy for the new task can immediately be predicted as: θ̃(tnew ) = Ls̃(tnew ).

This zero-shot transfer learning procedure is given as Algorithm 3.

Like other zero-shot learning methods, our approach works by finding a common

space which can be used to relate a novel task to known models. Where other groups

have used semantic space (Palatucci et al., 2009) or word vectors (Socher et al., 2013)

as the common space, this work uses task descriptors to relate different tasks. Since

my work was published, other groups have adopted the idea of using task descriptions

to share knowledge between tasks (Oh et al., 2017).

4.4 Theoretical Analysis

This section examines theoretical issues related to incorporating task descriptors into

lifelong learning via coupled dictionaries. The theoretical analysis of TaDeLL was

led by my co-author Mohammad Rostami (Isele et al., 2016b). This section begins

by outlining the theory that supports why the inclusion of task features can improve
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performance of the learned policies and enable zero-shot transfer to new tasks safely.

Then I present the convergence guarantees of TaDeLL.

4.4.1 Connections to Mutual Coherence in Sparse Coding

To analyze the policy improvement, since the policy parameters are factored as

θ(t) = Ls(t), the next step shows that incorporating the descriptors through coupled

dictionaries can improve both L and S. In this analysis, the concept of mutual coher-

ence is employed, which has been studied extensively in the sparse recovery literature

(Donoho et al., 2006). Mutual coherence measures the similarity of a dictionary’s

elements as

M(W ) = max
1≤i 6=j≤k

(
|w>i wj|
‖wi‖2‖wj‖2

)
∈ [0, 1] ,

where wi is the ith column of a dictionary W ∈ Rd×k. If M(W ) = 0, then W is an

invertible orthogonal matrix and so sparse recovery can be solved directly by inversion;

M(W ) = 1 implies that W is not full rank and a poor dictionary. Intuitively, low

mutual coherence indicates that the dictionary’s columns are considerably different,

and thus a “good” dictionary that can represent a wider range of tasks, potentially

yielding more knowledge transfer. This intuition is shown formally:

Theorem 4.4.1. (Donoho et al., 2006) Suppose there exist noisy observations θ̂ of

the linear system θ = Ws, such that ‖θ̂−θ‖2≤ ε. Let s∗ be a solution to the system,

and let v = ‖s‖0. If v < 0.5(1 +M(W )−1), then s∗ is the unique sparsest solution

of the system. Moreover, if s+ is the LASSO solution for the system from the noisy

observations, then: ‖s∗ − s+‖2
2≤ 4ε2

1−M(W )(4v−1)
.
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Therefore, an L with low mutual coherence would lead to more stable solutions of

the θ(t)’s against inaccurate single-task estimates of the policies (the α(t)’s). Next it

is shown that TaDeLL either lowers or does not affect the mutual coherence of L.

TaDeLL alters the problem from training L to training the coupled dictionaries L

and D (contained in K). Let s∗(t) be the solution to Eq. 2.11 for task Z(t), which

is unique under sparse recovery theory, so
∥∥s∗(t)∥∥

0
remains unchanged for all tasks.

Theorem 4.4.1 implies that, if M(K) < M(L), coupled dictionary learning can help

with a more accurate recovery of the s(t)’s. To show this, note that Eq. 4.2 can also

be derived as a result of an MAP estimate from a Bayesian perspective, enforcing a

Laplacian distribution on the s(t)’s and assuming L to be a Gaussian matrix with

elements drawn i.i.d: lij ∼ N (0, σ2). When considering such a random matrix W ∈

Rd×k, Donoho & Huo (2001) proved that asymptoticallyM(W ) ∝
√

log(dk)
d

as d→∞.

Using this as an estimate for M(L) and M(K), since incorporating task descriptors

increases d, asymptotically M(K) < M(L), implying that TaDeLL learns a superior

dictionary. Moreover, if M(D) ≤ M(L), the theorem implies D alone can be used

to recover the task policies through zero-shot transfer.

To show that task features can also improve the sparse recovery, the following theorem

about LASSO is used:

Theorem 4.4.2. (Negahban et al., 2009) Let s∗ be a unique solution to the system

θ = Ws with ‖s‖0= K and W ∈ Rd×k. If s+ is the LASSO solution for the system

from noisy observations, then with high probability: ‖s∗ − s+‖2≤ c′
√
K log k

d
, where

the constant c′ ∈ R+ depends on properties of the linear system and observations.

This theorem shows that the error reconstruction for LASSO is proportional to 1√
d
.

Incorporating the descriptor through β(t), the right-hand side denominator increases
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from d to (d+ dm) while K and k remain constant, yielding a tighter fit. Therefore,

task descriptors can improve learned dictionary quality and sparse recovery accuracy.

To ensure an equivalently tight fit for s(t) using either policies or descriptors, Theo-

rem 4.4.2 suggests it should be that dm ≥ d to ensure that zero-shot learning yields

similarly tight estimates of s(t).

4.4.2 Theoretical Convergence of TaDeLL

In this section, the convergence of TaDeLL is proven, showing that the learned dic-

tionaries become increasingly stable as it learns more tasks. The proof builds upon

the theoretical results from Bou Ammar et al. (2014), Ruvolo & Eaton (2013b), and

Mairal et al. (2009), demonstrating that these results apply to coupled dictionary

learning with task descriptors, and use them to prove convergence.

Let ĝT (L) represent the sparse coded approximation to the MTL objective, which can

be defined as:

ĝT (L) =
1

T

T∑
t=1

‖α(t)−Ls(t)‖2

Γ(t)+מ‖s(t)‖1+λ‖L‖2
F .

This equation can be viewed as the cost for L when the sparse coefficients are kept

constant. Let LT be the version of the dictionary L obtained after observing T tasks.

Intuitively the convergence proof states that as more tasks are encountered, each new

task is less likely to drastically change the model. This is shown formally in the

following theorem:
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Theorem 4.4.3. (Ruvolo and Eaton, 2013b)

1. The trained dictionary L is stabilized over learning with rate:

LT −LT−1 = O( 1
T

)

2. ĝT (LT ) converges almost surely.

3. ĝT (LT )− ĝT (LT−1) converges almost surely to zero.

This theorem requires two conditions:

1. The tuples Γ(t), α(t) are drawn i.i.d. from a distribution with compact support

to bound the norms of L and s(t).

2. For all t, let Lא be the subset of the dictionary Lt, where only columns corre-

sponding to non-zero elements of s(t) are included. Then, all eigenvalues of the

matrix LT
א Γ(t)Lא need to be strictly positive.

Bou Ammar et al. (2014) show that both of these conditions are met for the lifelong

learning framework given in Eqs. 2.12–2.15. When incorporating the task descriptors

into this framework, α(t) → β(t), L → K, and Γ(t) → V (t) are altered. Note both

β(t) and V (t) are formed by adding deterministic entries and thus can be considered

to be drawn i.i.d. (because Γ(t) and α(t) are assumed to be drawn i.i.d.). Therefore,

incorporating task descriptors does not violate Condition 1.

To show that Condition 2 holds, analogously if Kא is formed, then the eigenvalues of

Kא are strictly positive because they are either eigenvalues of L (which are strictly

positive according to Bou Ammar et al. (2014)) or the regularizing parameter ζ by
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definition. Thus, both conditions are met and convergence follows directly from

Theorem 4.4.3.

4.4.3 Computational Complexity

In this section, the computational complexity of TaDeLL is analyzed. Each update

begins with one PG step to update α(t) and Γ(t) at a cost of O(Ξ(d, nt)), where Ξ()

depends on the base PG learner and nt is the number of trajectories obtained for task

Z(t). The cost of updating L and s(t) alone is O(k2d3) (Ruvolo and Eaton, 2013b), and

so the cost of updatingK through coupled dictionary learning is O(k2(d+dm)3). This

yields an overall per-update cost of O(k2(d + dm)3 + Ξ(d, nt)), which is independent

of T .

Next, the benefits of TaDeLL are empirically demonstrated on a variety of different

learning problems.

4.5 Evaluation on Reinforcement Learning Domains

TaDeLL is applied to a series of RL problems, considering the problem of learning a

collection of different, related systems. For these systems, three benchmark control

problems and an application to quadrotor stabilization are used.
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4.5.1 Benchmark Dynamical Systems

Spring Mass Damper (SM) The SM system is described by three parameters:

the spring constant, mass, and damping constant. The system’s state is given by

the position and velocity of the center of mass. The controller applies a force to the

mass, attempting to stabilize it to a given position. The SM system is a canonical

benchmark because it is a second-order system that models a large number of natural

phenomena and is frequently exploited in the design of many man-made objects like

RLC circuits.

Cart Pole (CP) The CP system involves balancing an inverted pendulum by

applying a force to the cart. The system is characterized by the cart and pole masses,

pole length, and a damping parameter. The states are the position and velocity of

the cart and the angle and rotational velocity of the pole.

Bicycle (BK) This system focuses on keeping a bicycle balanced upright as it rolls

along a horizontal plane at constant velocity. The system is characterized by the

bicycle mass, x- and z-coordinates of the center of mass, and parameters relating to

the shape of the bike (the wheelbase, trail, and head angle). The state is the bike’s

tilt and its derivative; the actions are the torque applied to the handlebar and its

derivative.

4.5.2 Methodology

In each domain 40 tasks were generated, each with different dynamics, by varying the

system parameters. The reward for each task was taken to be the distance between the
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current state and the goal. For lifelong learning, tasks were encountered consecutively

with repetition, and learning proceeded until each task had been seen at least once.

The same random task order between methods was used to ensure fair comparison.

The learners sampled trajectories of 100 steps, and the learning session during each

task presentation was limited to 30 iterations. For MTL, all tasks were presented

simultaneously. Natural Actor Critic (Peters and Schaal, 2008) was used as the base

learner for the benchmark systems and episodic REINFORCE (Williams, 1992) for

quadrotor control. The regularization parameters k and were chosen independently

for each domain to optimize the combined performance of all methods on 20 held-

out tasks, and ζ = mean(diag(ζ(t))) was set to balance the fit to the descriptors

and the policies. Learning curves were averaged for each of the 40 tasks, and the

experiment was repeated for six trials with different random orderings. The system

parameters for each task were used as the task descriptor features φ(m); several non-

linear transformations were also tried as φ(·), but it was found that the linear features

worked well.

4.5.3 Diversity in Tasks

When considering transfer, an important question is “how related are the tasks?” This

is a deceptively nuanced question as similar looking tasks may require very different

policies. Likewise, tasks that appear very different might have underlying principles

that make them very similar. While the notion of task similarity is an open problem

(Kifer et al., 2004; Lopez-Paz et al., 2017), an empirical measure of the diversity of

tasks is to look at how well an arbitrary policy does on a different task.

Twenty-five systems are examined, where the policy of the single-task learner is com-
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pared against the policy of a single-task learner trained on a different task. The

number of tasks was reduced from the 40 tasks of earlier experiments due to in-

creased computation required to test each policy on every other task. Results are

averaged across 10 trials with different random seeds for generating the tasks. Table

4.1 shows the difference in performance of a learned single-task policy on the task it

was trained on, and the performance when copied to other related tasks.

Table 4.1: Variety in Tasks

Method SM CP BK Quadrotor
Learned Policy −2.367± 0.001 −13.69± 0.02 −8.1± 0.1 −2.31± 0.01
Copied Policy −2.4504± 0.0002 −15.908± 0.004 −9.91± 0.05 −2.73± 0.03

The drop in performance using the copied policy demonstrates the diversity of tasks;

i.e., if they were identical tasks, performance would not change. Copying cart-pole

policies transfers little (basically nothing) and is roughly equal to a random initial-

ization. Copied bike policies drops roughly a third of the performance increase seen

from single-task learning. The spring mass systems are the most similar, but there is

still a statistically significant drop in performance from using a copied policy.

Quadrotors behave similarly to cart-pole: a copied policy performs similarly to a

random initialization. Note that these experiments were conducted with different

random seeds generating a different set of tasks, so the results differ slightly for the

single task learning results presented in other sections.

4.5.4 Comparison Method

In our experiments TaDeLL is compared against the related approach of Sinapov et al.

(2015). Sinapov et al. uses task descriptors to estimate the transferability between
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each pair of tasks for transfer learning. Each task policy is used as a initialization

for every other task. Let rbaselinek be the reward after training on task j for k steps,

and let rtransferk be the reward after transferring task i and performing k steps of

additional training on task j. The jumpstart benefit Bm(i, j) observed after m steps

of training when transferring task i to task j is measured:

Bm(i, j) =

∑m
k=1(rtransferk − rbaselinek )

m
.

After computing the benefit of transferring each task to every other task, Sinapov

et al. learn a linear regression model that uses the normalized change in task features

between task i and task j to predict the benefit Bm(i, j). Given the descriptor for a

new task, they identify the source task with the highest predicted transferability, and

use that source task for a warm start in reinforcement learning. Though effective,

their approach is computationally expensive, since they estimate the transferability

for every task pair through repeated simulation. Their evaluation is also limited

to a transfer learning setting, and they do not consider the effects of transfer over

consecutive tasks or updates to the transferability model, as is done in the lifelong

setting.
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Figure 4.2: Performance of multi-task (solid lines), lifelong (dashed), and single-task
learning (dotted) on benchmark dynamical systems. (Best viewed in color.)
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4.5.5 Results on Benchmark Systems

Figure 4.2 compares our TaDeLL approach for lifelong learning with task descrip-

tors to a) PG-ELLA (Bou Ammar et al., 2014), which does not use task features,

b) GO-MTL (Kumar and Daumé, 2012), the MTL optimization of Eq. 2.11, and

c) single-task learning using PG. For comparison, an offline MTL optimization of

Eq. 4.2 via alternating optimization was also performed, this algorithm is called Task

Descriptors for Multi-Task Learning (TaDeMTL). The shaded regions on the plots

denote standard error bars.

It is observed that task descriptors improve lifelong learning on every system, even

driving performance to a level that is unachievable from training the policies from

experience alone via GO-MTL in the SM and BK domains. The difference between

TaDeLL and TaDeMTL is also negligible for all domains except CP, demonstrating

the effectiveness of our online optimization.
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Figure 4.3: Zero-shot transfer to new tasks. The figure shows the initial jumpstart
improvement on each task domain. (Best viewed in color.)

To measure zero-shot performance, an additional 40 tasks were generated for each

domain, averaging results over these new tasks. Figure 4.3 shows that task descriptors

are effective for zero-shot transfer to new tasks. It is observed that TaDeLL improves
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the initial performance (i.e., the “jumpstart” (Taylor and Stone, 2009)) on new tasks,

outperforming Sinapov et al.’s method and single-task PG, which was allowed to train

on the task. The especially poor performance of Sinapov et al. on CP is attributed to

the fact that the CP policies differ substantially. In domains where the source policies

are vastly different from the target policies, Sinapov et al.’s algorithm does not have

an appropriate source to transfer. Their approach is also much more computationally

expensive (quadratic in the number of tasks) than our approach (linear in the number

of tasks), as shown in Figure 4.8. Details of the runtime experiments are included

in Section 4.6.2. Figure 4.4 shows that the zero-shot policies can be used effectively

as a warm start initialization for a PG learner, which is then allowed to improve the

policy. Even if the zero-shot policy is better than a learned single-task policy, the

zero-shot policy can sometimes be further improved. This is the case in the cart-pole

experiments where additional training improves the policy. In the bicycle experiments

the zero-shot policy is close to optimal, and little improvement is seen with additional

training.
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Figure 4.4: Learning performance of using the zero-shot policies as warm-start ini-
tializations for PG. The performance of the single-task PG learner is included for
comparison. (Best viewed in color.)
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4.5.6 Application to Quadrotor Control

TaDeLL was also applied to the more challenging domain of quadrotor control, fo-

cusing on zero-shot transfer to new stability tasks. To ensure realistic dynamics, the

model of Bouabdallah and Siegwart (2005) was used. This model has been verified on

physical systems. The quadrotors are characterized by three inertial constants and

the arm length, with their state consisting of roll, pitch, yaw, and their derivatives.

Figure 4.5 shows the results of our application, demonstrating that TaDeLL can

predict a controller for new quadrotors through zero-shot learning that has equivalent

accuracy to PG, which had to train on the system. As with the benchmarks, TaDeLL

is effective for warm-start learning with PG.
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Figure 4.5: Warm-start learning on quadrotor control. (Best viewed in color.)

4.5.7 Experiments on Synthetic Domains

To better understand the connections between TaDeLL’s performance and the struc-

ture of the tasks, TaDeLL is evaluated on two synthetic classification domains. The
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Algorithm Lifelong Learning Zero-Shot Prediction
TaDeLL 0.926 ± 0.004 0.930 ± 0.002
ELLA 0.814 ± 0.008 N/A
STL 0.755 ± 0.009 0.762 ± 0.008

Table 4.2: Classification accuracy on Synthetic Domain 1

use of synthetic domains allows us to tightly control the task generation process and

the relationship between the target model and the descriptor.

The first synthetic domain consists of binary-labeled instances drawn from R8, and

each sample x belongs to the positive class iff xTm > 0. Each task has a different

parameter vector m drawn from the uniform distribution m ∈ [−0.5, 0.5]; these

vectorsm are also used as the task descriptors. This first experiment looks at the case

where the task description is directly related to the policy being learned. Note that

by sampling m from the uniform distribution, this domain violates the assumptions

of ELLA that the samples are drawn from a common set of latent features. Each

task’s data consists of 10 training samples, and 100 tasks were generated to evaluate

lifelong learning.

Table 4.2 shows the performance on this Synthetic Domain 1. The inclusion of mean-

ingful task descriptors enables TaDeLL to learn a better dictionary than ELLA in

a lifelong learning setting. An additional 100 unseen tasks were also generated to

evaluate zero-shot prediction, which is similarly successful.

For the second synthetic domain, L and D matrices were generated, and then gen-

erated a random sparse vector s(t) for each task. The true task model is then given

by a logistic regression classifier with θ(t) = Ls(t). This generation process directly

follows the assumptions of ELLA and TaDeLL, where D is generated independently.

One hundred tasks were similarly generated for lifelong learning and another 100 un-
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Algorithm Lifelong Learning Zero-Shot Prediction
TaDeLL 0.889 ± 0.006 0.87 ± 0.01
ELLA 0.821 ± 0.007 N/A
STL 0.752 ± 0.009 0.751 ± 0.009

Table 4.3: Classification accuracy on Synthetic Domain 2

(a) Lifelong Learning (b) Zero-Shot Prediction

Figure 4.6: Performance versus sample complexity on Synthetic Domain 2. The
yellow (blue) background indicates that the number of samples is fewer (more) than
the number of features.

seen tasks for zero-shot prediction, and use the true task models to label 10 training

points per task. This experiment empirically demonstrated that TaDeLL works in the

case of this assumption (Table 4.3) in both lifelong learning and zero-shot prediction

settings.

This domain is also used to investigate performance versus sample complexity, as

varying amounts of training data were generated per task. In Figure 4.6(a), it is

observed that TaDeLL is able to greatly improve performance given only a small

number of samples, and as expected, its benefit becomes less dramatic as the single-

task learner receives sufficient samples. Figure 4.6(b) shows similar behavior in the

zero-shot case.
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Figure 4.7: Performance using various subsets of the SM system parameters (mass
M , damping constant D, and spring constant K) as the task descriptors.

4.6 Additional Experiments

Having shown how TaDeLL can improve learning in a variety of settings, attention is

now turned to understanding other aspects of the algorithm. Specifically, I investigate

the issue of task descriptor selection and partial information, runtime comparisons,

and the effect of varying the number of tasks used to train the dictionaries.

4.6.1 Choice of Task Descriptor Features

For reinforcement learning problems, the system parameters were used as the task

description. While, in the situations studied, this made the choice of task descriptors

straightforward, this might not always be the case. It is unclear exactly how the

choice of task descriptor features might affect the resulting performance. To examine

this, experiments are conducted in situation where there was only partial knowledge

of the system parameters.

The question of partial knowledge was investigated by conducting additional exper-



CHAPTER 4. PREDICTING POLICIES 75

SM CP BK Quad

R
un

tim
e 

(s
ec

on
ds

)

20

40

60

80

100

120
TaDeLL
Sinapov et al.

Figure 4.8: Runtime comparison.

iments on the SM system, using all the subsets of task descriptor features when

learning the coupled dictionaries. Figure 4.7 shows how the number and selection of

parameters affected performance on the SM domain. Jumpstart performance is eval-

uated when using all possible subsets of the system parameters as the task descriptor

features. The subsets of the SM system parameters (mass M , damping constant D,

and spring constant K) are shown along the horizontal axis for the task descriptors.

Overall, the results show that the learner performs better when using larger subsets

of the system parameters as the task descriptors. This is not surprising. As long as

all the features are informative, the addition of more features allows the system to

model a more accurate policy.

4.6.2 Computational Efficiency

The average per-task runtime of TaDeLL is compared to that of Sinapov et al. (2015),

the most closely related method to our approach. Since Sinapov et al.’s method
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requires training transferability predictors between all pairs of tasks, its total runtime

grows quadratically with the number of tasks. In comparison, our online algorithm

is substantially more efficient. As shown in Section 4.4.3, the per-update cost of

TaDeLL is O (k2(d+m)3 + ξ(d, nt)). Note that this per-update cost is independent

of the number of tasks T , giving TaDeLL a total runtime that scales linearly in the

number of tasks.

Figure 4.8 shows the per-task runtime for each algorithm based on a set of 40 tasks,

as evaluated on an Intel Core I7-4700HQ CPU. TaDeLL samples tasks randomly with

replacement and terminates once every task has been seen. For Sinapov et al., 10 PG

iterations were used for calculating the warm start, ensuring fair comparison between

the methods. These results show a substantial reduction in computational time for

TaDeLL: two orders of magnitude over the 40 tasks. These results are expected given

the increased computational complexity associated with Sinapov’s algorithm.

4.6.3 Performance for Various Numbers of Tasks

Although it was shown in Section 4.4.2 that the learned dictionaries become more

stable as the system learns more tasks, it is not currently guaranteed that this will

improve the performance of zero-shot transfer. An additional set of experiments was

conducted on the Simple-Mass domain to evaluate the effect of the number of tasks

on zero-shot performance. Our results, shown in Figure 4.9, reveal that zero-shot

performance does indeed improve as the dictionaries are trained over more tasks. This

improvement is most stable and rapid in an MTL setting, since the optimization over

all dictionaries and task policies is run to convergence, but TaDeLL also shows clear

improvement in zero-shot performance as Tmax increases. Since zero-shot transfer
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involves only the learned coupled dictionaries, it can be concluded that the quality of

these dictionaries for zero-shot transfer improves as the system learns more tasks.
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Figure 4.9: Zero-shot performance as a function of the number of spring mass tasks
used to train the dictionary. As more tasks are used, the performance of zero-shot
transfer improves.

4.7 Discussion

This chapter demonstrated how incorporating high-level task descriptors into lifelong

learning both improves learning performance and also enables zero-shot transfer to

new tasks. The mechanism of using a coupled dictionary to connect the task de-

scriptors with the learned models is relatively straightforward, yet highly effective in

practice. Critically, it provides a fast and simple mechanism to predict the model

or policy for a new task via zero-shot learning, given only its high-level task de-

scriptor. While the focus was on RL tasks here, this approach is general and can

handle multiple learning paradigms, including classification and regression. Experi-

ments demonstrate that our approach outperforms the state-of-the-art and requires
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substantially less computational time than competing methods.

The ability to rapidly bootstrap policies for new tasks is critical to the develop-

ment of lifelong learning systems that will be deployed for extended periods in real

environments and tasked with handling a variety of learning problems. High-level de-

scriptions provide an effective way to relate different models. The description could

be provided by another agent, or as in the case when a person reads an instruction

manual, the description can come from information in the environment. Enabling

lifelong learning systems to similarly take advantage of these high-level descriptions

provides an effective step toward their practical effectiveness.

The two major limitations of TaDeLL are the restriction to linear policies and the

additional need for task descriptions. In certain instances, a mechanism like a descrip-

tion is necessary for handling multiple tasks. Consider a situation when state and

action spaces are identical between tasks but the goal is different. The agent must rely

on a description, known objective, or reward function to disambiguate tasks. How-

ever, in domains with high-dimensional state representations, the uniqueness of the

state space can often act as a description to orient the agent. The next chapter con-

siders a learner in such a high-dimensional state space. To handle high-dimensional

state spaces, and additionally to allow for more expressive models, I shift the focus

to deep learning and investigate transfer and lifelong learning issues related to neural

networks. This serves to address the shortcoming of the linear policies, while the need

for task descriptions is left as an open problem.



Chapter 5

Fine-Tuning as Transfer in Deep

Learning

One of the biggest limitations of TaDeLL is the reliance on linear policies. For many

problems, the relationship between the feature space and the desired output is highly

non-linear. Chapter 6 presents an approach for learning multiple tasks in an online

fashion using deep learning. To better frame that work, I use this chapter to present an

overview of transfer learning in deep neural networks. Transfer is a main component

of lifelong machine learning, and the issues related to transfer also appear in lifelong

machine learning. By understanding the former, we can better understand the latter.

In this chapter, I focus on properties of deep networks that are specific to transfer

learning, and present issues that arise when conducting transfer with deep models.

An easy and effective way to transfer knowledge in deep networks is fine-tuning. Fine-

tuning involves pre-training a network on one task and then retraining the network

or fine-tuning it for a different task. Fine-tuning was one of the early successes of

79
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deep learning – it was shown high-level features learned from training a network on

ImageNet (Deng et al., 2009) allowed for breakthrough results in other domains where

only smaller image datasets were available (Girshick et al., 2014; Hoffman et al., 2014).

One hypothesis for the success of fine-tuning is that the increased training on related

tasks produces internal representations in the network that generalize to a broader

set of problems and are therefore able to reduce over-fitting (Razavian et al., 2014;

Caruana, 1997). Considering this phenomenon more closely, one might ask, “Can the

initial training process be over-specialized and actually hurt transfer performance?”

This was shown to be the case. Yosinski et al. (2014) investigated fixing layers and

showed that earlier layers appear to be more general, while later layers are more

specific and require retraining. In this chapter, I will explore other properties of fine-

tuning. Specifically, I show that a directly copied network that performs poorly on a

new task can improve performance on that new task with fine-tuning. I demonstrate

that the amount of training a network receives affects how well a network performs

as an initialization, and I investigate retention or how well performance on the initial

task is preserved.

The problem I will use to investigate issues related to transfer in deep learning is

the problem of intersection handling by autonomous vehicles. I show that a net-

work trained on one type of intersection generally is not able to generalize to other

intersections. However, a network that is pre-trained on one intersection and fine-

tuned on another intersection performs better on the new task compared to training

in isolation. This network also retains knowledge of the prior task, even though

some forgetting occurs. Finally, I show that the benefits of fine-tuning hold when

transferring simulated intersection handling knowledge to a real autonomous vehicle.
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Figure 5.1: We analyze knowledge transfer between different types of intersections.
The knowledge to handle an intersection is represented as a Deep Q-Network (DQN).
We investigate a) directly copying a network to a new intersection b) fine-tuning a
previously trained network on a new intersection, c) whether fine tuning destroys old
intersection knowledge in reverse transfer.

Autonomous Driving (AD) has the potential to reduce accidents caused by driver

fatigue and distraction and will enable more active lifestyles for the elderly and dis-

abled (Blanco et al., 2016). While AD technology has made important strides over

the last couple of years, current technology is still not ready for large scale roll-out

(Aoude et al., 2011). Urban environments are particularly difficult for AD, due to

the unpredictable nature of pedestrians and vehicles in city traffic.

Rule-based methods provide a predictable method to handle intersections. However,

rule-based intersection handling approaches do not scale well due to the difficulty

of designing hand-crafted rules that remain valid as the diversity and complexity of

possible scenes increase. Recently it has been shown that deep reinforcement learning

can improve over rule-based techniques (Isele and Cosgun, 2017a; Isele et al., 2018b),

but before such techniques can be utilized, it is important to understand how well

these techniques are able to generalize to different scenarios and real systems.

We explore the ability of a reinforcement learning agent to generalize, focusing specif-

ically on how the knowledge for one type of intersection, represented as a Deep Q-

Network (DQN), translates to other types of intersections. We treat both different
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geometries and goal behaviors of intersections as different tasks for a lifelong learning

agent. First I look at direct copy: how well a network trained for Task A performs

on Task B. Second, I analyze how a network initialized on Task A and fine-tuned

on Task B compares to a randomly initialized network exclusively trained on Task

B. Third, I investigate reverse transfer: if a network pre-trained for Task A and

fine-tuned to Task B, preserves knowledge for Task A. Finally, I present early results

of using a network trained in simulation to initialize learning on real data.

5.1 Background on Autonomous Driving and

Transfer in Deep Learning

Intersections require attending to many different agents in multiple different direc-

tions, with highly varied and often unpredictable behaviors. Making appropriate

decisions can be challenging even for human drivers: 20% of all accidents occur at

intersections (National Highway Traffic Safety Administration, 2014). Robots have

the potential to be safer, with some research suggesting they might already be safer

(Blanco et al., 2016; Weiland and Crow, 2018). However, in practice, intersections are

considered one of the most difficult problems for autonomous vehicles (Fuerstenberg,

2005; Aoude et al., 2011). According to a presentation by Pravin Varaiya at the 2018

Berkeley Deep Drive consortium (Pravin, 2018), 23 out of 26 reported autonomous

driving accidents in California occurred at intersections.

Researchers have recently been investigating using machine learning techniques to

control autonomous vehicles (Cosgun et al., 2017). Imitation learning strategies have

investigated learning from a human driver (Bojarski et al., 2016). Markov Deci-



CHAPTER 5. FINE-TUNING AS TRANSFER IN DEEP LEARNING 83

sion Processes (MDP) have been used offline to address the problem of intersection

handling (Brechtel et al., 2014; Song et al., 2016). Online planners based on par-

tially observable Monte Carlo Planning (POMCP) have been applied to intersection

problems when an accurate generative model is available (Bouton et al., 2017). Addi-

tionally, machine learning techniques have been used to optimize comfort in a space

where solutions are constrained to safe trajectories (Shalev-Shwartz et al., 2016).

Large amounts of data often improve the performance of machine learning techniques.

In the absence of huge datasets, training on multiple related tasks gives similar per-

formance gains (Caruana, 1997). A large breadth of research has investigated trans-

ferring knowledge from one system to another in machine learning in general (Pan

and Yang, 2010), and in reinforcement learning specifically (Taylor and Stone, 2009).

Large training times and high sample complexity make transfer methods particularly

appealing in deep networks (Razavian et al., 2014; Yosinski et al., 2014). Recent

work in deep reinforcement learning has looked at combining networks from different

tasks to share information (Rusu et al., 2016; Yin and Pan, 2017). Researchers

have looked at using options (Sutton and Barto, 1998) in Deep RL to expand an

agent’s capabilities (Jaderberg et al., 2016; Tessler et al., 2016; Kulkarni et al., 2016),

and efforts have been made to enable a unified framework for learning multiple tasks

through changes in architecture design (Srivastava et al., 2013) and modified objective

functions (Kirkpatrick et al., 2016) to address the problem of catastrophic forgetting1

(Goodfellow et al., 2013).

In our scenario, there is the added difficulty of transferring to the real vehicle. It is

a well-known problem that policies trained in simulation rarely work on real robots
1Catastrophic forgetting is discussed in Section 5.3
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(Barrett et al., 2010). Recent work has investigated grounding imperfect simulators

to a robot’s behavior (Hanna and Stone, 2017) and there is evidence that transferring

from simulation to real robots can be addressed by targeting the system’s ability to

generalize (Tobin et al., 2017). Given the variety of intersections, the importance

of learning a general model, and the difficulty of training on the real vehicle, the

prospects of multi-task learning are examined for the problem of intersection handling.

5.2 Intersection Handling using Deep Networks

Each intersection handling task is viewed as a reinforcement learning problem, and a

Deep Q-Network (DQN) is used to learn the Q-function which maps each state-action

pair to its corresponding value. The details of deep Q-learning are described in detail

in Section 2.1.3. We assume the vehicle is at the intersection, the path is known, and

at every time step, the network is tasked with choosing between two actions: wait or

go. Once the agent decides to go, it continues until it either collides or successfully

navigates the intersection. My previous work has shown that deciding the wait time

generally outperforms approaches that learn an entire acceleration profile (Isele and

Cosgun, 2017a; Isele et al., 2018b).

5.3 Knowledge Transfer

We are interested in how a policy can be re-used for sharing knowledge between

different driving tasks. By sharing knowledge from different tasks, it is possible to

reduce learning time and create more general and capable systems. Ideally, knowledge
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sharing can be extended to involve a system that continues to learn after it has been

deployed (Thrun, 1996) and can enable a system to accurately predict appropriate

behavior in novel situations (Isele et al., 2016b). We examine the behavior of various

knowledge sharing strategies in the autonomous driving domain.

Direct Copy Directly copying a policy indicates the differences between tasks. To

demonstrate how well a network trained on one task fits another, a network is trained

on a single source task for 25,000 iterations. The unmodified network is then evaluated

on every other task. We repeat this process, using each different task as a source task.

Fine-Tuning Fine-tuning allows a network to adapt from the source to the target

task. Starting with a network trained for 10,000 iterations on a source task, a network

is then fine-tune for an additional 25,000 iterations on a second target task. We use

10,000 iterations because it demonstrates substantial learning, but is suboptimal in

order to emphasize the possible benefits gained from transfer. Fine-tuning demon-

strates the jumpstart and asymptotic performance benefits described by Taylor and

Stone (2009). For didactic purposes, a single task is also trained for 200,000 itera-

tions, while intermittently testing the performance on other tasks. This is done to

show how the specificity of a network over-fitting to a single task can adversely affect

performance on other tasks.

Reverse Transfer After a network has been fine-tuned on the target task, the

performance of that network is evaluated on the source task. If training on a later

task improves the performance of an earlier task this is known as reverse transfer.

It is known that neural networks often forget earlier tasks in what has been termed
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catastrophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990; Goodfellow et al.,

2013). It is desirable to have a system that can learning a large variety of intersections,

so investigations are run to understand how much knowledge of a previous task is

preserved.

5.4 Deep Neural Network Setup

Our DQN uses a convolutional neural network with two convolution layers, and one

fully connected layer. The first convolutional layer has 32 6×6 filters with stride two,

the second convolution layer has 64 3× 3 filters with stride two. The fully connected

layer has 100 nodes. All layers use leaky ReLU activation functions (Maas et al.,

2013). The final linear output layer has five outputs: a single go action, and a wait

action at four time scales (1, 2, 4, and 8 time steps). The use of variable length time

scales or dynamic frame skipping helps to speed up the learning process (Srinivas

et al., 2017). The network is optimized using the RMSProp algorithm (Tieleman and

Hinton, 2012). A visualization of the network is shown in Figure 5.2.

At each learning iteration a batch of 60 experiences is sampled. Since the use of

an experience replay buffer imposes a delay between an experience occurring and

being trained on, it is possible to calculate the return for each state-action pair in the

trajectory prior to adding each step into the replay buffer. This allows us to train

directly on the n-step return (Peng and Williams, 1996).

The state space of the DQN is represented as a 18 × 26 grid in local coordinates

that denote the speed and direction of cars within the grid. Because the length and

width of the input correspond to spatial dimensions, the input looks like a pixel
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Figure 5.2: Visualization of the network used for the intersection handling domain.

representation of a bird’s eye view of the intersection. A visualization of the state

space is shown in Figure 5.3. The red channel corresponds to heading angle, the

green channel corresponds to velocity, and the blue channel is an indicator that a car

is present in the corresponding region of space. This means that cars traveling right

will appear pink to white (white being the faster cars), and cars traveling left will be

appear blue to teal (teal being the faster cars).

Figure 5.3: Example input representation to the network. The 18×26×3 tensor uses
the height and width represent spatial position and uses the three depth channels to
describe heading angle and velocity with the third channel serving as an indicator.
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The epsilon governing random exploration is 0.05. The reward is +1 for successfully

navigating the intersection, −1 for a collision, and −0.01 step cost.

5.5 Experimental Setup

Experiments were run using the Sumo simulator (Krajzewicz et al., 2012), which is

an open-source traffic simulation package. This package allows users to model road

networks, road signs, traffic lights, a variety of vehicles (including public transporta-

tion), and pedestrians. For the purpose of testing and evaluation of autonomous

vehicle systems, Sumo provides tools that facilitate online interaction and vehicle

control. For any traffic task, users can have control over a vehicle’s position, velocity,

acceleration, steering direction and can simulate motion using basic kinematic models.

Traffic tasks like multi-lane intersections can be setup by defining the road network

(lanes and intersections) along with specifications that control traffic conditions. To

simulate traffic, users have control over the types of vehicles, road paths, vehicle den-

sity, and departure times. Traffic cars follow the intelligent driver model to control

their motion. In Sumo, randomness is simulated by varying the speed distribution

of the vehicles and by using parameters that control driver imperfection, based on

the Krauss stochastic driving model (Krauss, 1998). The simulator runs based on a

predefined time interval which controls the length of every step.

The Sumo simulator allows for the creation of a variety of different driving tasks with

varying levels of difficulty, many of which benefit from transfer while being sufficiently

different that adaptation is necessary for good performance (Isele and Cosgun, 2017b).

Autonomous driving has multiple objectives which often conflict, such as maximizing
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safety, minimizing the time to reach the goal, and minimizing the disruption of traffic.

The autonomous agent chooses between two types of actions: to go or to wait for some

number of iterations. I showed that this action space is preferable to learning with

accelerations in the absence of occlusions (Isele and Cosgun, 2017a; Isele et al., 2018b).

The path to take is assumed to be provided to the agent by a high-level controller.

(a) Right (b) Left (c) Left2 (d) Forward (e) Challenge

Figure 5.4: Visualizations of intersection tasks used for our experiments.

The experiments focus on the number of successfully completed trials. Successful

trials consist of the car navigating safely through the intersection, considering both

collisions and timeouts to be failures. The Sumo traffic simulator is configured so that

each lane has a 45 miles per hour (20 m/s) max speed. The car begins from a stopped

position. Each time step is equal to 0.2 seconds. The max number of steps per trial

is capped at 100 steps (20 seconds). The traffic density is set by the probability that

a vehicle will be emitted randomly per second. We use a departure probability of 0.2

for each lane for all tasks.

While navigating intersections involves multiple conflicting metrics (including time to

cross, number of collisions, and disruption to traffic), this investigation focuses on the

percentage of trials the vehicle successfully navigates the intersection. All simulated

state representations ignore occlusion, assuming all cars are always visible.

We ran experiments using five different intersection tasks; each of these tasks is

depicted in Figure 5.4:
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• Right involves making a right turn

• Left involves making a left turn

• Left2 involves making a left turn across two lanes

• Forward involves crossing the intersection

• Challenge involves crossing a six-lane intersection.

5.5.1 Real Data

We conducted a preliminary study in order to evaluate whether knowledge obtained

by simulated intersections could be useful for real ones. We collected data from an

autonomous vehicle in Mountain View, California, at an unsigned T-junction, similar

to the Left scenario. An image of the intersection is shown in Figure 5.5. A point

cloud, obtained by a combination of six IBEO LIDAR sensors, is first pre-processed

to remove points that reside outside the road boundaries. A clustering method with

hand-tuned geometric thresholds is used for vehicle detection. Each vehicle is tracked

Figure 5.5: Image of the intersection where data was recorded.
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by a separate particle filter. During data collection, a human observer in the vehicle

labeled whether making a left turn would be safe or not. Given a random starting

point in the recording, the system is able to select wait actions that move it ahead

in the recording, and a go action which results in either a collision or a success based

on the human provided labels. Because data is collected at a higher sampling rate

than the simulation step frequency (and therefore the behavior frequency), states are

sampled from within the simulation step window, allowing a recording to be inflated

into a large number of experiments. Note that this process only gives real sensor

readings, and that the system is not able to observe how its behavior affects other

drivers. Because the same few recorded scenarios are replayed, it is expected that

training on recorded data in this way will overfit to the recording.

We train a network on approximately one minute of recorded data, during which time

approximately 20 cars drive past. We then test the network on a separate recording

made at the same intersection. We compare the results against a network that has

been pre-trained on simulation data and then fine-tuned on the real data.

5.6 Results

Direct Copy: Figure 5.6 shows the average performance of training on one task and

applying it to another in light gray. While only the average performance is plotted,

the quality of transfer is dependent on the particular source and target task. In

no instance does a network trained on a different task surpass the performance of a

network trained on the matching task, but several tasks achieve similar performance

with transfer. Particularly it is seen that each network trained on a single-lane task
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(right, left, and forward) is consistently a top performer on other single-lane tasks.

Additionally the more challenging multi-lane settings (left2 and challenge) appear

related. The Left2 network does substantially better than any of the single lane tasks

on the Challenge task. The representation aligns the single lanes, and it is evident

that this is important for transfer. Even though the multi-lane Left2 and Challenge

tasks have a different number of lanes, the increased overlap provides better transfer.

Figure 5.6: Direct Copy and Reverse Transfer. The horizontal axis denotes the test
condition. Black bars show the performance of single task learning. Light gray bars
show the average performance of a network trained on one task and tested on another.
The drop in performance demonstrates the difference between tasks. The dark gray
indicates the average performance of reverse transfer: a network is trained on the first
task (listed on the horizontal axis), fine-tuned on second task, and then evaluated on
the first task. All possible choices of the second task are tested and the average
is shown. The drop in performance indicates catastrophic forgetting, but networks
exhibit some retention of the initial task.

Fine-Tuning: Figure 5.7 shows the fine-tuning results. We see that in nearly all

cases, pre-training with a different network gives a significant jumpstart advantage

(Taylor and Stone, 2009) and in several cases there is an asymptotic benefit as well.
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(a) Right (b) Left

(c) Left2 (d) Forward

(e) Challenge

Figure 5.7: Fine-tuning comparison. A network for one task is initialized with the
network of a different task. The colored lines indicate the initialization network.
The black line indicates the performance of a network with a random initialization.
Results were averaged over three trials. The shaded region depicts the standard error.
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The results of Figure 5.7 used a fixed-length initialization of 10,000 iterations. The

amount of training on the source task does matter. 10,000 iterations was chosen to

provide a good initialization but not fully learn the task. Fully training on the source

task tends to hurts generalization and over-fit to the source task.

(a) Detail (b) Full training session

Figure 5.8: The effect of fine-tuning duration on transfer. The network is trained on
the Right task (shown in blue) for 200,000 total iterations. a) A detail of the first
30,000 iterations. We observe that training on the right task improves performance
of all the other tasks, appearing to asymptote at different performances for different
tasks. b) As the network is continually refined on the Right task, performance de-
grades on the other tasks. Results were averaged over three trials and the shaded
region depicts the standard error.

The result of over training on the source task is shown in Figure 5.8. The Right task

is trained for 200,000 iterations while the network’s performance on other tasks is

intermittently tested during the training process. As the network converges to peak

performance on the Right task, the performance on the other tasks suffers.

Reverse Transfer: Figure 5.6 shows the reverse transfer performance in dark gray.

The performance on the source task dropped after fine-tuning on the target, but

performance improved compared to direct copy. This indicates that some information

was retained by the network. Note that the Left2 and Challenge tasks have less



CHAPTER 5. FINE-TUNING AS TRANSFER IN DEEP LEARNING 95

Figure 5.9: Transfer from simulation to real environment. The yellow lines indicate
the training and test performance of a network trained on real data collected from
an autonomous vehicle. The blue lines indicate the performance of a network that
is first trained on simulated data and then fine-tuned on a real vehicle. We see that
fine-tuning accelerates training time and improves generalization.

overlap with other tasks in the state space. It is possible that non-overlapping regions

can remain unchanged by fine-tuning. This might explain why it is observed that the

most retention occurs on the least-related tasks.

Real Data: Figure 5.9 shows the performance of training on real data. The blue

lines indicate a network that has been pre-trained on simulated data, the yellow lines

indicate the performance of a network that has only been trained on the real data.

Lighter lines indicate performance on the training data, and darker lines indicate

performance on the test data. The network pre-trained in simulation rises above

90% success on the training data in approximately half the iterations required by the

network trained only on real data to reach the same performance. The test results

follow the learning curve of the training data, but the performance asymptotes at

80% success. These results show that fine-tuning can reduce the training time of the

network, however in both networks the lower performance on the test data suggests



CHAPTER 5. FINE-TUNING AS TRANSFER IN DEEP LEARNING 96

over-fitting. While fine-tuning improves training time, it worth mentioning that the

network needed to make adjustments to observe those benefits, as directly copying

produced very poor performance.

It is interesting to note that training on the real task required more iterations. This

may be due to imperfections in the labeling process or greater noise and variation in

the state space. For completeness, there is an investigation into transfer from real

data to simulation. We observed that using a network initialized on a real left turn

accelerates training a left turn in simulation. Directly applying the network fine-tuned

on real data to a left turn in simulation resulted in a model that consistently timed

out. We suspect this is due to the network over-fitting the small amount of data.

5.7 Discussion

In this chapter I investigated different properties of transfer between intersections,

when using Deep Q-Networks. Our results identify autonomous intersection handling

as a domain that benefits from transfer. First, it was shown that the success rates

were consistently low when a network is trained on Task A but directly tested on Task

B. Second, a network that is initialized with the network of Task A and then fine-

tuned on Task B generally performed better than a randomly initialized network.

Third, when a network that is initialized with Task A, fine-tuned on Task B, and

tested on Task A, it performed better than a network directly copied from Task B to

Task A, but worse than a network trained recently on Task A. Fourth, it was shown

that a real intersection can be treated as a separate task and transfer from simulation

can be used to improve learning.
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Unlike the methods presented in Chapters 3 and 4, a limitation of fine-tuning is

that it transfers from one source task to one target task. The next chapter focuses

on how a single network can be trained to learn multiple tasks, but the ability to

selectively transfer from different source tasks and different combinations of source

tasks remains an open problem. Targeting a single agent that can handle many

tasks, the investigation is directed towards lifelong reinforcement learning, and more

specifically to the case where tasks are allowed to change dynamically. We focus on

addressing the issue of catastrophic forgetting so that the single agent preserves its

performance on prior tasks. I will show how memory is important to preserve prior

experiences and allow an agent to continue to perform as tasks change over time.



Chapter 6

Preserving Experiences

Advances in deep learning have begun to motivate research into networks that can

learn multiple tasks. Some approaches include training separate networks for each

task (Rusu et al., 2016; Yin and Pan, 2017) and discovering action hierarchies (Tessler

et al., 2016), but these methods become inefficient as the number of tasks increases.

When trying to efficiently train a single network that can handle multiple tasks, a

problem emerges concerning how to retain knowledge for every task over the course

of a system’s lifetime.

When learning multiple tasks in sequence, each new task changes the distribution

of experiences. A large set of states are no longer visited, and the changing set of

transitions direct the learning process towards a moving optimum. As a result of

the non-stationary training distribution, the network loses its ability to perform well

in previous tasks in what has been termed catastrophic forgetting (McCloskey and

Cohen, 1989; Ratcliff, 1990; Goodfellow et al., 2013).

98
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To mitigate forgetting, the network or learning process could be modified, or memory

could be incorporated into the system. I explore the latter. It has previously been

shown that past experiences can preserved and replayed to improve learning (Lin,

1992). In deep reinforcement learning, this is typically done with a first-in-first-out

(FIFO) replay buffer (Mnih et al., 2015). A network may experience forgetting on a

single task if rarely occurring events are inadvertently pushed out of the buffer (Lipton

et al., 2016) or if the network converges to behavior that does not consistently visit

the state space (de Bruin et al., 2015). This can be mitigated by having a replay buffer

with limitless capacity. Alternatively, if the task boundaries are known a priori, a

separate buffer can be used for each task. However, as the number of tasks grows

large, storing all the experiences of all tasks becomes prohibitively expensive, and

ultimately infeasible for lifelong learning.

In this chapter, I develop a process for accumulating experiences online that enables

their long-term retention given limited memory. Preserving prior ability is treated

as an active process where the replay of prior tasks is incorporated into the current

learning process. In order to efficiently store prior experiences, I propose a rank-

based method for the online collection and preservation of a limited set of training

examples to reduce the effects of forgetting. I then explore four different selection

strategies to identify a good ranking function for selecting the experiences. To validate

the selection process, I apply each strategy to an autonomous driving domain where

different tasks correspond to navigating different unsigned intersections. This domain

has recently been analyzed as a multi-task setting that both benefits from transfer

and allows for the specification of a large variety of tasks (Isele and Cosgun, 2017b).

It is additionally shown that the results generalize with further testing in a grid

world navigation task. In this chapter, I propose a selective experience replay process
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to augment the FIFO replay buffer to prevent catastrophic forgetting. I present

and compare four selection strategies for preserving experiences over the course of

a system’s lifetime, and I analyze the trade-offs between the two most successful

selection strategies: distribution matching and coverage maximization.

6.1 Catastrophic Forgetting in Neural Networks

Previous lifelong learning efforts using a single neural network have focused on pre-

serving prior knowledge within the network. Numerous works in shallow networks

investigate catastrophic forgetting for classification tasks (French, 1999). The first

paper to address the topic in deep nets proposed a local winner-take-all (LWTA)

activation to allow unique network configurations to be learned for different tasks

(Srivastava et al., 2013). The LWTA strategy of using different subsets of the network

draws parallels to dropout, which was shown to be superior to LWTA at preventing

catastrophic forgetting in some domains (Goodfellow et al., 2013). Most recently, the

Fisher information matrix of previous tasks has been incorporated into the objective

function to selectively slow down learning on important weights (Kirkpatrick et al.,

2016).

I instead consider a complementary method to these techniques by selecting and pre-

serving experiences for future training. The idea of retraining on old experiences

has been briefly suggested for a similar purpose in training recurrent neural networks

(Schmidhuber, 2015). It has been shown that experience selection can improve train-

ing in the context of selecting samples for training (Schaul et al., 2015b), but that

did not look at the more permanent decision of selecting which samples to keep and

which samples to discard. De Bruin et al. (2016) showed some evidence to sug-
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gest that retraining on old experiences can benefit transfer, but did not investigate

the effects of training over repeated transfers. I believe replaying experiences is a

necessary component to consolidating knowledge from multiple tasks. By preserving

experiences from prior tasks and incorporating them into the learning process, the

bias that exists when training on tasks in sequence can be overcome. Additionally,

this approach is agnostic to task boundaries, putting less burden on the system to

identify the changes of a non-stationary distribution.

6.1.1 Bias in Lifelong Learning

Recall from Section 2.1.3 that the loss for an individual experience in a deep Q-

network (DQN) is

L(ei, θ) =

(
ri + γmax

a′i

Q(x′i, a
′
i; θ)−Q(xi, ai; θ)

)2

. (6.1)

In an MTL setting, this loss yields the multi-task objective

1

T

T∑
t=1

1

nt

nt∑
i=1

L(ei, θ) , (6.2)

where nt is the number experiences for task t, T is the total number of tasks, and θ

is common across for all tasks. In multi-task learning, it is typically assumed that

each task is drawn from a different distribution. In many circumstances this causes

experiences from a single task to be correlated with respect to the global distribution.

Consider trying to model the global mean given only data from a single task for an

estimator U ,

bias = E(U)− µglobal . (6.3)
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As more tasks are incorporated into the estimator, the bias will reduce. But if the

estimator always forgets the previous tasks, the estimator will track the current task

and never converge to the true mean.

Figure 6.1: Cartoon of how training on a single task introduces bias. An estimator
that only uses data from task T1 produces a biased estimate of the global mean. If
the estimator is allowed to accumulate data from more tasks it will approach the true
mean, but if it forgets previous tasks the estimate will endlessly track the current
task.

Experience replay in reinforcement learning has been noted to remove temporal cor-

relations in the data (Mnih et al., 2015) and speed up the assignment of credit (Lin,

1992). However, when a system is learning a collection of tasks, the training time

on a single task can force experiences from previous tasks out of the buffer, and as a

result, the FIFO implementation of experience replay does not address task-related

correlations.

When training a single network on a sequence of tasks, experiences can be preserved

from previous tasks by retaining a buffer for each task, or by preserving a single buffer

with unlimited capacity. Experiences can then be incorporated into the learning pro-

cess by sampling from previous tasks. By preserving experiences for every task, the
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network can optimize all tasks in parallel. However, preserving experiences for all

tasks will quickly run into memory limitations. Assuming limited capacity, the stan-

dard FIFO implementation of an experience replay buffer will lose earlier experiences

and the training distribution will drift over time.

In order to address this problem, I propose a selective process for preserving experi-

ences. Through the use of an experience replay storage mechanism that selectively

retains experiences in long-term memory, the non-stationary effects caused by using

a FIFO replay buffer can be eliminated.

6.2 Selective Experience Replay

In biological systems, experience replay is an important aspect of learning behaviors.

Research shows that blocking replay disrupts learning (Girardeau et al., 2009; Ego-

Stengel and Wilson, 2010) and some scientists suggest that replay is a necessary

component of memory consolidation (Carr et al., 2011).

The idea that experience replay could be beneficial in machine learning was first

explored by Lin (1992) who used replay in order to speed up training by repeating

rare experiences. More recently, experience replay has seen widespread adoption, since

it was shown to be instrumental in the breakthrough success of deep RL (Mnih et al.,

2013). But in its current form, experience replay buffers are typically implemented

as randomly sampled first-in-first-out (FIFO) buffers (Mnih et al., 2015; Van Hasselt

et al., 2016; Lillicrap et al., 2016).
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6.2.1 Experience Selection

In order to efficiently store a sample population that preserves performance across

tasks, I introduce a long-term storage, episodic memory, which accumulates experi-

ences online, storing a subset of the system’s history under the restriction of resource

constraints. While episodic memory could involve generative processes (Goodfellow

et al., 2014) or compression (Argyriou et al., 2008), in this work I focus specifically

on the case of selecting complete experiences for storage.

Episodic memory accumulates knowledge over time which helps to preserve past per-

formance and constrains the network to find an optimum that respects both the past

and present tasks. To accumulate a collection of experiences from all tasks, experi-

ences are ranked according to importance for preserving prior knowledge. As long as

the ranking function is independent of time, the stored experiences will be as well.

In practice, episodic memory is implemented with a priority queue, ensuring that the

least preferred experiences are the first to be removed. Episodic memory serves as

long-term storage, and is not intended to replace the short-term FIFO system.

6.2.2 The Importance of the FIFO Buffer

In addition to the episodic memory, a small FIFO buffer is used to ensure that the

network has the opportunity to train on all incoming experiences. A system with

limited storage that preserves memories over an entire lifetime will have very little

capacity for new experiences, and using long-term only storage will impair the learn-

ing of new tasks1. Additionally, increasing the variety of experiences to which the
1We experimented with training the network using long-term storage only and confirmed this

hypothesis. The network performs acceptably, but does not match the performance of the combined
approach.
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network is exposed prevents the network from overfitting. Note that only the long-

term memory will hold experiences for all tasks. By training the network on both

the long-term and short-term memories, the gradients are biased towards prior tasks.

I now direct attention to the problem of identifying an appropriate ranking function

for selecting which experiences to preserve in long-term memory.

6.2.3 Selection Strategies

There are several reasonable solutions when faced with the design choice of which

experiences to store in the episodic memory. Neuroscience literature suggests that

replay occurs most often when events are infrequent, and the breadth of replayed

experiences are not limited to the most recent events experienced nor the current

task being undertaken (Gupta et al., 2010). Notably replayed events show preference

for surprising (Cheng and Frank, 2008) and rewarding situations (Atherton et al.,

2015). Alternatively, statistical strategies can be used. Experiences can be selected to

match the distribution of all tasks (Bickel et al., 2009b), or, given that the future test

distribution may differ from the training distribution, experiences can be selected to

optimize coverage of the state space (de Bruin et al., 2016). For the rest of this section,

I examine selection strategies based on surprise, reward, distribution matching, and

coverage, comparing them to the traditional FIFO memory buffer. Each strategy

gives a different ranking function K(·) to order experiences.

Surprise Unexpected events have been shown to be connected to replay in rodents

(McNamara et al., 2014; Cheng and Frank, 2008) and surprise has a convenient coun-

terpart in incremental reinforcement learning methods like Q-learning. The temporal

difference (TD) error describes the prediction error made by the network and can be
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(a) Cartoon of experience space

(b) Surprise (c) Reward

(d) Coverage maximization (e) Distribution matching

Figure 6.2: In the cartoon of experience space, green indicates positive value and red
indicates negative value. The different diagrams illustrate how the different selection
strategies would select points in this domain.
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interpreted as the surprise of a particular transition:

K(ei) = |ri + γmax
a′

Q(s′i, a
′)−Q(si, ai)| . (6.4)

This idea is similar to the idea of uncertainty sampling in active learning (Settles,

2010), identifying unexpected inputs in history compression (Schmidhuber, 1993),

and it has been effectively used as the foundation for a prioritized sampling strategy

(Schaul et al., 2015b).

Reward Neuroscience research suggests replay occurs more often for rewarding

events (Atherton et al., 2015; Ólafsdóttir et al., 2015). Prioritized sampling that fa-

vors rewarding transitions has also been shown to be helpful in RL (Jaderberg et al.,

2016). This is implemented by using the absolute value of the future discounted

return of a given experience

K(ei) = |Ri(ei)| . (6.5)

Global Distribution Matching It can be expected that the best test performance

occurs if the training distribution matches the test distribution. This motivates a

strategy that tries to capture the combined distribution of all tasks. To turn this into

a ranking function, random selection is used to down sample the set of experiences to

a smaller population that approximately matches the global distribution. In order to

maintain a random sample over the global distribution even though our experiences

arrive sequentially and the global distribution is not known in advance, a reservoir

sampling strategy that assigns a random value to each experience is used. This

random value is used as the key in a priority queue where the experiences with the
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highest key values are preserved

K(ei) ∼ N (0, 1) . (6.6)

At time j the probability of any experience being the max experience is 1/j regardless

of when the sample was added, guaranteeing that at any given time the sampled

experiences will approximately match the distribution of all samples seen so far

∀ei p(ei ∈ B) = min

(
1,
|B|
j

)
. (6.7)

Here |B| is the number of experiences stored in episodic memory B.

Coverage Maximization When limiting the number of preserved experiences, it

might also be advantageous to maximize coverage of the state space. Research shows

that limited FIFO buffers can converge to homogeneous transitions when the system

starts consistently succeeding, and that this lack of error samples can cause divergent

behavior (de Bruin et al., 2015). While it is often not possible to know the complete

state space, de Bruin et al. (2016) shows that approximating a uniform distribution

over the visited states can help learning when buffer size is limited.

In order to maximally cover the space, a uniform distribution is approximated by

ranking experiences according to the number of neighbors in episodic memory within

a fixed distance η and replacing entries with the most neighbors. This approach is

similar to the kernel method used by de Bruin et al. (2016) and makes the time

complexity of adding entries O(|E|) where |E| is the number of stored experiences

in episodic memory. This time complexity can be reduced to O(log(|E|)) by using a

KD-tree (Bentley, 1975) and only comparing against the k nearest neighbors or to
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O(k) by sampling the buffer. Formally, the set of neighbors Ni is used to determine

the ranking function

Ni = {ej s.t. dist(ei − ej) < η} (6.8)

K(ei) = −|Ni| . (6.9)

6.3 Experiments

Selective experience replay is evaluated on the problem of autonomously handling

unsigned intersections using the Sumo simulator (Krajzewicz et al., 2012) and confirm

the generality of this results with a follow-up study in a grid world domain.

6.3.1 Simulation Environment: SUMO

Experiments were conducted in the open source Sumo traffic simulator (Krajzewicz

et al., 2012) described in detail in Chapter 5.5. The traffic simulator is configured

so that each lane has a 45 miles per hour (20 m/s) max speed. The car begins from

a stopped position. Each time step is equal to 0.2 seconds. The max number of

steps per trial is capped at 100 steps, which is equivalent to 20 seconds. The traffic

density is set by the probability that a vehicle will be emitted randomly per second.

A departure probability of 0.2 for each lane is used for all tasks.

Experiments were run using five different intersection tasks: Right, Left, Left2, For-

ward and a Challenge. Each of these tasks is depicted in Figure 5.4. The Right task
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involves making a right turn, the Forward task involves crossing the intersection, the

Left task involves making a left turn, the Left2 task involves making a left turn across

two lanes, and the Challenge task involves crossing a six lane intersection.

The order in which tasks are encountered does impact learning, and several groups

have investigated the effects of ordering (Bengio et al., 2009; Ruvolo and Eaton,

2013a; Narvekar et al., 2016). For our experiments, a random task ordering that

demonstrates forgetting is selected and held fixed for all experiments. All of our

experiments use the dropout training method (Hinton et al., 2012) which was shown

to help prevent forgetting (Goodfellow et al., 2013).

In order to evaluate the effectiveness of the proposed approach, I ran three sets of

experiments. In the first experiment, the upper bound is evaluated using a network

with an unlimited capacity FIFO buffer, and the lower bound on performance is eval-

uated used a limited memory FIFO buffer. A network was trained sequentially on five

intersection tasks with a fixed order and 10, 000 training experiences on each task.

The success rate is evaluated and plotted at periodic intervals during training. In the

second experiment, the performance of selective experience replay with a limited-size

experience replay buffer is investigated. A different network is trained for each of

the four selection strategies and the performance is evaluated to check whether the

network undergoes catastrophic forgetting during training. In the third experiment,

the two most promising strategies are compared when the number of training samples

are not evenly distributed across tasks. For each strategy, a network is trained on the

right task for 2, 000 experiences followed by 25, 000 experiences on the challenge task.

These tasks were selected as being the most different from each other based on previ-

ous experiments. To evaluate how well our results generalize, a second environment

is also explored. The next section presents the second domain.
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Figure 6.3: Grid world domain. Black indicates a wall, dark gray is the agent, and
light gray is the goal.

6.3.2 Simulation Environment: Grid World

To confirm that our results generalize to other domains, I additionally conducted

experiments on a grid world navigation task. In the grid world domain, the world

is divided into four rooms. Each tasks corresponds to the room which contains the

goal. The agent starts in the top left of a four room world sized 11× 11. The agent’s

objective is to navigate to a goal in one of the other rooms. Figure 6.3 shows an

example state in grid world. Each room corresponds to different task. The agent’s

action space consists of moving {up, down, left, right}. The agent is allowed up to

100 steps per trial, and the agent trains for 10, 000 iterations for each task for a total

of 30, 000 iterations.

6.3.3 Experimental Setup

The state space of the DQN is represented as a 18 × 26 grid in global coordinates

from the intersection domain (11 × 11 for grid world). The DQN network uses a

convolutional neural network with two convolution layers, and one fully connected
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layer. The first convolutional layer has 32 6 × 6 filters with stride two, the second

convolution layer has 64 3×3 filters with stride two. The fully connected layer has 100

nodes. All layers use leaky ReLU activation functions (Maas et al., 2013). The final

linear output layer has outputs corresponding to the domain specific action space. The

network is optimized using the RMSProp algorithm (Tieleman and Hinton, 2012).

Our experience replay buffers have an allotment of 1, 000 experiences. The FIFO only

trials have a single replay buffer with 1, 000 experiences. Networks using a selective

replay buffer store 900 experiences in the selective buffer and 100 in the smaller FIFO

buffer. At each learning iteration, a total batch size of 60 experiences are sampled.

This is split into 30 experiences from each buffer when using selective replay. This

means mini-batches are an even mix of data from both buffers.

Since the experience replay buffer imposes off-policy learning, the return for each

state-action pair in the trajectory can be calculated prior to adding each step into

the replay buffer. This allows us to train on the n-step return (Peng and Williams,

1996).

Because surprise changes over the course of training, one can imagine implementing

the surprise method to either retain the examples that were initially surprising, or

to update samples with their new TD values as they are trained upon. In the later

case, the TD errors would shrink as the network learns the hard examples and they

would eventually be removed from the buffer. In practice this is what is observed:

updating the TD errors eventually removes samples from older tasks until the buffer

only has samples from the current task. This causes the network to forget earlier

tasks, and in every domain tried, better performance was obtained by retaining the

initial surprising examples. For this reason the results from the method that retains
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the initially surprising examples are shown.

The number of neighbors in coverage maximization is dependent upon the samples

currently in the buffer. As the buffer changes, the number of a neighbors a sample has

may also change. To accommodate the change in buffer distribution, an experience’s

score is updated when it is sampled for training.

For calculating the distances between experiences in the coverage maximization ap-

proach, all components of the experience are concatenated (state, action, next state

and reward) and the extended Jaccard metric is used for the intersection domain

because the state representation is sparse (cosine similarity worked equally well). For

the states in grid world, the L1 distance between the different agents and the different

goals was used.

The epsilon governing random exploration was 0.05. For the reward +1 was used for

successfully navigating the intersection, −1 for a collision, and −0.01 step cost. For

grid world, the agent receives a reward of 10 for reaching the goal and a suffers a step

cost of −0.01. Testing is run as separate procedure that does not have an impact on

the replay buffer or the learning process of the network.

6.4 Results

6.4.1 Baselines

Figure 6.4 shows the performance of a network training with an unlimited capacity

replay buffer in the intersection handling domain. There are five tasks in this exam-

ple, horizontal dotted lines indicate the final performance of a single task network
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trained for an equivalent number of training steps. The learning curves indicate the

performance of a single lifelong learning network training on all tasks. Each color in-

dicates the performance on a different task. The background color indicates the task

the network is currently training on. It is observed that when the experience buffer

has unlimited capacity, the network improves over the performance of the single task

networks given an equivalent amount of training. Training on a new task receives

the jumpstart (Taylor and Stone, 2009) benefit of prior knowledge and the network

is resistant to forgetting. However, training with unlimited capacity is not practical

as the number of tasks increases. This experiment demonstrates the upper bound

performance our method hopes to match when the experience replay buffer capacity

is limited.

When a FIFO replay buffer has limited capacity, previous tasks are forgotten (Figure

6.4). It is observed that training on the forward task initially boosts every tasks’

performance. However, when the network begins training on the challenge task,

performance drops on all single lane tasks (right, left, and forward). Similarly, training

on the right task hurts the performance of other tasks. Recall from Chapter 5.6 that

the more a network is refined on a single task, the more it hurts different tasks.

6.4.2 Selective Replay Results

The results of the networks using selective replay are shown in Figure 6.5. Our

results show that both the surprise and reward strategies behaved poorly as experience

selection strategies as they exhibit catastrophic forgetting. It is believed that surprise

performed poorly as a selection method, because surprising experiences are exactly

the samples the system is most uncertain about. It makes sense to focus on these
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(a) Unlimited Capacity (b) Limited capacity (FIFO buffer)

Figure 6.4: (a) Lifelong learning of multiple tasks when the full history of experiences
is available for each task. The dotted lines indicate the final performance of the single
task network with an equivalent amount of training. (b) Training with a FIFO expe-
rience replay buffer on multiple tasks with limited capacity. The traditional method
of storing memories for experience replay demonstrates catastrophic forgetting.

examples to improve learning, however when it comes to retaining knowledge, surprise

represents the information the system has not learned. When the goal is to preserve

memory, experiences where the network makes errors might be very poor experiences

to store2. In the reward selection method, only rewarding experiences are stored, and

training on only rewarding experiences ignores the credit assignment problem. Added

noise was kept small, and only intended to break ties. Increasing the noise will select

states around the rewarding experiences as well and will become a combination of

the reward and distribution matching selection strategies. Increasing the amount of

noise, the behavior converges to the performance of distribution matching.

Both the distribution matching and coverage maximization strategies prevented catas-

trophic forgetting, although they displayed somewhat different behaviors. By max-

imizing coverage, frequently visited regions in the state space can be covered with
2We also ran exploratory tests where we preserved experiences with the minimal TD error, but

the results were not favorable
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(a) Surprise (b) Reward

(c) Coverage maximization (d) Distribution matching

Figure 6.5: Selective experience replay results. While surprise and reward selection
strategies exhibit catastrophic forgetting on previously learned tasks, coverage maxi-
mization and distribution matching strategies do not.

only a few samples, so maximizing coverage will be under-represented compared to

distribution matching in places where the system spends most of its time. Similarly,

strategies that seek to maximize coverage will favor outliers and rare events. This

can be helpful if these error cases are catastrophic failure states that would be oth-

erwise missed (Lipton et al., 2016). On physical systems, behavior that exhibits a

large amount of exploration can quickly wear and damage components, so preserving

these experiences for replay can also increase the safety of learning (de Bruin et al.,

2015). In our domain, distribution matching exhibited slightly more stable behavior

and had a slight advantage in performance. However, because the two approaches are

so different, it is likely that the specifics of the domain could change which strategy
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performs better.

6.4.3 Unbalanced Training

(a) Coverage maximization (b) Distribution matching

Figure 6.6: Unbalanced training. The network is trained for 2000 iterations on right
and then trained for an additional 25000 iterations on challenge. The background
color indicates the training task. If performance on the task with less training time
is important, selecting to preserve samples based on coverage can give better results.

While the distribution matching strategy slightly outperformed coverage maximiza-

tion in the previous experiment, that setup assumes that each task receives equal

training time. However, it is reasonable to hypothesize that this strategy will under

perform if the assumption that the importance of the task is proportional to the time

spent training on it is broken.

In this experiment, both strategies are evaluated when the training time of the tasks

are unbalanced. For each selection strategy, a single network is trained like previous

experiments, but with only two sequential tasks in order to test the hypothesis. Both

networks were trained on right task first, then on challenge task for 12.5 times longer.

The results of the unbalanced training is shown in Figure 6.6. On the challenge task,

both strategies performed about the same. On the right task, coverage maximization
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retained better performance than distribution matching. The reason was that the

coverage maximization strategy kept more experiences from the right task in episodic

memory. It could be the case that certain experiences, while only encountered briefly,

are valued more. In this case, it is expected that the strategy that covers the state

space more will perform better. It was observed that the distribution matching strat-

egy had higher variance on the right task and which could be because of the random

nature of the selection process.

6.4.4 Grid World

Grid World shows much more dramatic catastrophic forgetting, where the agent al-

most immediately forgets performance of previous tasks without selection. Results

are shown in Figure 6.7. Since the final task passes through the two earlier rooms

some recovery was observed, but this is probably due to the configuration of the

rooms. Surprise and Reward again both perform poorly. Coverage maximization

preserves some performance on earlier tasks, but distribution matching both reaches

higher performance on current tasks and preserves more performance on earlier tasks.

Additional studies were conducted to probe various aspects of the selection strategies.

These evaluations confirm that our selection strategies worked as planned.

6.4.5 Evaluating Strategies

To confirm that Coverage Maximization does indeed give us good coverage, the state

space of our intersection domain was projected down to two dimensions using the non-
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(a) No Selection (b) Surprise (c) Reward

(d) Coverage Max. (e) Distribution Matching

Figure 6.7: Selective experience replay results on grid world domain. Without se-
lection, performance on previous tasks almost immediately drops to zero. While
surprise and coverage maximization help somewhat, distribution matching is the best
at preserving experience.

linear randomized projection t-SNE (Maaten and Hinton, 2008) as seen in Figure 6.8.

This projection also visualizes how different tasks come from different distributions

in the state space. Since the selection process is done in the high dimensional space,

not the mapped space, it is not expected that the selected points will look perfectly

uniform after projection. However, the projection does show that the algorithm does

indeed cover the space.

To store surprising samples, a priority queue ordered by the absolute value of the

TD error was used. While large errors are not necessarily distributed uniformly

throughout the learning process, in practice, our experiments show large errors occur

throughout training - see Figure 6.8.
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Figure 6.8: Additional Experiments]
(Left) Projection of state space into two dimensions using t-SNE (Maaten and

Hinton, 2008). Black points indicate the points selected by the coverage
maximization selection process. While it is not expected that the coverage is

perfectly uniform after the projection into two dimensions, it is observed that the
selected points cover the state space and include samples from every task. (Right)
Magnitude of TD error over a typical run of five tasks. While the TD error is not
consistent throughout learning, large TD errors are observed occurring throughout

the learning process.

6.4.6 Distributions of Samples Stored in Buffer

Additional investigation showed how many samples from each task were in the buffer

at the end of training under the different approaches. Results are shown in Table 6.1.

Mistakes made by the network early in training were often smaller errors and had

a longer time to get pushed out of the buffer. As a result, the first task had fewer

samples. The harder tasks (Left2 and Challenge) also appear to correlate with larger

errors. Reward has balanced examples from each task, since each task has a fixed

reward, although since long trials that result in a collision will have more negative

reward than short failures, it is observed that Left2 and Challenge have slightly more

samples. Coverage Maximization has a large variance on the number of samples for

Right, Left2, and Forward. This is because they occupy a similar region in space,

see Figure 6.8. As a result, the buffer may have many samples of Right, and hold on
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to fewer for Left and Forward. However, which task it held more samples for varied

across trials, resulting in the large variance. Distribution Matching is balanced with

more samples for Left2 and Challenge. This slight imbalance is due to the fact that

the harder tasks tended to have longer trials, therefore producing more samples.

Table 6.1: Distribution of Stored Experiences

Method Right Left Left2 Forward Challenge
Surprise 4± 1 70± 20 345± 60 97± 20 384± 30
Reward 117± 5 156± 6 210± 16 154± 36 265± 10
Coverage 221± 110 163± 80 109± 107 106± 104 300± 22
Matching 117± 10 156± 16 229± 13 150± 11 247± 26

6.4.7 Comparison with EWC

In order to compare selective experience replay with the state-of-the-art, two lifelong

variants of MNIST (LeCun et al., 1998) were created. The first uses all ten classes

of MNIST, and randomly permutes the pixels for each task. It is expected that there

is no transfer benefit on this dataset, as the classes for each task are independent

from the classes in the previous task. The second lifelong MNIST variant uses all ten

classes but each task only includes data from two classes i.e task one includes ‘0’s

and ‘5’s, task two includes ‘1’s and ‘6’s. Since there is a correlation between digits

(‘3’s look like ‘8’s) and the initialization will push any newly encountered ‘1’ or ‘6’

on the second task to be classified as either a ‘0’ or ‘5’, there is likely a greater effort

to forget the previous learning that channeled all inputs into ‘0’ or ‘5’ outputs. The

first variant is referred to as permutations and the second variant as pairs. A publicly

available implementation of EWC (Seff, 2018) is used. A two layer fully connected

neural network with 50 hidden nodes and ReLU activation functions is used as the

architecture. The network is optimized using gradient descent. Each task is trained
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for 1000 iterations with a batch size of 100 samples per iteration. The experiment

was repeated six times with different random seeds to collect statistics.

On the permutation domain, selective experience replay and EWC have similar per-

formance, see Figure 6.9 and Table 6.2. The shaded region shows the standard error.

Subtle differences are observed in behavior. EWC preserves performance on the ear-

lier tasks better, but learns and preserves performance on the later tasks slightly

worse than selective experience replay. Unfortunately, combining the two methods

does not appear to have a benefit over the individual approaches separately.

(a) None (b) EWC

(c) Selective (d) Both

Figure 6.9: MNIST permutation domain. Distribution matching is used for the se-
lective replay strategy. It is observed that both EWC and selective experience replay
successfully prevent forgetting.

On the pairs domain, EWC under performs compared to selective experience replay,
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Table 6.2: Lifelong MNIST permutations

Method Task 1 Task 2 Task 3 Task 4 Task 5
None 0.65± 0.04 0.76± 0.03 0.85± 0.02 0.91± 0.02 0.971± 0.006
EWC 0.91± 0.01 0.92± 0.01 0.90± 0.01 0.86± 0.01 0.91± 0.01
Selective 0.88± 0.01 0.900± 0.007 0.91± 0.01 0.91± 0.01 0.937± 0.009
Both 0.92± 0.01 0.903± 0.007 0.881± 0.007 0.86± 0.01 0.88± 0.01

see Figure 6.10 and Table 6.3. EWC does preserve performance longer than a tradi-

tional network, but by the end of training on all tasks, performance on earlier tasks

has entirely eroded. Note that performance on early tasks does spike up during the

early stages of training a new task. For example, consider the performance of task

one at the beginning of training task three. We believe this is because the weights

for the new task need to grow large to suppress the classification of earlier tasks.

When those large weights are themselves reduced, a brief return of performance on

the earlier tasks is observed. It is often the case that new data will be correlated with

old data, and coarse decision boundaries that work on a small amount of data will

need to be refined as new data is accumulated. We hypothesize that experience replay

is essential for these refinements, and the results confirm that there is a substantial

benefit to storing and replaying earlier experiences.

Table 6.3: Lifelong MNIST pairs

Method 0,5 1,6 2,7 3,8 4,9
None 0± 0 0± 0 0± 0 0± 0 0.946± 0.006
EWC 0± 0 0.005± 0.005 0.006± 0.006 0.12± 0.02 0.936± 0.005
Selective 0.82± 0.01 0.924± 0.006 0.69± 0.04 0.72± 0.01 0.914± 0.003
Both 0.73± 0.02 0.84± 0.02 0.47± 0.02 0.69± 0.02 0.876± 0.004
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(a) None (b) EWC

(c) Selective (d) Both

Figure 6.10: MNIST pairs domain. Distribution matching is used for the selective
replay strategy. In this domain, selective experience replay is better at preventing
forgetting.

6.5 Discussion

I proposed a method for selectively retaining experiences to preserve training on pre-

vious tasks in a lifelong learning setting. Forgetting previous task knowledge is a

major hurdle when applying deep networks to lifelong learning scenarios. Unlim-

ited storage of experiences is intractable for lifelong learning, and the use of FIFO

experience buffers has been shown to lead to catastrophic forgetting. Our method

involves keeping a long-term experience replay buffer in addition to the short-term

FIFO buffer. Four strategies were compared for selecting which experiences will be
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stored in the long-term buffer: a) Surprise, which favors experiences with large TD

error, b) Reward, which favors experiences that lead to high absolute reward, c) Dis-

tribution Matching, which matches the global training state distribution, d) Coverage

Maximization, which attempts to preserve a large coverage of the state space.

The four selection methods were evaluated in an autonomous driving domain where

the tasks correspond to handling different types of intersections. In a setting where

five intersection tasks were learned sequentially, Surprise and Reward selection meth-

ods still displayed catastrophic forgetting, whereas Distribution Matching and Cov-

erage Maximization did not. The latter two strategies achieve nearly comparable

performance to a network with unlimited experience replay capacity. While distribu-

tion matching has slightly better performance, one case was identified in which it is

not an ideal strategy: the case where tasks which received limited training are more

important. I additionally carried out experiments in a grid world domain, in which it

was again seen that Distribution Matching performed best. Overall, our results show

that selective experience replay, when suitable selection algorithms are employed, can

prevent catastrophic forgetting in lifelong reinforcement learning.

Matching the distribution appears to be the best strategy for preserving experiences,

it is likely surprise, reward, and coverage have their purposes in other apsects of

the learning process. I have shown that coverage maximization can be preferable

when training and test distributions differ. It has already been shown that surprise

is helpful for learning. And I hypothesize that reward might have importance for

partitioning a continuous timeline into a set of experiences. Note that this is built

into our training process, each success or failure terminates an episode.

While the addition of episodic memory is intended to address forgetting in lifelong
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learning, limited storage and the resulting divergent behavior are also concerns in

single task networks and our contribution may find more general application outside

of lifelong learning domains. While these experiments were carried out in an au-

tonomous driving domain, sample complexity and safety concerns prevent us from

directly applying standard Deep RL to real vehicles. The next chapter looks at how

safety constraints can be incorporated into the learning environment.



Chapter 7

Safe Training

The previous chapter considered training a policy for an autonomous vehicle in sim-

ulation. While it is encouraging to see that policies can be learned that offer some

benefits over rule-based approaches, there are several barriers preventing their ap-

plication to real vehicles. The two primary difficulties are sample complexity and

safety.

Even if transfer methods reduce the number of iterations, the unconstrained trial-and-

error searches typical to reinforcement learning (RL) methods are not appropriate

to physical systems which act in the real world, where failure cases result in real

consequences. An autonomous vehicle cannot be allowed to crash in order to learn

safe driving behavior. Recent work in safe RL uses idealized models to achieve their

guarantees, but these models do not easily accommodate the stochasticity or high

dimensionality of real-world systems. I investigate how prediction provides a general

and intuitive framework to constrain exploration, and show how it can be used to

safely learn intersection handling behaviors on an autonomous vehicle. The specific

127
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Figure 7.1: In dense traffic, a human driver (red vehicle) might take the opening to
minimize the wait that would result from the approaching heavy traffic. However, in
sparse traffic, it would be preferable to accept a small delay and let the car pass.
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application I investigate is making a turn at an unsigned intersection. I explored this

problem as a non-safety constrained RL domain (Isele et al., 2018b) as discussed in the

previous chapter. In that chapter, I noted that the learned policy, which optimized

efficiency, might be disruptive to traffic vehicles in practice. The primary concerns of

these maneuvers are safety and efficiency, but balancing the two is a dynamic task. In

dense traffic it may be desirable to seize an opportunity that leaves only several meters

of a safety margin, as otherwise it would require waiting an unacceptable amount of

time for the next opportunity. However in sparse traffic, adding an increased margin

will only add a negligible delay and will likely be preferable to the passengers and other

traffic vehicles. Figure 7.1 demonstrates the scenarios in dense and sparse traffic.

I demonstrate the use of prediction as a safety constraint by learning a policy that

minimizes disruption to traffic (as measured by traffic braking) while avoiding colli-

sions. Additionally, I learn a policy that maximizes distance to other vehicles, while

still getting through the intersection in a fixed time window. It is shown that these

two optimizations produce different behaviors and that both can be learned using RL

with zero collisions.

7.1 Background

To mitigate the safety concerns associated with training an RL agent, there have

been various efforts at designing learning processes with safe exploration. As noted

by Garcia and Fernandez (2015), these approaches can be broadly classified into

approaches that modify the objective function and approaches that constrain the

search space.
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Modifying the objective function mostly focuses on catastrophic rare events which do

not necessarily have a large impact on the expected return over many trials. Proposed

methods take into account the variance of return (Howard and Matheson, 1972),

the worst outcome (Heger, 1994; Howard and Matheson, 1972; Lipton et al., 2016),

and the probability of visiting error states (Geibel and Wysotzki, 2005). Modified

objective functions may be useful on robotic systems where a small number of failures

is acceptable. However on safety-critical systems, often a single failure is prohibited

and learning must be confined to always satisfy the safety constraints.

Methods that constrain the search space are preferable when stricter safety require-

ments are necessary. Because these approaches can completely forbid undesirable

states, they are usually accompanied by formal guarantees, however satisfying the

necessary conditions on physical systems can be quite difficult in practice. For ex-

ample, strategies have assumed a known safe policy which can take over and return

to safe operating conditions(Hans et al., 2008), a learning model that is restricted to

tabular RL methods (Wen et al., 2015; Wen and Topcu, 2016), and states that can be

deterministically perceived and mapped to logical expressions (Alshiekh et al., 2018;

Shalev-Shwartz et al., 2016). While there are some approaches that have been imple-

mented on physical robots (such as the work of Gillula and Tomlin (2013) which uses

reachability to enforce strict safety guarantees), these approaches tend to be com-

putationally expensive, preventing their application to higher dimensional problems

such as domains with multiple agents.

I investigate how prediction can be used to achieve a system that scales better to

higher dimensions and is more suited to noisy measurements. Using prediction meth-

ods, it can be shown that it is possible to safely constrain learning to optimize in-

tersection behaviors on an autonomous vehicle where it must consider the behaviors
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Figure 7.2: An autonomous vehicle navigating an intersection. Prediction is used to
shield the vehicle from making dangerous decisions, while allowing it to learn policies
that are both efficient and not disruptive to other vehicles.

of multiple other agents. While I believe prediction is a very general framework that

lends itself to implementations on a variety of stochastic physical systems, its safety

constraints are weaker than other approaches in the literature: it is assumed that

other agents (traffic vehicles) follow a distribution and are not adversarial.

7.2 Problem Statement

The problem of safely navigating an intersection is formulated as a stochastic game

as described in Section 2.1.4. A safe set of policies Πi is defined as the set of policies

π that generates a trajectory τ that with probability less than δ has agent i entering a

dangerous state at any step in its execution1. I use the subscript/superscript notation
1Interesting corner cases were proposed for many existing definitions of safety by Moldovan and

Abbeel (2012). Their proposed definition of safety in terms of ergodicity does not easily extend to
a multi-agent setting.
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variableagent,actiontime for consistency when possible.

Let xih be the local state of a single agent. The sequence of the local states, actions,

and rewards for a single agent is referred to as a trajectory

τ i = {(xi1, ai1, ri1), . . . , (xiH , a
i
H , r

i
H)} ,

over a horizon H. The goal is to learn an optimal ego-agent policy π∗ego where at

every point in the learning process πego ∈ Πego.

7.3 Proposed Pipeline

To achieve safe learning, I propose a pipeline that uses prediction of future states

to mask unsafe actions. Figure 7.3 shows a visualization of the pipeline. In this

pipeline, perception provides input to both an RL network and a prediction module.

The prediction module masks undesired actions at each time step.

Given predictions, it is possible to mask actions that result in unsafe behaviors.

Masking unsafe behaviors in RL has also very recently been proposed when states

can be mapped to linear temporal logic (Alshiekh et al., 2018). This pipeline provides

us with a mechanism to explore the safe subspace of an agent’s possible behaviors

during training and also guarantees that RL picks safe decisions during execution.
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Figure 7.3: Proposed Pipeline.

7.4 Prediction

Probabilistic predictions serve as an approximation to the computationally expensive

task of identifying safe trajectories. Using prediction models to mask unsafe actions

from the agent, the agent is allowed to freely explore the remaining safe state space

using traditional RL techniques.

RL algorithms have been proposed for stochastic games without any restrictions on

safety (Littman, 1994; Hu and Wellman, 2003). However, in order to ensure that

the agent never takes an unsafe action, it is necessary to check not only that a given

action will not cause the agent to transition to an unsafe state in the next time step,

but also that the action will not force the agent into an unsafe state at some point

in the future. Note that this is closely related to the credit assignment problem,

but the risk must be assigned prior to acting. One might imagine that ensuring the

agent safely avoids all dangerous situations requires branching through all possible

action combinations for a fixed time horizon H. Brute force implementations would

result in an intractable runtime of O
(
|A |H

)
, where |A |= |A1|× . . .× |Aκ|. Indeed it

has been shown that even for the more restricted case of MDPs, identifying the set
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of safe policies is NP-Hard (Moldovan and Abbeel, 2012). For this reason efficient

approximations for restricting the exploration space are considered.

7.4.1 Simplifying Assumptions

To reduce the complexity it is assumed that the actions aih at each time step are

components of a high-level action æi (known as extended actions, skills, and options

in the RL literature, and intentions in the autonomous driving literature). This has

the effect of collapsing the branching factor of time associated with the exponential

complexity. The cost of this approximation is that, for the fixed horizon, each agent

is restricted in their ability to react and interact with other agents.

To accommodate the breadth of low-level action sequences that correspond to a single

high-level action and also to allow for a bounded level of interaction, each high-level

action is made a probability distribution over functions f . First the trajectory is

described in terms of high-level actions p(τ i) ≈
∏|æi|

j=1 p(æ
i = j)pæi,j(xi1, . . . , x

i
H).

Here j indexes the high-level action æ, and the approximation takes into account

the high-level action assumption. Then the functional local-state update is described

as xh+1 = f i,j(xh) + εh where the noise is modeled as a Gaussian distribution εh =

N (0, σh). This means that the updated local state has a corresponding mean and

standard deviation.

Within the fixed time horizon, each agent takes a single high-level action. The stan-

dard deviation is used to create a bound that encompasses the variety of low-level

actions that produce similar high-level actions. These bounds also allow some slack

for each agent to react to other agents while executing a high-level action without



CHAPTER 7. SAFE TRAINING 135

violating our safety constraints. This can be thought of as selecting an open-loop

high-level decision followed by subsequent bounded closed-loop low-level corrections.

Note that by restricting an agent’s ability to interact and limiting each agent to a re-

stricted set of high-level actions, the existence of many pathological cases are ignored

that may arise in an adversarial setting.

Given the assumption of high-level actions that follow a distribution, satisfying safety

constraints can be computed in O(|Å|H) where |Æi| is the number of high-level actions

available to agent i and |Å|= |Æ1|× . . . × |Æκ|. This is still expensive for problems

with a large number of actions or agents.

A further simplifying assumption arises when it is assumed that an agent’s action

space is unimodal. This is the case when it is assumed that the agent has a single

action (e.g., a constant velocity assumption) or a hard prediction of the most prob-

able action is made. This reduce the time complexity of a forward safety-checking

prediction to a runtime of O(κH).

7.5 Safety Guarantees

One might suspect that these relaxations make it difficult to provide any safety guar-

antees. It does greatly limit the strength of the guarantees that can be made, however

it is still possible to provide probabilistic guarantees on safety.

From Chebyshev’s inequality, the likelihood of an agent i taking action j leaving its
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safety margins cσi,j is

p
[
|τ i,j − E(τ i,j)|≥ cσi,j

]
≤ 1

c2
, (7.1)

where σi,j =
[
σi,j1 , . . . , σ

i,j
H

]
and we define |τ i,j − E(τ i,j)|≡ maxk|xi,jk − E(xi,jk )|. Intu-

itively, this works to bound the largest variation. Note that we use the weaker Cheby-

shev inequality for our bounds since according to the Fisher−Tippett−Gnedenko

theorem the max operation results in a distribution that is not Gaussian.

Since generally it is only important to consider one-sided error (e.g. if the traffic car

is further away than predicted, there is no risk of a collision with the ego vehicle) it

is possible to shrink the error by a factor of two.

p
[
τ i,j − E(τ i,j) ≥ cσi,j

]
≤ 1

2c2
. (7.2)

In our model, it is assumed that the safety margins create an envelope for an agent’s

expected trajectory. Collecting sufficient samples of independent trials and selecting

appropriate safety margins, it can be assumed that the predicted trajectory roughly

models the reachable space of the agent. Now, the independence of trials is probed.

In expectation the agent follows the mean, but on each trial the deviations are likely

not a purely random process, but are biased by a response to other agents.

In the autonomous driving literature, it is a common assumption that each agent

behaves with self-preservation (Lefèvre et al., 2014). It is assumed that the measured

distribution of the trajectory is the sum of two normally distributed random processes:

the first associated with the agent’s control and the second a random noise variable.

The measured variance of a trajectory σ2
M is the sum of controlled σ2

c and noise σ2
n
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variances. This can be expressed relative to the measured standard deviation of the

trajectory as %cσM and %nσM where %2
c + %2

n = 1. If it is assumed that an agent

controls away from the mean by ϑc%cσM < cσM , the probability that an agent leaves

its safety margin can now be related to the variation being greater than both the

measured bounds and the other agent’s control

p[τ ij − E(τ ij ) ≥ ϑn%nσM ] ≤ 1

2ϑ2
n

, (7.3)

where ϑn = c+ϑc%c
%n

. To put this in concrete terms for an autonomous driving scenario,

if it is assumed that there is a 5m measured standard deviation, 4m control standard

deviation, 3m noise standard deviation, safety margin of 3σM , and control action of

2σc, the resulting safety margin is 7.6σn. This analysis neglects any corrective controls

of the ego agent. Applying the union bound and assuming a fixed ϑn for notational

clarity, it is possible to achieve the desired confidence δ by satisfying

κ

2ϑ2
n

< δ . (7.4)

7.6 Applications to Autonomous Driving

There are many works in the autonomous driving literature that look at risk-averse

driving (Damerow and Eggert, 2015) and risk assessment (Lefèvre et al., 2015; Damerow

and Eggert, 2015; Brechtel et al., 2011). Prediction is often used for safety in au-

tonomous driving, and accurate prediction models are a current topic of research in

the autonomous driving community (Lefèvre et al., 2014). Simpler models are built

upon kinematic motion models (Schubert et al., 2008) with added uncertainty es-
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timates to allow for errors in the measurements and assumptions (Carvalho et al.,

2014). These methods are limited in that the Gaussian probability models and kine-

matic transitions assume cars roughly follow a known trajectory. More sophisticated

models allow for multiple maneuvers (Aoude et al., 2011) which can be done by in-

cluding road information (either heuristically or learned for particular intersections

(Streubel and Hoffmann, 2014)) to allow for multiple possible maneuvers. More re-

cent work in vehicle prediction considers the interactions between multiple vehicles

(Agamennoni et al., 2012; Kuefler et al., 2017). However, these works are generally

not concerned with learning behaviors. The research that does investigate learning

policies (Song et al., 2016; Gindele et al., 2013; Isele and Cosgun, 2018; Bouton et al.,

2017) are restricted to simulation and do not investigate the issue of preserving safety

throughout the learning process under uncertainty.

Using prediction as a safety constraint does not necessarily require additional learning.

Accurate prediction models can be sufficient to create behaviors that enforce safety

constraints. A robust vehicle prediction module could itself be used to safely navigate

intersections:

1. Predict the movement of the ego car entering the intersection in conjunction

with forward predictions of all other vehicles.

2. If a collision is predicted, wait.

3. Otherwise, go.

However, this assumes a fixed behavior for the ego car — a single acceleration profile,

a set time allowance to enter the intersection, and a set safety buffer to leave between

cars.
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Limiting the behavior of the autonomous vehicle to a one-size-fits-all motion is likely

to lead to sub optimal behavior. Certain intersections may call for more aggressive

accelerations to prevent excessive waiting, and the ability of other agents to interpret

the system’s actions can be just as important to safety as leaving sizable margins

to allow for uncertainty. This work sets up a methodology by which it is possible

to explore the more nuanced aspects of decision making. As an example, learning a

model that minimizes traffic disruptions is explored.

7.7 Experiments

To demonstrate how prediction can be used as a safety constraint, deep Q-learning

networks (DQNs) are used to learn policies that optimize aspects of intersection han-

dling on autonomous vehicles. Two objectives are considered. The first objective is

to learn an adaptive stand off which seeks to increase the safety margin without com-

promising the ability to make the turn given a fixed time window. The second model

looks at minimizing the disruption to other vehicles while navigating the intersection

in the given time.

7.7.1 Prediction

Traffic vehicles are modeled using a constant velocity assumption based on our Kalman

filter estimates of the detected vehicle. Each vehicle is modeled with a fixed 2m uncer-

tainty in detection. An additional uncertainty per time step is accumulated forward

in time following a quadratic curve which was fit to data collected from errors in

the forward velocity assumption, targeting a margin of six standard deviations. This
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allows the model to make allowances for some accelerations and braking of the traffic

vehicles. The ego car has similar forward predictions of its behavior based on the

target trajectory and three potential acceleration profiles. The prediction errors are

smaller for the ego car, since the intentions are known in advance. At each time step,

going forward in time until the ego car has completed the intersection maneuver, the

predicted position of the ego car is compared against the predicted position of all

traffic cars. If an overlap of the regions is detected, the action is marked as unsafe.

Actions that are marked as safe are passed on to the network as permissible actions.

If there are no permissible actions, or the network chooses to wait, the system waits at

the intersection. Otherwise the vehicle moves forward with the selected acceleration

until it reaches its target speed.

7.7.2 Simulation

Experiments were run using the Sumo simulator (Krajzewicz et al., 2012), which is

an open source traffic simulation package. To simulate traffic in Sumo, users have

control over the types of vehicles, road paths, vehicle density, and departure times.

Traffic cars follow the Intelligent Driver Model (IDM) (Treiber et al., 2000) to control

their motion. In Sumo, randomness is simulated through driver imperfection models

(based on the Krauss stochastic driving model (Krauss, 1998)). The simulator runs

based on a predefined time interval which controls the length of every step. For our

experiments a 0.2 second time step is used.

Each lane has a 30 mile per hour (13.4 m/s) maximum speed. The car begins from

a stopped position. The maximum number of steps per trial is capped at 100 steps,

which is equivalent to 20 seconds, starting from the first time the prediction says a
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safe action is possible. This guarantees that a safe action is always possible in the

allotted time. The traffic density is set by the probability that a vehicle will be emitted

randomly per second. An emission probability of 0.1 is used for all experiments.

The DQN architecture is similar to the architecture used in the last chapter (Isele

et al., 2018b). The simulator is designed to see cars 100m in either direction. This was

selected to correspond to 25mph intersections. If it is assumed that it takes roughly

5 seconds to enter an intersection from a stopped position (measured from human

demonstrations), it would be desireable to detect traffic at a minimum of 55m from

the intersection. This minimum increases to 75m when allowing for traffic vehicles

that travel slightly above the speed limit. The remaining 25m provide an added

buffer to allow for accurate detection and tracking. The IBEO sensors used on the

real vehicle are specified at 200m max range. The representation bins the traffic car

positions into 26 bins per lane. Each lane is depicted as a separate row. Each spatial

pixel, if occupied, contains the normalized real valued heading angles, velocity, and

binary indicator.

The network has four outputs corresponding to wait and go commands where go

can select from three different accelerations (0.5, 1.0, and 1.5 m/s2). The network is

optimized using the RMSProp algorithm (Tieleman and Hinton, 2012).

Each network was trained on 20, 000 simulations. When learning a network that

seeks to minimize braking, the per trial reward is +1 for successfully navigating the

intersection with a −0.1 penalty applied for every time step a traffic vehicle was

braking. When learning a behavior that seeks to maximize the safety margin, the per

trial reward is
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r =

{
0.1(d− 10), if success

z, if timeout ,

where d is the minimum distance the ego car gets to a traffic vehicle during the trial.

The minimum observed distance during training is 4m, and d can be a maximum

of 50m. Experiments are conducted with different z values, z = {−1,−5,−10}, to

study the effect on timeouts.

To evaluate the learned models, two metrics are used: the average number of time

steps per trial a traffic vehicle is braking, and the minimum distance between the ego

car and the closest traffic car per trial. Statistics are collected over 1,000 trials. Since

both objectives could be improved by increasing the safety margin, experiments are

conducted where the safety margin of a rule-based only agent is increased to ensure

the learned policy gives an improvement. A rule-based method that chooses the first

safe time will follow close behind cars as they pass, so for a more fair comparison,

the rule-based approach selects a random departure time for the set of safe departure

times.

7.7.3 Real Vehicle

Training is conducted in simulation and the learned policy is verified on an au-

tonomous vehicle. Data was collected from an autonomous vehicle in Mountain View,

California, at an unsignaled T-junction, where the objective is to make a left turn.

A point cloud, obtained from six IBEO Lidar sensors, is first pre-processed to re-

move points that reside outside the road boundaries. A clustering of the Lidar points
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with hand-tuned geometric thresholds is combined with the output from three Del-

phi radars to create the estimates for vehicle detection. Each vehicle is tracked by a

separate particle filter. Figure 7.2 depicts an intersection where our algorithm was

evaluated. We used the network trained to maximize the safety margin.

7.8 Results

Figure 7.4: Minimum distance to traffic vehicles throughout the training process.

Using prediction as a constraint, a DQN is trained to minimize distance to other

traffic vehicles. There were no recorded collisions during the entire training process.

Figure 7.4 shows how the minimum distance to traffic vehicles changes throughout

the learning process when z = −1. Timeouts are shown as having a distance of -1

and are colored black. The minimum distance of each individual trial is plotted as

a point. The moving average using a sliding window of 200 trials is shown in dark

red. It is observed that the concentration of points with a distance of less than 10m
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Figure 7.5: Comparison of the effect of the timeout penalty on the network trained
to maximize the minimum distance. Timeouts are shown in black.

disappears at around 7000 training iterations, and there is an increased density in the

region of 20m. Training does increase the number of timeouts. The extent of this can

be changed by adjusting the penalty for timeouts, see Figure 7.5. Note that larger

penalties produce larger gradients which can have an adverse affect on the learning

process so there is a limit to how large the penalty can be set.

The number of trials that have a minimum distance of 50m or more also increases.

This is more clear in Figure 7.5 where a histogram of the distances before and after

training are shown. Figure 7.6 shows that naively increasing the safety margin with a

rule-based strategy using prediction gives much worse performance compared to the

learned networks.

It is expected that the network trained to minimize braking should leave a large

margin when moving in front of a car, however it may come up very close behind a
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Figure 7.6: Comparison between the networks trained with different timeout penal-
ties, and a rule-based method with a fixed safety margin. The safety margin for the
rule-based method is varied across trials.

Figure 7.7: Left: Comparison of the minimum distance to traffic vehicles using
different policies. Net B is trained to minimize braking, net M is trained to maximize
the minimum distance. Right: The amount of time steps traffic cars spend braking.
It is assumed that the ego vehicle is responsible for all traffic braking.
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car. This is the case in the left plot of Figure 7.7. As expected, the network trained

to maximize the minimum distance (Net M) greatly increases the average minimum

distance. The network trained to minimize braking does achieve a larger average

distance than a random policy acting in the safety constrained prediction framework,

but the difference is much less pronounced. The network that was trained to maximize

distance should also reduce braking. This result can be seen in right plot of Figure

7.7. Again it is observed the network specifically designed to minimize braking is

better at satisfying the objective. The fact that these two objectives produce different

behaviors makes sense. If viewed in terms of the gap between two cars, it would be

optimal to be in the middle of the gap if maximizing distance and it would be optimal

to be in the front of the gap if minimizing braking of other vehicles.

Qualitatively, it is observed that the network trained to maximize the safety margin

will often add short delays after prediction determines the situation is safe if traffic

is sparse. In cases where traffic is more dense, the network is more likely to move the

moment an opportunity presents itself.

While the framework for safe RL is applicable to single task RL problems, it was

motivated by the safety concerns of transferring a policy to new tasks in a lifelong

learning setting. To bring the work full circle, and connect it back to the thesis topic,

additional experiments are conducted. The different tasks consider changes in traffic

density. A policy is trained in a low traffic density setting (0.1 depart probability

per lane) and transferred to a high traffic density setting (0.15 depart probability

per lane). A Safe RL policy is trained to increase the minimum distance between

the ego car and other vehicles while still navigating through the intersection before

timing out. The learning curves are shown in Figure 7.8. The network trained in the

lower density traffic setting learns a policy that provides a substantial jump-start for
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Figure 7.8: Learning curves for a network pre-trained on low density traffic and
transferred to high-density traffic and a network trained directly on high-density
traffic. Pre-training provides a substantial jump-start. Networks are trained using
the safe RL framework, so even though the distribution changes during training, no
collisions occur.

operating in a high-density traffic setting. Even though the distribution changes, the

safe RL framework prevents collisions for the entire duration of training.

7.9 Discussion

In this work a framework is presented for safe RL using predictions to mask unsafe

actions. This methodology is applied to an autonomous driving domain to learn

policies that improve the performance of unsigned intersection handling. Specifically

investigations look at 1) minimizing disruption to other vehicles and 2) maximizing

safety margins while still navigating the intersection in a fixed time window.

While the safety guarantees made using prediction are not as strong as other ap-
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proaches proposed in the literature, the framework is more general and likely more

applicable to many real world applications. Since actions are masked, some of which

are known to be safe, in order to provide safety margins when dealing with uncer-

tainty, the final policies are possibly suboptimal. This suggests open problems both

related to developing more sophisticated prediction modules and a more careful char-

acterization of the regret associated with them.



Chapter 8

Conclusion and Contributions

My thesis has developed several strategies for running lifelong reinforcement learn-

ing on mobile robots. I identified disadvantages of existing state-of-the-art lifelong

learning methods when used on robotic systems. Addressing these issues lead to the

development of a method that uses task features to predict policies. By predicting

policies, large amounts of information are able to be transfered to new tasks, greatly

reducing the amount of training required.

Additionally, I presented methods for overcoming limitations when training multi-

ple tasks with deep learning. These techniques, which selectively replay experiences,

also appear to be connected to a system adapting when training on non-stationary

tasks. Finally, I show how prediction can be incorporated into a reinforcement learn-

ing process. This enables the benefits of transfer while enforcing safety constraints

throughout the entire learning process.

Now I return to the research questions presented in Chapter 1, answering the questions

149
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with information gleaned from my experiences.

8.1 Research Questions

How can a system continually accumulate prior knowledge and incorporate

it into the learning process and behavior of future tasks?

Knowledge can be continually accumulated through selection processes, compression

schemes, and by incrementally learning models that represent the knowledge. Accu-

mulated knowledge can then be used by biasing new data towards the accumulated

knowledge or by revisiting and reinforcing previously learned concepts. Concern-

ing the implementation details of accumulating and incorporating task knowledge:

Chapter 3 and Chapter 4 dealt with accumulating and storing knowledge in a sparse

dictionary and Chapter 6 investigated accumulating knowledge and storing informa-

tion in a deep neural network.

• Are some experiences more important than others, and if so, how

can the important experiences be identified? Chapter 6 looked at the

importance of experiences. Our results showed that experiences should try

to model the true distribution. This suggests that individual experiences are

neither important nor unimportant, but the distribution of the population is

what matters. As systems become increasing complex, it will be interesting to

see if this result holds true, or if reasons emerge to place greater importance on

select rare events.

• Does the importance of an experience change over time, and if so,
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how can a system change accordingly? Chapter 6 considered a system

with finite memory, where experiences approximate the true distribution. As

the system moves on to new tasks, new experiences are added. So while earlier

experiences are still important to perform earlier tasks, they take up less real

estate in order to make room for new experiences.

• What methods enable data to be accumulated in a fully online man-

ner? I have presented online algorithms for techniques that compress (Chapters

3 and 4) and select (Chapter 6) knowledge. The former was enabled by iterative

updates to an approximation of the multi-task objective function using a Taylor

series expansion. The latter was enabled by a priority queue with a reservoir

sampling strategy. The core idea behind both is having a model that can be

built incrementally.

How effectively does the incorporation of knowledge from past reinforce-

ment learning tasks reduce sample complexity of new tasks?

We saw, in Chapter 3, an example that reduces training time by hundreds of tri-

als. The method presented in Chapter 4 does even better - given enough previous

experience, new tasks can be learned with little or no new training.

• How many experiences are needed to learn a new task? The good news,

which we saw in Chapter 4, is that in some cases it is possible to learn a new

task without any new experiences. However looking at the sample complexity

in Figure 4.6(a) and Figure 4.6(b) and task complexity in Figure 4.9, more data

is still better.

• Is it possible to successfully perform a task without any training data,



CHAPTER 8. CONCLUSION AND CONTRIBUTIONS 152

and if so, how is that knowledge transferred? Yes, it is possible! I show

that knowledge can be transferred without any training data by finding an

alternate method to model the task. One example of this uses task features as

described in Chapter 4.

• What changes if you transfer general vs. specific information? We

can separate general and specific knowledge in several ways. The first view we

will consider is in the context of sparse coding, where the knowledge basis can

be considered the general knowledge, and the sparse code is the task specific

knowledge. The second view treats general knowledge as what related tasks

can share about a new task, and specific knowledge as the refinements that get

learned by additional fine tuning. In the first view, by predicting the sparse

code, TaDeLL is transferring both specific and general knowledge to the new

task. When PG-ELLA sparse codes the single task model, it is refining both

the general and specific knowledge by relating it to prior tasks. However in

the second view, where we consider specific knowledge that is acquired by fine-

tuning and additional refinements, TaDeLL transfers general knowledge while

PG-ELLA transfers the refinements or specific knowledge. In terms of getting

a good model quickly, transferring general knowledge offers greater benefits.

This is seen in the more dramatic improvements of TaDeLL compared to PG-

ELLA. However the long tails characteristic of diminishing returns, suggest

that techniques that can transfer refinements can offer huge time savings when

mastery of skills is important.

What novel situations is a robotic system able to handle as a result of its

previously learned experience?
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This thesis investigated robot learning in the presence of unknown disturbances, sys-

tems without training data, systems with changing distributions, and learning in the

presence of safety constraints. This is likely just a subset of the novel situations

where transfer can be useful. I would expect almost all skills that can be learned

could be benefited by transfer. But speaking to the point of which situations require

transfer, I hypothesize that learning without training data and learning on systems

with changing distributions both require transfer.

• How can source robots with different dynamics be used to correct a

disturbance on a target robot? As shown in Chapter 3, modeling many

systems with different dynamics allows the partially learned policy of a new

system to be mapped to a common space of all known solutions.

• What differences exist between transferring between tasks on a sin-

gle robot platform and transferring knowledge between platforms?

Transferring between platforms and tasks can both be viewed as mapping prob-

lems where the goal is to learn a common space between learning problems.

However, strategies might differ based on the number of platforms or tasks be-

ing considered. If learning for hundreds or thousands of platforms is desired,

taking the time to train a dozen from scratch might be trivial. If there are a

smaller number of systems (as in the case of transferring from simulation to a

real robot), a strategy that looks at the efficiency of each individual system will

be preferable. Learning many tasks on a single system also highlights concerns

that might not be as immediate when looking at many systems. This includes

issues like changing task distributions (which we looked at in Chapter 6) or

progressions from simple tasks to more complicated tasks, which we did not

consider here.
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8.2 Future Work

Lifelong learning on mobile robots is still far from being a solved problem. While

the transfer of prior knowledge and transfer from simulation to real systems can

drastically reduce the number of samples required to train a robot, there is still a

great interest in reducing the sample complexity further.

There are some promising strategies to achieve this — model-based approaches to RL

(Deisenroth and Rasmussen, 2011) have very small sample complexity and the ideas

have been extended to deep RL frameworks (Gal et al., 2016). However, computa-

tional costs can be prohibitive and there is much work to be done in understanding

both the learned models and how they can be adapted and made robust for handling

multiple tasks.

In order to scale the capabilities of robotics systems it will likely be necessary to not

only learn tasks quickly, but also be able to compose those learned tasks to learn new

and more complicated tasks. While many hierarchical strategies exist in RL (Sutton

et al., 1999b; Bacon et al., 2016; Kulkarni et al., 2016; Tessler et al., 2017), there are

far fewer examples that have been shown to have the robustness or data efficiency to

be applied to robotic learning. Additionally, most of these approaches only currently

allow for (or have been demonstrated on) a single level of abstraction.

As robots become increasingly capable of learning, it will become advantageous to

have a system propose its own learning problems. This will allow a system to continue

to learn without the need for intervention from an operator. I have recently published

some initial work on this topic (Isele et al., 2018c), but numerous advances are likely

needed before it can be applied to a robotic system.
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This thesis focused on reinforcement learning, but there are many other learning

paradigms. Robotic systems often have input from many sensors inputs and many

tasks that use these sensor inputs in different ways. Some of these learning problems

are better phrased as classification, regression, or clustering problems. However, it is

likely that there is still information that can be shared between these tasks. There are

currently very few examples of work looking at transferring across different domains

(Bou Ammar et al., 2015). Once that technology is mature, there is still the open

problem of understanding how to transfer across learning paradigms.

8.3 Conclusion

In my thesis, I look at how lifelong learning ideas can extend the abilities and improve

the training of RL when it is applied to mobile robots. I have investigated transfer

learning in the presence of disturbances, changing distributions, and limited data for

the target task, and I have shown how learning can be done in a way that increases

the safety of training on a physical system. I presented techniques for predicting

policies for unseen tasks, I identified processes for selectively storing experiences and

preserving knowledge throughout learning, and I have shown how safety constraints

can be incorporated into the learning process. Collectively, the work of my thesis has

shown how the controlled accumulation of knowledge can increase both the safety

and efficiency of learning on a robotic system.
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