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ABSTRACT 
 

THE QUANTIFICATION OF NEURAL AND BEHAVIORAL CHROMATIC 

SENSITIVITIES 

Michael A. Barnett 

David H. Brainard 

Geoffrey K. Aguirre 

 
The first stage of human color vision is the encoding of light by the long (L), 

medium (M), and short (S) wavelength sensitive cone photoreceptors. These 

signals are subsequently recombined into three post-receptoral pathways, two 

chromatic opponent and one luminance. The two chromatic pathways take the 

difference of cone activity (L-M and S-(L+M)) and the third luminance pathway 

sums the cone activity (L+M). Beyond the level of these post-receptoral 

mechanisms, the computations performed and their location in the brain are not 

well characterized. Across two studies, we examined the sensitivity of the 

underlying chromatic mechanisms using both functional magnetic resonance 

imaging and psychophysics. In both types of experiments, we employ the use of 

‘silent substitution’ which allows for the selective modulation of activity of cone 

photoreceptors, and their combinations. In the first experiment, we collected 

BOLD fMRI responses in human V1 to spatially uniform, temporal chromatic 

modulations that systematically vary in chromatic direction and contrast. From 
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this, we found that within the LM cone contrast plane, V1 is most sensitive to L-M 

contrast modulations and least sensitive to L+M contrast modulations. Within V1, 

we observe little to no change in chromatic sensitivity as a function of 

eccentricity. In the subsequent experiment, we measured the temporal impulse 

response functions associated with tracking chromatic Gabor patches and 

measured how the lag functions change as a function of chromatic direction and 

contrast, confined to the LS cone contrast plane. We measured detection 

thresholds for stimuli matched in their spatial, temporal, and chromatic 

properties. We found that for both tracking and detection, within the LS cone 

contrast plane, the underlying mechanisms are most sensitive to L-isolating 

contrast modulations and least sensitive to S-isolating contrast modulations. 

Across all experiments, we developed color-contrast separable models that allow 

us to model the relative sensitivities of the chromatic mechanisms in a way that is 

independent from the effect of contrast. We use these models to further quantify 

the sensitivities of the underlying chromatic mechanisms. This work advances 

our understanding of human color perception and places important constraints on 

building more generalized models of color processing.  
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CHAPTER 1  

General Introduction 

The role of vision in the nervous system, which includes color vision, is to 

create an internal representation of the physical environment as sensed by light. 

This representation is built up by multiple stages of processing, the first of which 

starts in the eye. The encoding of light by the L-, M-, and S-cone photoreceptors 

is the first stage of color vision. This stage of color vision processing transduces 

the light that enters the eye into neural signals. The second stage of color vision 

processing recombines the cone signals into a set of post-receptoral pathways.  

This is done at the level of the retinal ganglion cells and the lateral geniculate 

nucleus. These cells project to primary visual cortex (area V1) where a variety of 

cell types and computations are performed. It remains unknown how the various 

cortical areas and computations build up our internal representation of the 

physical world.  

In order to better understand how this representation is built, we need a 

way of transforming descriptions of the physical environment as coded by light to 

produce patterns of observable behaviors. To capture such a complex 

relationship, knowledge of many physical and biological factors is required. Some 

factors that must be well characterized include: 1. Light interacting with the 

environment to reach the eye; 2. Imaging of the light by the optics of the eye and 
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the formation of the retinal image; 3. Encoding of light by cone photoreceptors to 

produce the retinal image; 4. The transformations between the cone input and 

the retinal output; 5. The correspondence between behavioral measures and 

subcortical/cortical responses. Further understanding of any of these factors will 

improve our understanding of the relationship between light in the environment 

and color perception.    

The field of color science has made much progress in its understanding of 

the psychophysical and physiological computations that underlie color 

perception. One popular approach is to frame how the visual system processes 

color information in a mechanistic manner. In particular, the following chapters 

focus on the mechanisms that process the signals originating at the level of the 

photoreceptors. This is examined from both a neural and a behavioral standpoint. 

Chapter 2 examines the neural signals arising from the selective stimulation of 

the L- and M-cones using functional magnetic resonance imaging to measure the 

chromatic sensitivities in V1. We developed a model that allows for the prediction 

of the BOLD fMRI response of any stimulus in the LM cone contrast plane and 

we examine how the parameters of the model vary as a function of eccentricity. 

Chapter 3 examines the temporal impulse response functions associated with 

tracking chromatic Gabor patches and measured how processing speed changes 

as a function of chromatic direction and contrast, within the LS cone contrast 
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plane. Detection thresholds were also measured for stimuli matched in their 

spatial, temporal, and chromatic properties of those used in the tracking 

experiment. Further, a similar model to the one in Chapter 2 is used to make 

predictions of the measured of lags and percent correct. In both chapters, a 

mechanistic approach is taken to better understand human color vision. The 

following sections review instances of mechanistic approaches to the study of 

color processing. 

 

Evidence for Trichromacy: 

Trichromacy refers to the result that humans can match the color 

appearance of any test light with a mixture of three independent primary lights as 

long as no light is a combination of the other two.  This finding is due to the initial 

stage of color vision where the cone photoreceptors (L, M, and S) transduce the 

light that falls on the retina into neural signals. Importantly, the three classes of 

cone photoreceptors are independent which mean that activity of each class 

does not affect the activity of the others. It is also necessary that the encoding of 

light by the photoreceptors follows the principle of univariance. Univariance 

states that once absorbed, the effect of a photon on the visual system is the 

same regardless of its wavelength. These three photosensitive elements of the 

eye were first hypothesized by Thomas Young who stated “…each sensitive 
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filament of the nerve may consist of three portions, one for each principal colour” 

(Young, 1802). Helmholtz later expanded this theory such that these three 

“portions” need to be long-, medium-, and short- wavelength selective supported 

by evidence from color matching experiments (Kaiser & Boynton, 1996).  

The color matching paradigm operates by having subjects adjust the 

relative intensities of three primary lights to match the color appearance of a test 

light. Two main versions of color matching experiments have been performed. 

The first, by Maxwell in 1860, had subjects adjust the relative intensity of two 

primaries added to a fixed wavelength light to match a fixed white test light (Judd, 

1945; Stockman & Brainard, 2010). Another version of the color matching 

experiment was used by Wright (Wright, 1928) and Guild (Guild, 1931) in which 

subjects controlled the relative intensities of three fixed wavelength primaries to 

match a fixed wavelength test light. In both methods, the wavelength of the fixed 

element was parametrically varied in order to obtain a set of color matching 

functions (CMF).  Both methods show that human observers can match any test 

light by simply adjusting the relative intensities of three fixed wavelength lights, 

an explicit test of the theory of trichromacy. 

The color matching experiments show that there exist three independent 

mechanisms (L-, M-, and S-cones) and that these mechanisms are sufficient to 

explain the color matching results.  The primary factor that mediates the results 
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of the color matching experiment is absorption rates of the cones as a function of 

wavelength. These are defined by what is referred to as the spectral sensitivity 

functions. Since this stage of the visual system is well approximated by a linear 

system, the spectral sensitivity functions provide a full account of these first stage 

mechanisms.  

The first estimates of the spectral sensitivity functions were made by 

König and Dieterici in 1886 using normal and dichromat color matches (König & 

Dieterici, 1886). The use of dichromatic observers allowed for the use of the loss 

hypothesis. The loss hypothesis assumes that the selective loss of a 

photoreceptor type does not alter the functionality of the remaining receptors 

(Judd, 1945). This endeavor, and subsequent experiments, allowed for the color 

matching function to be converted to cone spectral sensitives via a linear 

transformation. Modern instantiations of this logic have resulted in sets of 

functions that describe the nominal observer with high precision. 

The account of the cone spectral sensitivity functions, for a large portion of 

their existence, have been estimated solely through psychophysical methods. 

Physiological validation is needed for a definitive conclusion on the shapes of 

these functions to be reached. These initial chromatic mechanisms are a nice 

example of when psychology and physiology are complementary, with 

psychophysical predictions and physiological confirmation.  The physiological 
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support for the spectral sensitivity functions have come in a variety of methods 

include retinal densitometry and microspectrophotometry (Kaiser & Boynton, 

1996). Baylor, Nunn, and Schnapf (Baylor, Nunn, & Schnapf, 1987) used suction 

microelectrodes attached to the outer segments of L-cones, M-cones, and S-

cones from nonhuman primates and recorded their responses as a function of 

stimulus wavelength. From this, they were able measure the cone fundamentals 

of the L-, M-, and S- cones directly. These measurements were directly 

compared to the 2° and 10° color matching functions of Stiles and Birch with 

excellent agreement (Stiles, 1955; Stiles & Burch, 1959). Taken together, the 

evidence from trichromacy has resulted in a well validated account of the 

mechanisms of the first stage of color vision processing. 

 

Evidence for Post-Receptoral Mechanisms: 

Trichromacy does not provide a full account of all the aspects of human 

color vision. The trichromatic visual mechanisms are not enough to make 

predictions of known perceptual phenomena. These include, for example, the 

predominance of red and green hue percepts at low stimulus intensities and a 

shift to yellow and blue hue percepts at high intensities. One of the earliest and 

best-known critiques of trichromacy was put forth by Ewald Hering in 1878 who 

used subjective color appearance as a means of refute (Hering, 1878). This 
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insight was that while colors could be described as being reddish-blue or 

greenish-yellow, they never appeared to be reddish-green or yellowish-blue. 

From this observation, Herring claimed that there existed four unique hues. 

Moreover, it seemed that these unique hues were arranged in pairs that are 

diametrically opposed. Unique red and unique green represent different ends of a 

single axis.  

These two axes are set to be orthogonal and can be thought of as creating 

a red/green mechanism and a blue/yellow mechanism that do not interact each 

other. A third mechanism exists, orthogonal to both the red-green and blue-

yellow plane, which corresponds to the black-white axis. This system of 

independent opponent mechanisms allows for any hue to be described by a pair 

of red/green and blue/yellow value. An account that takes the trichromatic 

mechanisms as the first stage of visual processing followed by a subsequent 

opponent mechanisms stage was first proposed by von Kries (Judd, 1966). 

Evidence for opponent mechanisms as the second stage of color processing 

exists from both psychological and physiological experiments. The first studies to 

start to quantify the relative strengths of color opponency were performed by 

Jameson and Hurvich (1957). They sought to determine if it was possible to 

measure the color appearance and mechanism responses of opponent 

processing using a hue cancellation task.  
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The primary piece of psychophysical evidence identifying the post-

receptoral mechanisms comes from using adaptation. Krauskopf, Williams, and 

Heeley (1982) used selective habituation of the post-receptoral mechanisms 

while measuring changes in color discrimination. The authors found that when 

the adapting field lines up with the red-green and blue-yellow mechanisms they 

observed selective habituation. This means that habituating to one mechanism 

does not affect thresholds of the orthogonal mechanism. Furthermore, adapting 

to backgrounds halfway between the red/green and blue/yellow axes results did 

not result in selective habituation along the adapting direction. This study finds 

strong evidence for the existence of two chromatic mechanisms that line up with 

the blue/yellow and red/green directions. 

Psychophysics does not provide information as to the location of these 

mechanisms in the visual pathways. To address these questions, we must 

examine the physiological studies. The first example of using electrophysiology 

to study cone opponent mechanisms was by Svaetichin and MacNichols (1958) 

when they recorded from the retina of fish. The most well know physiological 

study of post-receptoral mechanisms was that of Derrington, Krauskopf, and 

Lennie (1984). This work used electrophysiological recordings in macaque LGN 

and found cells that clustered into three categories. The mechanism found by this 

study are L-M (red-green opponent), S-(L+M) (blue-yellow opponent), and L+M 
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(luminance). The mechanisms found fit well with the results of the cardinal 

directions of Krauskopf, Williams, and Heeley which provide a mechanistic 

account of the second stage of color.  

 

Beyond the Post-Receptoral Mechanisms: 

Even with the inclusion of the opponent mechanism, unexplained results 

still exist in various color experiments. This observation naturally leads to the 

idea of including more mechanisms to account for this unexplained variance. 

Difficulties arise when trying answer the questions of how many mechanisms 

exist, what computation do they perform, and where in the brain they are 

located? Attempting to answer these questions has resulted in many 

psychophysical and neural studies which have produced a variety of results.  

Attempting to figure out the computations of the chromatic mechanisms 

has resulted in a series of experiments in which these computations are 

described by an isoresponse contours (or surfaces). An isoresponse contour is 

defined by a set of stimuli that all evoke the same response. The isoresponse 

contour as a model of visual mechanisms considers both the combination rule of 

the cones as well as their relative sensitivities. The combination rule defines the 

shape of the contour, for example a model that linearly combines the cone 

responses can produce parallel lines while a model that squares and sums 
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(quadratic) the cone responses can produce an ellipse. The relative sensitivity of 

the cones controls the orientation of the contours. The isoresponse contour is 

task specific but the most common task used in evaluating visual mechanisms is 

the detection task which define isodetection contours.  Poirson et al (1990) set 

out a procedure for fitting such contours and surfaces and show that elliptical 

shape is reasonable when compared to the other common shapes used 

(rectangles and parallelograms). Knoblauch et al. (1996) in an extensive 

experiment were unable to reject the use of ellipsoidal isodiscrimination surfaces 

as a model of color vision mechanisms. The use of isoresponse contours is 

extensive in the following chapters, with the goal of examining how they change 

as a function of either retinal field location or behavioral task to inform about color 

vision mechanisms.  

As to the number of mechanisms, Krauskopf et al. (1986) used the original 

data for the cardinal mechanisms experiment alongside new data to find 

evidence for a recombination of signals from the cardinal mechanisms. They 

refer to this recombination as “higher-order” color mechanisms which are 

proposed to be tuned to color directions that are intermediate between cardinal 

directions. Another approach that is used to study these mechanisms is using 

noise masking studies to measure chromatic discrimination thresholds. Such 

studies find the existence of multiple broadly tuned mechanisms exist (Hansen & 
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Gegenfurtner, 2013).  These finding conflict with other studies that find the 

existence of a limited number of mechanisms (Eskew, 2009).  

The question of localizing the function of higher-order color mechanisms 

to their cortical locations requires methods other than psychophysics. To answer 

this question, neural measurements must be used.  We know that higher-order 

color mechanisms do not exist in a single cortical stage (Zeki & Marini, 1998). 

Unfortunately, just as with estimates of the number of mechanisms, localizing 

function to specific neural sites are in equal disagreement.  Many groups have 

performed studies in the cortex using electrophysiology and functional magnetic 

resonance imaging (fMRI) to examine cortical localization of color processing and 

their response properties (Derrington, Krauskopf, & Lennie, 1984; Cottaris & De 

Valois, 1998; Livingstone & Hubel, 1984; Horwitz & Hass, 2012; Engel, Zhang, & 

Wandell, 1997; Lafer-Sousa, Conway, & Kanwisher, 2016). From this work, the 

field has learned about a subset of the computations performed at specific 

cortical locations.  

One question important to these issues examines how and where signals 

from the cones are combined in the cortex and what are their relative 

sensitivities. One study that addressed this was Engel, Zhang, and Wandell 

(1997) which used fMRI to examine the sensitivity of primary visual cortex (V1) to 

stimulus modulations made in cone contrast space. From this, they observed that 
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the V1 BOLD fMRI signal was maximally sensitive to L-M stimulus modulations 

and least sensitive to modulation made in the S-(L+M) direction. These finding 

are consistent with the cardinal mechanisms being represented in area V1.  

In a more recent paper, Horwitz and Hass (2012) used a closed-loop real 

time staircase procedure in which they recorded from neurons in macaque V1 to 

fit isoresponse surfaces to individual neurons.  Isoresponse surfaces describe 

the relative sensitivities of individual neurons to any direction in cone contrast 

space. They found three types of isoresponse surfaces from the neurons they 

recorded from. Half of the cells they recorded from had their responses explained 

by a planar isoresponse surface. This means that they were tuned to a preferred 

direction and unresponsive to a chromatic plane. The other isoresponse surfaces 

were quadric surfaces which means they had a nonlinear relationship with the 

cone inputs.  One type of surface was cup shaped showing narrow tuning for a 

particular direction and, like the planar surfaces, was unresponsive to a 

chromatic plane. The last type of isoresponse surface was ellipsoidal, which 

showed sensitivity to all color directions. These results may highlight why the 

psychophysical literature is so complicated to interpret. The cells in V1 show 

response profiles that are a mix of linear and nonlinear units. This requires more 

thought as to how the combinations of these mechanisms may help to explain 

psychophysical results. 
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CHAPTER 2  
 
A Quadratic Model Captures the Human V1 Response to Variations in Chromatic 

Direction and Contrast 

 

Michael A. Barnett1, Geoffrey K. Aguirre2, David H. Brainard1 

1Department of Psychology, University of Pennsylvania 

2Department of Neurology, University of Pennsylvania 

This chapter has been previously published in eLife: Barnett, M. A., Aguirre, G. 

K., & Brainard, D. (2021). A quadratic model captures the human V1 response to 

variations in chromatic direction and contrast. eLife, 10, e65590. 

Abstract: 

An important goal for vision science is to develop quantitative models of 

the representation of visual signals at post-receptoral sites. To this end, we 

develop the quadratic color model (QCM) and examine its ability to account for 

the BOLD fMRI response in human V1 to spatially-uniform, temporal chromatic 

modulations that systematically vary in chromatic direction and contrast. We find 

that the QCM explains the same, cross-validated variance as a conventional 

general linear model, with far fewer free parameters. The QCM generalizes to 

allow prediction of V1 responses to a large range of modulations. We replicate 
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the results for each subject and find good agreement across both replications 

and subjects. We find that within the LM cone contrast plane, V1 is most 

sensitive to L-M contrast modulations and least sensitive to L+M contrast 

modulations. Within V1, we observe little to no change in chromatic sensitivity as 

a function of eccentricity. 

Introduction: 

The initial stage of human color vision is well characterized. The encoding 

of light by the three classes of cone photoreceptors (L, M and S) is described 

quantitatively by a set of spectral sensitivity functions, one for each class. 

Knowledge of the spectral sensitivities allows for the calculation of cone 

excitations from the spectral radiance of the light entering the eye (Brainard & 

Stockman, 2010). This quantitative characterization supports the analysis of the 

information available to subsequent processing stages (Geisler, 1989; Cottaris, 

Jiang, Ding, Wandell, & Brainard, 2019), supports the precise specification of 

visual stimuli (Brainard, 1996; Brainard, Pelli, & Robson, 2002), and enables 

color reproduction technologies (Wandell & Silverstein, 2003; Hunt, 2004). An 

important goal for vision science is to develop similarly quantitative models for 

the representation of visual signals at post-receptoral sites. 

The second stage of color vision combines the signals from the cones to 

create three post-receptoral mechanisms. Psychophysical evidence supports the 
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existence of two cone-opponent mechanisms, which represent differences 

between cone signals (S-(L+M) and L-M), and a luminance mechanism, which 

represents an additive combination (L+M) (Krauskopf, Williams, & Heeley, 1982; 

Stockman & Brainard, 2010). Physiological evidence shows that this 

recombination begins in the retina with correlates observed in the responses of 

retinal ganglion cells and subsequently in the neurons of the lateral geniculate 

nucleus (DeValois, Abramov, & Jacobs, 1966; Derrington, Krauskopf, & Lennie, 

1984; Lennie & Movshon, 2005). While the outlines of this second stage seem 

well established, the precise links between retinal physiology and visual 

perception remain qualitative and subject to debate (Stockman & Brainard, 2010; 

Shevell & Martin, 2017).  

Studies focused on developing quantitative parametric models of the 

chromatic response properties of neurons in primary visual cortex of primates 

(area V1) have not yet converged on a widely-accepted model (Johnson, 

Hawken, & Shapley, 2004; Solomon & Lennie, 2005; Tailby, Solomon, Dhruv, & 

Lennie, 2008; Horwitz & Hass, 2012; Weller & Horwitz, 2018). In part, this is due 

to the considerable heterogeneity of chromatic response properties found across 

individual cortical neurons (Gegenfurtner, 2001; Lennie & Movshon, 2005; 

Solomon & Lennie, 2007; Shapley & Hawken, 2011; Horwitz, 2020). In addition, 

variation in stimulus properties across studies limits the ability to compare and 

integrate results. 
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The chromatic response of V1 has also been studied using blood oxygen 

level dependent  (BOLD) functional magnetic resonance imaging (fMRI) 

(Wandell, Dumoulin, & Brewer, 2006). This includes studies that characterize the 

relative responsiveness of V1 (and other visual areas) to various chromatic and 

achromatic stimuli (Engel, Zhang, & Wandell, 1997; Hadjikhani, Liu, Dale, 

Cavanagh, & Tootell, 1998; Beauchamp, Haxby, Jennings, & DeYoe, 1999; 

Bartels & Zeki, 2000; Mullen, Dumoulin, McMahon, de Zubicaray, & Hess, 2007; 

Goddard, Mannion, McDonald, Solomon, & Clifford, 2011; Lafer-Sousa, Conway, 

& Kanwisher, 2016) and how this depends on the spatial and temporal properties 

of the stimulus (Liu & Wandell, 2005; D'Souza, Auer, Frahm, Strasburger, & Lee, 

2016; Mullen, Thompson, & Hess, 2010).  

Few studies, however, have pursued a quantitative model of the V1 BOLD 

response to arbitrary chromatic stimulus modulations. Development of such a 

model is important, since it would enable generalizations of what is known from 

laboratory measurements to natural viewing environments, where stimuli rarely 

isolate single mechanisms. Further, the parameters of such a model provide a 

succinct summary of processing that could be used to understand the flow of 

chromatic information through cortex. Notably, Engel, Zhang, and Wandell (1997) 

conducted a pioneering study that varied the chromatic content and temporal 

frequency of stimuli and observed that the V1 BOLD fMRI signal was maximally 

sensitive to L-M stimulus modulations. 
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In the present study, we focus on the signals that reach V1 from stimulus 

modulations confined to the L- and M-cone contrast plane (LM contrast plane). 

Specifically, we measured responses with fMRI to flickering modulations 

designed to systematically vary combinations of L- and M-cone contrast. Using 

these data, we developed a model—the quadratic color model (QCM)—that 

predicts the V1 BOLD fMRI response for any arbitrary stimulus in the LM contrast 

plane, using a small set of parameters. We validate the QCM through 

comparison to a less constrained general linear model (GLM). Importantly, the 

parameters of the QCM are biologically meaningful, and describe the sensitivity 

of V1 to chromatic modulations. Further, we generate cortical surface maps of 

model parameters across early visual cortex, allowing us to examine how 

chromatic sensitivity changes across V1 as a function of visual field eccentricity. 

 

Quadratic Color Model (QCM): 

This section provides an overview of the Quadratic Color Model (QCM); a full 

mathematical description is provided in the Model Appendix. Given a description 

of the stimulus, the QCM provides a prediction of the BOLD fMRI response within 

V1. Our stimuli were full field temporal chromatic modulations that can be 

specified by their contrast (vector length of the stimulus in the LM contrast plane) 

and chromatic direction (angle of the stimulus measured counterclockwise with 
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respect to the positive abscissa). From this stimulus specification, the model 

employs three stages that convert the input to the BOLD fMRI response (Figure 

2-1). First, a quadratic isoresponse contour is defined that allows for the 

transformation of contrast and direction into what we term the “equivalent 

contrast”. Second, a single non-linear function transforms the equivalent contrast 

to a prediction of the population neuronal response underlying the BOLD 

response. Finally, the neuronal response is converted to a predicted BOLD 

response by convolution with a hemodynamic response function. 

 

 

Figure 2-1: Quadratic Color Model. 

 A) The LM contrast plane representing two example stimuli (c1 and c2) as the green and yellow vectors. 
The vector length and direction specify the contrast and chromatic direction of the positive arm of the 
symmetric modulation (see Visual Stimuli in Methods). Using the parameters of an elliptical isoresponse 
contour (panel A, dashed gray ellipses), fit per subject, we can construct a 2x2 matrix Q that allows us to 
compute the equivalent contrast of any stimulus in the LM contrast plane (panel B; e1 and e2; See 
Model Appendix). B) Transformation of equivalent contrast to neuronal response. The equivalent 
contrasts of the two example stimuli from panel A are plotted against their associated neuronal 
response. A single Naka-Rushton function describes the relationship between equivalent contrast and 
the underlying neuronal response. C) To predict the BOLD fMRI response, we convolve the neuronal 
response output of the Naka-Rushton function with a subject specific hemodynamic response function. 
Note that the BOLD fMRI response prediction for the green point is greater than the prediction for the 
yellow point, even though the yellow point has greater cone contrast. This is because of where the 
stimuli lie relative to the isoresponse contours. The difference in chromatic direction results in the green 
point producing a greater equivalent contrast, resulting in the larger BOLD response. 

 



19 
 
 

 

Isoresponse Contours and Equivalent Contrast: 

The first stage of the QCM computes the equivalent contrast of a stimulus 

from its cone contrast using a subject-specific elliptical isoresponse contour. 

Equivalent contrast is the effective contrast of a stimulus in V1 once it has been 

adjusted to account for differences in the neuronal sensitivity to stimulation 

across different chromatic directions. An isoresponse contour is defined as a set 

of stimuli that evoke the same neuronal response. In the QCM, the loci of such 

stimuli form an elliptical isoresponse contour in the LM cone contrast plane. All 

points on this elliptical isoresponse contour have the same equivalent contrast 

(Figure 2-1A, dashed gray ellipses). As the amplitude of the neuronal response 

increases, the ellipse that defines the set of stimuli producing that response also 

grows in overall scale. Importantly, the QCM assumes that the aspect ratio and 

orientation of elliptical isoresponse contours do not change as a function of the 

response level; only the overall scale of the ellipse changes. The use of elliptical 

isoresponse contours is motivated by prior psychophysical (Poirson, Wandell, 

Varner, & Brainard, 1990; Knoblauch & Maloney, 1996), electrophysiological 

(Horwitz & Hass, 2012), and fMRI experiments (Engel, Zhang, & Wandell, 1997) 

which have successfully used ellipses to model chromatic isoresponse contours. 
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The elliptical isoresponse contours are described by a symmetric 

quadratic function that defines the major and minor axes of the ellipse. We use 

this quadratic function to compute the equivalent contrast for each stimulus. The 

vector lengths of all stimuli that lie on a single isoresponse contour provide the 

cone contrasts required to elicit an equal neuronal response. The minor axis of 

the elliptical isoresponse contour corresponds to the chromatic direction that 

requires the least amount of cone contrast to produce this equal neuronal 

response, and is therefore the most sensitive chromatic direction. The major axis 

corresponds to the direction of least sensitivity. At this stage, the model is only 

concerned with the shape of the elliptical contour, thus we adopt the convention 

of normalizing the ellipse used to define equivalent contrast so that its major axis 

has unit length. This allows the length of the minor axis to directly represent the 

relative sensitivity, which is taken as a ratio of the minor axis (maximal sensitivity) 

to major axis (minimal sensitivity), referred to as the minor axis ratio. The angle 

of the major axis in the LM contrast plane (ellipse angle) orients these maximally 

and minimally sensitive directions. 

 

Response Non-Linearity: 

 Since all the stimuli that lie on a single isoresponse contour produce the 

same response, we can represent these points by their common equivalent 
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contrast. The neuronal responses to stimuli across different color directions are a 

function of this single variable, and therefore we can transform equivalent 

contrast into predicted neuronal response via a single static non-linear function 

(Figure 2-1B). Here we employ the four-parameter Naka-Rushton function (see 

Model Appendix). 

 

Transformation to BOLD fMRI Signal: 

To predict the BOLD fMRI signal, we obtain the time-varying neuronal 

response prediction from the Naka-Rushton function for a stimulus sequence 

presented in the fMRI experiment. This neuronal response is convolved with a 

subject-specific hemodynamic response function to produce a prediction of the 

BOLD fMRI signal (Figure 2-1C). 

 

QCM Summary: 

In summary, the QCM takes as input the temporal sequence of stimulus 

modulations, defined by their chromatic direction and contrast in the LM cone 

contrast plane, and outputs a prediction of the BOLD fMRI time course. The 

QCM has 6 free parameters: two that define the shape of the normalized elliptical 
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isoresponse contour and four that define the Naka-Rushton equivalent contrast 

response function. 

 

Results: 

To evaluate the QCM, three subjects underwent fMRI scanning while 

viewing stimuli consisting of spatially uniform (0 cycles per degree) chromatic 

temporal modulations, presented using a block design. Each 12 second block 

consisted of a 12 Hz bipolar temporal modulation in one of 8 chromatic directions 

and at one of 5 log-spaced contrast levels. We split the chromatic directions into 

two sessions and subjects viewed each of the 20 combinations of chromatic 

direction (4 directions) and contrast (5 levels) once per run in a 

pseudorandomized order (see Materials and Methods, Figure 2-10 & 2-11). For 

each subject, a measurement set consisted of 20 functional runs conducted 

across the two scanning sessions. We collected two complete measurement sets 

(referred to as Measurement Set 1 and 2) for each subject, and fit the model to 

each set separately to test for the replicability of our findings. We first modeled 

the data using a conventional GLM that accounts for the response to each of the 

40 stimulus modulations independently. The fit of this relatively unconstrained 

model was used as a benchmark to evaluate the performance of QCM. Results 

were similar for all three subjects. In the main text, we illustrate our findings with 
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the data from one subject (Subject 2); results from the other two subjects may be 

found in the supplementary materials. 

Characterizing Cortical Responses with a Conventional GLM: 

To examine the basic chromatic response properties of V1, we grouped 

the GLM beta weights by their corresponding chromatic direction and plotted 

them as a function of contrast, indicated as the filled circles in each of the eight 

panels of Figure 2-2 (data from Subject 2). For each chromatic direction, the V1 

BOLD response generally increased with contrast, as expected. This result is 

consistent across the two independent measurement sets for Subject 2, as can 

be seen by comparing the green and purple points in Figure 2-2. Further, the 

increasing response with stimulus contrast was also observed in both 

measurement sets for the other two subjects (Figure 2 – figure supplement 1-2). 

The rate at which V1 BOLD responses increase with contrast varied with 

chromatic direction. This can be seen in Figure 2-2 by noting that the maximum 

stimulus contrast differed considerably across chromatic directions, while the 

maximum response remained similar. For example, a modulation in the 45° 

direction required ~60% stimulus contrast to elicit a response of 0.6 while stimuli 

modulated in the -45° direction required only ~12% stimulus contrast to produce 

a similar response. 
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The GLM places no constraints on the values of GLM beta weights, and 

we observed that these values did not always increase monotonically with 

contrast. Given the a priori expectation that the BOLD response itself increases 

monotonically with contrast, this raises the possibility that the GLM overfits the 

 

Figure 2-2: V1 Contrast Response Functions. 

V1 contrast response functions for the eight measured chromatic directions from Subject 2. Each panel 
plots the contrast response function of V1, aggregated over 0° to 20° eccentricity, for a single chromatic 
direction. The x-axis is contrast, the y-axis is the BOLD response (taken as the GLM beta weight for each 
stimulus). The chromatic direction of each stimulus is indicated in the upper left of each panel. The 
curves represent the QCM prediction of the contrast response function. Error bars indicate 68% 
confidence intervals obtained by bootstrap resampling. Measurement Sets 1 and 2 are shown in green 
and purple. The x-axis range differs across panels as the maximum contrast used varies with chromatic 
direction. All data shown have had the baseline estimated from the background condition subtracted such 
that we obtain a 0 beta weight at 0 contrast. 
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data, using its flexibility to account for the noise as well as the signal in the 

response. To examine this, we fit a series of more constrained models that 

enforce the requirement that the fit response within chromatic direction increases 

monotonically with contrast. These models employed a Naka-Rushton function to 

describe the contrast response function in each chromatic direction. Across the 

models, we constrained varying numbers of the parameters to be constant 

across chromatic direction.  The most general of these models fits a separate 

Naka-Rushton function to each color direction, allowing all but the offset 

parameter to be independent across chromatic directions. We also explored 

locking the amplitude parameter (in addition to the offset), the exponent 

parameter (in addition to the offset), and the amplitude, exponent, and offset 

parameters (allowing only the semi-saturation parameter to vary with chromatic 

direction). To evaluate how well these models fit the data, we ran a cross-

validation procedure, described below, to compare the Naka-Rushton model fits 

with those of the GLM. The cross-validated R^2 for all of the Naka-Rushton 

models was slightly better than for the GLM, indicating that enforcing smooth 

monotonicity reduces a slight overfitting. These cross-validation results can be 

seen in Figure 4 – figure supplement 1. For simplicity, and due to the small 

differences in fit, we retain the GLM as the point of comparison for the 

performance of the QCM. 
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Quality of GLM Time Course Fit:  

We examined how well the GLM fit the measured BOLD response from 

area V1. Figure 2-3 shows the fit of the GLM for six example runs from Subject 2. 

In each panel, the measured BOLD percent signal change is shown as the thin 

grey line, while the fit obtained from the GLM is shown as the orange line. The 

orange shaded region represents the 68% confidence interval of the fit found 

using bootstrap resampling. The GLM fit captured meaningful stimulus-driven 

variation in the BOLD response, with some variation in fit quality across runs. 

The median R2 value across runs was 0.41 for Measurement Set 1 and 0.32 for 

Measurement Set 2. Fits for the other two subjects are provided as Figure 3 – 

figure supplement 1-2. Due to the randomized stimulus order within each run, it 

was not straightforward to determine the degree to which the unmodeled 

variance was due to stimulus-driven structure not modeled by the GLM (e.g., 

carry-over effects) as opposed to measurement noise. Overall, the quality of the 

GLM fits supported using the GLM as a benchmark model, as well as using the 

GLM beta weights as a measure of the V1 response. 

 

Characterizing Cortical Responses with the Quadratic Color Model: 
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The QCM is a parametric special case of the GLM that predicts the BOLD 

time course using a small number of parameters and allows for response 

predictions to modulations in any chromatic direction and contrast in the LM 

plane. Figure 2-2 shows the QCM V1 contrast response functions for Subject 2 

(the solid lines). The green and purple lines represent fits to Measurement Set 1 

and 2, respectively. The shaded region around both lines represent the 68% 

confidence intervals for the fits obtained using bootstrap resampling. The QCM 

contrast response functions agree well with the beta weights obtained from the 

GLM. The QCM contrast response functions increase monotonically with contrast 

in all chromatic directions, potentially smoothing measurement variability in the 

GLM beta weights. There was excellent agreement between the fits to both 

measurement sets for Subject 2. Similar agreement between the QCM and the 

GLM and between measurement sets was found for the other two subjects 

(Figure 2 – figure supplement 1-2).  
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We assessed the quality of the QCM fit to the V1 BOLD time course. The 

purple line in Figure 2-3 shows the QCM fit to the BOLD time course with the 

shaded region representing the 68% confidence interval obtained using 

bootstrapping. The QCM fit of the time course was of similar quality to the GLM 

 

Figure 2-3: Model Fits to the V1 BOLD Time Course.  

The measured BOLD time course (thin gray line) is shown along with the model fits from the QCM (thick 
purple line) and GLM (thin orange line) for 6 runs from Subject 2. Individual runs consisted of only half 
the total number of chromatic directions. The left column shows data and fits from Measurement Set 1 
and the right column for Measurement Set 2. The three runs presented for each measurement set were 
chosen to correspond to the highest, median, and lowest QCM R2 values within the respective 
measurement set; the ranking of the GLM R2 values across runs was similar. The R2 values for the QCM 
and the GLM are displayed at the top of each panel. The shaded error regions represent the 68% 
confidence intervals for the GLM obtained using bootstrapping. 
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fit. Importantly, the QCM fit was based on only 6 free parameters, compared to 

the 41 free parameters of the GLM. Similar quality of fits for QCM can be seen 

for the other two subjects in Figure 3 – figure supplement 1-2. 

 

Comparison of GLM and QCM: 

We used a leave-runs-out cross-validation procedure to compare the GLM 

and the QCM (See Methods section for details). This cross-validation compares 

the ability of the models to predict data not used to fit the parameters, accounting 

for the possibility that more flexible models (such as the GLM) may overfit the 

data. Figure 2-4 shows the results of the cross-validation comparison for all 

subjects. Both models track meaningful variation in the signal, although less so 

for the data from Subject 3 in Measurement Set 2. Importantly, we see that the 

 

Figure 2-4: Cross-Validated Model Comparison 

Cross-validated model comparison for the QCM and the GLM, from the V1 ROI and for all three subjects. 
In each panel, the mean leave-one-out cross-validated R2 for the QCM (purple bars) and the GLM 
(orange bars). These values are displayed at the top of each panel. Within each panel, the left group is 
for Measurement Set 1 and the the right group is for Measurement Set 2.  
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QCM cross-validated R2 is essentially indistinguishable from the GLM cross-

validated R2, although in all cases slightly higher.  

To further assess differences between the GLM and the QCM, we analyzed 

the model residuals as a function of the stimulus condition, to check for systemic 

patterns in the residuals as well as any differences between the two models in 

this regard. We first examined each direction/contrast pair separately by plotting 

the residuals of the GLM and QCM over the 14 TRs after the start of each 

stimulus block. We did not observe any systematic variation in the residuals as a 

function of contrast level within a single chromatic direction. Therefore, we 

examined the mean residual value, taken from 4 to 14 TRs after stimulus onset, 

for all trials in a chromatic direction (collapsed over contrast). We plot these 

mean residuals for both the GLM and the QCM, as a function of chromatic 

direction, for each subject and session in Figure 3 – figure supplement 3. From 

this, we observe no consistent pattern of residuals within or across models. Note 

that the residual values for the GLM and QCM mostly overlap, despite the GLM 

having separate parameters for each stimulus direction. 

 

QCM Generalization: 
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We also employed a leave-session-out cross-validation procedure to 

assess the generalizability of the QCM (See Materials and Methods for details). 

Given that Sessions 1 and 2 do not share any common chromatic directions, we 

were able to evaluate how effectively the QCM generalizes to chromatic 

directions not used to derive the model parameters. The green contrast response 

functions shown in Figure 2-5 result from fitting the QCM to either Session 1 or 

Session 2, and predicting the responses from the held-out session. The 

generalization from Session 1 to Session 2 (right-hand subplots) is excellent for 

this subject. The generalization from Session 2 to Session 1 is also good, albeit 

with a large confidence interval for the 45° direction. For other subjects and 

measurement sets, the QCM generalizes reasonably well (Figure 5 – figure 

supplement 1-3). Overall, generalizations from Session 1 to Session 2 perform 

better than those from Session 2 to Session 1. This finding may reflect the 

particular set of chromatic directions presented in each session: only Session 1 

includes a chromatic direction close to the major axis of the ellipse, which better 

constrains the QCM fit. Therefore, the QCM is capable of generalizing well to 

unmeasured chromatic directions, with the requirement that the stimuli include 

chromatic directions and contrasts that adequately constrain the model 

parameters. 
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QCM Characterization of V1 BOLD Response: 

Conceptually, the parameters of the QCM characterize two key model 

components. The first component defines the contrast-independent shape of 

elliptical isoresponse contour. This describes the relative sensitivity of V1 to 

modulations in all chromatic directions within the LM contrast plane. The second 

component defines the response nonlinearity, which is independent of chromatic 

direction. It operates on equivalent contrast to produce the underlying neural 

response. 

 

 

Figure 2-5: Leave-Sessions-Out Cross Validation.  

The contrast response functions in each panel (green lines) are the result of a leave-sessions-out cross-
validation to test the generalizability of the QCM. The QCM was fit to data from four out of the eight tested 
chromatic directions, either from Session 1 or Session 2. The fits were used to predict the CRFs for the held 
out four directions. The orange points in each panel are the GLM fits to the full data set. The data shown here 
are for Subject 2, Measurement Set 1. The shaded green error regions represent the 68% confidence 
intervals for the QCM prediction obtained using bootstrapping. See Figure 5 - figure supplement 1-3 for 
cross-validation plots from other subjects and measurement sets. 
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Elliptical Isoresponse Contours: 

The isoresponse contour is described by two parameters: the direction of 

least sensitivity (ellipse angle; counterclockwise to the positive abscissa) and the 

ratio of vector lengths between the most and least sensitive directions (minor axis 

ratio; see Quadratic Color Model Section and Model Appendix). Within the QCM, 

the angle and minor axis ratio provide a complete description of chromatic 

sensitivity that is contrast independent. 

Figure 2-6 shows the QCM isoresponse contours for all 3 subjects and both 

measurement sets. We found that for all subjects and measurement sets, the 

angle of the isoresponse contours was oriented at approximately 45°. An ellipse 

angle of 45° indicates that V1 was least sensitive to stimuli modulated in the L+M 

 

Figure 2-6: V1 Isoresponse Contours.  

The normalized elliptical isoresponse contours from the QCM are plotted, for each subject, in the LM 
contrast plane. The green ellipses show the QCM fits to Measurement Set 1 and the purple ellipses 
show fits to measurement 2. The angles and minor axis ratios along with their corresponding 68% 
confidence intervals obtained using bootstrapping are provided in the upper left (Measurement Set 1) 
and lower right (Measurement Set 2) of each panel.  
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direction, and most sensitive to stimuli modulated in the L-M direction. Across all 

subjects and measurement sets, the minor axis ratio parameters ranged between 

0.15 and 0.25. Thus, for the spatial and temporal properties of our modulations, 

V1 was roughly 5 times more sensitive to modulations in the L-M direction than 

the L+M direction. We found good agreement between the isoresponse contours 

from the independent measurement sets as well as across subjects. 

 

Equivalent Contrast Nonlinearity:  

Figure 2-7 shows the V1 equivalent contrast nonlinearity of the QCM for 

Subject 2 for both measurement sets. This non-linearity describes how the 

underlying neuronal response increases with increasing equivalent contrast. We 

used the isoresponse contour of the QCM to convert the chromatic direction and 

cone contrast of each stimulus to its equivalent contrast. This allowed us to replot 

each beta weight derived from the GLM (Figure 2-2) on an equivalent contrast 

axis (Figure 2-7; closed circles). For all subjects, the single nonlinearity 

accurately captured the dependence of the GLM beta weight on equivalent 

contrast, with no apparent bias across chromatic directions. The agreement 

between the GLM beta weight points and QCM fits demonstrated that separating 

the effects of chromatic direction and contrast in the QCM is reasonable. Figure 7 
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– figure supplement 1 provides the same plots for Subjects 1 and 3. Note that our 

stimuli did not drive the response into the saturated regime. 

 

Isoresponse Contour Parameter Maps: 

There is considerable interest in how sensitivity to modulations in the LM 

contrast plane varies with eccentricity. Understanding such variation is important 

both for describing visual performance and for drawing inferences regarding the 

neural circuitry that mediates color vision. Since the QCM separates chromatic 

 

Figure 2-7: Equivalent Contrast Non-Linearities of the QCM for V1 from Subject 2. 

The x-axis of each panel marks the equivalent contrast and the y-axis is the neuronal response. The gray 
curve in each panel is the Naka-Rushton function obtained using the QCM fit. These curves show the 
relationship between equivalent contrast and response. The parameters of the Naka-Rushton function are 
reported in upper left of each panel along with the 68% confidence intervals obtained using bootstrapping. 
The points in each panel are the GLM beta weights mapped via the QCM isoresponse contours of Subject 2 
onto the equivalent contrast axis (see Model Appendix). The color of each point denotes the chromatic 
direction of the stimuli, as shown in the color bar. The left panel is for Measurement Set 1 and the right panel 
is for Measurement Set 2. Note that our maximum contrast stimuli do not produce a saturated response. 
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sensitivity from the dependence of the response on contrast, examining how the 

shape of the QCM isoresponse contour varies with eccentricity addresses this 

question in a contrast-independent manner. We fit the QCM to the BOLD time 

course of each vertex in the template map of visual areas developed by Benson 

et al. (2014). This allowed us to visualize how the parameters that describe the 

isoresponse contour varied with eccentricity within V1. 

Figure 2-8 shows the QCM parameter maps for the ellipse angle, the minor 

axis ratio, and the variance explained displayed on the cortical surface. Here the 

data were averaged across all subjects and measurement sets. In all panels, the 

full extent of V1 is denoted by the black outline on the cortical surface, while the 

20° eccentricity ROI used in the V1 analyses above is shown by the black 

dashed line. Apparent in the maps is that neither parameter varied 

systematically within V1, a feature of the data that is consistent across 

measurement sets and subjects. Outside of V1, the R2 values were markedly 

lower, and there was higher variability in the QCM parameters. 

We further examined the variance explained by the GLM, fit to every vertex 

on the cortical surface. Within early visual cortex (EVC, the spatial extent of the 

Benson template), we did not observe differences in R^2 larger than 0.03 in 

non-cross-validated model fits between the GLM and the QCM (GLM – QCM).  

We generally found that the variance explained by the GLM in vertices outside 
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of V1 was close to zero, with the exception of a small patch of values in the 

vicinity of hV4/VO1. The GLM variance explained in this area was roughly half of 

that explained within V1. To more fully characterize these regions, we fit the 

QCM to the median time course from the subject specific registrations of V4 and 

VO1 as defined by the retinotopic atlas from Wang et al. (2015) (implemented in 

Neuropythy). The parameters of the QCM fit for V4 and VO1 were generally 

consistent with those found for V1, although fit quality was worse. Overall, as 

our spatially uniform stimuli were not highly effective at eliciting reliable 

responses outside of V1, we refrain from drawing definitive conclusions about 

responses outside of V1. The average variance explained map within EVC for 

the GLM is shown in Figure 8 – figure supplement 1.  
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No Change in V1 Chromatic Sensitivity with Eccentricity:  

 

Figure 2-8: QCM Average Parameter Maps.  

The QCM parameters, fit at all vertices within the visual cortex mask, averaged across all subjects and 
measurement sets. The top, middle, and bottom rows show maps of the average ellipse angle, minor axis 
ratio, and variance explained, respectively. The scale of the corresponding color map is presented below 
each row. The nomenclature in upper left of each surface view indicates the hemisphere (L: left or R: right) 
and the view (I: inferior, L: lateral, or M: medial). The medial views show the full extent of the V1 ROI on the 
cortical surface (denoted by the solid black outline). The 20° eccentricity boundary used to define the V1 
ROI used for all analyses is shown by the black dashed line. 
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We leveraged the QCM to examine how chromatic sensitivity varies with 

eccentricity within V1. Figure 2-9 plots the V1 QCM parameters as a function of 

eccentricity, for Subject 2. The left panel shows the minor axis ratio and the right 

panel shows the ellipse angle. In both plots, individual points represent a single 

vertex, with the x-axis giving the visual field eccentricity of that vertex obtained 

from the Benson et al. (2014) template, and the y-axis giving the parameter 

value. The transparency of each point indicates the R2 value of the QCM fit for 

the corresponding vertex. The maximum R2 value across vertices for 

Measurement Sets 1 and 2 were 0.25 and 0.24, respectively. The lines in each 

panel reflect a robust regression fit to the points. We found that there is little 

change in either parameter with eccentricity. For Subject 2, the best fit lines had 

slightly negative slopes for the minor axis ratio and slightly positive slopes for the 

ellipse angle, with good agreement across measurement sets. The overall 

change in parameter values from 0° to 20°, however, was small compared to the 

vertical spread of values at each eccentricity. We compared the change in 

parameter values from 0° to 20° to the variability across measurement sets for all 

three subjects (Table 2-1 for ellipse angle, and Table 2-2 for minor axis ratio). 

Across subjects, the majority of sessions showed small differences in parameter 

values from 0° to 20°, but we note that these did in some cases exceed the 

measurement set-to-set difference in the parameter values obtained for all of V1. 
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The plots shown in Figure 2-9 examine how the QCM parameters vary with 

eccentricity. To allow comparison with prior studies of how the BOLD response 

varies with eccentricity within V1 (Vanni, Henriksson, Viikari, & James, 2006; 

Mullen, Dumoulin, McMahon, de Zubicaray, & Hess, 2007; D'Souza, Auer, 

Frahm, Strasburger, & Lee, 2016),  we also used the QCM to predict how the 

response would vary for stimuli in the L+M and the L-M directions, and plot these 

predicted responses as a function of eccentricity (Figure 9 – figure supplement 

2). This was done on a vertex-by-vertex basis, using within-vertex QCM 

parameters. Specifically, we chose the 50% contrast stimulus condition for both 

the L-M and the L+M direction (contrasts of 0.06 and 0.30 respectively). Using 

these stimuli, we computed the predicted neuronal response by applying the 

 

Figure 2-9: QCM parameters as a function of eccentricity for Subject 2.  

The left and right panels show scatter plots of the minor axis ratio and ellipse angle plotted against their 
visual field eccentricity, respectively. Each point in the scatter plot shows a parameter value and 
corresponding eccentricity from an individual vertex. Green indicates Measurement Set 1 and purple 
indicates Measurement Set 2. The lines in each panel are robust regression obtained for each measurement 
set separately. The transparency of each point provides the R2 value of the QCM at that vertex. The color 
bars provide the R2 scale for each measurement set. 
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QCM forward model (the transformation to equivalent contrast and the Naka-

Rushton steps) using the parameter values corresponding to that particular 

vertex. Examining the data in this way reveals a negligible change in response as 

a function of eccentricity for both the L+M and L-M directions, for all subjects and 

measurement sets. We return in the discussion to consider the relation between 

our results and those found in prior studies. 

Minor Axis Ratio: 

 

Table 2-1: Robust Regression Line Parameters - Minor Axis Ratio. 

Robust regression line parameters summarizing the change in minor axis ratio with eccentricity for all 
subjects. These parameters are the same as seen for Subject 2 in Figure 2-10. The subject and set columns 
indicate the subject and measurement set of the robust regression fit. The slope and offset columns show 
the parameters of the regression line. The ∆ 0° to 20° column is the magnitude of the change in the minor 
axis ration between 0° and 20° eccentricity. The ∆ Set to Set column shows the absolute difference in the 
minor axis ratio fit to the V1 median time course between Measurement Set 1 and 2 (individual parameters 
are reported in Figure 2-7). 
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Ellipse Angle: 

 

Table 2-2: Robust Regression Line Parameters - Ellipse Angle.  

Robust regression line parameters summarizing the change in ellipse angle with eccentricity for all subjects. 
Columns are formatted the same as Table 2-1. 

  

Discussion: 

We develop a quantitative model of the visual cortex response to 

chromatic stimuli in the LM contrast plane, the quadratic color model (QCM), and 

examine its ability to fit V1 BOLD fMRI responses to spatially uniform chromatic 

stimuli. We find that the QCM accounts for the same cross-validated variance as 

a conventional GLM, with far fewer free parameters (6 as compared to 41). The 

model generalizes across both chromatic direction and contrast to predict V1 
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responses to a set of stimuli that were not used to fit the model parameters. The 

experiment was replicated for each subject using the same stimuli across 

separate measurement sets. Both the data and the model fits replicate well for 

each subject and are similar across subjects, giving us confidence in the power 

of the measurements. 

The QCM is a separable model with respect to the effects of chromatic 

direction and contrast. This allowed us to evaluate the chromatic sensitivity in V1 

of our subjects in a manner that is independent of the effects of contrast. We find 

that V1 is most sensitive to L-M contrast modulations and least sensitive to L+M 

contrast modulations, when contrast is defined using vector length in the LM 

contrast plane. This was shown in all subjects and measurement sets by the 

isoresponse contours of each subject being oriented at approximately 45° and 

having a minor axis that is roughly 5 times smaller than the major axis. This 

result is broadly consistent with previous fMRI studies of V1 chromatic contrast 

sensitivity, although the exact sensitivity ratio varies with the spatial and temporal 

properties of the stimuli (Engel, Zhang, & Wandell, 1997; Liu & Wandell, 2005; 

Mullen, Dumoulin, McMahon, de Zubicaray, & Hess, 2007; D'Souza, Auer, 

Frahm, Strasburger, & Lee, 2016; Mullen, Dumoulin, & Hess, 2010). By 

considering cortical responses in terms of the parameters of the QCM fit, we are 



44 
 
 

able to provide a quantitative account of chromatic sensitivity, as opposed to a 

categorical assignment of voxels as “color” or “luminance” responsive. 

The QCM also allows us to examine the equivalent contrast response 

nonlinearity, although doing so is not the focus of this paper. This non-linearity 

depends on chromatic direction only through a direction-dependent contrast gain 

that is captured by the isoresponse contour. This can be observed in Figure 2-7 

through the overlap of the non-linearity and the transformed GLM beta weights.  

Although we used the Naka-Rushton function to fit the nonlinearity, this was a 

choice of convenience and the precise shape of the non-linearity is not strongly 

constrained by our data set. This is because our stimuli did not drive the 

response into the saturating regime (Figure 2-7, Figure 7 – figure supplement 1). 

A stronger test of the contrast/direction separability embodied by the QCM, as 

well as stronger constraints on the shape of the non-linearity, would be provided 

by stimuli that drive the V1 response to saturation. 

Neither the QCM nor the GLM explain all of the variance in the data. Since 

our experimental design did not involve multiple measurements with the same 

stimulus sequence (stimulus sequences were randomized across runs and 

measurement sets), we cannot untangle the degree to which the unexplained 

variance is due to systematic but unmodeled aspects of the response or to 

measurement noise. In comparing our reported R^2 values to those in other 
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studies, it is important to bear in mind that R^2 values are expected to be higher 

in cases where the signal being fit is the average time course over multiple runs 

with the same stimulus sequence, as compared to when the R^2 values are 

computed with respect to fits to individual runs, even if there is no difference in 

the quality of the underlying response model. Another factor that can affect R^2 

is un-modeled physiological effects on the BOLD signal due to blinking, 

breathing, heart beats, etc. We did not collect eye tracking measurements or 

pulse oximetry, so we cannot model such effects. 

In certain cases, attentional task difficulty can modulate BOLD responses 

(Kay & Yeatman, 2017). We employed only one level of attentional task difficulty 

and thus do not have data on how varying the attentional task might affect the 

responses we measured. We do not, however, have any particular reason to 

think that the chromatic tuning and contrast response functions we measured 

would have been substantially different in the context of different attentional task 

difficulty. In this regard, we note that Tregillus et al. (2021) measured contrast 

response functions for L-M and S-(L+M) color directions within V1 under two 

different attentional tasks and found no significant effect of task on the two 

contrast response functions. 

 

Relation to Psychophysics: 
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A goal of systems neuroscience is to link measurements of neuronal 

properties to measurements of behavior. To make these links, the measurements 

made in each domain must be placed into a common space for comparison. The 

QCM provides a way to represent fMRI measurements in a manner that makes 

such comparisons straightforward. The contrast-invariant isoresponse contour 

from the QCM provides us with a stimulus-referred characterization of the BOLD 

fMRI response. Other methodologies, such as psychophysics or 

electrophysiology, may be used to obtain similar characterizations, allowing for 

comparisons across response measures within this common framework. For 

example, an approach to studying chromatic sensitivity is to characterize the 

isothreshold contour, which specifies the set of stimulus modulations that are 

equally detectable. Engel, Zhang, and Wandell (1997) took this approach and 

found that for low temporal frequencies the psychophysical isothreshold and 

BOLD fMRI isoresponse contours in the LM contrast plane were well-described 

as ellipses and had similar shapes. While some work has argued that 

psychophysical isothreshold may deviate subtly from ellipses (for review see 

(Stockman & Brainard, 2010), two studies that attempted to reject the elliptical 

form of such contours did not do so (Poirson, Wandell, Varner, & Brainard, 1990; 

Knoblauch & Maloney, 1996). Consistent with Engel, Zhang, and Wandell (1997), 

we found elliptical BOLD isoresponse contours at our 12 Hz temporal frequency 

with highest sensitivity in the L-M direction. As they note, although 
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psychophysical isothreshold contours remain well-described by ellipses at higher 

temporal frequencies, their orientation changes to favor L+M sensitivity over L-M 

sensitivity. This dissociation in the particulars of the isothreshold and BOLD 

isoresponse contours makes it unlikely that the mechanisms that contribute to 

the BOLD response in V1 limit psychophysical detection at the higher temporal 

frequencies, unless there are important temporal-frequency dependent changes 

in response variability that are not captured by the BOLD measurements. 

 

Relation to Underlying Mechanisms: 

Many theories of color vision postulate that signals from the L-, M- and S-

cone photoreceptors are combined to form three post-receptoral mechanisms, 

roughly characterized as an additive combination of L- and M-cone contrast 

(L+M), an opponent combination of L- and M-cone contrast (L-M), and an 

opponent combination of S-cone contrast with L- and M-cone contrasts (S-(L+M)) 

(Stockman & Brainard, 2010; Shevell & Martin, 2017). Our finding that the major 

and minor axes of the isoresponse ellipse are well-aligned with the L+M and L-M 

modulation directions agrees with such theories. More generally, a quadratic 

isorepsonse contour can be produced by a quadratic mechanism that computes 

a sum of the squared responses of two underlying linear mechanisms, where the 

output of each linear mechanism is a weighted sum of L- and M-cone contrasts 
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(Poirson, Wandell, Varner, & Brainard, 1990). If the two linear mechanisms are 

L+M and L-M mechanisms with the weights appropriately chosen to represent 

the relative sensitivities (L-M sensitivity greater than L+M sensitivity), then the 

isoresponse contour of the resulting quadratic mechanism will be a close match 

to those we measured 

Note, however, that other pairs of underlying mechanisms are also 

consistent with the same elliptical isoresponse contours (Poirson, Wandell, 

Varner, & Brainard, 1990), so that our isoresponse contours do not uniquely 

determine the sensitivity of the underlying linear mechanisms, even within the 

QCM together with the assumption that there are two such mechanisms. 

More generally, one can construct non-quadratic models whose 

isoresponse contours approximate the ellipse we found using the QCM, and if 

this approximation is good our data will not reject such models. To illustrate this 

point, we developed and fit an alternate model, the Linear Channels Model 

(LCM), a variation on the Brouwer and Heeger channel model (Brouwer & 

Heeger, 2009; Kim, Hong, Shevell, & Shim, 2020), that accounts for our data 

about as well as the QCM (see Model Appendix; Figure 4 – figure supplement 1). 

The best fitting isoresponse contours found with the LCM, which could in 

principle deviate considerably from an ellipse, none-the-less approximate the 

ellipse we found using the QCM, but are not perfectly elliptical (Figure 6 – figure 
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supplement 1). Despite the agreement at the functional level of the isoresponse 

contours, the properties of the mechanisms underlying the LCM differ from those 

of the QCM, and these properties also differ across different instantiations of the 

LCM that account for the data equally well (see Model Appendix).  

Because of the similarity in cross-validated R^2 values across the GLM, 

Naka-Rushton, QCM and LCM models, the reader may wonder whether the data 

have sufficient power to reject any isoresponse contour shape.  To address this, 

we fit and cross-validated a form of the QCM with the angle constrained to 0 

degrees. This resulted in a noticeably lower cross-validated R^2 for this model as 

compared to all other models we tested (Figure 4 – figure supplement 1, labeled 

at “QCM locked”) and provides reassurance that the data indeed have power to 

inform as to the shape of the isoresponse contour. We expect that other 

isoresponse contour shapes that differ from the best fitting QCM contour to a 

degree similar to that of the constrained ellipse would also be rejected. 

Thus, while measurements of the BOLD response place constraints on the 

population response properties of the neuronal mechanisms, these properties 

are not uniquely determined given the BOLD response alone. The ambiguity is 

further increased if we consider properties of individual neurons, as the 

aggregate BOLD response will be shaped both by the response properties of 

such neurons and the numbers of different types of neurons in the overall neural 
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population. With that caveat, we make some general observations. Our stimuli 

were large, spatially uniform (effectively 0 c.p.d.) chromatic modulations that 

were temporally modulated at 12Hz. These stimuli could drive ‘color’, ‘luminance’ 

and ‘color-luminance’ cells as described by  Johnson et al. (2001), depending on 

the particular chromatic direction. The 0 c.p.d. stimuli would presumably produce 

strong responses in the ‘color’ cells for our L-M direction, given that these cells 

are thought to behave as low-pass filters in the spatial domain and have 

unoriented receptive fields. It is less clear how strongly ‘luminance’ and ‘color-

luminance’ cells would respond to our spatially uniform stimuli given that these 

cells are spatially bandpass. Schluppeck and Engel (2002)plot the spatial 

frequency response function estimated from the data from Johnson et al. (2001). 

These functions plot the average firing rate as a function of spatial frequency for 

the color, color-luminance, and luminance cells. Taking the lowest spatial 

frequency present in the dataset (0.1 c.p.d.), firing rates for color cells are 

roughly 5x times higher than the firing rates for luminance and color-luminance 

cells. This is the same as our average minor axis ratio which indicates V1 is 

roughly 5 times more sensitive to L-M than to L+M. A caveat here is that the 12 

Hz flicker rate of our stimuli might shift responses relative to the analysis of 

Schluppeck and Engel (2002). 
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It is also important to note that our data do not distinguish the extent to 

which the response properties of the BOLD signals we measure in V1 are 

inherited from the LGN or are shaped by processing within V1. The 

spatiotemporal properties of our stimuli would robustly drive cells in cell in the 

LGN that project to V1(Lankheet, Lennie, & Krauskopf, 1998). Even though the 

signals measured in our experiment are spatially localized to V1, we cannot 

ascribe the observed response properties to particular neural processing sites. 

As such, the V1 sensitivities found from fitting the QCM may be inherited from 

areas prior to V1. In principle, they could also be affected by feedback from other 

cortical areas. We also undertook an analysis of data from the LGN, but found 

that these signals were too noisy to reveal reliable stimulus-driven responses in 

our data. 

Finally, it is interesting to observe that quadratic models have been used 

to characterize the isoresponse properties of individual neurons in macaque V1 

(Horwitz & Hass, 2012). Roughly half of the neurons tested in this paper were 

best fit by quadratic isoresponse surfaces (in the L-, M- and S-cone contrast 

space) while the other half were well fit by a linear model whose isoresponse 

surfaces were parallel planes. Of the quadratic isoresponse surfaces, some were 

ellipsoidal while others were hyperbolic. As noted above, despite this qualitative 

similarity, connecting the diverse population of individual neural responses to the 
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aggregated BOLD fMRI response remains a challenge for future work. The QCM 

fit to our data aids in this endeavor through the constraint its isoresponse contour 

places on the aggregated neural response. 

 

Change of Chromatic Sensitivity with Retinal Eccentricity: 

Many aspects of visual function change with eccentricity (Rosenholtz, 

2016), and understanding and quantifying this variation is a key part of a 

functional characterization of vision. In addition, prior work attempts to relate 

such functional variation with eccentricity to variation in the underlying neural 

mechanisms. Relevant to the present work is the idea that variation of chromatic 

sensitivity with eccentricity can inform as to how signals from separate cone 

classes are combined by retinal and cortical neural circuitry (Lennie, Haake, & 

Williams, 1991; Mullen & Kingdom, 1996; Wool et al., 2018; Baseler & Sutter, 

1997). In this context, we examined how the parameters of the QCM for 

individual vertices varied with eccentricity across V1. Overall, we find little 

change in the isoresponse contours with eccentricity within the central 20° of the 

visual field (Figure 2-9; Table 2-1 & 2-2; Figure 9 – figure supplement 1), and an 

analysis of how predicted response to L+M and L-M modulations would change 

with eccentricity also shows little or no effect (Figure 9 – figure supplement 2). In 

addition, we do not observe any clear change in the parameters of the contrast-
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response function with eccentricity (analysis not shown). Overall, the BOLD 

response to chromatic modulations, as evaluated in our data using the QCM, is 

remarkably stable across V1. That the orientation of the elliptical isoresponse 

contours does not change with eccentricity is consistent with psychophysical 

studies that show that the relative L- and M-cone inputs to an L-M mechanism 

are stable across the visual field (Newton & Eskew, 2003; Sakurai & Mullen, 

2006)}. The fact that our data do not show a loss in L-M sensitivity relative L+M 

sensitivity with increasing eccentricity, on the other hand, is not commensurate 

with psychophysical studies that do show such a loss (Stromeyer, Lee, & Eskew, 

1992; Mullen & Kingdom, 2002; Mullen, Sakurai, & Chu, 2005; Hansen, Pracejus, 

& Gegenfurtner, 2009). As discussed above, BOLD fMRI sensitivity in V1 does 

not always mirror psychophysical sensitivity. Thus we focus below on 

comparison between our results and other fMRI studies of how sensitivity in V1 

varies with eccentricity. 

Several prior studies have used BOLD fMRI to examine how visual cortex 

responses vary with eccentricity to stimuli modulated in L-M and L+M directions 

(Vanni, Henriksson, Viikari, & James, 2006; Mullen, Dumoulin, McMahon, de 

Zubicaray, & Hess, 2007; D'Souza, Auer, Frahm, Strasburger, & Lee, 2016). 

Both Mullen et al. (2007) and Vanni et al. (2006) report a decrease in the V1 

response to L-M modulations with eccentricity, while the response to L+M 

remains roughly constant. This differs from our result, and the size of the effects 
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in these papers are large enough that we would expect that if they were present 

in our data they would be visible in the analysis shown in Figure 9 – figure 

supplement 2 (see Figure 8 in Mullen et al., 2007 and Figure 8 in Vanni et al., 

2006). Both speculate that the mechanism underlying this observation is non-

selective (random) connections between L and M cones and retinal ganglion cell 

receptive fields. If these connections are non-selective, L-M sensitivity would be 

expected to decrease with eccentricity. This is because the area in which 

receptive fields pool cone inputs increases with distance from the fovea, 

progressively reducing the likelihood that random L- and M-cone inputs to the 

center and surround will produce chromatic opponency (Lennie, Haake, & 

Williams, 1991; Mullen & Kingdom, 1996; Wool et al., 2018). In contrast, D’Souza 

et al. (2016) find, for the majority of spatial frequencies studied, no change in L-M 

response relative to the response to isochromatic luminance modulations. This 

result is generally in line with our data, although at their lowest spatial 

frequencies D’Souza and colleagues observe a modest decline in relative L-M 

sensitivity. Following the same line of reasoning as Mullen et al. (2007) and 

Vanni et al. (2006) but reaching the opposite conclusion, D’Souza et al. (2016) 

take their result as supporting the idea that connections between cones and 

some classes of ganglion cells are selective for cone type and preserve 

chromatic sensitivity across the retina. 
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Comparison across our and the prior studies is complicated by variation in 

the stimuli used. Indeed, a dependency on spatial frequency is indicated by the 

data of D’Souza et al. (2016). We used spatially-uniform fields, while other 

studies use stimuli with higher-spatial frequency content. More generally, other 

factors could also lead to variation across studies, as well as complicate inferring 

the properties of retinal wiring from how psychophysical thresholds or 

measurements of cortical response vary with eccentricity. 

One such factor is the changes in cone spectral sensitivity with 

eccentricity, caused primarily by variation in macular pigment and photopigment 

optical density. Variation in macular pigment and photopigment optical density 

can produce eccentricity-dependent deviations in the degree of actual cone 

contrast reaching the photoreceptors. Prior studies do not account for this 

variation, leading to the possibility that effects of eccentricity on sensitivity are 

due to receptoral, rather than post-receptoral mechanisms. In our study, we 

designed spectral modulations that produce the same contrasts in both 2-degree 

and 15-degree cone fundamentals (see Methods and Tables 2-5, 2-6 and, 2-7). 

This reduces the change in cone contrast with eccentricity for our stimuli. 

Another factor, not emphasized in previous work, is that the size of the 

effects will depend on where on the underlying contrast response functions the 

responses to the stimuli in the chromatic directions being compared lie. To 
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understand this issue, consider the example in which the response for one 

chromatic direction is well into the saturated regime of the contrast-response 

function, while the other direction is not. This could lead to artifacts in the 

measured ratio of the response to the two directions with eccentricity, where any 

change in response for the saturated direction is hidden by a ceiling effect. Our 

study minimizes the role of this factor through measurement and modeling of the 

contrast response functions in each chromatic direction, allowing the QCM to 

extract a contrast independent shape for the isoresponse contours. 

Although changes in sensitivity with eccentricity can be caused by 

mechanisms at many levels of the visual system, the lack of such variation in our 

data is parsimoniously explained by retinal output that preserves chromatic 

sensitivity with eccentricity. This interpretation is challenged by studies that show 

random (Wool et al., 2018) or close to random (Field et al., 2010) inputs from L- 

and M-cones to midget ganglion cell centers in the retinal periphery. Not all 

studies of midget cell chromatic responses or their parvocelluar LGN 

counterparts agree with non-selective wiring (Reid & Shapley, 1992; Martin, Lee, 

White, Solomon, & Ruttiger, 2001; Martin, Blessing, Buzas, Szmajda, & Forte, 

2011; Lee, Shapley, Hawken, & Sun, 2012). One possible cortical mechanism 

that could compensate for the reduced L-M signal-to-noise ratio with eccentricity 

as predicted by random wiring models is supra-threshold compensation for 
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reduced signals. Mechanisms of this sort have been postulated in the domain of 

contrast perception (Georgeson & Sullivan, 1975) and anomalous trichromatic 

vision (Boehm, MacLeod, & Bosten, 2014; Tregillus et al., 2021). Another 

possibility is a differential change in stimulus integration area across chromatic 

directions and with eccentricity. However, this latter possibility is not supported 

by fMRI population receptive field (pRF) measurements for modulations in 

different chromatic directions in V1 (Welbourne, Morland, & Wade, 2018). 

 

Generalizing the QCM: 

In our study, we only measured responses to stimuli confined to the LM 

contrast plane. A more general account of chromatic contrast sensitivity requires 

modulating stimuli in all three-dimension of the full L-, M- and S-cone contrast 

space. The QCM may be generalized in a straightforward manner to handle this 

expanded stimulus set by replacing the elliptical isoresponse contours with 

ellipsoidal isoresponse surfaces, but we have yet to test this generalization. 

Another way in which the QCM may be generalized, even within the LM 

contrast plane, is to consider modulations at other temporal frequencies. In our 

experiment, we fixed the temporal modulation of the stimulus at 12 Hz. The QCM 

could be readily fit to data from modulations at various other temporal 

frequencies with the goal of observing how the chromatic sensitivity changes. 



58 
 
 

With this, one could further examine the BOLD response to mixtures of different 

temporal frequency modulations. This is particularly interesting in that any 

arbitrary complex temporal modulation can be decomposed into an additive 

mixture of modulations at different temporal frequencies and phases (Bracewell, 

1978). If the response to temporal frequency mixtures can be predicted via a 

simple rule of combination (such as linearity), establishing the QCM parameters 

for a well-chosen set of temporal frequencies would enable prediction of the 

BOLD response to chromatic stimuli modulated with complex temporal 

sequences.  

Just as we had a fixed temporal frequency in our experiment, the stimulus 

presented also had a fixed spatial frequency (0 c.p.d.). Similar to the temporal 

domain, complex spatial images can be broken down into a combination of 

oriented 2-dimensional sine wave patterns at single spatial frequencies and 

phases. Examining how the QCM fits change with changing spatial frequencies 

might allow for models of the BOLD response to arbitrary complex spatial stimuli. 

Consistent with this general goal, recent work has developed quantitative forward 

models of the BOLD response of early visual cortex to a variety of achromatic 

modulations with different spatial patterns (Kay, Winawer, Mezer, & Wandell, 

2013; Kay, Winawer, Rokem, Mezer, & Wandell, 2013). These models have 

sequential stages of processing that operate on an input image and transform it 
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into a model of the BOLD response. How such models should be generalized to 

handle chromatic modulations is not known. If the QCM holds for other spatial 

frequencies, such a result would place important constraints on the appropriate 

generalization for such forward models to incorporate color.  

 

Materials and Methods 

Subjects: 

Three subjects (age 23, 25, and 26 years; 2 female) took part in the fMRI 

experiment. All subjects had normal or corrected to normal acuity and normal 

color vision. The research was approved by the University of Pennsylvania 

Institutional Review Board. All subjects gave informed written consent and were 

financially compensated for their participation.  

 

Experimental Overview: 

Each subject participated in four sessions of data collection. The first two 

sessions constituted Measurement Set 1, and the second two sessions 

Measurement Set 2 (Measurement Set 2 being a replication of Measurement Set 

1). In both sessions, subjects underwent 48 minutes of fMRI scanning, with 

Session 1 also including two anatomical scans (a T1-weighted and a T2-
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weighted scan). Subjects were tested for color vision deficiencies in a separate 

session, using the Ishihara pseudoischromatic plates (Ishihara, 1977). All 

subjects passed with no errors. The experimental procedures for Measurement 

Set 1 were preregistered (https://osf.io/wgfzy/), and an addendum describes the 

replication Measurement Set 2 (https://osf.io/zw6jp/). 

Digital Light Synthesis and Silent Substitution 

All stimuli were generated using a digital light synthesis device (OneLight 

Spectra). This device produces desired spectra through the use of a digital 

micro-mirror device chip that in the configuration we used allows for the mixture 

of 56 independent primaries with a FWHM of ~16 nm and a refresh rate of 100 

Hz. 

Stimuli were generated to evoke specific photoreceptor responses through 

the use of silent substitution (Estévez & Spekreijse, 1982). Silent substitution 

operates on the principle that there exist sets of light spectra that, when 

exchanged, selectively modulate the activity of specified cone photoreceptors. 

Thus, stimulus modulations relative to a background can be generated such that 

they nominally modulate the activity of only the L-, M-, or S-cones, or 

combinations of cone classes at specified contrasts. Additional information on 

how the stimuli were generated is provided in Spitschan et al. (2015). 
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The stimuli account for differences in the cone fundamentals between the 

fovea and the periphery. This was done by treating the L, M, and S cones in the 

2- and 15-degree CIE physiologically-based cone fundamentals (CIE, 2007) as 

six classes of photoreceptors. For any desired set of L-, M-, and S-cone 

contrasts, we designed modulations that attempted to provide the same contrasts 

on the 2- and 15-degree L-cone fundamentals, on the 2- and 15-degree M-cone 

fundamentals, and on the 2- and 15-degree S-cone fundamentals. This is 

possible because our device has 56 primaries, rather than the typical 3 of RGB 

displays. Our procedure has the effect of creating light spectra that reduce 

differences in the L-, M- and S-cone contrasts produced across the retina. The 

cone fundamentals were tailored to the age of each subject, to account for age-

related differences in typical lens density (CIE, 2007). See Tables 2-5, 2-6 and, 

2-7 for the central and peripheral maximum stimulus contrast values for each 

subject and measurement set. 

Spectroradiometric measurements of the stimuli were made before and 

after each experimental session. During the measurements made prior to the 

experiment, a correction procedure was run in which the spectral power 

distribution of the modulation in each chromatic direction were adjusted to 

minimize the difference between the measured and desired cone contrasts for 

the 2- and 15-degree cone fundamentals. These corrections were made to the 

modulation spectra at the maximum contrast used in each direction. The order in 
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which spectroradiometric measurements were taken during an experimental 

session was 1) five pre-correction measurements for each chromatic direction 

used in the session, 2) the corrections procedure, 3) five post-correction 

measurements per direction, and 4) five post-experiment measurements per 

direction. The mean of post-correction and post-experiment cone contrast 

measurements for the individual subjects and measurement sets are provided in 

Tables 2-5, 2-6 and, 2-7. 

 

Visual Stimuli: 

The stimuli were confined to the LM plane of cone contrast space (Figure 

2-10A; see also Figure 2-1A). Cone contrast space has three axes that are 

defined by the relative change in the quantal catch of the L, M, and S cones 

when modulating between the light spectra of interest and a specified reference 

spectrum. We refer to the reference spectrum used to calculate this relative 

change in cone excitations as the background (nominal chromaticity; x = 0.459, y 

= 0.478, luminance Y = 426 cd/m^2; chromaticity and luminance computed with 

respect to the XYZ 10° physiologically-relevant color matching functions, as 

provided at https://cvrl.org). The background corresponds to the origin of cone 

contrast space. The LM contrast plane is a subspace of cone contrast space 

consisting of modulations that affect only L- and M-cone excitations, but which 
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leave S-cone excitations unchanged relative to the background. A point in cone 

contrast space specifies how much L- and M-cone contrast is produced by 

modulating from the background to the specified stimulus. Points lying along the 

x-axis of Figure 2-10A modulate only L-cone contrast while M-cone contrast 

remains constant. Points lying along the y-axis modulate only M-cone contrast 

while keeping L-cone contrast constant. Points in intermediate directions 

modulate both L- and M-cone contrast, in proportion to the x- and y-axis 

components.  

All stimuli were spatially uniform (0 c.p.d.), full-field temporal modulations 

with a radius of 30° visual angle. The temporal modulations were bipolar 

sinusoids around the reference background, with the positive and negative arms 

designed to increase and decrease targeted cone excitations in a symmetric 

fashion. All stimuli were modulated at 12 Hz (Figure 2-10B). A single modulation 

is thus described by pair of vectors in the LM contrast plane that have an angle of 

180° between them, corresponding to the positive and negative arms of the 

modulation (Figure 2-10A). The entries of the vectors are the L- and M-cone 

contrasts of the end points of each arm. In this paper, we refer to a modulation by 

the angle made between its positive arm and the positive x-axis (corresponding 

to 0° in the LM contrast plane), with angle increasing counterclockwise. We refer 

to each angle tested as a chromatic direction. In total, we tested the eight 

chromatic directions: -45°, -22.5°, 0°, 22.5°,45°, 67.5°, 90°, and 112.5°. The -45°, 
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0°, 45°, and 90° directions correspond to L-M, L-cone isolating, L+M, and M-cone 

isolating directions respectively. For all chromatic directions, the spectra were 

designed to produce constant S-cone contrast.  

 

We express the stimulus contrast of a modulation as the vector length (L2 

norm) of the cone contrast representation of its positive arm (Figure 2-10A). 

 

Figure 2-10: Stimulus Space and Temporal Modulations.  

A) The LM contrast plane. A two-dimensional composed of axes that represent the change in L- and M-
cone activity relative to the background cone activation, in units of cone contrast. Each aligned pair of 
vectors in this space represents the positive (increased activation) and negative (decreased activation) 
arms of the bipolar temporal modulations. We refer to each modulation by the angle of the positive arm 
in the LM contrast plane, with positive ∆L/L being at 0°. The black dashed lines show the maximum 
contrast used in each direction. The gray dashed circle shows 100% contrast. The “1” or “2” next to each 
positive arm denotes the session in which a given direction presented. The grouping was the same for 
Measurement Set 1 and Measurement Set 2. B) The temporal profile of a single bipolar chromatic 
modulation. This shows how the cone contrast of a stimulus changed over time between the positive and 
negative arms for a given chromatic direction. The particular direction plotted corresponds to the 45° 
modulation at 12 Hz temporal frequency. The temporal profile was the same for all chromatic directions. 
C) Schematic of the block structure of an functional run. Blocks lasted 12 seconds and all blocks were 
modulated around the same background. The amplitude of the modulation represents the contrast 
scaling, relative to its maximum contrast, for that block. Each run lasted a total of 288 seconds. The dark 
gray vertical bar represents an attentional event in which the light stimulus was dimmed for 500 
milliseconds.  
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Gamut limitations of the light synthesis engine result in different maximum 

stimulus contrasts for different chromatic directions (see heavy dashed contour in 

Figure 2-10A). The maximum contrast used in each direction is provided in Table 

2-3. For all directions, we tested five contrast levels. The contrast levels tested 

for each chromatic direction were selected to be log spaced relative to the 

maximum contrast used. The relative contrasts were 100, 50, 25, 12.5, and 6.25 

percent. We also measured a 0 contrast reference condition in which the 

background without modulation was presented. 

Direction -45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

L-Contrast 8.49% 7.85% 14% 18.48% 42.43% 15.31% 0% 4.98% 

M-Contrast 8.49% 3.25% 0% 7.65% 42.43% 36.96% 22% 12.01% 

S-Contrast 0% 0% 0% 0% 0% 0% 0% 0% 

Total Contrast 12% 8.5% 14% 20% 60% 40% 22% 13% 

Table 2-3: Nominal maximum contrast per direction.  

The top row indicates the chromatic direction in the LM plane. The L, M, and S contrast rows show the 
desired contrast on the L, M, and S cones respectively. The total contrast is the vector length of stimuli 
made up of the L, M, and S cone contrast components and is the definition of contrast used in this study.  

 

Experimental Design: 

We measured whole brain BOLD fMRI responses to stimuli modulated in 

eight different chromatic directions, each with five contrast levels, using a block 

design. In total, we tested 40 different combinations of contrast levels and 

chromatic directions. We split the eight chromatic directions into two separate 

scanning sessions of four directions each (Figure 2-11A). In Session 1, we 
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tested -45° (L-M), 0° (L Isolating), 45° (L+M), and 90° (M Isolating). In Session 2, 

we tested the other four directions (-22.5°, 22.5°, 67.5°, and 112.5°). The order of 

data collection for the two sessions was randomized across subjects. A session 

consisted of 10 runs and each run had a duration of 288 seconds. Within a run, 

each contrast/direction pair was presented within 12 second  blocks (Figure 2-

11). The order of contrast/direction pairs was psuedorandomized within each run. 

Along with four presentations of a background-only block, each run consisted of 

24 blocks. The background-only blocks contained no temporal contrast 

modulation, providing a reference condition for data analysis. We chose 12 Hz 

modulations based upon prior work showing that for stimuli similar to the ones 

used in this study (L+M and L-M), this frequency elicited a robust response in V1 

(Spitschan, Datta, Stern, Brainard, & Aguirre, 2016). Within a block, modulations 

were ramped on and off using a 500 ms half-cosine. Figure 2-10C provides a 

schematic of the structure of an functional run.  

 During each functional run, subjects engaged in an attention task. This 

task consisted of pressing a button every time the stimulus dimmed (Figure 2-

10C). Each attentional event lasted for 500 ms. The probability of an attentional 

event occurring in a block was 66% in Measurement Set 1 and a 33% in 

Measurement Set 2. The onset time of an attentional event within a block was 

random except that the event could not occur during the on and off half-cosine 
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ramp. The purpose of the attention task was to encourage and monitor subject 

wakefulness throughout the scan session. All subjects responded to 100% of the 

attentional events throughout all runs and sessions.  

Each subject was studied during an initial pair of scanning sessions that 

we call Measurement Set 1 (Figure 2-11A), and a subsequent pair of replication 

scans that we call Measurement Set 2 (Figure 2-11B). Measurement Set 2 tested 

 

Figure 2-11: Experimental Design.  

Panels A and B show the block design used for all runs and sessions. Panel A shows Measurement Set 1 
which contained two separate MRI sessions. Each session contained four of the eight chromatic 
directions. The split of directions across the two sessions was the same for all subjects, but which session 
each subject started with was randomized. Within a session we collected 10 functional runs, each 
containing 24 blocks. The 24 blocks consisted of 20 direction/contrast paired stimulus blocks (depicted by 
the gradient squares with direction noted at top and the contrast at bottom of each square) and 4 
background blocks (squares marked “B”). The order of blocks within each run was randomized, with each 
contrast/direction pair shown once per run. Each run had a duration of 288 second. Panel B shows 
Measurement Set 2, which was a replication of Measurement Set 1, with session order and order of blocks 
within run re-randomized. There were 960 blocks across both measurement sets.  
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stimuli with the same chromatic directions and contrast levels as Measurement 

Set 1. The grouping of chromatic directions within a session was the same 

across measurement sets. The two measurement sets used different pseudo-

randomized presentation orders. Both measurement sets also randomly 

assigned which session was acquired first. Across both sessions and 

measurements sets, we collected a total of 960 blocks per subject. The two 

measurement sets were analyzed separately. 

 

MRI Data Acquisition: 

MRI scans made use of the Human Connectome Project LifeSpan 

protocol (VD13D) implemented on a 3-Tesla Siemens Prisma with a 64-channel 

Siemens head coil. A T1-weighted, 3D, magnetization-prepared rapid gradient-

echo (MPRAGE) anatomical image was acquired for each subject in axial 

orientation with 0.8 mm isotropic voxels, repetition time (TR) = 2.4 s, echo time 

(TE) = 2.22 ms, inversion time (TI) = 1000 ms, field of view (FoV) = 256 mm, flip 

angle = 8°. BOLD fMRI data were obtained over 72 axial slices with 2 mm 

isotropic voxels with multi-band = 8, TR = 800 ms, TE = 37 ms, FOV = 208 mm, 

flip angle = 52°. Head motion was minimized with foam padding. 

During MRI scanning, subjects were supine inside the magnet. Visual 

stimuli were presented through an MRI compatible eyepiece to the right eye of 
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the subject. Stimuli were delivered from the digital light synthesizer through a 

randomized optical fiber cable (Fiberoptics Technology Inc.). The randomization 

of the fiber optic cable helped to minimize any spatial inhomogeneities in the 

spectrum of the stimulus. The eye piece provided adjustable focus to account for 

variation in refractive error. As the stimulus was a spatially uniform field, 

however, the effect of any spatial blur upon the stimulus was minimal. 

Subjects used either button of a 2 button MR compatible response device 

(Current Designs) to respond to attention events during the functional runs. 

 

MRI Data Preprocessing: 

Both anatomical and functional data were preprocessed according to the 

HCP minimal preprocessing pipeline (Glasser et al., 2013) Briefly, the anatomical 

data were passed through the pre-freesurfer, freesurfer, and post-freesurfer 

steps of the HCP minimal preprocessing pipeline. This was used to create an 

MNI registration, a Freesurfer segmentation (Dale, Fischl, & Sereno, 1999; 

Fischl, Sereno, & Dale, 1999), and a surface mesh. The functional data were 

preprocessed with both the volume and surface pipelines. The volume pipeline 

applied gradient distortion correction, motion correction (FLIRT 6 DoF; 

Jenkinson, 2002), top-up phase encoding distortion correction (Smith et al., 

2004), and registered the functional images to the anatomical images. The 
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surface pipeline mapped the volume data to the CIFTI grayordinate space which 

includes a left and right 32K cortical surface mesh and subcortical voxels. Finally, 

the functional data were passed through the ICAFIX pipeline, which uses 

independent component analysis and noise/not-noise classification to denoise 

the time course. 

After initial preprocessing, we performed a series of subsequent steps 

before analyzing the time course data. We used a V1 region of interest (ROI) to 

extract the time series from primary visual cortex (see below for definition of 

retinotopic maps). The signals from each voxel were mean centered and 

converted to percent signal change. We then performed nuisance regression 

using the relative motion estimates and attentional events as regressors. The 

relative motion regressors (translation of X, Y, and Z and yaw, pitch, and roll) 

were mean centered and scaled by their respective standard deviations. The 

attention event regressor was modeled as a series of delta functions located 

within the TRs in which the events occurred, convolved with a hemodynamic 

response function. The nuisance regression was performed using the MATLAB 

linear regression function mldivide (MathWorks) with the residual of the model 

used as the “cleaned” timed series. 

Next, we time-point censored the time series of all voxels based on the 

motion estimates. This was done using a modified version of Power et al. (2014). 
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We converted the relative yaw, pitch, and roll estimates to millimeters by using 

the distance that each of these angles subtend on an assumed 50 mm sphere. 

We then took the L2-norm of the 6 translation and mm rotation estimates as a 

metric of frame-wise displacement (FD). We censored three contiguous TRs 

centered on any time point with an FD > 0.5. Time points that exceeded the 

threshold were excluded from analysis, and a table of the number of censored 

frames can be found in Table 2-5. Finally, we applied polynomial detrending by 

fitting a fifth order polynomial to the time course from each voxel and subtracting 

it from the signal. Analyses performed at the level of V1 were done using the 

median value across voxels at each time point to represent the V1 signal. Vertex-

wise analyses were performed on the preprocessed time course of individual 

vertices. 

 

Subject 1 – Measurement Set 2: Session 1 

Run 
Number 

1 2 3 4 5 6 7 8 9 10 

Number of 
Censored 
Frames 
(n/360) 

0 0 8 18 0 26 47 4 0 0 

Subject 1 – Measurement Set 2: Session 2 

Run 
Number 

1 2 3 4 5 6 7 8 9 10 
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Number of 
Censored 
Frames 
(n/360) 

0 0 0 0 0 0 0 7 0 0 

Table 2-4: Number of Censored fMRI frames per Run.  

Values shown are for Subject 2 measurement set 2. The top set of rows show data for session one and the 
bottom set of the show data for session 2. Each set of rows show the number of censored frames per run 
out of 360 frames. Subjects and sessions not shown mean that no frames were censored in those runs. 

 

Definition of Retinotopic Maps: 

Retinotopic regions of interest (ROI) were defined using the anatomical 

template neuropythy (Benson, Butt, Brainard, & Aguirre, 2014) which provides 

eccentricity and polar angle maps for V1, V2, and V3. From this atlas, we defined 

a V1 ROI using the voxels in area V1 between 0-20° eccentricity and 0-180° 

polar angle. We set the eccentricity upper bound of the ROI to be 20° to provide 

a conservative boundary to ensure that we only analyzed stimulated vertices. 

This accounts for some uncertainty in the exact retinal size of the stimulated area 

due to, for example, variation in the distance of the eyepiece to the eye of the 

subject. 

To define the retinotopic regions of interest used for hV4/Vo1 analysis, we 

registered the Wang et al. (2015) retinotopic atlas to CIFTI space. This was 

achieved using the subject specific atlas as defined by Neuropythy (Benson & 

Winawer, 2018). This atlas was then registered to MNI space through the use of 

ANTs (Avants, Epstein, Grossman, & Gee, 2008). With the atlas in MNI space, 
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we then transformed it to CITFI greyordinate space and used the hV4 and the 

VO1 ROIs to extract the time series data.  

 

Subject Specific Hemodynamic Response Function: 

We derived subject-specific hemodynamic response functions (HRFs) for 

each subject and measurement set. The HRF was derived using all the functional 

runs within a measurement set, using the V1 region of interest median data. The 

time-series data were fit with a non-linear model that simultaneously estimated 

the beta weights of the GLM to fit stimulus responses, and the parameters of an 

HRF model. The HRF model was composed of the first three components of the 

“FLOBS” basis set (Woolrich, Behrens, & Smith, 2004). The best fitting HRF 

model was then used to fit that subject’s data for both the GLM and QCM 

models. 

 

General Linear Model: 

We used an ordinary least squares regression with a stimulus design matrix 

that described the stimulus order of a run. The regression matrix contained one 

regressor per stimulus block as well as a single regressor for the baseline, with 

the length of the regressor equal to the number of timepoints (360 TRs). The 

regressor for each stimulus block in a run was modeled by a binary vector that 
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indicated the timepoints when the stimulus was present (ones) or absent (zeros), 

convolved with the HRF. This resulted in 21 GLM beta weights per run. For all 

analyses, model fitting was performed using the concatenation of all functional 

runs within a measurement set. For fitting of the GLM, we concatenated the 

stimulus design matrices such that like contrast/direction pairs were modeled by 

the same regressor. The concatenated stimulus design matrix for a 

measurement set had a total of 41 regressors (20 direction/contrast pairs from 

Session 1, 20 direction/contrast pairs from Session 2, and a shared baseline 

regressor) and 7200 timepoints. Additional details of the GLM are provided in the 

Model Appendix section. 

 

Contrast Response Functions: 

To obtain contrast response function for each color direction, the time 

course data for each run was fit using a general linear model to obtain the effect 

that each stimulus had on the BOLD fMRI response. Grouping the GLM beta 

weights by chromatic direction defined a set of 8 contrast response functions 

(CRFs), one per direction. A CRF describes the relationship, within a particular 

chromatic direction, between the contrast of the stimulus and the measured 

response. The CRFs obtained using the GLM beta weights fit to the 

concatenated time series of Subject 2 can be seen in Figure 2-3. The panels of 
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Figure 2-3 show the CRFs for the eight different chromatic directions. The CRFs 

for Subject 1 and 2 can be seen in Figure 2 - figure supplement 1-2. 

 

Error Bars: 

 The error bars and error regions in all figures are the 68 percent 

confidence intervals. We used 68% confidence intervals as this approximates +/- 

1 SEM for a normal distribution. The percentiles we use to estimate error are the 

result of a bootstrap analysis. The bootstrap analysis was implemented as 

random sampling with replacement of the runs within a measurement set. The 

randomly drawn runs in both sessions were concatenated and fit by all models. 

We performed 200 bootstrap iterations and identified the 68% percent confidence 

interval from the bootstrap results. 

 

Leave-Runs-Out Cross-Validation: 

 To evaluate model performance, we employed a leave-runs-out cross-

validation strategy. For each cross-validation iteration, runs from Session 1 and 

Session 2 were randomly paired within the same measurement set. These pairs 

of runs were held out and the models were fit to the remaining 18 runs. From 

these model fits, a time course prediction for the left-out runs were obtained from 
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both models. We computed the R^2 value between these predictions and the 

time course of the held-out runs. The average R^2 value across the 10 cross-

validation iterations was used to compare models. 

 

Leave-Session-Out Cross-Validation: 

 To evaluate the generalizability of the QCM, we implemented a leave-

session-out cross-validation. As the eight chromatic directions tested were 

separated into two sessions with the same grouping across all subjects and 

measurement sets, we could evaluate the ability of the QCM to make predictions 

for chromatic directions and contrasts not used to fit the model parameters. 

Within each measurement set, we fit the QCM to Sessions one and two 

separately and evaluated how well the parameters of the model predicted 

responses to stimulus directions in the held-out session. These predicted 

responses were grouped by chromatic direction in order to construct a set of 

contrast response functions. The error bars in the CRFs are the 68% confidence 

intervals computed using bootstrapping, where we randomly sampled runs with 

replacement and compute the leave-session-out cross-validation a total of 200 

times. 
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Surface Parameter Map Generation: 

Cortical surface maps were generated to visualize the ellipse angle and 

minor axis ratio parameters of the QCM on the V1 cortical surface. To generate 

the surface parameter maps, we fit the QCM, within a single vertex, to the 

concatenated time course from all runs in a measurement set. We repeat this fit 

for all vertices within the visual areas template map from neuropythy (Benson, 

Butt, Brainard, & Aguirre, 2014). To visualize the surface parameter maps in a 

manner that highlights differences in fits as a function of cortical position, we 

created a series of scatter plots that relate the minor axis ratio and angle 

parameters to the eccentricity of their respective vertices. The regression lines in 

the scatter plots are robust regression lines implemented through the built in 

MATLAB function robustfit which adaptively reweights the data to discount the 

effects of outliers.  

 

Parameter Fitting: 

We fit QCM the model to the concatenated time series for both sessions 

within a measurement set for each subject. The data were fit using the MATLAB 

function fmincon to find a set of model parameters that minimize the difference 

between the actual fMRI time course and the QCM prediction of the time course, 

computed as the root mean squared error.  
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Preprocessing and Analysis Code: 

All code used to perform analyses in this paper may be found in our public 

GitHub repository: https://github.com/gkaguirrelab/LFContrastAnalysis. 

 

Spectroradiometric Stimulus Validations 

The tables below show the stimulus validation measurements for all 

subjects and sessions. The tables show the mean and standard deviation of 

stimulus vector angles and lengths computed from 10 validation measurements 

(5 pre-experiment, 5 post-experiment). Center and periphery denote which set of 

cone fundamentals were used to calculate cone contrast of the stimuli referring 

either the 2° or 15° CIE fundamentals, respectively. 

Subject 1 – Measurement Set 1 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-
41.23 

±3.13 

-
15.90 

±6.59 

2.17 

±1.05 

23.43 

±0.23 

45.21 

±0.23 

69.36 

±1.61 

87.98 

±1.26 

120.94 

±8.45 

Periphery 
Angle 

-
42.85 

±3.04 

-
16.31 

±6.18 

1.61 

±0.44 

22.75 

±0.22 

44.78 

±0.22 

68.13 

±1.54 

88.72 

±0.18 

119.67 

±8.04 
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Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

12.14 

±0.05 

9.02 

±0.75 

14.44 

±0.37 

21.05 

±0.79 

60.92 

±0.09 

38.01 

±1.97 

21.39 

±0.85 

12.56 

±0.38 

Periphery 
Contrast 

12.00 

±0.04 

8.93 

±0.72 

13.98 

±0.35 

20.28 

±0.73 

58.73 

±0.09 

37.81 

±1.89 

21.42 

±0.55 

12.48 

±0.36 

Subject 1 - Measurement Set 2 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-
45.09 

±0.55 

-
22.44 

±0.98 

3.49 

±2.27 

22.97 

±0.15 

45.18 

±0.03 

67.75 

±0.24 

87.81 

±1.69 

112.99 

±1.03 

Periphery 
Angle 

-
46.16 

±0.55 

-
22.32 

±0.99 

3.24 

±2.77 

22.39 

±0.19 

44.92 

±0.02 

66.85 

±0.21 

87.33 

±1.24 

68.34 

±0.92 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

11.75 

±0.01 

8.28 

±0.08 

13.78 

±0.09 

20.35 

±0.22 

60.26 

±0.48 

37.62 

±0.11 

21.82 

±0.08 

12.69 

±0.05 

Periphery 
Contrast 

11.65 

±0.02 

8.29 

±0.08 

13.53 

±0.09 

19.79 

±0.18 

58.47 

±0.48 

38.16 

±0.10 

21.99 

±0.10 

12.81 

±0.06 
Table 2-5: Stimulus Validation Measurements for Subject 1.  

The top set of rows show data for measurement set one and the bottom set show data for measurement set 
2. The dark gray rows show the nominal angle and contrast.  Each cell shows the mean and standard 
deviation of stimulus vector angles and lengths computed from 10 validation measurements (5 pre-
experiment, 5 post-experiment). Center and periphery denote which set of cone fundamentals were used to 
calculate cone contrast of the stimuli referring either the 2° or 15° CIE fundamentals, respectively.  
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Subject 2 - Measurement Set 1 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-45.73 

±1.06 

-19.23 

±2.51 

1.71 

±0.98 

24.04 

±0.39 

45.43 

±0.09 

68.36 

±0.53 

87.87 

±1.64 

114.92 

±1.90 

Periphery 
Angle 

-47.03 

±1.02 

-18.91 

±2.40 

1.63 

±0.77 

23.65 

±0.38 

44.99 

±0.09 

67.18 

±0.52 

87.65 

±1.09 

114.11 

±1.86 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

12.04 

±0.11 

8.41 

±0.21 

14.01 

±0.08 

20.45 

±0.52 

60.72 

±0.38 

39.68 

±0.63 

21.82 

±0.23 

12.73 

±0.16 

Periphery 
Contrast 

11.88 

±0.11 

8.36 

±.21 

13.58 

±0.07 

19.81 

±0.51 

58.56 

±0.35 

39.41 

±0.59 

21.82 

±0.24 

12.62 

±0.14 

Subject 2 - Measurement Set 2 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

X -25.85 

±3.20 

X 22.72 

±0.38 

X 67.42 

±0.16 

X 112.03 

±1.22 

Periphery 
Angle 

X -26.43 

±3.04 

X 22.35 

±0.35 

X 66.36 

±0.16 

X 110.12 

±1.17 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

X 8.36 

±0.16 

X 19.77 

±0.23 

X 39.75 

±0.13 

X 12.75 

±0.15 

Contrast X 8.34 

±0.17 

X 19.21 

±0.23 

X 40.04 

±0.15 

X 12.95 

±0.13 
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Table 2-6: Stimulus Validation Measurements for Subject 2.  

The format of this figure is the same as Table 2-5. Cells that contain an “X” mark stimulus directions in which 
validation measurements were not recorded due to technical difficulty. 

Subject 3 - Measurement Set 1 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-48.84 

±5.02 

-27.84 

±6.02 

5.29 

±4.45 

23.61 

±0.77 

45.41 

±0.15 

67.48 
±0.42 

85.96 

±3.11 

108.56 
±4.89 

Periphery 
Angle 

-50.40 

± 4.90 

-28.48 
±5.97 

5.09 

±4.72 

23.26 
±0.77 

45.02 

±0.13 

66.33 
±0.43 

86.12 

±3.24 

107.49 
±4.78 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

12.25 

±0.32 

8.39 

±0.06 

13.96 

±0.08 

19.78 

±0.20 

61.92 

±1.40 

40.87 

±1.14 

22.91 

±1.30 

13.53 

±0.75 

Periphery 
Contrast 

12.13 

±0.31 

8.30 

±0.08 

13.52 

±0.09 

19.17 

±0.21 

59.76 

±1.36 

40.65 

±1.13 

22.97 

±1.26 

13.47 

±0.71 

Subject 3 - Measurement Set 2 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

X -24.51 

±1.57 

X 22.92 

±0.07 

X 67.65 

±0.19 

X 111.23 

±1.11 

Periphery 
Angle 

X -24.17 

±1.53 

X 22.65 

±0.06 

X 66.57 

±0.19 

X 69.95 

±1.07 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

X 8.24 

±0.07 

X 19.93 

±0.09 

X 39.77 

±.0.27 

X 12.88 

±0.11 
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Periphery 
Contrast 

X 8.23 

±0.07 

X 19.45 

±0.26 

X 40.16 

±0.26 

X 12.92 

±0.10 
Table 2-7: Stimulus Validation Measurements for Subject 3.  

The format of this figure is the same as Table 2-5 and 2-6. Cells that contain an “X” mark stimulus directions 
in which validation measurements were not recorded due to technical difficulty. 
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CHAPTER 3  

Temporal dynamics of color processing measured using a continuous 

tracking task. 

Michael A. Barnett, Benjamin M. Chin, Geoffrey K. Aguirre, Johannes Burge, 

David H. Brainard. 

Abstract: 

We characterized the rich temporal dynamics of color processing using a 

continuous tracking paradigm. Specifically, we estimated temporal impulse 

response functions associated with tracking chromatic Gabor patches and 

measured how the lag functions change as a function of chromatic direction and 

contrast, confined to the LS cone contrast plane. In the same set of subjects, we 

measured detection thresholds for stimuli matched in their spatial, temporal, and 

chromatic properties. Further, we develop the color tracking model (CTM) and 

the color detection model (CDM) and examine their ability to fit the 

measurements of lag and percent correct, respectively. We use a framework 

assuming common mechanisms to test if the same set of mechanisms underlie 

both the color tracking task and the color detection. We find that the fitted 

elliptical isoresponse contours have the same orientation across the two tasks. 

What differs across the task is the ratio of the most to least sensitive mechanism 
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directions. What we find is consistent with chromatic mechanisms being the 

same across tasks but differed in the relative importance they assign to S-cone 

signals. 

 

Introduction: 

To exhibit behaviors based on colors in the environment, light must be 

encoded by the three classes of cone photoreceptors (L, M, and S). The 

encoding of light by the photoreceptors is the initial stage of color vision 

processing and is well characterized by a set of spectral sensitivity functions, one 

function per cone class (Brainard & Stockman, 2010). The subsequent stage of 

color processing compares the output of these cone signals to create three post-

receptoral mechanisms. Both psychophysical and physiological evidence 

suggest that these mechanisms consist of two cone-opponent mechanisms and 

a luminance mechanism. The cone-opponent mechanisms represent the 

differences between cone signals (S-(L+M) and L-M) while the luminance 

mechanism represents an additive combination (L+M) (Krauskopf, Williams, & 

Heeley, 1982). These mechanism are referred to as the cardinal mechanisms, or 

directions, and their recombination begins in the retina with correlates observed 

in the responses of retinal ganglion cells (as well as neurons of the lateral 
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geniculate nucleus) (DeValois, Abramov, & Jacobs, 1966; Derrington, Krauskopf, 

& Lennie, 1984; Lennie & Movshon, 2005).  

This mechanistic approach to studying color vision, in its current form, can 

be traced back to the pi-mechanisms of Stiles (Stiles, 1949) and has been widely 

used in various forms ever since (Stockman & Brainard, 2010). The main 

objectives of this approach have been to estimate the number of color processing 

stages, the number of mechanisms within each stage, and the computations 

performed by these mechanisms. Much debate exists over the claims made on 

each of these points. The further along the color vision processing pipeline these 

mechanisms are, the more disagreement exists in empirical findings about their 

existence and function. Since their proposal by Krauskopf et al. (1986), the 

higher order color mechanisms have been one of the main areas of research. 

These mechanisms are posed as being a recombination of the cardinal 

mechanisms. These mechanisms have been studied using a variety of tasks, 

primarily from detection and adaptation, with the conflicting results present 

especially from noise-masking experiments (Eskew, 2009).  

One approach to study mechanisms is in a framework that asserts 

common mediating mechanisms and then tests the validity of the assumption. 

This approach has been used in various aspects of perception research, notably 

in the work of Philbeck and Loomis (1996) who use this to examine the behaviors 
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that are mediated by perceived distance. They explain that if the two measured 

behaviors vary in a predictable manner whenever the stimulus cues are varied, 

the variation in each behavior is linked to the variation in the same latent percept 

(Philbeck, Loomis, & Beall, 1997; Foley, 1977). To apply this logic to color vision 

mechanisms, if the behavioral measurements vary in a locked relationship when 

the color direction is varied, then one has good reason to suppose that these 

behaviors are mediated by the same underlying color vision mechanism. 

Importantly, it is not expected that any two measured behaviors yield 

commensurate values, therefore, we relate stimulus to measurement via task-

specific nonlinearities. In the present work, we apply this logic using two distinct 

behavioral tasks, to examine the underlying chromatic mechanisms.  

The first behavioral task we employ is the continuous tracking paradigm of 

Bonnen et al. (2015). This task measures a subject’s ability to track, with a 

computer cursor, a target undergoing a random walk (Brownian motion). This 

paradigm provides an efficient way of estimating the temporal impulse response 

function (tIRF) of the visual-motor system that is associated with the tracking 

behavior. In a time-invariant linear system, the tIRF is a complete description of 

the input-output relationship of a system in response to a brief presentation of a 

stimulus (Watson, 1982). An accurate estimation of the tIRF provides a means to 

predict the response of the system to any stimulus input.  Further, the tIRF 



87 
 
 

provides estimates of temporal properties that we can use to characterize the 

behavioral response of the subject. Of these parameters, the lag of the tIRF is 

used as the behavioral measure in the tracking task.   

Previous studies have investigated the lags of the post-receptoral 

pathways using either a two-pulse detection or reaction time paradigm. This 

revealed that lags to S-(L+M) stimuli were larger than those to for L-M stimuli 

(Smithson & Mollon, 2004; McKeefry, Parry, & Murray, 2003). Similar results 

have also been found from electrophysiological recordings in the primary visual 

cortex of nonhuman primates showing the largest lags to S-cone isolating stimuli 

(Cottaris & De Valois, 1998).  

The other behavioral measure we used to estimate the color vision 

mechanism is a detection task. Specifically, we used a two-interval force choice 

(2IFC) paradigm in which subjects discriminate which of two intervals contained a 

Gabor patch target. From these data, we obtain full psychometric functions for 

each chromatic direction tested. These functions provide us with the stimulus 

contrast required to reach the detection threshold. Detection thresholds have 

been used in numerous studies to probe the sensitivity the chromatic 

mechanisms (Krauskopf, Williams, & Heeley, 1982; Wandell & Pugh, 1980; Hillis 

& Brainard, 2007). One example, similar to the present study, is the work of 

Poirson et al. (1990) in which they use detection threshold data to attempt to best 
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estimate the weighting and combination rule used by the chromatic mechanisms 

underlying their specific task. To best estimate the mechanism in our present 

study, we used stimuli that are matched across tasks, as best as possible, in 

terms of their spatial, temporal and, chromatic properties. This maximizes the 

likelihood that any mechanism differences we find are not simply due to a 

difference in stimulus properties.  

In the present study the same set of subjects completed both the color 

tracking task (CTT), to estimate tracking lag, and the color detection task (CDT) 

task, to estimate detection thresholds. Using these data, we developed two 

models, the color tracking model (CTM) and the color detection model (CDM)—

each predicts its respective behavioral measure for any arbitrary stimulus in the 

LS contrast plane, using a small set of parameters. Each model contains two 

stages. The first stage is an elliptical isoresponse contour that represents the 

effect of the chromatic direction. The second is a nonlinearity which represent the 

effect of contrast.  Importantly, the isoresponse contours have the same 

formulation across models and can be compared as a way to examine the 

underlying chromatic mechanisms. We leverage the behavioral measurements in 

a common mechanism framework to evaluate whether these distinct behavioral 

outputs are mediated by common chromatic mechanisms.  
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Results: 

We evaluated the ability of subjects to track moving targets and determine 

how performance varies as a function of the chromatic content of the target being 

tracked. Further, we examined the relationship between tracking and the 

detectability of a stimulus and use this information to test if a common set of 

mechanisms mediates the pattern of results observed in both tasks. In 

Experiment 1, subjects completed a continuous tracking task in which they 

tracked position of moving Gabor targets using a cursor controlled by a computer 

mouse. The Gabor targets were modulated in 18 chromatic directions each with 

6 contrast levels.  The Gabor targets were 2° visual angle in diameter and had a 

spatial frequency of 1 C.P.D. Subjects completed 20 trials per each direction and 

contrast pair. Each trial had a duration of 11 seconds consisting of an initial 1 

second static period followed by 10 seconds of dynamic tracking. Cross-

correlation between the velocities of the subject’s tracking and the velocities of 

the of the target yields the temporal impulse response function (see methods).  

We fit log-gaussian functions to these tIRFs to extract parameters of interest 

which capture the temporal response (lag, integration time, and amplitude). In the 

present study, we focus on the relationship between lag and the 

direction/contrast of the stimuli.  
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Additionally, we collected detection data in the form of a 2-interval forced 

choice (2IFC) task. In this second experiment, subjects completed the CDT in 

which they had to respond with which of two back-to-back intervals contained the 

Gabor targets. Stimuli in this task were modulated in 12 chromatic directions 

each with 6 contrast levels. Subjects collected 40 trials per each direction and 

contrast pair. Each trial had a duration of 1 second consisting of two 400 ms 

intervals with a 200 ms between-interval gap. For each chromatic direction 

tested, we obtain a threshold estimate, defined as the stimulus contrast required 

to achieve 76% correct for that direction (see Methods).  

To determine the extent to which tracking performance was accounted for 

by the visibility of the Gabor targets, we fit a series of mechanistic models and 

examined which best fit the data. The models we employed contain two 

mechanisms with a quadratic combination rule to transform the stimulus input 

into an equivalent contrast. Equivalent contrast is the effective contrast of the 

output of the mechanisms accounting for differences in the sensitivity of the 

chromatic stage. This creates a common variable in that it is the input to the task 

specific non-linearity which determines the task dependent measure.  This 

equivalent contrast step defines the set of relative response patterns that can be 

generated by the system while the non-linearity controls how these responses 

scale with contrast. Here we explicitly test if a common set of mechanisms can 
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produce the relative response pattern necessary to jointly explain the data from 

both the tracking and detection tasks.  

 

Characterizing the Temporal Impulse Response Functions Associated with 

Tracking 

From each run of the tracking experiment, both a time-course of the 

subject’s cursor positions and a time-course of the target’s positions on the 

monitor was obtained. From this, we can cross-correlate the velocities of both 

time-courses to recover the tIRF. In order to interpret the cross-correlation as the 

tIRF, it is important that the target velocities we use not be temporally 

autocorrelated. Since the target follows Brownian motion, the derivative of its 

positions produces the necessary white signal. Cross-correlating the 

concatenation of all the runs, within a subject, provides the mean tIRF. For each 

of the stimulus conditions, we obtain a mean tIRF which we fit with a log-

Gaussian function. Figure 3-1 shows the tIRFs for an example chromatic 

direction. In this figure, the 90° (S-cone isolating) direction is shown with each 

panel showing the data for a different contrast level. The thin black line shows 

the mean cross-correlation function, and the purple line shows the log-Gaussian 

fit. The log-Gaussian fit provides us with a reliable way to estimate the 

parameters of interest. We estimate the lag of the tIRF as the time-to-peak which 
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is the time at which the log-Gaussian reaches its maximum amplitude. This is 

given by the mode of the function (see Methods). We summarize in more detail 

the relationship between lag and contrast in the next section.    

 

 

Figure 3-1: Individual Temporal Response Functions.  

Each subplot shows the temporal impulse response function corresponding to one of the contrast levels 
shown for the 90° chromatic direction. The example data is shown for Subject 2. The contrast value 
corresponding to the functions plotted is displayed at the top of each panel. The thin black line in each panel 
shows the cross-correlation between the tracking and target velocities. The purple line in each panel shows 
the log-Gaussian fit to the cross-correlation. We take the log-Gaussian fit to be the tIRF. From the tIRF, we 
obtain lag as the time-to-peak of the log-Gaussian fit.  

 

Contrast-Lag Functions 
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We first examined the basic relationship that exists between the contrast 

of a stimulus and the lag associated with tracking. To examine this relationship, 

we plot lag as a function of contrast grouped by the chromatic direction of the 

stimuli. These grouped lags are plotted in Figure 3-2 for Subject 2. Each 

subpanel shows the lag estimates plotted as closed circles and color coded by 

their corresponding chromatic direction. Overall, we observe that tracking lags 

decrease as contrasts of the stimuli increase. This was observed in all subjects 

and for all chromatic directions.  

 

While lags generally decreased with contrast, the rate at which they 

decreased, and the minimum lag reached, differed across chromatic directions.  

This rate of decrease difference can be seen in Figure 3-2 in that the L-cone 

isolating (0°) stimuli reaches a lag of roughly 325 ms with approximately 20% 

contrast while it takes nearly 70% contrast to reach the same lag in both the 75° 

and the -75° directions. This shows that the minimum lag reached across 

directions was not uniform, when contrast is matched. This can clearly be seen in 

lag-contrast functions for the L-cone (0°) and S-cone (90°) isolating stimuli. The 

minimum lag for the highest contrast S-cone stimuli barely reaches the lag for the 

lowest contrast L-cone stimuli. Interestingly, we observe that lags asymptote, 

with enough contrast, to a minimum lag and that this is fairly constant if enough 
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L-cone contrast is mixed into the compound Gabor. If enough L-cone contrast is 

mixed into the compound Gabor to achieve a deviation of ~10° from the S-

isolating direction, then the minimum lag converges. This indicates an unequal 

contribution of cone stimulation to lag. We quantify the relative contribution of the 

cones to lag in the section below.   

 

 

Figure 3-2: Lag Versus Contrast.   

Each panel shows tracking lags as a function of the stimulus contrast for each direction used in the 
experiment. The closed circles in each panel are the lags of the tIRFs and are grouped into their 
corresponding chromatic direction by their plot colors. The chromatic direction angles are displayed in the 
legend of each panel. The error bars on each lag estimate are found via a bootstrap procedure and are the 
68% confidence intervals.  The dashed curves in each panel are the lag predictions of the color tracking 
model (see the following sections). The plot colors of the model fit lines are matched to the plot colors for the 
lag measurements.   
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Isoresponse Contours of the Color Tracking Model: 

The CTM provides a way to take in any stimuli, specified in terms of L- 

and S- cones contrasts, and provide predictions of tracking lags. To achieve this, 

the model has two stages to convert the stimulus input to lag. First, a quadratic 

isoresponse contour is defined that allows for the transformation of the stimulus 

contrast and direction into what we term the ‘equivalent contrast’. Equivalent 

contrast is the effective contrast of the stimulus after it has been weighted by the 

underlying mechanism sensitivity for the corresponding chromatic direction. This 

provides a common axis for the lag measurements, collapsing across color 

direction. Second, a single exponential decay function transforms the equivalent 

contrast to a prediction of the tracking lag. Here we examine the isoresponse 

contours. 

The isoresponse contour is defined as a set of stimuli that result in the 

same tracking lags. In the CTM, this contour takes the form of an ellipse in the 

LS cone contrast plane. The isoresponse contour is specified by two parameters: 

1) the ellipse angle (representing the direction of least sensitivity; 

counterclockwise to the positive abscissa) and 2) the minor axis ratio (the ratio of 

vector lengths between the most and least sensitive directions). Within this 

framework, these parameters provide a full account of chromatic sensitivity. 

Figure 3-3 shows the isoresponse contours for the CTM for all three subjects. 
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For all subjects, the angle of the isoresponse contours was oriented at 

approximately 90°. This means that the chromatic mechanisms underlying 

tracking are least sensitive to stimuli modulated in the S-cone isolating direction.  

Inspection of the orthogonal direction shows that the underlying mechanisms are 

most sensitive to stimuli modulated in the L-cone isolating direction. Across all 

subjects, the average minor axis ratio parameter is 0.03. Taken together, the 

ellipse parameters state the underlying chromatic mechanisms are ~33x more 

sensitive to L-cone isolating stimuli than S-cone isolating stimuli in the color 

tracking task.  We found good agreement of the ellipse parameters across 

subjects. The scale of the ellipses in Figure 3-3 are set via the criterion lag set to 

400 ms but the structure of the CTM enforces that the orientation and minor axis 

ratio of the ellipse be the same across all choices of criterion lag. The parameter 

values for each subject’s isoresponse contour are displayed in their 
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corresponding panel in Figure 3-3.  

 

Figure 3-3: Isoresponse Contour for the Color Tracking Model.  

The grey ellipse in each panel shows the isoreponse contour associated with the color tracking task for each 
subject. The isoresponse contour is the set of stimuli that result in the same tracking lags. This contour is 
constrained to take the form of an ellipse in the LS cone contrast plane. The ellipse is specified by two 
parameters: 1) the ellipse angle and 2) the minor axis ratio. The ellipse angle represents the direction of 
least sensitivity defined counterclockwise to the positive abscissa. The minor axis ratio is the ratio of the 
vector lengths between the most and least sensitive directions. The scale of the ellipses across subjects is 
set by the criterion lag which was is 400ms in this figure. 

Nonlinearity of the Color Tracking Model: 

Application of the isoresponse contour to convert stimulus contrast to 

equivalent contrast creates a scalar equivalent contrast which we can use to 

predict the lag response. This equates stimuli across different color directions 

making them a function of this single variable. Therefore, we can transform 

equivalent contrast into predicted tracking lag via a single static non-linear 

function. The functional form we employ to convert equivalent contrast to lag is a 

three-parameter exponential decay function (see Methods). 
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Figure 3-4 shows the nonlinearity of the CTM for all subjects. Across all 

subjects, these functions describe how the tracking lag decreases with increasing 

equivalent contrast. Across the subjects, lags asymptote at a minimum lag of 

~340ms. This indicates that even with increasing contrast, there exists a limit on 

minimum tracking lag imposed by the sensory and motor systems. Table 3-1 has 

the nonlinearity parameters for all subjects.  

Table 3-1: Parameters of the nonlinearity for the tracking task.  

Columns corresponds to individual parameters. Rows correspond to individual subjects.   

 

One assumption built into the CTM is that underlying processing stages 

are color–contrast separable. The color stage is represented by the isoresponse 

contours and the contrast stage by the nonlinearity.  To demonstrate the validity 

of this assumption, we used the isoresponse contour to convert each stimulus 

contrast from the tracking experiment into its equivalent contrast. With this, we 

replot the lags (as seen in Figure 3-2) on the equivalent contrast axis as the 

closed circles in Figure 3-4. For Subjects 1 and 2, the single nonlinearity well 

 Scale Amplitude Minimum Lag 

Subject 1 1.94 0.65 0.34 

Subject 2 1.50 0.23 0.33 

Subject 3 1.88 0.45 0.35 
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captured the relationship between lag and equivalent contrast for all chromatic 

directions. While the data for subject 3 grossly follows the nonlinearity, it appears 

this relationship would be better fit by two separate exponential decay functions. 

In this case the CTM places the nonlinearity in the middle of this bifurcation to 

maximally capture the variance. The grouping of these directions do not 

correspond to the grouping of directions in the experimental sessions, ruling out 

better tracking performance for a particular session. Overall, the general 

agreement between the tracking lags and nonlinearity indicate that it is 

appropriate to separate the effects of chromatic direction and contrast. 

 

Figure 3-4: Nonlinearity of the Color Tracking Model.  

The grey curve in each panel shows the nonlinearity of the color tracking model. The x-axis it the equivalent 
contrast which is the result of the isoresponse contour. The y-axis respresent the response, which in this 
figure, is the lag from the tracking task in seconds. The closed circles in each plot are the tracking lags from 
the tIRF. The stimulus contrasts of the for each lag has been adjusted by the isoresponse contour allowing 
the lags for all stimuli to be plotted on the equivalent contrast axis. The color map denotes which color 
correspond to which directions. The inset color map in each panel marks the directions tested which were 
unique to each subject.  
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Characterizing Thresholds Associated with the Detection Task: 

In the detection experiment, subjects participated in a 2IFC task in which 

they were asked to report which of 2 intervals contained the Gabor target. The 

Gabor target varied in its chromatic direction and contrast just as in the previous 

tracking task. For each direction and contrast, we obtain a percent correct which 

is the number of times a subject correctly identified the interval containing the 

target divided by the number of trials for that stimulus condition. Just as with the 

tracking lag estimates, we examine the relationship between percent correct and 

contrast by grouping the measurements by their chromatic direction. These 

grouped percent correct measures are plotted in Figure 3-5 as a series of 

psychometric functions shown for Subject 2. Each subpanel shows the percent 

correct plotted as closed circles. For all subjects and chromatic directions, we 

observed that percent correct increases as the contrasts of the stimuli increase.  

In the detection task, we define threshold as the stimulus contrast required 

for the subject to reach 76% correct. We obtain a threshold for each of the 12 

chromatic directions tested in the detection experiment.  For Subject 2, the 

threshold for each direction, as found by individually fitting cumulative Weibull 

functions for each direction, are displayed in the corresponding panels in Figure 

3-5. Examining threshold as a function of chromatic direction reveals that the 

subjects are much more sensitive to targets modulated in the 0° direction than 
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the 90° direction. For Subject 2, the contrast required to reach threshold in the L-

cone isolating (0°) direction is 0.35% while it takes nearly 4.4% contrast to reach 

threshold S-cone isolating direction. The testing direction were well sampled in 

that the range of contrast tested produced percent corrects ranging between 

~50% correct (chance) at the lowest contrast to 100% at the highest.  

 

Figure 3-5: Detection Vs. Contrast.   

Each panel shows the percent correct in the detection task as a function of the stimulus contrast for each 
direction used in the experiment. The closed circles in each panel are the percent correct for an individual 
stimulus condition. The percent correct are grouped into their corresponding chromatic direction plotted in 
individual panels. The chromatic direction angle is displayed above each panel. The dashed black line in 
each panel shows the cumulative Weibull function fit separately for each direction.  We use these curves to 
find the threshold in each direction. This is the contrast need to detect the stimulus 76% of the time. 
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Thresholds are displayed in the bottom right of each panel. The solid curves in each panel are the percent 
correct predictions of the color detection model which is fit to all the data simultaneously (see the below 
sections).   

 

Isoresponse Contours of the Color Detection Model: 

Just as with the tracking task, we would like a way to take any stimulus 

contrast in the SL plane and produce a prediction of percent correct for the 

detection task. To accomplish this, we employ the Color Detection Model (CDM). 

The CDM is structured the same as the CTM with two stages to convert the 

stimulus input to percent correct. The first stage uses the same formulation of the 

quadratic isoresponse contour as defined in the CTM to transform the stimulus 

contrast into equivalent contrast. The second stage is a task-specific linking 

function that takes equivalent contrast and produces estimates of the variable of 

interest, in this case percent correct. The functional form we use for the detection 

task is a cumulative Weibull offset by the guess rate of 50%. This allows us to 

convert the equivalent contrast to a prediction of the precent correct which is 

bound between 50% and 100% correct. 

The elliptical isoresponse contours of the CDM for each subject are 

plotted in the panels of Figure 3-6. These isoresponse contours show that the 

ellipses are oriented at approximately 90° for all subjects. This shows that the 

chromatic mechanisms underlying detection are least sensitive to stimuli 
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modulated in the S-cone isolating direction and most sensitive to stimuli 

modulated in the L-cone isolating direction. The minor axis ratio ranged between 

0.08 and 0.10 across the subjects. Therefore, the ellipse parameters show the 

underlying chromatic mechanisms for detection are ~11x more sensitive to L-

cone isolating stimuli than S-cone isolating stimuli for the detection of the Gabor 

target. We find good agreement in both the ellipse angle and the minor axis ratio 

across the subjects. The scale of the ellipses in Figure 3-6 is set via the criterion 

percent correct set to 76%. The parameter values of subject’s isoresponse 

contour are displayed in their corresponding panel in Figure 3-6. 

 
Figure 3-6: Isoresponse Contours for the Color Detection Task.  

The grey ellipse in each panel shows the isoreponse contour associated with the color detection task for 
each subject. These contours define a set of stimuli which produce the same percent correct in the detection 
task. The isoresponse contour of the color detection model has the same parameterization as the color 
tracking model. The scale of the ellipses across subjects is set by the criterion percent correct which was set 
to 76% correct in this figure. 
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Nonlinearity of the Color Detection Model: 

Figure 3-7 shows the nonlinearity of the CDM for each subject plotted as 

the grey line in each panel. These functions constrain how the percent correct of 

the detection task grows with increasing strength of the equivalent contrast.  Just 

as with the individual psychometric functions, we can define a threshold for the 

nonlinearity as the equivalent contrast required to reach 76% (creating an 

‘equivalent threshold’). Across the subjects, the equivalent threshold ranged 

between 4.5% to 9% contrast. This captures the overall chromatic mechanism 

signal strength required for a subject to detect the presence of a target, 

independent of color direction. Table 3-2 has the nonlinearity parameters for all 

subjects.  

 Lambda Exponent  

Subject 1 0.10 1.98 

Subject 2  0.05 2.04 

Subject 3 0.05 2.32 

Table 3-2: Parameters of the Nonlinearity for the Detection Task.  

Columns corresponds to individual parameters. Rows correspond to individual subjects.  

 

The CDM shares the same assumption of separability that is built into the 

CTM (color–contrast separability). Just as with the CTM, the color stage is 
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represented by the isoresponse contours and the contrast stage by the 

nonlinearity. To demonstrate this, we plot the percent as a function of its 

equivalent contrast (closed circles in Figure 3-4). For all Subjects, the single 

nonlinearity captures this relationship well for all chromatic directions. For most 

directions, it appears that the slopes of the psychometric function are fairly 

constant with a few exceptions in Subject 1. The overall agreement between the 

adjusted percent correct and the nonlinearity indicate that, like the CTM, the 

separability assumption is reasonable for the CDM.  

 
Figure 3-7: Nonlinearity of the Color Detection Model.  

The grey curve in each panel shows the nonlinearity of the color detection model for all subjects. The x-axis 
is equivalent contrast. The y-axis is the response, which in the figure, is the percent correct of the detection 
task. The closed circles in each plot are the percent correct for each condition tested. The stimulus contrasts 
for each closed circle has been adjusted by the isoresponse contour allowing the percent correct to be 
plotted on the equivalent contrast axis. The color map denotes which color correspond to which directions. 

 

Cross-Model Comparison: 
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To evaluate the extent to which these two behaviors share common 

mechanisms, we evaluate how well each model fits when it is constrained to 

have the other model’s isoresponse parameters.  This is accomplished by first 

fitting the CTM and the CDM to their respective data sets. This yields the 

parameters reported in the sections above. The CTM and the CDM have the 

same general structure and the parameterization of their isoresponse contours is 

identical. Because of this, we can simply lock the angle and minor axis ratio of 

the CTM to be the parameter values found in the original CDM fit and vice versa. 

This yields two models in which we have swapped their chromatic processing 

stage. With the parameters locked, we refit the parameters of the task 

nonlinearity. The results of this exercise can be seen in Figure 3-8 for Subject 2.  

The top row shows the color tracking task and the bottom row shows the color 

detection task. The columns correspond to different chromatic directions.  As in 

Figure 3-2 and Figure 3-5, the closed circle represents the behavioral measure, 

and the dashed lines show the output of their respective models when fit to their 

own data. The lower saturation dashed line in each panel is the result of model 

fitting with the locked parameters. We observe that the general pattern of the 

predictions is preserved across the two fitting methods, but the locked method 

provides a worse account to the data overall.  
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Figure 3-8: Cross-Parameter Model Comparison.  

The top row corresponds to the color tracking task and the bottom row is the color detection task. The 
columns correspond to different chromatic directions. The data shown in the figure are for Subject 2.  The 
format of each panel is the same as in Figures 3-2 and 3-5. The closed circle represents the lags (top), and 
the percent correct (bottom). The solid line in each panel shows the output of the respective model when it is 
fits its own data. The dashed line in each panel is the result of the model fits in which the isoresponse 
contour parameters were swapped and locked in a subsequent refit.  

 

Conclusions: 

We set out to examine what factors support tracking behavior and how 

this behavior varies as a function of both the chromatic direction and contrast.  

To achieve this, we made measurements of the temporal dynamics of color 

processing using a continuous tracking paradigm. We measured the processing 

lags associated with tracking chromatic Gabor patches modulated in 18 
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directions. The cross-correlation between the target and tracking velocities 

yielded estimates of the tIRF for each direction. From log-Gaussian fits to these 

empirical cross-correlation functions, temporal lag was extracted for each 

stimulus condition. We examined how these lags changed as a function of 

chromatic direction and contrast. For all subjects and color directions, we found 

that temporal lag decreases as contrast increases. Lags varied as a function of 

the chromatic direction with the shortest lags to stimuli modulated in the L-cone 

isolating direction and the largest lag to S-cone isolating stimuli.  

Additionally, we collected 2IFC detection data in the same set of subjects. 

To obtain thresholds estimates, defined as the contrast required to reach 76% 

correct, we fit a cumulative Weibull function separately to the detection data from 

each chromatic direction tested. We observe the same pattern of sensitivities for 

tracking lags and detection thresholds. Thresholds were smallest for detecting 

stimuli modulated in the L-cone isolating direction and the largest for S-cone 

isolating stimuli, when contrast is matched. Given that the relative sensitivities 

were similar across the two experiments, we were interested in comparing them 

to determine if the underlying mechanisms are the same.   

To quantitatively examine the data from both experiments in a manner that 

allows for the comparisons of the underlying chromatic mechanisms, we develop 

models of both tracking lag and threshold detection. These models are the color 
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tracking model (CTM) and the color detection model (CDM). Both models 

operate in two stages.  The first stage, which is the same in both models, is a 

quadratic isoresponse contour which allows for the conversion to ‘equivalent 

contrast’. Equivalent contrast represents the output strength of the color 

mechanism stage of the model creating a single response variable. The second 

stage of the model uses a task-specific nonlinearity to transform the equivalent 

contrast to a prediction of behavioral variable of interest. Interpreting the 

isoresponse contour parameters of the CTM reveal that the underlying chromatic 

mechanisms are ~33x more sensitive to L-cone isolating stimuli than S-cone 

isolating stimuli for the color tracking task. The isoresponse contour parameters 

of the CDM show that the underlying chromatic mechanisms for detection are 

~11x more sensitive to L-cone isolating stimuli than S-cone isolating stimuli for 

the detection of the Gabor target.  

 

What does this tell us about chromatic mechanisms? 

Prior work on uncovering the chromatic mechanisms of human color vision 

have reliably found two sets of mechanisms. The first set of mechanisms, 

primarily found via color matching experiments, reveal the spectral sensitivities of 

the L-, M-, and S-cone photoreceptors (Stockman & Sharpe, 1999). These three 

independent mechanisms are the first stage of color vision and have been well 
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characterized. A subsequent set of chromatic mechanisms have been revealed 

which are referred to as the post-receptoral or cardinal mechanisms (Krauskopf, 

Williams, & Heeley, 1982; Derrington, Krauskopf, & Lennie, 1984). These 

correspond to two chromatic mechanisms and one luminance mechanism. The 

two chromatic mechanisms, which represent the differences between cone 

signals, are the L-M (red-green) and the S-(L+M) (blue-yellow) mechanisms.  The 

luminance mechanism represents an additive combination (L+M). This line of 

experimentation seeks to answer a set of questions, primarily if there are 

additional mechanisms to the cardinal ones, and where in the visual system 

these exist. Psychophysics has been used in a variety of experiments (detection, 

adaptation, noise masking, etc.) to address the question of how many 

mechanisms exist beyond the cardinal mechanisms (Eskew, 2009; Gegenfurtner, 

2003; Stockman & Brainard, 2010). The result for both estimating the number 

and location have been highly variable. The differences in the findings come 

down to differences in the number of mechanisms as well as the computation 

performed by these mechanisms (linear vs. nonlinear).  

The current study allows us to ask if set of mechanisms that underly the 

color tracking task are the same set of mechanisms that underly the color 

detection task. We assess this through examining the shapes of their respective 

isoresponse contours, following the logic set forth by of Philbeck and Loomis 

(1996). Importantly, we controlled (as well as possible) the spatial, temporal, and 
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chromatic proprieties of the stimuli across the tracking and detection tasks.  This 

allows us to be more certain that the differences are due to internal factor rather 

than stimulus driven. Across the two tasks, we find that the orientations of the 

ellipses are the same (90°). This indicates that the two chromatic mechanisms in 

the LS plane are oriented in the same direction across tasks.  What does differ 

across the tasks is the minor axis ratio of the ellipses. This shows that the 

relative sensitives of the two mechanisms are different across the two tasks. The 

mechanism aligned with the L-cone isolating direction is ~33x and ~11x more 

sensitive than the one aligned with S-cone isolating direction for the tracking and 

detection tasks, respectively. Taken together, the contours tell us that the 

chromatic mechanisms are the same across tasks and what changes is the 

relative importance of the S-cone signals.  The relative sensitivity difference is 

~3x higher for the tracking task than the detection task meaning that the tracking 

task makes less use of the S-cone signals. 

The implication that the elliptical isoresponse contours can be used to 

describe the underlying chromatic mechanism comes with caveats.  We would 

like to be able to treat the principle axes of the ellipse as defining the chromatic 

mechanisms. Since the elliptical model does not have a unique way to recover 

these axes, we cannot say for certain that the axes of the ellipse are the visual 

mechanisms. Despite the angle and minor axis ratio of the CTM and CDM being 
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the best fitting parameters, no pair of axes can be uniquely interpreted as the 

mechanisms from the resulting ellipse shape. Chromatic mechanism estimates 

from the ellipse are unique only up to an orthogonal transformation. Despite this, 

the agreement of the ellipse orientations across our tasks as well as their 

agreement with prior psychophysical results point to their interpretation as the 

mechanism in the LS plane as being the most parsimonious explanation of the 

data. For further reading on the point see (Poirson, Wandell, Varner, & Brainard, 

1990) and (Barnett, Aguirre, & Brainard, 2021).  

Previous work examining chromatic sensitivity that took a similar approach 

found results that aligned with the ones in the present study, particularly the work 

of Poirson and Wandell (Poirson & Wandell, 1990). They examined detection 

thresholds obtained under two separate experimental paradigms. These were a 

color matching task and a color discrimination task. The primary variable that 

was manipulated was the amount of time subjects had to make a judgement. 

Subjects had free response time for the matching task and a temporally restricted 

response period for the detection task. From this data, they fit elliptical 

isodetection contours and examined how the size and orientation changed 

across tasks. They found that the ellipses for the color-matching task was ~7x 

smaller than the discrimination ellipse. This result parallels our findings in that we 

observe a similar reduction in sensitivity in the task that is more temporally 
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demanding. Overall, Poirson and Wandell found that the fitted ellipsoids differed 

in both their minor axis ratios and orientation across tasks. Our results differ in 

that we only find changes in the minor axis ratio and not in the orientation.  

 

Relation to psychophysics: 

Importantly, the formulation of the CTM and CDM allow for predictions of 

their respective behavioral measures for any input stimulus. This is an advance 

over previous studies of color vision temporal properties. Previous studies used 

methods that were laborious and restricted the number of directions tested. 

These directions were usually restricted to the cardinal directions. Therefore, 

most previous studies assumed the mechanisms a priori. Within this framework, 

a well-studied aspect of temporal processing of the chromatic mechanisms 

specifically examined the latency of the S-cone pathway. A common metric used 

has been reaction time to estimate the latencies. Smithson and Mollon (2004) 

measured thresholds and reaction times and claim that when luminance cues are 

masked, S-cone latency differences from the L/M direction drop to within 20-

30ms. Using two-pulse detection method, Shinomori and Werner (2008) found 

that the lags of their tIRF for increment and decrement S-cone isolating 

modulations were 50–70 and 100–120 ms, respectively. Mollon and Krauskopf 

(1973) measured reaction time as a function of background illuminance for 430, 
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500, and 650nm stimuli and found reaction times of ~300-400 ms with the 

highest latencies associated with the 430mn stimuli.  

To our knowledge, we are presently the only study to implement the 

continuous tracking paradigm to estimate the lags associated with tracking S-

cone isolating stimuli. This paradigm allows for the efficient estimation of the tIRF 

which made it possible to measure tracking lags along 18 different chromatic 

directions in the LS plane, each with 6 contrast levels. We find that with sufficient 

S-cone contrast we can push the tracking lags associated with the S-cone 

isolating direction within 50 ms of the L-cone isolating direction. Across the 

previously described studies examining S-cone lags, it is clear that the exact 

value of this latency is dependent on the task. Therefore, it is important to 

characterize lags in terms of the relative latencies across the different chromatic 

directions. The CTM allows for the easy implementation of examining this relative 

metric.  

 

Chromatic Direction – Contrast Separable Models: 

Both the CTM and the CDM are separable models with respect to how 

they treat the effects of chromatic direction and contrast on the predicted 

response. This separability allows for the evaluation of the chromatic 

mechanisms that is independent from the effects of contrast. We find that for 
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both tasks, the most sensitive direction is to L-isolating contrast modulations and 

least sensitive to be S-isolating modulations. The separable assumption of the 

model allows for the sensitivity finding to be valid at any contrast level tested. An 

explicit test of the validity of the separability assumption can be seen in Figures 

3-5 and 3-7. In both plots, the stimulus contrasts of the behavioral measures 

have been adjusted by the isoresponse contour to expressed as equivalent 

contrast and are plotted as the closed circles in each panel. The validation of the 

separability assumption can be seen in the lack of biased deviations in the 

overlap between these closed circles and their respective nonlinearities. The 

chromatic direction and contrast separability allows for more confident 

estimations of the isoresponse contours since their shape does not depend on 

the specific contrast levels chosen in the experiments.  

 

Generalizing the CTM and the CDM: 

A more general account of the present study is one that includes 

modulating stimuli in all three-dimension of L-, M-, and S-cone contrast space. 

The current set of results are restricted to the LS contrast plane. Therefore, it is 

not known if the axes of the elliptical isoresponse contour we found will overlap 

with two of the three axes of an ellipsoidal isoresponse surface.  It is only the 

case that the current contours are a 2-dimensional cross section of the larger 3-
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dimesional surface, specifically the LS plane. Tracking and detection 

measurements made using stimuli that modulated in the M-cone isolating 

direction (and combinations and 3 classes of cones) would allow for a fuller 

account of the mechanisms serving these tasks. The generalization of the CTM 

and the CDT is straightforward in that this expanded measurement set would be 

modeled using an ellipsoidal isoresponse surface rather than the elliptical 

contour. The ellipsoidal isoresponse surface converts stimuli, specified by their L-

, M-, and S-cone contrast, into equivalent contrast just as is done in the current 

first stage of the CTM and CDM. The second stage of these models, the task-

specific nonlinearities, would remain unchanged.  With this expanded 

dimensionality of the model, the assumptions of separability would need to be 

checked for the newly tested directions in order to test this generalization.  

The CTM and the CDM may be further generalized, even within the 

current LS contrast plane, by variations in the mean of the velocity distribution 

that defines the random walk of the Gabor patches.   In the current experiment, 

we fixed the mean of the velocity distribution to ~4 °/s with 90% of the velocity 

distribution within ~10°/s. Changing the mean of this distribution will have the 

effect speeding up or slowing down the average walk speed. The CTM and CDM 

could be fit to data from patches at various other velocities with the goal of 

observing how the chromatic mechanisms change. The stimuli in our experiment 
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are of a fixed spatial configuration, the stimuli were presented at a size of 2° of 

visual angle and at spatial frequency of 1 C.P.D. Either of these parameters 

could be varied and the models fit to this new data. Examining how the CTM and 

CDM fits change with changing size and spatial frequencies might allow for 

models of tracking that are for any arbitrary complex spatial stimuli. 

Finally, more examination of the other tIRF parameters may reveal 

interesting relationships in the data that have yet to be explored. The log-

Gaussian fits provide an additional two parameters that can be explored. The first 

parameter is the amplitude of the tIRF. The amplitude is the maximal correlation 

of the cross-correlation between the tracking and target velocities. This 

parameter is difficult to interpret since multiple factors in tracking behavior affect 

this value. The other parameter is the width of the log-Gaussian. This value has a 

more straightforward interpretation as the dependance on the stimulus history. 

Either of these parameters could take the place of lag and the analyses of this 

paper could be redone.    

 

Materials and Methods: 

 

Subjects: 
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Three subjects (age 28, 29 ,33; two male) took part in all psychophysical 

experiments. All subjects had normal or corrected to normal acuity and normal 

color vision. All subjects gave informed written consent. The research was 

approved by the University of Pennsylvania Institutional Review Board.  Two of 

the subjects are authors on the on this paper and one was naïve to the purpose 

of the study.  

 

Experimental Session Overview: 

All subjects participated in both the color tracking task and color detection 

task experiments. In total, all experiments spanned eight sessions. The first six 

sessions were for the CTT paradigm, and the remaining sessions were used for 

the CDT. Each of the CCT sessions lasted approximately 1.5 hours and each 

CDT session lasted 1 hour. Subjects completed the full set of tracking 

experiments before completing the detection experiment. All experiments were 

preregistered: the Color Tracking Task (Exp. 1: https://osf.io/xvsm3/; Exp. 2: 

https://osf.io/5y2dh/; Exp. 3: https://osf.io/e6dfs/) and the  Color Detection Task 

(Exp. 4: https://osf.io/ekv24/; Exp. 5: https://osf.io/ekv24/).   

 

Stimulus Display and Generation: 
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The stimuli were designed to create specific responses of the cone 

photoreceptors using silent substitution (Estévez & Spekreijse, 1982). Silent 

substitution is based on the principle that sets of light spectra exist that, when 

exchanged, selectively modulate the activity of cone photoreceptors. Therefore, 

modulating the stimuli, relative to a background, can selectively modulate the 

activity of the L-, M-, or S-cones, or combinations of cones for a specified 

contrast.  These calculations require a model of the spectral sensitivities of the 

cone photoreceptors and spectral power distributions of the monitor primaries. 

We use the Stockman–Sharpe 2-degree cone fundamentals as the model of the 

cone sensitivities. To obtain the spectral power distribution of the monitor RGB 

primaries, we performed a monitor calibration using a PR-650 SpectraScan 

radiometer. This also allowed us to obtain the gamma function for each primary 

as well.  

All stimuli were generated using a ViewSonic G220fb CRT monitor with 

three primaries which had a refresh rate of 60 Hz. The horizontal and vertical 

resolution of the monitor was 1024x768 pixels, respectively, corresponding to a 

screen size of 405 x 303 mm. Subjects viewed the monitor at distance of 92.5 

mm for tracking and 105 mm for detection.  

 

The Visual Stimuli: 
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The stimuli for all experiments were restricted to the LS plane of cone 

contrast space. Cone contrast space is a three-dimensional space with each axis 

showing the change in the quantal catch of the L, M, and S cones relative to a 

specified reference spectrum. This reference spectrum is referred to as the 

background light. The background used in all experiments was luminance: Y = 

30.75 cd/m2, chromaticity: x = 0.326, y = 0.372. These were calculated using the 

XYZ 2° color matching functions, https://cvrl.org). We set the origin of the LS 

cone contrast plane to be this background and confined all modulation to this 

plane. Modulations made around this background have the effect that they only 

modify the L- and S-cone excitations, while leaving M-cone excitations 

unchanged. We refer to the chromatic component of the stimuli used in this 

experiment as vectors in this plane. Each stimulus has an L-cone and S-cone 

vector component, and we refer to the stimuli by the angle computed by the 

ratios of these components.  In this space, S-cone isolating stimulus vectors are 

oriented at 90° and L-cone isolating stimulus vectors are oriented at 0°. We refer 

to these angles as the chromatic directions. The contrast of a stimulus is defined 

as the L2-norm of the stimulus vector in the LS plane.  

The spatio-temporal parametrization of the stimuli are identical across 

both experiments. The stimuli used were sine phase Gabor patches. The 

frequency of the sine wave was set to 1 C.P.D. and the standard deviation of the 



121 
 
 

Gaussian window was set to 0.6 degrees of visual angle (DVA). This standard 

deviation corresponds to a FWHM of 1.41° and 90% of the Gaussian envelope 

being contained in a 2° diameter window. The Gabor patch performed a random 

walk confined to move horizontally across the monitor. The Gabor target updated 

its position on each frame according to a Gaussian velocity distribution. This 

distribution was centered on 0 °/s with a standard deviation of 2.6 °/s and a 

FWHM of 6.1 °/s. Values drawn from this distribution with a negative sign 

corresponded to leftward motion and values with a positive sign corresponded to 

rightward motion. This resulted in an average speed of 2.07 °/s and an average 

step size of approximately 0.63 mm. What varied across stimuli was the 

chromatic content of the Gabor with the spatio-temporal parameters fixed for all 

directions and contrasts. The exact chromatic directions and contrasts used in 

each experiment are reported their respective sections below.  

 

The Color Tracking Task: 

Subjects participated in the continuous tracking task in which they are 

asked to track the position of a target Gabor patch.  On each trial, the Gabor 

patch spatially jittered its position along a horizontal linear path across the middle 

of the monitor in accordance with the temporal parameters noted in the prior 

section. The subjects were instructed to indicate the position of the Gabor patch 
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by continuously trying to keep the cursor in the middle of the patch. Subjects 

controlled the position of the cursor though the use of a computer mouse.  At the 

end of each trial, we obtain a time-course of the target positions on the screen 

and the subjects cursor responses. Each trial lasted 11 seconds with an initial 

static period of one second. Example traces of the target (grey line) and tracking 

(black line) position as a function of time can be seen in the upper left panel in 

Figure 3-9. 

 The Gabor patches were modulated in 18 different chromatic directions 

each with 6 contrast levels. Tables 3-3 and 3-4 summarize the directions and 

contrast used in the Color Tracking Task for all subjects.  These directions were 

split into three sets of experiments each with 6 directions.  Within each set, 

subjects completed 2 sessions each made up of 10 experimental runs. An 

experimental run consisted of 36 trials corresponding to a single presentation of 

each of the conditions (6 directions and 6 contrast). Across the runs, we flip the 

handedness of the sine-phase Gabors such that alternating runs are offset by 

180° spatial phase of the Gabor. The order of trials within a run was pseudo-

randomized such that each session contained the desired number of repeats. 

Subjects controlled the pace of the trials and between trials only the background 

was present. A single session contained 360 trials lasting approximately 1 hour.  
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In total, across all three experimental sets, 2,160 trials were collected per subject 

equal to 6 hours of tracking data. 

 

 
Figure 3-9: Overview of the Color Tracking Task.  

The top left panel shows example position (mm) traces for an example run in the experiment. The grey line 
shows the target’s position from center as a function of time. The black line shows the subject’s cursor 
position from center as a function of time. The lower left panel show the velocities for the example data in 
the panel above. The grey line shows the velocity of the target as a function of time. The black like shows 
the cursor velocity as a function of time. The right panel shows the resulting tIRF. The light grey line shows 
the cross-correlation between the two velocities in the lower left panel.  This cross-correlation function is the 
tIRF and the purple line show the log-Gaussian fit. We use the mode of the log-Gaussian to estimate the 
tracking lag.  
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Table 3-3: The Chromatic Directions and Contrasts – CTM. 

The chromatic directions and maximum/minimum contrasts of the tracking task. This table includes the 
chromatic directions common to all subjects.    

 

Subject 1 89.6° 88.6°  87.6° -1.4° 
 

Max Contrast 85% 85% 85% 18% 

Min Contrast 16 16% 16% 3% 

Subject 2 89.1°  88.1° 87.1° -0.9° 

Max Contrast 85% 85% 85% 18% 

Min Contrast 16 16% 16% 3% 

Subject 3 89.1° 88.1°  87.1° -1.9° 

Max Contrast 85% 85% 85% 18% 

Min Contrast 16 16% 16% 3% 

Table 3-4: Subject Specific Directions and Contrasts – CTM. 

The chromatic directions and maximum/minimum contrasts of the tracking task. This table includes the 
chromatic directions specific to an individual subject. 

 

The Temporal Impulse Response Function: 

From the time-courses of the target and the tracking positions, we can 

compute the temporal impulse response function associated with the color 

tracking task for each chromatic direction and contrast condition within an 

individual subject.  In a linear system, the temporal impulse response function is 
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the response of the system, as a function of time, to a brief presentation of the 

input. In the context of the color tracking task, the tIRF describes the response of 

the visual-motor system to the movements of the random walk of the Gabor 

target. To obtain the tIRF, we perform a cross-correlation between the velocities 

of the target’s random walk and the velocities of the subject’s tracking. The 

velocities of the targets have a white noise power spectra containing no temporal 

autocorrelations. Example velocity traces for a given run can be seen in the lower 

left panel of Figure 3-9. In this panel, the target velocity is show as the grey line 

and the tracking velocity is shown as the black line.   

Here, build to the interpretation of the tIRF. If the subject were to perfectly 

track the Brownian motion of the target, we would end up with two identical white 

noise velocity traces. The cross correlation of two white noise signals produces a 

delta function centered on 0 meaning they are perfectly correlated only when the 

signals are temporally aligned and have no other correlation as a function of 

delaying one signal relative to the other. Now if the subject perfectly tracked the 

target motion but had a consistent 2 second delay in their tracking then the 

resulting cross-correlation function would again be a delta function but centered 

at 2 second rather than 0. Deviation from the delta function shape is due to 

factors such as noisy tracking or dependance on the stimulus history to inform of 
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the target’s current position.  In the current experiment, we use the tIRFs to 

inform us of the delay of the visual-motor system associated tracking.  

The tIRFs are obtained via the cross-correlation of the concatenation of 

position and tracking for all runs with a stimulus condition. This provides us with a 

mean tIRF for each chromatic direction and contrast pair. An example mean tIRF 

is plotted as the grey line in the right panel of Figure 3-9. This shows the 

correlation between the two signals as function of delaying one relative to the 

other for a particular direction and contrast. To reliably estimate lag from the 

mean tIRF, we fit a log-Gaussian function and take its mode as the lag of the 

tIRF. This tells us the time at which the log-Gaussian reaches its maximum 

correlation. An example log-Gaussian fit can be seen as the purple curve in the 

right panel of Figure 3-9 (as well as the purple curves in Figure 3-1). Overall, we 

obtain one lag estimate per stimulus condition.  

The error bar on the lag estimates plotted in Figure 3-2 are computed as 

the 68 percent confidence intervals from a bootstrap analysis. The 68% 

confidence intervals are approximately +/- 1 SEM for a normal distribution. The 

bootstrap analysis was done via random sampling (with replacement) of the runs 

that went into the concatenation of the cross-correlation. We performed 200 

bootstrap iterations and took the 68% percent confidence interval of the lag 

estimates for the log-Gaussian fit.    
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The Color Tracking Model: 

The Color Tracking Model (CTM) is a 5-parameter model that provides a 

prediction of tracking lag for any input stimulus specified in terms of its L- and S- 

cones contrasts. A detailed formulation of a related model maybe found in the 

model appendix of Barnett et al. 2021. Converting chromatic direction and 

contrast into lag is done through two stages. The first stage is the application of a 

quadratic isoresponse contour. The isoresponse contour effectively weights the 

input stimulus contrast by the underlying chromatic mechanism sensitivity for the 

corresponding chromatic direction. This weighting produces a single output 

variable from the L- and S-cone contrast inputs, collapsing across color direction. 

We refer to this output variable as ‘equivalent contrast’ and it represent the 

strength of the chromatic mechanism output which is now independent of the 

original chromatic direction. The isoresponse contour represents sets of stimuli 

that when shown to a subject result in equal tracking lags. In the CTM, the shape 

of the isoresponse contour is constrained to be an ellipse restricted to the LS 

cone contrast plane. 

Of the 5 parameters in the CTM, 2 of them are used to specify the elliptical 

isoresponse contour.  One of these parameters is the ellipse angle. The ellipse 
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angle represents the direction of least sensitivity in the LS plane and read 

counterclockwise to the positive abscissa. Since the parametrization of the model 

enforces two orthogonal mechanisms, the second mechanism represents the 

direction of maximal sensitivity.  The other parameter is the minor axis ratio.  This 

is the ratio of the minor to major axis vector lengths. In this model, the length of 

the major axis is locked to unit length and the minor axis is constrained to be less 

than the major axis. Within this, minor axis vector length can be readily 

interpreted as this ratio. Together, these parameters provide a complete account 

of the chromatic stage of the model.  

The second stage of the CTM employs a single nonlinearity which 

transforms the equivalent contrast to a prediction of the tracking lag. Since the 

isoresponse contour allows us to collapse across chromatic directions to a scalar 

equivalent contrast, we can use a single nonlinear function to map to tracking 

lag. The functional form we employ to convert equivalent contrast to lag is a the 

three-parameter exponential decay function: 

!"# = % ∗ '!"∗$ + ) 

In this expression, the parameters are A, s, and d which represent the 

amplitude, scale, and offset, respectively.  The scale parameter operates on the 

equivalent contrast (m) and acts as gain on the output of the chromatic stage of 
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the model. The offset (d) is interpreted as the minimum lag, this is the point at 

which the decay function asymptotes.   

 

The Color Detection Task: 

Subjects participated in a color detection task which allowed for estimates 

of detection threshold to be obtained for each color direction. The detection task 

used a two-interval forced choice task paradigm in which a Gabor stimulus was 

presented in one of two sequential intervals. The start of each interval was 

marked with a brief tone as well as the disappearance of the fixation dot. Each 

interval had a duration of 400 ms and were separated a 200 ms gap between 

intervals in which the fixation dot was present. At the end of the trial, the subject 

indicates via a gamepad button press the interval in which they think the stimulus 

was presented. Based on this response, the subject receives auditory feedback 

(high pitch tone for correct, low pitch tone for incorrect).   

The Gabor stimuli in the detection task had the same spatio-temporal 

properties as those used in the tracking task. Therefore, the stimuli, during their 

presentation, performed the same random walk for 400 ms. The primary way in 

which the non-chromatic properties of the stimuli differed across tasks was in the 

stimulus ramping. At the beginning and end of the interval containing the target, 

the contrast of the Gabor was temporally windowed. This window was a half-
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cosine ramp with a duration of 100 ms. The structure of the target interval was as 

follows: a 100 ms ascending ramp at the beginning, 200 ms of full stimulus 

contrast, and a 100 ms descending ramp at the end.   

For this experiment, we modulated the Gabor stimuli in 12 chromatic 

directions, these directions being a subset of the 18 directions used in the 

tracking. These chromatic directions were modulated around the same 

background across the two tasks. Within each chromatic direction, we tested at 6 

evenly spaced contrast levels between the maximum contrast and 0 (excluding 

0). The maximum contrasts were determined in pilot experiments for each 

subject and are intended to effectively sample the rising portion of the 

psychometric function. The directions tested and their corresponding maximum 

contrasts are reported in Table 3-5.  

 

Table 3-5: The Directions and Maximum Contrasts of the Detection Task. 

 

The stimuli were displayed on the same CRT monitor as the previous 

experiments. One difference is the need for finer control of contrast than was 

needed for the previous tracking experiments. To achieve the required bit depth, 

we used a Bits++ device (Cambridge Research Systems) to enable 14-bit control 
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of the R, G, and B channel inputs to the CRT. In addition, a different host 

computer was used to control the experiment (Asus RoG laptop and Ubuntu 

20.04) for compatibility with the Bits++ device. 

Trials were blocked so that 60 trials of a given direction will be shown 

consecutively. Each block contained 10 presentations of all the contrast levels. 

The contrasts are pseudorandomized such that a random permutation of all 6 

levels were shown before repeating a contrast. To orient the subject to the color 

direction of the block, there were 3 practice trials shown at the start of each block 

for the highest contrast level. Subjects completed a total of 40 trials per 

contrast/direction pair, that is 4 blocks per direction. Half of the blocks for each 

direction will be left-handed Gabors and the other half will be right-handed 

Gabors. We have 12 directions each with 6 contrast levels for a total of 240 trials 

per direction and a total of 2,880 trials.  

 

Threshold Detection: 

From the detection data, we estimate a threshold for each of the color 

directions tested. Threshold is the stimulus contrast needed, per direction, to 

reliably detect the Gabor target. We estimate this value by fitting a psychometric 

function to the percent correct as a function of stimulus contrast for each 

direction. Specifically, we fit a cumulative Weibull function and use it to determine 



132 
 
 

the contrast needed to reach 76% correct. The cumulative Weibull use is 

bounded between 50% to 100% by the inclusion of a guess rate scaling. See the 

equation in the next section for the function used.  

 

The Color Detection Model:   

The Color Detection Model (CDM) is a 4-parameter model that provides a 

prediction of the percent correct in the detection task for any input stimuli 

specified in terms of its L- and S- cones contrasts. The CDM parallels the CTM in 

its construction. It also employs two stages in order to convert stimulus contrast 

to percent correct. The first stage is an elliptical isoresponse contour identical to 

the one used in the CTM (see The Color Tracking Model section). Since the 

relationship between equivalent contrast and the variable of interest across the 

two tasks have different forms, we need to employ task-dependent nonlinearities 

as the second stage. In the CTM, this relationship was captured with an 

exponential decay function. For the detection task we use the cumulative Weibull 

as the nonlinearity that converts the equivalent contrast into percent correct.  The 

functional form we use is:  

*+ = 1 − (1 − 0.5) ∗ '!(
"
& )

!
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In this expression, the parameters are 3 and k which represent the scale, and 

shape, respectively.  The scale parameter operates on the equivalent contrast 

(m) and acts as gain on the output of the chromatic stage of the model. The 

shape parameter (k) controls the slope. The guess rate is locked at 0.5 since this 

is chance in a 2IFC, therefore the part of the expression ‘(1-0.5)’ bounds the 

output precent correct between 0.5 and 1.   

 

Parameter Fitting: 

We fit both the CTM and CDM to their respective measurements as a 

function of their stimulus contrasts. These data were fit using the MATLAB 

function fmincon to find a set of model parameters that minimize the root mean 

squared error between the actual tracking lags or percent correct and the 

predicted values of the CTM and the CDM, respectively 
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CHAPTER 4  

Discussion  

Understanding the Representation of Color in Primary Visual Cortex 

The measurements presented in Chapter 2 show that area V1 is most 

sensitive to modulation made in the L-M direction and least sensitive to L+M, 

when modulations are restricted to the LM cone contrast plane. Further, these 

results did not vary as a function of eccentricity. These results are specific to the 

choice of the spatial and temporal configuration of the stimulus. From the data 

collected, we developed a quantitative model of these V1 responses. The 

quadratic color model (QCM) captures the V1 response to any stimulus in the LM 

plane. This model performed well in a cross-validated sense when compared to 

more flexible models. The model also generalized to chromatic directions not 

used to train the model. These results replicated within each subject. 

The QCM is a separable model with respect to the effects of chromatic 

direction and contrast. The effect of chromatic direction is captured by an 

elliptical isoresponse contour. The effect of contrast is captured by the saturating 

nonlinearity. This allowed for the evaluation of the chromatic sensitivity of V1 in a 

manner that is independent of the effects of contrast.  
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The work in Chapter 2 only measured responses to stimulus modulations 

restricted to the LM contrast plane. This work provides a starting point and a 

validation of this separable model framework in fMRI data.  One interesting 

direction would be to get a full account of the L-, M-, and S-cone contrast space. 

Generalizing the QCM to handle stimuli defined in terms of all three cone classes 

requires changing the elliptical isoresponse contours to an ellipsoidal 

isoresponse surfaces. The same sets of validations performed in chapter 2 could 

then be applied in this 3-dimensional space. Additionally changes to the flicker 

rate of the stimulus could be made and the resulting shape of the isoresponse 

contours could be examined as a function of this temporal rate. We know from 

prior work that the temporal properties of the stimulus affect the pattern of 

responses in V1(Engel, Zhang, & Wandell, 1997).  Similarly, the size of the 

stimulus could be varied from a full field stimulus to a restricted spot stimulus. 

This spot stimulus could then be presented in peripheral location and the 

eccentricity findings could be examined in a new test of peripheral responses.  

Another variation on the stimulus that would inform us about the 

computation of V1 is to add spatial structure. The stimuli in Chapter 2 were 

spatially uniform. Measuring how the elliptical isoresponse contours change due 

to variations in the spatial structure could inform us of separate sets of 

mechanisms. These could correspond to the functionality of the ‘color’, 
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‘luminance’ and ‘color-luminance’ cells as described by Johnson et al., (2001) in 

which the high-spatial frequency would drive the ‘color’ cells less. Importantly, 

adding spatial structure would add the benefit of being able to fit the QCM 

outside of V1. In our data, we were unable to fit the QCM reliably outside V1 and 

this is most likely due to the full field spatially uniform stimuli which is not 

commonly used in fMRI. Driving more cortical area with our stimulus would allow 

us to assess how the color representation changes as a function of the visual 

area. It also informative to know how and where the model stops capturing the 

cortical response to the stimulus. This would imply that the responses of certain 

cortical areas cannot be modeled by a separable 2-stage model with a single 

color and contrast stage. Separable channel models that do not consider 

chromatic spatial interactions do not completely describe the color information in 

the scene. Knowing which areas behave in a manner consistent with the QCM 

and which need additional computations added will provide important insight into 

the cortical processing of color.  

Moreover, generalizing the QCM to any arbitrary spatial stimuli would 

provide a solid foundation for examining the representation of color. Previous 

quantitative forward models of the BOLD response have made progress in the 

domain of achromatic modulations with arbitrary spatial patterns (Kay et al., 

2013a; Kay et al., 2013b). These operate on an input image and transform it into 
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a model of the BOLD response via multiple sequential stages. To add color to 

these models the color-spatial interactions must be handled but the exact form of 

these interactions is not known. If the QCM can account for other spatial stimuli, 

this would constrain the generalizations for such forward models to incorporate 

color. 

 

Understanding the Interaction Between Color and Tracking 

Measurements of the temporal dynamics of color processing were made 

using a continuous tracking paradigm. From this, we estimated the tIRF for each 

direction tested using a log-Gaussian fit to the empirical cross-correlation 

functions. We examined how these lags changed as a function of chromatic 

direction and contrast. Detection data were also collected in the same set of 

subjects. We observe the same pattern of relative sensitivities in the detection 

task as for the tracking task. Thresholds were smallest for detecting and tracking 

stimuli modulated in the L-cone isolating direction and the largest for S-cone 

isolating stimuli, when contrast is matched.  

Similar to the QCM, we developed models of both tracking lag and 

threshold detection. Both models have the same two stage structure.  The first 

stage, which is the same in all models, is the quadratic isoresponse contour 

which allows for the conversion to ‘equivalent contrast’, representing the output 



138 
 
 

strength of the color mechanisms. The second stage of the model is a task-

specific nonlinearity which transforms the equivalent contrast to a prediction of 

either lag or percent correct. Interpreting the isoresponse contours of the CTM 

and CDM reveals that the mechanisms aligned with the L-cone isolating direction 

are ~33x and ~11x more sensitive than to the S-cone isolating direction for 

tracking and detection, respectively. Assuming common mechanisms across 

tasks, the contours tell us that the chromatic mechanisms are the same across 

tasks and what changes is the relative importance of the S-cone signals.  The 

relative sensitivity difference is ~3x lower for the tracking task than the detection 

task meaning that the tracking task makes less use of the S-cone signals. 

Just as with the QCM, the tracking task can be expanded to include 

stimulus modulations in all three-dimension of L-, M-, and S-cone contrast space. 

It is not known from the experiments in Chapter 3 what shape relative 

sensitivities will take outside the LS plane, when the M-cone axis is added. In the 

exact same way as the QCM, expanding the CTM and the CDM is simply 

changing to an ellipsoidal isoresponse surface rather than the elliptical contour. 

Tracking and detection measurements made using stimuli that are modulated in 

the L-, M-, and S-cone isolating directions (and their combinations) provide a 

fuller account of the mechanisms serving these tasks. 
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Another generalization is to change the mean of the gaussian velocity 

distribution that defines the random walk of the Gabor patches. This would 

change how fast the target was moving on the screen. In Chapter 3, we fixed the 

mean of the velocity distribution to ~4 °/s. The addition of sampling in the velocity 

space would allow for the examination of speed-color interactions. From this we 

could see how the relative sensitivities of the mechanisms change as a function 

of mean velocity. Additionally, we can also vary the size and spatial frequency of 

the stimuli to examine similar interactions. Any additional stimulus variable tested 

would go towards building models of tracking for any arbitrary spatiotemporal 

stimuli. 

Another way in which we can better examine the underlying mechanisms 

is to add additional tasks. We have used tracking and detection tasks but tasks 

such as reaction time, two pulse detection and, discrimination could be added to 

the common mechanism framework. In all cases, we would use the ellipsoidal 

isoresponse surfaces to convert stimuli, specified by their L-, M-, and S-cone 

contrast, into equivalent contrast providing a single representation of the output 

strength of the chromatic mechanisms. The second stage for any additional task 

will need to be task-specific nonlinearities.  With this expanded gamut of tasks, 

we will have a clearer picture of which behaviors are mediated by these common 

mechanisms. 
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Examination of the other aspects of the tIRF can reveal further interesting 

relationships in the data. The log-Gaussian fits, which we take as the tIRF, 

provide both the amplitude and width of the tIRF. The amplitude is the maximum 

correlation and width is the full width half maximum of the cross-correlation 

function. In a linear system, the width has an interpretation as the dependance 

on the stimulus history. Either of these parameters could be examined for their 

relationship with chromatic direction and contrast. In its current form, the QCM is 

one way of evaluating a single parameter. Another way in which we could 

analyze the data is to create a model that predicts the tracking given a temporal 

order of the stimulus chromatic directions and velocities. This model would make 

an explicit estimation of the tIRF instead of using the nonlinearity (exponential 

decay function). A sensible start would be to optimize the parameters of the log-

Gaussian and use this as the kernel of the convolution to convert stimulus 

positions into subject tracking. This type of model would still need to model the 

effect of color on tracking. To handle this, the elliptical isoresponse contour could 

transform the cone contrast of the stimuli to equivalent contrasts. An additional 

stage may be required to account for how cursor movements scale with 

equivalent. 
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APPENDIX A: Supplemental Tables and Figures   

 

Figure 2 – figure supplement  1: Subject 1 V1 contrast response functions  
V1 contrast response functions for the eight measured chromatic directions from Subject 1. The format of 
the figure is the same as Figure 2-2 in the main text. The x-axis is contrast; the y-axis is the beta weight of 
the GLM. The chromatic direction of each stimulus is indicated in the upper left of each panel. The curves in 
each panel represent the contrast response function obtained using the QCM. The error bars indicate 68% 
confidence intervals obtained using bootstrapping. Measurement sets 1 and 2 are shown in green and 
purple. The x-axis range differs across panels as the maximum contrast used varies with color direction. 

 

 

Figure 2 – figure supplement 1: V1 contrast response functions for the eight measured chromatic directions from 
Subject 1. The format of the figure is the same as Figure 2 in the main text. The x-axis is contrast; the y-axis is the beta 
weight of the GLM. The chromatic direction of each stimulus is indicated in the upper left of each panel. The curves in 
each panel represent the contrast response function obtained using the QCM. The error bars indicate 68% confidence 
intervals obtained using bootstrapping. Measurement sets 1 and 2 are shown in green and purple. The x-axis range 
differs across panels as the maximum contrast used varies with color direction. 

 

 

Figure 2 – figure supplement 1: V1 contrast response functions for the eight measured chromatic directions from 
Subject 1. The format of the figure is the same as Figure 2 in the main text. The x-axis is contrast; the y-axis is the beta 
weight of the GLM. The chromatic direction of each stimulus is indicated in the upper left of each panel. The curves in 
each panel represent the contrast response function obtained using the QCM. The error bars indicate 68% confidence 
intervals obtained using bootstrapping. Measurement sets 1 and 2 are shown in green and purple. The x-axis range 
differs across panels as the maximum contrast used varies with color direction. 

 

 

Figure 2 – figure supplement 1: V1 contrast response functions for the eight measured chromatic directions from 
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Figure 2 – figure supplement  2: Subject 3 V1 contrast response functions 

 

 

 

V1 contrast response functions for the eight measured chromatic directions from Subject 3. The format of 
the figure is the same as Figure 2 in the main text and Figure 2 – figure supplement 1.  
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Figure 3 – figure supplement  1: Subject 1 Model time course predictions.  

 

 

 

 

 

  

Model predictions of the V1 BOLD time course from Subject 1. The format of the Figure is the same as 
Figure 3 in the main text. The measured BOLD time course (black line) is shown along with the model 
outputs from the QCM (thick purple line) and GLM (thin orange line) for 6 acquisitions. The left column 
shows data and predictions from measurement set 1 and the right column for measurement set 2. The three 
acquisitions presented for each measurement set were chosen to correspond to the highest, median, and 
lowest QCM R2 values within the respective measurement set. The R2 values for the QCM and the GLM are 
displayed at the top of each panel. The shaded regions represent the 68% confidence intervals obtained via 
the bootstrap analysis.  

 

 

Figure 3 – figure supplement 1: Model predictions of the V1 BOLD time course from Subject 1. The format of the 
Figure is the same as Figure 3 in the main text. The measured BOLD time course (black line) is shown along with the 
model outputs from the QCM (thick purple line) and GLM (thin orange line) for 6 acquisitions. The left column shows 
data and predictions from measurement set 1 and the right column for measurement set 2. The three acquisitions 
presented for each measurement set were chosen to correspond to the highest, median, and lowest QCM R2 values 
within the respective measurement set. The R2 values for the QCM and the GLM are displayed at the top of each 
panel. The shaded regions represent the 68% confidence intervals obtained via the bootstrap analysis.  

 

 

Figure 3 – figure supplement 1: Model predictions of the V1 BOLD time course from Subject 1. The format of the 
Figure is the same as Figure 3 in the main text. The measured BOLD time course (black line) is shown along with the 
model outputs from the QCM (thick purple line) and GLM (thin orange line) for 6 acquisitions. The left column shows 
data and predictions from measurement set 1 and the right column for measurement set 2. The three acquisitions 
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Figure 3 – figure supplement  2: Subject 1 Model time course predictions 

  Model predictions of the V1 BOLD time course from Subject 3. The format of the figure is the same as 
Figure 3 in the main text and Figure 3 - figure supplement 1 The measured BOLD time course (black line) is 
shown along with the model outputs from the QCM (thick purple line) and GLM (thin orange line) for 6 
acquisitions.  

 

 

Figure 3 – figure supplement 2: Model predictions of the V1 BOLD time course from Subject 3. The format of the 
figure is the same as Figure 3 in the main text and Figure 3 - figure supplement 1 The measured BOLD time course 
(black line) is shown along with the model outputs from the QCM (thick purple line) and GLM (thin orange line) for 6 
acquisitions.  

 

 

Figure 3 – figure supplement 2: Model predictions of the V1 BOLD time course from Subject 3. The format of the 
figure is the same as Figure 3 in the main text and Figure 3 - figure supplement 1 The measured BOLD time course 
(black line) is shown along with the model outputs from the QCM (thick purple line) and GLM (thin orange line) for 6 
acquisitions.  

 

 

Figure 3 – figure supplement 2: Model predictions of the V1 BOLD time course from Subject 3. The format of the 
figure is the same as Figure 3 in the main text and Figure 3 - figure supplement 1 The measured BOLD time course 
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Figure 5 – figure supplement  1: Subject 1 Leave-Sessions-Out Cross Validation  

Leave-Sessions-Out Cross Validation for Subject 1. The format of the Figure is the same as Figure 2-5 in 
the main text. The contrast response functions in each panel (green lines) are the result of a leave-sessions-
out cross-validation to test the generalizability of the QCM. In both the top and bottom eight panels, the 
QCM was fit to data from four of the eight tested chromatic directions, either from session 1 or session 2. 
The fits were used to predict the CRFs for the held-out chromatic directions.  The orange points in each 
panel are the GLM fits to the full data set. The data shown here are for Subject 1 with the top eight panels 
from measurement set 1 and the bottom eight panels from measurement set 2. The shaded green error 
regions represent the 68% confidence intervals for the QCM predictions obtained via the bootstrap analysis. 
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Figure 5 – figure supplement  2: Subject 2 Leave-Sessions-Out Cross Validation 

Leave-Sessions-Out Cross Validation for Subject 2. The format of the figure is the same as Figure 2-5 in the 
main text and Figure 5 - figure supplement 1. The contrast response functions in each panel (green lines) 
are the result of a leave-sessions-out cross-validation to test the generalizability of the QCM.  The orange 
points in each panel are the GLM fits to the full data set. The data shown here are for Subject 2 
measurement set 2; Measurement set 1 can be seen in Figure 2-5 of the main text. The shaded green error 
regions represent the 68% confidence intervals for the QCM predictions obtained via the bootstrap analysis. 
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Figure 5 – figure supplement  3: Subject 3 Leave-Sessions-Out Cross Validation 

Leave-Sessions-Out Cross Validation for Subject 3. The format of the figure is the same as Figure 2-5 in the 
main text and Figure 5 - figure supplement 1-2. The green lines are the leave-session-out CRF, and the 
orange points are the GLM fits to the full data set. The data shown here are for Subject 3 with the top eight 
panels from measurement set 1 and the bottom eight panels from measurement set 2. The shaded green 
error regions represent the 68% confidence intervals for the QCM predictions obtained via the bootstrap 
analysis. 
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Figure 7 – figure supplement  1: Equivalent Contrast Non-Linearities 

 

Equivalent Contrast Non-Linearities of the QCM for V1. The format is the same as Figure 2-7 in the main 
text. The x-axis of each panel marks the equivalent contrast and the y-axis is the response. The gray curve 
in each panel is the Naka-Rushton function obtained using the QCM fit. The upper two panel are from 
Subject 1 and the bottom 2 panels are from Subject 3. The left panels are for Measurement Set 1 and the 
right panels are for Measurement Set 2. The parameters of the Naka-Rushton function are reported in upper 
left of each panel along with the 68% confidence intervals obtained via the bootstrap analysis. The points in 
each panel are the GLM beta weights of the respective measurement set mapped via the QCM isoresponse 
contours onto the equivalent contrast axis (see Methods).  The color of each point denotes the chromatic 
direction of the stimuli, as shown in the color bar.   

 

Figure 7 - figure supplement 1: Equivalent Contrast Non-Linearities of the QCM for V1. The format is the same as 
Figure 7 in the main text. The x-axis of each panel marks the equivalent contrast and the y-axis is the response. The 
gray curve in each panel is the Naka-Rushton function obtained using the QCM fit. The upper two panel are from 
Subject 1 and the bottom 2 panels are from Subject 3. The left panels are for Measurement Set 1 and the right panels 
are for Measurement Set 2. The parameters of the Naka-Rushton function are reported in upper left of each panel 
along with the 68% confidence intervals obtained via the bootstrap analysis. The points in each panel are the GLM 
beta weights of the respective measurement set mapped via the QCM isoresponse contours onto the equivalent 
contrast axis (see Methods).  The color of each point denotes the chromatic direction of the stimuli, as shown in the 
color bar.   

 

Figure 7 - figure supplement 1: Equivalent Contrast Non-Linearities of the QCM for V1. The format is the same as 
Figure 7 in the main text. The x-axis of each panel marks the equivalent contrast and the y-axis is the response. The 
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Figure 9 – figure supplement  1: QCM Parameters as a Function of Eccentricity 

 

 

 

 

 

 

 

 

The format is the same as Figure 2-9 in the main text. The top row shows parameter fits from subject 1 and 
the bottom row shows fits from Subject 3. The left and right panels show scatter plots of the minor axis ratio 
and ellipse angle plotted against their visual field eccentricity, respectively. Each point in the scatter plot 
shows a parameter value and corresponding eccentricity from an individual vertex. Teal indicates 
measurement set one and purple indicates measurement set two. The lines in each panel are robust 
regression obtained for each measurement set separately. The transparency of each point provides the R2 
value of the QCM at that vertex. The color bars provide the R2 scale for each measurement set. 
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Direction -45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

L-Contrast 8.49% 7.85% 14% 18.48% 42.43% 15.31% 0% 4.98% 

M-Contrast 8.49% 3.25% 0% 7.65% 42.43% 36.96% 22% 12.01% 

S-Contrast 0% 0% 0% 0% 0% 0% 0% 0% 

Total 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

  

Table of the nominal maximum contrast per direction. The top row indicates the chromatic direction in the 
LM plane. The L, M, and S contrast rows show the desired contrast on the L, M, and S cones respectively. 
The total contrast is the vector length of stimuli made up of the L, M, and S cone contrast components and is 
the definition of contrast used in this study,    

 

Table Supplement 1: Table of the nominal maximum contrast per direction. The top row indicates the chromatic 
direction in the LM plane. The L, M, and S contrast rows show the desired contrast on the L, M, and S cones 
respectively. The total contrast is the vector length of stimuli made up of the L, M, and S cone contrast components 
and is the definition of contrast used in this study,    
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respectively. The total contrast is the vector length of stimuli made up of the L, M, and S cone contrast components 
and is the definition of contrast used in this study,    
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and is the definition of contrast used in this study,    
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direction in the LM plane. The L, M, and S contrast rows show the desired contrast on the L, M, and S cones 
respectively. The total contrast is the vector length of stimuli made up of the L, M, and S cone contrast components 
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direction in the LM plane. The L, M, and S contrast rows show the desired contrast on the L, M, and S cones 
respectively. The total contrast is the vector length of stimuli made up of the L, M, and S cone contrast components 
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Table Supplement 1: Table of the nominal maximum contrast per direction. The top row indicates the chromatic 
direction in the LM plane. The L, M, and S contrast rows show the desired contrast on the L, M, and S cones 
respectively. The total contrast is the vector length of stimuli made up of the L, M, and S cone contrast components 
and is the definition of contrast used in this study,    

 

Table Supplement 1: Table of the nominal maximum contrast per direction. The top row indicates the chromatic 
direction in the LM plane. The L, M, and S contrast rows show the desired contrast on the L, M, and S cones 
respectively. The total contrast is the vector length of stimuli made up of the L, M, and S cone contrast components 

Table Supplement  1: Maximum contrast per direction 
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Subject 1 – Measurement Set 1 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-41.23 

±3.13 

-15.90 

±6.59 

2.17 

±1.05 

23.43 

±0.23 

45.21 

±0.23 

69.36 

±1.61 

87.98 

±1.26 

120.94 

±8.45 

Periphery 
Angle 

-42.85 

±3.04 

-16.31 

±6.18 

1.61 

±0.44 

22.75 

±0.22 

44.78 

±0.22 

68.13 

±1.54 

88.72 

±0.18 

119.67 

±8.04 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

12.14 

±0.05 

9.02 

±0.75 

14.44 

±0.37 

21.05 

±0.79 

60.92 

±0.09 

38.01 

±1.97 

21.39 

±0.85 

12.56 

±0.38 

Periphery 
Contrast 

12.00 

±0.04 

8.93 

±0.72 

13.98 

±0.35 

20.28 

±0.73 

58.73 

±0.09 

37.81 

±1.89 

21.42 

±0.55 

12.48 

±0.36 

Subject 1 - Measurement Set 2 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-45.09 

±0.55 

-22.44 

±0.98 

3.49 

±2.27 

22.97 

±0.15 

45.18 

±0.03 

67.75 

±0.24 

87.81 

±1.69 

112.99 

±1.03 

Periphery 
Angle 

-46.16 

±0.55 

-22.32 

±0.99 

3.24 

±2.77 

22.39 

±0.19 

44.92 

±0.02 

66.85 

±0.21 

87.33 

±1.24 

68.34 

±0.92 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

11.75 

±0.01 

8.28 

±0.08 

13.78 

±0.09 

20.35 

±0.22 

60.26 

±0.48 

37.62 

±0.11 

21.82 

±0.08 

12.69 

±0.05 

Periphery 
Contrast 

11.65 

±0.02 

8.29 

±0.08 

13.53 

±0.09 

19.79 

±0.18 

58.47 

±0.48 

38.16 

±0.10 

21.99 

±0.10 

12.81 

±0.06 

 

  
The top set of rows show data for measurement set one and the bottom set show data for measurement set 
2. The dark gray rows show the nominal angle and contrast.  Each cell shows the mean and standard 
deviation of stimulus vector angles and lengths computed from 10 validation measurements (5 pre-
experiment, 5 post-experiment). Center and periphery denote which set of cone fundamentals were used to 
calculate cone contrast of the stimuli referring either the 2° or 15° CIE fundamentals, respectively.  

 

 

Table Supplement 2: Stimulus Validation Measurements for Subject 1. The top set of rows show data for 
measurement set one and the bottom set sshow data for measurement set 2. The dark gray rows show the nominal 
angle and contrast.  Each cell shows the mean and standard deviation of stimulus vector angles and lengths computed 
from 10 validation measurements (5 pre-experiment, 5 post-experiment). Center and periphery denote which set of 
cone fundamentals were used to calculate cone contrast of the stimuli referring either the 2° or 15° CIE 
fundamentals, respectively.  

 

Table Supplement  2: Stimulus Validation Measurements for Subject 1 
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Subject 2 - Measurement Set 1 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-45.73 

±1.06 

-19.23 

±2.51 

1.71 

±0.98 

24.04 

±0.39 

45.43 

±0.09 

68.36 

±0.53 

87.87 

±1.64 

114.92 

±1.90 

Periphery 
Angle 

-47.03 

±1.02 

-18.91 

±2.40 

1.63 

±0.77 

23.65 

±0.38 

44.99 

±0.09 

67.18 

±0.52 

87.65 

±1.09 

114.11 

±1.86 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

12.04 

±0.11 

8.41 

±0.21 

14.01 

±0.08 

20.45 

±0.52 

60.72 

±0.38 

39.68 

±0.63 

21.82 

±0.23 

12.73 

±0.16 

Periphery 
Contrast 

11.88 

±0.11 

8.36 

±.21 

13.58 

±0.07 

19.81 

±0.51 

58.56 

±0.35 

39.41 

±0.59 

21.82 

±0.24 

12.62 

±0.14 

Subject 2 - Measurement Set 2 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

X -25.85 

±3.20 

X 22.72 

±0.38 

X 67.42 

±0.16 

X 112.03 

±1.22 

Periphery 
Angle 

X -26.43 

±3.04 

X 22.35 

±0.35 

X 66.36 

±0.16 

X 110.12 

±1.17 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

X 8.36 

±0.16 

X 19.77 

±0.23 

X 39.75 

±0.13 

X 12.75 

±0.15 

Periphery 
Contrast 

X 8.34 

±0.17 

X 19.21 

±0.23 

X 40.04 

±0.15 

X 12.95 

±0.13 

 

 

  

The format of this figure is the same as table supplement 2. Cells that contain an “X” mark stimulus 
directions in which validation measurements were not recorded due to technical difficulty.  

 

 

Table Supplement 3: Stimulus Validation Measurements for Subject 2. The format of this figure is the same as table 
supplement 2. Cells that contain an “X” mark stimulus directions in which validation measurements were not 
recorded due to technical difficulty.  

 

 

Table Supplement 3: Stimulus Validation Measurements for Subject 2. The format of this figure is the same as table 
supplement 2. Cells that contain an “X” mark stimulus directions in which validation measurements were not 
recorded due to technical difficulty.  

Table Supplement  3: Stimulus Validation Measurements for Subject 2 
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Subject 3 - Measurement Set 1 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

-48.84 

±5.02 

-27.84 

±6.02 

5.29 

±4.45 

23.61 

±0.77 

45.41 

±0.15 

67.48 
±0.42 

85.96 

±3.11 

108.56 
±4.89 

Periphery 
Angle 

-50.40 

± 4.90 

-28.48 
±5.97 

5.09 

±4.72 

23.26 
±0.77 

45.02 

±0.13 

66.33 
±0.43 

86.12 

±3.24 

107.49 
±4.78 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

12.25 

±0.32 

8.39 

±0.06 

13.96 

±0.08 

19.78 

±0.20 

61.92 

±1.40 

40.87 

±1.14 

22.91 

±1.30 

13.53 

±0.75 

Periphery 
Contrast 

12.13 

±0.31 

8.30 

±0.08 

13.52 

±0.09 

19.17 

±0.21 

59.76 

±1.36 

40.65 

±1.13 

22.97 

±1.26 

13.47 

±0.71 

Subject 3 - Measurement Set 2 

Nominal 
Angle 

-45° -22.5° 0° 22.5° 45° 67.5° 90° 112.5° 

Center 
Angle 

X -24.51 

±1.57 

X 22.92 

±0.07 

X 67.65 

±0.19 

X 111.23 

±1.11 

Periphery 
Angle 

X -24.17 

±1.53 

X 22.65 

±0.06 

X 66.57 

±0.19 

X 69.95 

±1.07 

Nominal 
Contrast 

12% 8.5% 14% 20% 60% 40% 22% 13% 

Center 
Contrast 

X 8.24 

±0.07 

X 19.93 

±0.09 

X 39.77 

±.0.27 

X 12.88 

±0.11 

Periphery 
Contrast 

X 8.23 

±0.07 

X 19.45 

±0.26 

X 40.16 

±0.26 

X 12.92 

±0.10 

 

 

 

The format of this figure is the same as table supplement 2 and 3. Cells that contain an “X” mark stimulus 
directions in which validation measurements were not recorded due to technical difficulty.  

 

 

Table Supplement 4: Stimulus Validation Measurements for Subject 3. The format of this figure is the same as table 
supplement 2 and 3. Cells that contain an “X” mark stimulus directions in which validation measurements were not 
recorded due to technical difficulty.  

 

 

Table Supplement 4: Stimulus Validation Measurements for Subject 3. The format of this figure is the same as table 
supplement 2 and 3. Cells that contain an “X” mark stimulus directions in which validation measurements were not 
recorded due to technical difficulty.  

Table Supplement  4: Stimulus Validation Measurements for Subject 3 
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Subject 1 – Measurement Set 2: Session 1 

Run 
Number 

1 2 3 4 5 6 7 8 9 10 

Number 
of 
Censored 
Frames 
(n/360) 

0 0 8 18 0 26 47 4 0 0 

Subject 1 – Measurement Set 2: Session 2 

Run 
Number 

1 2 3 4 5 6 7 8 9 10 

Number 
of 
Censored 
Frames 
(n/360) 

0 0 0 0 0 0 0 7 0 0 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Values shown are for Subject 2 measurement set 2. The top set of rows show data for session one and the 
bottom set of the show data for session 2. Each set of rows show the number of censored frames per run 
out of 360 frames. Subjects and sessions not shown mean that no frames were censored in those runs.  

 

 

Table Supplement 5: Number of Censored fMRI frames per Run. Values shown are for Subject 2 measurement set 2. 
The top set of rows show data for session one and the bottom set of the show data for session 2. Each set of rows 
show the number of censored frames per run out of 360 frames. Subjects and sessions not shown mean that no 
frames were censored in those runs.  

 

 

Table Supplement 5: Number of Censored fMRI frames per Run. Values shown are for Subject 2 measurement set 2. 
The top set of rows show data for session one and the bottom set of the show data for session 2. Each set of rows 
show the number of censored frames per run out of 360 frames. Subjects and sessions not shown mean that no 
frames were censored in those runs.  

 

 

Table Supplement 5: Number of Censored fMRI frames per Run. Values shown are for Subject 2 measurement set 2. 
The top set of rows show data for session one and the bottom set of the show data for session 2. Each set of rows 
show the number of censored frames per run out of 360 frames. Subjects and sessions not shown mean that no 
frames were censored in those runs.  

 

 

Table Supplement 5: Number of Censored fMRI frames per Run. Values shown are for Subject 2 measurement set 2. 
The top set of rows show data for session one and the bottom set of the show data for session 2. Each set of rows 
show the number of censored frames per run out of 360 frames. Subjects and sessions not shown mean that no 
frames were censored in those runs.  

 

Table Supplement  5: Number of Censored fMRI frames per Run 



Appendix B: Model Appendix

General Linear Model

The model used to provide a benchmark for the quadratic color model (QCM) is the general

linear model (GLM). The GLM has the form:

Y = X� + ✏

This states that the measurement (Y ) is equal to the model matrix (X) times the weights (�)

plus the residual error (✏). For our GLM, Y is a column vector of the concatenated time series

from all the fMRI runs within a measurement set (20 runs):

Y =

2

666666666664

y1

...

yi

...

yt

3

777777777775

The subscript i indicates a particular time point, with the subscript t being the total number

of time points in a measurement set. Here a time point corresponds to one TR of the BOLD

response, and t = 7200 (20 runs with 360 TRs). Our model comparison was for the aggregated

V1 response, and we took each element yi of Y to be the median BOLD fMRI response for the

corresponding TR, with the median taken across the voxels in the V1 ROI.

The model matrix X contains the predictor variables for the linear model. Each column of

X is a regressor corresponding to a single stimulus ( a single chromatic direction/contrast pair

or the baseline (0 contrast) uniform field). The regressors are created by convolving a binary

indicator vector with the hemodynamic response function (HRF) that accounts for the sluggish

BOLD response to a stimulus event. The binary indicator vectors contain 1 when the stimu-

lus was present and 0 otherwise. The convolution then produces a predictor of the measured

BOLD fMRI response for that stimulus condition. In our study, X has 41 columns corresponding

to the pairing of the eight chromatic directions and five contrasts levels plus the baseline
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X =

2

666666666664

x1,1 . . . x1,41

...
...

xi,1 . . . xi,41

...
...

xt,1 . . . xt,41

3

777777777775

The general linear model predicts Y as a weighted linear combination of the regressors in the

columns of X. The weight applied to each regressor is given by the elements of �:

� =

2

66666664

�1

�2

...

�41

3

77777775

Using � and X, we can generate a predicted time course Ŷ . We take each �i to be a proxy for

the aggregate V1 BOLD fMRI response for the corresponding stimulus condition. This interpre-

tation is associated with our particular choice of scaling the indicator variables in the regressors

before convolution with the HRF (that is the choice of 1 for the TRs during which the stimulus

was present). We determined � using linear regression as implemented in the MATLAB mldi-

vide operation, � = X\Y (see https://www.mathworks.com/help/matlab/ref/mldivide.html). The

GLM prediction of the BOLD fMRI response at each time point yi is therefore:

ŷi = x(i,1)�1 + x(i,2)�2 + . . .+ x(i,41)�41

.

Quadratic Color Model

The quadratic color model allows for the prediction of the BOLD fMRI response to any stimulus

that lies in the LM contrast plane. This includes predictions for stimuli not in the measurement

set used to fit the model. The QCM makes its predictions through three steps. The first step

calculates the “equivalent contrast” of the stimulus which can be thought of as the effective

contrast of the stimulus in V1 accounting for the differences in sensitivity across chromatic di-
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rections. Equivalent contrast is the vector length of the stimuli after this linear transformation.

The next step is a response non-linearity applied to the equivalent contrast to predict the under-

lying neural response. Finally, a convolution of this underlying response with the HRF results in

predictions of the BOLD fMRI response. Here, we provide explanations and equations for the

model.

We start by considering a stimulus modulation whose predicted BOLD fMRI response we wish

to know. A stimulus modulation is denoted by the column vector c whose two entries are the L

and the M cone contrast of the stimulus (l and m respectively):

c =

2

64
l

m

3

75

The figure below outlines how we transform such a stimulus to a response prior to convolution

with the HRF. Panel A shows a 3-dimensional contrast-response space with the (x,y) plane

representing the LM contrast plane and the z axis giving the response r corresponding to each

point in the LM contrast plane. In this representation, all possible stimuli and responses form

an inverted bell shape surface, as illustrated below. At constant values of r (constant height on

the z axis), cross sections through this surface shows the elliptical isoresponse contours of the

QCM. Each elliptical isoresponse contour describes the set of LM contrast combinations that

elicit the same response r. The teal and red dots shown in the LM plane represent example

stimulus modulations, chosen in two color directions at contrasts corresponding to the five (dark

blue, blue, aqua, green, yellow) isoresponse contours illustrated.

To obtain the equivalent contrast corresponding to stimulus c, we first apply a linear transforma-

tion M to c to obtain a transformed representation of the stimulus, e = Mc. The vector e is a

two-dimensional column vector whose entries we refer to as e1 and e2. We call the transformed

representation of the stimulus the equivalent contrast space, and as we show below we choose

the linear transformation M such that in this space the isoresponse contours are circles. Panel

B of the figure shows the same information as in Panel A represented in the equivalent contrast

space. Here the (x,y) plane gives the values of e1 and e2, and the isoresponse contours plotted

with respect to the equivalent contrast plane are circular. Note that in the equivalent contrast

plane, the distances between the plotted teal points are the same as the distances between the
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corresponding plotted red points. This is a consequence of the fact that the transformation M

is chosen to make the isoresponse contours circular.

ʡ0
0

ʡ/
/

ʡ/
/

ʡ0
0

r

Linear
Transformation

Re
sp
on

se
 (

r)

Equivalent Contrast (k)

Cone Contrast Space Equivalent Contrast 
Response Function

Equivalent Contrast Space

r

A) B) C)

-

+

+
-

e = Mc

c = l
m e =

e1
e2 k = |e|

+e1

-e1

-e2

+e2

Figure 1: Illustration of Cone to Equivalent Contrast Transformation. Panel A) A 3-
dimensional cone contrast-response space with the (x,y) plane representing the LM
contrast plane and the z axis giving the corresponding response r to each point in
the (x,y) plane. The teal and red dots shown in the LM plane represent example stim-
ulus modulations, chosen in two color directions at contrasts corresponding to the
five isoresponse contours illustrated in dark blue, blue, aqua, green, yellow. Panel
B) A 3-dimensional equivalent contrast-response space with the (x,y) plane represent-
ing equivalent contrast (e1 and e2) and the z axis giving the corresponding response
r to each point in the (x,y) plane. The teal and red dots shown correspond to same
color dots in Panel A after we apply a linear transformation M to c (the L- and M-cone
contrast representation of the stimuli) to obtain a transformed representation of the
stimulus, e = Mc. Note after the application of M , the elliptical contours in Panel A
are circular and the distances between the plotted teal points are the same as the dis-
tances between the corresponding plotted red points. Panel C) The equivalent contrast
response function. The x-axis denotes the equivalent contrast and the y-axis marks
the response. The teal and red closed circles shown in Panel C correspond to both the
teal and red points shown in Panels A and B.

We define the equivalent contrast k of a stimulus as the vector length of the transformed stimu-

lus e, k = |e|.

The next step of the model is a non-linearity that maps between equivalent contrast (k) and

BOLD fMRI response (dashed black line). This is possible since all stimuli in equivalent con-

trast space with the same equivalent contrast predict the same underlying response, regardless

of the chromatic direction of the stimuli. Therefore, we can focus solely on the relationship be-

tween equivalent contrast and the associated response. This is illustrated by Panel C. We call

the static non-linearity the “equivalent contrast-response function”. The teal and red closed cir-

cles shown in Panel C correspond to both the teal and red points shown in Panels A and B, and
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these overlap since they lie on the same set of isoresponse contours.

The linear transformation M needed to compute the equivalent contrast representation of c

is derived by starting with the equation for an ellipse centered at the origin, in which a positive-

definite quadratic function of the cone contrasts is equal to a constant for all points on the

ellipse. This equation is given below (left hand side) and re-expressed in matrix-vector form

(right hand side).

k
2 = Al

2 +Blm+ Cm
2 =


l m

�
2

64
A B/2

B/2 C

3

75

2

64
l

m

3

75

Changing the value of the constant k2 changes the scale of the ellipse without changing its

shape, and as we will see below k is the equivalent contrast corresponding to each constant-

shape elliptical isoresponse contour. We rewrite the matrix representation of the elliptical locus

as:

k
2 = c

T
Qc

This yields

k =
p

cTQc

Because the coefficients A, B, and C are constrained so that Q is a symmetric positive definite

matrix, Q can be factored through its eigenvalue decomposition and rewritten as

Q = V ⇤V T

where V is an orthonormal (rotation) matrix and ⇤ is a diagonal matrix with positive entries.

Since ⇤ is a diagonal matrix we can further decompose as

Q = V SS
T
V

T

where S is diagonal with entries equal to the square root of the corresponding entries of ⇤.

The matrix V expresses a rotation in the cone contrast plane and may be parameterized by
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the rotation angle p1:

V (p1) =

2

64
cos(p1) �sin(p1)

sin(p1) cos(p1)

3

75

The matrix S is diagonal and when applied to a vector simply scales the entries of that vector.

Although S normally has two degrees of freedom in the general case, we lock the scale of the

major axis to 1. Therefore we are only concerned with the scaling of the minor axis (p2). Thus

we can define

S(p2) =

2

64
1 0

0 1/p2

3

75 , 0 > p2  1

In this formulation, p1 and p2 parameterize the shape of an elliptical isoresponse contour and

k parameterizes its scale. The parameter p1 is what we call the angle of the major axis in the

main text, while p2 is the minor axis ratio.

We set M = S
T
V

T and rewrite Q as:

Q = M
T
M

The matrix M then transforms the cone contrast vector c to the equivalent contrast vector

through e = Mc. Recall that equivalent contrast is the vector length of e. Therefore, the

equivalent contrast of the points on the ellipse corresponding to k is given by

||e|| = k

To see this, note that

||e||2 = e
T
e = c

T
M

T
Mc = c

T
Qc = k

2

Thus, given Q, we can compute the equivalent contrast for any stimulus c and apply the equiv-

alent contrast-response function to predict the its response. The specific non-linearity we use

for the contrast-response function is a Naka-Rushton function. This function is a four parameter
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saturating non-linearity that is defined by the following:

r(k) = a
kn

kn+sn + h

The neural response (r) is a function of the equivalent contrast(k). The parameters of the

Naka-Rushton function are the amplitude(a), exponent(n), semi-saturation(s), and the offset(h).

These parameters control the gain, the slope, the position along the x axis, and the y-axis off-

set of the non-linearity, respectively. The shape of the non-linearity controls how the underlying

response changes with equivalent contrast.

Finally, we need to convert the neural response to a prediction of the BOLD fMRI response(Ŷ ).

To do this, we convolve the underlying response with the hemodynamic response function

(HRF).

Ŷ = r ~HRF

Predictions of the BOLD fMRI response via the QCM are thus made using 6 parameters: angle

(p1), minor axis ratio (p2), amplitude (p3 = a), exponent (p4 = n), semi-saturation (p5 = s), and

offset (p6 = h). We can define a parameter vector P for the QCM as:

P =

2

66664

p1

...

p6

3

77775

We fit P to the data by using a non-linear parameter search routine fmincon (Matlab, see

https://www.mathworks.com/help/optim/ug/fmincon.html) to find the parameter vector that that

minimizes the difference between the measured BOLD fMRI time course Y and the prediction

Ŷ obtained using the QCM. This takes the form of:

P
⇤ = argmin

P

qPt
i=1 (ŷi�yi)

2

t

where the objective function we are minimizing is the root mean squared error. Once the values

of P are found for an individual subject, we can use them to predict the BOLD fMRI response

to any c within the LM cone contrast plane.
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Linear Channels Model

The linear channels model (LCM) is based on the work of Brouwer and Heeger (2009). They

develop a model that decodes the hue angle of a stimulus a subject was viewing from BOLD

fMRI measurements. The stimuli in their study were modulations in the isoluminant plane of

the CIELAB color space, and were parameterized by hue angle within this plane. Their model

is based on linear channels tuned to the this angular representation, and it did not explicitly

consider the effect of stimulus contrast. This was sufficient for their analysis, as they studied

only a single contrast for each angle. To develop a version of the LCM that may be applied to

our stimuli, we need both to adopt the concepts to apply to stimuli in the LM contrast plane and

to add a model component that handles contrast.

The angles used in our implementation of the LCM are angles in the LM contrast plane, with

0 corresponding to the positive abscissa, rather than angles in the CIELAB isoluminant plane.

These angles are computed from the L- and M-cone contrasts of our stimulus modulations, as

the arctangent of the ratio of M- to L-cone contrast:

✓ = tan
�1(ml )

where ✓ is then the angle corresponding to one one of our stimulus modulations.

Given the angular stimulus representation, each linear channel is characterized by its sensi-

tivity to stimulation from each possible stimulus angle - basically a tuning function over angle.

More specifically, the tuning functions are implemented as half-rectified cosines raised to an

exponent. What differs across each channel is the phase of the tuning function (the peak sen-

sitivity). Thus the sensitivity of the i
th channel may be written as:

fi(✓) =

8
>><

>>:

cosn(✓ � �i) cos(✓ � �i) � 0

0 cos(✓ � �i) < 0

where i indicates the channel, n is the exponent which controls the narrowness of the channel

tuning functions, and �i is the peak sensitivity of the i
th channel. In calculations, the angle ✓ is

discretized, and both stimuli and mechanism tuning can be represented in matrix-vector form,

as we describe below.
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The first step of the model is to compute the channel responses. This is done with a vector

representation of the stimulus. Each entry of the stimulus row vector represents one angle, and

for the stimulus modulations we used, only one entry is non-zero for any given modulation. In

our computations, we discretized angle in 1 degree steps (the resolution of the representation

of ✓). The magnitude of the non-zero entry represents the contrast of the modulation. Simi-

larly, the sensitivity of a channel may be represented by a column vector over the same angular

discretization, with each entry of the vector being the sensitivity of the channel at the corre-

sponding angle. The dot product of a stimulus vector with a channel vector yields the response

of the channel to the stimulus.

The set of channels can be represented by the columns of a matrix C (nAngles x nChannels)

and the set of stimuli represented by a matrix S (nStimuli x nAngles). Therefore, the hypothetical

channel outputs, H (nStimuli x nChannels), can be calculated as:

H = SC

The overall LCM response to a given stimulus is given as a weighted sum of the individual

channel responses (H), with the weights, w (nChannels x nVoxels) acting as parameters of the

model. If we consider responses across a set of voxels, as was done by Brouwer and Heeger

(2009), the response b (nStimuli x nVoxels) for a set of stimuli is given by:

b = Hw

In our analysis, we fit the LCM to the median time course of V1 and therefore we set nV oxels =

1.

In context of the LCM, isoresponse contours are made up by the set of stimuli that satisfy

the following:

Hw = SCw = k

where k is a constant target response.

In their work, Brouwer and Heeger (2009) used six channels and an exponent of 2. The

channels had peak sensitivities at 0, 60, 120, 180, 240 and 300 degrees. Since our stimu-
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lus modulations were symmetric around around a background, we enforce that channels offset

by 180 degrees used the same weights in the linear combination. This results in three symmet-

ric channels with pairs located at 0 and 180, 60 and 240, 120 and 300 degrees.

One key difference between our experiment and the the original Brouwer and Heeger (2009)

work is that we varied the stimulus contrast in each chromatic direction. To extend the LCM to

handle contrast, we treated the overall LCM response as an equivalent contrast and passed this

through a common Naka-Rushton function. This approach mirrors how we handled contrast in

the the QCM. To model the BOLD fMRI response, we convolve the output of the Naka-Rushton

with the HRF. We fit the LCM to our data using a method analogous to the one used to fit the

QCM. More specifically, we found the three linear channel weights and the Naka-Rushton func-

tion parameters that yielded the best fit to the BOLD response time course. These parameters

were found simultaneously through the use of MATLAB’s fmincon optimization routine. We also

fit a variant of the LCM analogous to a model used by Kim et al. (2020) with sharper (cos6)

channel tuning and using eight rather than six underlying mechanisms.

Both versions of the LCM yield isoresponse contours similar in shape to those obtained with

the QCM (Figure 6 figure supplement 1), with cross-validated R
2 values essentially the same

as those obtained using the QCM (Figure 4 figure supplement 1). Notably, that the version of

the LCM with more channels yielded an isoresponse contour that more closely approximated

the isoresponse contour of the QCM than did the version of the LCM with fewer channels.

A key difference between the LCM and the QCM is in how the functional properties of the model

relate to the L- and M-cone contrasts that characterize the early visual system responses to the

stimuli. As discussed in the main text, the QCM can be implemented as the sum of the squared

responses of two mechanisms, each of which responds as weighted sum of L- and M-cone

contrast. Thus underlying the QCM is a quadratic (squaring) non-linearity. In the LCM, on the

other hand, the underlying linear channels are tuned for angle in the LM contrast plane. Since

angle is obtained as the arctangent of the ratio of M- and L-cone contrasts, the LCM is based on

a different form of non-linearity than the QCM, which would entail different neural computations.

To put it another way, the apparently simple linear form of the LCM when expressed in terms of

stimulus angle is less simple when referred back to the L- and M-cone contrast representation.

This same basic point applies to LCMs formulated with respect to hue angle in the CIELAB
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isoluminant plane, as in Brouwer and Heeger (2009) and Kim et al. (2020). Measurements of

the response to mixtures of modulations might be used in the future to differentiate between the

non-linearities embodied by the LCM and the QCM.
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