
LINEAR/NON-LINEAR TYPES

FOR EMBEDDED DOMAIN-SPECIFIC LANGUAGES

Jennifer Paykin

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2018

Supervisor of Dissertation

Steve Zdancewic
Professor of Computer and Information Science

Graduate Group Chairperson

Lyle Ungar
Professor of Computer and Information Science

Dissertation Committee
Stephanie Weirich, Professor of Computer and Information Science, University of Pennsylvania

Benjamin Pierce, Professor of Computer and Information Science, University of Pennsylvania

Andre Scedrov, Professor of Mathematics, University of Pennsylvania

Peter Selinger, Professor of Mathematics, Dalhousie University

LINEAR/NON-LINEAR TYPES
FOR EMBEDDED DOMAIN-SPECIFIC LANGUAGES

COPYRIGHT

2018

Jennifer Paykin

This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

Acknowledgment

I have so many people to thank for helping me along the journey of this PhD. I could not

have done it without the love and support of my partner and best friend, Jake, who was

there for me every single step of the way. I also need to thank my parents Laurie and Lanny

for giving me so many opportunities in my life, and my siblings Susan and Adam for helping

me grow.

I owe so much thanks to advisor Steve Zdancewic, who has been an amazing advisor

and who has made me into the researcher I am today. Steve, thank you for teaching me

new things, encouraging me to succeed, listening to my ideas, and waiting patiently until I

realized you were right all along.

I have been lucky to have many excellent mentors over the years. Thank you to Norman

Danner, for introducing me to programming languages and pushing me to take advantage

of the opportunities that come my way. Thank you to Stephanie Weirich, for inspiring me

and supporting me over the years. Thank you to Benjamin Pierce, for making me into a

better writer, speaker, and researcher. Thank you to the rest of my thesis committee—Peter

Selinger and Andre Scedrov—for your feedback and encouragement. Finally, thank you to

Neel Krishnaswami, Dan Licata, Val Tannen, and all my other collaborators, professors,

and mentors for teaching me so much over the years.

My time at Penn would have been much less enjoyable without the wonderful friends I

have made here. To everyone at PLClub, Monday night quizzo, cisters, and GETUP, thank

you for your friendship, your commiseration, and your support. So many people have made

my life better at Penn that I cannot possibly list them all, but I need to single out my closest

confidants and conspirators—Antal, Leo, Robert, and Kenny. Thanks for everything!

Finally, my work has been supported financially by the following sources, whose contri-

butions have been much appreciated: the NSF Graduate Research Fellowship Grant Number

DGE-1321851; NSF Grant Number CCF-1421193; and ONR MURI No. FA9550-16-1-0082.

iii

ABSTRACT

LINEAR/NON-LINEAR TYPES

FOR EMBEDDED DOMAIN-SPECIFIC LANGUAGES

Jennifer Paykin

Steve Zdancewic

Domain-specific languages are often embedded inside of general-purpose host languages

so that the embedded language can take advantage of host-language data structures, li-

braries, and tools. However, when the domain-specific language uses linear types, existing

techniques for embedded languages fall short. Linear type systems, which have applica-

tions in a wide variety of programming domains including mutable state, I/O, concurrency,

and quantum computing, can manipulate embedded non-linear data via the linear type !σ.

However, prior work has not been able to produce linear embedded languages that have full

and easy access to host-language data, libraries, and tools.

This dissertation proposes a new perspective on linear, embedded, domain-specific lan-

guages derived from the linear/non-linear (LNL) interpretation of linear logic. The LNL

model consists of two distinct fragments—one with linear types and another with non-linear

types—and provides a simple categorical interface between the two. This dissertation iden-

tifies the linear fragment with the linear embedded language and the non-linear fragment

with the general-purpose host language.

The effectiveness of this framework is illustrated via a number of examples, implemented

in a variety of host languages. In Haskell, linear domain-specific languages using mutable

state and concurrency can take advantage of the monad that arises from the LNL model. In

Coq, the Qwire quantum circuit language uses linearity to enforce the no-cloning axiom of

quantum mechanics. In homotopy type theory, quantum transformations can be encoded as

higher inductive types to simplify the presentation of a quantum equational theory. These

examples serve as case studies that prove linear/non-linear type theory is a natural and

expressive interface in which to embed linear domain-specific languages.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENT . iii

ABSTRACT . iv

1 Introduction . 1

1.1 Conventions . 9

2 Linear type systems . 10

2.1 A simple linear type system . 11

2.2 Linear connectives . 13

2.3 The exponential modality ! . 18

2.4 Dual Intuitionistic Linear Logic . 21

2.5 Indexed modalities . 23

2.6 Kind-based linear logic . 27

2.7 Linear/non-linear logic . 30

3 Embedded linear/non-linear types . 36

3.1 A linear embedded language . 36

3.2 The linear/non-linear interface . 39

3.3 Example: linear file handles . 41

3.4 Monadic programming . 42

3.5 Extensions . 47

3.6 Example: session types . 50

3.7 Discussion . 54

4 Haskell Implementation . 56

4.1 Dependent types in Haskell . 58

v

4.2 Linear types and type checking . 60

4.3 Running linear programs . 69

4.4 Monadic programming . 78

4.5 Example: Arrays . 82

4.6 Example: Session types . 87

4.7 Discussion and Related Work . 92

5 Embedded categorical semantics . 98

5.1 Background . 98

5.2 Categories for multiplicative additive linear logic 103

5.3 Linear/non-linear categories . 105

5.4 Embedded meta-theory . 106

5.5 Conclusion . 110

Case study: Quantum Computing 112

6 A quantum/non-quantum type system . 113

6.1 Quantum computing background . 117

6.2 The quantum/non-quantum (QNQ) calculus 122

6.3 Examples . 126

6.4 Denotational semantics . 130

7 Quantum equational theories in HoTT . 134

7.1 Background and main ideas . 135

7.2 Equational theory of QNQ . 138

7.3 Deriving equational rules in homotopy type theory 142

7.4 Equivalence of unitaries . 146

7.5 Denotational Semantics . 155

7.6 Discussion . 158

7.7 Conclusion . 159

vi

8 Qwire: Quantum circuits in Coq . 160

8.1 The Qwire circuit language . 161

8.2 Linear type checking in Coq . 165

8.3 Surface language . 168

8.4 Discussion . 174

9 Future work . 177

9.1 Adapting LNL to other substructural type systems. 177

9.2 Formalizing the theory of embedded languages. 180

9.3 Variations to the structure of LNL . 180

9.4 Drawing on the host language . 180

9.5 Shortcomings and outstanding problems . 181

9.6 Conclusion . 181

BIBLIOGRAPHY . 182

vii

LIST OF ILLUSTRATIONS

1.1 The linear/non-linear embedded programming model. 6

2.1 Linear implication . 13

2.2 Multiplicative product ⊗ . 14

2.3 Proof that LUnit is the unit of ⊗. 15

2.4 Multiplicative unit LUnit . 16

2.5 Additive product . 16

2.6 Additive unit: LTop . 17

2.7 Additive sum . 17

2.8 Additive unit: LZero . 18

2.9 The linear/non-linear categorical model. The model consists of two categories

related by functors Lift and Lower that form a categorical adjunction Lift ⊣

Lower; for details see Section 5.3. 31

2.10 LNL Lift connective . 32

2.11 LNL Lower connective . 33

3.1 Specification of an embedded linear lambda calculus as terms of type LExp ∆ σ. 38

3.2 Interface of linear file handles, given as inference rules, writing ∆ ⊢ e ∶ σ for

e ∶ LExp ∆ σ. 41

3.3 Recursive types in the linear embedded language 48

3.4 Polymorphism in the linear embedded language 49

3.5 Dependent types in the linear embedded language 50

3.6 Linear interface to session types. 51

4.1 Type families over linear typing contexts, enforcing the invariant that typing

contexts are sorted. The custom type errors AddError and RemoveError

provide better error reporting—see Section 4.7. 62

viii

4.2 Haskell interface to linear additive connectives 67

4.3 Examples of linear programs embedded in Haskell 68

4.4 Values in the deep embedding associated with various linear connectives. . . 74

4.5 Interface to linear arrays. 83

4.6 Linear quicksort algorithm . 88

5.1 β and η equivalence for the embedded linear lambda calculus. 107

6.1 Multiplicative exponential fragment of QNQ 123

6.2 Quantum teleportation. 129

6.3 Quantum Fourier transform in QNQ . 130

7.1 Structural axioms . 141

7.2 Groupoid axioms . 141

7.3 Unitary equivalence axioms for X ∶ U(Qubit,Qubit), SWAP ∶ U(σ ⊗ τ, τ ⊗ σ),

and DISTR ∶ U(σ ⊗ (τ1 ⊕ τ2), (σ ⊗ τ1) ⊕ (σ ⊗ τ2)). 142

7.4 Operations on open linear types . 148

7.5 Inductive presentation of open type equivalence. 150

7.6 Proofs of Equations SWAP-intro and SWAP-elim. 154

8.1 Unitary and non-unitary gates in Qwire. Different gate sets could have been

chosen, for example by picking a different universal set of unitary gates, or by

allowing arbitrary circuits to be frozen as gates, which is a feature allowed by

many practical circuit languages. Rennela and Staton (2018) propose some

extensions to Qwire that expand the gate set to add sums and recursive

data types. 162

8.2 Translation of QNQ expressions and boxes to Qwire circuits and boxes. . . 172

8.3 Implementing QNQ syntax in Qwire. 172

9.1 Lattice of substructural type systems . 178

ix

CHAPTER 1

Introduction

Resources like mutable state, I/O, and communication channels play a big role in many pro-

gramming domains, but are subject to some very subtle bugs. Programming languages can

alleviate some of this pain through abstractions, which simplify reasoning about otherwise

unsafe effects. Often, particular programming domains need domain-specific abstractions,

and the languages that provide them are called domain-specific languages (DSLs).

Implementing a standalone DSL can be a lot of work for the language designer, who

must come up with useful domain-specific abstractions and also provide syntax, libraries, a

programming environment, and tool support. Furthermore, working in a standalone DSL

can be inconvenient for the user, who has to work with the new abstractions and also learn

the syntax and features of a brand new language.

Embedded domain-specific languages (EDSLs) alleviate some of this work by defining

the DSL inside of an existing general-purpose language. EDSLs let users take advantage of

existing language constructs, libraries, and tools, ideally with very little overhead.

Unfortunately, not all programming abstractions are popular as EDSLs. Abstractions

that use linear or substructural type systems (Girard, 1987) have been neglected because

most general-purpose languages do not natively support linear resource management.

For example, a DSL for memory management might provide linear mutable references:

alloc : α⊸ LRef α

dealloc : LRef α⊸ Unit

lookup : LRef α⊸ α ⊗ LRef α

assign : LRef α⊸ α⊸ LRef α

1

Here, ⊸ (“lollipop”) denotes a linear function that uses its argument exactly once, and ⊗

(“tensor”) denotes a linear pair.

Linearity enforces two major invariants: linear data can be neither duplicated nor dis-

carded. For references, the fact that linear data cannot be duplicated means that once a

reference has been deallocated, it cannot be accessed again.

illegal_assign ≡ let r ∶= alloc "hello"

let () ∶= dealloc r in

assign r "world" -- type error

The lack of duplication also prevents data races in the case of parallelism.

illegal_race ≡ let r ∶= alloc "hello" in

fork (assign r "world") (assign r "goodbye") -- type error

The fact that linear data cannot be discarded means that, in any terminating, top-

level program (in this case, a program of type Unit), every reference will eventually be

deallocated. This eliminates the need for garbage collection, which can improve perfor-

mance, while ensuring there are no space leaks.

illegal_leak ≡ let _ ∶= alloc "hello world" in () -- type error

As it happens, linearity and related concepts are useful for a wide variety of domain-

specific applications, not just mutable state.

- Perhaps most frequently, linear types provide abstractions for system resources including

I/O (Wadler, 1990), file handles (Brady and Hammond, 2012), ownership/permissions of

shared data (Pottier and Protzenko, 2013), and garbage collection (Fluet et al., 2006).

These abstractions are also supported by variations of linear type systems including affine,

relevant, and ownership type systems, which are known collectively as substructural type

systems.

- Linearity can be used as a logic in which to reason about such stateful systems. Separation

logic uses linearity to reason about non-overlapping parts of a heap, so that properties

about heaps can be extended to larger contexts in a modular way (Reynolds, 2002).

2

The Linear Logical Framework (LLF) (Cervesato and Pfenning, 1996) uses linearity to

facilitate logic meta-programming about languages with mutable state.

- Session types use linearity to ensure that at any given time, a communication channel has

exactly two endpoints, governed by dual communication protocols (Kobayashi et al., 1999;

Gay and Vasconcelos, 2010). Formally, there is a Curry-Howard correspondence between

session-typed π-calculus terms and linear logic (Caires and Pfenning, 2010; Wadler, 2014).

- Linearity can also be used to manage time as a resource. Girard (1998) shows how

linearity can be used to characterize polynomial-time functions. Krishnaswami et al.

(2012) use linear types combined with temporal logic to safely reason about functional

reactive programs and graphical user interfaces (Krishnaswami and Benton, 2011).

- Bounded linear logic can be used to track properties of data, known as coeffects, like

data flow, liveness, and privacy (Petricek et al., 2014; Brunel et al., 2014). Reed and

Pierce (2010) use linear types in a language for differential privacy to bound the amount

of private information leaked by statistical database queries.

- Quantum computing has the property that quantum data cannot be duplicated or dis-

carded: the no-cloning theorem. Several languages for quantum computing use linear

types to enforce this invariant (Selinger and Valiron, 2009; Ross, 2015).

Although most general-purpose languages do not natively support linear types, lan-

guages with dependent types can be used to encode linear typing judgments. Consider a type

LExp ∆ σ of linear expressions, where σ ∶ LType is a linear type and ∆ ∶ List(LVar×LType)

is a typing context mapping linear variables to linear types. The intention is that terms

e ∶ LExp ∆ σ represent linear expressions of type σ using linear variables from ∆.

Linearity is enforced by imposing constraints on typing contexts. For example, given a

linear function e1 ∶ LExp ∆1 (σ⊸ τ) and an argument e2 ∶ LExp ∆2 σ, function application

e1ˆe2 is defined exactly when the linear variables used by e1 and e2 do not overlap—in other

words, when ∆1 and ∆2 are disjoint, written ∆1�∆2. In that case, e1ˆe2 ∶ LExp (∆1,∆2) τ .

3

Linear EDSLs in this style are not common in practice. Host languages lack tools

and techniques to manage linear variable binding and automatically check disjointedness

conditions ∆1�∆2. Although isolated examples exist in the literature (see for example

Mazurak et al. (2010); Polakow (2015); Kiselyov (2012)), full support of linear types is rare.

More importantly, the linear EDSLs that do exist are not designed in a way that take

advantage of host-language data and libraries. In traditional presentations of linear types,

all data is assumed to be linear unless its type has the form !σ (pronounced “bang σ”).

Types of this form, however, can be freely duplicated and discarded.

duplicate ∶ !σ⊸ !σ ⊗ !σ discard ∶ !σ⊸ LUnit

To construct a term of type !σ, it suffices to produce a term of type σ, as long as it is

linearly closed. That is, if e ∶ LExp ∅ σ does not use any linear variables, then it can be

duplicated or discarded by simply executing e twice or zero times, respectively.

duplicate (e) ≡ (e, e) discard (e) ≡ ()

If e had a non-empty linear context, the pair (e, e) would be ill-typed; the two components

of the pair would use overlapping linear variables, violating the no-duplication property.

In the context of an EDSL, this implies that non-linear expressions should be part of

the embedded language. Thus, the EDSL implementer has to design an easy-to-use type

system that handles both linear and non-linear data—already a difficult task. Furthermore,

the EDSL user cannot fully take advantage of the host language’s abstractions and libraries,

but instead has to duplicate all relevant libraries inside the EDSL.

As an example, consider the linear mutable references presented at the beginning of

this section. Although references themselves are linear, they hold non-linear data; lookup

duplicates its data and assign discards its data. More precisely, the types of lookup and

assign should be non-linear:

lookup : LRef σ ⊸ !σ ⊗ LRef σ assign : LRef σ ⊸ !σ ⊸ LRef σ

4

Consider a program center_at that updates the state of an xy-coordinate stored in a

mutable reference. The program center-at flag coord sets the coordinate (x, y) in coord

to (x,x) if flag is true, and otherwise sets (x, y) to (y, y).

centerAt : LRef Bool ⊸ LRef (LInt ⊗ LInt) ⊸ LRef Bool ⊗ LRef (LInt ⊗ LInt)

≡ λ flag. λ coord. let (b,flag) ∶= lookup flag in

let ((x,y),coord) ∶= lookup coord in

(flag, if b then assign (x,x) coord

else assign (y,y) coord)

In order to implement this program, a linear EDSL would have to

- provide a type of linear booleans LBool and a library of boolean operations;

- provide a type of linear numbers LInt and a library of arithmetic operations; and

- implement type inference that automatically coerces linear integers and linear booleans

to !LInt and !LBool respectively, so the expressions (x,x) and (y, y) are well-typed.

While numbers and booleans are not too large a challenge, this kind of code duplication

goes against the very spirit of embedded DSLs. If the host language has its own libraries

for numbers and booleans, our linear EDSL should be able to take advantage of them! For

example, we can imagine that instead of being indexed by linear types, mutable references

could instead be indexed by host language types. The program centerAt could then be

implemented using built-in if statements and integers, which would be better for both

implementers and users of the language.

However, it is not immediately clear whether such an abstraction makes sense. Consider

the interface to mutable references that hold host-language data, denoted by the type α:

alloc : α → LExp ∅ (LRef α)

dealloc : LExp ∆ (LRef α) → LExp ∆ Unit

lookup : LExp ∆ (LRef α) → LExp ∆ (?? ⊗ LRef α)

assign : LExp ∆ (LRef α) → α → LExp ∆ (LRef α)

5

linear EDSL

non-linear
host language

⊣ LiftLower

Figure 1.1: The linear/non-linear embedded programming model.

The types of alloc, dealloc and assign are all straightforward, where alloc and assign

allow the user to provide an ordinary host-language value to be stored in the reference cell.

However, it is not clear what the type of lookup should be. On the one hand, lookup must

return a linear expression or else we would not be able to enforce linearity at the top level.

On the other hand, we want the output of lookup to be a host-language value, as it is used

in centerAt.

The goals of linear DSLs and embedded DSLs seem to be at odds here. But with a

small change in perspective, these two approaches can be reconciled.

Whereas traditional linear type systems treat data as linear unless marked with the type

!σ, Benton’s linear/non-linear (LNL) logic puts linear and non-linear data on equal ground

and provides a simple interface, illustrated in Figure 1.1, to relate the two (Benton, 1995).

This interface includes, for every non-linear type α, a linear type Lower α; and for every

linear type σ, a non-linear type Lift σ.

Although the linear/non-linear model has been widely accepted as a semantic foun-

dation of linear type systems (Melliès, 2003), it has had limited impact as a programming

paradigm. For example, it is common knowledge that the LNL model gives rise to a monad,

but how does this monad integrate with modern monadic programming techniques? Krish-

naswami et al. (2015) use an LNL type system to integrate linear and dependent types, since

dependent types can only depend on non-linear values, but how does this system compare

6

to modern dependently-typed languages?

In this work I propose that Benton’s linear/non-linear interface exactly describes the

relationship between embedded and host-language data in a linear EDSL. For example, the

lookup operation should naturally return a Lowered value.

lookup : LExp ∆ (LRef α) → LExp ∆ (Lower α ⊗ LRef α)

The type system that arises from this proposal is expressive and has practical appli-

cations for a number of different linear domains and host languages. But the embedded

LNL type system is more than just a programming model—it is also a powerful framework

for meta-programming and meta-reasoning about linear EDSLs. For example, if the host

language supports monadic programming, we can define monadic wrappers around domain-

specific linear operations. If the host language has dependent types, then the linear language

inherits a limited form of dependent types for free. If the host language has support for

theorem proving, then it can be used to formalize the meta-theory of the linear language,

taking advantage of existing results about non-linear data used in the linear EDSL.

Thesis Statement. Linear/non-linear logic is a simple and powerful programming model

for linear embedded domain-specific languages. Embedded LNL type systems come with a

rich and elegant meta-theory, have practical applications in a variety of linear domains and

host languages, and facilitates powerful embedded meta-theory.

To support its thesis, this dissertation makes the following contributions:

- Chapter 2 contains a tutorial and survey of linear types with a focus on different possible

formulations of non-linear types in a linear type system.

- Chapter 3 develops the meta-theory of embedded LNL, illustrates the resulting language

with examples, and exposes connections with monadic programming techniques.

- Chapter 4 presents the implementation of linear/non-linear EDSLs in Haskell, to demon-

strate the LNL programming model in practice. The Haskell implementation is a general

framework that can be instantiated with many different domain-specific languages, and

the chapter presents two particular examples—linear arrays and concurrent session types.

7

The meta-theory and examples of Chapters 3 and 4 were originally presented in the

context of the Haskell implementation at the 2017 Haskell Symposium, in The linearity

monad (Paykin and Zdancewic, 2017).

- Chapter 5 presents the category theory of linear/non-linear type systems and establishes

a categorical semantics of embedded LNL using the host language as a meta-theory. The

embedded meta-theory acts as a sanity check to ensure that the embedded LNL framework

is sound and accurately represents Benton’s original LNL model.

- Starting in Chapter 6, the dissertation focuses on a larger case study that uses embedded

LNL for quantum computation. Chapter 6 describes a quantum/non-quantum (QNQ)

term calculus, gives examples of quantum programming with dependent types, and de-

velops the meta-theory of QNQ, focusing on its denotational semantics.

- Chapter 7 develops an equational theory for QNQ using homotopy type theory as a host

language. The embedding encodes components of the embedded language (specifically,

unitary transformations) in a higher inductive type—a feature unique to homotopy type

theory. This encoding simplifies the resulting equational theory, and shows how features

of the host language can directly benefit the design of the embedded language.

- Finally, Chapter 8 describes a variation of QNQ—an embedded quantum circuit language

called Qwire. Implemented in Coq, Qwire relies heavily on the rich language features

of its host language, including dependent types, to facilitate type checking.

Qwire was developed in conjunction with Robert Rand and Steve Zdancewic, and was

originally presented in the proceedings of POPL 2017 as Qwire: A core language for

quantum circuits (Paykin et al., 2017). The surface language described in Section 8.3

is new to this dissertation, however. The implementation in Coq was also developed

later, and described in part in Qwire practice: Formal verification of quantum circuits

in Coq (Rand et al., 2017); the formal verification aspects of the Qwire project are not

a contribution of this dissertation.

8

1.1 Conventions

This dissertation uses dependent types to define linear typing judgments and reason about

the meta-theory of such type systems. To do this effectively we assume basic familiarity

with dependent type theory such as Π types and Σ types for universal and existential

quantification respectively. We also assume familiarity with inductively defined relations

and predicates such as one would find in Coq or Agda. For more background, we refer the

reader to Aspinall and Hofmann (2005).

In general, our use of dependent types is informal and language-agnostic, with the under-

standing that the reasoning principles are valid in a range of dependently typed languages.

In Chapter 4 we use Haskell as a host language, and in Chapter 8 we use Coq; in those

chapters we expect some basic familiarity with the languages but introduce advanced fea-

tures as needed. In Chapter 7 we use homotopy type theory as a host language and provide

the relevant background in that chapter.

The syntax we use in the language-agnostic chapters is loosely inspired by Haskell. We

define functions by pattern matching over their arguments, and give type declarations above

their definitions, as in:

isEven : Nat → Bool

isEven 0 ≡ true

isEven 1 ≡ false

isEven (n+2) ≡ isEven n

We write x ≡ y to define x as y, and write x = y for the proposition that x is equal to y.

Anonymous functions in the host language are written λa.b and application aa′. In

contrast, functions in the embedded linear language are written λ̂x.e and application eˆe′.

We write Type for the kind of host-language types, and we define inductive predicates

and relations with the keyword data as follows:

data IsEven : Nat → Type where

even0 : IsEven 0

even2 : Π n, IsEven n → IsEven (n+2)

9

CHAPTER 2

Linear type systems

What features should we expect of a linear EDSL? In this chapter we review the basics

of linear type systems, including the standard linear connectives for functions, pairs, and

sums. In addition, we survey different ways to integrate non-linear data into a linear type

system, starting with the traditional ! modality and moving through to linear/non-linear

logic. Our goal is to identify how well different presentations work for linear EDSLs.

Linear logic is often referred to as a logic of resources (Girard, 1987). Linear type

systems are used to reason about system resources like memory, locks, time, etc., but they

also treat linear variables as if they are consumable resources. This means that when a

variable is used in a linear program, the resource it is associated with gets used up, and is

no longer accessible to the rest of the program.

The interpretation of linear variables as resources is characterized by two structural

rules:

1. Linear resources cannot be duplicated.

2. Linear resources cannot be discarded.

Type systems limited by such structural rules are called substructural type systems. If

resources can be duplicated but not discarded, the system is called relevant, and if resources

can be discarded but not duplicated, the system is called affine. Other structural rules can

also be added; if resources can be neither duplicated, discarded, nor reordered in a context,

then the system is called ordered. This work focuses on linear type systems, but many of

the results are applicable to different substructural systems as well.

10

2.1 A simple linear type system

Consider a linear typing judgment of the form ∆ ⊢̀ e ∶ σ, where σ is a linear type and ∆ is

a typing context x1 ∶ σn, . . . , xn ∶ σn mapping linear variables xi to types σi. The subscript

` is syntax to distinguish it from other typing judgments that will appear later. Intuitively,

we can think of e as a computation that uses exactly the resources xi to produce a result

of type σ.

The fact that resources cannot be discarded means that every resource in a linear typing

context ∆ must be used at some point in the expression. Consider the following typing rule

for variables, which says that the only resource being consumed is the variable x itself.

∆ = x ∶ σ

∆ ⊢̀ x ∶ σ
var

The fact that resources cannot be duplicated means that resources used in one part of

a program cannot be used in another. For example, consider a let binding:

∆1 ⊢̀ e ∶ σ ∆2, x ∶ σ ⊢̀ e′ ∶ τ ∆1�∆2

∆1,∆2 ⊢̀ let x ∶= e in e′ ∶ τ
let

The judgment ∆1�∆2 says that the domains of ∆1 and ∆2 are disjoint, meaning that e and

e′ draw on disjoint sets of resources. In general, (∆1,∆2) is only defined when ∆1�∆2.

∅�∆2

∆1�∆2 x /∈ dom(∆2)

(∆1, x ∶ σ)�∆2

The operational semantics of this linear type system, much like non-linear type systems,

can be described using α-, β-, and η-equivalences. The α-equivalence rule for let bindings

11

says that bound variables can be renamed inside an expression.

let x ∶= e in e′ ∼α let y ∶= e in e′{y/x}

We write e′{e/x} for the usual capture-avoiding substitution of e for x in e′. In the rest of

this dissertation we omit α-equivalences, as they are completely standard.

Evaluation order is independent of linearity, so we can consider both call-by-value and

call-by-name operational semantics. Evaluation contexts EV and EN, respectively for call-

by-value and call-by-name, dictate where β-reductions occur in a term.

e↝V e
′

EV[e] ↝V E
V[e′]

e↝N e
′

EN[e] ↝N E
N[e′]

An evaluation context is a term with a hole in it; we write E[e] for the term obtained by

filling the hole with e. Evaluation contexts reduce the bodies of let bindings for call-by-

value contexts, but not for call-by-name.

EV ∶∶= ◻ ∣ let x ∶= EV in e′

EN ∶∶= ◻

let x ∶= vV in e′ ↝V e
′{v/x}

let x ∶= e in e′ ↝N e
′{e/x}

Eta-equivalences for let bindings typically say that any expression e is equivalent to a

let binding let x ∶= e in x. However, such a rule can be generalized so that, if e is an

expression that occurs linearly in another term e′, then e′{e/x} is equivalent to let x ∶=

e in e′. This rule both introduces a let binding and also commutes the let binding to the

front of a term. Such rules are also called commuting conversions in literature surrounding

proof theory (Girard et al., 1989).

∆ ⊢ e ∶ σ ∆′, x ∶ σ ⊢ e′ ∶ τ ∆�∆′

e′{e/x} ∼η let x ∶= e in e′

12

σ, τ ∶∶= ⋯ ∣ σ⊸ τ

e ∶∶= ⋯ ∣ λ̂x.e ∣ eˆe′

∆ ⊢̀ e ∶ σ⊸ τ

e ∼η λ̂x.ex

∆, x ∶ σ ⊢̀ e ∶ τ ∆�x ∶ σ
∆ ⊢̀ λ̂x.e ∶ σ⊸ τ

⊸-I
∆ ⊢̀ e ∶ σ⊸ τ ∆′ ⊢̀ e′ ∶ σ ∆�∆′

∆,∆′ ⊢̀ eˆe′ ∶ τ
⊸-E

EV ∶∶= ⋯ ∣ EVˆe′ ∣ vˆEV

EN ∶∶= ⋯ ∣ ENe′
vV ∶∶= ⋯ ∣ λ̂x.e
vN ∶∶= ⋯ ∣ λ̂x.e

(λ̂x.e′)ˆv ↝V e
′{v/x}

(λ̂x.e′)ˆe↝N e
′{e/x}

Figure 2.1: Linear implication

We write e1 ∼ e2 for the smallest congruence containing α, β, and η equivalences.

2.2 Linear connectives

Linear type systems are not expressive if they only contain constants and let bindings, and

they usually come with a variety of standard connectives.

Linear functions. The type of linear functions is written σ⊸ τ . Figure 2.1 summarizes

the syntax, typing rules, and operational semantics of linear functions. The typing rules for

abstraction λ̂.e and application eˆe′ ensure that the resources used to produce a function

and its argument are disjoint. The β and η rules are identical to those of the simply-typed

lambda calculus. A lambda closure λ̂x.e is a value in both the call-by-name and call-by-

value fragments, but call-by-value evaluation contexts evaluate the argument to a function

before taking a β-step. The η-equivalence rule says that every linear function e is equivalent

to λ̂x.eˆx.

Multiplicative product. The multiplicative product, also called tensor product and

written ⊗, is linear in the sense that the two components of the pair cannot use any shared

resources. The fragment of the type system with the multiplicative product is shown in

Figure 2.2.

Unlike the non-linear/Cartesian product, the multiplicative product cannot be elimi-

nated using projections πi ∶ σ1 ⊗ σ2 ⊸ σi, because such a projection uses only half of the

resources of the original pair. Instead, the multiplicative product can be eliminated by a

13

σ, τ ∶∶= ⋯ ∣ σ ⊗ τ
e ∶∶= ⋯ ∣ (e1, e2) ∣ let (x1, x2) ∶= e in e′

∆ ⊢̀ e ∶ σ1 ⊗ σ2 ∆′, x ∶ σ1 ⊗ σ2 ⊢̀ e′ ∶ τ ∆�∆′

e′{e/x} ∼η let (x1, x2) ∶= e in e′{(x1, x2)/x}

∆1 ⊢̀ e1 ∶ σ1 ∆2 ⊢̀ e2 ∶ σ2 ∆1�∆2

∆1,∆2 ⊢̀ (e1, e2) ∶ σ1 ⊗ σ2
⊗-I

∆ ⊢̀ e ∶ σ1 ⊗ σ2 ∆′, x1 ∶ σ1, x2 ∶ σ2 ⊢̀ e′ ∶ τ ∆�∆′

∆,∆′ ⊢̀ let (x1, x2) ∶= e in e′ ∶ τ
⊗-E

EV ∶∶= ⋯ ∣ (EV, e2) ∣ (v1,EV) ∣ let (x1, x2) ∶= EV in e′

EN ∶∶= ⋯ ∣ let (x1, x2) ∶= EN in e′
vV ∶∶= ⋯ ∣ (vV1 , vV2)
vN ∶∶= ⋯ ∣ (e1, e2)

let (x1, x2) ∶= (v1, v2) in e′ ↝V e
′{v1/x1, v2/x2}

let (x1, x2) ∶= (e1, e2) in e′ ↝N e
′{e1/x1, e2/x2}

Figure 2.2: Multiplicative product ⊗

let binding, written let (x1, x2) ∶= e in e′, where the two components of the pair are bound

to variables x1 and x2.

The η-equivalence rule says that, if e is an expression of type σ1⊗σ2 that occurs linearly

in a larger term e′, then e′{e/x} is equivalent to let (x1, x2) ∶= e in e′{(x1, x2)/x}. That

is, a let binding can always be commuted to the front of a term.

Linear functions can be curried and uncurried with respect to the multiplicative product:

curry ∶ (σ1 ⊗ σ2 ⊸ τ) ⊸ σ1 ⊸ σ2 ⊸ τ

curry ≡ λ̂f.λ̂x1.λ̂x2.f(x1, x2)

uncurry ∶ (σ1 ⊸ σ2 ⊸ τ) ⊸ σ1 ⊗ σ2 ⊸ τ

uncurry ≡ λ̂f.λ̂x.let (x1, x2) ∶= x in f x1 x2

Multiplicative unit. The multiplicative unit is written LUnit or sometimes 1; the frag-

ment corresponding to this type is shown in Figure 2.4. Notice that the call-by-value and

call-by-name rules are identical. LUnit is a unit of ⊗ in the sense that LUnit⊗ σ (and also

σ ⊗ LUnit) is isomorphic to σ—there are morphisms between the two types that compose

14

lunit⊗ ○ lunit′⊗ ∼η λ̂z.lunit⊗(lunit′⊗ z)
∼β λ̂z.(lunit′⊗ z, ())
∼β λ̂z.(let (x, y) ∶= z in let () ∶= y in x, ())
∼η λ̂z.let (x, y) ∶= z in (let () ∶= y in x, ())
∼η λ̂z.let (x, y) ∶= z in let () ∶= y in (x, ())
∼η λ̂z.let (x, y) ∶= z in (x, y)
∼η λ̂z.z

lunit′⊗ ○ lunit⊗ ∼η λ̂x.lunit′⊗(lunit⊗x)
∼β λ̂x.lunit′⊗(x, ())
∼β λ̂x.let (x, y) ∶= (x, ()) in let () ∶= y in x

∼β λ̂x.let () ∶= () in x

∼β λ̂x.x

Figure 2.3: Proof that LUnit is the unit of ⊗.

to the identity:

lunit⊗ ∶ σ⊸ σ ⊗ LUnit

lunit⊗ ≡ λ̂x.(x, ())

lunit′⊗ ∶ σ ⊗ LUnit⊸ σ

lunit′⊗ ≡ λ̂z.let (x, y) ∶= z in let () ∶= y in x

The proofs that lunit⊗ ○ lunit′⊗ and lunit′⊗ ○ lunit⊗ are identity functions are shown in

Figure 2.3.

The definition of lunit′⊗ here is overly verbose; informally we write λ̂(x, ()).x.

Additive product. Linear type systems often contain two different sorts of products.

The additive product, written σ & τ and pronounced “σ with τ ,” corresponds more closely

with the non-linear/Cartesian product. Given a computation e of type σ1&σ2, the user can

choose to use the first component or the second component, but not both, via projection.

This means that to construct an additive pair, the two components of the pair, [e1, e2],

must use exactly the same resources. Intuitively, a computation of type σ1 & σ2 provides a

choice of either σ1 or σ2. This implies that [e1, e2] is always a value; its components should

15

σ, τ ∶∶= ⋯ ∣ LUnit
e ∶∶= ⋯ ∣ () ∣ let () ∶= e in e′

∆ ⊢̀ e ∶ LUnit ∆′ ⊢̀ e′ ∶ τ ∆�∆′

e′{e/x} ∼η let () ∶= e in e′{()/x}

∅ ⊢̀ () ∶ LUnit
LUnit-I

∆ ⊢̀ e ∶ LUnit ∆′ ⊢̀ e′ ∶ τ ∆�∆′

∆,∆′ ⊢̀ let () ∶= e in e′ ∶ τ
LUnit-E

EV ∶∶= ⋯ ∣ let () ∶= EV in e′

EN ∶∶= ⋯ ∣ let () ∶= EN in e′
vV ∶∶= ⋯ ∣ ()
vN ∶∶= ⋯ ∣ ()

let () ∶= () in e′ ↝V e
′

let () ∶= () in e′ ↝N e
′

Figure 2.4: Multiplicative unit LUnit

σ, τ ∶∶= ⋯ ∣ σ & τ

e ∶∶= ⋯ ∣ [e1, e2] ∣ π1e ∣ π2e
vV, vN ∶∶= ⋯ ∣ [e1, e2]

∆ ⊢̀ e ∶ σ1 & σ2

e ∼η [π1e, π2e]

∆ ⊢̀ e1 ∶ σ1 ∆ ⊢̀ e2 ∶ σ2 ∆1�∆2

∆ ⊢̀ (e1, e2) ∶ σ1 & σ2
&-I

∆ ⊢̀ e ∶ σ1 & σ2

∆ ⊢̀ π1e ∶ σ1
&-E1

∆ ⊢̀ e ∶ σ1 & σ2

∆ ⊢̀ π2e ∶ σ2
&-E2

EV ∶∶= ⋯ ∣ πiEV

EN ∶∶= ⋯ ∣ πiEN

vV ∶∶= ⋯ ∣ [e1, e2]
vN ∶∶= ⋯ ∣ [e1, e2]

πi[e1, e2] ↝V ei

πi[e1, e2] ↝N ei

Figure 2.5: Additive product

not be evaluated until a choice is made. The typing and evaluation rules for the additive

product are shown in Figure 2.5.

The unit of the additive product, LTop, can be interpreted as a computation throwing

an error. Its rules are shown in Figure 2.6. The error computation is valid under any

collection of resources: ∆ ⊢̀ error ∶ LTop for any typing judgment ∆. However, there is no

16

σ, τ ∶∶= ⋯ ∣ LTop
e ∶∶= ⋯ ∣ error

∆ ⊢̀ e ∶ LTop
e ∼η error

∆ ⊢̀ error ∶ LTop
LTop-I vV, vN ∶∶= ⋯ ∣ error

Figure 2.6: Additive unit: LTop

σ, τ ∶∶= ⋯ ∣ σ ⊕ τ
e ∶∶= ⋯ ∣ ι1e ∣ ι2e ∣ case e of (ι1x1 → e1 ∣ ι2x2 → e2)

∆ ⊢̀ e ∶ σ1 ⊕ σ2 ∆′, x ∶ σ1 ⊕ σ2 ⊢̀ e′ ∶ τ
e′{e/x} ∼η case e of (ι1x1 → e′{ι1x1/x} ∣ ι2x2 → e′{ι2x2/x})

∆1 ⊢̀ e1 ∶ σ1
∆1,∆2 ⊢̀ ι1 ∶ σ1 ⊕ σ2

⊕-I1
∆1 ⊢̀ e2 ∶ σ2

∆1,∆2 ⊢̀ ι2 ∶ σ1 ⊕ σ2
⊕-I2

∆ ⊢̀ e ∶ σ1 ⊕ σ2 ∆′, x1 ∶ σ1 ⊢̀ e1 ∶ τ ∆′, x2 ∶ σ2 ⊢̀ e2 ∶ τ ∆�∆′

∆,∆′ ⊢̀ case e of (ι1x1 → e1 ∣ ι2x2 → e2) ∶ τ
⊕-E

EV ∶∶= ⋯ ∣ ιiEV ∣ case EV of (ι1x1 → e1 ∣ ι2x2 → e2)
EN ∶∶= ⋯ ∣ case EN of (ι1x1 → e1 ∣ ι2x2 → e2)

vV ∶∶= ⋯ ∣ ιivV

vN ∶∶= ⋯ ∣ ιie

case ιivi of (ι1x1 → e1 ∣ ι2x2 → e2) ↝V ei{vi/xi}
case ιiei of (ι1x1 → e1 ∣ ι2x2 → e2) ↝N ei{ei/xi}

Figure 2.7: Additive sum

elimination form for LTop. Even so, LTop& σ is isomorphic to σ.

lunit& ∶ σ⊸ σ & LTop

lunit& ≡ λ̂x.[x,error]

lunit′& ∶ σ & LTop⊸ σ

lunit′& ≡ λ̂x.π1x

There are no β rules for LTop, but there is an η equivalence: every computation of type

LTop is equivalent to the error computation error.

Additive sum. A computation of type σ ⊕ τ is either a computation of type σ or a

computation of type τ ; unlike the additive product, the introduction rules dictate which of

σ or τ to provide. To eliminate a sum type, a user must be prepared to accept either result

using case analysis. The rules for ⊕ are shown in Figure 2.7.

17

σ, τ ∶∶= ⋯ ∣ LZero
e ∶∶= ⋯ ∣ case e of ()

∆ ⊢̀ e ∶ LZero ∆′, x ∶ LZero ⊢ e′ ∶ τ ∆�∆′

e′{e/x} ∼η case e of ()

∆ ⊢̀ e ∶ LZero ∆�∆′

∆,∆′ ⊢̀ case e of () ∶ τ
LZero-E

EV ∶∶= ⋯ ∣ case EV of ()
EN ∶∶= ⋯ ∣ case EN of ()

Figure 2.8: Additive unit: LZero

The unit of ⊕ is the linear void type, written LZero and shown in Figure 2.8. Like

the non-linear void type, there are no constructors of type LZero, and having a term of

type LZero is a contradiction, so it can be used to derive any type. In particular, given

a computation ∆ ⊢̀ e ∶ LZero, the computation case e of () can be given any type τ .

Furthermore, case e of () vacuously uses resources not used by e itself.

lunit⊕ ∶ σ⊸ σ ⊕ LZero

lunit⊕ ≡ λ̂x.ι1x

lunit′⊕ ∶ σ ⊕ LZero⊸ σ

lunit′⊕ ≡ λ̂z.case z of (ι1x→ x ∣ ι2y → case y of ())

2.3 The exponential modality !

As we argued in the introduction, it is not enough to just have linear resources; many

domains naturally mix linear resources with non-linear, unrestricted data. Traditionally,

linear logic accounts for unrestricted data with the ! modality (pronounced “bang”). Unlike

with linear resources, it is possible to duplicate and discard unrestricted data.

duplicate ∶ !σ⊸ !σ ⊗ !σ discard ∶ !σ⊸ LUnit

One interpretation of the ! modality says that an expression of type !σ can be thought of

as a suspended computation that can be executed an arbitrary number of times.

The treatment of ! is one of the most important and delicate components in the design

of a linear type system. It is important because the use of ! affects the usability of the linear

system, and it is delicate because it is easy to get wrong. In fact, we start by presenting a

18

simple but unsound version of !, originally popularized by Abramsky (1993).

Consider a linear computation ∅ ⊢̀ e ∶ σ that does not use any linear resources. This

computation can be executed an arbitrary number of times, because each execution does

not use up any resources. We denote such a suspended computation as ∅ ⊢̀ !e ∶ !σ; this

operation is called promotion.

More generally, if x1 ∶ !σ1, . . . , xn ∶ !σn ⊢ e ∶ τ uses resources that can themselves be

duplicated, then e can be promoted. Every time e is executed, it will use up one copy

of each of its duplicable resources. Forcing the suspended computation !e executes the

underlying computation, and is called dereliction.

!∆ ⊢̀ e ∶ σ

!∆ ⊢̀ !e ∶ !σ
promotion

∆ ⊢̀ e ∶ !σ

∆ ⊢̀ derelict e ∶ σ
dereliction

Here, we write !∆ to refer to a context of the form x1 ∶ !σ1, . . . , xn ∶ !σn

Unrestricted resources are implicitly subject to the structural rules disallowed for plain

linear types—unrestricted resources can be duplicated (also called contraction) and dropped

(also called weakening).

∆′, x ∶ !σ, y ∶ !σ ⊢̀ e′ ∶ τ

∆, z ∶ !σ,∆′ ⊢̀ e′{z/x, z/y} ∶ τ
contraction

∆,∆′ ⊢̀ e ∶ τ

∆, x ∶ !σ,∆′ ⊢̀ e ∶ τ
weakening

Since we expect suspended computations of the form !e to be evaluated many times,

every suspended computation is a value, and we should never evaluate under a !. The β

rule says that applying dereliction to a promoted expression !e actually executes e.

EV ∶∶= ⋯ ∣ derelict EV

EN ∶∶= ⋯ ∣ derelict EN

vV ∶∶= ⋯ ∣ !e

vN ∶∶= ⋯ ∣ !e

derelict(!e) ↝V e

derelict(!e) ↝N e

19

The η rule for !σ says that every computation of !σ is equivalent to a suspended computation.

∆ ⊢̀ e ∶ !σ

e ∼η !(derelict e)

A refinement of !. Abramsky’s syntax above gives a good first approximation of !,

and closely corresponds to Girard’s original presentation as a logical system. However,

Abramsky’s syntax has two serious problems.

First, Abramsky’s syntax is inconsistent with the substitution property (Wadler, 1992).

Consider ∆ ⊢ e ∶ !σ where ∆ may not necessarily have the form !∆—for example, x ∶

LUnit ⊢ let () ∶= x in !() ∶ !LUnit. In addition, notice that a variable y of type !LUnit can

be promoted to !y ∶ !!LUnit. However, the result of substituting let () ∶= x in !() for y in

!y is not well-typed:

x ∶ LUnit /⊢̀ ! (let () ∶= x in !()) ∶ !!LUnit

Benton et al. (1993) presented a variation of Abramsky’s syntax that solves the substi-

tution problem and soon became standard. The main difference from Abramsky’s syntax

is that Benton et al.’s syntax requires promotion to explicitly capture all the unrestricted

resources being used.

∆i ⊢ ei ∶ !σi x1 ∶ !σ1, . . . , xn ∶ !σ2 ⊢ e ∶ τ

∆1, . . . ,∆n ⊢ promote {ei as xi} in e ∶ !τ
(Benton et al., 1993)

Benton et al.’s presentation restores the substitution principle by baking it into the promo-

tion rule.

The second problem with both Abramsky’s and also Benton et al.’s presentations is

practical—it is inefficient and inconvenient to keep explicitly discarding and duplicating

variables via the weakening and contraction rules. There must be a better way to program

with non-linear data in a linear type theory!

20

Over the years, many styles have been proposed to deal with the problem of linear

syntax, and the remainder of this chapter will highlight four of the most popular. For each,

we also consider how well it models an embedded linear type system—whether an embedded

presentation could use host-language data, libraries, and other tools for non-linear resources,

instead of relying entirely on the embedding for manipulating non-linear data.

2.4 Dual Intuitionistic Linear Logic

Barber’s Dual Intuitionistic Linear Logic (DILL) (1996) is based on the philosophy that

linear and non-linear resources should be treated differently from each other. DILL’s typing

judgment has the form Θ; ∆ ⊢D e ∶ σ, where σ is a linear type, and Θ and ∆ are both typing

contexts. Resources in Θ (on the left-hand-side of the semi-colon) are unrestricted in e,

while resources in ∆ are linear in e.

Since variables can be either linear or unrestricted, there are two ways to use variables

in DILL. For a linear variable, it is not necessary to limit or keep track of the unrestricted

resources, and for an unrestricted variable, it suffices to check there are no other linear

resources.

x ∶ σ ∈ Θ

Θ;∅ ⊢D x ∶ σ
DILL-nl-var

Θ;x ∶ σ ⊢D x ∶ σ
DILL-l-var

A suspended computation is one that uses no linear resources.

Θ;∅ ⊢D e ∶ σ

Θ;∅ ⊢D !e ∶ !σ
DILL-!-I

The elimination rule for ! allows the result of a suspended computation to be bound to an

unrestricted variable.

Θ; ∆1 ⊢D e ∶ !σ Θ, x ∶ σ; ∆2 ⊢D e
′ ∶ τ ∆1�∆2

Θ; ∆1,∆2 ⊢D let !x ∶= e in e′ ∶ τ
DILL-!-E

21

Notice that the same unrestricted resources can be used in both e and e′, even though

their linear resources must be disjoint. This, combined with the intrinsic weakening of the

unrestricted context Θ in the variable rules, means that the weakening and contraction

structural rules need not be included explicitly; they can be derived from the remaining

laws.

In fact, all of Abramsky’s rules are derivable in this system. For example, Abramsky’s

dereliction operator can be derived as follows:

Θ; ∆ ⊢D e ∶ !σ

Θ; ∆ ⊢D derelict e ∶ σ ≡

Θ; ∆ ⊢D e ∶ !σ Θ, x ∶ σ;∅ ⊢D x ∶ σ

Θ; ∆ ⊢D let !x ∶= e in x ∶ σ

The other rules for implication, pairs, and sums are all relatively straightforward. For

example, the rules for linear functions introduce linear variables:

Θ; ∆, x ∶ σ ⊢D e ∶ τ

Θ; ∆ ⊢D λ̂x.e ∶ σ⊸ τ

DILL-⊸-I
Θ; ∆1 ⊢D e ∶ σ⊸ τ Θ; ∆2 ⊢D e

′ ∶ σ

Θ; ∆1,∆2 ⊢D ee
′ ∶ τ

DILL-⊸-E

Alternatively, it’s possible to derive syntax for non-linear functions: let us write σ → τ

for the type !σ⊸ τ . We can derive an introduction rule that introduces the argument into

the non-linear context:

Θ, x ∶ σ; ∆ ⊢D e ∶ τ

Θ; ∆ ⊢D λ̂!x.e ∶ σ → τ ≡

Θ; z ∶ !σ ⊢D z ∶ !σ Θ, x ∶ σ; ∆ ⊢D e ∶ τ

Θ; ∆, z ∶ !σ ⊢D let !x ∶= z in e ∶ τ

Θ; ∆ ⊢D λ̂z.let !x ∶= z in e ∶ !σ⊸ τ

Related work. The inspiration for tracking linear and non-linear resources in different

parts of a context started with Girard’s Logic of Unity (LU) (1993), which unifies several

logical frameworks including linear logic, intuitionistic logic, and classical logic. In LU, each

22

logical fragment has a designated fragment of the context. Wadler (1994) restricted LU to

its intuitionistic and linear fragments and considered it as a sequent-calculus style syntax

for linear logic, but it was Barber’s natural deduction style that caught on.

Embedded DILL. DILL might be the most popular style of linear type system in prac-

tice, but how does it fare as a model for embedded linear types? Our goal is for unrestricted

variables in Θ to hold host-language data. This indicates that host types and linear types

should overlap, since linear variables and non-linear variables have the same types in DILL.

So we take LType to be Type, and we allow non-linear data to be embedded in a linear

expression as follows, where LExp
D

Θ ∆ α is the type of linear expressions:

a ∶ α

put a ∶ LExp
D

Θ ∅ α

If linear types are just host-language types, then how do we distinguish linear connectives

from ordinary non-linear connectives? Consider the linear function type α⊸ β, which must

now correspond to a type in the host language. If that type is inhabited—say, if α⊸ β is

the normal function type α → β—then the put constructor would violate linearity, as we

would have put(λx.(x,x)) ∶ LExp
D

Θ ∅ (α ⊸ α × α). On the other hand, we would like

put(λx.(x,x)) ∶ LExp
D

Θ ∅ (!α⊸ α × α).

It is clear that a theory of embedded DILL would require significant changes to its

meta-theory, so we look for another approach.

2.5 Indexed modalities

DILL syntactically separates non-linear variables Θ from linear variables ∆ in its typing

judgment, but one could equally consider a typing judgment that annotated each variable as

either linear or unrestricted. This presentation, which we call indexed resource modalities,

23

uses a single typing context Φ annotated with resource descriptors r:

Φ ∶∶= ∅ ∣ Φ, x ∶r σ r ∶∶= 0 ∣ 1 ∣ ω

The resource 1 stands for linear use, i.e., the variable is used exactly once in a term, and ω

stands for unrestricted use. The resource 0 stands for an unused resource, so if x does not

appear in Φ, then Φ is equivalent to Φ, x ∶0 σ.

These resource descriptors form an algebraic structure known as a rig—a riNg without

Negation:

0 + r = r + 0 = r 0 ⋅ r = r ⋅ 0 = 0 1 ⋅ r = r ⋅ 1 = r

In addition, the unrestricted resource absorbs other resources.

1 + 1 = ω ω + r = r + ω = ω ω ⋅ ω = ω

The first equation says that when a linear resource (denoted with the resource descriptor 1)

is used more than once in a system, then it it is unrestricted in the combined system. With

a different collection of resources, e.g., resources drawn from Z, we could produce a more

refined analysis; we discuss these more below. The second and third equations say that an

unrestricted resource will always remain unrestricted.

We can extend the rig on resources to a semi-module on indexed typing contexts.

(∆1, x ∶r1 σ) + (∆2, x ∶r2 σ) ≡ (∆1 +∆2), x ∶r1+r2 σ

r ⋅ (Γ, x ∶r′ σ) ≡ (r ⋅ Γ), x ∶r⋅r′ σ

The typing judgment has the form Φ ⊢I e ∶ σ. Like in DILL, we want unrestricted

data annotated with ω to have implicit weakening and contraction, which we can obtain

by modifying how contexts are split. Instead of restricting typing rules to disjoint typing

contexts, we simply use context addition to determine the output typing context from the

24

input contexts.

ω ⋅Φ, x ∶r σ ⊢I x ∶ σ
i-var

Φ ⊢I e ∶ σ Φ′, x ∶r σ ⊢I e
′ ∶ τ

(r ⋅Φ) +Φ′ ⊢I let x ∶= e in e′ ∶ τ
i-let

In the variable rule, all the variables in ω ⋅ Φ are unrestricted, so they can be implicitly

weakened. In the let rule, the resources Φ used to construct e are scaled by the number of

times x is being used in the result.

The promotion rule says that any linear expression can be promoted, but the resources

in the result are all scaled by ω, since the result could be used any number of times.

Φ ⊢I e ∶ σ

ω ⋅Φ ⊢I !e ∶ !σ
i-!-I

Φ ⊢I e ∶ !σ

Φ ⊢I derelict e ∶ σ
i-!-E

Function types can be annotated with the resource corresponding to how many times

the argument is used.

Φ, x ∶r σ ⊢I e ∶ τ

Φ ⊢I λ̂x.e ∶ σ →r τ
i-→-I

Φ ⊢I e ∶ σ →r τ Φ′ ⊢I e
′ ∶ σ

Φ + r ⋅Φ′ ⊢I ee
′ ∶ τ

i-→-E

Related work. Resource annotations have often been extended to different substructural

type systems. The style seems to have originated with bounded linear logic (Girard et al.,

1992) annotating the exponential !n with a number n recording the precise number of times

it is used. The type system presented above can easily accommodate exponentials indexed

by arbitrary resources:

Φ ⊢I e ∶ σ

r ⋅Φ ⊢I !e ∶ !rσ
i-!r-I

Φ ⊢I e ∶ !rσ

Φ ⊢I derelict e ∶ σ
i-!r-E

25

By including resources corresponding to affine or substructural use, resource annotations

can express substructural typing systems, or coeffects like data flow, liveness analyses, or

differential privacy (Petricek et al., 2014; Brunel et al., 2014; Reed and Pierce, 2010).

McBride (2016) uses resource annotations in a calculus for linear dependent types, where

variables can be used in types with a resource annotation of x ∶0 σ. McBride indexes not

only variables, but also the typing judgment itself, with a resource: Φ ⊢I e ∶r σ, which takes

the place of the exponential !r.

Bernardy et al. (2017) use resource annotations in a calculus that retrofits Haskell with

linear types. Their typing judgment, though, has a unique interpretation: the typing judg-

ment Φ ⊢ e ∶ σ in their system means that if the result of e is consumed exactly once, then

the linear hypotheses in Φ will be consumed exactly once. However, any top-level expression

can be consumed multiple times, to make the calculus backwards-compatible and facilitate

code reuse between linear and non-linear types. This means that if a program wants to

guarantee linear use of a piece of data, it must bind that data on the left-hand-side of a

function type, as in σ →1 τ . In practice this seems to result in a style of programming akin

to continuation-passing style.

Embedded indexed modalities. Like DILL, the presentation in terms of indexed modal-

ities requires that both linear and non-linear resources share the same kind of type. But

now we can define the type α →r β as a wrapper for α → β when r is ω, and otherwise as

an empty type.

data α →r β where

fun : (α → β) → (α →ω β)

Thus, non-linear functions f ∶ α → β can be coerced into a linear expression put(fun f) of

linear type α →ω β, but not into the type α →1 β, which can only be constructed via the

embedded λ̂ constructor.

e ∶ LExp
I
(Φ, x ∶r α) β

λ̂x.e ∶ LExp
I

Φ (α →r β)

e ∶ LExp
I

Φ (α →r β) e′ ∶ LExp
I

Φ′ α

eˆe′ ∶ LExp
I
(Φ + r ⋅Φ′) β

26

Non-linear functions from host-language libraries can now be applied to linear arguments.

For example, consider the lookup operation from the linear interface to mutable references

discussed in Chapter 1.

lookup ∶ LExp
I
(ω ⋅Φ) (LRef α →1 α⊗ LRef α)

We can lift arbitrary functions of type α → β to the result of lookup:

op ∶ (α → β) → LExp
I
(ω ⋅Φ) (LRef α →1 β ⊗ LRef α)

op ≡ λf.λ̂r.let (x, r′) ∶= lookup r in (put fˆx, r′)

But what is the operational semantics of put? Is (put f) a value? If so, then is put f ˆ v

a stuck term? What about put f ˆ put a?

These questions may not be insurmountable, but they are not straightforward from the

theory of indexed resource modalities.

2.6 Kind-based linear logic

The previous two presentations assume that, while linear and non-linear variables should

be treated differently, all types are inherently the same. Kind-based presentations of linear

logic suggest that linear data is inherently different from non-linear data, and the type

system should distinguish them.

System F○ (pronounced “F-pop”), introduced by Mazurak et al. (2010), has a kind ∗

(“star”) for non-linear types and a kind ○ (“pop”) for linear types. The kinding judgment

⊢K σ ∶ κ assigns each type σ a kind κ ∈ {∗, ○}. Like System F (Girard, 1971, 1986), System F○

27

allows type variables and quantification over type variables X.

Φ ⊢K σ ∶ ∗

Φ ⊢K σ ∶ ○
sub

Φ ⊢K σ1 ∶ κ1 Φ ⊢K σ2 ∶ κ2

Φ ⊢K σ1
κÐ→ σ2 ∶ κ

→

X ∶ κ ∈ Φ

Φ ⊢K X ∶ κ
tvar

Φ,X ∶ κ1 ⊢K σ ∶ κ2

Φ ⊢K ∀X ∶ k1. σ ∶ k2
∀

In the first rule, non-linear types can be coerced into linear types. In the second rule, a

function depends on three parameters: the kind of its argument; the kind of its result;

and the kind of the function itself, which annotates the top of the arrow. For example,

the linear identity type may be given the type σ
∗Ð→ σ for ⊢K σ ∶ ○, because although the

function uses its argument linearly, the function itself is linearly closed, and so can be used

arbitrarily many times. So, although System F○ doesn’t include a ! operator on types, it

can be approximated as !σ ≡ Unit
∗Ð→ σ ∶ ∗, where Unit ∶ ∗ is a non-linear unit type, and

σ ∶ ○ is a linear type.

Typing contexts can either be separated according to the kind of the type being stored,

as in DILL, or they can be combined as in the resource-annotated calculi. We choose the

latter presentation, and we again write Φ1 +Φ2 for the linear merge of contexts Φ1 and Φ2.

The subkinding relation can be written as a reflexive, transitive relation κ1 ≥ κ2, with ∗ ≥ ○.

This relation can be extended to contexts Φ ≥ κ to say that every type in Φ has kind κ′

such that κ′ ≥ κ.

Φ ≥ ∗

Φ, x ∶ σ ⊢K e ∶ σ
F○-var

Φ, x ∶ σ ⊢K e ∶ τ Φ ≥ κ

Φ ⊢K λ̂x.e ∶ σ
κÐ→ τ

F○-→-I
Φ1 ⊢K e ∶ σ

κÐ→ τ Φ2 ⊢K e
′ ∶ σ

Φ1 +Φ2 ⊢K eˆe
′ ∶ τ

F○-→-E

28

Related work. Later calculi including Alms (Tov and Pucella, 2011) and Quill (Morris,

2016) present variations of System F○ with the addition of kind polymorphism and more

nuanced subkinding. For example, in Alms (which is actually an affine type system), the

identity function can be given the type ∀κ,∀(σ ∶ κ), σ ∗Ð→ σ. This makes it easier to reuse

code and means that every well-typed program has a single most general type. However,

the presentation of that most general type can be quite complex.

For example, in plain System F○, the expression λ̂x. λ̂y. x, which discards its second

argument, can be given one of four types:

∀(X ∶ ○)(Y ∶ ∗),X ∗Ð→ Y
○Ð→X

∀(X ∶ ○)(Y ∶ ∗),X ○Ð→ Y
○Ð→X

∀(X ∶ ∗)(Y ∶ ∗),X ∗Ð→ Y
∗Ð→X

∀(X ∶ ∗)(Y ∶ ∗),X ○Ð→ Y
∗Ð→X

In Alms, however, this argument can be given a single most general type:

∀(X ∶ κ)(Y ∶ ∗),X ∗Ð→ Y
kÐ→X (2.1)

The four types above are all subtypes of Equation (2.1).

Embedded System F○. An embedded version of System F○ would have its types of

kind ∗ overlap with host-language types, but types of kind ○ be distinct. Let Kind be a

type with two constructors, ○ and ∗, and define Pop : Type to be a data kind of linear

types. Then we can define J−K ∶ Kind→ Type so that J○K = Pop:

data Pop where

Var : Nat → Pop

Sub : Type → Pop

PopArrow : Π {κ1 κ2 : Kind}, Jκ1 K → Jκ2 K → Pop

data Kind where

∗ : Kind

○ : Kind

J∗K ≡ Pop

J○K ≡ Type

29

The linear type Sub α : Pop corresponds to the subkinding rule sub. The linear type

PopArrow σ1 σ2 corresponds only to σ1
○Ð→ σ2, as σ1

∗Ð→ σ2 must be a host-language type.

In particular, if σ1 and σ2 both have kind ∗, then σ1
∗Ð→ σ2 should correspond to the regular

host-language function type σ1 → σ2. However, if either σ1 or σ2 has kind ○, then the type

should be uninhabited.

data StarArrow : Π (κ1 κ2 : Kind), Jκ1 K → Jκ2 K → Type where

Arrow : Π (α β : Type), (α → β) → StarArrow α β

If made explicit, the subkinding relation from ∗ to ○ could give some indication about

the behavior of put, which injects host-language data into the linear embedded language.

For example, we might expect host data a ∶ α can be embedded into put a of ∗-type α,

which can then be coerced to a linear type Sub α.

a ∶ α Φ ≥ ∗

put a ∶ LExp
K

Φ α

e ∶ LExp
K

Φ α

e ∶ LExp
K

Φ (Sub α)

The subtyping relation should further coerce the type Sub (StarArrow σ1 σ2) into

PopArrow σ1 σ2 so that put(Arrow f)ˆput a reduces to put(fa). But this doesn’t fully

explain the semantics of put—what if the argument to put Arrow f does not have the form

put a?

System F○’s subkinding relation is implicit, but in an embedded language the two kinds

would be explicit; thus F○’s meta-theory does not characterize a linear embedding.

2.7 Linear/non-linear logic

Introduced by Benton (1995) and illustrated in Figure 2.9, linear/non-linear (LNL) logic

makes a distinction between the syntax of linear and non-linear types, whereas System F○

distinguishes them via a kinding judgment. Linear types, which we continue to denote with

the meta-variable σ, are distinguished from non-linear types, which we denote α. The LNL

system similarly consists of two kinds of variables (linear x and non-linear a), and two kinds

of typing contexts (linear ∆ ∶∶= ∅ ∣ ∆, x ∶ σ and non-linear Γ ∶∶= ∅ ∣ Γ, a ∶ α). LNL also has

30

linear
fragment

non-linear
fragment

⊣ LiftLower

Figure 2.9: The linear/non-linear categorical model. The model consists of two categories
related by functors Lift and Lower that form a categorical adjunction Lift ⊣ Lower; for
details see Section 5.3.

two kinds of terms, depending on whether the result is a linear or non-linear type.

A linear expression e can be thought of as a computation that consumes linear resources

and also has access to non-linear variables. Its typing judgment is written Γ; ∆ ⊢B e ∶ σ,

where ∆ is a linear typing context and Γ is a non-linear typing context.1 A non-linear

term t cannot access any linear resources, so it can be thought of as a value instead of a

computation. The typing judgment for non-linear data has the form Γ ⊢B t ∶ α, where it only

has access to non-linear variables. From these two typing judgments, there are two variable

rules and three let bindings: non-linear variables bound in a non-linear term; non-linear

variables bound in a linear term; and linear variables bound in a linear term.

Γ;x ∶ σ ⊢B x ∶ σ
LNL-`-var

a ∶ α ∈ Γ

Γ ⊢B a ∶ α
LNL-n`-var

Γ; ∆ ⊢B e ∶ σ Γ; ∆′, x ∶ σ ⊢B e
′ ∶ τ ∆�∆′

Γ; ∆,∆′ ⊢B let x ∶= e in e′ ∶ τ
LNL-let-`-in-`

Γ ⊢B t ∶ α Γ, a ∶ α; ∆ ⊢B e ∶ τ

Γ; ∆ ⊢B let a ∶= t in e ∶ τ
LNL-let-n`-`

Γ ⊢B t ∶ α Γ, a ∶ α ⊢B t
′ ∶ β

Γ ⊢B let a ∶= t in t′ ∶ β
LNL-let-n`-n`

1The subscript ⊢B stands for Benton (1995).

31

α ∶∶= ⋯ ∣ Lift σ t ∶∶= ⋯ ∣ suspend e e ∶∶= ⋯ ∣ force t

Γ ⊢B t ∶ Lift σ
t ∼η suspend(force t)

Γ;∅ ⊢B e ∶ σ
Γ ⊢B suspend e ∶ Lift σ

Lift-I
Γ ⊢B t ∶ Lift σ

Γ;∅ ⊢B force t ∶ σ
Lift-E

EV ∶∶= ⋯ ∣ force EV

EN ∶∶= ⋯ ∣ force EN

vV ∶∶= ⋯ ∣ suspend e
vN ∶∶= ⋯ ∣ suspend e

force(suspend e) ↝V e

force(suspend e) ↝N e

Figure 2.10: LNL Lift connective

Because there are both linear and non-linear types and terms, there must be two sorts

of every connective—two kinds of products, two kinds of functions, etc.. The non-linear

product, for example, is only relevant in the non-linear typing judgment, and conversely for

the linear products.

Γ ⊢B t1 ∶ α1 Γ ⊢B t2 ∶ α2

Γ ⊢B (t1, t2) ∶ α1 × α2

LNL-×-I
Γ ⊢B t ∶ α1 × α2

Γ ⊢B πit ∶ αi
LNL-×-E

Γ; ∆1 ⊢B e1 ∶ σ1 Γ; ∆2 ⊢B e2 ∶ σ2 ∆1�∆2

Γ; ∆1,∆2 ⊢B (e1, e2) ∶ σ1 ⊗ σ2
LNL-⊗-I

Γ; ∆ ⊢B e ∶ σ1 ⊗ σ2 Γ; ∆′, x1 ∶ σ1, x2 ∶ σ2 ⊢B e
′ ∶ τ ∆�∆′

Γ; ∆,∆′ ⊢B let (x1, x2) ∶= e in e′ ∶ τ
LNL-⊗-E

The exponential operator ! is broken up into two parts in LNL, as illustrated in Fig-

ure 2.9.

The first operator takes a linear type σ and lifts it to a non-linear type, Lift σ, sum-

marized in Figure 2.10. The introduction and elimination rules for Lift correspond to the

promotion and dereliction rules for !, which we write in this case as suspend and force.

As for !, we should never evaluate under a suspended computation.

32

σ ∶∶= ⋯ ∣ Lower α e ∶∶= ⋯ ∣ put t ∣ let !a ∶= e in e′

Γ; ∆ ⊢B e ∶ Lower α Γ; ∆′, x ∶ Lower α ⊢B e
′ ∶ τ ∆�∆′

e′{e/x} ∼η let !a ∶= e in e′{put a/x}

Γ ⊢B t ∶ α
Γ;∅ ⊢B put t ∶ Lower α

Lower-I

Γ; ∆ ⊢B e ∶ Lower α Γ, a ∶ α; ∆′ ⊢B e
′ ∶ τ ∆�∆′

Γ; ∆,∆′ ⊢B let !a ∶= e in e′ ∶ τ
Lower-E

EV ∶∶= ⋯ ∣ put EV ∣ let !a ∶= EV in e′

EN ∶∶= ⋯ ∣ let !a ∶= EN in e′
vV ∶∶= ⋯ ∣ put v
vN ∶∶= ⋯ ∣ put t

let !a ∶= put v in e′ ↝V e
′{v/a}

let !a ∶= put t in e′ ↝N e
′{t/a}

Figure 2.11: LNL Lower connective

The second operator takes a non-linear type α to a linear type Lower α, as shown in

Figure 2.11. Any host-language term t of type α can be coerced into a (linear) computation

put t of type Lower α that returns the value of t. A computation of type Lower α can

be bound to a non-linear variable a, so that the result can be used non-linearly in the

continuation.

The original ! modality can be derived from the composition of Lower and Lift:

Γ;∅ ⊢B e ∶ σ

Γ;∅ ⊢B !e ∶ !σ ≡

Γ;∅ ⊢B e ∶ σ

Γ ⊢B suspend e ∶ Lift σ

Γ;∅ ⊢B put(suspend e) ∶ Lower(Lift σ)

Γ; ∆ ⊢B e ∶ !σ

Γ; ∆ ⊢B derelict e ∶ σ ≡

Γ; ∆ ⊢B e ∶ Lower(Lift σ)

Γ, a ∶ Lift σ ⊢B a ∶ Lift σ

Γ, a ∶ Lift σ;∅ ⊢B force a ∶ σ

Γ; ∆ ⊢B let !a ∶= e in force a ∶ σ

Related work. The idea of having separate typing judgments for different kinds of types

is closely related to Levy’s call-by-push-value (CBPV), which makes the distinction between

values and computations of two different syntactic forms (Levy, 2003). In CBPV, only values

33

can be bound to variables, and since computations correspond to linear data in LNL, this

means linear type checking is not needed in CBPV.

The relationship between values and computations is further emphasized by polarized

logic (Girard, 1991; Laurent, 2002), which associates different type connectives with values

(positive) or computations (negative). In particular, the multiplicative product ⊗ and

additive sum ⊕ are positive types corresponding to values, but function types ⊸ and the

additive product & are negative types, corresponding to computations. Polarized logic

suggests that positive types correspond to a call-by-value evaluation order, and negative

types correspond to a call-by-name evaluation order. Every value can be coerced into a

trivial computation, corresponding to the shift operator ↑ from polarized logic or the Lower

operator from LNL. Computations can be suspended (turned into values) via the shift

operator ↓ of polarized logic or the Lift operator from LNL (Zeilberger, 2008).

Linear dependent types, where types can depend only on non-linear values, were in-

troduced by Cervesato and Pfenning (1996), and Krishnaswami et al. (2015) present them

in a calculus based on linear/non-linear logic. Vákár (2014) also develops a categorical

semantics of linear dependent types based on the LNL categorical model (see Chapter 5).

Embedded linear/non-linear types. Unlike in the previous presentations, an embed-

ded linear/non-linear type system suggests that linear types are explicitly different from

non-linear types. So while non-linear types can correspond to host-language types, linear

types can be defined separately. Surprisingly, this observation actually simplifies the theory

of LNL. Instead of a non-linear typing judgment, we can use arbitrary terms in the host lan-

guage. Instead of a non-linear typing context, we let the host language manage non-linear

variables.

Embedded LNL thus consists of a single typing judgment ∆ ⊢B e ∶ σ of embedded

linear terms that have access to the non-linear host language through the interface of Lift

and Lower. The semantic behavior of Lift and Lower is completely characterized by the

theory of LNL, so the soundness of the LNL type system extends directly to the embedded

language. While it initially seems redundant to have both linear and non-linear pairs and

34

other data types, we already expect this duplication for embedded languages, and the host

language now provides half of the LNL system for free.

The surprising simplicity of embedded LNL makes for a sound, robust, and expressive

system. In the next chapter we explore the details of the theory of embedded LNL, and

give a number of examples of practical domain-specific applications.

35

CHAPTER 3

Embedded linear/non-linear types

In this section we develop the theory of linear/non-linear embedded languages. As we argued

in Section 2.7, Benton’s linear/non-linear (LNL) lambda calculus can be interpreted as a

simple language of linear expressions LExp ∆ σ embedded inside a non-linear host language

with dependent types. The embedded language can interact with the host language via the

two operators Lift and Lower from Figure 1.1.

3.1 A linear embedded language

We start with a purely linear type system with the linear connectives explored in Section 2.2:

functions, multiplicative and additive products, additive sums, and unit types. We define

these linear types as an algebraic data type as follows:

data LType where

(⊸) : LType → LType → LType

| LUnit : LType | (⊗) : LType → LType → LType

| LTop : LType | (&) : LType → LType → LType

| LZero : LType | (⊕) : LType → LType → LType

The parentheses around constructors indicate that they can be used infix, as in σ⊸ τ . We

use the meta-variable σ ∶ LType to refer to linear types, and α ∶ Type to refer to host-language

types.

When defining any programming language, one notoriously difficult decision is how

to represent variables, variable binding, and typing contexts. These choices are largely

tangential to the design of the LNL embedding, so we put off discussion of these issues to

36

the implementations in Chapters 4 and 8. For now, we write x ∶ Var for the type of linear

variables, and ∆ ∶ Ctx for linear typing contexts, which map variables to linear types. We

require some basic operations over linear contexts:

- Every context ∆ ∶ Ctx has an associated finite set dom(∆) of variables;

- ∅ is the empty context;

- x ∶ σ is the singleton context containing just the variable x of type σ;

- given two typing contexts ∆1 and ∆2, we write ∆1�∆2 if their domains are disjoint; and

- if ∆1�∆2, then their disjoint merge (∆1,∆2) is defined.

The type of linear expressions LExp ∆ σ is indexed by a typing context ∆ and a linear

type σ. This Church-style, intrinsically typed presentation of the judgment means that

there is no untyped syntax of linear expressions, only well-typed and well-scoped linear

expressions. A Curry-style judgment with untyped syntax and an external typing judgment

is also consistent with the LNL framework; we use such a judgment in Chapter 8.

Linear expressions are given by the rules in Figure 3.1, which exactly correspond to the

rules from Section 2.1. Syntactically we make a distinction between host-language variables

a and embedded variables x; between host-language functions λa.b and embedded functions

λ̂x.e; and between host-language application fa and embedded application eˆe′.

We use the notation ∆ ⊢ e ∶ σ to mean that e is a term of type LExp ∆ σ, and we

sometimes write ∆ ⊢ − ∶ σ for the type LExp ∆ σ itself. If we wanted to, we could restate

the rules from Figure 3.1 as the typing judgments from Section 2.2. For example, the

following two rules for lambda abstraction are identical.

e ∶ LExp (∆, x ∶ σ) τ

λ̂x.e ∶ LExp ∆ (σ⊸ τ)

∆, x ∶ σ ⊢ e ∶ τ

∆ ⊢ λ̂x.e ∶ σ⊸ τ

We define α, β, and η rules as relations ∼α, ↝β, and ∼η on linear expressions, exactly as

discussed in Section 2.2; we do not restate those rules here. We write ∼ for the smallest con-

37

x ∶ LExp (x ∶ σ) σ
var

e ∶ LExp ∆ σ e′ ∶ LExp (∆′, x ∶ σ) τ ∆�∆′

let x ∶= e in e′ ∶ LExp (∆,∆′) τ
let

e ∶ LExp (∆, x ∶ σ) τ
λ̂x.e ∶ LExp ∆ (σ⊸ τ)

⊸-I
e ∶ LExp ∆ (σ⊸ τ) e′ ∶ LExp ∆′ σ ∆�∆′

eˆe′ ∶ LExp (∆,∆′) τ
⊸-E

() ∶ LExp ∅ LUnit
LUnit-I

e ∶ LExp ∆ LUnit e′ ∶ LExp ∆′ τ ∆�∆′

let () ∶= e in e′ ∶ LExp (∆,∆′) τ
LUnit-E

e1 ∶ LExp ∆1 σ1 e2 ∶ LExp ∆2 σ2 ∆1�∆2

(e1, e2) ∶ LExp (∆1,∆2) (σ1 ⊗ σ2)
⊗-I

e ∶ LExp ∆ (σ1 ⊗ σ2) e′ ∶ LExp (∆′, x1 ∶ σ1, x2 ∶ σ2) τ ∆�∆′

let (x1, x2) ∶= e in e′ ∶ LExp (∆,∆′) τ
⊗-E

error ∶ LExp ∆ LTop
LTop-I

e ∶ LExp ∆ LZero ∆�∆′

case e of () ∶ LExp ∆,∆′ τ
LZero-E

e ∶ LExp ∆ σ1

ι1e ∶ LExp ∆ (σ1 ⊕ σ2)
⊕-I1

e ∶ LExp ∆ σ2

ι2e ∶ LExp ∆ (σ1 ⊕ σ2)
⊕-I2

e ∶ LExp ∆ (σ1 ⊕ σ2)
e1 ∶ LExp (∆′, x1 ∶ σ1) τ e2 ∶ LExp (∆′, x2 ∶ σ2) τ ∆�∆′

case e of (ι1x1 → e1 ∣ ι2x2 → e2) ∶ LExp (∆,∆′) τ
⊕-E

e1 ∶ LExp (∆) σ1 e2 ∶ LExp (∆) σ2
[e1, e2] ∶ LExp (∆) (σ1&σ2)

&-I

e ∶ LExp ∆ (σ1&σ2)
π1e ∶ LExp ∆ σ1

&-E1

e ∶ LExp ∆ (σ1&σ2)
π2e ∶ LExp ∆ σ2

&-E2

Figure 3.1: Specification of an embedded linear lambda calculus as terms of type LExp ∆ σ.

38

gruence on linear expressions that contains ∼α, ↝β, and ∼η, and we write e{e1/x1, . . . , en/xn}

for the simultaneous capture-avoiding substitution of ei for xi in e.

3.2 The linear/non-linear interface

The linear/non-linear interface is given by the two type operators Lift and Lower, as

illustrated back in Figure 1.1.

For any host-language type α, we have a linear type Lower α, for which we extend the

definition of linear types.

data LType where

...

| Lower : Type → LType

According to the typing rules for Lower, for any host-language term a ∶ α, there is a linear

expression ∅ ⊢ put a ∶ Lower α.

a ∶ α

put a ∶ LExp ∅ (Lower α)
Lower-I

To eliminate expressions of type Lower α, it suffices to bind them against a continuation

that uses a host-language variable a ∶ α. What we wrote in Section 2.7 as let !a ∶= e in e′

is now replaced by e >! f , pronounced e “let-bang” f , where f is a host-language function

of type α → LExp ∆′ τ . We will still use the notation let !a ∶= e in e′ for e >! λa.e′.

e ∶ LExp ∆ (Lower α) f ∶ α → LExp ∆′ τ ∆�∆′

e >! f ∶ LExp (∆,∆′) τ
Lower-E

The β and η rules for Lower α are identical to those described in Section 2.7. If put a

is bound against f , the result put a >! f reduces to fa. Further, if a computation e′ has

a sub-expression e of (linear) type Lower α, then it is equivalent to first bind e against >!

39

and then continue as e′.

put a >! f ↝β fa

∆ ⊢ e ∶ Lower α ∆′, x ∶ Lower α ⊢ e′ ∶ τ ∆�∆′

e′{e/x} ∼η e >! λa.e′{put a/x}

The operational behavior only differs from that of Section 2.7 in that the evaluation order of

put a is determined not by our choice of call-by-name or call-by-value of the linear language,

but instead by the existing evaluation order of the host language. We say that for any term

a ∶ α in the host language, put a is a value in the term language. If the host language uses

a call-by-value semantics, then a will be evaluated when it is used as an argument to put;

if the host language is lazy, it may not be evaluated until the result is actually required.

For any linear type σ, the LNL interface also specifies that there should be a host-

language type Lift σ of suspended linear computations. In particular, we can define Lift σ

as a host-language data type with a constructor for suspending a linear computation.

data Lift (σ : LType) where

suspend : LExp ∅ σ → Lift σ

We argued in Section 2.7 that the operational behavior of suspend should always be

lazy, meaning that linear expressions should never be evaluated under suspend. Depending

on how the embedding is defined, this should be taken into account in the definition of

Lift. In many embeddings, evaluation of linear computations will be a relation of the form

eval ∶ LExp ∆ σ → LExp ∆ σ → Type. In that case, using suspend e will never accidentally

evaluate its argument. If, however, evaluation of linear expressions is built into the type

LExp, then it may be necessary to add a thunk to the type of suspend, e.g., () → LExp ∅ σ.

To eliminate terms of type Lift σ, we can define an ordinary host-language function

force a that pattern matches against the data type Lift σ to expose the underlying

computation.

force : Lift σ → LExp ∅ σ

force (suspend e) ≡ e

40

data LType where ⋯ ∣ Handle : LType

s ∶ String
∅ ⊢ open s ∶ Handle

open
∆ ⊢ e ∶ Handle

∆ ⊢ close e ∶ LUnit
close

∆ ⊢ e ∶ Handle
∆ ⊢ read e ∶ Handle⊗ Lower Char

read
c ∶ Char ∆ ⊢ e ∶ Handle

∆ ⊢ write c e ∶ Handle
write

Figure 3.2: Interface of linear file handles, given as inference rules, writing ∆ ⊢ e ∶ σ for
e ∶ LExp ∆ σ.

Since force is defined by ordinary pattern matching, the β and η semantics is given by the

semantics of the host language itself.

3.3 Example: linear file handles

To illustrate the linear/non-linear interface in practice, Figure 3.2 shows a simple EDSL for

linear file handles. It consists of four operations: open, close, read, and write. Writing

out the types more explicitly,2we have

open : String → LExp ∅ Handle

close : LExp ∆ Handle → LExp ∆ LUnit

read : LExp ∆ Handle → LExp ∆ (Handle ⊗ Lower Char)

write : Char → LExp ∆ Handle → LExp ∆ Handle

Linearity rules out two specific kinds of errors here. First, it ensures that file handles

cannot be used more than once in a term, so once a handle has been closed, it cannot be

read from or written to again. Second, linearity ensures that all open handles are eventually

closed (at least for terminating computations) since variables of type Handle cannot be

dropped. Linearity allows us to think of a file handle as a consumable resource that gets

used up when it is closed.

Note that linearity does not prevent all runtime errors: open could fail if there is a

problem with the file name, or read could fail with an end-of-file error, etc.

2Technically, the second presentation allows for partial application of open, close, read, and write, while
the first presentation in Figure 3.2 requires total application. Both styles are acceptable, and we consider
the question of partial application to be orthogonal to the point being made here.

41

An alternative interface Instead of presenting handles as a series of inference rules as

in Figure 3.2, we could have presented them more compactly using the Lift type:

openF : String → Lift Handle

closeF : Lift (Handle ⊸ LUnit)

readF : Lift (Handle ⊸ Handle ⊗ Lower Char)

writeF : Char → Lift (Handle ⊸ Handle)

The two presentations are inter-derivable, but whereas the second interface is more compact

and readable, it is also harder to use. Consider the following function that opens a file, reads

a single character, then writes that character back to the file twice:

readWriteTwice ≡ let h ∶= open "foo.txt" in

let (!c,h) ∶= read h in

close (write c (write c h))

readWriteTwiceF ≡ let h ∶= force (openF "foo.txt") in

let (!c,h) ∶= force readF ˆ h in

force closeF ˆ (force (writeF c) ˆ (force (writeF c) ˆ h))

The second presentation can only access the file handle interface using force and embedded

application (̂), which makes it clunky compared to the first presentation.

3.4 Monadic programming

Haskell and other functional programming languages frequently use monads to encode effects

in a purely functional setting (Moggi, 1989). For example, instead of the linear interface to

file handles, a nonlinear, monadic interface might have the following form, where withFile

opens a file handle, performs some operations on it, and then closes the file at the end.

withFile : String → (Handle → M ()) → M ()

writeM : Char → Handle → M ()

readM : Handle → M Handle

The monad M is an operator on types; a term of type Mα can be thought of as a com-

putation that returns a value of type α. Monadic programming is popular because it is

42

expressive, functional, and easy to use, as evidenced by the popularity of monadic program-

ming in Haskell. Given a monadic computation m ∶Mα and a function f ∶ α →Mβ, we can

bind m against f , written m >>= f , to obtain a computation of type Mβ. In addition, for

a ∶ α, there is a trivial computation return a ∶Mα. These two operators should satisfy the

following laws:

return a >>= f = fa (M-β)

(m >>= f) >>= g =m >>= (n x→ fx >>= g) (M-assoc)

m ∶Mα

m =m >>= return
M-η

In practice, the bind operation >>= is often written with the much more readable do-

notation, writing do x← a; b for a >>= λx.b:

readWriteTwice ≡ withFile "foo.txt" (λ h. do c ← readM h

_ ← writeM c h

writeM c h)

Unlike linear expressions, monadic computations do not restrict how resources are used,

so the non-linear monadic interface cannot provide the same correctness guarantees. For

example, even though withFile closes its file handle, a malicious actor could escape the

file handle from its scope.

unsafeM ≡ do h ← withFile "foo.txt" return

write 'c' h -- error: write after close

Monads are a powerful abstraction because they apply both to built-in effects like I/O

(as in the case of file handles), as well as derived algebraic effects like state. The state monad

State α β ≡ α → α×β can be given instances for return and >>=, as well as get ∶ State α α

and put ∶ α → State α ().

return b ≡ λ a. (a,b)

s >>= f ≡ λ a. let (a',b') ∶= s a in f b' a'

get ≡ λ a. (a,a)

put a ≡ λ _. (a,())

43

3.4.1 Linear monads

The instances of return and >>= for the state monad are linear in their arguments, which

means the linear type LState σ τ ≡ σ⊸ σ⊗ τ is a monad in its own right. In fact, many of

the algebraic non-linear monads, such as the option monad σ ⊕ LUnit or the continuation-

passing monad (σ⊸ τ) ⊸ τ , are linear in the same way.

Consider the state monad. Unlike the non-linear interface to state, the linear interface

does not admit get and put, which are non-linear in their arguments. However, the linear

state monad is still a useful abstraction. For example, we can derive monadic formulations

of withFile, readM, and writeM in the linear state monad.

withFile : String → LExp ∆ (LState Handle LUnit) → LExp ∆ LUnit

withFile filename e ≡ let h ∶= open filename in

let (h,x) ∶= e ˆ h in

let () ∶= close h in x

readM : LExp ∅ (LState Handle (Lower Char))

readM ≡ read

writeM : Char → LExp ∅ (LState Handle LUnit)

writeM c ≡ λ̂ h. write c h

Using do-notation can make using this interface easier to work with.

readWriteTwiceM : LExp ∅ LUnit

readWriteTwiceM ≡ withFile "foo.txt" (do !c ← readM

() ← writeM c

writeM c)

3.4.2 The linearity monad

Monads and linear types are both ways to manage effects in functional languages, and in

fact there is a strong connection between the two approaches. Chen and Hudak (1997) show

that mutable, linear abstract data types can automatically be given monadic interfaces for

use in functional languages. Haskell’s built-in ST monad encapsulates global state precisely

because it always treats its state linearly (Launchbury and Peyton Jones, 1995). Benton

44

and Wadler (1996) show how a monadic lambda calculus can be soundly translated into a

linear/non-linear type system.

Benton and Wadler’s translation relies on the fact that the composition Lift ○ Lower

forms a monad in the non-linear fragment of LNL. This is true because of the categorical

relationship underlying the LNL model, which we explore in Chapter 5. But in the meantime

we ask: can we program with this monad?

We write Lin α for Lift(Lower α), and we call it the linearity monad. The operations

return and >>= are defined as follows:

return : α → Lin α

return a ≡ suspend (put a)

(>>=) : Lin α → (α → Lin β) → Lin β

m >>= f ≡ suspend (let !a ∶= force m in force (f a))

These definitions satisfy the monad laws up to equivalence ∼ of the linear embedded

language, which we defined to be the smallest congruence relation that contains ∼α, ↝β,

and ∼η. For example, for the β rule for monads we have

return a >>= f ≡ suspend (let !a ∶= force (suspend (put a)) in force (f a))

= suspend (let !a ∶= put a in force (f a))

↝β suspend (force (f a))

which is η-equivalent to fa itself. Similar reasoning proves that η and associativity equiva-

lences hold.

The type Lin α denotes a computation that takes place in the linear language, but does

not return any linear data. Thus, Lin is a non-linear interface to the linear language, which

can be used to limit exposure of linear types to end users. For example, the withFile

operation can be formulated to return a computation in the linearity monad.

withFileM : String → Lift (LState Handle LUnit) → Lin Unit

withFileM filename op ≡ suspend (let h ∶= open filename in

let (h,()) ∶= force op ˆ h in

let () ∶= close h in

put ())

45

3.4.3 The linearity monad transformer

The prospect of monadic programming can be pushed even further by combining monads in

the linear embedded language, such as LState σ τ , with the linearity monad Lift(Lower α).

We will prove in Chapter 5 that the LNL model actually gives rise to a monad transformer—

for any monad M on linear types, there is a monad Lift○M ○Lower on non-linear types. We

write LinT M α for Lift(M(Lower α)), and its interface builds on the monadic interface

to M as follows:

return : α → LinT M α

return a ≡ suspend (return (put a))

(>>=) : LinT M α → (α → LinT M β) → LinT M β

m >>= f ≡ suspend (force m >>= λ̂ (x : Lower α). let !a ∶= x in force (f a))

The monad transformer turns out to be useful for many of the domain-specific interfaces

we have considered, particularly when the linear monad returns a lowered host value. For

example, the input to withFileM had the form Lift (LState Handle LUnit), but could

have instead returned the type Lower ():

withFileT : String → LinT (LState Handle) () → Lin Unit

withFileT filename op ≡ suspend (let h ∶= open filename in

let (h,x) ∶= force op ˆ h in

let () ∶= close h in

x)

Furthermore, by reformulating read and write with respect to LinT, we can expose an

entirely non-linear interface to linear file handles while keeping the safety guarantees of

linearity.

readT : LinT (LState Handle) Char

readT ≡ suspend (λ̂ h. read h)

writeT : Char → LinT (LState Handle) Unit

writeT c ≡ suspend (λ̂ h. (write c h, put ()))

46

readWriteTwice : Lin ()

readWriteTwice ≡ withFileT "foo.txt" (do c ← readT

_ ← writeT c

writeT c)

We sometimes write LStateT σ α for the common idiom LinT (LState σ) α.

3.5 Extensions

The embedded LNL framework makes it easy to integrate various extensions to the embed-

ded language; we consider a few of them here.

3.5.1 Linear data structures

Linear algebraic data types can be added to the linear embedded language in a few different

ways.

The first naive approach adds a particular data structure as a one-off type, for example

by extending LTypes with LList σ, a linear list with values of type σ. Then we add the

usual constructors and case analysis for lists:

∅ ⊢ [] ∶ LList σ

∆ ⊢ e ∶ σ ∆′ ⊢ e′ ∶ LList σ

∆,∆′ ⊢ (e ∶∶ e′) ∶ LList σ

∆ ⊢ e ∶ LList σ ∆′ ⊢ e0 ∶ τ ∆′, x ∶ σ,xs ∶ LList σ ⊢ e′ ∶ τ

∆,∆′ ⊢ case e of ([] → e0 ∣ x ∶∶ xs→ e′) ∶ τ

Option two is to extend the language with recursive data types in general, as shown in

Figure 3.3. Then, for example, lists can be encoded as LList σ ≡ µ(λτ.LUnit⊕ σ ⊗ τ).

Option three is, using dependent types, to encode length-indexed lists as n-tuples. That

47

data LType where ⋯ ∣ µ : (LType → LType) → LType

∆ ⊢ e ∶ F (µF)
∆ ⊢ fold e ∶ µF

µ-I
∆ ⊢ e ∶ µF

∆ ⊢ unfold e ∶ F (µF)
µ-E

Figure 3.3: Recursive types in the linear embedded language

is, we can define a host level function (⊗) ∶ Nat→ LType→ LType as follows:3

0⊗σ ≡ LUnit

n + 1⊗σ ≡ σ ⊗ (n⊗σ)

The advantage of this approach is that it keeps the linear language itself very simple, and

enforces a richer type discipline.

3.5.2 Recursion

Arbitrary linear recursion is not well typed, in that there is no linear Y combinator Yl of

type (σ ⊸ σ) ⊸ σ. If such a fixpoint did exist, and ∆ ⊢ f ∶ σ ⊸ σ, then f ˆ(Ylˆf) would

not be well-typed. However, the following is derivable, provided the host language also has

general recursion:

lfix : Lift (σ ⊸ σ) → Lift σ

lfix f ≡ suspend (force f (force (lfix f)))

If the language does not have general recursion, like Coq or Agda for example, then lfix

can be added as a constant to the linear language.

∅ ⊢ e ∶ σ⊸ σ

∅ ⊢ lfix e ∶ σ
lfix

lfix f ↝β fˆ(lfix f)

3Note the difference between σ ⊗ τ where σ, τ ∶ LType and n⊗ τ , where n ∶ Nat and τ ∶ LType.

48

data LType where ⋯ ∣ ∀ : (LType → LType) → LType

| ∃ : (LType → LType) → LType

Π(σ ∶ LType),∆ ⊢ e ∶ Fσ
∆ ⊢ e ∶ ∀F

∀-I
∆ ⊢ e ∶ ∀F σ ∶ LType

∆ ⊢ e[σ] ∶ Fσ
∀-E

∆ ⊢ e ∶ Fσ
∆ ⊢ (σ, e) ∶ ∃F

∃-I
∆ ⊢ e ∶ ∃F ∏

σ

∆′, x ∶ Fσ ⊢ e′ ∶ τ

∆,∆′ ⊢ let (σ,x) ∶= e in e′ ∶ τ
∃-E

Figure 3.4: Polymorphism in the linear embedded language

Alternatively, given a function f ∶ Lift(σ ⊸ σ) and a natural number n, we can define

fn ∶ Lift(σ⊸ σ) that applies f n times to its argument.

f0 ≡ idl

fn+1 ≡ suspend(λ̂x. force fnx)

3.5.3 Polymorphism

Conveniently, polymorphism in the host language gives rise to polymorphism in the linear

language. Consider the linear identity function, where we get polymorphism for free:

idl ∶ Π(σ ∶ LType),Lift(σ⊸ σ).

For more fine-grained control we can add general polymorphism, illustrated in Figure 3.4.

3.5.4 Dependent types

The embedded language inherits limited forms of dependent types for free from its host

language, such as the length-indexed tuples n⊗σ shown above. In this context, a dependent

linear type is one that depends on the value of a host language (non-linear) term; this

restriction is generally accepted in the literature (Cervesato and Pfenning, 1996; Gaboardi

et al., 2013; Vákár, 2014; Krishnaswami et al., 2015).

The syntax for Π and Σ types that depend on host-language terms is shown in Figure 3.5.

49

data LType where ⋯ ∣ Π` : Π (α : Type), (α → LType) → LType

| Σ` : Π (α : Type), (α → LType) → LType

f ∶ Π(a ∶ α),∆ ⊢ − ∶ Fa
∆ ⊢ λ̂f ∶ Π`

αF
Π`-I

∆ ⊢ e ∶ Π`
αF a ∶ α

∆ ⊢ eˆa ∶ Fa
Π`-E

a ∶ α ∆ ⊢ e ∶ Fa
∆ ⊢ (a, e) ∶ Σ`

αF
Σ`-I

∆ ⊢ e ∶ Σ`
αF ∏

a∶α
∆′, x ∶ Fa ⊢ e′ ∶ τ ∆�∆′

∆,∆′ ⊢ let (!a, x) ∶= e in e′ ∶ τ
Σ`-E

Figure 3.5: Dependent types in the linear embedded language

If α is a host type and F ∶ α → LType is a function from α to linear types LType, then Π`
αF

and Σ`
αF are linear types corresponding to universal and existential quantification over α,

respectively. For Π`, a linear expression λ̂f of type Π`
αF is constructed from a function f

from values a ∶ α to linear expressions of type Fa. To apply λ̂f to an argument of type

a ∶ α, it suffices to just apply f to a.

Dually, a linear expression of type Σ`
αF is a pair of a value of type a and a linear

expression of type Fa. The elimination form binds a value of type Σ`
αF against a function

from a ∶ α to linear expressions using x ∶ Fa, and is written let (!a, x) ∶= e in e′.

3.6 Example: session types

Session types are a language mechanism for describing communication protocols between

two actors (Honda, 1993; Kobayashi et al., 1999). A session is a channel with exactly

two endpoints. Linearity ensures that the protocols for both endpoints of the channel are

always in sync. Here we present a simple interface for session types, inspired by Lindley

and Morris’s GV calculus (2015).

A session type is given by the following grammar:

data Session where

| (⟨!⟩) : LType → Session → Session

| (⟨?⟩) : LType → Session → Session

| End : Session

data LType where

⋯

∣ Channel : Session → LType

For a linear type σ and a session type S, a channel with session type σ⟨!⟩S promises to

50

∆ ⊢ e ∶ Channel S� ⊸ LUnit

∆ ⊢ spawn e ∶ Channel S
new

∆ ⊢ e ∶ Channel End

∆ ⊢ close e ∶ LUnit
close

∆ ⊢ e ∶ σ ∆′ ⊢ e′ ∶ Channel(σ⟨!⟩S)
∆,∆′ ⊢ send e e′ ∶ Channel S

send
∆ ⊢ e ∶ Channel(σ⟨?⟩S)

∆ ⊢ receive e ∶ σ ⊗ Channel S
recv

∆1 ⊢ e1 ∶ Channel S ∆2 ⊢ e2 ∶ Channel(S�)
∆1,∆2 ⊢ link e1 e2 ∶ LUnit

link

Figure 3.6: Linear interface to session types.

send a value of type σ and then continue with the protocol S. On the other hand, a channel

with session type σ⟨?⟩S will receive a value of type σ and then continue as S. The session

type End denotes the end of a communication process.

It is clear that every session type S has a corresponding dual type S� such that, if Alice

has access to one end of the channel with session type S and Bob has access to the other

end of the channel, then Bob’s channel has the session type S�:

(σ⟨!⟩S)� ≡ σ⟨?⟩S� (σ⟨?⟩S)� ≡ σ⟨!⟩S� End� ≡ End

The linear type Channel S is a channel with session type S, and the interface to these

channels is shown in Figure 3.6. A channel can be created by spawning a process that

consumes the opposite end of the channel. A channel of session type End can be closed,

resulting in a unit type. Users can send and receive values on channels, and any two

channels of dual session types can be linked together, so that the communications of one

are forwarded along to the other.

Lindley and Morris (2015) present an operational semantics of this language, which

draws on process calculi like the π-calculus (Milner, 1999). In Chapter 4 we implement a

different session-typed language and describe its operational behavior in more detail.

An echo server. Consider an echo server that receives a message, echoes that message

back over the channel, then terminates. That protocol can be expressed as a session type

51

and implemented as a process as follows:

EchoProtocol ≡ Lower String ⟨?⟩ Lower String ⟨!⟩ End

echoServer : Lift (Chan EchoProtocol ⊸ LUnit)

echoServer ≡ suspend (λ̂ c. let (message, c) ∶= receive c in

let c ∶= send message c in

close c)

Meanwhile, a client of the echo server will check that they receive the same message that they

sent. Note that EchoProtocol� is equal to Lower String ⟨!⟩ Lower String ⟨?⟩ End.

echoClient : Lift (Chan EchoProtocol� ⊸ Lower Bool)

echoClient ≡ suspend (λ̂ c. let (!message,c) ∶= receive (send "ping" c) in

put (message== "ping"))

First class channels. Session types can be used to send channels themselves over a

connection. For example, suppose Alice and Bob want to communicate via a session protocol

S, but they need a third party to connect them. This intermediary has connections to Alice

and Bob, but wants to verify their identities via passwords before connecting them. Here,

the type LMaybe σ is just σ ⊕ LUnit; we write LJust for ι1 and LNothing for ι2().

intermediary : Suspend (Chan (Lower String ⟨?⟩ LMaybe (Chan S) ⟨!⟩ End)

⊸ Chan (Lower String ⟨?⟩ LMaybe (Chan S�) ⟨!⟩ End)

⊸ LUnit)

intermediary aliceChan bobChan ≡ suspend (

let (!alicePasswd, aliceChan) ∶= receive aliceChan in

let (!bobPasswd, bobChan) ∶= receive bobChan in

if verifyAlice alicePasswd && verifyBob bobPasswd

then let c ∶= spawn (λ̂ c'. close (send (LJust c') aliceChan)) in

close (send (LJust c) bobChan)

else let () ∶= close (send LNothing aliceChan) in

close (send LNothing bobChan))

Notice that the intermediary can check the validity of Alice’s and Bob’s passwords via

arbitrarily complex, non-linear procedures.

52

As a client, Alice can interact with the intemediary by sending her password and re-

ceiving back a channel, with which she can communicate with Bob. We write aliceToBob

of type Suspend (Chan S ⊸ LUnit) for Alice’s communication with Bob.

alice : Suspend (Chan (Lower String ⟨!⟩ LMaybe (Chan S) ⟨?⟩ End) ⊸ LUnit

alice ≡ suspend (λ̂ c. let c ∶= send "my Password" c in

let (b, c) ∶= receive c in

let () ∶= close c in

case b of

| LJust bobChan → force aliceToBob ˆ bobChan

| LNothing → ())

A simple marketplace. Many real-life protocols describe diverging branches of commu-

nication, where users have a choice of which branch to take. For example, consider the

following protocol for a simple online marketplace:

1. Receive an order from a customer;

2. If the item is in stock:

(a) Send price to customer;

(b) Receive credit card number from customer;

(c) Send receipt to customer;

(d) End transaction.

3. If the item is not in stock, end transaction.

The nested protocol, items 2a–2d, can be easily defined as follows:

InStockProtocol ≡ Lower Int ⟨!⟩ Lower Int ⟨?⟩ Lower String ⟨!⟩ End

inStockOp : String → Lift (Chan InStockProtocol ⊸ LUnit)

inStockOp item ≡ suspend (λ̂ c. let c ∶= send (put (price item)) c in

let (!cc,c) ∶= receive c in

let c ∶= send (put "Thank you for your order!") c in

close c)

53

But how can we use session types to represent the choice of whether the item is in stock

or not? We can encode this protocol as a session type S1⟨+⟩S2 that makes a choice between

two protocols. Dually, the session type S1⟨&⟩S2 offers a choice between two protocols.

S1⟨+⟩S2 ≡ (Channel S�1 ⊕ Channel S�2)⟨!⟩End

S1⟨&⟩S2 ≡ (Channel S1 ⊕ Channel S2)⟨?⟩End

The protocol of the online marketplace can now be described with the session type

MarketProtocol and can be implemented as follows:

MarketProtocol ≡ Lower String ⟨?⟩ (InStockProtocol ⟨+⟩ End)

marketplace : Lift (Chan MarketProtocol ⊸ LUnit)

marketplace ≡ suspend (λ̂ c. let (!item,c) ∶= receive c in

if inStock item

then close (send (fork (inStockOp item)) c)

else close c)

3.7 Discussion

In the rest of this dissertation, we build on the embedded linear/non-linear lambda calculus

described in this chapter. We consider several additional DSLs compatible with the LNL

embedding, including arrays and quantum computing. Some domains require changes to

the basic LNL interface, but we will see that such changes do not necessarily affect the

usability of the framework.

For example, the calculus in Chapter 6 does not include higher-order linear functions,

and to compensate we replace the unary type constructor Lift σ with a binary type con-

structor Box σ τ , which represents first-order linear functions from σ to τ . Chapter 8

describes a language for quantum circuits that does not include the put constructor, as

arbitrary host-language data structures should not be stored on a quantum circuit. Nev-

ertheless, the LNL interface is still useful in this situation, since we can use >! to extract

boolean values that have been obtained from quantum measurement on the circuit.

54

In Chapter 4 and Chapter 8 we show how to implement the LNL embedded framework

in real host languages—Haskell and Coq respectively. The details of these implementations

are specific to the tools available to each host language—in Haskell we use type classes to

enforce linearity, and in Coq interactive tactics. But in both settings we find the basic LNL

structure to be a robust interface to the linear embedding.

55

CHAPTER 4

Haskell Implementation

In this chapter we describe LNLHask, a framework for implementing linear EDSLs in Haskell.4

LNLHask is based on the LNL embedding described in Chapter 3, and can be extended to

a wide range of domain-specific applications.

Haskell has rich type classes and support for dependent types, which we exploit to

enforce linearity. Our implementation draws on the techniques of previous embeddings of

linear types in Haskell by Polakow (2015) and Eisenberg et al. (2012). Compared to the

prior work, our implementation makes several contributions.

- The LNL interface lets us use arbitrary Haskell data structures in the linear type Lower α

and use existing libraries to manipulate that data. Prior work is based on the traditional

presentations of linear logic using !, and as a result has limited access to host-language

data.

- LNLHask is an extensible framework that can be instantiated in a variety of domain-specific

applications. In this chapter we describe two particular instantiations of the framework:

mutable functional arrays and session types. The implementations of these examples

require at most a few hundred lines of code on top of the base LNLHask library.

- Haskell has good support for monadic programming, making it a natural choice in which

to implement the linearity monad described in Section 3.4. The monadic programming

style arises directly from the LNL model and makes it easy to write high-level functional

code such as an in-place quicksort algorithm (see Section 4.5).

4https://github.com/jpaykin/LNLHaskell

56

https://github.com/jpaykin/LNLHaskell

- LNLHask performs linear type checking by drawing on several advanced language exten-

sions for dependently typed programming provided by the Glasgow Haskell Compiler

(GHC) version 8.5 The newer features result in several improvements compared to the

design of previous embeddings, which we discuss in Section 4.7. The implementation of

LNLHask can also be seen as a case study for using state-of-the-art dependent types in

Haskell.

Implementing the LNL model requires us to make a number of important design deci-

sions that were left out of the discussion in Chapter 3 about how to represent linear types

and typing contexts and how to enforce linearity. In LNLHask, variables are represented by

type-level natural numbers and typing contexts are represented by type-level lists. Variable

binding is by higher-order abstract syntax (Pfenning and Elliott, 1988), meaning that lin-

ear functions are represented as Haskell functions. To enforce linearity, we use type class

constraints to define relations on typing contexts, such as the fact that two typing contexts

are disjoint. Typing judgments are defined using a final tagless encoding (Kiselyov, 2012),

where the interface to the embedded language is presented as an extensible type class whose

implementation is opaque to the user.

The rest of this chapter presents the details of LNLHask and gives examples of how

to use the framework. Section 4.1 introduces dependently-typed programming in Haskell.

Section 4.2 describes the implementation of LNLHask including how to encode linear types,

type checking, and linear expressions. Section 4.3 describes how to evaluate linear programs,

and Section 4.4 develops monadic programming techniques; both chapters use linear file

handles as a running example. Sections 4.5 and 4.6 develop two additional instantiations of

the LNL framework—mutable arrays and session types. Finally, Section 4.7 discusses the

design decisions of LNLHask and related work.

5https://www.haskell.org/ghc/

57

https://www.haskell.org/ghc/

4.1 Dependent types in Haskell

In this chapter we assume the reader has basic familiarity with Haskell programming in-

cluding inductive data types, GADT’s, and type classes, but we take this opportunity to

introduce some more advanced techniques for dependently-typed programming in Haskell.

In the past several years, Haskell has incorporated many features of dependently-typed

languages. However, there are still several differences between dependent types in Haskell

and languages with full dependent types like Coq or Agda. Haskell lacks Π and Σ types, and

enforces a strict distinction between types and terms. The distinction between types and

terms means that all types are erased at runtime, but it also means that types and terms

live in different namespaces, which leads to complications when terms appear in types.

To get around the distinction between terms and types, every data type in Haskell is

simultaneously a data kind, and the term constructors for those data types are promoted

to type constructors (Yorgey et al., 2012). For example, [κ] is the kind of type-level lists

holding types of kind κ, with constructors '[] ∶∶ [κ] and (α ': αs) ∶∶ [κ], for α ∶∶ κ and

αs ∶∶ [κ]. The tick marks on the constructors '[] and ': distinguish the type constructors

from the corresponding term constructors, though we can omit the tick mark when the

promoted constructor is unambiguous.

Because Haskell does not have Π-types, terms that appear in a type as promoted data

kinds cannot also appear in a term. However, it is often useful to have a dynamic repre-

sentation of such type-level data. In the case of type-level natural numbers of type Nat,

defined in GHC.TypeLits, the type class KnownNat n has a method to produce the integer

corresponding to the type n.

natVal ∶∶ KnownNat n ⇒ Proxy n → Integer

A more general approach to term-level representations of type-level data is singletons (Eisen-

berg and Weirich, 2012), but we do not need them in this work.

The type Proxy n in the type of natVal identifies the type-level argument n.

data Proxy (α ∶∶ κ) = Proxy

58

For example, we can instantiate natVal with the type-level Nat 0 to obtain the integer 0.

myZero = natVal (Proxy ∶∶ Proxy 0)

Haskell’s type class mechanism will generate an instance of the type class KnownNat n for

any concrete natural number e.g., 0.

Proxies can also be avoided by using the function natVal' below, which uses visible

type application to specify the value of n (Eisenberg et al., 2016).

natVal' ∶∶ forall n. KnownNat n ⇒ Integer

natVal' = natVal @n Proxy

Here, the forall quantifier brings n into scope of the function body, and @n denotes a type

argument to natVal.

Because we use type-level Nat’s liberally in this work, we introduce here some ba-

sic operations on them. The TypeLits library provides a type-level comparison operator

CmpNat ∶∶ Nat → Ord that produces a type of kind Ordering = LT | EQ | GT. We can

use closed type families to pattern match against promoted orderings as follows:

type family CompareOrd (ord ∶∶ Ordering) (lt ∶∶ α) (eq ∶∶ α) (gt ∶∶ α) ∶∶ α where

CompareOrd LT lt eq gt = lt

CompareOrd EQ lt eq gt = eq

CompareOrd GT lt eq gt = gt

The CmpNat type family lets us statically compare two type-level nats, but we often

want dynamic comparison as well. To do this, we define a data type COrdering m n that

encodes the type-level behavior of CmpNat m n.

data COrdering m n where

CLT ∶∶ Dict (CmpNat m n ∼ LT) → COrdering m n

CEQ ∶∶ Dict (CmpNat m n ∼ EQ) → COrdering m n

CGT ∶∶ Dict (CmpNat m n ∼ GT) → COrdering m n

The type Dict c, defined in the constraints package,6 encodes a dictionary constraint—

either a type class or an equality constraint of the form α ∼ β. The Dict type is used to

6https://hackage.haskell.org/package/constraints

59

https://hackage.haskell.org/package/constraints

carry around a first-class constraint argument, which can be used later by pattern matching

against the term.

data Dict ∶∶ Constraint → * where

Dict ∶∶ a ⇒ Dict a

withDict ∶∶ Dict a → (a ⇒ r) → r

withDict d r = case d of Dict → r

In the LNLHask development, the constructors of COrdering m n carry additional infor-

mation, such as the fact that CmpNat n m ∼ GT in the constructor of CLT; for the sake of

this presentation we have simplified the types to one constraint per constructor.

By comparing the term-level representations of type-level Nat’s, we can generate type-

level information about the behavior of CmpNat.

cmpNat ∶∶ (KnownNat m, KnownNat n) ⇒ Proxy m → Proxy n → COrdering m n

cmpNat m n = case compare (natVal m) (natVal n) of

LT → CLT $ unsafeCoerce (Dict ∶∶ Dict ())

EQ → CEQ $ unsafeCoerce (Dict ∶∶ Dict ())

GT → CGT $ unsafeCoerce (Dict ∶∶ Dict ())

The use of the primitive unsafeCoerce ∶∶ α → β here is justified because of the meta-

reasoning that natVal m < natVal n implies m < n, and so on.

4.2 Linear types and type checking

We implement linear types as a data type, promoted to a data kind. To start, consider

linear functions and unit types. We use the infix notation σ ⊸ τ as a synonym for the

promoted type Lolli σ τ .

data LType = LUnit | Lolli LType LType

type σ ⊸ τ = Lolli σ τ

Variables are represented as type-level natural numbers, and typing contexts as type-

level lists that map variables to LTypes.

type Ctx = [(Nat,LType)]

60

We use γ as a meta-variable for typing contexts in this chapter. (Haskell requires that

variables start with lower case letters, so the usual meta-variable ∆ is not acceptable.)

Type checking linear expressions requires two main relations on typing contexts: (1)

that γ1 and γ2 are disjoint and can be merged; and (2) that x does not occur in the domain

of γ, and can be added to it.

Example 4.2.1. Consider a linear typing judgment y ∶ τ ⊢ (λ̂x.x)ˆy ∶ τ . In order to check

that this judgment holds, we need to split the context y ∶ τ into two parts: ∆1 ⊢ λ̂x.x ∶ σ⊸ τ

and ∆2 ⊢ y ∶ σ. Since y is just a variable, we can infer that ∆2 must have the form y ∶ σ.

From there it is reasonable to infer that ∆1 is the remainder of the context that does not

occur in ∆1—so ∆1 = ∆ −∆2 = ∅.

To check that ∅ ⊢ λ̂x.x ∶ σ ⊸ τ , we must check that x does not occur in ∅, and check

that x ∶ σ ⊢ x ∶ τ . Unifying these constraints, we conclude that σ = τ .

In this example, type checking is a bidirectional process. To implement such a process

in Haskell, we start by defining a number of type-level functions on typing contexts, and

then combining them into type classes to implement the bidirectional reasoning.

4.2.1 Type families

Figure 4.1 defines several type families on linear variables x and typing contexts γ. In

each of them, we enforce the invariant that typing contexts are sorted with respect to their

domain.

- Fresh γ produces a variable that does not occur in the context γ.

- Lookup γ x returns Just σ if (x,σ) is in γ, and Nothing if x is not in the domain of γ.

- AddF x σ γ adds the binding (x,σ) to γ if x does not already occur in γ; if x does occur

in γ, then AddF x σ γ is undefined.

- MergeF γ1 γ2 combines the typing contexts γ1 and γ2 if they are disjoint; if they have

overlapping variables, their merge is undefined.

61

type family Fresh (γ ∶∶ Ctx) ∶∶ Nat where

Fresh '[] = 0

Fresh '['(x,_)] = x+1

Fresh (_ ': γ) = Fresh γ
type family Lookup (γ ∶∶ Ctx) (x ∶∶ Nat) ∶∶ Maybe LType where

Lookup '[] _ = Nothing

Lookup ('(y,σ):γ) x = CompareOrd (CmpNat x y)

Nothing -- if x < y

(Just σ) -- if x = y

(Lookup γ x) -- if x > y

type family AddF (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) ∶∶ Ctx where

AddF x σ '[] = '['(x,σ)]

AddF x σ ('(y,τ) ': γ) = CompareOrd (CmpNat x y)

('(x,σ) ': '(y,τ) ': γ) -- if x < y

(AddError x ('(y,τ) γ)) -- if x = y

('(y,τ) ': AddF x σ γ) -- if x > y

type family MergeF (γ1 ∶∶ Ctx) (γ2 ∶∶ Ctx) ∶∶ Ctx where

MergeF '[] γ2 = γ2
MergeF ('(x,σ) ': γ1) γ2 = AddF x σ (MergeF γ1 γ2)

type family Remove (x ∶∶ Nat) (γ ∶∶ Ctx) ∶∶ Ctx where

Remove x '[] = RemoveError x '[]
Remove x ('(y,σ) ': γ) = CompareOrd (CmpNat x y)

(RemoveError x ('(y,σ) : γ)) -- if x < y

γ -- if x = y

('(y,σ) ': Remove x γ) -- if x > y

type family Div (γ ∶∶ Ctx) (γ0 ∶∶ Ctx) ∶∶ Ctx where

Div γ '[] = γ
Div γ ('(x,_) ': γ0) = Remove x (Div γ γ0)

Figure 4.1: Type families over linear typing contexts, enforcing the invariant that typing
contexts are sorted. The custom type errors AddError and RemoveError provide better
error reporting—see Section 4.7.

- Remove x γ removes the variable x from γ; it is undefined if x does not occur in γ

- Div γ γ0 removes the variables in γ0 from γ; if γ0¬ ⊆ γ, then the result is undefined.

4.2.2 Type classes

As we saw in Example 4.2.1, it is not enough to compute the merge of two typing contexts;

we must also must be able to partition a context using type inference where possible. Notice

that, if γ' ∼ AddF x σ γ, then Remove x γ' ∼ γ and Lookup γ' x ∼ Just σ. We can

encode this reasoning into a multi-parameter type class with functional dependencies, which

tell Haskell how to search for proofs of this judgment.

62

class (γ' ∼ AddF x σ γ, γ ∼ Remove x γ', Lookup γ' x ∼ Just σ

, KnownNat x, WFCtx γ, WFCtx γ')

⇒ CAddCtx (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) (γ' ∶∶ Ctx)

| x σ γ → γ', x γ' → σ γ

The KnownNat and WFCtx constraints say that Nats and Ctxs respectively are well-formed,

and they are true for any concrete types. In particular, the WFCtx γ constraint ensures that

γ behaves reasonably with respect to merging and dividing by the empty context.

type WFCtx γ = (Div γ '[] ∼ γ, Div γ γ ∼ '[], MergeF '[] γ ∼ γ, MergeF γ '[] ∼ γ)

The instance declaration for the CAddCtx type class is trivial:

instance (γ' ∼ AddF x σ γ, γ ∼ Remove x γ', Lookup γ' x ∼ Just σ

, KnownNat x, WFCtx γ, WFCtx γ')

⇒ CAddCtx (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) (γ' ∶∶ Ctx)

This same technique can be used to generalize the MergeF type family into a type class

such that knowing any two of γ1, γ2, or γ is enough to infer the third.

class (γ ∼ MergeF γ1 γ2, γ ∼ MergeF γ2 γ1, Div γ γ2 ∼ γ1, Div γ γ1 ∼ γ2

, WFCtx γ1, WFCtx γ2, WFCtx γ)

⇒ CMerge γ1 γ2 γ | γ1 γ2 → γ, γ1 γ → γ2, γ2 γ → γ1

instance (γ ∼ MergeF γ1 γ2, γ ∼ MergeF γ2 γ1, Div γ γ2 ∼ γ1, Div γ γ1 ∼ γ2

, WFCtx γ1, WFCtx γ2, WFCtx γ)

⇒ CMerge γ1 γ2 γ

4.2.3 Typing Judgments

A linear expression γ ⊢ e ∶ τ is represented as a Haskell term e ∶∶ exp γ τ in final tagless

style (Carette et al., 2009), where the typing judgment exp ∶∶ Ctx → LType → Type is

given as a type class, the methods of which correspond to typing rules.

class HasLolli (exp ∶∶ Ctx → LType → Type) where

var ∶∶ KnownNat x ⇒ proxy x → Var exp x σ

λ̂ ∶∶ (x ∼ Fresh γ, CAdd x σ γ γ')

⇒ (Var exp x σ → exp γ' τ) → exp γ (σ ⊸ τ)

63

(∧) ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 (σ ⊸ τ) → exp γ2 σ → exp γ τ

type Var exp x σ = exp '['(x,σ)] σ

The HasLolli type class asserts that the typing judgment exp provides variables, abstrac-

tion (λ̂), and application (∧) operations.

- Variables are constructed from proxies, where Var exp x σ refers to a term of the sin-

gleton typing context x ∶∶ exp '['(x,σ)] σ.

- The type of application corresponds closely to the inference rules given in Chapter 3,

where CMerge encodes the disjoint union of contexts.

- Abstraction uses higher-order abstract syntax to bind variables in a linear function. Let’s

take a look at the type of λ̂ without the type class constraints:

(Var exp x σ → exp γ' τ) → exp γ (σ ⊸ τ)

This type says that, in order to construct a linear function σ⊸ τ , it suffices to provide an

ordinary Haskell function from variables of type σ to expressions of type τ . In order to

ensure that the bound variable is used linearly in a term, we have the following constraints:

(x ∼ Fresh γ, CAdd x σ γ γ')

The first constraint says that x is fresh in γ, and the second constraint says that the

body of the function, of type exp γ' τ , satisfies the relation γ′ = γ, x ∶ σ. Put in a more

functional notation, the type of λ̂ could be written as

(exp [x:σ] σ → exp (γ,x:σ) τ) → exp γ (σ ⊸ τ)

The HOAS encoding leads to fairly natural-looking code. The identity function is

λ̂ (\x → x), while composition is defined as:

compose ∶∶ HasLolli exp ⇒ exp '[] ((τ 2 ⊸ τ3) ⊸ (τ 1 ⊸ τ 2) ⊸ (τ 1 ⊸ τ3))

compose = λ̂ $ \g → λ̂ $ \f → λ̂ $ \x → g ∧ (f ∧ x)

We do not have to add any special infrastructure to handle polymorphism; Haskell takes

care of it for us.

64

4.2.4 Linear connectives

The final tagless typing judgment can be easily extended by defining new type classes that

offer different syntax. This makes it easy to extend the language to other operators of linear

logic, such as units, products, and sums.

For the linear multiplicative unit, we have the following class:

class HasLUnit exp where

unit ∶∶ exp '[] LUnit

letUnit ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 LUnit → exp γ2 τ → exp γ τ

For the tensor product, we first need to extend the syntax of linear types. We could

add a constructor corresponding to ⊗ directly to the definition of LType, but doing so

would commit to a particular choice of linear connectives. Instead, we extend LType’s with

MkLType, a way to existentially introduce a new linear type:

data LType where MkLType ∶∶ ext LType → LType

Extensions, denoted with the meta-variable ext ∶∶ Type → Type, are universally quantified

in MkLType. The multiplicative product can be encoded as an extension TensorExt:

data TensorExt ty = MkTensor ty ty

type σ ⊗ τ = MkLType (MkTensor σ τ)

We overload the notation (⊗) as syntax for terms. The HOAS version of the let binding,

which we write letPair, introduces two variables, similar to the type of λ̂ above.

class HasTensor exp where

(⊗) ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 τ 1 → exp γ2 τ 2 → exp γ (τ 1 ⊗ τ 2)

letPair ∶∶ (CAdd x1 σ1 γ2 γ2', CAdd x2 σ2 γ2' γ2''

, x1 ∼ Fresh γ2, x2 ∼ Fresh γ2'

, CMerge γ1 γ2 γ)

⇒ exp γ1 (σ1 ⊗ σ2)

→ ((Var exp x1 σ1, Var exp x2 σ2) → exp γ2'' τ)

→ exp γ τ

65

The variables x1 and x2 are fresh variables generated by γ2 and γ′2 = γ2, x1 ∶ σ1 respectively

The continuation of the letPair is in the context γ′′2 = γ2, x1 ∶ σ1, x2 ∶ σ2. As an inference

rule, it is clear how letPair corresponds to the usual let binding for ⊗.

γ1 ⊢ e ∶ σ1 ⊗ σ2 γ2, x1 ∶ σ1, x2 ∶ σ2 ⊢ f(var x1,var x2) ∶ τ

γ1, γ2 ⊢ letPair e f ∶ τ

We often use letPair infix, as in λ̂ $ \x → x ‘letPair‘ \(y,z) → z ⊗ y, of type σ ⊗

τ ⊸ τ ⊗ σ. It would certainly be more natural to write λ̂ $ \(y,z) → z ⊗ y directly,

but type checking for nested pattern matching has turned out to be a difficult problem.

We can however define a top-level pattern match λ̂pair, and write our example as λ̂pair

$ \ (y,z) → z ⊗ y. We discuss the issue of type checking and nested pattern matching

more in Section 4.7.

The interfaces for additive sums, products, and units are shown in Figure 4.2.

4.2.5 The Lift and Lower Types

The LNL connective Lower can be added to the linear language using MkLType as we did

for the other linear connectives. However, Lower takes an argument of kind Type—the kind

of Haskell types.

data LowerExp ty = MkLower Type

type Lower α = MkLType (MkLower α)

The introduction and elimination forms for Lower are the same as those presented in Chap-

ter 3. Given a Haskell term a ∶∶ α, there is a linear expression put a ∶∶ exp '[] (Lower α),

and an expression e ∶∶ exp γ1 (Lower α) can be eliminated against f ∶∶ α → exp γ2 τ ,

written e >! f.

class HasLower exp where

put ∶∶ α → exp '[] (Lower α)

(>!) ∶∶ CMerge γ1 γ2 γ

⇒ exp γ1 (Lower α) → (α → exp γ2 τ) → exp γ τ

66

-- Additive Sum --

data PlusSig ty = PlusSig ty ty

type (⊕) (σ ∶∶ LType) (τ ∶∶ LType) = MkLType ('PlusSig σ τ)

class HasPlus exp where

inl ∶∶ exp γ τ 1 → exp γ (τ 1 ⊕ τ 2)
inr ∶∶ exp γ τ 2 → exp γ (τ 1 ⊕ τ 2)
caseof ∶∶ (CAddCtx x σ1 γ2 γ2 1, CAddCtx x σ2 γ2 γ2 2

, x ∼ Fresh γ, CMerge γ1 γ2 γ)

⇒ exp γ1 (σ1 ⊕ σ2)

→ (Var exp x σ1 → exp γ2 1 τ)
→ (Var exp x σ2 → exp γ2 2 τ)
→ exp γ τ

-- Additive Product --

data WithSig ty = WithSig ty ty

type (σ ∶∶ LType) & (τ ∶∶ LType) = MkLType ('WithSig σ τ)

class HasWith exp where

(&) ∶∶ exp γ τ 1 → exp γ τ 2 → exp γ (τ 1 & τ 2)
proj1 ∶∶ exp γ (τ 1 & τ 2) → exp γ τ 1
proj2 ∶∶ exp γ (τ 1 & τ 2) → exp γ τ 2

-- Zero --

data ZeroSig ty = ZeroSig

type Zero = MkLType 'ZeroSig

class HasZero exp where

absurd ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 Zero → exp γ τ

-- Top --

data TopSig ty = TopSig

type Top = MkLType 'TopSig

class HasTop exp where

abort ∶∶ exp γ Top

Figure 4.2: Haskell interface to linear additive connectives

67

curry ∶∶ HasMILL exp ⇒ Lift exp ((σ1 ⊗ σ2 ⊸ τ) ⊸ σ1 ⊸ σ2 ⊸ τ)

curry = Suspend . λ̂ $ \f → λ̂ $ \x1 → λ̂ $ \x2 → f ∧ (x1 ⊗ x2)

uncurry ∶∶ HasMILL exp ⇒ Lift exp ((σ1 ⊸ σ2 ⊸ τ) ⊸ σ1 ⊗ σ2 ⊸ τ)

uncurry = Suspend . λ̂ $ \f → λ̂ $ \x →
x `letPair` \(x1,x2) → f ∧ x1

∧ x2

type Bang τ = Lower (Lift τ)
dup ∶∶ HasMELL exp ⇒ Lift exp (Bang τ ⊸ Bang τ ⊗ Bang τ)

dup = Suspend . λ̂ $ \x → x >$ \a → put a ⊗ put a

drop ∶∶ HasMELL exp ⇒ Lift exp (Bang τ ⊸ LUnit)

drop = Suspend . λ̂ $ \x → x >$ _ → unit

Figure 4.3: Examples of linear programs embedded in Haskell

We define Lift as an ordinary Haskell data type with a single constructor Suspend, and

we define force by pattern matching against Suspend.

data Lift exp τ = Suspend (exp '[] τ)

force ∶∶ Lift exp τ → exp '[] τ

force (Suspend e) = e

For convenience, we define HasMELL for the class of constraints corresponding to Multi-

plicative Exponential Linear Logic (⊸, ⊗, LUnit, and Lower), and HasMALL for that class

with the addition of Additive sums and products (& and ⊕).

type HasMILL exp = (HasLower exp, HasLolli exp, HasLUnit exp, HasTensor exp)

type HasMALL exp = (HasMILL exp, HasWith exp, HasPlus exp)

Figure 4.3 shows some examples of linear code embedded in Haskell. This includes

currying and uncurrying, as well as operations for the type Bang τ ≡ Lower (Lift τ).

4.2.6 File Handles

Recall the example of linear file handles from Section 3.3, where linearity prevents use-after-

close errors and memory leaks. We can give an interface for file handles in LNLHask as a

type class that builds off of MELL.

class HasMELL exp ⇒ HasFH exp where

open ∶∶ String → exp '[] Handle

read ∶∶ exp γ Handle → exp γ (Handle ⊗ Lower Char)

68

write ∶∶ exp γ Handle → Char → exp γ Handle

close ∶∶ exp γ Handle → exp γ LUnit

The open and write operations take ordinary Haskell data (strings and characters) as input.

Because strings are just lists of chars, we can write an entire string to a file by folding over

the string.

writeString ∶∶ HasFH exp ⇒ String → exp γ Handle → exp γ Handle

writeString s h = foldl write h s

File handles interact nicely with the other linear connectives. The following function

reads a character from a file and writes that same character back to the file twice:

readWriteTwice ∶∶ HasFH exp ⇒ Lift exp (Handle ⊸ Handle)

readWriteTwice = λ̂ $ \h → read h `letPair` \(h,x) →

x >! \c →

writeString [c,c] h

The type class mechanism really does enforce linearity, which prevents domain-speciifc

errors like read-after-close. For example, the following code does not type check:

readAfterClose ∶∶ Lift exp (Handle ⊸ Handle ⊗ Lower Char)

readAfterClose = λ̂ $ \h → close h `letUnit` read h -- type error

4.3 Running linear programs

The goal of embedded DSLs is not just to express domain-specific programs, but to actually

run those programs. In this section we define two different implementations of the type

classes HasLolli, HasFH, etc. of the previous sections.

4.3.1 Values and effects

Instances of LNLHask have three components: a typing judgment exp ∶∶ Ctx → LType → Type;

a value judgment val ∶∶ LType → Type, and a monadic effect m ∶∶ Type → Type. For

example, the type of values associated with file handles will be Haskell’s primitive file han-

dles, and the monadic effect will be IO. Different domains require different representations of

values and effects, so we structure these components as data and type families respectively.

69

type Exp = Ctx → LType → Type

data family LVal (exp ∶∶ Exp) (τ ∶∶ LType) ∶∶ Type

type family Effect (exp ∶∶ Exp) ∶∶ Type → Type

To evaluate an expression, we use evaluation environments that map free variables to

values. Each evaluation environment ρ ∶∶ ECtx exp γ is indexed by its respective typing

context γ, and we maintain the invariant that, if x ∶ σ is in the domain of γ, then ρ maps x

to a value of type σ. The type-safe interface to evaluation contexts is given as follows:

lookupECtx ∶∶ (KnownNat x, Lookup γ x ∼ Just σ)

⇒ proxy x → ECtx exp γ → LVal exp σ

eEmpty ∶∶ ECtx exp '[]

addECtx ∶∶ KnownNat x

⇒ proxy x → LVal exp σ → ECtx exp γ → ECtx exp (AddF x σ γ)

splitECtx ∶∶ γ ∼ MergeF γ1 γ2

⇒ ECtx exp γ → (ECtx exp γ1, ECtx exp γ2)

The function eEmpty is an empty evaluation context, addECtx adds a value to an evaluation

context, and splitECtx partitions an evaluation context according to a valid merge.

Under the hood, evaluation contexts are implemented as simply-typed maps—specifically

integer maps from the containers library.7 The map holds values whose types are existen-

tially hidden, so that evaluation contexts can hold values of different types.

data EVal sig where

EVal ∶∶ LVal sig σ → EVal sig

newtype ECtx sig γ = ECtx (M.IntMap (EVal sig))

The function lookupECtx uses unsafeCoerce to coerce an untyped EVal into a well-typed

LVal; as long as the evaluation context is always constructed from addECtx, this coercion

will always succeed.

lookupECtx x (ECtx ρ) = let v = ρ ! natVal x

in unsafeCoerce v

7https://hackage.haskell.org/package/containers

70

https://hackage.haskell.org/package/containers

The eEmpty and splitECtx operations are defined using the corresponding operations on

IntMaps.

eEmpty = ECtx empty

addECtx x v (ECtx ρ) = ECtx $ insert (natVal x) (EVal v) γ

Finally, split is a no-op on its input ρ, since if x ∶ σ is in the domain of either γ1 or γ2,

then it is the domain of MergeF γ1 γ2, and thus in the domain of ρ.

splitECtx (ECtx ρ) = (ECtx ρ, ECtx ρ)

The big-step operational semantics of the embedded language is defined as a type class

Eval exp with a method eval that, given an evaluation context for γ and an expression

γ ⊢ e ∶ τ , evaluates e to a value inside the monad Effect exp.

class Eval exp where

eval ∶∶ Monad (Effect exp) ⇒ exp γ τ → ECtx exp γ → Effect exp (LVal exp τ)

Deep versus shallow embeddings. EDSLs may either be deeply or shallowly embedded

in their host language. A shallow embedding is one in which embedded programs are rep-

resented as host-language programs, and evaluating embedded programs is done by simply

evaluating the program in the host language. On the other hand, a deep embedding encodes

the embedded program in some data in the host language, for example as an abstract syntax

tree.

There are many tradeoffs between deep and shallow embeddings. A shallow embedding

may be more efficient, but in a deep embedding it is possible to reason about small-step

operational semantics and perform meta-operations like optimizations, which is not possible

in a shallow embedding. LNLHask supports both deep and shallow embeddings (Kiselyov,

2012).

4.3.2 A Deep Embedding

First we consider a deep embedding, where linear lambda terms are defined as a GADT

in Haskell. The Deep data type bears a strong resemblance to the HasLolli type class,

although without higher-order abstract syntax.

71

data Deep γ τ where

Var ∶∶ KnownNat x ⇒ Proxy x → Deep '['(x,σ)] τ

Abs ∶∶ CAddCtx x σ γ γ'

⇒ Proxy x → Deep γ' τ → Deep γ (σ ⊸ τ)

App ∶∶ CMerge γ1 γ2 γ

⇒ Deep γ1 (σ ⊸ τ) → Deep γ2 σ → Deep exp γ τ

To instantiate the HasLolli type class, it is enough to produce a proxy variable for the

fresh variable being generated by the higher-order abstract syntax.

instance HasLolli Deep where

λ̂ ∶∶ forall x (σ ∶∶ LType) γ γ' γ'' τ.

(x ∼ Fresh γ, CAddCtx x σ γ γ')

⇒ (Var Deep x σ → Deep γ' τ) → Deep γ (σ ⊸ τ)

λ̂ f = Abs x (f $ Var x) where x = (Proxy ∶∶ Proxy x)

e1
∧ e2 = App e1 e2

Values are given as data instances according to their LType. A value of type σ⊸ τ is a

closure containing an evaluation context paired with the body of the abstraction.

data instance LVal Deep (σ ⊸ τ) where

VAbs ∶∶ CAddCtx x σ γ γ'

⇒ ECtx Deep γ → Proxy x → Deep γ' τ → LVal Deep (σ ⊸ τ)

Evaluating programs in the deep embedding is done by case analysis on Deep expressions.

instance Eval Deep where

eval ∶∶ Monad (Effect Deep) ⇒ Deep γ τ → ECtx Deep γ → Effect Deep (LVal Deep τ)

eval (Var x) (ECtx γ) = return $ lookupECtx x γ

eval (Abs x e) ρ = return $ VAbs γ x e

eval (App (e1 ∶∶ Deep γ1 (σ ⊸ τ)) (e2 ∶∶ Deep γ2 σ)) ρ =

do let (ρ1,ρ2) = splitECtx @γ1 @γ2 ρ

VAbs ρ' x e1' ← eval e1 ρ1

v2 ← eval e2 ρ2

eval e1' (addECtx x v2 ρ')

72

Extending the deep embedding. To make the deep embedding extensible we extend

the Deep data class by a parameterized typing judgment called a domain.

data Deep γ τ where ⋯

Dom ∶∶ Domain dom ⇒ dom γ τ → Deep γ τ

A domain dom has kind Ctx → LType → Type, the same as the kind of typing judgments,

and will be instantiated with AST’s corresponding to different language extensions. The

domain corresponding to the Lower type has the following form:

data LowerDom ∶∶ Ctx → LType → Type where

Put ∶∶ α → LowerDom '[] (Lower α)

LetBang ∶∶ CMerge γ1 γ2 γ ⇒ Deep γ1 (Lower α) → (α → Deep γ2 τ) → LowerDom γ τ

data instance HasLower Deep where

put = Dom . Put

e >! f = Dom $ LetBang e f

data instance LVal Deep (Lower α) = VPut α

Notice that the data structure LowerDom exactly mirrors the type class HasLower.

The Domain type class gives a way to evaluate the new domain.

class Domain dom where

evalDomain ∶∶ Monad (Effect Deep)

⇒ dom γ σ → ECtx Deep γ → Effect Deep (LVal Deep σ)

instance Domain LowerExp where

evalDomain (Put a) _ = return $ VPut a

evalDomain (LetBang (e1 ∶∶ Deep γ1 (Lower α)) (e2 ∶∶ α → Deep γ2 τ)) ρ =

do let (ρ1,ρ2) = split @γ1 @γ2 ρ

VPut a ← eval e1 ρ1

eval (e2 a) ρ2

The eval function can now be extended to arbitrary domains:

eval (Dom e) γ = evalDomain e γ

Implementing the other linear connectives are fairly straightforward. The values asso-

ciated with various connectives are shown in Figure 4.4.

73

data instance LVal Deep LUnit = VUnit

data instance LVal Deep (σ1 ⊗ σ2) = VPair (LVal Deep σ1) (LVal Deep σ2)

data instance LVal Deep (σ1 ⊕ σ2) = VInl (LVal Deep σ1) | VInr (LVal Deep σ2)

data instance LVal Deep LTop = VError

data instance LVal Deep (σ1 & σ2) where

VWith ∶∶ ECtx Deep γ → Deep γ σ1 → Deep γ σ2 → LVal Deep (σ1 & σ2)

Figure 4.4: Values in the deep embedding associated with various linear connectives.

File handles. We can extend the deep embedding to file handles by specifying the effect

of the language to be IO and taking values of type Handle to be built-in IO file handles.

type instance Effect Deep = IO

data instance LVal Deep Handle = VHandle (IO.Handle)

The file handle domain mirrors the structure of the HasFH type class.

data FHExp ∶∶ Ctx → LType → Type where

Open ∶∶ String → FHExp '[] Handle

Read ∶∶ Deep γ Handle → FHExp γ (Handle ⊗ Lower Char)

Write ∶∶ Deep γ Handle → Char → FHExp γ Handle

Close ∶∶ Deep γ Handle → FHExp γ LUnit

All that remains is to give an instance of the Domain class, invoking the Haskell IO library.

instance Domain FHExp where

evalDomain (Open s) _ = VHandle <$> IO.openFile s IO.ReadWriteMode

evalDomain (Read e) ρ = do VHandle h ← eval e ρ

c ← IO.hGetChar h

return $ VPair (VHandle h) (VPut c)

evalDomain (Write e c) ρ = do VHandle h ← eval e ρ

IO.hPutChar h c

return $ VHandle h

evalDomain (Close e) ρ = do VHandle h ← eval e ρ

IO.hClose h

return VUnit

74

4.3.3 A Shallow Embedding

Next we consider a shallow embedding, where exp γ τ is represented as a monadic function

from evaluation contexts for γ to values of type τ . Evaluation just unpacks this function.

newtype Shallow γ τ =

SExp { runSExp ∶∶ ECtx Shallow γ → Effect Shallow (LVal Shallow τ) }

class Eval Shallow where

eval = runSExp

Values in the shallow embedding are almost the same as those in the deep embedding,

except that a value of type σ ⊸ τ in the shallow embedding is represented as a function

from values of type σ to values of type τ , instead of as an explicit closure.

newtype instance LVal Shallow (σ ⊸ τ) =

VAbs (LVal Shallow σ → Effect Shallow (LVal Shallow τ))

We can show that the shallow embedding simulates all the features of our linear language

by instantiating the type classes for HasLolli, HasLower, etc. Unsurprisingly, all of these

constructions mirror the evaluation functions from the deep embedding.

instance Monad (Effect Shallow) ⇒ HasLolli Shallow where

λ̂ f = SExp $ \(γ ∶∶ ECtx Shallow γ) → return . VAbs $ \s →

let x = (Proxy ∶∶ Proxy (Fresh γ))

in runSExp (f $ var x) (add x s γ)

f ∧ e = SExp $ \γ → do let (γ1,γ2) = split γ

VAbs f' ← runSExp f γ1

v ← runSExp e γ2

f' v

instance Monad (Effect Shallow) ⇒ HasLower Shallow where

put a = SExp $ _ → return $ VPut a

e >! f = SExp $ \γ → do let (γ1,γ2) = split γ

VPut a ← runSExp e γ1

runSExp (f a) γ2

75

File Handles. Like in the deep embedding, values of type Handle are built-in IO file

handles, and the effect is also IO.

data instance LVal Shallow Handle = VHandle IO.Handle

type instance Effect Shallow = IO

The file handle operations are easily given by their IO counterparts.

instance HasFH Shallow where

open s = SExp $ \ρ → VHandle <$> IO.openFile s IO.ReadWriteMode

read e = SExp $ \ρ → do VHandle h ← runSExp e ρ

c ← IO.hGetChar h

return $ VPair (VHandle h) (VPut c)

write e c = SExp $ \ρ → do VHandle h ← runSExp e ρ

IO.hPutChar h c

return $ VHandle h

close e = SExp $ \ρ → do VHandle h ← runSExp e ρ

IO.hClose h

return VUnit

4.3.4 Laws and Correctness

To make sure our implementations are correct, we should check them against a specification.

These specifications characterize the β and η equivalences for each connective, and we

express them with respect to the behavior of eval. We start by defining substitution.

subst ∶∶ forall x σ τ γ1 γ2 γ1' γ exp.

(Eval exp, HasLolli exp, Monad (Effect exp)

, CAddCtx x σ γ1 γ1', CMerge γ1 γ2 γ, x ∼ Fresh γ2)

⇒ (Var exp x σ → exp γ1' τ) → exp γ2 σ

→ ECtx exp γ → Effect exp (LVal exp τ)

subst f e ρ = do let (ρ1, ρ2) = splitECtx @γ1 @γ2 ρ

v ← eval e ρ2

eval (f $ var x) (addECtx x v ρ1)

where x = (Proxy ∶∶ Proxy x)

76

The β and η rules for linear implication characterize the evaluation of linear expressions.

eval (λ̂ f ∧ e) ρ = subst f e ρ [β]

eval e ρ = eval (λ̂ $ \x → e ∧ x) ρ [η]

The laws for Lower α parallel the monad laws described in Section 3.4. Here we write e ≈ e′

when, for all evaluation contexts ρ, eval e ρ = eval e' ρ.

put a >! f ≈ f a [β]

e ≈ (e >! put) [η]

(e >! f) >! g ≈ e >! \a → f a >! g [assoc]

We cannot formally verify these laws in Haskell, but we can reason informally about

their correctness.

Proposition 4.3.1. The shallow embedding satisfies the Lower laws.

Proof. We start with the β rule. Unfolding definitions we see that

eval (put a >! f) ρ = do let (ρ1,ρ2) = split ρ

VPut a ← return $ VPut a

runSExp (f a) ρ2

Here ρ1 is empty, so it must be the case that ρ2 = ρ. But because Effect Shallow is a

monad, the result is equal to runSExp (f a) γ, as expected.

The proof of the η law is similar. Unfolding definitions we see that

eval (e >! put) ρ = let (ρ1,ρ2) = split ρ

in runSExp e ρ1 >>= \(VPut a) → runSExp (put a) ρ2

In this case ρ2 is empty and so ρ1 is equal to ρ, so the expression above is equal to

SExp $ \ρ → runSExp e ρ >>= \(VPut a) → return $ VPut a

Again, the monad laws for Effect Shallow says that this is equivalent to SExp $ \γ→

runSExp e γ which, by η-equivalence of shallow expressions, is just e.x

77

The associativity law is similarly obtained by unfolding definitions and applying the

monad laws.

Proposition 4.3.2. The deep embedding satisfies the Lower laws.

Proof. Again, by unfolding definitions and applying the monad laws.

4.4 Monadic programming

We saw in Section 3.4.3 how the composition of Lift and Lower form a monad and a monad

transformer. In Haskell, monads can be given instances of the Monad type class, which gives

access to do notation and other abstractions from the standard library.

We start by giving a newtype declaration for the linearity monad, which, like Lift,

must be indexed by the typing judgment exp.

newtype Lin exp α = Lin (Lift exp (Lower α))

It will be convenient to use the notation suspend and force to coerce data into and out

of the linearity monad, as we do for Lift. We define a type class Suspendable to indicate

that a Haskell data type can suspend closed linear computations.

class Suspendable exp τ lift | lift → exp τ where

suspend ∶∶ exp '[] τ → lift

force ∶∶ lift → exp '[] τ

instance Suspendable exp τ (Lift exp τ) where

suspend = Suspend

force (Suspend e) = e

instance Suspendable exp (Lower α) (Lin exp α) where

suspend = Lin . suspend

force (Lin e) = force e

Computations in Lin have the property that they can be lifted to computations using

the underlying effect of the embedding; we call this operation run. Note that it should

always be possible to extract a Haskell value of type α from a linear value of type Lower α;

we add this constraint to the Eval type class:

78

class Eval exp where

eval ∶∶ Monad (Effect exp) ⇒ exp γ τ → ECtx exp γ → Effect exp (LVal exp τ)

fromVPut ∶∶ Monad (Effect exp) ⇒ LVal exp (Lower α) → Effect exp α

Running a computation in the linearity monad evaluates the underlying program, and

extracts the underlying value.

run ∶∶ (Monad (Effect exp), Eval exp) ⇒ Lin exp a → Effect exp a

run e = eval (force e) eEmpty >>= fromVPut

To give Lin a monad instance, we must first give it instances for the Functor and

Applicative type classes.

instance (HasLower exp) ⇒ Functor (Lin exp) where

fmap f e = suspend $ force e >! (put . f)

instance (HasLower exp) ⇒ Applicative (Lin exp) where

pure = suspend . put

f <*> e = suspend $ force e >! \a →

force f >! \g →

put $ g a

instance HasLower exp ⇒ Monad (Lin exp) where

e >>= f = suspend $ force e >! \a →

force (f a)

Giving a type class instance is only half the battle, however; we must also check that it

satisfies the monad laws up to evaluation.

pure a >>= f ≋ f a [β]

e >>= pure ≋ e [η]

(e >>= f) >>= g ≋ e >>= (\x → f x >>= g) [assoc]

In this case we write a ≋ a' to indicate that a,a' : Lin exp α are equal up to evaluation:

that run a = run a'. Notice that if e ≈ e′ then suspend e ≈ suspend e′.

Proposition 4.4.1. If the Lower laws hold for a typing judgment exp, then Lin exp

satisfies the monad laws up to evaluation.

79

Proof. For the β rule, expanding the definitions of pure and >>= we have that

pure a >>= f = suspend $ force (pure a) >! force . f

= suspend $ put a >! force . f

By the β rule for Lower, this is equivalent to suspend (force $ f a), which is η-equivalent

to f a itself.

The η and associativity laws are similarly proven by unfolding definitions and applying

the Lower laws.

4.4.1 Monads in the linear category

Next we discuss monads over linear types, such as the linear state monad σ ⊸ σ ⊗ τ . The

usual Monad type class only characterizes monads of kind Type → Type, which correspond

to endofunctors on the category of Haskell types.

We can imagine defining a type class of linear monads LMonad m, where m has kind

LType → LType, with linear versions of return and >>=.

To make an instance declaration for the linear state monad, we first try to define a

type synonym LState σ τ for σ ⊸ σ ⊗ τ . Unfortunately, this means that the monad

LState σ is a partially defined type synonym, which is undefined in Haskell. The ordinary

solution would be to define a newtype synonym for LState σ τ , but newtypes (and regular

algebraic data types) produce Types, not LTypes.

Our solution is to use a trick called defunctionalization (Eisenberg and Stolarek, 2014).

The singletons library8 provides a type-level arrow k1 ↝ k2 that describes unsaturated

type-level functions between kinds k1 and k2. To define a defunctionalized arrow, we first

define an empty data type for the unsaturated version of LState, and then define a type

instance for the (infix) type family (@@), which has kind (k1 ↝ k2) → k1 → k2.

data LState' (σ ∶∶ LType) ∶∶ LType ↝ LType

type instance LState' σ @@ τ = σ ⊸ σ ⊗ τ

8https://hackage.haskell.org/package/singletons

80

https://hackage.haskell.org/package/singletons

We can then define LState σ τ = LState’ σ @@ τ . Instead of defining the LMonad type

class for monads of kind LType → LType, we instead define it for defunctionalized arrows

of kind LType ↝ LType.

class LMonad exp (m ∶∶ LType ↝ LType) where

lreturn ∶∶ exp γ τ → LExp γ (m @@ τ)

lbind ∶∶ exp 'Empty (m @@ σ ⊸ (σ ⊸ m @@ τ) ⊸ m @@ τ)

When convenient, we use the notation e =>>= f for lbind ∧ e ∧ f.

The laws for linear monads are the same as for those in Haskell, up to evaluation.

lreturn e =>>= f ≈ f ∧ e [β]

e =>>= lreturn ≈ e [η]

(e =>>= f) =>>= g ≈ e =>>= (\x → f x =>>= g) [assoc]

We can now define our monad instance.

instance HasMILL exp ⇒ LMonad exp (LState' σ) where

lreturn e = λ̂ $ \s → s ⊗ e

lbind = λ̂ $ \st → λ̂ $ \f → λ̂ $ \s →

st ∧ s `letPair` \(s,x) → f ∧ x ∧ s

4.4.2 The Monad Transformer

We saw in Section 3.4 that the adjunction Lower ⊣ Lift also induces an LMonad trans-

former. Given an LMonad of kind LType ↝ LType, we can define a Haskell monad LinT m.

As we did for Lin, we give it an instance of the Suspendable type class.

newtype LinT exp (m ∶∶ LType ↝ LType) (α ∶∶ LType) = LinT (Lift exp (m @@ (Lower α)))

instance τ ∼ (f @@ (Lower α)) ⇒ Suspendable exp τ (LinT exp f α) where

suspend = LinT . suspend

force (LinT x) = force x

We can define the Monad instance just as we did for Lin:

instance (LMonad m, HasLower exp) ⇒ Monad (LinT exp m) where

return = suspend . lreturn . put

x >>= f = suspend $ force x =>>= λ̂ $ \y → y >! (force . f)

81

Proposition 4.4.2. If m satisfies the LMonad laws, then LinT exp m satisfies the Monad

laws up to evaluation.

Proof. By unfolding definitions and applying the LMonad laws.

4.5 Example: Arrays

In this section we instantiate LNLHask with linear mutable arrays. In his paper “Linear types

can change the world!”, Wadler (1990) argues that mutable data structures like arrays can

be given a pure functional interface if they are only accessed linearly. To understand why,

consider a non-linear program with purely functional arrays that writes two values to index

0 of the array one after another, and then looks up the value of index 0.

let arr1 = write 0 arr "hello" in

let arr2 = write 0 arr "world" in arr1[0]

If write were to update the array in place, the program would return "world" instead

of "hello". Linear types force us to serialize the operations on arrays so that reasonable

equational laws still hold, even when performing destructive updates.

Here we expand Wadler’s example to describe slices of an array. Consider an operation

slice arr i that partitions an array arr around the index i. As long as the operations on

each slice are restricted to their domains, the implementation of slice can alias the same

array. Furthermore, as long as we keep track of when two slices alias the same array, we

can merge slices back together with zero cost.

To implement linear arrays in LNLHask, we first add a new type for arrays of non-linear

values.

data ArraySig ty = MkArray Type Type

type Array token α = MkLType (MkArray token α)

The first argument k to Array k α is a token that keeps track of the array being aliased—

different arrays will be initialized with different tokens. The second argument α is the type

of values stored in the array.

82

class HasMELL exp ⇒ HasArray exp where

alloc ∶∶ CAddCtx x (Array k α) γ γ'
⇒ Int → α → (Var exp (Array k α) → exp γ' σ) → exp γ σ

dealloc ∶∶ exp γ (Array k α) → exp γ LUnit

size ∶∶ exp γ (Array token a) → exp γ (Array token a ⊗ Lower Int)

read ∶∶ Int → exp γ (Array k α) → exp γ (Array k α ⊗ Lower α)
write ∶∶ Int → exp γ (Array k α) → α → exp γ (Array k α)
slice ∶∶ Int → exp γ (Array k α) → exp γ (Array k α ⊗ Array k α)
combine ∶∶ CMerge γ1 γ2 γ

⇒ exp γ1 (Array k α) → exp γ2 (Array k α) → exp γ (Array k α)

Figure 4.5: Interface to linear arrays.

The interface to linear arrays is given in Figure 4.5. The interface can allocate new

arrays and drop the pointers to existing ones. The size operation returns the length of

a particular slice of an array; the read and write operations will fail at runtime if their

arguments are not in the domain of their slice. In other words, we should think of a slice

of an array as a standalone piece of data, indexed starting from zero.

The operation slice takes an index and an array, and outputs two aliases to the same

array with domains partitioned around the index. Dually, combine takes two aliases to the

same array and combines their bounds.

4.5.1 Implementation

We instantiate the HasArray signature by extending the shallow embedding. A value of

type Array k α consists of a primitive IO array as well as a list of indices corresponding

to the current slice of an array. Because these indices tend to be grouped into ranges, they

are represented as a set of intervals. We write Range for the type (Int,Int) of inclusive

ranges of integers, and the type [Range] for ordered, non-overlapping lists of ranges.

newtype instance LVal Shallow (Array k α) = VArray ([Range],IOArray Int α)

type instance Effect Shallow = IO

The implementations of alloc, read, and write use the corresponding operations on

IOArrays. In read and write, the index i must be less than the length of the current slice.

To convert i into an index in the gloval array, we offset i by the range of the current slice;

offset i rs outputs the ith index in rs.

83

instance HasArray Shallow where

alloc n a k = SExp $ \(ρ ∶∶ ECtx Shallow γ) →

do arr ← IO.newArray (0,n-1) a

let v = VArray ([(0,n-1)],arr)

x = (Proxy ∶∶ Proxy (Fresh γ))

runSExp (k $ var x) (addECtx x v ρ)

read i e = SExp $ \ρ → do

VArray (rs,arr) ← runSExp e ρ

if i < size rs then do let x = offset i rs

a ← IO.readArray arr x

return $ VPair (VArray (rs,arr)) (VPut a)

else error $ "Read " ++ show i ++ " out of bounds of " ++ show rs

write i e a = SExp $ \ρ → do

VArray (rs,arr) ← runSExp e ρ

if i < size rs then do let x = offset i rs

IO.writeArray arr x a

return $ VArray (rs,arr)

else error $ "Write " ++ show i ++ " out of bounds " ++ show rs

The implementation of dealloc simply returns a unit value—it does not explicitly deal-

locate the array, which would be inappropriate when dropping partial slices. Furthermore,

the IO library does not expose a deallocation primitive for arrays. The size operation looks

up the size of the underlying set of ranges.

dealloc e = SExp $ \ρ → runSExp e ρ ≫ return VUnit

size e = SExp $ \ρ → do VArray (rs,arr) ← runSExp e ρ

let n = size rs

return $ VPair (VArray (rs,arr)) (VPut n)

The slice operation partitions the bounds of its input array according to its index,

while combine evaluates its arguments and merges the resulting bounds. Neither actually

84

affects the underlying array.

slice i e = SExp $ \ρ →

do VArray (rs,arr) ← runSExp e ρ

if i < size rs

then let x = offset i rs

(rs1,rs2) = partition x rs

in return $ VPair (VArray (rs1,arr)) (VArray (rs2,arr))

else error $ "Slice " ++ show i ++ " out of bounds of " ++ show rs

combine e1 e2 = SExp $ \ρ → do let (ρ1,ρ2) = splitECtx ρ

VArray (rs1,arr) ← runSExp e1 ρ1

VArray (rs2,_) ← runSExp e2 ρ2

return $ VArray (union rs1 rs2, arr)

Alternatively, combine can be implemented concurrently by evaluating the two subex-

pressions in separate threads. For very concurrent operations this could be more efficient,

but in many cases it introduces too much overhead.

concurrentCombine e1 e2 = SExp $ \ρ → do let (ρ1,ρ2) = split ρ

v1 ← newEmptyMVar

v2 ← newEmptyMVar

forkIO $ runSExp e1 ρ1 >>= putMVar v1

forkIO $ runSExp e2 ρ2 >>= putMVar v2

VArray (rs1,arr) ← takeMVar v1

VArray (rs2,_) ← takeMVar v2

return $ VArray (union rs1 rs2, arr)

4.5.2 Arrays in the Lifted State Monad

The read, write, and size operations can be naturally lifted to the linear state monad

transformer; recall that we write LStateT sig σ α for LinT sig (LState' σ) α.

readT ∶∶ HasArray exp ⇒ Int → LStateT sig (Array k α) α

writeT ∶∶ HasArray exp ⇒ Int → α → LStateT sig (Array k α) ()

85

sizeT ∶∶ HasArray exp ⇒ LStateT sig (Array k α) Int

We can combine allocation and deallocation of an array into a single LStateT operation.

allocT ∶∶ HasArray exp

⇒ Int → α → (forall k. LStateT exp (Array k α) β) → Lin exp β

allocT n a op = suspend $ alloc n a $ \arr →

force op ∧ arr `letPair` \(arr,b) →

dealloc arr `letUnit` b

Finally, we can derive a lifted operation that combines slicing and rejoining slices. The

function sliceT takes an index and two state transformations on arrays. The resulting

state transformation takes in an array, slices it around the given index, and applies the two

state transformations to the two sub-arrays.

sliceT ∶∶ HasArray exp

⇒ Int → LStateT sig (Array k α) () → LStateT sig (Array k α) ()

→ LStateT sig (Array k α) ()

sliceT i st1 st2 = Suspend . λ̂ ! \arr →

slice i arr `letPair` \(arr1,arr2) →

forceT st1
∧ arr1 `letPair` \(arr1,res) → res >! _ →

forceT st2
∧ arr2 `letPair` \(arr2,res) → res >! _ →

combine arr1 arr2 ⊗ put ()

The bound i in sliceT i is inclusive—index i will be included in one of the two slices. In

practice, we sometimes want a variant where an operation is applied to indices less than

i and greater than i, but not equal to i itself. The function slice3 i op slices the array

into three parts, and applies op to the slice of indices less than i, and to the slice of indices

greater than i, but not to index i itself. The bounds checking ensures that every slice is

smaller than the original array.

-- slice3 i op applies op on indices < i and indices > i, does nothing at index i

-- precondition: 0 ≤ i < length array

slice3 ∶∶ HasArray sig

⇒ Int → LStateT sig (Array token α) () → LStateT sig (Array token α) ()

86

slice3 i op =

do len ← sizeT

if len ≤ 2 then return ()

else if i== 0 then sliceT 1 (return ()) op

else if i== len-1 then sliceT i op (return ())

else sliceT i op $ sliceT 1 (return ()) op

4.5.3 Quicksort

We will use the LStateT interface to implement an in-place quicksort.

First, the operation swap i j swaps the indices i and j in the underlying array.

swap ∶∶ HasArray sig ⇒ Int → Int → LStateT sig (Array token α) ()

swap i j = do a ← readT i

b ← readT j

writeT i b

writeT j a

Quicksort relies on a helper function partition pivot (i,j) that, given a pivot value,

swaps elements between indices i and j so that values less than pivot occur on the left-

hand-side of the range, and values greater than pivot occur on the right-hand-side of the

range. It returns the index of the largest element in the range that is less than pivot. The

main quicksort algorithm selects the initial pivot element as the value at index 0. It calls

partition to obtain the middle of the array, and moves the pivot element there. Then, it

recursively sorts the two subarrays surrounding the pivot element using slice3.

The definitions of both partition and the main quicksort algorithm are shown in

Figure 4.6.

4.6 Example: Session types

Section 3.6 introduced an interface to a linear EDSL for session-typed channels in which a

session of linear type Chan S is governed by its session type S:

S ∶∶= σ <!> S ∣ σ <?> S ∣ S <&> S ∣ S <+> S ∣ End

87

partition ∶∶ (HasArray sig, Ord α)
⇒ α → (Int,Int) → LStateT sig (Array token α) Int

-- if the range is empty, return the index

-- of the largest element < pivot

partition pivot (i,j) | i ≥ j = do a ← readT i

if a < pivot then return i else return (i-1)

-- otherwise, if arr[i]<pivot, recurse on the range (i+1,j)

-- and if arr[i]>pivot, move array[i] to the right-hand-side

-- of the array and recurse on the range (i,j-1)

| otherwise = do a ← readT i

if a < pivot then partition pivot (i+1,j)

else do swap i j

partition pivot (i,j-1)

quicksort ∶∶ (HasArray sig, Ord α)
⇒ LStateT sig (Array token α) ()

quicksort = do len ← sizeT

if len ≤ 1 then return ()

else do pivot ← readT 0

idx ← partition pivot (1,len-1)

swap 0 idx

slice3 idx quicksort

Figure 4.6: Linear quicksort algorithm

In that setting, a channel can either send a value (<!>), receive a value (<?>), offer a choice

between two protocols (<&>), or make a choice between two protocols (<+>). There, a

channel is a linear data type, and the domain-specific operations send, receive, etc. are

used to maintain these channels.

Caires and Pfenning (2010) present an alternative interpretation of session types through

the lens of the Curry-Howard correspondence. They claim that any linear type can be

viewed as a session protocol, according to the following correspondence:

linear type session type protocol

σ⊸ τ σ⟨?⟩τ input σ and continue as τ

σ ⊗ τ σ⟨!⟩τ output σ and continue as τ

σ&τ σ⟨&⟩τ offer choice between σ and τ

σ ⊕ τ σ⟨+⟩τ make choice between σ and τ

A linear expression ∆ ⊢ e ∶ τ can be interpreted as a process communicating over channels

x ∶ σ ∈ ∆, as well as over an output channel of type τ .

88

In this section we implement Caires and Pfenning’s type system, not by adding new

operations to send and receive over channels, but instead by implementing the usual linear

logical connectives as processes that communicate over linear variables.

4.6.1 Example: an echo server

As in Section 3.6, we can implement an echo server, which takes a string as input and echoes

it back to the user.

type EchoProtocol = Lower String ⊸ Lower String ⊗ LUnit

An echo server is a suspended computation of type EchoProtocol.

server ∶∶ HasMALL ⇒ Lift exp EchoProtocol

server = suspend . λ̂bang $ \s → put s ⊗ unit

A client is one who uses the EchoProtocol—she sends the string “Testing” to the server,

and checks whether she receives the same string back.

client ∶∶ HasMALL ⇒ Lift exp (EchoProtocol ⊸ Lower Bool)

client = suspend . λ̂ $ \s → s ∧ put "Testing" `letpair` \(x,y) →

y `letUnit` x >! \s →

put $ s== "Testing"

4.6.2 Implementation

Although we use the same syntax as the pure linear lambda calculus, what we really want

is an implementation that communicates data over channels. Since the type of a ses-

sion changes over time, sessions should be implemented using untyped channels. We use

unsafeCoerce to send and receive typed data over these untyped channels—the linear pro-

tocols will ensure that whenever a value of type σ is sent on the channel, it will be coerced

back into the same type σ by the recipient.

A session is implemented as a pair UChan of untyped channels. We use a pair so that

each component has a fixed direction—the left channel will always be used to receive data,

and right channel will always be used to send data. Every time we construct a UChan, we

also construct its swap, which corresponds to the other end of the channel.

89

type UChan = (Chan Any, Chan Any)

newU ∶∶ IO (UChan,UChan)

newU = do c1 ← IO.newChan

c2 ← IO.newChan

return ((c1,c2),(c2,c1))

These channels are untyped, and we use unsafeCoerce to send and receive data of arbitrary

types. As long as recvU is only instantiated at types inferred from the session protocol, it

should never cause a segfault.

sendU ∶∶ UChan → α → IO ()

sendU (cin,cout) a = writeChan cout $ unsafeCoerce a

recvU ∶∶ UChan → IO α

recvU (cin,cout) = unsafeCoerce <$> readChan cin

The operation linkU takes as input two channels and forwards data between them in

both directions.

linkU ∶∶ UChan → UChan → IO ()

linkU c1 c2 = (forkIO $ forward c1 c2) ≫ forward c2 c1

where

forward c c' = recvU c >>= sendU c' ≫ forward c c'

A new shallow embedding. We use a variant of the shallow embedding to encode

expressions. An expression is a function from evaluation contexts plus an extra UChan to

IO (). The extra UChan is the output channel of the expressions; an expression of type

σ ⊗ τ will send a value of type σ on its output channel.

data Sessions γ τ = SExp {runSExp ∶∶ ECtx Sessions γ → UChan → IO ()}

data instance Effect Sessions = IO

Values in this setting, no matter the type, are all UChan’s.

data instance LVal Sessions τ = Chan UChan

To evaluate an expression, we first construct a new UChan, which gives us two endpoints

to a new channel. We pass one of the endpoints to the expression using runSExp, and the

90

other endpoint is returned as the value of the expression.

instance Eval Sessions where

eval e ρ = do (c,c') ← newU

forkIO $ runSExp e ρ c

return $ Chan c'

The HasLower type class. To construct an expression of type Lower τ via put a, we

simply send the Haskell value a over the output channel.

put a = SExp $ _ c → sendU c a

To implement e >! f, we spawn a new channel and pass one end to e. We wait for a value

from the other end, to which we apply f.

e >! f = SExp $ \ρ c → do let (ρ1,ρ2) = split ρ

(x,x') ← newU

forkIO $ runSExp e ρ1 x

a ← recvU x'

runSExp (f a) ρ2 c

Sending and receiving values. An expression of type σ ⊸ τ is a process that receives

a channel of type σ and then continues as τ . So the expression λ̂x.e receives a value on its

output channel and binds that value to x in the continuation.

λ̂ f = SExp $ \(ρ ∶∶ ECtx Sessions γ) c → do v ← recvU c

let x = (Proxy ∶∶ Proxy (Fresh γ))

runSExp (f $ var x) (add x v ρ) c

An application e1 ˆe2 needs to connect the output of e2 to the input of e1. The process

starts by creating a new channel, x, on which e2 can send its output. Next, we send the

other end of the channel, called x′, to e1, which we do by initializing another new channel

y. One endpoint of y is passed to e1, and then the remainder is forwarded along to the

original output of the process.

e1
∧ e2 = SExp $ \ρ c →

do let (ρ1,ρ2) = split ρ

91

(x,x') ← newU

forkIO $ runSExp e2 ρ2 x -- e2 sends output to x

(y,y') ← newU

sendU y' (Chan x') -- send x' to e1 via y

forkIO $ runSExp e1 ρ1 y -- e1 receives input from y

linkU c y' -- e1 forwards result to (e1
∧ e2)

The implementation of the HasTensor type class is exactly dual to HasLolli—where

⊸ receives a value, ⊗ sends a value, and vice versa.

Making and offering choices. A process of type σ1&σ2 accepts a boolean flag as input,

either Left () or Right (), to indicate which of σ1 or σ2 to continue as.

instance HasWith Sessions where

e1 & e2 = SExp $ \ρ (c ∶∶ UChan) → recvU c >>= \case

Left () → runSExp e1 ρ c

Right () → runSExp e2 ρ c

proj1 e = SExp $ \ρ c → do sendU c (Left ())

runSExp e ρ c

proj2 e = SExp $ \ρ c → do sendU c (Right ())

runSExp e ρ c

The HasPlus class is exactly the dual.

4.7 Discussion and Related Work

4.7.1 Design of the Embedded Language

The embedding described in this chapter is very similar to the work of Polakow (2015) and

Eisenberg et al. (2012), who also embed linear lambda calculi in Haskell using dependently-

typed features of GHC to enforce linearity. We adapt features from both embeddings:

Polakow introduces higher-order abstract syntax (HOAS) for linear types, but to achieve

this he uses an algorithmic typing judgment γin/γout ⊢ e ∶ τ that threads an input context

92

into every judgment (Walker, 2005). Eisenberg et al. use the standard typing judgment

γ ⊢ e ∶ τ but without HOAS, which makes programming in the embedded language awkward.

In this paper we combine the two representations to get a HOAS encoding of the direct-

style typing judgment. Doing so has its limitations, however, specifically when constructing

open linear expressions. Consider the lpure instance for the linear state monad:

lpureLState ∶∶ HasMILL exp ⇒ exp γ σ → exp γ (LState ρ σ)

We should be able to define lpureLState e as the expression λ $ \r → r ⊗ e, but

the type system cannot derive the fact that CAddCtx x σ γ (AddF x σ γ), where x is

Fresh γ. We can solve this problem in one of two ways. First, we could manually intro-

duce a proof wfFresh @ρ @γ of type Dict (WFVar (Fresh γ) ρ γ) into the context.

lpureLState = withDict (wfFresh @ρ @γ) . λ $ \r → r ⊗ e

Alternatively, a more user-friendly approach is to define lpureLState as a closed function,

and then apply it to the argument e:

lpureLState e = force lpure' ∧ e

where lpure' = suspend $ λ $ \ x → λ $ \ r → r ⊗ x

The second approach is conceptually much simpler, but it has the disadvantage of adding

an extra β-redex to the evaluation of a program.

To improve type checking in the direct style, it may be possible to improve the expres-

siveness of type classes or implement a type checker plugin that uses an external solver to

search for intermediate typing contexts. For example, the Coq implementation in Chapter 8

defines a theory of linear type constraints that could be adapted to Haskell.

Crucially, the contribution of this work in contrast to that of Eisenberg et al. and Po-

lakow is not so much the design of the embedding in Haskell, but rather the use of the

linear/non-linear model and the linearity monad it gives rise to. Eisenberg et al. and Po-

lakow introduce !α as an embedded connective, which, compared to the LNL decomposition,

requires significantly more maintenance in the linear system.

This chapter also makes some simplifications over the version of LNLHask presented

93

at the 2017 Haskell Symposium (Paykin and Zdancewic, 2017). The biggest change is in

the representation of type contexts and evaluation contexts. In the original paper, typing

contexts are represented as lists of option LTypes, and variables are represented as unary

type-level natural numbers. There, a variable x maps to σ in γ if γ[x] = Just σ. The

representation of typing contexts as [(Nat,LType)] in this chapter is more standard and is

simpler to implement. The runtime representation of natural numbers as Haskell integers

versus unary natural numbers is an order of magnitude more space efficient. Finally, in the

Haskell symposium version, evaluation contexts were represented as functions, which over

time build up large thunks:

data ECtx sig γ where

ECtx ∶∶ (∀ x σ. Lookup γ x ∼ Just σ ⇒ Sing x → LVal sig σ)

⇒ ECtx sig γ

By comparison, the IntMaps used in this chapter are strict and highly optimized.

4.7.2 Performance

The goal of LNLHask is to represent and run linear programs, but the focus has not so

far been on efficiency. Preliminary tests of the quicksort algorithm described in Section 4.5

indicate that LNLHask introduces significant constant-time overhead. We expect that further

profiling and optimizing could significantly improve performance.

4.7.3 Error Messages

In the development, we use custom type errors in the type families AddF, MergeF, etc. to

give informative messages when type errors fail. For example, the type checker will fail on

λ̂ (\x → x ⊗ x) with the error message

● Error adding 0

to context '['(0, σ)]

● In the expression: x ⊗ x

This error arises roughly from the following sequence of steps:

- To show λ̂f has type exp ∅ (σ ⊸ σ ⊗ σ), Haskell must show that f has the type

94

(Var exp x σ → exp γ' (σ ⊗ σ)), where:

- x is equal to Fresh ∅ (so x ∼ 0);

- Var exp x σ is equal to exp '[(0,σ)] σ; and

- CAddCtx x σ ∅ γ'. Type class resolution for CAddCtx lets the type checker infer that

γ'∼[(0,σ)].

- To show \x → x ⊗ x has type (exp '[(0,σ)] σ → exp [(0,σ)] (σ ⊗ σ)), we need

to show there exist contexts γ1 and γ2 such that x : exp γ1 σ, x : exp γ2 σ, and

CMerge γ1 γ2 [(0,σ)]. Since x : exp '[(0,σ)] σ, we would thus need to show that

CMerge [(0,σ)] [(0,σ)] [(0,σ)].

- The type class mechanism infers that in order for CMerge γ1 γ2 γ to be true, it must be

the case that γ ∼ MergeF γ1 γ2. However, the type family invocation MergeF γ1 γ2 is

undefined when γ1 and γ2 share any variables x, and gives rise to the error Error adding

x to context γ1, which is the output of AddError as described in Figure 4.1.

In other situations where the type checking fails, such as the lreturnLState operation

described above, we have not been able to improve the default error message:

● Couldn't match type 'MergeF (AddF (Fresh γ) ρ γ) '[]'

with 'AddF (Fresh γ) ρ γ'

arising from a use of 'λ'

● In the expression: λ $ \ r → r ⊗ e

This message is generated because Haskell could not find a proof that two types are equal,

not from an error generated from a type family. Unfortunately, bad error messages are a

problem for many embedded languages.

4.7.4 Deep versus Shallow Embeddings

The prior implementations by Polakow (2015) and Eisenberg et al. (2012) describe shallow

embeddings, which should be more efficient than deep embeddings. However, the shallow

embedding is not technically adequate because it is possible to write down terms of type

95

LExp Shallow γ τ that do not correspond to anything in the linear lambda calculus. For

example, SExp (\γ → VPut ()) has type LExp Shallow γ (Lower ()) for any context γ.

This can be acceptable in some cases, as there are two different consumers of our framework:

DSL implementers and DSL users. Implementers have access to unsafe features of the

embedding, and so they must be careful to only expose an abstract linear interface (e.g.,

one not containing the SExp constructor) to the clients of the language. This will enforce

the linearity invariants on the clients, but not necessarily for the implementers.

In the deep embedding, linear expressions are correct by construction, although of course

the language implementer could make an error defining evaluation. The deep embedding

also makes it possible to express program transformations and optimizations, which we

cannot do in a shallow embedding.

4.7.5 Further Integration with Haskell

A recent proposal by Bernardy et al. (2017) suggests how to integrate linear types directly

into GHC, based on a model of linear logic that uses weighted annotations on arrows

instead of !α or the adjoint decomposition considered here. Their proposal could allow

the implementation of efficient garbage collection and explicit memory management, and

could conceivably be adapted to a wide variety of different domains using foreign function

interface calls.9 Compared to our approach, the proposal requires significant changes to

GHC; our framework works out-of-the box. We hypothesize that the linearity monad arises

in their work as the (linear) CPS monad: (α⊸ �) ⊸ �.

Bernardy et al.’s proposal is also adamant about eliminating code duplication, meaning

that data structures and operations on data structures should be parametric over linear

versus non-linear data. It is certainly a drawback of our work that the user may have to

duplicate Haskell code in the linear fragment, as we saw when defining the linear versions

of the monad type classes in Section 4.4. Future work could address this by using Template

Haskell10 to define data structures and functions with implementations in both the linear

9https://wiki.haskell.org/Foreign Function Interface
10https://wiki.haskell.org/Template Haskell

96

https://wiki.haskell.org/Foreign_Function_Interface
https://wiki.haskell.org/Template_Haskell

and non-linear fragments. This is the approach taken by the Singletons library for unifying

types and terms, and a similar approach could unify linear and non-linear terms.

97

CHAPTER 5

Embedded categorical semantics

Linear type systems have always been closely coupled with categorical semantics through the

Curry-Howard correspondence. The categorical model of linear/non-linear logic, which we

describe in detail in this chapter, is made up of two categories—a linear monoidal category

and a non-linear cartesian category—connected via a (symmetric monoidal) adjunction.

In Section 5.4 we formalize the category theory of LNL inside of the embedded language

framework, which is a sanity check that our linear type system is sound and that the

embedded LNL structure actually corresponds to traditional presentations of LNL.

Studying the category theory of LNL also provides insight into the meaning of type op-

erators like !σ, Lin α, Lift σ, and Lower α. The relationships between these operators arise

from basic concepts from category theory—monads, comonads, and adjunctions. Under-

standing the categorical structure of our type system can even give rise to new abstractions

and ways of programming through the Curry-Howard correspondence.

In this chapter we review the categorical foundations of linear/non-linear logic and es-

tablish that the embedded linear lambda calculus described in Chapter 3 forms a linear/non-

linear model with the category of host language terms.

5.1 Background

We begin by reviewing some basic definitions of category theory up through natural trans-

formations and adjunctions. For the sake of this chapter we assume familiarity with the

topics in this section. There are several excellent resources for those not already familiar;

see Pierce (1991) or Awodey (2010).

98

5.1.1 Categories, functors, and natural transformations

Definition 5.1.1. A category C consists of the following components:

- A class Obj(C) of objects of C;

- For A,B ∈ Obj(C), a class C(A,B) of morphisms with domain A and codomain B;

- For morphisms f ∈ C(A,B) and g ∈ C(B,C), there is a morphism g ○ f ∈ C(A,C) such

that

(h ○ g) ○ f = h ○ (g ○ f);

- For each object A ∈ Obj(C), there is an identity morphism 1A ∈ C(A,A) such that, for all

f ∈ C(A,B),

1B ○ f = f = f ○ 1A.

Definition 5.1.2. Let C and D be categories. A functor F from C to D, written F ∶ C ⇒ D,

is a map that associates:

- For each object A ∈ Obj(C), an object FA ∈ Obj(D);

- For each morphism f ∈ C(A,B), a morphism F (f) ∈ D(FA,FB) such that

F (1A) = 1FA and F (g ○ f) = F (g) ○ F (f).

Definition 5.1.3. Let F,G ∶ C ⇒ D be functors. A natural transformation η ∶ F ⇒ G is

a family of morphisms {ηA ∈ D(FA,GA)}A∈Obj(C) such that, for every f ∈ C(A,B), the

following diagram commutes:

99

FA

GA

FB

GB

F (f)

ηBηA

G(f)

5.1.2 Products and coproducts

Definition 5.1.4. Given A,B ∈ Obj(C), the binary product of A and B is an object A&B

in C, along with morphisms π1 ∈ C(A&B,A) and π2 ∈ C(A&B,B), satisfying the following

universal property: for pairs of morphisms f ∈ C(C,A) and g ∶ C(C,B), there is a unique

morphism [f, g] ∈ C(C,A ×B) such that

π1 ○ [f, g] = f and π2 ○ [f, g] = g.

The notion of binary product A&B extends to the product of a finite product A1, . . . ,An ∈

Obj(C) of objects in C: the product A1 & ⋯ & An ∈ Obj(C) exists if there are morphisms

πi ∈ C(A1 & ⋯ &An,Ai) for each i, and, given morphisms fi ∈ C(C,Ai), there is a unique

morphism [f1,⋯, fn ∈ C(C,A1 &⋯&An) such that πj ○ [f1, . . . , fn] = fj.

A category C is called Cartesian if it has all finite products, in the sense that every

number n and objects A1, . . . ,An ∈ Obj(C), there is a product A1 &⋯&An.

Definition 5.1.5. Dually to finite products, a category C has finite sums if, for every

number n and objects A1, . . . ,An ∈ Obj(C), there is an object A1 ⊕⋯⊕An and morphisms

ιi ∈ C(Ai,A1⊕⋯⊕An) such that, given morphisms fi ∈ C(Ai,C), there is a unique morphism

[f1; . . . ; fn] ∈ C(A1 ⊕⋯⊕An,C) such that [f1; . . . ; fn] ○ ιj = fj.

5.1.3 Monads, comonads, and adjunctions

Definition 5.1.6. A monad on a category C is a functor M ∶ C ⇒ C along with natural

transformations {ηA ∈ C(A,MA)}A∈Obj(C) and {µA ∈ C(MMA,MA)}A∈Obj(C) such that the

following diagrams hold:

100

MA MMA

MMA MA

1MA

ηMA

µAM(ηA)

µA

MMMA MMA

MMA MA

µMA

µAM(µA)

µA

Dually, a comonad on C is a functor M ∶ C ⇒ C along with natural transformations

εA ∈ C(MA,A) and δA ∈ C(MA,M(MA)) such that the following diagrams hold:

MA MMA

MMA MA

1MA

δA

εMAδA

M(εA)

MA MMA

MMA MMMA

δA

δMAδA

M(δA)

Although categorical monads are usually presented in terms of η and µ, they could

equally be given by the interface using the return and bind operators that are popular in

programming.

Proposition 5.1.7. A functor M ∶ C ⇒ C forms a monad if and only if there is a natural

transformation {returnA ∈ C(A,MA)}A∈Obj(C) and, for every f ∈ C(A,MB) there is a

morphism bind f such that bind returnA = 1MA and the following diagrams commute:

A MA

MB

returnA

bind f
f

MA MMB

MB MC

M(f)

bind(M(g))bind f

bind g

Proof. Given a monad (M,η,µ), we take returnA to be ηA and bind f to be µB ○M(f).

In the other direction, given return and bind as defined above, we take ηA to be

returnA and µA to be bind 1MA.

In both cases, the fact that the relevant diagrams commute can be easily checked by

diagram chases.

101

Definition 5.1.8. An adjunction L ⊣ R is a pair of functors L ∶ C ⇒ D and R ∶ D ⇒ C such

that for every C ∈ Obj(C) and D ∈ Obj(D), there is an isomorphism between D(LC,D) and

C(C,RD). We also say that L is left adjoint to R.

Alternatively, L ⊣ R if and only if there are natural transformations ηC ∶ C(C,RLC)

and εD ∶ D(LRD,D) such that

RD RLRD

RD

ηRD

R(εD)
1RD

LC LRLC

LC

L(ηC)

εLC
1LC

Adjunctions have a very close relationship with monads and comonads. We saw in

Section 3.4 that the Lift and Lower functors (which we will show form an adjunction) give

rise to !σ ≡ Lower(Lift σ) and Lin α ≡ Lift(Lower α), which form a comonad and monad

respectively. These relationships are a consequence of the following general theorem about

adjoint functors:

Proposition 5.1.9. If L ∶ C ⇒ D and R ∶ D ⇒ C form an adjunction L ⊣ R, then R ○ L is

a monad on C, and L ○R is a comonad on D.

Proof. Given the adjunction (L,R, η, ε), then η and ε are the units of the monad and

comonad respectively. We take µA to be R(εLA) and δA to be L(ηRA).

In Section 3.4 we saw that not only did the LNL model give rise to a monad and

comonad, it also gave rise to a monad transformer. This fact also generalizes to arbitrary

adjunctions.

Proposition 5.1.10. If L ∶ C ⇒ D and R ∶ D ⇒ C form an adjunction L ⊣ R, and if

M ∶ D ⇒ D is a monad, then R ○M ○L ∶ C⇒ C is also a monad.

Proof. Let (L,R, ηRL, εLR) be an adjunction, with ηRLC ∈ C(C,RLC) and εLRD ∈ D(LRD,D),

and let (M,ηM , µM) be a monad, with ηMD ∈ D(D,MD) and µMD ∈ D(MMD,MD). Then

102

(RML,ηRML, µRML) forms a monad on C, where ηRML
C is

C
ηRL
CÐÐ→ RLC

R(ηMLC)
ÐÐÐÐ→ RMLC

and µRML
C is

RMLRMLC
RM(εLR

MLC)
ÐÐÐÐÐÐ→ RMMLC

R(µMLC)
ÐÐÐÐ→ RMLC.

5.2 Categories for multiplicative additive linear logic

What kind of categorical structure do we need to interpret a linear type system? Following

the Curry-Howard correspondence, we are looking for a category L such that:

- For every type σ and typing context ∆, there are objects JσK, J∆K ∈ Obj(L); and

- For every linear term ∆ ⊢ e ∶ σ, there is a morphism JeK ∈ L(J∆K, JσK); such that

- Whenever e1 ∼ e2, we have Je1K = Je2K.

Such a category is known as a model of the type system.

Each linear connective—implication ⊸, multiplicative product ⊗, additive sum ⊕ and

additive product &—requires some corresponding categorical, which we develop piece by

piece.

Definition 5.2.1. A symmetric monoidal category is a category C equipped with a bifunctor

⊗, an object I, and the following natural isomorphisms:

assocA1,A2,A3 ∶ A1 ⊗ (A2 ⊗A3) → (A1 ⊗A2) ⊗A3

swapA,B ∶ A⊗B → B ⊗A

lunitA ∶ I ⊗A→ A

runitA ∶ A⊗ I → A

These must satisfy the following coherence conditions:

103

A1 ⊗ (A2 ⊗ (A3 ⊗A4))

A1 ⊗ ((A2 ⊗A3) ⊗A4)

(A1 ⊗ (A2 ⊗A3)) ⊗A4

(A1 ⊗A2) ⊗ (A3 ⊗A4) ((A1 ⊗A2) ⊗A3) ⊗A4

idA1 ⊗ assocA2,A3,A4 assocA1,A2⊗A3,A4

assocA1,A2,A3 ⊗ idA4
assocA1,A2,A3⊗A4

assocA1⊗A2,A3,A4

A⊗ (I ⊗B)

(A⊗ I) ⊗B

A⊗B

assocA,I,B runitA ⊗ idB

idA ⊗ lunitB

A1 ⊗ (A2 ⊗A3)

(A1 ⊗A2) ⊗A3

A3 ⊗ (A1 ⊗A2)

A1 ⊗ (A3 ⊗A2)

(A1 ⊗A3) ⊗A2

(A3 ⊗A1) ⊗A2

assocA1,A2,A3

swapA1⊗A2,A3

assocA3,A1,A2

idA1 ⊗ swapA2,A3

assocA1,A3,A2

swapA1,A3
⊗ idA2

B ⊗A

A⊗B A⊗B

swapA,B swapB,A

idA⊗B

I ⊗A

A⊗ I A⊗B

swapI,A

runitA

lunitA

The characteristic semantics of linear implication σ ⊸ τ is its relationship with the

multiplicative product, in that morphisms from σ ⊗ τ to ρ are isomorphic to morphisms

from σ to τ ⊸ ρ.

Definition 5.2.2. A symmetric monoidal closed category (SMCC) C is a symmetric monoidal

category where, for every object C ∈ Obj(C), the functor − ⊗C ∶ C ⇒ C has a right adjoint,

104

which we write as C ⊸ −. In other words, the hom-set C(A ⊗ C,B) is isomorphic to

C(A,C ⊸ B).

Theorem 5.2.3 (Bierman, 1995). Let L be a symmetric monoidal closed category. Then

L is a model of linear logic with ⊗, ⊸, and LUnit.

The additive connectives & and ⊕ are accounted for by ordinary products and coproducts

of Definitions 5.1.4 and 5.1.5. These operators are in addition to the ordinary monoidal

structure ⊗.

Theorem 5.2.4 (Bierman, 1995). Let L be a symmetric monoidal closed category with finite

products and coproducts. Then L is a model of multiplicative and additive linear logic.

In contrast, if C is a symmetric monoidal closed category where the regular monoidal

product ⊗ is Cartesian in the sense of Definition 5.1.4, then it is called a Cartesian closed

category (CCC) and forms the basis of most categorical models of non-linear lambda calculi.

5.3 Linear/non-linear categories

Benton’s linear/non-linear model consists of three main components:

- A symmetric monoidal closed category L to model linear expressions;

- A Cartesian closed category C to model non-linear expressions; and

- An adjunction Lower ⊣ Lift for functors Lower ∶ C ⇒ L and Lift ∶ L ⇒ C.

Furthermore, the adjunction Lower ⊣ Lift needs to respect the monoidal structures of L

and C. In the next few definitions we characterize what it means for a functor, natural

transformation, and adjunction to respect the monoidal structure.

Definition 5.3.1. A symmetric monoidal functor F ∶ C ⇒ C′ between symmetric monoidal

categories (C,⊗, I,ASSOC,lunit,runit,SWAP) and (C′,⊗′, I ′,ASSOC′,lunit′,runit′,SWAP′)

is a functor F along with a map mF
I ∶ I ′ → FI and a natural transformation mF

A,B ∶

F (A) ⊗′ F (B) → F (A⊗B) that satisfies the following coherence conditions:

105

(F (A1) ⊗′ F (A2)) ⊗′ F (A3)

F (A1 ⊗A2) ⊗′ F (A3)

mFFA1,A2
⊗′ I

F ((A1 ⊗A2) ⊗A3)

mF
A1⊗A2,A3

F (A1) ⊗′ (F (A2) ⊗′ F (A3))
ASSOC′

F (A1) ⊗′ F (A2 ⊗A3)

I ′ ⊗′mF
A2,A3

F (A1 ⊗ (A2 ⊗A3))

mF
A1,A2⊗A3

F (ASSOC)

F (A) ⊗′ F (B) F (B) ⊗′ F (A)SWAP′

F (A⊗B)

mF
A,B

F (B ⊗A)
F (SWAP)

mF
B,A

I ′ ⊗′ F (A) F (A)lunit′

F (I) ⊗′ F (A)

mF
I ⊗′ I ′

F (I ⊗A)
mF
I,A

F (lunitA)

F (A) ⊗′ I ′ F (A)runit′

F (A) ⊗′ F (I)

I ′ ⊗′mF
I

F (A⊗ I)
mF
A,I

F (runit)

Definition 5.3.2. Let F and G be symmetric monoidal functors F,G ∶ C ⇒ C′. A monoidal

natural transformation t ∶ F → G is a natural transformation satisfying

tA⊗B ○mF
A,B =mG

A,B ○ (tA ⊗′ tB) and tI ○mF
I =mG

I .

Definition 5.3.3. A symmetric monoidal adjunction is an adjunction F ⊣ G between

symmetric monoidal functors F and G where the unit η and counit ε of the adjunction are

symmetric monoidal natural transformations.

Definition 5.3.4 (Benton, 1995). A linear/non-linear model consists of:

1. a symmetric monoidal closed category L;

2. a cartesian closed category C; and

3. functors Lift ∶ L ⇒ C and Lower ∶ C ⇒ L that form a symmetric monoidal adjunction

Lower ⊣ Lift.

5.4 Embedded meta-theory

Working in a richly-typed host language, we can now study some of the meta-theoretic

properties of the linear embedded language inside the host language itself. In this chapter

106

let x ∶= e in e′ ∼β e′{e/x}
(λx.e′)ˆe ∼β e′{e/x}

let (x1, x2) ∶= (e1, e2) in e′ ∼β e′{e1/x1, e2/x2}
case ιie of (ι1x1 → e1 ∣ ι2x2 → e2) ∼β ei{e/xi}

πi[e1, e2] ∼β ei
put a >! f ∼β fa

force(suspend e) ∼β e

e ∼η (λx.e)x for ∆ ⊢ e ∶ σ⊸ τ

e′{e/x} ∼η let (x1, x2) ∶= e in e′{(x1, x2)/x} for ∆, x ∶ σ1 ⊗ σ2 ⊢ e′ ∶ τ
e′{e/x} ∼η case e of (ι1x1 → e′{ι1x1/x} ∣ ι2x2 → e′{ι2x2/x}) for ∆, x ∶ σ1 ⊕ σ2 ⊢ e′ ∶ τ

e ∼η [π1e, π2e] for ∆ ⊢ e ∶ σ1&σ2
e′{e/x} ∼η e >! λa.e′{put a/x} for ∆, x ∶ Lower α ⊢ e′ ∶ τ

Figure 5.1: β and η equivalence for the embedded linear lambda calculus.

we establish that the linear embedded language forms a linear/non-linear model with the

host language.

Consider the category C0 of host-language terms, whose objects are types α and whose

morphisms f ∶ C0(α,β) are host-language functions f ∶ α → β. Let L0 be the category whose

objects are linear type σ and whose morphisms e ∶ L0(σ, τ) are closed linear expressions

e ∶ Lift(σ ⊸ τ) quotiented by equivalence e ∼ e′ of expressions. As a reminder, Figure 5.1

shows β and η equivalences of the system, written e1 ∼β e2 and e1 ∼η e2 respectively.

For convenience we will write e ∶ σ ⊸ τ for e ∶ Lift(σ ⊸ τ) and omit uses of suspend

and force, when the meaning is clear from the context.

From the cartesian product × in the host language and the multiplicative product ⊗ in

the embedded language, it is easy to check that C0 is cartesian closed and L0 is symmetric

monoidal closed.

Lemma 5.4.1. Lower is a symmetric monoidal functor.

Proof. Given a host function f ∶ α → β there is a linear expression fmapf ∶ Lower α ⊸

107

Lower β defined as

fmapf(e) ≡ let !a ∶= e in put(fa).

Lower is a functor because fmap satisfies the functor laws:

fmapλa.a(e) ≡ let !a ∶= e in put a ∼η e

fmapg○f(e) ≡ let !a ∶= e in put(g(fa))

∼β let !a ∶= e in let !a′ ∶= put(fa) in put(ga′)

∼η let !a′ ∶= (let !a ∶= e in put(fa)) in put(ga′)

≡ fmapg(fmapf(e))

To check that Lower is symmetric monoidal we must exhibit the following morphisms:

mLower
I ∶ LUnit⊸ Lower Unit

mLower
I ≡ λ̂x. let () ∶= x in put ()

mLower
α,β ∶ Lower α⊗ Lower β ⊸ Lower(α × β)

≡ λ̂z.let (!a, !b) ∶= z in put (a, b)

Checking the monoidal conditions is straightforward, but tedious.

Lemma 5.4.2. Lift is a symmetric monoidal functor.

Proof. For f ∶ σ⊸ τ and t ∶ Lift σ, define fmapf ∶ Lift σ → Lift τ as

fmapf(a) ≡ suspend(fˆ(force a)).

This function is functorial:

fmapλ̂x.x(a) = suspend((λ̂x.x)ˆ(force a)) ∼β suspend(force a) = a

fmapg○f(a) = suspend(gˆ(fˆ(force a)))

= suspend(gˆ(force(suspend(fˆ(force a))))) = fmapg(fmapf(a))

108

The monoidal components are exhibited by the following operations:

mLift
I ∶ Unit→ Lower Unit

mLift
I ≡ λ .suspend ()

mLift
σ,τ ∶ Lift σ × Lift τ → Lift(σ ⊗ τ)

mLift
σ,τ ≡ λa.suspend (force(π1a),force(π2a))

Lemma 5.4.3. Lower ⊣ Lift forms a symmetric monoidal adjunction.

Proof. The adjunction Lower ⊣ Lift is given by the following natural transformations:

ηα ∶ α → Lift(Lower α)

ηαa ≡ suspend(put a)

εσ ∶ Lower(Lift σ) ⊸ σ

εσ ≡ λ̂x. x >! force

To show that (Lower,Lift, η, ε) really form an adjunction, we must show they satisfy

two properties. First, that Lift(εσ) ○ ηLift σ = idLift σ:

Lift(εσ) (ηLift σa) = Lift(εσ) (suspend(put a))

= suspend(εσˆforce(suspend(put a)))

∼β suspend(εσˆput a)

= suspend(put a >! force)

∼β suspend(force a)

∼η a

109

Next, we need to show that εLower α ○ Lower(ηα) = idLower α:

εLower α(Lower(ηα)(x)) = let !b ∶= (Lower(ηα)(x)) in force b

= let !b ∶= (let !a ∶= x in put(ηαa)) in force b

∼η let !a ∶= x in let !b ∶= put(ηαa) in force b

∼β let !a ∶= x in force(ηαa)

= let !a ∶= x in force(suspend(put a))

∼β let !a ∶= x in put a

∼η x

To show the adjunction is symmetric monoidal, it suffices to show that η and ε are

symmetric monoidal natural transformations—that is, that they commute with mLift○Lower

and mLower○Lift respectively. These facts follow easily by unfolding definitions.

Theorem 5.4.4. The categories C0 and L0 form an LNL model.

This result follows immediately from Lemma 5.4.3. It also follows from the discussion

in Section 5.1.3 that the adjunction Lift ⊣ Lower gives rise to a comonad Lower(Lift σ)

on the linear category, which corresponds to the type operator !σ. In addition, Lin α =

Lift(Lower α) forms a monad and LinT M α = Lift(M(Lower α)) a monad transformer,

formalizing the structures we programmed with in Section 3.4.

5.5 Conclusion

Establishing the category theory background of embedded LNL type systems does two

things. First, it acts as a sanity check that our type system has a sound semantics and

matches the semantics of other linear type systems. Second, it shows that the embedded

language approach is strong enough to reason about its own type system.

The remainder of the dissertation will focus less on the high-level semantics and theory

of embedded LNL type systems, and more on a particular case study—quantum computing.

110

We will see how the needs of a particular DSL and the tools available from the host language

can shape the structure and meta-theory of the embedded linear language, building on the

foundation of linear/non-linear type theory.

111

Case study: Quantum computing

112

CHAPTER 6

A quantum/non-quantum type system

Quantum computing is an exciting upcoming area of computer science and physics. By

harnessing the power of quantum mechanics, quantum computers have the potential to

solve problems for which there is no known effective classical (non-quantum) algorithm.

Such computers are still in their infancy, but the theory of quantum computing is in full

swing. Shor’s algorithm describes how to factor large numbers in polynomial time (Shor,

1999), Grover’s algorithm describes how to search databases in logarithmic time (Grover,

1996), and several algorithms describe how to simulate other quantum systems, such as

those found in chemistry and high-energy physics (Georgescu et al., 2014).

Instead of bits, quantum computers operate on qubits—superpositions of classical bits of

the form c0 ∣0⟩+c1 ∣1⟩ where c0, c1 ∶ C and ∣c0∣2+∣c1∣2 = 1. A qubit can be measured, resulting

in the bit 0 with probability ∣c0∣2, or the bit 1 with probability ∣c1∣2. Qubits e can also

be manipulated by applying unitary transformations U , which we write U # e. Quantum

algorithms, therefore, need three domain-specific features: to initialize qubits, to apply

unitary gates, and to measure qubits. However, they also need to be able to process the

probabilistic, classical results of measurements, which means they also need good support

for classical computing.

Programming with qubits presents many challenges, and programming languages are in

a unique position to address them. The design of domain-specific quantum programming

languages fall mainly into two camps.

113

Formal semantics and meta-theory. From the start of the field, researchers in the

area of quantum programming languages have prioritized their formal semantics and meta-

theory. The correctness of quantum algorithms can be subtle, and specifications of cor-

rectness are closely tied to the mathematical foundations of quantum computing. Without

a clear semantics, it is impossible to reliably reason about the correctness of a quantum

program.

Additionally, quantum languages use formal semantics to justify new programming ab-

stractions when it might not be clear whether they are sound with respect to quantum

computing. This has been the case for higher-order functions (Selinger and Valiron, 2009),

recursion (Ying, 2014), and quantum conditionals (Ying et al., 2014). Such computational

features, though common for classical programming domains, are quite subtle quantum-

mechanically, so special care must be taken to make sure they are valid in quantum lan-

guages.

Other innovative abstractions in quantum computing can be expressed with radically

new programming abstractions. The ZX calculus is a graphical calculus with an elegant

equational theory that is sound and complete with respect to quantum computing (Backens,

2015). However, the graphical nature of the calculus makes it somewhat alien from the

perspective of classical programming. The measurement calculus is based on a computing

model where only measurement is allowed, and not unitary transformations (Danos et al.,

2007). Algebraic quantum calculi allow algebraic reasoning about quantum programs which

line up with their semantics (Altenkirch and Green, 2010; Vizzotto et al., 2013).

The most widely accepted programming model, however, is the quantum circuit model,

where quantum programs consist of initialization, unitary transformations, and measure-

ment, as well as classical features for manipulating the results of measurement.

For many of the languages following the quantum circuit model, linear type systems are a

key factor that enables reasoning about the language’s semantics. The need for linear types

is closely tied to the mathematics of quantum computing in terms of linear transformations

and linear algebra. More specifically, quantum physics abides by the so-called “no-cloning”

114

theorem, which says that an arbitrary qubit’s state cannot be duplicated. Naturally, linear

types can be used to reject programs that would otherwise try to copy quantum data.

The quantum lambda calculus is a simple linear lambda calculus with a type of qubits,

multiplicative products, and types for classical/non-linear data !σ (van Tonder, 2004; Selinger

and Valiron, 2009). As the name would suggest, it also provides higher-order linear func-

tions. As we have seen throughout this dissertation, however, languages with non-linear

data marked with the type !α are often impractical or difficult to use.

The QRAM model. Implementations of quantum programming languages have had to

balance sound language abstractions like linear types against usability and accessibility for

the wide range of computer scientists, mathematicians, and physicists who are developing

quantum algorithms and building quantum computers. Languages like Quipper (Green

et al., 2013b), LIQUi∣⟩ (Wecker and Svore, 2014), and Q# (Svore et al., 2018) provide high-

level, modular programming abstractions for working with both quantum and classical data,

though they lack the same degree of theory as found in e.g., the quantum lambda calculus.

The relationship between quantum and classical data used in these high-level languages

is known as the QRAM model, which describes how a quantum computer could work in tan-

dem with a classical computer (Knill, 1996). In the QRAM model, the classical computer

handles the majority of ordinary tasks, while the quantum computer performs specialized

quantum operations. To communicate, the classical computer sends instructions to the

quantum machine in the form of quantum circuits, and the quantum computer sends mea-

surement results back to the classical computer as needed.

Classical

Computer

Quantum

Computer

circuits

measurement results

The philosophy of the QRAM model clearly has a lot in common with the embedded

LNL framework described in this dissertation. Indeed, several state-of-the-art quantum

circuit languages are implemented as embedded domain-specific languages.

115

Quipper is one such language embedded in Haskell (Green et al., 2013b), and it takes

advantage of many features from its host language, including monads, meta-programming

using Template Haskell (Sheard and Jones, 2002), type classes, and more. Quipper has been

used to develop real-world quantum algorithms, and provides tools to visualize, simulate,

and optimize quantum circuits. Other languages and toolkits follow a similar pattern:

LIQUi∣⟩ is embedded in F# (Wecker and Svore, 2014); the Q language is embedded in

C++ (Bettelli et al., 2003); and Project Q11, QISKit12, and pyQuil13 are all embedded in

Python.

Unfortunately, these languages mostly lack formal meta-theory. For example, because

Quipper is embedded in Haskell, it does not provide linear type checking and so is not

type safe. In addition, Quipper does not have a formal semantics because giving such a

semantics would require reasoning about all of Haskell, which itself does not have a formal

semantics. The Proto-Quipper project is working to formalize the semantics of Quipper,

but its target is limited to a standalone variant of Quipper, not the actual implementation

in Haskell (Ross, 2015; Rios and Selinger, 2018).

The embedded linear/non-linear methodology developed in this dissertation gives us a

way to retain linear types and a formal semantics while working inside a classical host lan-

guage. In the next few chapters, we present a few variations of a quantum linear type system

and its meta-theory developed in a dependently-typed host language. This case study shows

how the linear/non-linear framework can be used to develop sound and expressive EDSLs

in the domain of quantum computing.

In the remainder of this chapter we present a first-order embedded quantum lambda

calculus that we call the quantum/non-quantum (QNQ) calculus. In Section 6.1 we discuss

some relevant background on the mathematics of quantum computing, and in Section 6.2

we presents the calculus itself. We illustrate the calculus with a number of examples in

Section 6.3, and give a denotational semantics in Section 6.4.

11https://projectq.ch/
12https://github.com/QISKit
13https://github.com/rigetticomputing/pyQuil

116

https://projectq.ch/
https://github.com/QISKit
https://github.com/rigetticomputing/pyQuil

6.1 Quantum computing background

In this section we give some background on the mathematics of quantum computing. There

are many excellent textbooks that provide a more comprehensive and nuanced perspective;

we refer the interested reader to the standard text in the area by Nielsen and Chuang (2010).

For the sake of this dissertation, we only expect the reader to be familiar with some basic

concepts from linear algebra.

6.1.1 Pure states

A qubit is a vector in C2, the complex-valued two-dimensional vector space:

⎛
⎜⎜
⎝

c0

c1

⎞
⎟⎟
⎠

where c0 and c1 are complex numbers such that ∣c0∣2 + ∣c1∣2 = 1. Recall that ∣c∣ is the norm

of a complex number c such that ∣a + bi∣ ≡
√
a2 + b2.

We write ∣0⟩ ≡ (1
0) and ∣1⟩ ≡ (0

1) for a particular basis set of C2; we think of these states

as the quantum analogue of bits 0 and 1. But qubits are not bits, since they exist in a

superposition of ∣0⟩ and ∣1⟩. The general state (c0c1) can be decomposed as c0 ∣0⟩ + c1 ∣1⟩.

Measuring a qubit in the state c0 ∣0⟩ + c1 ∣1⟩ along the basis {∣0⟩ , ∣1⟩} is a probabilistic

operation that results in a classical bit 0 with probability ∣c0∣2, or 1 with probability ∣c1∣2.

Notice that ∣c0∣2 and ∣c1∣2 are both real numbers, and since ∣c0∣2 + ∣c1∣2 = 1, the result is a

probability distribution.

Entanglement. An n-qubit state is a 2n-dimensional vector with basis elements ∣b1⟩⊗⋯⊗

∣bn−1⟩, where each bi ∈ {0,1} and ⊗ denotes the tensor product, also called the Kronecker

product, of matrices. For convenience, we write ∣b1, . . . , bn−1⟩ for ∣b0⟩ ⊗⋯⊗ ∣bn−1⟩.

Measuring the ith qubit in an n-qubit system results in an n − 1-qubit state. For

simplicity, suppose we are measuring the first qubit in the system. We can always write the

state of the system as c0 ∣0⟩ ⊗ ϕ0 + c1 ∣1⟩ ⊗ ϕ1 where each ϕi is an n − 1-qubit system and

∣c0∣2 + ∣c1∣2 = 1. Then measuring that state will result in the state ϕ0 with probability ∣c0∣2

117

and ϕ1 with probability ∣c1∣2.

A pure state is an n-qubit state in C2n , and a mixed state is a probability distribution

over pure states.

If an n-qubit system can be decomposed into the tensor product of n individual qubits,

such as ϕ1 ⊗ ⋯ ⊗ ϕn, then we call that system separable. However, not all systems are

separable; consider for example the two-qubit system

1√
2
∣00⟩ + 1√

2
∣11⟩ .

This state is known as the Bell pair, and it is interesting because measuring the first qubit

collapses the state of the second qubit, and vice versa. That is, if measuring the first qubit

results in a 0, then the second qubit will be in the classical state ∣0⟩, and if measuring the

first qubit results in a 1, then the second qubit will be in the classical state ∣1⟩.

We say that two qubits are entangled if they are not separable.

Unitaries. Besides measurement, qubits can be transformed by applying unitary trans-

formations, square matrices U such that U ’s conjugate transpose U † is its own inverse. The

conjugate transpose has entry (U[j, i])∗ at index U †[i, j], where c∗ is the complex conjugate

of c ∈ C: (a + bi)∗ ≡ a − bi.

We write X for the “not” unitary transformation (0 1
1 0), which sends ∣0⟩ to ∣1⟩ and ∣1⟩

to ∣0⟩, and we write H for the Hadamard matrix

H ≡
⎛
⎜⎜
⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎟⎟
⎠

which sends ∣0⟩ to 1√
2
(∣0⟩ + ∣1⟩) and ∣1⟩ to 1√

2
(∣0⟩ − ∣1⟩).

For an n-qubit unitary U , the controlled unitary ctrl U is an n + 1-qubit unitary that

is the identity on ∣0⟩ ⊗ ϕ, but sends ∣1⟩ ⊗ ϕ to ∣1⟩ ⊗ Uϕ. In other words, it applies U only

when its control is ∣1⟩. Some commonly used controlled unitaries include the controlled not

operator CNOT ≡ ctrl X and the Toffoli transformation T ≡ ctrl(ctrl X).

118

The Bell state shown above can be derived by applying a Hadamard transformation to

the first qubit, followed by a controlled not gate:

CNOT(H ⊗ I)(∣0⟩ ⊗ ∣0⟩) = CNOT(1√
2
(∣0⟩ + ∣1⟩) ⊗ ∣0⟩)

= CNOT(1√
2
(∣00⟩ + ∣10⟩)

= 1√
2
(CNOT ∣00⟩ + CNOT ∣10⟩)

= 1√
2
(∣00⟩ + ∣11⟩)

The no-cloning theorem. In the introduction we referenced the no-cloning theorem as

a motivation for linear types, and we can now make this intuition formal.

Theorem 6.1.1 (Nielsen and Chuang, 2010). There is no unitary transformation U such

that for all qubits ϕ and classical state ∣b⟩,

U(ϕ⊗ ∣b⟩) = ϕ⊗ ϕ.

6.1.2 Density matrices

In the formulation above, quantum programs containing measurement and unitary applica-

tions correspond to probabilistic transformations over pure states. That is, a state ϕ will

be mapped to a probability distribution over pure states of the form c0 ∣0⟩ + c1 ∣1⟩. Den-

sity matrices are matrix representations of probability distributions over pure states, which

make it easier to reason about the behavior of quantum programs.

Formally, a density matrix is a positive Hermitian matrix whose trace sums to 1. Any

pure state in column vector form ϕ = (c0c1) can be transformed into a density matrix by

taking its outer product with itself:

∣ϕ⟩ ⟨ϕ∣ = ∣ϕ⟩ ∣ϕ⟩† =
⎛
⎜⎜
⎝

c0

c1

⎞
⎟⎟
⎠
(c∗0 c∗1) =

⎛
⎜⎜
⎝

c0c
∗
0 c0c

∗
1

c∗0c1 c1c
∗
1

⎞
⎟⎟
⎠
.

119

The state of an entangled Bell pair 1√
2
∣00⟩ + 1√

2
∣11⟩ can be represented as the following

density matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/2 0 0 1/2

0 0 0 0

0 0 0 0

1/2 0 0 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where the 1/2 in the top left represents the probability of measuring two zeros, while the 1/2
in the bottom right represents the probability of measuring two ones. After measuring this

system, we would obtain the mixed state density matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

representing a probability distribution over ∣00⟩ and ∣11⟩.

Quantum computations can now be described as superoperators—completely positive

maps that preserve the trace of their input matrix. The density matrix formulation means

that there is no need to reason about probability distributions at the meta-level, since

probability distributions are baked into the structure of density matrices.

Any matrix M can be lifted to a function M∗(ρ) = M †ρM , and if M is unitary, then

M∗ is a superoperator.

Superoperators are subject to an additive structure, scalar multiplication, and a multi-

plicative structure ⊗. The construction of ⊗ is based on the fact that every superoperator

S can be broken down into a sum of unitary transformations US :

S = ∑
U ∶US

U∗.

Then S ⊗ T is defined as

S ⊗ T ≡ ∑
U ∶US ,V ∶UT

(U ⊗ T)∗.

120

Formally, qubit initialization is defined as the superoperator (∣0⟩)∗, and qubit measure-

ment is defined as (∣0⟩ ⟨0∣)∗ + (∣1⟩ ⟨1∣)∗.

6.1.3 Category theory

Selinger (2004) formalizes the category CPM of density matrices and completely positive

maps in a slightly different way from the presentation here. In the category CPM, objects

do not correspond to density matrices, but rather tuples of density matrices such that

qubits in different components cannot be entangled. This allows the category CPM to

distinguish the domain of qubits from the domain of classical bits, since classical bits are

always separable from the rest of the quantum state.

The category CPM is generalized by the theory of dagger compact closed categories

(Abramsky and Coecke, 2004; Selinger, 2007), which are symmetric monoidal categories

with a dagger involution σ† on morphisms, satisfying certain properties. In earlier work, I

showed how to extend linear/non-linear categories to models of classical linear logic (Paykin

and Zdancewic, 2016); to extend them to dagger compact closed categories could use a

similar technique, which we will not explore in this work.

Cho (2016) proposes a categorical semantics in terms of operator algebras, which ad-

mit recursive types and are the basis of a line of work for developing quantum domain

theory (Rennela, 2014; Rennela and Staton, 2018). Staton (2015) describes an equational

theory for quantum algebras (see Chapter 7) whose completeness result is based on the

theory of operator algebras.

Several other categorical formulations have been proposed in order to accommodate

higher-order functions, recursive types and programs, or other high-level programming ab-

stractions (Malherbe, 2010; Hasuo and Hoshino, 2011; Pagani et al., 2014). In this work

we use the simple presentation of superoperators over density matrices as described above,

where the type of bits and qubits are isomorphic. We propose, however, that the technique

of embedded category theory for an embedded linear language is quite rich, and deserves

further study.

121

6.2 The quantum/non-quantum (QNQ) calculus

This chapter will present an embedded linear lambda calculus based on Selinger and Val-

iron’s quantum lambda calculus, which we call the quantum/non-quantum (QNQ) calculus.

QNQ is an example of a linear/non-linear embedded DSL with first-order functions and

primitives for quantum computing, and it illustrates how the LNL model can be highly

expressive and also semantically sound. It will also serve as the basis for the calculi in

Chapters 7 and 8, which explore different meta-theoretic aspects of quantum programming

languages.

We start with an embedded language with multiplicative unit and pairs, and non-linear

types Lower α. We choose to restrict our semantics to finite-dimensional vector spaces,

so we add a restriction that α must be finite in order for it to be embedded in the linear

language, as shown in Figure 6.1. The restriction to finite types is less restrictive than it

seems, because we will encode data structures, typically represented as infinite types like

lists, as dependent indexed data structures n⊗σ. For any particular number n, an n-tuple

n⊗σ of σ’s is a finite type, but there are a countably infinite collection of such types

available.

The basic β equivalences of linear/non-linear type systems hold for this fragment, and

η equivalences hold for the multiplicative unit and product.

let x ∶= e in e′ ∼β e′{e/x}

let () ∶= () in e′ ∼β e′

let (x1, x2) ∶= (e1, e2) in e′ ∼β e′{e1/x1, e2/x2}

put a >! f ∼β fa

∆ ⊢QNQ e ∶ LUnit ∆′, x ∶ LUnit ⊢QNQ e
′ ∶ τ

e′{e/x} ∼η let () ∶= e in e′{()/x}

∆ ⊢QNQ e ∶ σ1 ⊗ σ2 ∆′, x ∶ σ1 ⊗ σ2 ⊢QNQ e
′ ∶ τ

e′{e/x} ∼η let (x1, x2) ∶= e in e′{(x1, x2)/x}

Eta equivalence for the type Lower α is more subtle, however. Semantically, the operation >!

corresponds to quantum measurement, so a traditional η rule that introduces a >! operator

could be problematic. If the type system guarantees that all data of type Lower α is always

122

x ∶ σ ⊢QNQ x ∶ σ
var

∆ ⊢QNQ e ∶ σ ∆′, x ∶ σ ⊢QNQ e
′ ∶ τ ∆�∆′

∆,∆′ ⊢QNQ let x ∶= e in e′ ∶ τ
let

∅ ⊢QNQ () ∶ LUnit
LUnit-I

∆ ⊢QNQ e ∶ LUnit ∆′ ⊢QNQ e
′ ∶ τ ∆�∆′

∆,∆′ ⊢QNQ let () ∶= e in e′ ∶ τ
LUnit-E

∆1 ⊢QNQ e1 ∶ σ1 ∆2 ⊢QNQ e2 ∶ σ2 ∆1�∆2

∆1,∆2 ⊢QNQ (e1, e2) ∶ σ1 ⊗ σ2
⊗-I

∆ ⊢QNQ e ∶ σ1 ⊗ σ2 ∆′, x1 ∶ σ1, x2 ∶ σ2 ⊢QNQ e
′ ∶ τ ∆�∆′

∆,∆′ ⊢QNQ let (x1, x2) ∶= e in e′ ∶ τ
⊗-E

a ∶ α α finite

∅ ⊢QNQ put a ∶ Lower α
Lower-I

∆ ⊢QNQ e ∶ Lower α f ∶ α → LExp
QNQ

∆′ τ ∆�∆′

∆,∆′ ⊢QNQ e >! f ∶ τ
Lower-E

Figure 6.1: Multiplicative exponential fragment of QNQ

in a classical state, then η equivalence could be allowed. However, Chapter 7 violates

that restriction by taking the type of qubits to be equal to Lower Bool, so traditional η

equivalence will not be allowed. However, we still want >! bindings to be able to commute

inside a term; we call these commuting conversions (Girard et al., 1989, Chapter 10). Thus,

the following rule is admissible:

∆ ⊢QNQ e ∶ Lower α f ∶ α → LExp
QNQ

∆′ σ ∆′′, x ∶ σ ⊢QNQ e
′ ∶ τ ∆�∆′�∆′′

e′{(e >! f)/x} ∼cc e >! λa.e′{fa/x}

Qubits. In addition to the standard linear types, QNQ has a type Qubit of qubits. Given

a boolean b, we can initialize a qubit in the classical state b, written init b, and we can

123

measure qubits, resulting in a lowered boolean value.

b ∶ Bool

∅ ⊢QNQ init b ∶ Qubit
Qubit-I

∆ ⊢QNQ e ∶ Qubit

∆ ⊢QNQ meas e ∶ Lower Bool

Qubit-E

The operational behavior states that measuring a newly initialized qubit will result in the

original boolean value.

meas(init b) ∼β put b

Unitary transformations. Unitary transformations, written U ∶ U(σ, τ), can be applied

to linear expressions as follows:

U ∶ U(σ, τ) ∆ ⊢QNQ e ∶ σ

∆ ⊢QNQ U # e ∶ τ
U

We expect several facts to hold about the behavior of unitary transformations, such as

the fact that U † # U # e is equivalent to e, and that X # init b is equivalent to init(¬b).

We defer the discussion of these equivalences until Chapter 7, when we explore them in

depth.

Functions. What is a quantum function? At first approximation, a function is just a

procedure—a sequence of instructions applied to quantum data. Such procedures should be

duplicable, in that a procedure does not get consumed when it is applied to an argument,

and modular, in that they can be combined to build up layers of abstraction. Selinger

(2004) shows that a quantum language with first-order procedures can be interpreted in the

category of density matrices and completely positive maps.

The type σ ⊸ τ of (possibly higher-order) linear functions offers more than just sim-

ple procedures, however, and treats higher-order functions as first class quantum data.

The quantum lambda calculus demonstrates that higher-order functions are syntactically

124

sound—it is possible to give an operational semantics to a quantum lambda calculus with

higher-order functions (van Tonder, 2004; Selinger and Valiron, 2009). However, the de-

notational semantics (especially the quantum-mechanical interpretation) of higher-order

quantum functions is not entirely settled. Selinger and Valiron (2008) show that higher-

order functions are compatible with density matrices when bits and all other classical data

is treated linearly in the program. Other denotational models have been proposed based

on presheaves (Malherbe, 2010), geometry of interaction (Hasuo and Hoshino, 2011), and

quantitative semantics (Pagani et al., 2014), but it is still unclear how such functions would

be implementable on a quantum computer. Quipper, a quantum circuit language based on

the quantum lambda calculus, compiles away its higher-order functions while generating

the circuits to be executed on a quantum computer (Green et al., 2013b).

In the QNQ calculus, we choose to restrict functions to first-order procedures, which

simplifies the meta-theory and is sufficient to express quantum algorithms (see Section 6.3).

First-order procedures are also helpful when we adapt QNQ to a quantum circuit language

in Chapter 8. However, QNQ could be extended with higher-order functions in the style of

the quantum lambda calculus.

A first-order function in QNQ is called a box. A box of type Box σ τ holds a linear

expression x ∶ σ ⊢QNQ e ∶ τ that uses exactly one linear variable of type σ. A box is a

generalization of the type Lift τ ; whereas Lift τ holds a linear expression using no linear

variables, Box σ τ holds a linear expression using exactly one linear variable. We write

box x⇒ e for the constructor of type Box σ τ , and write f $ e for function application.

x ∶ σ ⊢QNQ e ∶ τ

box x⇒ e ∶ Box σ τ
box-I

f ∶ Box σ τ ∆ ⊢QNQ e ∶ σ

∆ ⊢QNQ f $ e ∶ τ
box-E

The β- and η-equivalences for boxes are the same as those for ordinary λ abstraction.

(box x⇒ e′) $ e ∼β e′{e/x}

b ∶ Box σ τ

b ∼η box x⇒ b $ x

125

Boxed functions are composable: for f ∶ Box σ τ and g ∶ Box τ ρ, we write g ○ f ∶

Box σ ρ for box x ⇒ g $ (f $ x), and for f1 ∶ Box σ1 τ1 and f2 ∶ Box σ2 τ2, we write

f1∥f2 ∶ Box (σ1 ⊗ σ2) τ1 ⊗ τ2 for the parallel composition box (x1, x2) ⇒ (f1 $ x1, f2 $ x2).

Every unitary transformation U ∶ U(σ, τ) can be coerced into a box of type Box σ τ , and

we sometimes just write U ∶ Box σ τ for the coercion box x⇒ U # x.

Note that we can derive Lift τ as Box LUnit τ and suspend e as box x⇒ let () ∶= x in e.

6.3 Examples

In this section we give a number of examples of common quantum programs in QNQ.

The Bell state described in Section 6.1 can be constructed by applying a hadamard

unitary transformation to a newly initialized qubit (which puts the qubit into a superposi-

tion 1√
2
∣0⟩+ 1√

2
∣1⟩) and then applying a controlled-not unitary on another newly initialized

qubit. Intuitively, this program corresponds to the circuit diagram shown here.

bell00 : Box LUnit (Qubit ⊗ Qubit)

bell00 ≡ box () ⇒ let a ∶= H # init 0 in

let b ∶= init 0 in

ctrl-X # (a,b) ∣0⟩

∣0⟩ H

We write box (x1, . . . , xn) ⇒ e for pattern matching against input to a box. For example, in

the definition of bell00 box () ⇒ c in is syntactic sugar for box x ⇒ let () ∶= x in c.

Coin flips. Measuring a qubit results in a lowered boolean value, and so, taking Lin α to

be Box LUnit (Lower α), we can construct a quantum coin flip inside the linearity monad as

follows:

flip : Lin Bool

flip ≡ box () ⇒ meas (H # init 0) ∣0⟩ H meas

The program flipN flips up to n quantum coins until any of the coins returns False.

126

flipN : Nat → Lin Bool

flipN 0 ≡ return True

flipN (n+1) ≡ do b ← flip

if b then flipN n else return False

This program will return True with probability 1
2n and False with probability 1 − 1

2n .

Quantum natural numbers with dependent types. An n-qubit quantum natural

number is a term of type n⊗Qubit, which we defined in Section 3.5 as follows:

0⊗σ ≡ LUnit

n + 1⊗σ ≡ σ ⊗ (n⊗σ)

Notice that n⊗σ is a linear functor on LType’s; for f ∶ Box σ τ we can write lfmap f ∶

∏n Box (n⊗σ) (n⊗ τ) as follows:

lfmap : Box σ τ → Π n, Box (n ⊗ σ) (n ⊗ τ)

lfmap f 0 ≡ box () ⇒ ()

lfmap f (n+1) ≡ box (x,xs) ⇒ (f $ x, lfmap n $ xs)

We write Tuple n α for the corresponding host-language type of n-tuples. Because Lower

distributes over ⊗, we can transform a linear n-tuple of (Lower α)’s into a lowered n-tuple

of α’s.

distrN : Π n. Box (n ⊗ Lower α) (Lower (Tuple n α))

distrN 0 ≡ box () ⇒ put ()

distrN (n+1) ≡ box (x,xs) ⇒ let !a ∶= x in

let !as ∶= distrN n $ xs in

put (a,as)

Now we can measure an n-qubit natural number into an n-tuple of boleans by combining

lfmap and distrN.

measN : Π n. Box (n ⊗ Qubit) (Lower (Tuple n Bool))

measN n ≡ distrN ○ lfmap meas

127

Quantum teleportation. The quantum version of Hello world is the quantum telepor-

tation algorithm, which describes how Alice can transmit the state of a qubit to Bob at a

remote location. Despite the name, teleportation does not imply faster-than-light commu-

nication, because, in order to transmit the information, Alice must send Bob two classical

bits. Figure 6.2 shows the teleportation algorithm, broken up into three parts.

First, Alice and Bob receive two ends of a shared Bell state—this is their shared secret

before moving to separate locations. At her secret location, Alice also has a qubit that

she wishes to send to Bob. Alice entangles q with her end of the Bell state by applying a

controlled X gate followed by a Hadamard gate. Notice that all three qubits are entangled

at this point. Next, Alice measures her two qubits. Because of the no-cloning theorem,

Alice cannot both send her qubit’s state to Bob and also keep her own copy of the qubit,

so measurement degrades her original qubit. However, the state of Bob’s qubit has now

changed as the result of the measurement.

Supposing that q was originally in the state c0 ∣0⟩+c1 ∣1⟩, we can now work out the state

of the system after Alice is done with her measurement:

- If Alice measures ∣0⟩ ∣0⟩, then Bob’s qubit is in the state c0 ∣0⟩ + c1 ∣1⟩—the state of the

original qubit.

- If Alice measures ∣0⟩ ∣1⟩, then Bob’s qubit is in the state c0 ∣1⟩+ c1 ∣0⟩—the negation of the

original qubit.

- If Alice measures ∣1⟩ ∣0⟩, then Bob’s qubit is in the state c0 ∣0⟩ − c1 ∣1⟩.

- If Alice measures ∣1⟩ ∣1⟩, then Bob’s qubit is in the state c0 ∣1⟩ − c1 ∣0⟩.

If Bob knows the results of Alice’s measurement, he can apply a particular sequence

of unitary transformations to correct the state of his qubit to return it to the original

position. For example, if Bob knows the result was ∣0⟩ ∣1⟩, then he can apply an X unitary

to transform the qubit back into the state c0 ∣0⟩ + c1 ∣1⟩.

Thus, in the final part of the teleportation algorithm, Alice sends her two classical bits

to Bob, who then applies his corrections depending on the state of those bits.

128

alice : Box (Qubit ⊗ Qubit) (Lower Bool ⊗ Lower Bool)

alice ≡ box (q,a) ⇒ let (q,a) ∶= CNOT # (q,a) in

(meas (H # q), meas a)

bob : Bool → Bool → Box Qubit Qubit

bob x y ≡ if x && y then Z ○ X

else if x && ¬ y then X

else if ¬x && y then Z

else id

teleport : Box Qubit Qubit

teleport ≡ box q ⇒ let (a,b) ∶= bell00 $ () in

let (!x,!y) ∶= alice $ (q,a) in

bob x y $ b

y

x
bell00

∣0⟩

∣0⟩ H

alice

H meas

meas

bob x y

Figure 6.2: Quantum teleportation.

129

QFT : Π (n : Nat), Box (n ⊗ Qubit) (n ⊗ Qubit)

QFT 0 ≡ box () ⇒ ()

QFT 1 ≡ box (x,()) ⇒ (H # x, ())

QFT (n'+2) ≡ box (x,xs) ⇒ let xs ∶= QFT (n'+1) $ xs

let xs ∶= rotations n' (n'+1) $ (x,xs) in

(H # x, xs)

rotations : Π (n m : Nat), Box (n+2 ⊗ Qubit) (n+2 ⊗ Qubit)

rotations 0 ≡ box x ⇒ x

rotations 1 ≡ box x ⇒ x

rotations (n'+2) ≡ box (c,x,xs) ⇒ let (c,xs) ∶= rotations (n'+1) m $ (c,xs) in

let (c,x) ∶= ctrl (R (m-n'+1)) $ (c,x) in

(c,x,xs)

Figure 6.3: Quantum Fourier transform in QNQ

Quantum Fourier transform (QFT) The quantum Fourier transform (QFT) computes

the discrete Fourier transform on n qubits in O(n2) time, and is a key component in many

quantum algorithms, including Shor’s factorization algorihtm. In comparison, the classical

Fourier transform takes O(n2n).

The QFT is defined by induction on the number of input qubits, as shown in Figure 6.3.

At the inductive step, the circuit calls out to the helper function rotations, which applies

a sequence of controlled rotation gates R m, which are indexed by a natural number m.

This example is adapted from an introduction to Quipper, to which we refer the reader for

full details of the algorithm (Green et al., 2013a). However, because Quipper does not have

dependent quantum types, it cannot express the fact that the QFT has the same number of

input and output qubits. Instead, Quipper uses lists and other data types for qubits, that

must be instantiated at circuit generation time.

6.4 Denotational semantics

In this section we describe how to map quantum programs to superoperators over density

matrices.

130

We identify every type σ with a dimension JσK.

JLUnitK ≡ 0

JQubitK ≡ 1

Jσ1 ⊗ σ2K ≡ Jσ1K + Jσ2K

JLower αK ≡ ∣α∣

Because we restricted the constructor for Lower α to finite types, the size ∣α∣ is well-defined.

For each type α, we also pick a canonical ordering on its elements, so that values a ∶ α can

be mapped to distinct vectors δa of dimension 2∣α∣.

Each typing context is also associated with a dimension.

J∅K ≡ 0 J∆, x ∶ σK ≡ J∆K + JσK

We write Density σ for the type of 2JσK × 2JσK density matrices and similarly for

Density ∆. Our goal is to map expressions ∆ ⊢QNQ e ∶ σ to functions Density ∆ →

Density σ.

The category of density matrices is symmetric monoidal, which tells us how to interpret

the multiplicative unit and product.

Every unitary U ∶ U(σ, τ) will be associated with a unitary matrix JUK of dimension

2JσK × 2JτK. We can lift this to a superoperator JUK∗ ∶ Density σ → Density τ ; recall that

U∗(ρ) = U †ρU .

JU # eK ≡ JUK∗ ○ JeK

For qubits, initialization and measurement are defined as follows:

Jinit bK ≡ ⟨b∣∗

Jmeas eK ≡ ((∣0⟩ ⟨0∣)∗ + (∣1⟩ ⟨1∣)∗) ○ JeK

131

The semantics of Lower is a generalization of the semantics of qubits. Notice that the

types Qubit and Lower Bool have the same representation as density matrices.

Jput aK ≡ (δ†a)∗

Je >! fK ≡ ∑
a∶α

JfaK ○ (δaδ†a)∗ ○ JeK

Finally, the interpretation of a quantum function f ∶ Box σ τ is a superoperator Density σ →

Density τ , and applying f to an argument composes their denotations together.

Jbox x⇒ eK ≡ JeK

Jf $ eK ≡ JfK ○ JeK

6.4.1 Soundness

Theorem 6.4.1 (Soundness of β-reduction). If ∆ ⊢QNQ e ∶ τ and e↝β e′, then Je′K = JeK.

Proof. The only interesting cases are those for qubits and the Lower type.

For qubits, we have meas(init b) ↝β put b. Unfolding definitions, we have

Jmeas(init b)K ≡ ((∣0⟩ ⟨0∣)∗ + (∣1⟩ ⟨1∣)∗) ○ ⟨b∣∗ . (6.1)

Because M∗ ○N∗ is exactly (NM)∗, Equation (6.1) is equal to

(⟨b∣ ∣0⟩ ⟨0∣)∗ + (⟨b∣ ∣1⟩ ⟨1∣)∗.

Notice that ∣b⟩ ⟨b′∣ is equal to the constant 1 if b = b′, or 0 if b ≠ b′. Thus Equation (6.1)

reduces to ⟨b∣∗.

132

For Lower, we have put a >! f ↝β fa. Then:

Jput a >! fK = ∑
b∶α

JfbK ○ (δbδ†b)
∗Jput aK

= ∑
b∶α

JfbK ○ (δbδ†b)
∗(δ†a)∗

= ∑
b∶α

JfbK ○ (δ†aδbδ
†
b)
∗

As for qubits, it is the case that δ†aδb is 1 if a = b, and 0 otherwise. Therefore, the sum

reduces to the single clause JfaK.

133

CHAPTER 7

Quantum equational theories in HoTT

The β- and η-equivalences of the QNQ calculus described in the previous section cover

only a few of the equivalences we expect to hold from a quantum system. The operational

semantics of unitary transformations cannot be expressed as equivalences—there is no sim-

pler representation of the expression H # init 0, for example. Even so, there are several

properties of unitary transformations that can be expressed equationally. Consider, for

example the X unitary transformation, which maps ∣0⟩ to ∣1⟩ and ∣1⟩ to ∣0⟩. We expect

X # init b to be equivalent to init(¬b), and we also expect meas(X # e) to be equivalent

to meas e >! λb.put(¬b).

Staton (2015) describes an equational theory for a small quantum programming lan-

guage, given as an algebraic theory with quantum data and classical control. Staton’s

algebraic theory includes measurement-based branching, but it does not contain explicit

classical data or features we would expect from a QRAM-style language, let alone access

to an entire classical host language. In this chapter we adapt Staton’s equational theory to

the QNQ calculus, continuing to reason about the meta-theory of an embedded language

inside its host language.

Other works propose axiomatizations of particular sets of unitary transformations (Amy

et al., 2018; Matsumoto and Amano, 2008; Nam et al., 2018), but, like Staton, we focus on

the relationships between quantum and classical features.

What features should our host language have in order to perform this meta-theory? To

reason about program equivalences, we choose to work in a host language that specializes

in equality—homotopy type theory (HoTT). In HoTT, proofs of equality, also called paths,

134

can contain extra computational content. In the past few years a variety of applications

have used these paths as a data structure for groupoids, such as containers (Abbott et al.,

2004), version control patches (Angiuli et al., 2014), and SQL queries (Chu et al., 2017).

The key contribution of this chapter is the observation that unitary transformations form

a groupoid. We exploit this structure to encode unitaries in the paths between quantum

types. With this structure, we can derive many of the structural rules from Staton’s theory.

We group the remaining axioms into two families of axioms describing the behavior of

unitaries with respect to initialization and measurement, respectively.

The rest of this chapter is devoted to establishing the equational theory of QNQ in

homotopy type theory. Section 7.1 gives some background of HoTT. Section 7.2 describes

a slight variation of QNQ with additive sums and gives an overview of the equational

principles we expect to hold. Section 7.3 shows how to derive many of the structural rules

by encoding unitary transformations as higher inductive types. Section 7.4 establishes the

remaining two axioms that cannot be derived from the HoTT meta-theory. Section 7.5

proves that these additional axioms are sound with respect to the denotational semantics of

Section 6.4. Finally, Section 7.6 discusses some of the design decisions that went into this

theory.

7.1 Background and main ideas

7.1.1 Homotopy type theory (HoTT)

Homotopy type theory is, in many ways, a type theory of equivalence. HoTT is based on the

idea that proofs of equality a = b, called paths, may have computational content (Univalent

Foundations Program, 2013). That is, there may be other proofs of equality besides the

(trivial) reflexivity path 1a ∶ a = a.

In homotopy type theory, we write the type of propositional proofs of equality as a = b;

that is, a = b is a type with a single constructor 1a ∶ a = a. Propositional equality is

distinguished from judgmental equality a ≡ b, which asserts that a and b are equal by

definition. The judgment a ≡ b is not a type; it is only valid in the meta-theory and has

135

no computational content. For more intuition on the difference between propositional and

judgmental equality, see the HoTT book (Univalent Foundations Program, 2013, Chapter

1).

Homotopy type theory was developed as a type-theoretic alternative to set theory, but it

has applications in a wide variety of domains (Angiuli et al., 2014; Chu et al., 2017; Abbott

et al., 2004). When a domain is difficult to characterize equationally, but uses data in the

shape of an equivalence relation or groupoid, HoTT can help.

Consider a type A that you want to quotient by a relation R. For every element a ∶ A,

the equivalence class of a is written [a]R ∶ A/R, and whenever R(a, b), it should be the

case that [a]R = [b]R. In set theory it is possible to define the equivalence class as a set

[a]R = {x ∶ A ∣ R(a, x)}, so that [a]R contains the same elements as [b]R. However, in pro-

gramming environments, where the representation of data structures matters, sets are often

implemented as lists or arrays, so [a]R does not necessarily have the same representation

as [b]R.

Homotopy type theory addresses this discrepancy with higher inductive types, which are

made up of both term constructors and also path constructors. For example:

Definition 7.1.1 (van Doorn et al. (2017)). The quotient A/R of a type A by a relation

R ∶ A→ A→ U is a higher inductive type generated by the following constructors:

- for a ∶ A, there is a term [a]R ∶ A/R; and

- for a, b ∶ A and r ∶ R a b, there is a proof [r]R that [a]R = [b]R.

Notice that if r1 and r2 are two different witnesses of R a b, then [r1]R is different from

[r2]R—the structure of the relation R is preserved in the paths A/R.

Despite the extra computational content, the usual properties of equality types still hold

for paths generated by higher inductive types. The principle of path induction states that,

given a property P ∶ ∏a,b∶α a = b→ Type on paths, if P holds on the reflexivity path, then P

holds on any path. That is, the induction principle for paths has the following type:

path indP ∶ (∏(x ∶ α), P (1x)) →∏(x y ∶ α)(p ∶ x = y), P (p).

136

If p ∶ a = b for a, b ∶ α and x ∶ P (a) for some property P ∶ α → Type, then it is possible to

transport the path p over x to obtain a proof transportP p x ∶ P (b). If a and b are types

and x ∶ a, we write coerce p x ≡ transportλx.x p x ∶ b.

In HoTT, functions f ∶ α → β are functorial, meaning that p ∶ a = b on α can be promoted

to apf p ∶ fa = fb.

The univalence axiom states that an equivalence f ∶ α ≅ β between types can be treated

as a path univ f ∶ α = β, such that coerce (univ f) a = fa.

7.1.2 Unitaries as paths

The core idea of this chapter is to encode the unitary operators used in quantum computing

in the higher inductive structure of quantum types. Unitary transformations U(α,β) form

a groupoid (a category whose morphisms are all invertible) whose objects are types, and

so we take quantum types q, r to be members of QType ≡ Type/U . This means the type of

paths [α]U = [β]U contains members corresponding to unitary transformations U ∶ U(α,β).

Encoding unitaries as paths has two important benefits. First, there is no need for

explicit syntax for applying a unitary transformation; it can be defined to be the result of

transporting the path U ∶ q = r over a term ∆ ⊢QNQ e ∶ q, obtaining U # e = transport U e.

Second, many of the structural axioms on unitaries can now be proven by path induction.

For example, consider the following statement:

Proposition 7.1.2. Suppose ∆ ⊢QNQ e ∶ q. Then, for U ∶ q = r and V ∶ r = s we have

V # (U # e) = (V ○U) # e.

Proof. By path induction over V . If V is the trivial path by reflexivity on r, written 1r,

then V ○U = U . Furthermore, by definition of the transport, for all x we have 1 # x = x.

So 1 # (U # e) = U # e = (1 ○U) # e.

Crucially, it is not possible to prove the following false statement:

Proposition 7.1.3 (False). Let ∆ ⊢QNQ e ∶ q and U ∶ q = q. Then U # e = e.

137

Path induction only applies on proofs a = b when at least one of a or b is a free variable,

so it does not apply here. In fact, the statement is false–we can prove that X # ∣0⟩ = ∣1⟩,

but it is not the case that ∣0⟩ = ∣1⟩.

7.2 Equational theory of QNQ

In developing the equational theory, we make three changes to the QNQ calculus described

in Chapter 7.

Qubits as Lower Bool. First, instead of taking Qubit to be a primitive type of qubits, we

instead define Qubit to be Lower Bool, since qubits are represented by a two-dimensional

vector space. We can define initialization and measurement as follows:

init ∶ Bool→ LExp ∅ Qubit

init ≡ λb. put b

meas ∶ Box Qubit (Lower Bool)

meas ≡ box x⇒ let !b ∶= x in put b

On first glance, these definitions appear to do nothing—meas in particular is just the η

expansion of e. But the encoding of Qubit as Lower Bool highlights a critical semantic

fact of our system: case analysis performs quantum measurement. This has a number of

consequences for the theory of the language, including the fact that η expansion is not sound

in general: a measured qubit is not equivalent to an unmeasured one.

By choosing to encode measurement as case analysis, we open the door to a very ex-

pressive quantum theory. For example, the type Lower(Bool × Bool) is equivalent to the

two-qubit system Qubit⊗ Qubit ≡ Lower Bool⊗ Lower Bool. We can also easily encode a

qutrit (a base-3 quantum system) as Lower(() + () + ()).

We write σ τ for an equivalence between σ and τ that arises from an isomorphism

on basis sets. For example, swap ∶ σ ⊗ τ τ ⊗ σ arises from symmetry and distr ∶

σ ⊗ (τ1 ⊕ τ2) σ ⊗ τ1 ⊕ σ ⊗ τ2 reflects the distributivity of ⊗ over ⊗. We formalize the

definition of such equivalences in Section 7.4.

138

Strengthened η equivalence for LUnit. As discussed in Section 6.2, we do allow the

usual η equivalences for the tensor product and linear unit type, as follows:

∆ ⊢QNQ e ∶ LUnit ∆′, x ∶ LUnit ⊢QNQ e
′ ∶ τ

e′{e/x} ∼η let () ∶= e in e′{()/x}

∆ ⊢QNQ e ∶ σ1 ⊗ σ2 ∆′, x ∶ σ1 ⊗ σ2 ⊢QNQ e
′ ∶ τ

e′{e/x} ∼η let (x1, x2) ∶= e in e′{(x1, x2)/x}

However, for units we actually expect a stronger η equivalence: LUnit is a terminal

object in the category of density matrices. That is, every two terms of type LUnit are

equivalent.

∆ ⊢QNQ e1 ∶ LUnit ∆ ⊢QNQ e2 ∶ LUnit

e1 ∼η e2

This is not a consequence of the usual linear η rule above, but is a consequence of the

cartesian η equivalence, which states that every term of type unit is equal to the unit value.

Additive sums. Staton’s equational theory relies on the fact that unitaries can be com-

bined via the direct sum, which corresponds to the additive sum in the type theory. There-

fore we extend QNQ with additive sums, written σ1 ⊕ σ2. Although sums do not arise

naturally in the context of quantum circuits, they do occur in several quantum program-

ming languages.

∆ ⊢QNQ ei ∶ σi

∆ ⊢QNQ ιiei ∶ σ1 ⊕ σ2

∆ ⊢QNQ e ∶ σ1 ⊕ σ2 ∆′, x1 ∶ σ1 ⊢QNQ e1 ∶ τ ∆′, x2 ∶ σ2 ⊢QNQ e2 ∶ τ

∆,∆′ ⊢QNQ case e of (ι1x1 → e1 ∣ ι2x2 → e2) ∶ τ

We allow β equivalences but not general η-equivalence for sums; like for the Lower type,

case analysis for sums corresponds to measuring a quantum state. However, we do allow

139

the commuting conversion rule.

case ιie of (ι1x1 → e1 ∣ ι2x2 → e2) ∼β ei{e/xi}

∆ ⊢QNQ e ∶ σ1 ⊕ σ2 ∆0, x1 ∶ σ1 ⊢QNQ e1 ∶ σ ∆0, x2 ∶ σ2 ⊢QNQ e2 ∶ σ ∆′, x ∶ σ ⊢QNQ e
′ ∶ τ

e′{(case e of (ι1x1 → e1 ∣ ι2x2 → e2))/x}∼cccase e of (ι1x1 → e′{e1/x} ∣ ι2x2 → e′{e1/x})

7.2.1 Unitary transformations.

Following Staton (2015), we focus on two main ways to combine unitaries: if U ∶ U(q, r)

and V ∶ U(q′, r′), then U ⊗ V ∶ U(q ⊗ q′, r ⊗ r′) is the tensor product of U by V , and

U ⊕ V ∶ U(q ⊕ q′, r ⊕ r′) is the direct sum.

Staton proves that all unitary matrices can be constructed from 1-qubit unitaries with

the direct sum and tensor product. In our formulation, where unitaries are indexed by linear

types, we must also account for equivalences between these types, such as associativity and

distributivity. For example, the controlled-not unitary CNOT ∶ U(Qubit ⊗ Qubit,Qubit ⊗

Qubit), is exactly equal to I ⊕X ∶ U(Qubit ⊕ Qubit,Qubit ⊕ Qubit) when we account for

the equivalence between Qubit⊗ Qubit and Qubit⊕ Qubit.

The equational theory of unitaries is divided into three classes. First, the “structural”

axioms, shown in Figure 7.1, characterize the how unitaries interact with syntactic forms

of the language. For example, Equation (U-⊗-intro) describes how the tensor product

U1 ⊗U2 distributes over pairs of expressions.

Second, the “groupoid” axioms in Figure 7.2 characterize that unitaries form a groupoid.

The third set of axioms describe how unitary equivalences—isomorphisms between the

basis sets of linear types—interact with initialization and measurement. Every equivalence

f ∶ σ τ can be lifted to a unitary f̃ ∶ U(σ, τ). For example, for the equivalence swap, it

should be the case that s̃wap # (e1, e2) ≈ (e2, e1). We call (e1, e2) the partial initialization

of the quantum system σ1 ⊗ σ2, reflected in the fact that swap quantifies over all types σ1

and σ2. Figure 7.3 shows a further selection of motivating examples.

140

(U1 ⊗U2) # (e1, e2) ≈ (U1 # e1, U2 # e2) (U-⊗-intro)

let (x1, x2) ∶= (U1 ⊗U2) # e in e′

≈ let (y1, y2) ∶= e in e′{U1 # y1/x1, U2 # y2/x2} (U-⊗-elim)

U # (let (x1, x2) ∶= e in e′) ≈ let (x1, x2) ∶= e in U # e′ (U-⊗-comm)

(U0 ⊕U1) # (ι0e) ≈ U0 # e (U-⊕-intro0)

(U0 ⊕U1) # (ι1e) ≈ U1 # e (U-⊕-intro1)

case (U0 ⊕U1) # e of (ι0x0 → e0 ∣ ι1x1 → e1)
≈ case e of (ι0y0 → e0{U0 # y0/x0} ∣ι1y1 → e1{U1 # y1/x1}) (U-⊕-elim)

U # (case e of (ι0x0 → e0 ∣ ι1x1 → e1)) ≈ case e of (ι0x0 → U # e0 ∣ ι1x1 → U # e1)
(U-⊕-comm)

U # (e >! f) ≈ e >! λx→ U # (fx) (U-Lower-comm)

U # e >! λ .e′ ≈ e >! λ .e′ (U-Lower-elim)

Figure 7.1: Structural axioms

U # (V # e) ≈ (U ○ V) # e (U-compose)

I # e ≈ e (U-I)

U † # U # e ≈ e (U-†)

Figure 7.2: Groupoid axioms

141

X # put b ≈ put ¬b (X-intro)

let !x ∶= meas X # e in e′ ≈ let !y ∶= meas e in e′{¬y/x} (X-elim)

SWAP # (e1, e2) ≈ (e2, e1) (SWAP-intro)

let (x, y) ∶= SWAP # e in e′ ≈ let (y, x) ∶= e in e′ (SWAP-elim)

DISTR # (e, ιie′) ≈ ιi(e, e′) (DISTR-intro)

case(DISTR # e) of (ι0z0 → e0 ∣ ι1z1 → e1) ≈ case e of
⎧⎪⎪⎨⎪⎪⎩

(x, ι0y0) → e0{(x, y0)/z0}
(x, ι1y1) → e1{(x, y1)/z1}

(DISTR-elim)

Figure 7.3: Unitary equivalence axioms for X ∶ U(Qubit,Qubit), SWAP ∶ U(σ⊗ τ, τ ⊗σ), and
DISTR ∶ U(σ ⊗ (τ1 ⊕ τ2), (σ ⊗ τ1) ⊕ (σ ⊗ τ2)).

The idea of partial initialization and its counterpart, partial measurement, provide a

concise encapsulation of the behavior of unitary equivalences. Given an equivalence f ∶

σ τ , we have

f̃ # initσ b ≈ initτ(fb) (U-intro)

matchτ (f̃ # e) with g ≈ matchσ e with g ○ f (U-elim)

7.3 Deriving equational rules in homotopy type theory

Our goal in this section is to encode unitary transformations in the structure of linear

types in order to minimize the number of axioms needed to recover the equational theory

described in the previous section.

For finite types α and β, we write Matrix(α,β) for the type of 2∣α∣ × 2∣β∣ matrices, and

we write UMatrix(α,β) for the restriction to unitary matrices. For an equivalence f ∶ α ≅ β

in the host language, we write f̂ ∶ UMatrix(α,β) for transport (univ f) I.

A groupoid is a category whose morphisms are all invertible. By definition, every unitary

U has an inverse U †, so UMatrix forms a groupoid. This groupoid structure forms the crux

142

of the encoding of unitaries as higher paths in homotopy type theory.

7.3.1 Groupoid quotient as a higher inductive type

Definition 7.3.1 (Sojakova (2015)). If G is a groupoid with objects α, then the groupoid

quotient of G, written α/1G, is a higher inductive 1-type with the following constructors:

point ∶ α → α/1G

cell ∶ G(a, b) → point a = point b

cell compose ∶ ∏
f,g

cell g ○ f = cell g ○ cell f

The fact that α/1G is a 1-type means that for any cells f, g ∶ x = y and paths p, q ∶ f = g, it

is the case that p = q.

The induction principle is as follows: for a predicate P on α/1G, there is a proof indP

of ∏x,Px, provided:

- For all x, Px is a 1-type;

- For all a ∶ α, there is a proof P pointa of P (point a);

- For all f ∶ G(a, b), there is a proof P cellf that transportP (cell f) (P pointa) =

P pointb; and

- For f ∶ G(a, b) and g ∶ G(b, c), the following diagram commutes:

transportP (cell g ○ f) (P pointa)

transportP (cell g ○ cell f) (P pointa)

transportP (cell g) (transportP (cell f) (P pointa))

transportP (cell g) (P pointb)

P pointc

ap (cell compose f g)

P cellg○f

ap P cellf

P cellg

Furthermore, indP must satisfy the following computation laws:

indP (point a) = P pointa and apdindP (cell f) = P cellf

143

where, for f ∶ ∏(x ∶ α), P (x) and p ∶ a = b at type α, we have apdf(p) ∶ transportP p (fa) =

fb.

7.3.2 QType as a groupoid quotient

Define LType to be the groupoid quotient of UMatrix: LType ≡ Type/1UMatrix. Then, for

LTypes σ and τ , the type σ = τ corresponds to unitary transformations from σ to τ .

The groupoid quotient ensures that the identity and inverse of paths actually correspond

to the appropriate operations on matrices.

Proposition 7.3.2. Let I ∶ UMatrix(α,α) be the identity matrix on α. Then cell I =

1point α.

Proof. Since I = I○I, by the compositionality of cell we know that cell I = cell I○cell I.

But for any path p ∶ x = x, if p ○ p = p then p must be 1x.

Proposition 7.3.3. Let U ∶ UMatrix(α,β). Then (cell U)−1 = cell U †.

Proof. By the compositionality of cell, we have that cell U ○ cell U † = cell U ○ U † =

cell I = 1.

Take Lower α to be the type point α; the operations ⊗ and ⊕ are defined by quotient

induction.

To define ⊗ ∶ LType → LType → LType, we apply a variant of the quotient recursion

principle on two variables. It suffices to define how ⊗ acts on points and cells, and then show

that it is bilinear. First, define point α1⊗point α2 ≡ point∗ α1×α2. If U ∶ UMatrix(α,α′)

and V ∶ UMatrix(β,β′) then we have cell U ⊗ V ∶ point α × β = point α′ × β′. The

remaining condition is to show that

cell U2 ⊗ V2 ○ cell U1 ⊗ V1 = cell (U2 ○U1) ⊗ (V2 ○ V1).

This follows from the fact of linear algebra that (U2 ○U1)⊗(V2 ○V1) = (U2⊗V2) ○ (U1⊗V1).

For U ∶ q = r and U ′ ∶ q′ = r′, we lift the tensor product to U ⊗U ′ ≡ ap⊗ (U,U ′) ∶ q ⊗ q′ =

r ⊗ r′ . The computation principle for ⊗ states that cell U ⊗ cell U ′ = cell U ⊗U ′.

144

A similar argument is used to define ⊕ ∶ LType→ LType→ LType.

7.3.3 Deriving the groupoid axioms

The fact that unitaries are paths means that the groupoid axioms of Figure 7.2 can be

derived for free.

Proposition 7.3.4 (Equation (U-compose)). Let V ∶ q = r and U ∶ r = s. Then

U # (V # e) = (U ○ V) # e.

Proof. By path induction on V . Since 1 # e ≡ e and U ○ 1 = U , both sides of the equation

are equal to U # e.

Proposition 7.3.5 (Equation (U-I)). If ∆ ⊢QNQ e ∶ q, then cell I # e = e.

Proof. Follows from Proposition 7.3.2 which states that cell I = 1.

Proposition 7.3.6 (Equation (U-†)). If U ∶ q = r and ∆ ⊢QNQ e ∶ q then U † # U # e = e.

Proof. Follows from Proposition 7.3.4 and the fact that, as matrices, U † ○U = I.

7.3.4 Deriving the structural axioms

Similarly, the structural axioms from Figure 7.1 are all trivial by path induction, with one

exception:

Proposition 7.3.7. For ∆ ⊢QNQ e ∶ Qubit and U ∶ Qubit = Qubit, then

let ! ∶= meas U # e in e′ ≈ let ! ∶= meas e in e′.

Proof. It is not possible to do induction on U here, since its endpoints are both fixed.

However, Proposition 7.3.7 follows from the η rule for the unit type, which says, for any

145

two terms ∆ ⊢QNQ e1, e2 ∶ Lower (), that e1 ∼η e2:

let ! ∶= U # e in e′ ∼η let ! ∶= (let ! ∶= U # e in put ()) in e′

∼η let ! ∶= (let ! ∶= e in put ()) in e′

∼η let ! ∶= e in e′

7.4 Equivalence of unitaries

This section addresses the equivalence axioms of Figure 7.3. For instance, consider the

“not” unitary X.

Proposition 7.4.1 (Equations (X-intro) and (X-elim)).

cell X # put b = put(¬b) and (cell X # e) >! f = e >! λb.f(¬b)

The proof of this proposition relies on the following two lemmas, both easily proved by

path induction:

Lemma 7.4.2. For any f ∶ α = β and a ∶ α:

apLower f # put a = put(coerce f a) and (apLower f # e) >! g = e >! λx. g (coerce f x) .

Lemma 7.4.3. If U ∶ UMatrix(α1, α2) and H ∶ α2 = α3, then cell(transport H U) =

appoint H ○ cell U.

Proof of Proposition 7.4.1. By instantiating Lemma 7.4.2 with univ ¬, it suffices to check

that cell X = appoint(univ ¬). Observe that the unitary matrix X is equal to the matrix

transportUMatrix(Bool,−) (univ ¬) I. Then

cell(transportUMatrix(Bool,−) (univ ¬) I) = appoint(univ ¬) ○ cell I by Lemma 7.4.3

= appoint(univ ¬) by Proposition 7.3.2.

146

This technique does not extend to other equivalences such as swap ∶ ∏αβ,α × β →

β × α. Lemma 7.4.2 tells us how s̃wap behaves on classical states: s̃wap # put (a, b) =

put (b, a). But Equation (SWAP-intro) is even stronger, stating that for any e1 and e2,

s̃wap # (e1, e2) ∼q (e2, e1). Similarly, the elimination form of Lemma 7.4.2 tells us measuring

both components of s̃wap # e, where e is a pair of qubits, is the same as measuring e and

then swapping its arguments. However, Equation (SWAP-elim) doesn’t ask that we measure

both qubits, only that we eliminate the pair:

let (x, y) ∶= s̃wap # e in e′ ∼q let (x, y) ∶= e in e′.

We can think of swap’s behavior as acting on a state whose structure is only partially

known, corresponding to the parametric polymorphism of its underlying function swap.

Our solution, then, is to define a sort of partial initialization and partial measurement that

generalizes this notion for swap and other polymorphic functions.

7.4.1 Partial initialization and measurement

Consider linear types with the addition of type variables X ∶ TVar:

σ ∶∶=X ∣ Lower α ∣ σ1 ⊗ σ2 ∣ σ1 ⊕ σ2.

We call these open linear types. Given a map m ∶ TVar → Type, we can define a basis set

corresponding to σ, written [σ]m, as shown in Figure 7.4.

Let m ∶ TVar → Type and let Var be the constant map λ .Var. Then every b ∶ [σ]Var

corresponds to a typing context γmσ (b), as well as a term using these variables: if ∆ = γmσ (b)

then ∆ ⊢QNQ init
m
σ b ∶ point [σ]m is called generalized initialization, as defined in Figure 7.4.

147

[X]m ≡mX
[Lower α]m ≡ α
[σ1 ⊗ σ2]m ≡ [σ1]m × [σ2]m

[σ1 ⊕ σ2]m ≡ [σ1]m + [σ2]m

γmX (x ∶ Var) ≡ x ∶ point(mX)
γmLower α(a ∶ α) ≡ ∅
γmσ1⊗σ2(b1, b2) ≡ γ

m
σ1(b1), γ

m
σ2(b2)

γmσ1⊕σ2(inl b1) ≡ γσ1(b1)
γmσ1⊕σ2(inr b2) ≡ γσ2(b2)

initmX x ≡ x
initmLower α a ≡ put a

initmσ1⊗σ2 (b1, b2) ≡ (initmσ1 b1,init
m
σ2 b2)

initmσ0⊕σ1(inl b0) ≡ ι0(init
m
σ0 b0)

initmσ0⊕σ1(inr b1) ≡ ι1(init
m
σ1 b1)

matchX e with bs ≡ bs x{e/x} where x is fresh

matchLower α e with bs ≡ e >! bs

matchσ1⊗σ2 e with bs ≡ let (x1, x2) ∶= e in
matchσ1 x1 with λb1. matchσ2 x2 with λb2. bs(b1, b2)

matchσ0⊕σ1 e with bs ≡ case e of

⎧⎪⎪⎨⎪⎪⎩

ι0x0 → matchσ0 x0 with λb0. bs(inl b0)
ι1x1 → matchσ1 x1 with λb1. bs(inr b1)

Figure 7.4: Operations on open linear types

148

Open linear types also describe a way to eliminate terms of type point [σ]m:

∆ ⊢QNQ e ∶ point [σ]m bs ∶ ∏
b∶[σ]Var

γmσ (b),∆′ ⊢QNQ − ∶ q

∆,∆′ ⊢QNQ matchσ e with bs ∶ q

The relation σ τ of equivalence of linear types can be extended to open linear types

to mean that [σ]m ≅ [τ]m for every m. For example, the equivalence X ⊗ Y Y ⊗X is

given by λm. λ(x, y).(y, x).

Whenever f ∶ σ τ and b ∶ [σ]Var, the typing contexts γmτ (fb) and γmσ (b) are identical;

the following section develops the proof of this proposition.

7.4.2 Equivalence of typing contexts for equivalent open linear types.

This section develops a proof of the following property of open linear types:

Lemma 7.4.4. If f ∶ σ τ then for every b ∶ [σ]Var there is a path γmτ (fb) = γmσ (b).

The proof depends on the observation that open type equivalence σ τ is equivalent

to the inductively defined relation σ ≋ τ presented in Figure 7.5. It is easy to check that

every proof f ∶ σ ≋ τ corresponds to an equivalence f̂ ∶ σ τ , and it is also easy to check

that Lemma 7.4.4 follows for inductively-generated equivalences f ∶ σ ≋ τ .

Lemma 7.4.5. If f ∶ σ1 ≋ σ2 and b ∶ [σ]Var, then γmτ (f̂ b) = γmσ (b).

Proof. By induction on f .

To complete the proof of Lemma 7.4.4 we need to show that σ τ implies σ ≋ τ , which

is not trivial. The argument proceeds in two steps:

1. Every open linear type σ corresponds to one in a normal form Nσ such that σ ≋ Nσ.

2. If Nσ Nτ then Nσ ≋ Nτ .

Thus if σ τ then by (1) it is the case that σ ≋ Nσ and τ ≋ Nτ . This implies σ Nσ

and τ Nτ , and so Nσ σ τ Nτ . By (2) we can conclude σ ≋ Nσ ≋ Nτ ≋ τ .

149

σ ≋ σ
refl

σ1 ≋ σ2
σ2 ≋ σ1

symm
σ1 ≋ σ2 σ2 ≋ σ3

σ1 ≋ σ3
trans

σ1 ≋ σ2 τ1 ≋ τ2
σ1 ⊗ τ1 ≋ σ2 ⊗ τ2

cong⊗
σ1 ≋ σ2 τ1 ≋ τ2
σ1 ⊕ τ1 ≋ σ2 ⊕ τ2

cong⊕

σ1 ⊗ σ2 ≋ σ2 ⊗ σ1 (SWAP⊗)

σ1 ⊕ σ2 ≋ σ2 ⊕ σ1 (SWAP⊕)

σ1 ⊗ (σ2 ⊗ σ3) ≋ (σ1 ⊗ σ2) ⊗ σ3 (ASSOC⊗)

σ1 ⊕ (σ2 ⊕ σ3) ≋ (σ1 ⊕ σ2) ⊕ σ3 (ASSOC⊕)

σ1 ⊗ (σ2 ⊕ σ3) ≋ (σ1 ⊗ σ2) ⊕ (σ1 ⊗ σ3) (DISTR)

Lower α1 ⊗ Lower α2 ≋ Lower α1 × α2 (Lower⊗)

Lower α1 ⊕ Lower α2 ≋ Lower α1 + α2 (Lower⊕)

Lower () ⊗ σ ≋ σ (lunit⊗)

Lower Void⊕ σ ≋ σ (lunit⊕)

Lower Void⊗ σ ≋ Lower Void (LZERO)

Figure 7.5: Inductive presentation of open type equivalence.

Normal linear types N have the following structure:

(Lower α1 ⊗X1
1 ⊗X1

2 ⊗⋯⊗X1
n1

) ⊕⋯⊕ (Lower αm ⊗Xm
1 ⊗⋯⊗Xm

nm
)

Proposition 7.4.6. For every σ, there is a normal linear type Nσ such that σ ≋ Nσ.

Proof. By induction on σ.

Now, let f ∶ N N ′ where

N = ⊕
1≤i≤n

(Lower αi ⊗Xsi) and N ′ = ⊕
1≤j≤n′

(Lower βj ⊗ Ysj)

where each Xsi and Ysj are ⊗-separated sequences of type variables. In particular, that

means f has the form

f ∶ Π(m ∶ TVar→ Type), Σ(i ∶ Nn), αi ×m(Xsi) ≅ Σ(j ∶ Nn′), βj ×m(Ysj).

150

Let Rf ⊆ P(Nn ×Nn′) be a relation defined as follows:

(i, j) ∈ Rf ↔ Σ(a ∶ αi)(b ∶ βj), f(λ .())(i, a) = (j, b)

That is, fλ .() has type Σi, αi ≅ Σj, βj and (i, j) ∈ Rf says that there is some a ∶ αi that f

maps to some b ∶ βj .

Importantly, this implies a broader property by a parametricity argument:

Proposition 7.4.7. For any m1 and m2 of type TVar→ Type, and for a ∶ αi, x1 ∶m1(Xsi),

and x2 ∶m2(Xsj),

π1(fm1(i, a, x1)) = π1(fm2(i, a, x2)) and π2(fm1(i, a, x1)) = π2(fm2(i, a, x2)).

Proof. Follows from the abstraction theorem (Uemura, 2017).

Lemma 7.4.8. If (i, j) ∈ Rf then Xsi ≋ Ysj.

Proof. First, observe that Xsi Ysi. For a fixed m, let x ∶ m(Xsi). Now, take a to be

the element of αi witnessed by (i, j) ∈ Rf . Then by Proposition 7.4.7 we know that there

exists some (unique) b ∶ βj and y ∶ m(Ysj) such that fm(i, a, x) = (j, b, y). The map x ↦ y

is in fact an equivalence.

It is easy to see, then, that Xsi ≋ Ysj , by induction on the sizes of Xsi and Ysj .

Finally, we can prove the main property of this section.

Lemma 7.4.4. The proof is by induction on n + n′. We consider five cases: either Rf is an

isomorphism, or it is either not functional, not well-defined on all input, not injective, or

not surjective.

1. Suppose Rf is an isomorphism. Then, observe that whenever (i, j) ∈ Rf , we have

αi ≅ βj . This isomorphism is witnessed by the map a ↦ π2(fλ .()(i, a)); since Rf is

injective, we can be sure that this value is in βj . Then, applying this fact as well as

151

Lemma 7.4.8 we have that

N = ⊕
1≤i≤n

(Lower αi ⊗Xsi)

= ⊕
1≤i≤n

(Lower βRf (i) ⊗Xsi)

≋ ⊕
1≤i≤n

(Lower βRf (i) ⊗ YsRf (i)) ≋ N
′

2. Suppose Rf is not functional, meaning that there exits some (i, j1) ∈ Rf and (i, j2) ∈

Rf with j1 ≠ j2. We know Ysj1 ≋Xsi ≋ Ysj2 by Lemma 7.4.8, so we have that

N ′ ≋ (Lower βj1 ⊗ Ysj1) ⊕ (Lower βj2 ⊗ Ysj2) ⊕ ⊕
j≠j1,j2

(Lower βj ⊗ Ysj)

≋ (Lower βj1 + βj2 ⊗ Ysj1) ⊕ ⊕
j≠j1,j2

(Lower βj ⊗ Ysj)

Call this new normal type N ′′. We still have N ′′ N , but the number of clauses

of N ′′ is smaller than that of N , so we can invoke the induction hypothesis to show

N ′′ ≋ N and thus by transitivity, N ≋ N ′.

3. IfRf is not injective, we invoke a similar argument to the case thatRf is not functional

by reducing the number of clauses of N instead of N ′.

4. Suppose Rf is not well-defined on its domain, meaning that there is some i0 not in

the domain of Rf . Observe first that αi0 must be equal to the empty type, Void.

If not, then there is some a ∶ αi0 , and let j = π1(f(i0, a)); we have (i0, j) ∈ Rf , a

152

contradiction. Thus

N ≋ (Lower αi0 ⊗Xsi0) ⊕ ⊕
i≠i0

(Lower αi ⊗Xsi)

≋ (Lower Void⊗Xsi0) ⊕ ⊕
i≠i0

(Lower αi ⊗Xsi)

≋ Lower Void⊕⊕
i≠i0

(Lower αi ⊗Xsi)

≋ ⊕
i≠i0

(Lower αi ⊗Xsi)

Again, call this new type N ′′, then by the induction hypothesis we have that N ′′ ≋ N ′,

and by transitivity N ≋ N ′.

5. IfRf is not surjective, the proof follows parallel to the case thatRf is not well-defined.

7.4.3 Axioms of partial initialization and measurement.

Recall that for f ∶ α ≅ β we write f̃ for appoint(univ(f)) of type (point α = point β). The

following two axioms describe how unitaries of this form interact with partial initialization

and measurement, completing the equational theory described in Section 7.2:

Axiom 7.4.9. Let f ∶ σ τ , and let b ∶ [σ]Var, ∆ ⊢QNQ e ∶ point [σ]m, and bs ∶

∏b′∶[τ]Var ∆′, γmτ (b′) ⊢QNQ − ∶ q. Then

f̃m # initmσ b ∼q initmτ (fVarb) (U-intro)

matchτ (f̃m # e) with bs ∼q matchσ e with bs ○ fVar (U-elim)

Definition 7.4.10. We define the relation e1 ≈q e2 on linear expressions as

≈q ≡ ∼α ∪ ∼β ∪ ∼η ∪ ∼cc ∪ ∼q

153

SWAP # (x, y) ≡ SWAP # initX⊗Y (x, y) ∼q initY ⊗X(swap(x, y))
≡ initY ⊗X (y, x)
≡ (y, x)

let (y, x) ∶= SWAP # e in e′ ≡ matchY ⊗X (SWAP # e) with λ(y, x). e′

∼q matchX⊗Y e with λ(x′, y′). (λ(y, x). e′)(swap(x′, y′))
≡ matchX⊗Y e with λ(x, y). e′

≡ let (x, y) ∶= e in e′

Figure 7.6: Proofs of Equations SWAP-intro and SWAP-elim.

We write e1 ≈ e2 for equality modulo ≈q, i.e., the type [e1]≈q = [e2]≈q .

7.4.4 Instances of equational axioms

Proposition 7.4.11 (Equations (SWAP-intro) and (SWAP-elim)). Let SWAP be the unitary

s̃wap, where swap is the equivalence λ(x, y).(y, x) of type X ⊗ Y Y ⊗X. Then

SWAP # (e1, e2) ≈ (e2, e1) (SWAP-intro) and

let (y, x) ∶= SWAP # e in e′ ≈ let (x, y) ∶= e in e′ (SWAP-elim).

Proof. Figure 7.6.

Proposition 7.4.12. Let CNOT be the unitary c̃not, where cnot is the equivalence

λ(b, b′). (b,if b then ¬b′ else b′)

of type Bool × Bool ≅ Bool × Bool. Then:

CNOT # (put b, e) ≈ (put b,if b then X # e else e) (CNOT-intro)

let (! , y) ∶= CNOT # e in e′ ≈ let (!b, y′) ∶= e in if b then e′{X # y′/y} else e′{y′/y}

(CNOT-elim)

154

Proof. Let DISTR ∶ Lower Bool⊗X X ⊕X be defined by the equivalence

λ(b, x). if b then inr x else inl x.

From Equation (U-intro) we can derive that for any boolean b and expression e, we have

DISTR # (put b, e) ∼q if b then ι1 e else ι0 e and
DISTR−1 # (ι0e) ∼q (put false, e)

DISTR−1 # (ι1e) ∼q (put true, e)

As a matrix, CNOT is equal to DISTR−1 ○ (I ⊕X) ○ DISTR. Thus,

CNOT # (put b, e)

= DISTR−1 # (I ⊕X) # DISTR # (put b, e) (U-compose)

≈ DISTR−1 # (I ⊕X) # if b then ι1 e else ι0 e (U-intro)

= if b then (DISTR−1 # (I ⊕X) # ι1 e) else (DISTR−1 # (I ⊕X) # ι0 e)

= if b then (DISTR−1 # ι1(X # e)) else (DISTR−1 # ι0(I # e)) (U-⊕-intro)

≈ if b then (put true,X # e) else (put false, e) (U-intro)

= (put b,if b then X # e else e)

The proof of Equation (CNOT-elim) follows similarly.

7.5 Denotational Semantics

To extend the denotational semantics of Section 6.4 to the language described in this chap-

ter, it suffices to give a semantics for sums.

The semantics of ∆ ⊢QNQ ι1e ∶ σ1 ⊕ σ2, where ∆ ⊢QNQ e ∶ σ1, is given by a superoperator

from Density ∆ to Density(σ1 ⊕ σ2):

Jι1eK ≡ (I ⊕ 0)∗ ○ JeK

155

where 0 is the zero matrix, and similarly

Jι2eK ≡ (0⊕ I)∗ ○ JeK

Next, consider ∆,∆′ ⊢QNQ case e of (ι1x1 → e1 ∣ ι2x2 → e2) ∶ r where ∆ ⊢QNQ e ∶ q1 ⊕ q2,

∆′, x1 ∶ q1 ⊢QNQ e1 ∶ r, and ∆′, x2 ∶ q2 ⊢QNQ e2 ∶ r. Note that for ρ ∶ Jr1 ⊕ r2K and f1 ∶ Jr1K→ Jr′K

and f2 ∶ Jr2K→ Jr′K, there is a density matrix (f1⊕f2)(ρ) ∶ Jr′K given by f1(ι†1ρι1)+f2(ι
†
2ρι2).

Notice that JeK⊗ I∗ is a superoperator from Density(∆⊗∆′) to Density((σ1 ⊕ σ2) ⊗∆′)

Applying the unitary DISTR ∶ UMatrix((τ1 ⊕ τ2) ⊗ τ, (τ1 ⊗ τ) ⊕ (τ2 ⊗ τ)) leads to a density

matrix in Density((σ1 ⊗∆′) ⊕ (σ2 ⊗∆′)), and from there we can apply Je1K⊕ Je2K. Thus:

Jcase e of (ι1x1 → e1 ∣ ι2x2 → e2)K ≡ (Je1K⊕ Je2K) ○ DISTR∗ ○ (JeK⊗ I)

Theorem 7.5.1 (Soundness of Axiom 7.4.9). Let f ∶ σ τ and b ∶ [σ]Var; then

Jf̃m # initmσ bK = Jinitmτ (fVarb)K

and for ∆ ⊢QNQ e ∶ point [σ]m and bs ∶ ∏bs∶[τ]Var γmτ (b),∆′ ⊢QNQ − ∶ q, then

Jmatchτ (f̃m # e) with bsK = Jmatchσ e with bs ○ fVarK.

Proof. Section 7.4.2 introduces an inductively-defined relation σ ≋ τ that holds exactly

when σ ∼ τ . Thus, it suffices to prove this property with respect to f ∶ σ ≋ τ . First we check

the properties with respect to reflexivity, symmetry, transitivity, and congruence.

Reflexivity and symmetry follow directly from Proposition 7.3.5 and Proposition 7.3.4

respectively, and congruence follows from the congruence of density matrices.

156

For symmetry, we have:

Jf̃−1m # initmτ bK = Jf̃−1m # initmτ f(f−1b)K

= Jf̃m
−1

f̃m # initmσ f−1bK (Induction Hyp.)

= Jinitmσ f−1bK

Jmatchτ f̃−1m # e with bsK = Jmatchτ(f̃−1m # e) with bs ○ f−1 ○ fK

= Jmatchσ(f̃m # f̃−1m # e) with bs ○ f−1K (Induction Hyp.)

= Jmatchσ e with bs ○ f−1K

Next we check the behavior of the ten specific unitaries. For initialization we have:

JSWAP⊗ # (e1, e2)K = J(e2, e1)K

JSWAP⊕ # ιieK = Jι¬ieK

JASSOC⊗ # (e1, (e2, e3))K = J((e1, e2), e3)K

JASSOC⊕ # ι0eK = Jι0(ι0e)K

JASSOC⊕ # ι1(ι0e)K = Jι0(ι1e)K

JASSOC⊕ # ι1(ι1e)K = Jι1eK

JDISTR # (e1, ιie2)K = Jιi(e1, e2)K

JLower⊗ # (put a1,put a2)K = Jput (a1, a2)K

JLower⊕ # ιi(put a)K = Jput iniaK

Jlunit⊗ # (put (), e)K = JeK

Jlunit⊕(ι0(put a ∶ Void))K = Jinitmσ (case a of ())K

Jlunit⊕(ι1e)K = JeK

JLZERO # (put a ∶ Void, e)K = Jput aK

157

Notice that the two equations containing values a ∶ Void are vacuously true.

For measurement:

Jlet (x2, x1) ∶= SWAP⊗ # e in e′K = Jlet (x1, x2) ∶= e in e′K

Jcase(SWAP⊕ # e) of (ι0x0 → e0 ∣ ι1x1 → e1)K = Jcase e of (ι0x1 → e1 ∣ ι1x0 → e0)K

Jlet ((x1, x2), x3) ∶= (ASSOC⊗ # e) in e′K = Jlet (x1, (x2, x3)) ∶= e in e′K

JmatchX1⊕(X2⊕X3)(ASSOC⊕ # e) with bsK = Jmatch(X1⊕X2)⊕X3
e with bs ○ ASSOC⊕K

Jlet !(a, b) ∶= (Lower⊗ # e) in e′K = Jlet (!a, !b) ∶= e in e′K

Jcase(DISTR # e) of (ι0(x, y0) → e0 ∣ ι1(x, y1) → e1)K

= Jlet (x, y) ∶= e in case y of (ι0y0 → e0 ∣ ι1y1 → e1)K

JLower⊕ # e >! fK

= Jcase e of (ι0x0 → x0 >! f ○ inl ∣ ι1x1 → x1 >! f ○ inr)K

Jlet (!(), x) ∶= lunit⊗ # e in e′K = Jlet x ∶= e in e′K

Jlunit⊕eK = Jcase e of (ι0!(a ∶ Void) → ∣ ι1x→ x)K

JLZERO # e >! fK = Jlet (!a,) ∶= e in faK

Theorem 7.5.2 (Soundness of LUnit). ∆ ⊢QNQ e, e
′ ∶ LUnit, we have JeK = Je′K.

Proof. The type Density(LUnit) is the set of 1 × 1 density matrices, so it has only one

element–the identity matrix.

Theorem 7.5.3 (Soundness). If e1 ≈ e2 in the equational theory, then Je1K = Je2K.

7.6 Discussion

In this section we discuss a few of the non-essential design decisions made in this work.

Axiom schemes. Our equational theory prioritizes equations based on the structure

of the language, such as β, η, and commuting conversion rules. Such rules do not depend on

158

any quantum-specific principles, and their meta-theories are well-understood. In addition,

we prioritize collecting many axioms into a single axiom scheme, as we do for commuting

conversions and the equational axioms U-intro and U-elim. This approach gives concise

axioms that highlight the important structure, but requires more overhead to express.

Our axiom schemes are also somewhat redundant—for example, we proved the equations

for the “not” unitary X in Proposition 7.4.1, but they are a consequence of the U-intro

and U-elim axioms.

Unitaries. In this chapter we did not axiomatize unitary transformations, in order

to focus on the relationship between quantum and non-quantum data. However, axiom-

atizations based on universal (or even non-universal) sets of unitaries, such as those by

Matsumoto and Amano (2008) or Amy et al. (2018), could be incorporated with a higher-

inductive type (HIT). As a first approximation, we could define QType as a HIT that axiom-

atizes only the behavior of the Hadamard gate H, with the following constructors: a type

Qubit ∶ QType; a path H ∶ (Qubit = Qubit), and a higher path expressing that H† =H. Since

unitaries are still encoded in the path type of quantum types, the aspects of the equational

theory we derived by path induction would still hold, and it would allow finer control over

the ways by which unitaries approximate each other. On the other hand, working with

higher inductive types with many constructors can quickly become unwieldy.

7.7 Conclusion

In this chapter we have explored the QNQ calculus and its equational theory through the

lens of homotopy type theory. By using HoTT-specific features like higher inductive types

and univalence, we were able to simplify the theory and identify the unitary equivalence

axioms as the core of the equational theory.

In the next chapter we take a step back to look at QNQ more explicitly as a quantum

circuit language. We also implement this circuit language in Coq, and examine techniques

to embed a linear DSL in Coq.

159

CHAPTER 8

Qwire: Quantum circuits in Coq

Many state-of-the-art quantum programming languages are actually circuit description lan-

guages, where quantum programs are compiled to circuits, intended to be executed on a

quantum machine. This chapter describesQwire, a variation of the quantum/non-quantum

lambda calculus described in the previous chapters, tailored specifically for describing quan-

tum circuits. Qwire is implemented in the Coq proof assistant,14 and ongoing work by

Rand, Paykin, and Zdancewic (2017) explores how to use the implementation to formally

verify the correctness of quantum circuits.

Qwire differs from the QNQ calculus described in Chapter 6 in several key ways.

- While QNQ can apply arbitrary unitary transformations to qubits, Qwire can apply

both unitary and non-unitary gates. In particular, initialization and measurement will be

implemented as gates instead of as primitive operations, so that gate application is the

only domain-specific component ofQwire. The set ofQwire gates is shown in Figure 8.1.

- At its core, a Qwire circuit is just a sequence of gate applications, with the addition

of >! bindings to interact with the host language. In the QRAM model of quantum

computing, a >! operation pauses execution of the circuit on the quantum computer,

sends measurement results to the classical computer, and resumes execution of the circuit

once the classical computer has processed the results.

- While QNQ can embed arbitrary host-language data in the linear language using the put

constructor, such data has no place on a quantum circuit. Qwire does not include the

14https://github.com/jpaykin/QWIRE

160

https://github.com/jpaykin/QWIRE

put constructor, and the only way to construct values of type Lower α is by applying

initialization or measurement gates.

- Qwire is implemented in Coq, which has powerful automation techniques that we harness

to check linear typing judgments. For the sake of this chapter, we assume the reader is fa-

miliar with the basic syntax of Coq and interactive theorem proving; for more background

we refer the reader to Pierce et al. (2016).

- The rest of this dissertation uses intrinsic typing judgments for expressions, where the

type of expressions is LExp ∆ τ . In comparison, the Coq implementation uses an extrinsic

typing judgment Typed_Circ ∆ τ c to characterize that ∆ ⊢ c ∶ τ for a weakly-typed circuit

c. The extrinsic judgment makes it easier to develop the meta-theory and semantics of

Qwire in Coq because of the way Coq handles dependent pattern matching.

The Qwire project illustrates two important points about the LNL embedded program-

ming model. It serves as a case study for implementing the LNL framework in Coq, and it

shows how variations of the basic model—in this case, eliminating put and allowing only

first-order functions—are still expressive enough and practical enough for domain-specific

applications.

In the remainder of this chapter, we describe the implementation of Qwire in Coq.

Section 8.1 presents the syntax and typing rules of Qwire, and Section 8.2 describes the

details of linear type checking in Coq. Section 8.3 formally establishes the relationship

between Qwire and QNQ, showing how to define composition and function application on

top of Qwire. Finally, Section 8.4 discusses some design decisions and related work.

8.1 The Qwire circuit language

In this section we describe the Qwire circuit language.

Linear types are defined as an inductive data type.

Inductive LType := Qubit | Lower α | LUnit | Tensor : LType → LType → LType.

Notation "σ1 ⊗ σ2" := (Tensor σ1 σ2).

Definition Bit := Lower Bool.

161

Inductive Unitary : WType → Set :=

| H : Unitary Qubit (* Hadamard gate *)

| X : Unitary Qubit (* Not gate *)

| ⋯ (* Other single qubit unitaries *)

| ctrl {σ} : Unitary σ → Unitary (Qubit ⊗ σ) (* quantum control *)

| bit-ctrl {σ} : Unitary σ → Unitary (Bit ⊗ σ) (* classical control *)

| transpose {σ} : Unitary σ → Unitary σ (* conjugate transpose *).

Inductive Gate : WType → WType → Set :=

| unitary {σ} : Unitary σ → Gate σ σ
| init : Bool → Gate LUnit Qubit (* qubit initialization *)

| new : Bool → Gate LUnit Bit (* bit initialization *)

| meas : Gate Qubit Bit (* measurement *)

| discard : Gate Bit LUnit. (* discard a classical bit *)

Coercion U : Unitary ↣ Gate.

Figure 8.1: Unitary and non-unitary gates in Qwire. Different gate sets could have been
chosen, for example by picking a different universal set of unitary gates, or by allowing
arbitrary circuits to be frozen as gates, which is a feature allowed by many practical circuit
languages. Rennela and Staton (2018) propose some extensions to Qwire that expand the
gate set to add sums and recursive data types.

We use notations like σ1 ⊗ σ2 liberally in the development to make code more legible. In

addition, we write Bit to refer to the type Lower Bool. Note that in the Coq development

online, we refer to linear types as wire types, and include only Bit instead of Lower α. To

keep types consistent between Qwire and QNQ, we use the more general type Lower α in

this presentation.

8.1.1 Patterns, and extrinsic typing judgments

A Qwire circuit is a sequence of gates applied to patterns of wire variables, where a pattern

is a nested tuple of bit- and qubit-valued variables. The type of patterns of type σ is written

Pat σ.

Inductive Pat : LType → Set :=

| unit : Pat LUnit

| qubit : Var → Pat Qubit

| bit : Var → Pat Bit

| pair {σ1 σ2} : Pat σ1 → Pat σ2 → Pat (σ1 ⊗ σ2).

162

Notice that the type of patterns is not indexed by a typing context. Instead, we check the

linearity of typing contexts using an extrinsic predicate, written ∆ ⇒Q p : σ.

Inductive Types_Pat : Ctx → ∀ σ, Pat σ → Set :=

| types_unit : ∅ ⇒Q unit : LUnit

| types_qubit {x ∆} : ∆ = singleton x Qubit → ∆ ⇒Q qubit x : Qubit

| types_bit {x ∆} : ∆ = singleton x Bit → ∆ ⇒Q bit x : Bit

| types_pair {∆1 ∆2 ∆ σ1 σ2} p1 p2 :

∆ == ∆1 ● ∆2 →

∆1 ⇒Q p1 : σ1 → ∆2 ⇒Q p2 : σ2 →

∆ ⊢Q pair p1 p2 : σ1 ⊗ σ2

where "∆ ⇒Q p : σ" := (Types_Pat ∆ σ p).

In Section 8.2 we describe the implementation of typing contexts ∆ ∶ Ctx. For now, it

suffices to know that singleton x σ is the singleton typing context x ∶ σ, and the judgment

∆ == ∆1 ● ∆2 encodes the fact that ∆1 is disjoint from ∆2 and ∆ = ∆1,∆2.

8.1.2 Circuits and boxes

A circuit in Qwire is either an output pattern of wires, a gate application, or a >!

binding, which here we call dynamic lifting, following the quantum programming litera-

ture (Green et al., 2013b). We use higher-order abstract syntax for variable binding in

gate applications, but using Coq notations we are able to write gate_ p2 ← g # p1; c' for

gate g p1 (fun p2 ⇒ c').

Inductive Circuit (σ : LType) :=

| output : Pat σ → Circuit σ

| gate {σ1 σ2} : Gate σ1 σ2 → Pat σ1 → (Pat σ2 → Circuit σ) → Circuit σ

| lift : Pat Bit → (Bool → Circuit σ) → Circuit σ.

Notation "gate_ p2 ← g # p1 ; c'" := (gate g p1 (fun p2 ⇒ c')).

Notation "p >! f" := (lift p f).

The only patterns of type Lower α are for Bit = Lower Bool, so for simplicity we restrict

the lift constructor to bits.

The linear typing judgment for circuits is written ∆ ⊢Q C : σ.

163

Inductive Types_Circuit : Ctx → ∀ σ, Circuit σ → Set :=

| types_output {∆ σ} {p : Pat σ} : ∆ ⇒Q p : σ → ∆ ⊢Q output p : σ

| types_gate {∆ ∆1 ∆1' σ1 σ2 σ}

{f : Pat σ2 → Circuit σ} {p1 : Pat σ1} {g : Gate σ1 σ2} :

∆1 ⇒Q p1 : σ1 →

∆ ⊢Q f :Fun →

∆1' == ∆1 ● ∆ →

∆1' ⊢Q gate g p1 f : σ

| types_lift {∆1 ∆2 ∆ σ} {p : Pat Bit} {f : bool → Circuit σ} :

∆1 ⇒Q p : Bit →

(∀ b, ∆2 ⊢Q f b : σ) →

∆ == ∆1 ● ∆2 →

∆ ⊢Q lift p f : σ

where "∆ ⊢Q C : σ" := (Types_Circuit ∆ σ C)

where "∆ ⊢Q f :Fun" := (forall ∆0 ∆0' p0, ∆0' == ∆0 ● ∆ →

∆0 ⇒Q p0 : _ →

∆0' ⊢Q f p0 : _).

If f : Pat σ → Circuit τ , then the notation ∆ ⊢Q f :Fun means that f is a well-typed function:

given a pattern ∆0 ⇒_q p : σ such that ∆�∆0, then ∆,∆0 ⊢Q f p : τ .

Boxed circuits in Qwire correspond to the first-order functions in QNQ, and are rep-

resented as a function from patterns to circuits.

Inductive Box σ1 σ2 := box : (Pat σ1 → Circuit σ2) → Box σ1 σ2.

Notation "box_ p ⇒ c" := (box (fun p ⇒ c)).

For b ≡ box f : Box σ1 σ2, we write unbox b p for f p.

We say a box is well-typed if it uses only the variables introduced by its function, and

the underlying circuit is also well-typed.

Definition Typed_Box {σ1 σ2 : LType} (b : Box σ1 σ2) :=

∀ ∆ (p : Pat σ1), ∆ ⇒Q p : σ1 → ∆ ⊢Q unbox b p : σ2

164

8.2 Linear type checking in Coq

One of the hardest parts of implementing a linear embedded language is checking the lin-

earity constraints. As we saw in Chapter 4, linear type checking is multi-directional, as

some typing contexts must be checked and others must be inferred in any particular typing

derivation.

For example, consider type checking the judgment ∆′
1 ⊢Q gate p2 ← g # p1; c ∶ σ.

Although we know the value of the typing context ∆′
1, in order to apply the types_gate

constructor, we have to guess the values of the typing contexts ∆ and ∆1. From the value

of p1, we will be able to infer the value of ∆1; we can then use the judgment ∆1' == ∆1 ● ∆

to infer the value of ∆.

In Coq we can facilitate this sort of bidirectional type checking using EVars, unknown

variables that will be filled in over the course of a proof with concrete values.

In order to solve goals of linear type constraints, Robert Rand and I developed a stan-

dalone library for automatically solving linearity constraints, available on GitHub.15 The

library contains a theory of linear typing contexts and automation techniques for discharging

goals of linearity constraints in Coq.

8.2.1 Partial commutative monoids

The library is based on the theory of typing contexts as a partial commutative monoids

(PCM) (Wehrung, 2017). A PCM is a commutative monoid with a zero undefined element

satisfying certain laws.

Definition 8.2.1. A commutative monoid (α,⊺, ●) consists of a type α with an element

⊺ ∶ α and a binary operation ● ∶ α → α → α satisfying:

⊺ ● a = a (●-⊺)

a ● (b ● c) = (a ● b) ● c (●-assoc)

a ● b = b ● a (●-commute)

15https://github.com/jpaykin/LinearTypingContexts

165

https://github.com/jpaykin/LinearTypingContexts

A partial commutative monoid (α,⊺,�, ●) consists of a commutative monoid (α,⊺, ●), along

with an element � ∶ α representing undefined values, such that:

a ● � = � (●-�)

Example 8.2.2. Let IdxMap be the type list (option WType), representing a partial map

from indices i in the list ∆ to wire types ∆[i]. We define the partial merge operation

mergeIdxMap on IdxMap as follows:

Fixpoint mergeIdxMap (i1 i2 : IdxMap) : option IdxMap :=

match i1, i2 with

| [], _ ⇒ Some i2

| _, [] ⇒ Some i1

| None :: i1', None :: i2' ⇒ consOption None (mergeIdxMap i1' i2')

| Some σ1 :: i1', None :: i2' ⇒ consOption (Some σ1) (mergeIdxMap i1' i2')

| None :: i1', Some σ2 :: i2' ⇒ consOption (Some σ2) (mergeIdxMap i1' i2')

| Some _ :: _, Some _ :: _ ⇒ Nothing

end.

where consOption a ls maps (cons a) over ls : option (list α).

We write IdxCtx for option IdxMap, which forms a partial commutative monoid with the

following components:

⊺ := Some []

� := Nothing

∆1 ● ∆2 := match ∆1, ∆2 with

| Some i1, Some i2 ⇒ mergeIdxMap i1 i2

| _, _ ⇒ Nothing

end

The structure of a PCM tells us how to solve goals of the form a = b, where a, b ∶ α are

permutations and associations of the same set of elements. The Coq tactic monoid solves

166

goals of this form, such as:

Lemma PCM_abc : ∀ a b c, a ● b ● c = c ● a ● ⊺ ● b.

Proof. intros. monoid. Qed.

Because we will sometimes be reasoning about unknown contexts represented as EVars,

the monoid tactic can solve goals with at most one EVar. Here, the tactic eexists introduces

an EVar, which the monoid tactic fills in with b.

Lemma PCM_evar : ∀ a b, exists unknown, unknown ● a = a ● b.

Proof. intros. eexists. monoid. Qed.

The monoid tactic is based on Chlipala’s reflection technique (Chlipala, 2013, Chapter

15), and we have extended it to partial commutative monoids that may also contain EVars.

8.2.2 Validity

We say that a typing context is valid if it is not equal to the undefined element �. Instead

of reasoning directly about the negative assertion ∆ ≠ �, we reformulate this judgment as a

positive assertion is_valid ∆.

Definition is_valid ∆ := ∆ <> �.

Validity satisfies the following properties:

- ⊺ is valid; and

- ∆1 ● ∆2 ● ∆3 is valid if and only if (∆1 ● ∆2), (∆1 ● ∆3), and (∆2 ● ∆3) are all valid.

Notice that the merge of ∆1 and ∆2 should always be valid provided their domains

are disjoint. To capture this fact, we introduce two additional properties that describe the

validity of singleton typing contexts of the form singleton x τ .

- every singleton context singleton x σ is valid; and

- singleton x σ ● singleton y τ is valid if and only if x ≠ y.

We say that a kind of typing contexts is well-formed if it satisfies these four rules.

167

Example 8.2.3. The kind IdxCtx ≡ option IdxMap is well-formed, where a singleton context

is defined as

singleton 0 σ ≡ Some [Some σ]

singleton (n+1) σ ≡ consOption None (singleton n σ)

The tactic validate solves goals of the form is_valid ∆. Unlike monoid, validate cannot

handle goals that contain an EVar, which might be filled in with the undefined element �.

Lemma valid_test : ∀ x y z a b c, x <> y → y <> z → x <> z →

is_valid (singleton x a ● singleton y b ● singleton z c).

Proof. validate. Qed.

In the typing rules, we often combine judgments of the form ∆ = ∆1●∆2 and is_valid ∆,

so we introduce notation for such goals.

Notation "∆ == ∆1 ● ∆2" := (is_valid ∆ ∧ ∆ = ∆1 ● ∆2) (at level 75).

The tactic solve_ctx solves goals of this form.

Ltac solve_ctx := split; [validate | monoid].

8.2.3 The type check tactic.

The type_check tactic uses solve_ctx and other tactics to discharge goals of the form

∆ ⇒Q p : σ, ∆ ⊢Q c : τ , ∆ ⊢Q f :Fun, and Typed_Box b. It does this by repeatedly calling

econstructor, which automatically applies a constructor from the appropriate inductively-

defined data type, introducing EVars for the values of unknown typing contexts. The

type_check tactic will not apply induction or other high-level proof techniques, but if a

circuit is concrete, it can discharge the goal automatically in most cases.

8.3 Surface language

In this section we show an equivalence between QNQ expressions and Qwire circuits. The

translation from Qwire to QNQ endows Qwire programs with a denotational semantics,

168

and the translation from QNQ to Qwire provides a surface language to Qwire that is

compositional and easy to use.

8.3.1 Qwire to QNQ translation

To reason about the correctness of Qwire, we start by translating Qwire patterns ∆ ⇒Q

p ∶ σ into QNQ expressions ∆ ⊢QNQ p
+ ∶ σ as follows:

x+ ≡ x

()+ ≡ ()

(p1, p2)+ ≡ (p+1 , p+2)

Since QNQ only has unitary gates, classical gates in Qwire will be translated to QNQ

boxes.

(unitary U)+ ≡ box x⇒ U # x

(init b)+ ≡ box () ⇒ init b

(meas)+ ≡ box x⇒ meas x

(discard)+ ≡ box x⇒ x >! λ .()

For convenience, we define a generalized let binding let p ∶= e in e′ on QNQ expressions

by induction on p such that

let (p1, p2) ∶= e in e′ ≡ let (x1, x2) ∶= e in let p1 ∶= x1 in let p2 ∶= x2 in e′.

Qwire circuits ∆ ⊢Q c ∶ σ and boxes b ∶ Box σ τ are translated to QNQ expressions

169

∆ ⊢QNQ c
+ ∶ σ and boxes b+ ∶ Box σ τ respectively.

(output p)+ ≡ p+

(gate p2 ← g # p1; c
′)+ ≡ let p2 ∶= g+ $ p+1 in (c′)+

(p >! f)+ ≡ p+ >! λa.(fa)+

(box p⇒ c)+ ≡ box x⇒ let p ∶= x in c+

Formally, composition is defined in Coq as follows:

8.3.2 QNQ to Qwire translation

In the other direction, every QNQ expression ∆ ⊢QNQ e ∶ σ can encoded as a Qwire circuit

∆ ⊢Q e
− ∶ σ.

We start by defining the composition of two Qwire circuits. Given ∆ ⊢Q c ∶ σ and

∆′, x ∶ σ ⊢Q c
′ ∶ τ , we define ∆,∆′ ⊢Q let x← c; c′ ∶ τ as follows:

let x← output p; c′ ≡ c′{p/x}

let x← (gate p2 ← g # p1; c0); c′ ≡ gate p2 ← g # p1; let x← c0; c
′

let x← (p >! f); c′ ≡ p >! λa.let x← fa; c′

Formally, composition is defined as a coq function.

Fixpoint compose {σ τ} (c : Circuit σ) (f : Pat σ → Circuit τ) : Circuit τ :=

match c with

| output p ⇒ f p

| gate g p c' ⇒ gate g p (fun p' ⇒ compose (c' p') f)

| lift p c' ⇒ lift p (fun b ⇒ compose (c' b) f)

end.

Notation "let_ p ← c ; c'" := (compose c (fun p ⇒ c')).

We can verify that composition is well-typed with the help of the solve_ctx tactic.

Lemma compose_typing : forall ∆1 W (c : Circuit W),

170

∆1 ⊢ c :Circ →

forall ∆1' ∆ W' (f : Pat W → Circuit W'),

∆ ⊢ f :Fun →

∆1' == ∆1 ● ∆ →

∆1' ⊢ compose c f :Circ.

Proof.

intros ∆1 W c types_c.

induction types_c as [∆0 ∆0' p W

| ∆' ∆0 ∆0' w1 w2 w h p1 g

| ∆1 ∆2 ∆0 w p h];

intros ∆1' ∆ W' f types_f pf_merge.

- (* c = output p *)

subst. eapply types_f; eauto.

- (* c = gate g p c' *)

simpl. eapply types_gate; eauto; try solve_ctx. (* constructor *)

intros. eapply H; try eauto; solve_ctx; auto. (* induction hypothesis *)

- eapply types_lift_bit; eauto; solve_ctx. (* constructor *)

intros. eapply H; eauto; solve_ctx. (* induction hypothesis *)

Qed.

Figure 8.2 shows the negative translation on boxes and expressions, excluding those

of the form put a. Figure 8.3 shows how we can formally implement this translation by

defining syntactic sugar for QNQ syntax in Qwire.

8.3.3 Soundness

The QNQ translations are sound if they preserve equivalence in QNQ. We start with the

correctness of composition.

Lemma 8.3.1. If ∆ ⊢Q c ∶ σ and ∆′, x ∶ σ ⊢Q c
′ ∶ τ , then

(let x← c; c′)+ ∼ let x ∶= c+ in (c′)+.

171

x− ≡ output x
(let x ∶= e in e′)− ≡ let x← e−; (e′)−

()− ≡ output ()
(let () ∶= e in e′)− ≡ let () ← e−; (e′)−

(e1, e2)− ≡ let x1 ← e−1 ; let x2 ← e−2 ; output (x1, x2)
(let (x1, x2) ∶= e in e′)− ≡ let (x1, x2) ← e−; (e′)−

(U # e)− ≡ let x← e−; gate y ← U # x; output y

(init b)− ≡ gate x← init b # (); output x

(meas e)− ≡ let x← e−; gate y ← meas # x; output y

(f $ e)− ≡ let x← e−; unbox f− x

(e >! f)− ≡ let x← e−; lift x (λa.(fa)−)
(box x⇒ e)− ≡ box x⇒ e−

Figure 8.2: Translation of QNQ expressions and boxes to Qwire circuits and boxes.

(* apply a box to the output of a circuit *)

Definition apply_box {σ τ} (b : Box σ τ) (c : Circuit σ) : Circuit τ :=

match b with

| box f ⇒ let_ p ← c; f p

end.

Notation "b $ c" := (apply_box b c).

Lemma apply_box_WT : forall σ τ (b : Box σ τ) (c : Circuit σ) ∆,

Typed_Box b → ∆ ⊢ c :Circ → ∆ ⊢ b $ c :Circ.

(* coerce a gate to a box, so gates can be used wherever boxes are used *)

Definition boxed_gate {σ τ} (g : Gate σ τ) : Box σ τ :=

box_ p ⇒ gate g p output.

Lemma boxed_gate_WT {σ τ} (g : Gate σ τ) : Typed_Box (boxed_gate g).

Proof. type_check. Qed.

Coercion boxed_gate : Gate ↣ Box.

(* Tuples of circuits *)

Definition pair_circ {σ1 σ2} (c1 : Circuit σ1) (c2 : Circuit σ2)

: Circuit (σ1 ⊗ σ2) :=

let_ p1 ← c1; let_ p2 ← c2; output (p1,p2)

Notation "(x , y , .. , z)" := (pair_circ .. (pair_circ x y) .. z).

(* let! against arbitrary circuits *)

Definition lift_circ c f := let_ p ← c; lift p f.

Notation "c >! f" := (lift_circ c f).

Notation "lift_ a ← c ; c'" := (c >! fun a ⇒ c').

Figure 8.3: Implementing QNQ syntax in Qwire.

172

Proof. By induction on c. For c = output p, we have

(let x← output p; c′)+ ≡ (c′{p/x})+

∼β let x ∶= p in (c′)+.

For c = gate p2 ← g # p1; c0, we have

(let x← gate p2 ← g # p1; c0; c
′)+ ≡ (gate p2 ← g # p1; let x← c0; c

′)+

≡ let p2 ∶= g+ $ p1 in (let x← c0; c
′)+.

By the induction hypothesis, this is equivalent to let p2 ∶= g+ $ p1 in let x ∶= c+0 in (c′)+.

By η equivalence for let bindings, this is equivalent to

let x ∶= let p2 ∶= g+ $ p1 in c+0 in (c′)+ ≡ let x ∶= (gate p2 ← g # p1; c0)+ in (c′)+.

Finally, for c = p >! f , we have

(let x← p >! f ; c′)+ ≡ (p >! λa.let x← fa; c′)+

≡ p+ >! λa.(let x← fa; c′)+

∼ p+ >! λa.let x ∶= (fa)+ in (c′)+

∼ let x ∶= p+ >! λa.(fa)+ in (c′)+

≡ let x ∶= (p >! f)+ in (c′)+.

Theorem 8.3.2. For any QNQ expression ∆ ⊢QNQ e ∶ σ, we have (e−)+ ∼ e.

Proof. By induction on e, using Lemma 8.3.1. The proof is straightforward by unfolding

definitions, so we only illustrate two cases here.

173

For e = (e1, e2), we unfold definitions to obtain

(e1, e2)−+ ≡ (let x1 ← e−1 ; let x2 ← e−2 ; output (x1, x2))+.

Applying Lemma 8.3.1, we see this is equivalent to

let x1 ∶= e−+1 in let x2 ∶= e−+2 in (x1, x2).

By the induction hypothesis and β equivalences, this expression is equivalent to (e1, e2), as

expected.

For e = U # e0, we have

(U # e0)−+ ≡ (let x← e−0 ; gate y ← U # x; output y)+

≡ let x ∶= e−+0 in (gate y ← U # x; output y)+

∼ let x ∶= e0 in (gate y ← U # x; output y)+

∼ let x ∶=0 in let y ∶= U+ $ x in y

≡ (box x⇒ U # x) $ e0

∼ U # e0.

8.4 Discussion

Compared to other quantum circuit languages like Quipper, LIQUi∣⟩, and Q#, Qwire has

a number of advantages, which we discuss in this section.

Linear types. The embedded linear programming model provides strong static guaran-

tees about the correctness of Qwire circuits, as well as flexible access to host-language

data, for all the reasons discussed in this dissertation. The embedded linear framework also

allows us to formalize the semantics of Qwire inside the host language itself. The Qwire

implementation in Coq provides such a formalization (Rand et al., 2017), though we do not

discuss the details in this work.

174

Verification. The existence of a formal semantics in Coq enables the formal verification

of quantum properties. In the Coq development we have used the semantics to reason

about the state of prepared quantum systems like the Bell state or a coin flip, as well as the

equivalence of two circuits. We have also verified the soundness of several of the equational

rules described in Chapter 7.

Although formal verification of algorithms is time-consuming, in the case of quantum

computing the cost is likely worthwhile: quantum computing resources will be expensive for

the foreseeable future, debugging is doubly difficult in a quantum setting, and testing using

simulations is not scalable. The verified reversible compiler ReVerC (Amy et al., 2017) was

recently adapted for quantum circuits in Qwire by Rand et al. (2018). Other verification

techniques are based on Hoare logic (D’Hondt and Panangaden, 2006; Kakutani, 2009; Ying,

2011). LIQUi∣⟩ makes it possible to reason about the state of a quantum system, because

qubits in LIQUi∣⟩ are represented as pure state vectors. However, there does not seem to be

any formal verification or semantics of LIQUi∣⟩ programs; the language primarily focuses

on the optimization and simulation of large (up to 30 qubits) quantum systems.

Data structures. In Qwire we have seen how to organize linear data into length-indexed

lists n⊗σ using dependent types, and we can imagine other dependently-indexed data

structures being designed in the same way. By virtue of the dependently typed host lan-

guage, Qwire inherits such dependent types for free. In comparison, other quantum circuit

languages do not support dependent types, and they instead expose lists or other data struc-

tures to facilitate reasoning about families of circuits. In Quipper, for example, families of

circuits must be instantiated at a particular size at circuit generation time. InQwire this in-

stantiation is type directed—a family of circuits is given by the type∏n Box (n⊗σ) (n⊗σ),

and instantiating the size of the circuit is done by applying the function to an argument.

In LIQUi∣⟩, all programs operate over lists of qubits, so there is no way to specify a

single or two-qubit operation at the type level. Like Qwire, Q# can work with single

qubits as well as tuples or lists of qubits. Unlike Qwire, Q# cannot freely initialize and

discard qubits. Instead, qubits can be brought into scope using a borrowing statement,

175

where new qubits can be used inside the scope of the statement, but are freed at the end.

With respect to functions, Quipper allows higher-order functions that are eventually

compiled out of top-level circuits. However, they are harder to account for semantically, as

the standard semantic interpretations of quantum computing do not admit them. Qwire,

LIQUi∣⟩, and Q# allow only first-order functions, which we have found to be sufficient in

practice.

Bits versus Booleans. In Qwire we allow quantum circuits to contain bits of the type

Lower Bool, which can be coerced to Coq booleans using the >! operation. Quipper makes a

similar distinction between bits and booleans, where bits can be manipulated by the quan-

tum computer, but booleans must be processed by the accompanying classical computer.

Because the communication time between the classical and quantum computers will be high,

on-circuit operations like applying a bit-controlled unitary will be much more efficient than

using >! to extract the underlying boolean value and compute the value of the resulting

circuit. On the other hand, it is more convenient for programmers to work directly with

booleans. For example, the Quantum IO monad is a computational model where measure-

ment produces a monadic boolean value (Altenkirch and Green, 2010); we hypothesize that

this monad is exactly the linearity state monad LStateT [Qubit] α.

Linear embedded types for quantum computing. In general, the techniques for em-

bedded quantum programming languages described in the last three chapters are intended

to compliment the literature of existing quantum programming languages. The framework

for linear/non-linear EDSLs should extend to any number of quantum programming lan-

guages that use linear or substructural type systems. The framework should both make

linear types more accessible to existing embedded languages like Quipper, and also make

toy languages like the linear lambda calculus more practical.

176

CHAPTER 9

Future work

This dissertation has proposed linear/non-linear type theory as a framework in which to

develop, program, and reason about embedded domain-specific languages. We have devel-

oped several applications and implementations of the embedded LNL framework, but there

are also rich areas for future work.

9.1 Adapting LNL to other substructural type systems.

Many programming applications are based on substructural type systems that are varia-

tions of traditional linear logic. Substructural type systems form a lattice based on which

structural rules they allow. For example, linear type systems do not allow weakening or

contraction, but they do allow exchange—that variables in a type system can be used in

any order. The lattice of substructural type systems is shown in Figure 9.1.

The LNL model extends naturally to the lattice of substructural type systems. Reed

(2009) developed adjoint logic which, given a preorder of modes (M,≤) each correspond-

ing to different structural rules, assigns to each pair m ≤ n a pair of adjoint operators

Um≤n ⊣ Fn≥m, where Um≤n corresponds to Lower and Fn corresponds to Lift. Pfenning

and Griffith (2015) adapts adjoint logic with a type theory for polarized session types with

both linear and affine components, and Licata and Shulman (2016) extend adjoint type

theory to systems described by not just a pre-order, but a 2-category of modes. The richer

mode structure lets Licata et al. (2017) use adjoint operators for an even wider range of

substructural and modal type operators.

The embedded LNL type theory discussed in this dissertation should extend naturally to

177

intuitionistic
{c,w,e}

relevant
{c,e}

affine
{w,e}

linear
{e}

ordered
∅

∆′, x ∶ !σ, y ∶ !σ ⊢ e′ ∶ τ
∆, z ∶ !σ,∆′ ⊢ e′{z/x, z/y} ∶ τ

contraction

∆,∆′ ⊢ e ∶ τ
∆, x ∶ !σ,∆′ ⊢ e ∶ τ

weakening

∆, x1 ∶ σ1, x2 ∶ σ2,∆′ ⊢ e ∶ τ
∆, x2 ∶ σ2, x1 ∶ σ1,∆′ ⊢ e ∶ τ

exchange

Figure 9.1: Lattice of substructural type systems

an embedded adjoint framework. For one, if the linear EDSL were replaced with an affine,

relevant, or ordered EDSL, the usual Lift and Lower operators could still expose useful

host language data, libraries, and tools to the embedded language since the intuitionistic

mode lies above every other mode in Figure 9.1.

Future work could also explore how more complex structures of modes, such as those

introduced by Licata et al. (2017), could fit into an embedded framework. For example,

if multiple developers produced different substructural EDSLs, an embedded adjoint type

theory could provide a uniform way in which different languages interact.

Modal and temporal type systems. Adjoint type theory encompasses not just sub-

structural type systems, but also modal and temporal type systems (Reed, 2009). In S4

modal logic, the (co-)modality ∆ ⊢ e ∶ ◻σ is a proof of “necessarily σ”, i.e., e is a proof

that constructively exhibits a proof of σ. The rules of ◻σ mimic the rules of !σ, and so

can be partitioned into an adjunction between the fragment of necessary propositions and

the fragment of merely true propositions. A similar decomposition applies to the operator

“possibly σ”, written ◇σ, as well as the temporal operators “eventually σ” and “always σ”.

Substructural types for mutable state. Over the years, several substructural type

systems have arisen that adapt linear or affine type systems for particular programming

domains, and thus depart from the strict correspondence with substructural logic. For

178

example, Rust has an affine type system with the addition of borrowing, which lets mutable

references be temporarily shared when the relevant parties only access the data safely and

eventually relinquish ownership (Matsakis and Klock, 2014). Other ownership type systems

allow partial or full ownership of data to be transferred between owners (Clarke et al., 1998).

Uniqueness types, employed by languages such as Clean (Brus et al., 1987) and Idris

(Idris Community, 2017), enforce that there is at most one reference to a piece of data at

any given time; any unique type can be trivially promoted to a non-unique type. Uniqueness

logic, developed by Harrington (2001), formalizes the type system as a linear type system

that replaces !σ with σ∗, subject to weakening and contraction like !, but whose typing rules

are dual to !:

∆ ⊢ e ∶ σ

∆ ⊢ e∗ ∶ σ∗
*-I

∆1 ⊢ e ∶ σ∗ ∆2, x ∶ σ ⊢ e′ ∶ τ∗ ∆1�∆2

∆1,∆2 ⊢ let x∗ ∶= e in e′ ∶ τ∗
*-E

The type operator (−)∗ is a monad, not a comonad like !. Although Harrington (2001)

writes briefly about the relationship between linear and uniqueness logic, the relationship

is subtle and often a source of confusion. Benton (1995) cites the relationship between

uniqueness and linear types as a motivation for developing linear/non-linear logic, but that

goal has not entirely materialized. Perhaps an embedded uniqueness type system that uses

techniques from this thesis could provide a formal meta-theory in which to compare the two

systems.

Reasoning about mutable state. Through the Curry-Howard isomorphism, linear and

substructural type systems correspond closely with linear and substructural logics. These

logics have, in their own right, proven useful for reasoning about domain-specific languages

that may not themselves use linear types. Separation logic (Reynolds, 2002) is a popular

extension of Floyd/Hoare logic that enables modular reasoning about the state of a heap,

and the Linear Logical Framework (LLF) (Cervesato and Pfenning, 1996) is an extension

of LF (Harper et al., 1993) used for reasoning about systems with mutable state.

179

The embedded LNL framework shares many properties with LLF, such as the ability to

reason about effectful DSLs and the ability to use types that depend on non-linear values.

Future work could perhaps formalize an LLF-like system for an embedded LNL language.

9.2 Formalizing the theory of embedded languages.

In this thesis we worked inside the host language to reason about embedded linear languages,

but it is another question to formalize the theory of the embedded and host languages from

an external perspective. For example, every linear expression ∆ ⊢ e ∶ τ is also a host-

language term e ∶ LExp ∆ τ . In the context of Qwire (actually, a variation of Qwire

called EWire), Rennela and Staton (2018) proposes enriched category theory as a setting

for this type of analysis, and there is lots of space for additional study of embedded and

host language systems.

9.3 Variations to the structure of LNL

In the QNQ calculus of Chapter 6 we made two changes to the structure of Lift and Lower

in order to satisfy constraints of the domain spece. For example, in QNQ Lift is not a free

data type, but is derived as an instance of Box σ τ . In addition, Lower is restricted to only

finite types. We anticipate that other domains may require similar variations of the basic

LNL adjunction.

For example, Benton’s linear dependent type theory replaces the type Lower α with

a dependent binder F (x ∶ α).τ , which can be read as the dependent pair of a ∶ α and

e ∶ τ{a/x}. The type Lower α can be encoded as F (∶ α).LUnit.

9.4 Drawing on the host language

Embedded LNL is more than just an implementation strategy for linear/non-linear logic. As

we have seen in several places, the embedded structure allows us to use features of the host

language—monadic programming, dependent types, higher-inductive types—to do meta-

programming and meta-theory about the embedded language. Implementations of linear

EDSLs in other dependently-typed host languages could introduce powerful new abstrac-

180

tions. For example, Idris is a dependently-typed language with uniqueness types (Idris Com-

munity, 2017); perhaps its capacity for substructural types could give an elegant embed-

ding for full linear types. Scala provides limited support for dependent types (Odersky

et al., 2004); an LNL language embedded in Scala could take advantage of object-oriented

paradigms and target the JVM. OCaml also has support for GADTs, and provides a rich

module system and mutable state.

9.5 Shortcomings and outstanding problems

Embedded languages are not always the right solution for domain-specific programming

languages. EDSLs are often less efficient than native languages, and are often more awkward

to use.

Recently, more and more programming languages have begun to integrate some sub-

structural features into the built-in type checking of the language. Rust’s borrowing types

are perhaps the most widely-used example (Matsakis and Klock, 2014), which enforce mem-

ory safety in Rust. In addition to its uniqueness types, Idris has an experimental language

extension for full linear types based on McBride’s (2016) resource-based presentation of

linear logic.16 A similar extension for Haskell is also in developement (Bernardy et al.,

2017). However, these language extensions, inspired by resource-based linear logic, require

substantial changes to the base language and are not easily ported to new languages. They

are also fixed to a specific presentation of substructural types and cannot be adapted by

the user to fit their specific needs. Embedded languages, on the other hand, require no

changes to the host language, and can support a variety of different presentations of linear

or substructural types.

9.6 Conclusion

The strength of the embedded LNL framework is its ability to seamlessly integrate linear

and non-linear data. In this dissertation we have demonstrated the quality of this pro-

gramming model through a number of examples, including mutable state, IO, session types,

16https://www.idris-lang.org/idris-1-2-0-released/

181

and quantum computing. The domain of quantum computing in particular is an excel-

lent case study because prior work has so far failed to integrate three crucial components:

linear types, expressive embedded languages, and sound reasoning about the language’s

meta-theory.

Being able to reason about the meta-theory of embedded linear languages is a crucial

contribution of the embedded LNL framework. When working in a dependently-typed

host language, we can reason about the meta-theory of an embedded language without

having to reason about the entirety of the host language. We have developed several meta-

theoretic analyses of linear embedded languages—a categorical semantics in Chapter 5, a

denotational semantics for quantum computing in Chapter 6, and an equational theory for

quantum programs in Chapter 7.

We implemented the embedded LNL framework in Haskell (Chapter 4) and in Coq

(Chapter 8). These implementations demonstrate how different host languages affect the

tools available to the embedded language. For example, in Haskell we use the existing

type class inference mechanism to check linearity constraints, while in Coq we develop a

custom solver using user-defined proof tactics. In addition, features of the host language

like general recursion, Π-types, and axioms like univalence or higher inductive types affect

user experience in the embedded language.

Linear/non-linear type theory has proven itself to be a powerful framework for defining

linear EDSLs, and we hope the techniques demonstrated in this dissertation make linear

types more accessible and useful to programmers in years to come.

182

BIBLIOGRAPHY

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Constructing poly-

morphic programs with quotient types. In Mathematics of Program Construction, edited

by Dexter Kozen, pp. 2–15. Springer Berlin Heidelberg, Berlin, Heidelberg [2004]. ISBN

978-3-540-27764-4.

S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings

of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pp. 415–425

[2004]. doi:10.1109/LICS.2004.1319636.

Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer

Science, volume 111(1):3 – 57 [1993]. doi:10.1016/0304-3975(93)90181-R.

Thorsten Altenkirch and Alexander S Green. The quantum IO monad. Semantic Techniques

in Quantum Computation, pp. 173–205 [2010]. doi:10.1017/cbo9781139193313.006.

Matthew Amy, Jianxin Chen, and Neil J. Ross. A finite presentation of CNOT-dihedral

operators. Electronic Proceedings in Theoretical Computer Science, volume 266:84–97

[2018]. doi:10.4204/eptcs.266.5. URL https://doi.org/10.4204%2Feptcs.266.5.

Matthew Amy, Martin Roetteler, and Krysta M. Svore. Verified compilation of space-

efficient reversible circuits. In Computer Aided Verification, edited by Rupak Majumdar

and Viktor Kunčak, pp. 3–21. Springer International Publishing [2017]. ISBN 978-3-319-

63390-9.

Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper. Homotopical

patch theory. In Proceedings of the 19th ACM SIGPLAN International Conference on

183

https://doi.org/10.4204%2Feptcs.266.5

Functional Programming, ICFP ’14, pp. 243–256. ACM, New York, NY, USA [2014].

doi:10.1145/2628136.2628158.

David Aspinall and Martin Hofmann. Dependent types. In Advanced Topics in Types and

Programming Languages, edited by Benjamin C. Pierce, chapter 1, pp. 45–86. MIT Press

[2005].

Steve Awodey. Category Theory. Oxford Logic Guides. OUP Oxford [2010]. ISBN

9780199587360.

Miriam Backens. Completeness and the ZX-calculus. Ph.D. thesis, University of Oxford

[2015].

Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347 [1996].

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Com-

puter Science Logic, Lecture Notes in Computer Science, volume 933, edited by Leszek

Pacholski and Jerzy Tiuryn, pp. 121–135. Springer Berlin Heidelberg [1995]. doi:

10.1007/BFb0022251.

Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term calculus for

intuitionistic linear logic. In Typed Lambda Calculi and Applications, Lecture Notes in

Computer Science, volume 664, edited by Marc Bezem and JanFriso Groote, pp. 75–90.

Springer Berlin Heidelberg [1993]. doi:10.1007/BFb0037099.

Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In Pro-

ceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science, 1996.

LICS ’96., pp. 420–431 [1996]. doi:10.1109/LICS.1996.561458.

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and

Arnaud Spiwack. Linear Haskell: Practical linearity in a higher-order polymorphic lan-

guage. Proc. ACM Program. Lang., volume 2(POPL) [2017]. doi:10.1145/3158093.

184

Stefano Bettelli, Tommaso Calarco, and Luciano Serafini. Toward an architecture for quan-

tum programming. The European Physical Journal D, volume 25(2):181–200 [2003].

G.M. Bierman. What is a categorical model of intuitionistic linear logic? In Typed Lambda

Calculi and Applications, Lecture Notes in Computer Science, volume 902, edited by Mar-

iangiola Dezani-Ciancaglini and Gordon Plotkin, pp. 78–93. Springer Berlin Heidelberg

[1995]. doi:10.1007/BFb0014046.

Edwin Brady and Kevin Hammond. Resource-safe systems programming with embedded do-

main specific languages. In Practical Aspects of Declarative Languages, edited by Claudio

Russo and Neng-Fa Zhou, pp. 242–257. Springer Berlin Heidelberg, Berlin, Heidelberg

[2012]. ISBN 978-3-642-27694-1.

Alöıs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative

coeffect calculus. In Programming Languages and Systems, edited by Zhong Shao, pp.

351–370. Springer Berlin Heidelberg, Berlin, Heidelberg [2014]. doi:10.1007/978-3-642-

54833-8 19.

T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer, and M. J. Plasmeijer. Clean —

a language for functional graph rewriting. In Functional Programming Languages and

Computer Architecture, edited by Gilles Kahn, pp. 364–384. Springer Berlin Heidelberg,

Berlin, Heidelberg [1987]. ISBN 978-3-540-47879-9.

Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In

CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science, volume 6269,

edited by Paul Gastin and François Laroussinie, pp. 222–236. Springer Berlin Heidelberg

[2010]. doi:10.1007/978-3-642-15375-4 16.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, partially eval-

uated: Tagless staged interpreters for simpler typed languages. Journal of Functional

Programming, volume 19(5):509–543 [2009]. doi:10.1017/S0956796809007205.

185

Iliano Cervesato and Frank Pfenning. A linear logical framework. In Proceedings of the

11th Annual IEEE Symposium on Logic in Computer Science, pp. 264–275 [1996]. doi:

10.1109/LICS.1996.561339.

Chih-Ping Chen and Paul Hudak. Rolling your own mutable ADT—a connection between

linear types and monads. In Proceedings of the 24th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, POPL ’97. Association for Computing

Machinery (ACM) [1997]. doi:10.1145/263699.263708.

Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduction

to the Coq Proof Assistant. The MIT Press [2013]. ISBN 0262026651.

Kenta Cho. Semantics for a quantum programming language by operator algebras. New

Generation Computing, volume 34(1):25–68 [2016]. doi:10.1007/s00354-016-0204-3.

Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. HoTTSQL: Proving query

rewrites with univalent SQL semantics. SIGPLAN Not., volume 52(6):510–524 [2017].

doi:10.1145/3140587.3062348.

David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias

protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’98, pp. 48–64. ACM,

New York, NY, USA [1998]. doi:10.1145/286936.286947.

Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement calculus. J.

ACM, volume 54(2) [2007]. doi:10.1145/1219092.1219096.

Ellie D’Hondt and Prakash Panangaden. Quantum weakest preconditions. Mathematical

Structures in Computer Science, volume 16(03):429–451 [2006].

Richard Eisenberg, Benoıt Valiron, and Steve Zdancewic. Typechecking linear data:

Quantum computation in Haskell [2012]. URL http://www.monoidal.net/papers/

qhaskell.pdf.

186

http://www.monoidal.net/papers/qhaskell.pdf
http://www.monoidal.net/papers/qhaskell.pdf

Richard A. Eisenberg and Jan Stolarek. Promoting functions to type families in Haskell. In

Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell ’14, pp. 95–106.

ACM, New York, NY, USA [2014]. doi:10.1145/2633357.2633361.

Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with single-

tons. In Proceedings of the 2012 Haskell Symposium, Haskell ’12, pp. 117–130. ACM,

New York, NY, USA [2012]. doi:10.1145/2364506.2364522.

Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. Visible type applica-

tion. In Programming Languages and Systems: 25th European Symposium on Program-

ming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software, ETAPS 2016, April 2–8, 2016, edited by Peter Thiemann, pp. 229–254.

Springer Berlin Heidelberg, Berlin, Heidelberg [2016]. doi:10.1007/978-3-662-49498-1 10.

Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all you need. In

Programming Languages and Systems, pp. 7–21. Springer Science + Business Media

[2006]. doi:10.1007/11693024 2.

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce.

Linear dependent types for differential privacy. In Proceedings of the 40th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,

pp. 357–370. ACM, New York, NY, USA [2013]. doi:10.1145/2429069.2429113.

Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous ses-

sion types. Journal of Functional Programming, volume 20:19–50 [2010]. doi:10.1017/

S0956796809990268.

I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys.,

volume 86:153–185 [2014]. doi:10.1103/RevModPhys.86.153.

Jean-Yves Girard. Une extension de l’interpretation de Gödel a l’analyse, et son application

a l’elimination des coupures dans l’analyse et la theorie des types. In Proceedings of

the Second Scandinavian Logic Symposium, Studies in Logic and the Foundations of

187

Mathematics, volume 63, edited by J.E. Fenstad, pp. 63 – 92. Elsevier [1971]. doi:10.1016/

S0049-237X(08)70843-7.

Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer

Science, volume 45:159 – 192 [1986]. doi:10.1016/0304-3975(86)90044-7.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, volume 50(1):1–101 [1987].

doi:10.1016/0304-3975(87)90045-4.

Jean-Yves Girard. A new constructive logic: classic logic. Mathematical Structures in

Computer Science, volume 1:255–296 [1991]. doi:10.1017/S0960129500001328.

Jean-Yves Girard. On the unity of logic. Annals of pure and applied logic, volume 59(3):201–

217 [1993].

Jean-Yves Girard. Light linear logic. Information and Computation, volume 143(2):175 –

204 [1998]. ISSN 0890-5401. doi:10.1006/inco.1998.2700.

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: a modular

approach to polynomial-time computability. Theoretical Computer Science, volume 97(1):1

– 66 [1992]. doi:https://doi.org/10.1016/0304-3975(92)90386-T.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types, volume 7. Cambridge

University Press Cambridge [1989].

Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benôıt Val-

iron. An introduction to quantum programming in Quipper. In Proceedings of the 5th

International Conference on Reversible Computation, Lecture Notes in Computer Science,

volume 7948, pp. 110–124 [2013a]. ISBN 978-3-642-38985-6.

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benôıt

Valiron. Quipper: A scalable quantum programming language. In Proceedings of the

34th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’13, pp. 333–342. ACM, New York, NY, USA [2013b]. doi:10.1145/2491956.2462177.

188

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings

of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp.

212–219. ACM [1996]. doi:10.1145/237814.237866.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J.

ACM, volume 40(1):143–184 [1993]. doi:10.1145/138027.138060.

Dana G. Harrington. A type system for destructive updates in declarative programming

languages. Ph.D. thesis, University of Calgary [2001]. doi:10.5072/PRISM/14286.

Ichiro Hasuo and Naohiko Hoshino. Semantics of higher-order quantum computation via

geometry of interaction. In Proceedings of the 26th Annual IEEE Symposium on Logic

in Computer Science, LICS 2011, pp. 237–246 [2011].

Kohei Honda. Types for dyadic interaction. In CONCUR’93, pp. 509–523 [1993]. doi:

10.1007/3-540-57208-2 35.

The Idris Community. Uniqueness types [2017]. URL http://docs.idris-lang.org/en/

latest/reference/uniqueness-types.html.

Yoshihiko Kakutani. A logic for formal verification of quantum programs. In Advances in

Computer Science-ASIAN 2009. Information Security and Privacy, pp. 79–93. Springer

[2009].

Oleg Kiselyov. Typed Tagless Final Interpreters, pp. 130–174. Springer Berlin Heidelberg,

Berlin, Heidelberg [2012]. doi:10.1007/978-3-642-32202-0 3.

Emmanuel H. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-

2724, Los Alamos National Laboratory [1996]. doi:10.2172/366453.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the π-calculus.

ACM Transactions on Programming Languages and Systems, volume 21(5):914–947

[1999]. doi:10.1145/330249.330251.

189

http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html
http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html

Neelakantan R Krishnaswami and Nick Benton. A semantic model for graphical user in-

terfaces. In ACM SIGPLAN Notices, ICFP ’11, volume 46, pp. 45–57. ACM, New York,

NY, USA [2011]. doi:10.1145/2034773.2034782.

Neelakantan R Krishnaswami, Nick Benton, and Jan Hoffmann. Higher-order functional

reactive programming in bounded space. ACM SIGPLAN Notices, volume 47(1):45–58

[2012].

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. Integrating linear and de-

pendent types. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’15, pp. 17–30. ACM, New York, NY,

USA [2015]. doi:10.1145/2676726.2676969.

John Launchbury and Simon L Peyton Jones. State in Haskell. LISP and Symbolic Com-

putation, volume 8(4):293–341 [1995]. doi:10.1007/bf01018827.

Olivier Laurent. Étude de la polarisation en logique. Theses, Université de la Méditerranée

- Aix-Marseille II [2002].

Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Call-By-Push-Value, pp.

27–47. Springer Science Business Media [2003]. doi:10.1007/978-94-007-0954-6 2.

Daniel R. Licata and Michael Shulman. Adjoint logic with a 2-category of modes. pp. 219–

235 [2016]. doi:10.1007/978-3-319-27683-0 16. URL http://dx.doi.org/10.1007/978-

3-319-27683-0 16.

Daniel R Licata, Michael Shulman, and Mitchell Riley. A fibrational framework

for substructural and modal logics (extended version) [2017]. Draft, URL http://

dlicata.web.wesleyan.edu/pubs/lsr17multi/lsr17multi-ex.pdf.

Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In Proceedings

of Programming Languages and Systems, 24th European Symposium on Programming,

ESOP 2015, volume 9032, edited by Jan Vitek, pp. 560–584. Springer Berlin Heidelberg,

London, UK [2015]. doi:10.1007/978-3-662-46669-8 23.

190

http://dx.doi.org/10.1007/978-3-319-27683-0_16
http://dx.doi.org/10.1007/978-3-319-27683-0_16
http://dlicata.web.wesleyan.edu/pubs/lsr17multi/lsr17multi-ex.pdf
http://dlicata.web.wesleyan.edu/pubs/lsr17multi/lsr17multi-ex.pdf

Octavio Malherbe. Categorical Models of Computation: Partially Traced Categories and

Presheaf Models of Quantum Computation. Ph.D. thesis, University of Ottawa [2010].

Nicholas D. Matsakis and Felix S. Klock, II. The rust language. In Proceedings of the 2014

ACM SIGAda Annual Conference on High Integrity Language Technology, HILT ’14, pp.

103–104. ACM, New York, NY, USA [2014]. doi:10.1145/2663171.2663188.

Ken Matsumoto and Kazuyuki Amano. Representation of quantum circuits with Clifford

and pi/8 gates [2008]. arXiv:quant-ph/0806.3834.

Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight linear types in system

F°. In Proceedings of the 5th ACM SIGPLAN workshop on Types in language design

and implementation - TLDI '10. Association for Computing Machinery (ACM) [2010].

doi:10.1145/1708016.1708027.

Conor McBride. I Got Plenty o’ Nuttin’, pp. 207–233. Springer International Publishing

[2016]. doi:10.1007/978-3-319-30936-1 12.

Paul André Melliès. Categorical models of linear logic revisited. Technical Report 22, Lab-

oratoire PPS a la Université Paris Denis Diderot [2003]. URL https://hal.archives-

ouvertes.fr/hal-00154229.

Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge university

press [1999].

Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the 4th

Annual Symposium on Logic in Computer Science, pp. 14–23. IEEE Press [1989].

J. Garrett Morris. The best of both worlds: Linear functional programming without com-

promise. In Proceedings of the 21st ACM SIGPLAN International Conference on

Functional Programming, ICFP 2016, pp. 448–461. New York, NY, USA [2016]. doi:

10.1145/2951913.2951925.

191

arXiv:quant-ph/0806.3834
https://hal.archives-ouvertes.fr/hal-00154229
https://hal.archives-ouvertes.fr/hal-00154229

Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. Auto-

mated optimization of large quantum circuits with continuous parameters. npj Quantum

Information, volume 4(1) [2018]. doi:10.1038/s41534-018-0072-4.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.

Cambridge university press [2010]. ISBN 9781139495486.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,

Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias

Zenger. An overview of the scala programming language. Technical Report LAMP-

REPORT-2004-006 [2004].

Michele Pagani, Peter Selinger, and Benôıt Valiron. Applying quantitative semantics to

higher-order quantum computing. In Proceedings of the 41st Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp. 647–658

[2014]. doi:10.1145/2535838.2535879.

Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: A core language for quan-

tum circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, POPL 2017, pp. 846–858. ACM, New York, NY, USA [2017].

doi:10.1145/3009837.3009894.

Jennifer Paykin and Steve Zdancewic. A linear/producer/consumer model of classi-

cal linear logic. Mathematical Structures in Computer Science, p. 1–26 [2016]. doi:

10.1017/S0960129516000347.

Jennifer Paykin and Steve Zdancewic. The linearity monad. In Proceedings of the 10th

ACM SIGPLAN International Symposium on Haskell, Haskell 2017, pp. 117–132. ACM,

New York, NY, USA [2017]. doi:10.1145/3122955.3122965.

Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: A calculus of context-

dependent computation. In Proceedings of the 19th ACM SIGPLAN International Con-

192

ference on Functional Programming, ICFP ’14, pp. 123–135. ACM, New York, NY, USA

[2014]. doi:10.1145/2628136.2628160.

F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIG-

PLAN 1988 Conference on Programming Language Design and Implementation, PLDI

’88, pp. 199–208. ACM, New York, NY, USA [1988]. doi:10.1145/53990.54010.

Frank Pfenning and Dennis Griffith. Polarized substructural session types. In Foundations

of Software Science and Computation Structures, Lecture Notes in Computer Science,

volume 9034, edited by Andrew Pitts, pp. 3–22. Springer Berlin Heidelberg [2015]. doi:

10.1007/978-3-662-46678-0/ 1.

Benjamin C Pierce. Basic category theory for computer scientists. MIT press [1991].

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi,

Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Software Foun-

dations. Electronic textbook [2016]. Version 4.0. http://www.cis.upenn.edu/~bcpierce/

sf.

Jeff Polakow. Embedding a full linear lambda calculus in Haskell. In Proceedings of the 8th

ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, Septem-

ber 3-4, 2015, pp. 177–188 [2015]. doi:10.1145/2804302.2804309.

François Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. ACM

SIGPLAN Notices, volume 48(9):173–184 [2013]. doi:10.1145/2544174.2500598.

Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic. ReQWIRE: Reasoning

about reversible quantum circuits. In Proceedings of the 15th International Conference

on Quantum Physics and Logic, QPL 2018, Halifax, Nova Scotia, 3-7 June 2018 [2018].

Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE practice: Formal verification

of quantum circuits in Coq. In Proceedings 14th International Conference on Quantum

Physics and Logic, QPL 2017, Nijmegen, The Netherlands, 3-7 July 2017., pp. 119–132

[2017]. doi:10.4204/EPTCS.266.8.

193

http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf

Jason Reed. A judgmental deconstruction of modal logic [2009]. URL http://jcreed.org/

papers/jdml.pdf.

Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: A calculus for

differential privacy. In Proceedings of the 15th ACM SIGPLAN International Conference

on Functional Programming, ICFP ’10, pp. 157–168. ACM, New York, NY, USA [2010].

doi:10.1145/1863543.1863568.

Mathys Rennela. Towards a quantum domain theory: Order-enrichment and fixpoints in

W*-algebras. Electronic Notes in Theoretical Computer Science (MFPS XXX), volume

308:289 – 307 [2014]. doi:0.1016/j.entcs.2014.10.016. Proceedings of the 30th Conference

on the Mathematical Foundations of Programming Semantics.

Mathys Rennela and Sam Staton. Classical control and quantum circuits in enriched cat-

egory theory. Electronic Notes in Theoretical Computer Science, volume 336:257 – 279

[2018]. ISSN 1571-0661. doi:10.1016/j.entcs.2018.03.027. The Thirty-third Conference on

the Mathematical Foundations of Programming Semantics (MFPS XXXIII).

John C. Reynolds. Separation logic: a logic for shared mutable data structures. In Pro-

ceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–74 [2002].

doi:10.1109/LICS.2002.1029817.

Francisco Rios and Peter Selinger. A categorical model for a quantum circuit description

language (extended abstract). Electronic Proceedings in Theoretical Computer Science,

volume 266:164–178 [2018]. doi:10.4204/eptcs.266.11.

Neil J. Ross. Algebraic and Logical Methods in Quantum Computation. Ph.D. thesis,

Dalhousie University [2015].

Peter Selinger. Towards a quantum programming language. Mathematical Structures in

Computer Science, volume 14(4):527–586 [2004]. doi:10.1017/S0960129504004256.

Peter Selinger. Dagger compact closed categories and completely positive maps. In Pro-

ceedings of the 3rd International Workshop on Quantum Programming Languages, QPL

194

http://jcreed.org/papers/jdml.pdf
http://jcreed.org/papers/jdml.pdf

2005, Electronic Notes in Theoretical Computer Science 170, pp. 139–163. Elsevier Sci-

ence [2007].

Peter Selinger and Benôıt Valiron. On a fully abstract model for a quantum linear functional

language. In Proceedings of the 4th International Workshop on Quantum Programming

Languages, QPL 2006, Electronic Notes in Theoretical Computer Science 210, pp. 123–

137. Elsevier [2008].

Peter Selinger and Benôıt Valiron. Quantum lambda calculus. In Semantic Techniques in

Quantum Computation, edited by Simon Gay and Ian Mackie, pp. 135–172. Cambridge

University Press [2009]. doi:10.1017/cbo9781139193313.005.

Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In Pro-

ceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, pp. 1–16. ACM,

New York, NY, USA [2002]. doi:10.1145/581690.581691.

P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM Review, volume 41:303–332 [1999]. doi:10.1137/

S0036144598347011.

Kristina Sojakova. Higher inductive types as homotopy-initial algebras. In Proceed-

ings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’15, pp. 31–42. ACM, New York, NY, USA [2015]. doi:

10.1145/2676726.2676983.

Sam Staton. Algebraic effects, linearity, and quantum programming languages. In Pro-

ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’15, pp. 395–406. ACM, New York, NY, USA [2015].

doi:10.1145/2676726.2676999.

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina

Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#:

195

Enabling scalable quantum computing and development with a high-level dsl. In Proceed-

ings of the Real World Domain Specific Languages Workshop 2018, RWDSL ’18, pp.

7:1–7:10. ACM, New York, NY, USA [2018]. doi:10.1145/3183895.3183901.

Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’11, pp. 447–458. ACM, New York, NY, USA [2011]. doi:10.1145/1926385.1926436.

Taichi Uemura. Homotopies for free! [2017]. arXiv:cs.LO/1701.07937.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study

[2013].

M. Vákár. Syntax and semantics of linear dependent types [2014]. arXiv:cs.LO/1405.0033.

Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. Homotopy type theory in Lean.

In Interactive Theorem Proving, edited by Mauricio Ayala-Rincón and César A. Muñoz,

pp. 479–495. Springer International Publishing, Cham [2017].

André van Tonder. A lambda calculus for quantum computation. SIAM Journal of Compu-

tation, volume 33(5):1109–1135 [2004].

Juliana Kaizer Vizzotto, Bruno Crestani Calegaro, and Eduardo Kessler Piveta. A double

effect λ-calculus for quantum computation. In Programming Languages, Lecture Notes

in Computer Science, volume 8129, edited by André Rauber Du Bois and Phil Trinder,

pp. 61–74. Springer Berlin Heidelberg, Berlin, Heidelberg [2013]. doi:10.1007/978-3-642-

40922-6 5.

Philip Wadler. Linear types can change the world! In IFIP TC 2 Working Conference on

Programming Concepts and Methods, Sea of Galilee, Israel. North Holland [1990].

Philip Wadler. There’s no substitute for linear logic. In 8th International Workshop on the

Mathematical Foundations of Programming Semantics [1992].

196

arXiv:cs.LO/1701.07937
http://homotopytypetheory.org/book
arXiv:cs.LO/1405.0033

Philip Wadler. A syntax for linear logic. In Mathematical Foundations of Programming

Semantics, edited by Stephen Brookes, Michael Main, Austin Melton, Michael Mislove,

and David Schmidt, pp. 513–529. Springer Berlin Heidelberg, Berlin, Heidelberg [1994].

ISBN 978-3-540-48419-6.

Philip Wadler. Propositions as sessions. Journal of Functional Programming, vol-

ume 24:384–418 [2014]. ISSN 1469-7653. doi:10.1017/S095679681400001X.

David Walker. Substructural type systems. In Advanced Topics in Types and Programming

Languages, edited by Benjamin C. Pierce, chapter 1, pp. 3–44. MIT Press [2005].

Dave Wecker and Krysta M Svore. LIQUiD: A software design architecture

and domain-specific language for quantum computing [2014]. URL https:

//www.microsoft.com/en-us/research/publication/liqui-a-software-design-

architecture-and-domain-specific-language-for-quantum-computing/.

Friedrich Wehrung. Refinement Monoids, Equidecomposability Types, and Boolean Inverse

Semigroups. Springer International Publishing [2017]. doi:10.1007/978-3-319-61599-8.

Mingsheng Ying. Floyd–Hoare logic for quantum programs. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), volume 33(6):19 [2011].

Mingsheng Ying. Quantum recursion and second quantisation [2014]. arXiv:quant-ph/

1405.4443.

Mingsheng Ying, Nengkun Yu, and Yuan Feng. Alternation in quantum programming: From

superposition of data to superposition of programs [2014]. arXiv:cs.PL/1402.5172.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytini-

otis, and José Pedro Magalhães. Giving Haskell a promotion. In Proceedings of the 8th

ACM SIGPLAN Workshop on Types in Language Design and Implementation, TLDI ’12,

pp. 53–66. ACM, New York, NY, USA [2012]. doi:10.1145/2103786.2103795.

197

https://www.microsoft.com/en-us/research/publication/liqui-a-software-design-architecture-and-domain-specific-language-for-quantum-computing/
https://www.microsoft.com/en-us/research/publication/liqui-a-software-design-architecture-and-domain-specific-language-for-quantum-computing/
https://www.microsoft.com/en-us/research/publication/liqui-a-software-design-architecture-and-domain-specific-language-for-quantum-computing/
arXiv:quant-ph/1405.4443
arXiv:quant-ph/1405.4443
arXiv:cs.PL/1402.5172

Noam Zeilberger. On the unity of duality. Annals of Pure and Applied Logic, volume

153(1–3):66 – 96 [2008]. doi:10.1016/j.apal.2008.01.001. Special Issue: Classical Logic

and Computation (2006).

198

	ACKNOWLEDGMENT
	ABSTRACT
	Introduction
	Conventions

	Linear type systems
	A simple linear type system
	Linear connectives
	The exponential modality
	Dual Intuitionistic Linear Logic
	Indexed modalities
	Kind-based linear logic
	Linear/non-linear logic

	Embedded linear/non-linear types
	A linear embedded language
	The linear/non-linear interface
	Example: linear file handles
	Monadic programming
	Extensions
	Example: session types
	Discussion

	Haskell Implementation
	Dependent types in Haskell
	Linear types and type checking
	Running linear programs
	Monadic programming
	Example: Arrays
	Example: Session types
	Discussion and Related Work

	Embedded categorical semantics
	Background
	Categories for multiplicative additive linear logic
	Linear/non-linear categories
	Embedded meta-theory
	Conclusion
	Case study: Quantum Computing
	A quantum/non-quantum type system
	Quantum computing background
	The quantum/non-quantum (QNQ) calculus
	Examples
	Denotational semantics

	Quantum equational theories in HoTT
	Background and main ideas
	Equational theory of QNQ
	Deriving equational rules in homotopy type theory
	Equivalence of unitaries
	Denotational Semantics
	Discussion
	Conclusion

	Qwire: Quantum circuits in Coq
	The Qwire circuit language
	Linear type checking in Coq
	Surface language
	Discussion

	Future work
	Adapting LNL to other substructural type systems.
	Formalizing the theory of embedded languages.
	Variations to the structure of LNL
	Drawing on the host language
	Shortcomings and outstanding problems
	Conclusion

	BIBLIOGRAPHY

