
1

Regular Functions and Cost Register Automata
Rajeev Alur∗, Loris D’Antoni∗, Jyotirmoy Deshmukh†, Mukund Raghothaman∗ and Yifei Yuan∗

∗ University of Pennsylvania † Toyota Technical Center

(Invited Paper)

Abstract—We propose a deterministic model for associating
costs with strings that is parameterized by operations of interest
(such as addition, scaling, and minimum), a notion of regularity
that provides a yardstick to measure expressiveness, and study
decision problems and theoretical properties of resulting classes
of cost functions. Our definition of regularity relies on the theory
of string-to-tree transducers, and allows associating costs with
events that are conditioned on regular properties of future events.
Our model of cost register automata allows computation of regular
functions using multiple “write-only” registers whose values can
be combined using the allowed set of operations. We show that
the classical shortest-path algorithms as well as the algorithms
designed for computing discounted costs can be adapted for
solving the min-cost problems for the more general classes of
functions specified in our model. Cost register automata with
the operations of minimum and increment give a deterministic
model that is equivalent to weighted automata, an extensively
studied nondeterministic model, and this connection results in
new insights and new open problems.

I. INTRODUCTION

A. Motivation

The classical shortest path problem is to determine the
minimum-cost path in a finite graph whose edges are labeled
with costs from a numerical domain. In this formulation, the
cost at a given step is determined locally, and this does not
permit associating alternative costs in a speculative manner.
For example, one cannot specify that “the cost of each coffee
either $1 or $2, depending on whether or not you fill out a
survey.” Such constraints can be captured by the well-studied
framework of weighted automata ([24], [12]). A weighted
automaton is a nondeterministic finite-state automaton whose
edges are labeled both with symbols in a finite alphabet Σ
and costs in a numerical domain. Such an automaton maps a
string w over Σ to the minimum over costs of all accepting
paths of the automaton over w. Motivated by the successful
application of the theory of regular languages to formal
verification of finite-state systems, there is a renewed interest
in weighted automata as a plausible foundation for analyzing
quantitative properties (such as power consumption) of finite-
state systems ([7], [4], [1]). Weighted automata, however, are
inherently nondeterministic, and are restricted to cost domains
that support two operations with the algebraic structure of a
semiring: one operation for summing up costs along a path
(such as +), and one for aggregating costs of alternative
paths (such as minimum). Thus, weighted automata, and other
existing frameworks (see [9], [22]), do not provide guidance
on how to combine and define costs in presence of multiple

The full version of this paper may be found at http://www.cis.upenn.edu/
∼alur/rca12.pdf. This research was partially supported by the NSF Expeditions
in Computing award 1138996.

operations such as paying incremental costs, scaling by dis-
counting factors, and choosing minimum. The existing work
on “generalized shortest paths” considers extensions that allow
costs with future discounting, and while it develops interesting
polynomial-time algorithms ([15], [23]), does not attempt to
identify the class of models for which these algorithmic ideas
are applicable. This motivates the problem we address: what
is a plausible definition of regular functions from strings to
cost domains, and how can such functions be specified and
effectively analyzed?

B. Proposed Definition of Regularity

When should a function from strings to a cost domain, say
the set N of natural numbers, be considered regular? Ideally,
we wish for an abstract machine-independent definition with
appealing closure properties and decidable analysis questions.
We argue that the desired class of functions should be pa-
rameterized by the operations supported on the cost domain.
Our notion of regularity is defined with respect to a regular
set T of terms specified using a grammar. For example, the
grammar t := +(t, t) | c specifies terms that can be built
from constants using a binary operator +, and the grammar
t := +(t, c) | ∗ (t, d) | c specifies terms that can be built from
constants using two binary operators + and ∗ in a restricted
way. Given a function g mapping strings to terms in T , and
an interpretation J.K for the function symbols over a domain
D, we can define a cost function f that maps a string w to the
value Jg(w)K in the cost domain D. The theory of tree trans-
ducers, developed in the context of syntax-directed program
transformations and processing of XML documents, suggests
that the class of regular string-to-term transformations has the
desired trade-off between expressiveness and analyzability as
it has appealing closure properties and characterizations using
transducer models as well as monadic second order logic ([14],
[10], [3], [16]). As a result, we call a cost function f from
strings to a cost domain D regular with respect to a set T
of terms and an interpretation J.K for the function symbols,
exactly when f can be expressed as a composition of a regular
function from strings to T and an evaluation according to the
interpretation J.K.

C. Machine Model: Cost Register Automata

Having chosen a notion of regularity as a yardstick for
expressiveness, we now need a corresponding machine model
that associates costs with strings in a natural way. Guided
by our recent work on streaming transducers ([2], [3]), we
propose the model of cost register automata: a CRA is a
deterministic machine that maps strings over an input alphabet

http://www.cis.upenn.edu/~alur/rca12.pdf
http://www.cis.upenn.edu/~alur/rca12.pdf

2

to cost values using a finite-state control and a finite set of cost
registers. At each step, the machine reads an input symbol,
updates its control state, and updates its registers using a
parallel assignment, where the definition is parameterized by
the set of expressions that can be used in the assignments. For
example, a CRA with increments can use multiple registers
to compute alternative costs, perform updates of the form
x := y + c, where x and y are registers and c is a constant,
at each step, and commit to the cost computed in one of the
registers at the end. Besides studying CRAs with operations
such as increment, addition, minimum, and scaling by a factor,
we explore the following two variants. First, we consider
models in which registers hold not only the cost values, but
(unary) cost functions: we allow registers to hold pairs of
values, where a pair (c, d) can represent the linear function
f(n) = c + n ∗ d. Operations on such pairs can simulate
“substitution” in trees, and allow computing with contexts,
where parameters can be instantiated at later steps. Second, we
consider “copyless” models where each register can be used
at most once in the right-hand-sides of expressions updating
registers at each step. This “single-use-restriction” plays an
important role in the theory of regular tree transducers ([14],
[3]), and ensures that the costs (or the sizes of the terms that
capture the costs) grow only linearly with the length of the
input.

D. Contributions

In Section IV we study the class of cost functions over a
domain D with a commutative and associative function ⊗; in
Section V, we study the class of cost functions over a semiring
structure with domain D and binary operations ⊕ (such as
min) and ⊗ (such as addition); and in Section VI, we consider
different forms of discounted cost functions with scaling and
addition. In each case, we identify the operations a CRA must
use to be equivalent in expressiveness to the corresponding
class of regular functions, and present algorithms for comput-
ing the min-cost value and for checking equivalence of two
CRAs.

We summarize some interesting insights that emerge from
our results about specific cost models. First, our notion of
regularity implies that regular cost functions are closed under
operations such as string reversal and regular look-ahead,
leading to an appealing symmetry between the past and the
future. Second, the use of multiple registers and explicit
combinators allows CRAs to compute all regular functions in a
deterministic manner. Third, despite this added expressiveness,
decision problems for CRAs are typically analyzable. In partic-
ular, we get algorithms for solving min-cost problems for more
general ways of specifying discounting than known before.
Fourth, since CRAs “construct” costs over an infinite domain,
it suffices to use registers in a “write-only” mode without any
tests. This critically distinguishes our model from the well-
studied models of register machines, and more recently, data
automata ([17], [22], [6]). Fifth, it is known that weighted
automata are not determinizable, which has sparked extensive
research ([12], [19]). Our results show that in presence of mul-
tiple registers that can be updated by explicitly applying both

the operations of the semiring, the classical subset construction
can be modified to get a deterministic machine. Finally, the
class of regular functions over the semiring turns out to be
a strict subset of functions definable by weighted automata
due to the copyless restriction. It is known that checking
equivalence of weighted automata over the Min-Plus semiring
(natural numbers with min and addition) is undecidable ([20],
[1]). Existing proofs critically rely on the “copyful” nature
raising the intriguing prospect that equivalence is decidable
for regular functions over the Min-Plus semiring.

II. COST REGISTER AUTOMATA

A. Cost Grammars

A ranked alphabet F is a set of function symbols, each
of which has a fixed arity. The arity-0 symbols, also called
constants, are mapped to domain elements. To allow infinite
domains we need a way of encoding constants as strings over a
finite set of symbols either in unary or binary, but we suppress
this detail, and assume that there are infinitely many constant
symbols. The set TF of terms over a ranked alphabet is defined
in the standard fashion: if c is a constant symbol in F , then
c ∈ TF , and if t1, . . . , tk ∈ TF and f is an arity-k symbol in
F , for k > 0, then f(t1, . . . , tk) ∈ TF . A cost grammar G is
defined as a tuple (F, T) where F is a ranked alphabet and T is
a regular subset of TF (that is, the set of parse trees is a regular
tree language). Usually we define this regular subset using
a grammar containing a single nonterminal. In particular, we
focus on the following grammars: for a binary function symbol
+, the terms of the additive-grammar G(+) are specified
by t := +(t, t) | c, and the terms of the increment-grammar
G(+c), which restricts the use of the addition operation are
specified by t := +(t, c) | c. Given binary functions min and
+, the terms of the min-inc-grammar G(min,+c) are given
by t := min(t, t) | +(t, c) | c. Given binary functions + and ∗,
the terms of the inc-scale-grammar G(+c, ∗d) are generated
by the left-linear grammar t := +(t, c) | ∗(t, d) | c, that uses
both operations in a restricted manner, and c and d denote
constants, ranging over possibly different subsets of domain
elements.

B. Cost Models

Given a cost grammar G = (F, T), a cost model C is
defined as the tuple (G,D, J.K), where the cost domain D
is a finite or infinite set; for each constant c in F , JcK is a
unique value in the domain D, and for each function symbol
f of arity k, JfK defines a function JfK : Dk 7→ D. We can
inductively extend the definition of J.K to assign semantics
to the terms in T in a standard fashion. For a numerical
domain D such as N (the set of natural numbers) and Z (the
set of integers), we use C(D,+) to denote the cost model
with the cost grammar G(+), domain D, and J+K as the
standard addition operation. Similarly, C(N,+c) denotes the
cost model with the cost grammar G(+c), domain N, and
J+K as the standard addition operation. C(Q+,+c, [0, 1], ∗d)
denotes the cost model with the cost grammar G(+c, ∗d), the
set Q+ of non-negative rational numbers as the domain for the
+ operator (interpreted as standard addition), and the closed

3

q0
a/

x := x+1
y := y+1

b

/
x := x
y := y+1

e

/
x := y+1
y := y+1

µ(q0) = x

M1: CRA over
(+c)

q0

x:=∞
a/

x := x
y := y+1
z := z

b

/
x := x
y := y
z := z+1

e

/
x := min(x, y, z)
y := 0
z := 0

µ(q0) = min(x, y, z)

M2: Copyless CRA
over (min,+c)

q0 q1

a/
x := x+1
y := y

b/
x := x
y := y

e

/
x := x
y := x

a/
x := x+1
y := y

b/
x := x
y := y+1

e/
x := x
y := min(x, y)

µ(q0) = x
µ(q1) = min(x, y)

M3: CRA over
(min,+c)

q0 q1

a/x := x+10

e/x := x

b/x := x

e/
x := 0.95 ∗ x

a, b/
x := x

µ(q0) = x
µ(q1) = x

M4: CRA over
(+c, ∗d)

Fig. 1. Examples of Cost Register Automata

interval [0, 1] of rational numbers as the domain for the ∗
operator (interpreted as multiplication).

C. Cost Register Automata

A cost register automaton (CRA) is a deterministic ma-
chine that maps strings over an input alphabet to cost values
using a finite-state control and a finite set of cost registers.
The definition of such a machine is parameterized by the
set of updates to its registers. For the set X of registers
and a cost grammar G, we define the set of assignment
expressions E(G,X) by extending the set of terms in G so
that each leaf node in a term can be replaced by a register
name. For example, for the additive grammar G(+), we
get the set E(+, X) of expressions defined by the grammar
e := +(e, e) | c |x, for x ∈ X; and for the G(+c, ∗d), we
get the expressions E(+c, ∗d,X) defined by the grammar
e := +(e, c) | ∗(e, d) | c |x, for x ∈ X . We assume that the
ranked alphabet contains a special constant symbol 0, which
will be used to initialize the registers.

Formally, a cost register automaton M over a cost grammar
G is a tuple (Σ, Q, q0, X, δ, ρ, µ) where Σ is a finite input
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,
X is a finite set of registers, δ : Q × Σ 7→ Q is the state-
transition function, ρ : Q×Σ×X 7→ E(G,X) is the register
update function, and µ : Q 7→ E(G,X) is a partial final cost
function.

The semantics of such an automaton is defined with respect
to a cost model C = (G,D, J.K), and is a partial function
JM,CK from Σ∗ to D. A configuration of M is of the form
(q, ν), where q ∈ Q and the function ν : X 7→ D maps each
register to a cost in D. Valuations naturally map expressions to
cost values using the interpretation of function symbols given
by the cost model. The initial configuration is (q0, ν0), where
ν0 maps each register to the initial constant 0 (dependent on
the domain). Given a string w = a1 . . . an ∈ Σ∗, the run of
M on w is a sequence of configurations (q0, ν0) . . . (qn, νn)
such that for 1 ≤ i ≤ n, δ(qi−1, ai) = qi and for each x ∈
X , νi(x) = Jνi−1(ρ(qi−1, a, x))K. The output of M on w,
denoted by JM,CK(w), is undefined if µ(qn) is undefined,
and otherwise it equals Jνn(µ(qn))K.

D. CRA-definable Cost Functions

Each cost model C = (G,D, J.K) defines a class of cost
functions F(C): a partial function f from Σ∗ to D belongs to
this class iff there exists a CRA M over the cost grammar G
such that f equals JM,CK. The class of cost functions corre-
sponding to the cost model C(N,+) is abbreviated as F(N,+),
the class corresponding to the cost model C(Q+,+c, [0, 1], ∗d)
as F(Q+,+c, [0, 1], ∗d), etc.

E. Examples

Figure 1 shows examples of cost register automata for Σ =
{a, b, e}. Consider the cost function f1 that maps a string w to
the length of the substring obtained by deleting all b’s after the
last occurrence of e in w. The automaton M1 computes this
function using two cost registers and increment operation. The
register y is incremented on each symbol, and hence equals
the length of string processed so far. The register x is not
incremented on b symbols, but is updated to the total length
stored in y when e symbol is encountered.

For a string w and symbol a, let |w|a denote the count
of a symbols in w. For a given string w of the form
w1 ew2 . . . e wn−1 ewn, where each block wi contains only
a’s and b’s, let f2(w) be the minimum of the set {|wi|a, |wi|b |
∀i, 1 ≤ i ≤ n}. The CRA M2 over the grammar G(min,+c)
computes this function using three registers by an explicit
application of the min operator.

For a given string w = w1 ew2 e . . . e wn, where each wi
contains only a’s and b’s, consider the function f3 that maps
w to minn−1j=1 (|w1|a+|w2|a+· · · |wj |a+|wj+1|b+· · ·+|wn|b).
This function is computed by the CRA M3 over the grammar
G(min,+c).

The final example concerns use of scaling. Consider a
computation where we wish to charge a cost of 10 upon seeing
an a event until a b event occurs. Once a b event is triggered,
for every subsequent e event, the cost is discounted by 5%.
Such a cost function is computed by the CRA M4 over the
grammar G(+c, ∗d).

F. Copyless Restriction

A CRA M is said to be copyless if each register is used at
most once at every step: for each state q and each input symbol

4

a and each register x ∈ X , the register x appears at most once
in the set of expressions {ρ(q, a, y) | y ∈ X} and x appears
at most once in the output expression µ(q). Each cost model
C = (G,D, J.K) then defines another class of cost functions
Fc(C): a partial function f from Σ∗ to D belongs to this class
iff there exists a copyless CRA M over the cost grammar G
such that f equals JM,CK. In Figure 1, the automata M2 and
M4 are copyless, while M1 and M3 are not.

G. Regular Look-Ahead

A CRA MR with regular look-ahead (CRA-RLA) is an
extension of the CRA model in which the machine can make
its decisions based on whether the remaining suffix of the
input word belongs to a regular language. Let L be a regular
language, and let A be a DFA for reverse(L) (such a DFA
exists, since regular languages are closed under the reverse
operation). Then, while processing an input word, testing
whether the suffix aj . . . ak belongs to L corresponds to testing
whether the state of A after processing ak . . . aj is an accepting
state of A. This motivates the following formalization. Let
w = a1 . . . ak be a word over Σ, and let A be a DFA with
states R processing words over Σ. Then the A-look-ahead
labeling of w, is the word wA = r1r2 . . . rk over the alphabet
R such that for each position 1 ≤ j ≤ k, the corresponding
symbol is the state of the DFA A after reading ak . . . aj (it
reads the reverse of the word). A CRA-RLA consists of a
DFA A over Σ with states R, and a CRA M over the input
alphabet R. The output of CRA-RLA (M,A) on w, denoted
by J(M,A),CK(w), is defined as JM,CK(wA).

Figure 2 shows an example of CRA-RLA. The left side
of the figure shows a CRA-RLA over G(+c) corresponding
to M1 in Figure 1. The right side shows the corresponding
labeling automaton A. The states of A correspond to the
languages used in the informal description of M1.

q0

r3/x := x+ 1

r2/x := x

r1/x := x+ 1

µ(q0) = x

r0

r1

r2

r3

a, e

b

a, e

b

b

a, e
b

a, e

Fig. 2. CRA with Regular Look-Ahead

III. REGULAR COST FUNCTIONS

Consider a cost grammar G = (F, T). The terms in T
can be viewed as trees: an internal node is labeled with
a function symbol f of arity k > 0 and has k children,
and each leaf is labeled with a constant. A deterministic
streaming string-to-tree transduction is a (partial) function
f : Σ∗ 7→ T . The theory of such transductions has been
well studied, and in particular, the class of regular string-
to-tree transductions has appealing closure properties, and
multiple characterizations using Macro-tree-transducers (with

single-use restriction and regular look-ahead) [14], Monadic-
Second-Order logic definable graph transformations [10], and
streaming tree transducers [3]. We first briefly recap the model
of streaming string-to-tree transducers.

A. Streaming String-to-Tree Transducers (SSTT)

A streaming string-to-tree transducer is a deterministic
machine model that can compute regular transformations from
strings to ranked trees in a single pass. An SSTT can be viewed
as a variant of CRA where each register stores a term, that
is, an uninterpreted expression, and these terms are combined
using the rules allowed by the grammar. To obtain a model
whose expressiveness coincides with the regular transductions,
we must require that the updates are copyless, but need to
allow terms that contain “holes”, i.e., parameters that can be
substituted by other terms.

Let G = (F, T) be a cost grammar. Let ? be a special
0-ary symbol that denotes a place holder for the term to
be substituted later. We obtain the set T ? by adding the
symbol ? to F , and requiring that each term has at most
one leaf labeled with ?. For example, for the cost grammar
G(+c), the set T ? of parameterized terms is defined by the
grammar t := +(t, c) | c | ?; and for the cost grammar G(+),
the set T ? of parameterized terms is defined by the grammar
t′ := +(t, t′) | + (t′, t) | c | ?, where t stands for (complete)
terms generated by the original grammar t := +(t, t) | c.
A parameterized term such as min(5, ? + 3) stands for an
incomplete expression, where the parameter ? can be replaced
by another term to complete the expression. Registers of
an SSTT hold parameterized terms. The expressions used
to update the registers at every step are given by the cost
grammar, with an additional rule for substitution: given a
parameterized expression e and another expression e′, the
expression e[e′] is obtained by substituting the sole ?-labeled
leaf in e with the expression e′.

Given a set X of registers, the set E?(G,X) represents
parameterized expressions that can be obtained using the rules
of G, registers in X , and substitution. For example, for the
grammar G(+c) and a set X of registers, the set E?(+c,X) is
defined by the grammar e := +(e, c) | c | ? |x | e[e], for x ∈ X .
The output of an SSTT is a (complete) term in T defined using
the final cost function. The register update function and the
final cost function are required to be copyless: each register
is used at most once on the right-hand-side in any transition.
The semantics of an SSTT gives a partial function from Σ∗

to T . We refer the reader to [3] for details.

B. Regular Cost Functions

Let Σ be a finite input alphabet. Let D be a cost domain.
A cost function f maps strings in Σ∗ to elements of D. Let
C = (G,D, J.K) be a cost model. A cost function f is said to be
regular with respect to the cost model C if there exists a regular
string-to-tree transduction g from Σ∗ to T such that for all
w ∈ Σ∗, f(w) = Jg(w)K. That is, given a cost model, we can
define a cost function using an SSTT: the SSTT maps the input
string to a term, and then we evaluate the term according to
the interpretation given by the cost model. The cost functions

5

obtained in this manner are the regular functions. We use
R(C) to denote the class of cost functions that are regular
with respect to the cost model C.

As an example, suppose Σ = {a, b}. Consider a vocabulary
with constant symbols 0, ca and cb, and the grammar G(+c).
Consider the SSTT U with a single register that is initialized
to 0, and at every step, it updates x to +(x, ca) on input a,
and +(x, cb) on input b. Given the input w1 . . . wn, the SSTT
generates the term e = +(· · · + (+(0, c1), c2) · · · cn), where
each ci = ca if wi = a and ci = cb otherwise. To obtain
the corresponding cost function, we need a cost model that
interprets the constants and the function symbol +, and we get
the cost of the input string by evaluating the expression e. Now,
consider another SSTT U ′ that uses a single register initialized
to ?. At every step, it updates x to x[+(?, ca)] on input a, and
x[+(?, cb)] on input b, using the substitution operation. The
output is the term x[0] obtained by replacing the parameter
by 0. Given the input w1 . . . wn, the SSTT generates the term
e′ = +(· · · + (0, cn), · · · c1), where each ci = ca if wi = a
and ci = cb otherwise. Note that the SSTT U builds the cost
term by adding costs on the right, while the SSTT U ′ uses
parameter substitution to build costs terms in the reverse order.
If the interpretation of the function + is not commutative, then
these two mechanisms allow to compute different functions,
both of which are regular.

C. Closure Properties

If f is a regular cost function from Σ∗ to a cost domain D,
then the domain of f , i.e., the set of strings w such that f(w)
is defined, is a regular language.

For a string w, let wr denote the reverse string. We define
the reverse function fr : Σ∗ 7→ D such that for all w ∈ Σ∗,
fr(w) = f(wr). Given regular cost functions f1, f2 from Σ∗

to D and a language L ⊆ Σ∗, the choice function “if L then
f1 else f2” maps an input string w to f1(w) if w ∈ L, and to
f2(w) otherwise. As the SSTT class is closed under reverse
and regular choice, closure under these properties for regular
cost functions follows.

Theorem 1 (Closure Properties of Regular Cost Func-
tions) For every cost model C, if a cost function f belongs
to the class R(C), then so does the function fr. If two cost
functions f1 and f2 belong to the R(C), then so does the
function “if L then f1 else f2” for every regular language L.

An SSTT with regular look ahead is a pair (U,A) where A is
a DFA, U is an SSTT whose alphabet is the set of states of A.
As discussed earlier regular-look-ahead tests allow machines
to make its decisions based on whether the remaining suffix of
the input word belongs to a given regular language. SSTT are
closed under the operation of regular-look-ahead [3], which
implies the same for regular cost functions.

Theorem 2 (Closure Under RLA) For every SSTT with
regular-look-ahead (U,A), there exists an SSTT U ′ without
regular-look-ahead which computes the same function.

D. Linear Outputs

When an SSTT U computes the output term corresponding
to an input string w, while processing each symbol of w, it
uses exactly one transition with copyless update, and thus,
the sum of the sizes of all terms stored in registers grows
only by a constant additive factor. It follows that |U(w)| is
O(|w|). Viewed as a tree, the depth of U(w) can be linear
in the length of w, but its width is constant, bounded by the
number of registers. This implies that if f is a cost function
in R(N,+c), then |f(w)| must be O(|w|), and in particular,
the function f(w) = |w|2 is not regular in this cost model.
Revisiting the examples in Section 2, it turns out that the
function f1 is regular for C(N,+c), and the function f2 is
regular for C(N,min,+c). The function f3 is not regular for
C(N,min,+c), as it requires O(|w|2) terms to construct it.

IV. COMMUTATIVE-MONOID COST FUNCTIONS

Assume that the cost model is a commutative monoid
(D,⊗): D is a set, the interpretation J⊗K is a commutative
and associative function, and the interpretation of the initial
constant J0K is the identity element of this function.

A. Expressiveness

Given a cost model (D,⊗), we can use regular string-to-
tree transductions to define two (machine-independent) classes
of functions: the class R(D,⊗c) defined via the grammar
G(⊗c) and the class R(D,⊗) defined via the grammar G(⊗).
Relying of commutativity and associativity, we show these two
classes to be equally expressive. This class of “regular additive
cost functions” corresponds exactly to functions computed by
CRAs with increment operation, and also, by copyless-CRAs
with addition.

Theorem 3 (Expressiveness of Additive Cost Functions)
For cost domain D with a commutative associative operation
⊗, F(D,⊗c) = Fc(D,⊗) = R(D,⊗c) = R(D,⊗).

Proof Sketch: We first show that the function-classes R(D,⊗)
and R(D,⊗c) are equivalent. This proof is based on the
properties of the model of streaming tree transducers (STT)
that map trees to trees [3]. Given an STT U from Σ∗ to
terms of G(⊗), we show how to construct an STT U ′ from
terms over G(⊗) to equivalent terms over G(⊗c) relying
on the associativity of ⊗ to rewrite the parse tree in a left-
linear form. The proof follows since STTs are closed under
sequential composition. Next we show that the class F(D,⊗c)
is included in the class R(D,⊗c). Given a CRA M using the
increment operation, we construct an SSTT U that captures
its computations. The proof relies on the observation that at
every step of the computation of M , at most one register
can contribute to the final output, and this variable can be
specified using a regular-look-ahead (a test that checks whether
the input suffix is in a regular language). The proof follows
from the fact that SSTTs are closed under regular look-ahead.
For the inclusion of the class R(D,⊗c) in the class Fc(D,⊗),
observe that the parameter substitution in a unary tree can be
simulated by a normal assignment for a commutative operator
(e[e′] is equivalent to ⊗(e, e′)). Finally, given a copyless CRA

6

M with ⊗, we construct an equivalent CRA M ′ that uses
only increments. For every subset S of registers in M , M ′

maintains a register xS that maintains the sum of all the values
of the registers in S. The simulation requires updates in M ′

to allow the same subset to be used in different ways, that is,
in a non-copyless manner. �

We can also establish the following results regarding ex-
pressiveness of different classes. First, requiring CRAs with
only increment to be copyless is too limiting: there exists a
regular additive cost function that is not in Fc(D,⊗c). Second,
removing the copyless restriction from CRAs with addition is
too permissive as it would allow computing cost functions
that grow exponentially: the cost function f(w) = 2|w| is
not additive regular, but is in F(N,+). Third, having multiple
registers is essential for expressive completeness: for every k,
consider the cost function fk : N → N (over unary alphabet)
defined by fk(n) = ((n mod k) + 1) ∗ n; every CRA with
increment implementing fk must have at least k registers.

B. Weighted Automata

A weighted automaton [12] over an input alphabet Σ is
a nondeterministic finite-state automaton whose edges are
labeled with input symbols in Σ and costs in domain D. For
an input string w, the automaton can have multiple accepting
paths from its initial state to some accepting state. The
semantics of the automaton is defined using two commutative
and associative functions ⊕ and ⊗ such that ⊗ distributes
over ⊕. The cost of a path is the sum of the costs of all
the transitions along the path according to ⊗, and the cost of
a string w is obtained by applying ⊕ to the set of costs of
all the accepting paths of the automaton over w. A weighted
automaton is called single valued if each input string has at
most one accepting path. Thus to interpret a single-valued
weighted automaton, we need only the interpretation for ⊗:

Theorem 4 (Single-valued Weighted Automata)
A cost function f : Σ∗ 7→ D is in R(D,⊗c) iff it is
definable by a single-valued weighted automaton.

Proof Sketch: For every single-valued weighted automaton
W , we can construct an SSTT U that constructs the cost
term corresponding to the sum of costs along the accepting
path. Even though the automaton W is nondeterministic, since
it is single-valued, the SSTT can use regular-look-ahead to
choose deterministically the next transition that contributes to
the accepting path. The proof then relies on the closure under
regular-look-ahead for SSTTs. In the other direction, consider
a CRA M using increments. At every step, the weighted
automaton needs to guess which register of the machine M
will contribute to the final output. The states of the weighted
automaton are state-register pairs (q, x). There is a transition
of cost k and label a from (q, x) to (q′, x′) to simulate the
update: x′ := ⊗(x, k) on the a-labeled transition from q to q′.
�

C. Decision Problems

The min-cost problem for a CRA M is to find a string
w whose cost is the minimum, i.e., min{M(w) |w ∈ Σ∗}.

For CRAs with increment interpreted over numerical domains
(that support addition), we can solve the min-cost problem by
reducing it to the classical shortest path computation using
the translation from CRAs with increment to single-valued
weighted automata. If the CRA has n states and k registers,
the graph has n · k vertices:

Theorem 5 (Min-cost for CRAs with +c) Given a CRA M
over the cost model (Q,+c), computing min{M(w) |w ∈ Σ∗}
is solvable in PTIME.

Even though F(D,⊗c) = Fc(D,⊗), the model with binary
addition is more succinct. To solve the min-cost problem for
copyless-CRAs over the cost model (D,⊗), we can translate
these to CRAs over (D,⊗c). However, this causes a blow-up
exponential in the number of registers: essentially each register
of the CRA represents a subset of the registers in the original
copyless-CRA. We can establish that the min-cost problem is
NP-HARD by a simple reduction from 3SAT.

Theorem 6 (Min-cost for CRAs with +) Given a
copyless-CRA M over (Q,+) with n states and k registers,
computing min{M(w) |w ∈ Σ∗} is solvable in time poly-
nomial in n and exponential in k. Given a copyless CRA M
over the cost model (N,+) and a constant K ∈ N, deciding
whether min{M(w) |w ∈ Σ∗} ≤ K is NP-HARD.

Given two cost register automata using addition over a
numerical domain, checking whether they define exactly the
same function is solvable in polynomial time relying on the
properties of systems of linear equations.

Theorem 7 (Equivalence of CRAs with Addition)
Given two CRAs M1 and M2 over the cost model (Q,+),
deciding whether for all w, M1(w) = M2(w) is solvable in
PTIME.

Proof Sketch: We first take the product M = M1 × M2.
We want to check if along every path of the product, and for
every final state (v1, v2), the equation µ1(v1) = µ2(v2) holds.
The algorithm propagates such an equation over the register
values backwards along each transition: for an edge from u
to v, every equation e1 = e2 that must hold at v yields an
equation e′1 = e′2 that must hold at u, where the expressions
e′1 and e′2 are obtained from e1 and e2 using substitution to
account for the update of registers along the edge from u to v.
At every step of the back propagation, we maintain the basis of
the set of equations in every state using Gaussian elimination.
If we reach a system of equations with no solution the two
machines are inequivalent, while if we reach a fix point where
no independent equations can be added, the two machines are
equivalent. As shown in [21], such a propagation terminates
in O(nk3) where n is the size of the machine (in our case
|Q1||Q2||Σ|) and k is the number of variables (in our case
|X1|+ |X2|). �

We can also establish the following results regarding de-
cision problems for additive CRAs: (1) Inclusion: given two
CRAs M1 and M2 over the cost model (Q,+c), deciding
whether for all w, M1(w) ≤ M2(w) is solvable in PTIME;
(2) Range-Membership: given a CRA M over the cost model
(Z,+c) and K ∈ Z, deciding whether there exists w such that

7

M(w) = K is solvable in NLOGSPACE.

V. SEMIRING COST FUNCTIONS

In this section, we consider the cost models with two binary
operations, ⊕ and ⊗, that impose a semiring structure. This
structure has been studied extensively in the literature on
weighted automata and rational power series. A specific case
of interest is the Min-Plus semiring, where the cost domain is
N ∪ {∞}, ⊕ is the min operation with identity ∞, and ⊗ is
arithmetic addition with identity 0. While choosing a grammar,
we can restrict either or both of ⊕ and ⊗ to be “unary”,
i.e., where one of the arguments of the operator is a constant
symbol. To study the Min-Plus semiring, it makes sense to
choose min to be binary, while addition to be unary (i.e.
increment by a constant). Hence, we will focus on the grammar
G(⊕,⊗c), and the class R(D,⊕,⊗c) of cost functions.

A. CRA Models

Our first task is to find a suitable set of operations for cost
register automata so as to have expressiveness same as the
class R(D,⊕,⊗c). It turns out that (unrestricted) CRAs with
⊕ and ⊗c are too expressive, while their copyless counterparts
are too restrictive. We need to enforce the copyless restriction,
but allow substitution. In the proposed model, each register x
has two fields ranging over values from D: (x.c, x.d). The
intuitive understanding is that x represents the expression
(x.d⊗ ?)⊕ x.c where ? denotes the parameter. Such a pair can
be viewed as the “most evaluated” form of a parameterized
term in the corresponding SSTT. Expressions used for the
update are given by the grammar e := (c, d) | x | e1⊕ e2 |
e1⊗ d | e1 [e2], where x is a register, and c and d are
constants. For the min-inc interpretation, the initial values
are of the form (∞, 0) corresponding to the additive and
multiplicative identities. We require that registers be used in
a copyless manner, so that any particular register x appears
in the update of at most one variable. The semantics of
the operators on pairs is defined below: e1⊕ e2 is defined
to be (e1.c⊕ e2.c, e1.d); e1⊗ d equals (e1.c⊗ d, e1.d⊗ d);
and e1 [e2] is given by (e1.c⊕ e1.d⊗ e2.c, e1.d⊗ e2.d).
The resulting model of CRA-definable cost functions is
Fc (D× D, ⊕ , ⊗ d, [·]).

We summarize the relationships between functions definable
by CRAs over semiring cost models in the following theorem:

Theorem 8 (Expressiveness of Semiring Cost Functions)
If (D,⊕,⊗) forms a semiring, then Fc(D,⊕,⊗c) ⊂
Fc (D× D, ⊕ , ⊗ c, [·]) ≡ R(D,⊕,⊗d) ⊂ F(D,⊕,⊗c).

Proof Sketch: The copyless-CRAs with operations of ⊕
and ⊗c can be simulated by copyless-CRAs that maintain
pairs with operations of ⊕ , ⊗ c, and [·]. The correspon-
dence between the terms constructed by SSTTs and their
most evaluated forms maintained by CRAs as pairs leads to
the equivalence of Fc (D× D, ⊕ , ⊗ c, [·]) and R(D,⊕,⊗d).
Finally, we establish that this class is included in F(D,⊕,⊗c).
Consider a CRA M that maintain pairs using operations of
⊕ , ⊗ c, and [·]. We perform a form of a subset construction
over the registers to get a non-copyless CRA with ⊕ and ⊗c.

Intuitively, the subset construction amounts to pre-emptively
computing the result of substituting variable x into y. �

B. Relation to Weighted Automata

In Section 4, we noted that single-valued weighted automata
correspond exactly to CRAs with addition. Nondeterministic
weighted automata and (deterministic) CRAs (without the
copyless restriction) with ⊕ and ⊗c express exactly the same
class of functions. The translation from weighted automata to
CRAs can be viewed as a generalization of the classical subset
construction for determinization:

Theorem 9 (Weighted Automata Expressiveness) If
(D,⊕,⊗) forms a semiring, then the class of functions
F (D,⊕,⊗c) exactly coincides with the class of functions
computable by weighted automata.

Proof Sketch: Consider a weighted automaton W with states
P . The corresponding CRA M has state-set 2P as in standard
determinization. For each p ∈ P , the CRA M maintains a
cost register xp. The value of xp after reading input w is
the ⊕-sum over costs of all the paths from the initial state
to the state p on the input w, where the cost of a path is
the ⊗-sum of the weights of the transitions along the path.
Given an input symbol a, the update of cost registers is given
by: xq := ⊕{xp ⊗ c | p a,c→ q}. The correctness depends on
the distributivity of ⊗ over ⊕. Note that the same register
xp contributes to all xq’s for all its a-successor states q’s.
Thus, the update is not necessarily copyless. In the reverse
direction, consider a CRA M with states Q and registers X .
The weighted automaton W has states Q × X . Consider a
transition from a state q to a state q′ in M on an input symbol
a with the update x := y ⊗ c. Then, the automaton W has
an edge from (q, y) to (q′, x) labeled with the input symbol
a and weight c. Consider a transition from a state q to a state
q′ in M on an input symbol a with the update x := ⊕(y, z).
Then, the automaton W has an edge from (q, y) to (q′, x)
labeled with the input a symbol and weight 0, and from (q, z)
to (q′, x) labeled with input a and weight 0. �

C. Decision Problems for Min-Plus Models

Now we turn our attention to semirings in which the
cost domain is a numerical domain such as N, ⊕ is the
minimum operation, and ⊗ is the addition. Given a CRA M
over (Q,min,+c), we can construct an equivalent weighted
automaton linear in the size of M in linear time. The min-cost
problem for weighted automata can be solved in polynomial-
time using standard algorithms.

Theorem 10 (Min-cost for CRAs over min and +c) Given
a CRA M over the cost model (Q,min,+c), computing
min{M(w) |w ∈ Σ∗} is solvable in PTIME.

It is known that the equivalence problem for weighted au-
tomata over the Min-Plus semiring is undecidable. It fol-
lows that checking whether two CRAs over the cost model
(N,min,+c) compute the same cost function is undecidable.
The existing proofs of the undecidability of equivalence rely

8

on the unrestricted non-deterministic nature of weighted au-
tomata, and thus on the copyful nature of CRAs with min and
+c. We conjecture that the equivalence problem for copyless
CRAs over (N,min,+c), and also for the class R(N,min,+c)
is decidable.

VI. DISCOUNTED COSTS

We now analyze the class of regular cost functions definable
using +c and ∗d.

A. Past Discounts

First let us focus on CRAs over the cost model
C (Q,+c, ∗d). At every step, such a machine can set a register
x to the value d ∗ x + c: this corresponds to discounting
previously accumulated cost in x by a factor d, and paying an
additional cost c. We call such machines past-discount CRAs
(an example is M4 of Figure 1). Thanks to the use of multiple
registers this class of cost functions is closed under regular
choice and regular look-ahead: the discount factors can depend
conditionally upon future events. Our main result for past-
discount CRAs is that the min-cost problem can be solved in
polynomial-time.

Theorem 11 (Min-Cost for Past Discounts) Given a past-
discount CRA M over the cost model (Q,+c, ∗d), computing
min{M(w) |w ∈ Σ∗} is solvable in PTIME.

B. Future Discounts

Symmetric to past discounts are future discounts: at every
step, the machine wants to pay an additional cost c, and
discount all future costs by a factor d. While processing an
input w1 . . . wn, if the sequence of costs is c1, . . . cn and the
sequence of discount factors is d1, . . . dn, then the cost of the
string is the value of the term (c1 + d1 ∗ (c2 + d2 ∗ (· · ·))).
Future-discount CRAs are able to compute such cost functions
using registers that range over Q × Q and discounted-sum
operator + : each register holds a value of the form (c, d)
where c is the accumulated cost and d is the accumulated
discount factor, and updates are defined by the grammar
e := (c, d) | e+ (c, d) |x. The interpretation for e+ (c, d) is
defined to be (e.c+ c∗e.d, e.d∗d) (that is, the discount factor
e.d is scaled by the new discount d, and the cost e.c is updated
by adding the new cost c, scaled by the discount factor e.d).
Like past-discount CRAs, future-discount CRAs are closed
under regular choice and regular look-ahead. Processing of
future discounts in forward direction needs maintaining a pair
consisting of cost and discount, and the accumulated costs
along different paths is not totally ordered due to these two
objectives. However, if we consider “reverse” paths, a single
cost value updated using assignments of the form x := d∗x+c
as in past-discount CRAs suffices.

Theorem 12 (Shortest Paths for Future Discounts) For a
future-discount CRA M over the cost model (Q,+c, ∗d), the
problem of computing min{M(w) |w ∈ Σ∗} is solvable in
PTIME.

C. Global Discounts

A global-discount CRA is capable of scaling the global cost
(the cost of the entire path) by a discount factor. Like for
future-discount CRAs, it uses registers that hold cost-discount
pairs. We now assume that discounts range over [0, 1] and costs
range over Q+. The registers are updated using the grammar
e := (0, 1) | (0, d) + e+ (c, 1) |x (that is, the current discount
factor e.d is scaled by the new discount d, and the current
cost e.c is updated by first scaling it by the new discount, and
then adding the new cost c scaled by the discount factor e.d).
Analyzing paths in a global-discount CRA requires keeping
track of both the accumulated cost and discount. We can show
a pseudo-polynomial upper bound; it remains open whether
there is a strongly polynomial algorithm for shortest paths for
this model:

Theorem 13 (Min-cost Paths for Global Discounts)
Given a global-discount CRA M over the cost model
(Q+,+c, [0, 1], ∗d) and a constant K ∈ Q+, deciding if
min{M(w) |w ∈ Σ∗} ≤ K is solvable in NP. Computing
the minimum is solvable in PTIME if increments are restricted
to natural numbers in unary encoding.

Proof Sketch: We can reduce the min-cost problem to finding
a shortest path in a graph G whose edges are labeled with
(c, d) pairs, and the cost of a path containing edges labeled
with (c1, d1) · · · (cn, dn) is (Σici)(Πjdj). First, observe that if
there is a reachable cycle that contains an edge with discount
factor < 1, then repeating this cycle drives the global discount
to 0, and thus, existence of such a cycle implies that the
(limiting) min-cost is 0. Since the shortest path need not
involve a cycle in which all discount factors are equal to 1,
the NP-bound follows. Suppose all costs ci’s are small natural
numbers. The pseudo-polynomial algorithm for this case relies
on the following: given a value c and a vertex v, computing
the “best” global discount over all paths from source to v with
sum of incremental costs equal to c, can be solved by adopting
shortest path algorithms, and the set of interesting choices of
c is bound by nk for a graph with n vertices if each increment
is a number smaller than k. �

D. Regular Functions for Inc-Scale Model

The class of regular functions for the cost model (Q,+c, ∗d)
is defined via SSTTs over the inc-scale grammar G(+c, ∗d).
It is easy to show that:

Theorem 14 (Expressiveness of Inc-Scale Models) The
cost functions definable by past-discount CRAs, by future-
discount CRAs, and by global-discount CRAs all belong to
R(Q,+c, ∗d).

The min-cost problem for this class of functions is still
open. However, we can show the equivalence problem to be
decidable. First, using the construction similar to the one used
to establish R(D,⊕,⊗d) ⊂ F(D,⊕,⊗c) (see Theorem 8),
we can represent cost functions in R(Q,+c, ∗d) using CRAs
that use + and ∗d. Such CRAs have linear updates, and the
algorithm for checking equivalence of CRAs with addition can
be adopted.

9

Theorem 15 (Equivalence of Inc-Scale Models) Given two
functions f1, f2 ∈ R(Q,+c, ∗d) represented by SSTTs over the
cost grammar G(+c, ∗d), checking equivalence can be solved
in time polynomial in the number of states and exponential in
the number of registers.

VII. RELATED WORK

Weighted Automata and Logics: Finite-state weighted au-
tomata have been an active area of research, with numerous
articles studying their algebraic and algorithmic properties. See
[12] for a comprehensive exposition. An important problem
for WA is that of determinization ([12], [19]): it is known that
there are weigthed automata with no equivalent deterministic
ones.

It has been shown that the equivalence problem for weighted
automata over the Min-Plus semiring is undecidable using a
reduction from Hilbert’s tenth problem [20], and by a reduc-
tion from the halting problem for two counter machines [1].
The only known class of weighted automata over the Min-Plus
semiring with decidable equivalence is that of finite-valued
weighted automata [25]. For a given k, a weighted automaton
is said to be k-valued if the number of distinct values computed
along all accepting paths is at most k. A weighted automaton
is called finite-valued if there exists a k such that it is k-
valued. We conjecture that the equivalence problem for CRAs
over min and +c with the copyless restriction is decidable.

In [11], the authors discuss a weighted MSO-logic that
disallows universal second order quantification and places
restrictions on universal first order quantification. The authors
show that the formal power series definable in this logic
coincides with the set of behaviors of weighted automata.

Discounted Shortest Paths: Generalized network flow prob-
lems extend flow problems on directed graphs by specifying
multipliers on edges in addition to costs ([15], [23]). The
problem of finding the minimum cost flow (which in some
cases is equivalent to the shortest path) from a source to a
target can be solved in polynomial time ([23], [5]). Future dis-
count machines that we introduce in this paper provide a nice
formalism that subsumes such problems, and have strongly
polynomial time algorithms for determining the minimum
cost path. In this paper, we also introduce past discount and
global discount machines that also have efficient algorithms
for determining the minimum cost paths.

In [13], the authors introduce weighted logic for infinite
words. In order to address convergence of the weighted sum,
the authors assume discounting along later edges in a path
(i.e., future discounting). Extending the results of this paper to
discounted weighted computations over infinite words remains
open.

Transducer Models: A wide variety of different models
have been proposed to model string and tree transductions.
The models that are most relevant to this paper are MSO-
definable transductions [10] and macro tree transducers [14].
An MSO-definable graph transduction specifies a function
between sets of graphs; the nodes, edges and labels of the
output graph are described in terms of MSO formulas over
the nodes, edges and labels of a finite number of copies of the

input graph. A macro tree transducer (MTT) is a top-down
tree to tree transducer equipped with parameters. Parameters
can store temporary trees and append them to the final tree
during the computation. In general, MTT are more expressive
than MSO-definable tree transductions. A subclass of MTTs
obtained by restricting the number of times a subtree and a
parameter can be used has been shown to be equi-expressive
as MSO-definable tree transductions [14].

Streaming tree transducers [3] (STTs) are a new formalism
for expressing MSO-definable tree-to-tree and string-to-tree
transductions. In comparison to some of the transducer models
discussed above, STTs have distinguishing features that make
them desirable as a canonical model for specifying MSO-
definable transductions: (1) STTs produce the output in linear
time by performing a single pass over the input, (2) they
preserve desirable properties such as closure under sequen-
tial composition and regular look-ahead, and (3) they have
good algorithmic properties such as decidability of functional
equivalence.

Regularity over Data Languages: Data languages allow
finite strings over data values that can be drawn from a
possibly infinite data domain ([22], [17], [6]). Register au-
tomata are often used as acceptors for data languages. A key
feature of such automata is that they allow registers to store
and test data values. Almost every variant of data automata
allows testing equality of data values, which mostly causes
interesting decision problems to become undecidable. Cost
register automata use the cost registers in a strictly write-only
fashion, which makes them incomparable to variants of data
automata that use read/write registers.

Regular Cost Functions: In [8], Colcombet defines a regular
cost function as a mapping from words to Nω (the set of
nonnegative integers and the ordinal ω). A cost function is
precisely defined as an equivalence class over mappings from
the set of words to Nω , such that functions f and g are in the
same equivalence class if for all words w, f(w) is bounded by
some constant iff g(w) is bounded by some constant. The au-
thor then defines two classes of automata (B- and S-automata),
each of which uses a finite set of counters and allows the
counters to be incremented, reset or checked for equality with a
constant. The operational semantics of these automata are that
the automaton computes the least upper bound or the greatest
lower bound over the set of counter values encountered during
its run. A cost function is then called regular if it is accepted
by a history-deterministic B- or S-automaton. The author also
provides an algebraic characterization of regular cost functions
in terms of stabilization monoids and equates recognizability
of cost functions with regularity.

Affine Programs: In [18], and more recently in [21], the
authors present the problem of deriving affine relations among
variables of a program. An affine relation is a property of the
form a0 +

∑n
i=1 ai.vi = 0, where v1, . . . ,vn are program

variables that range over a field such as the rationals or reals
and ai are constants over the same domain. An affine program
is a program with nondeterministic branching where each edge
of the program is labeled with an assignment statement of
the form v1 := v2 + 2.v3 + 3, i.e., where the RHS is an
affine expression. We could define a CRA over the cost model

10

Global Discounts
R(D,⊕c,⊗d) ≡ F(D,⊕c,⊗d)

R(D,⊗c) ≡ R(D,⊗) ≡
F(⊗c) ≡ Fc(⊗) ≡
Single-valued WA

Past
Disc-
ounts

Future
Disc-
ounts

Fc(⊕,⊗c)
R(D,⊕,⊗c)

F(⊕,⊗c) ≡
Weighted Automata

CRA with Equivalence Min-Cost
(+c) PTIME PTIME
Copyless(+) PTIME EXPTIME
(min,+c) Undecidable PTIME
Copyless(min,+c) ? PTIME
Past-discounts Polynomial PTIME
Future-discounts in states PTIME
Global-discounts Exp. in Pseudo-Poly
Inc-Scale registers ?

Fig. 3. Summary of Results

C(Q,+, ∗d), with the cost grammar t := +(t, t) | ∗ (t, d) | c.
While the cost functions defined by such CRAs do not have
interesting regularity properties, we remark that the equiva-
lence of such CRAs can be checked in polynomial time by
using ideas similar to the ones in [21].

Quantitative Languages: A quantitative language [7], [1],
[4] over infinite words is a function Σω 7→ R. Such languages
are generated by weighted automata, where the value of a
word w is set as the maximal value of all runs over w. By
defining various value functions such as Max , Sum , LimSup,
LimInf , different values can be computed for the run of a
weighted automaton on the string w. Quantitative languages
use the fixed syntax of weighted automata, and thereby re-
stricted to having a single weight along each transition in their
underlying automata. Moreover, they face similar difficulties in
determinization: for interesting models of value functions, the
corresponding automata cannot be determinized. An extension
of CRA to ω-regular cost functions could prove to be a more
expressive and robust model to specify quantitative languages
and to analyze their decision problems.

VIII. CONCLUSIONS

We have proposed a new approach to define regular func-
tions for associating costs with strings. The results for various
classes of functions are summarized in Figure 3. We hope
that our work provides new insights into the well-studied
topic of weighted automata, and opens a whole range of new
problems. First, it is plausible that there is a compelling notion
of congruences and canonicity for CRAs with increment.
Second, the decidability of copyless-CRAs with minimum and
increment remains an intriguing open problem. Third, we don’t
have algorithms for the min-cost problem for the class of
regular functions with increment and scaling. While we have
not succeeded even in establishing decidability, we suspect
that this problem admits efficient approximation algorithms.

Fourth, we have considered only a small set of combinations
of operations; studying the effects of adding operators such
as max would be worthwhile. Fifth, our notion of regularity
and cost register automata for mapping strings to costs can
be extended to infinite strings and trees, as well as to timed
and probabilistic systems. Finally, we would like to explore
practical applications: our framework seems suitable for ex-
pressing complex, yet analyzable, pricing policies, say, for
power distribution.

REFERENCES

[1] S. Almagor, U. Boker, and O. Kupferman. What’s decidable about
weighted automata? In Automated Technology for Verification and
Analysis, Lecture Notes in Computer Science, pages 482–491, 2011.

[2] R. Alur and P. Černý. Streaming Transducers for Algorithmic Verifica-
tion of Single-pass List-processing Programs. In Proc. of Principles of
Programming Languages, pages 599–610, 2011.

[3] R. Alur and L. D’Antoni. Streaming tree transducers. In Proc. of the 39th
Intl. Colloquium on Automata, Languages, and Programming - Volume
Part II, pages 42–53, 2012.

[4] B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online
algorithms with weighted automata. ACM Transactions on Algorithms,
2010.

[5] V. Batagelj, F. J. Brandenburg, P. O. D. Mendez, and A. Sen. The
generalized shortest path problem, 2000.

[6] H. Björklund and T. Schwentick. On notions of regularity for data
languages. Theor. Comput. Sci., 411(4-5):702–715, 2010.

[7] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4), 2010.

[8] T. Colcombet. The theory of stabilisation monoids and regular cost
functions. pages 139–150, 2009.

[9] T. Colcombet and C. Loding. Regular cost functions over finite trees.
In Symposium on Logic in Computer Science, pages 70–79, 2010.

[10] B. Courcelle. Graph Operations, Graph Transformations and Monadic
Second-Order Logic: A survey. Electronic Notes in Theoretical Com-
puter Science, 51:122 – 126, 2002.

[11] M. Droste and P. Gastin. Weighted automata and weighted logics. In
Proc. of Intl. Colloquium on Automata, Languages and Programming,
pages 513–525, 2005.

[12] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer, 2009.

[13] M. Droste and G. Rahonis. Weighted automata and weighted logics with
discounting. Theor. Comp. Sci., 410(37):3481 – 3494, 2009.

[14] J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars,
and mso definable tree translations. Information and Computation,
154(1):34 – 91, 1999.

[15] A. V. Goldberg, S. A. Plotkin, and É. Tardos. Combinatorial Algorithms
for the Generalized Circulation Problem. In Foundations of Computer
Science, pages 432–443, 1988.

[16] H. Hosoya. Foundations of XML Processing: The Tree-Automata
Approach. Cambridge University Press, 2011.

[17] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput.
Sci., 134(2):329–363, 1994.

[18] M. Karr. Affine relationships among variables of a program. Acta Inf.,
6:133–151, 1976.

[19] D. Kirsten and I. Mäurer. On the determinization of weighted automta.
J. Autom. Lang. Comb., 10:287–312, 2005.

[20] D. Krob. The equality problem for rational series with multiplicities in
the tropical semiring is undecidable. In Intl. Colloquium on Automata,
Languages and Programming, pages 101–112, 1992.

[21] M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In Intl.
Colloquium on Automata, Languages and Programming, pages 1016–
1028, 2004.

[22] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings
over infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

[23] J. D. Oldham. Combinatorial Approximation Algorithms for Generalized
Flow Problems. In Symp. On Discrete Algorithms, pages 704–714, 1999.

[24] M. P. Schützenberger. On the definition of a family of automata.
Information and Control, 4:245–270, 1961.

[25] A. Weber. Finite-valued distance automata. Theor. Comput. Sci.,
134:225–251, November 1994.

