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Abstract— In this paper, we study a duopoly pricing problem
in which two firms compete for selling two products in a
network. Our proposed model consists of two stages. In the
first stage, firms set the price they charge agents for their
product and the quality of the product they offer. For agents,
the quality of the product can be interpreted as the payoff of a
local coordination game played among them in the network. In
the second stage, agents in the network decide what fraction of
these two products to purchase. We first characterize the Nash
equilibrium of the game played among agents in the network.
We show that agents’ actions in the Nash equilibrium consist of
two terms, one of which is proportional to the agents’ centrality
in the network. Conditioned on agents playing the equilibrium
policy, we find the Nash equilibrium of the pricing game played
between firms. We show that even when firms are similar and
offer a uniform price for agents, their Nash equilibrium price
depends on the network structure. We then analyze sensitivity of
the agents’ consumption with respect to the price and quality
of the product. We finally show that depending on a firm’s
opponent’s price and quality, the optimal price of a firm can
be higher, equal or less than the monopoly optimal price.

I. INTRODUCTION

Many recent studies have documented the role of social
networks in individual purchasing decisions [1]–[3]. As a
result, retail firms have become more interested in utilizing
research on social networks in order to improve their business
strategies. In particular, considering the relationship between
people in social networks and their rational choices, many
retailers are interested to know how to optimize their business
decisions in a competitive market. It is therefore important
for firms to understand how to shape their strategies in
pricing of their products in order to achieve the most profit
in selling their products in social networks.

To this end, we study a duopoly pricing problem in which
two firms compete for selling two substitute products in a
network. A substitute is a product or service that satisfies
the need of a consumer that another product or service
fulfills (e.g. Pepsi and Coke or email and fax). We propose
a two stage model where in the first stage firms choose their
strategy which consists of the price they charge agents for
their products and the quality of the products they offer. In
the second stage, agents in the network decide what fraction
of these two products to purchase. In essence this paper
follows the same line of research as in [4] but our results
and their interpretations are different which will be discussed
in this paper. In our model each agent receives a utility
irrespective of the consumptions of her peers and a utility
which can be thought of as the payoff of a local coordination
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game played among her and her neighbors. There are diverse
sets of products having this local coordination effect where
consuming a common product has a higher payoff. Network
goods and services (e.g., cell phones, fax machines and
email accounts) are just a few examples of this kind of
products where consumption of an agent has a positive
impact on her peers’ consumptions. This effect is often called
positive network externality in the literature. In this paper,
considering these types of products, we characterize the Nash
equilibrium of agents’ actions in the network and show how
agents’ consumptions in the Nash equilibrium depend on
their Bonacich centrality which is a sociological measure of
network influence [6]. We also show the effect of the quality
and the price of products offered by firms on individual
decisions. Conditioned on the consumption of agents, we find
the Nash equilibrium of the pricing game played between
firms. We show that even in the case of uniform price
and similar firms, the price offered by firms depends on
the network structure. We then consider row or column
stochastic networks and show that the consumption of agents
are equal, and the Nash equilibrium price is independent
of the network structure. We analyze sensitivity of agents’
consumption with respect to the price and quality of the
products and show that agents are more sensitive with respect
to the price. We finally compare the optimal duopoly price
with the optimal price offered in a monopoly market.

Recently, the equilibria of network games with linear best
response functions have been completely characterized in [6].
Furthermore, the issue of optimal pricing in a monopoly was
recently characterized in [4]. These results, as well as ours,
are based on the assumption of a quadratic payoff function
for agents. This assumption is assumed in [5], [7] as well.
In addition, the relationship between Bonacich centrality and
Nash equilibrium has already been studied in Ballester et al.
in [5]. Our goal is to apply these results in a duopoly pricing
setup in social networks, where there are two stages of firms
and agents’ decisions, and as a result, can be thought of as
a sequential game.

The rest of this paper is organized as follows: In section II,
we introduce our model. In section III, we study the second
stage game in which agents decide on their consumptions. In
section IV, we study the pricing game played between two
firms. In section V, we study the problem when the network
is stochastic. Finally, in section VI, we conclude the paper.

II. MODEL

We consider a duopoly market in which two firms compete
for selling two substitute products a and b to a set of
agents I = {1, . . . , n} embedded in a social network. The
relationship among agents is represented by an interaction



matrix G. The ij-th entry of G denoted by gij represents
the weight that agent i assigns to agent j. We assume that
gij ≥ 0 for all i, j and gii = 0 for all i. The problem consists
of two stages. In the first stage, firms a and b set their prices,
i.e. how much they want to charge agents for selling each
unit of their products. They also determine the quality of their
products. Let pa and pb be prices that firms a and b charge
respectively. Denote by qa and qb the quality of the products.
For instance, qa and qb could be related to the investment
of firms on the technology of production in order to make
their products more appealing and superior in the market.
For agents, qa and qb can be interpreted as the payoff that
any two agents i and j would achieve if they both purchase
the same product. In other words, we can assume qa and qb
are payoffs that are obtained from the following game

xj 1− xj
xi qa 0
1− xi 0 qb

where agent i’s action denoted by 0 ≤ xi ≤ 1 is the
fraction that she chooses to purchase from the product a
and 0 ≤ 1 − xi ≤ 1 represents the fraction that she
decides to purchase from the product b. Note that the agents’
actions (the amount to be purchased from each product) are
normalized to sum up to one. Since agents benefit from the
same action of their neighbors, this game could be thought of
as a local coordination game. From the above table it follows
easily that the payoff of agents i and j from their interaction
is

uij(xi, xj) = qaxixj + qb(1− xi)(1− xj). (1)

One could also interpret xi as the probability of purchasing
the product a and 1−xi as the probability of purchasing the
product b. With this interpretation it can be easily seen that
uij in equation (1) represents the expected payoff resulting
from the interaction between agents i and j. We also assume
that each agent benefits from taking action xi irrespective
of actions taken by her neighbors. The isolation payoff
of purchasing product a is represented by the following
quadratic form function

uaii(xi) = eixi − fix2i .

where both ei and fi are non-negative constants. Therefore,
the total isolation payoff from two products is

uii(xi) = eixi − fix2i + ei(1− xi)− fi(1− xi)2

= (ei − fi) + 2fixi − 2fix
2
i .

Note that the first term is constant and does not depend on
the consumption of any product so we can neglect it. As a
result, we can see that the isolation payoff of agents can be
represented as the following form

uii(xi) = aixi − aix2i ,

where ai = 2fi. This means that the isolation utility of
agent i disappears when the agent purchases only one of
the products a or b, i.e. xi = 0 or xi = 1. Assuming
quadratic form function for the isolation payoff not only

makes the analysis more tractable, but also is a good second
order approximation for the general class of concave payoff
functions. As mentioned above, pa and pb are the prices of
purchasing each unit of a and b for agents. Therefore, the
total utility of agent i from taking the action xi is

Ui(xi, ~x−i) = aixi − aix2i + qa

N∑
j=1

gijxixj

+ qb

N∑
j=1

gij(1− xi)(1− xj)− paxi − pb(1− xi).

(2)

Here we assume firms a and b charge all agents with the
same price. In the above equation ~x−i denotes an action
vector of all agents other than agent i. Also note that agent
i’s payoff from interacting with her neighbors is weighted
by weights that she assigns to them. From equation (2) we
can see that products a and b have a positive externality
effect in the network, meaning that the usage level of
an agent has a positive impact on the usage level of her
neighbors. Therefore, it follows that qa and qb in addition to
the payoff of a local coordination game, can be interpreted
as coefficients of network externality of products a and b
respectively. Notice that if we assume that qa = 1, qb = 0
and pb = 0 equation (2) turns into

Ui(xi, ~x−i) = aixi − aix2i +

N∑
j=1

gijxixj − paxi,

which is the utility function of agents for a monopoly market
studied in [4]. For firms we consider the following utility
functions

Ua(pa, qa, pb, qb) = (pa − ca)

N∑
i=1

xi,

Ub(pb, qb, pa, qa) = (pb − cb)
N∑
i=1

(1− xi),

(3)

where ca and cb denotes the marginal cost of producing
each unit of products a and b by firms a and b respectively
and xi and 1 − xi denotes the amount of products a and b
that agent i purchases in the network.

III. SECOND STAGE GAME

In this section, we characterize the Nash equilibrium of
agents’ actions in the second stage and show that under an
assumption mentioned later this Nash equilibrium is unique
and related to the centrality of agents in the social network.
Next we study the impact of firms’ strategies on actions of
agents in this Nash equilibrium. The approach used in this
section is similar to the one used in [4] but the results that
we find and their interpretations are different which will be
discussed later in this section.
In order to find the Nash equilibrium, we first need to find
the best responses of agents in (2). To find the best response
of each agent, we take the derivative of her utility function in



(2) with respect to her consumption level and set it to zero.
Thus, we get

x∗i =
1

2
+
pb − pa

2ai
+
qa
2ai

N∑
j=1

gijxj−
qb
2ai

N∑
j=1

gij(1−xj). (4)

Therefore, the best response of agent i when other agents
choose actions represented by the vector ~x−i is

βi(~x−i) = x∗i if 0 ≤ x∗i ≤ 1,

βi(~x−i) = 0 if x∗i < 0,

βi(~x−i) = 1 if x∗i > 1.

As it is expected the best response of an agent for con-
sumption of a product is an increasing function of its quality
and a decreasing function of its price. To express the result
in matrix form, let us define the vector ~a = [ai] and the
matrix A = diag(~a). Define sets S = {i : 0 ≤ x∗i ≤ 1},
Sa = {i : x∗i > 1} and Sb = {i : x∗i < 0} and denote
by s, sa and sb their cardinality respectively. Denote by ~xs
the vector of xi such that i ∈ S . Define the vector ~as and
matrices As, Gs similarly. Here we restrict our analysis to
the set of agents whose best responses are in the feasible set
[0, 1]. Therefore, the equation (4) can be written as

As~xs =
~as
2

+ (
pb − pa

2
)1s + (

qa
2

)Gs~xs− (
qb
2

)Gs(1s− ~xs).

Rearranging terms in the above equation leads to

(As − (
qa + qb

2
)Gs)~xs =

~as
2

+ (
pb − pa

2
)1s − (

qb
2

)Gs1s.

(5)
We now show that under an assumption the Nash equilibrium
of the second stage game is unique.

Theorem 1: If for all i ∈ I, 2ai

qa+qb
>

∑N
j=1 gij , then the

second stage game G = {I, {Ui}i∈I , [0, 1]i∈I} has a unique
Nash equilibrium. This Nash equilibrium is given by

~x∗s = (
1

2
)(As − (

qa + qb
2

)Gs)
−1(~as + (pb − pa)1s − qbGs1s),

x∗i = 0 if βi(~x−i) = 0,

x∗i = 1 if βi(~x−i) = 1.
(6)

Proof: 2ai

qa+qb
>

∑N
j=1 gij implies that 2ai

qa+qb
>∑

j∈S gij for all i ∈ S. Therefore, ( qa+qb
2 )A−1s Gs

~1 <
~1. By Perron-Frobenius theorem, the spectral radius of
( qa+qb

2 )A−1s Gs is strictly less than one. Hence, it follows
that none of eigenvalues of (I− ( qa+qb

2 )A−1s Gs) is zero and
so this matrix is invertible. Consequently, the matrix (As −
( qa+qb

2 )Gs) is invertible as well. Therefore, we can multiply
both sides of (5) from left side by (As− ( qa+qb

2 )Gs)
−1 and

obtain the Nash equilibrium stated in the theorem. Invertibil-
ity of (As − ( qa+qb

2 )Gs) also guarantees the uniqueness of
the Nash equilibrium.

Corollary 1: In the special case that agents only differ in
their network position, i.e., ai = a0 or As = a0Is, the Nash

equilibrium for agents with 0 ≤ x∗i ≤ 1 is given by

~x∗s = (
qb

qa + qb
)1s + (

1

2
+
pb − pa

2a0
− qb
qa + qb

)

(Is − (
qa + qb

2a0
)Gs)

−11s.

Proof: It can be easily shown that for all Gs we have

(Is − αGs)
−1Gs =

(Is − αGs)
−1 − I

α
.

Therefore, assuming As = a0Is and setting α = qa+qb
2a0

,
equation (6) after simplification becomes

~x∗s = (
qb

qa + qb
)1s + (

1

2
+
pb − pa

2a0
− qb
qa + qb

)

(Is − (
qa + qb

2a0
)Gs)

−11s.
(7)

We can easily see that if we set qa = 1, qb = 0 and pb = 0
in (6) we get

~x∗s = (
1

2
)(As −

1

2
Gs)

−1(~as − pa1s),

which is what was obtained in the monopoly pricing problem
in [4]. Note that as opposed to the monopoly case, actions
of agents in a duopoly market has a constant term which
depends on the relative payoff of products. If we set qb = 0
we can see that this constant term disappears.
To obtain an alternative characterization of the Nash equilib-
rium in (6), we provide the definition of Bonacich Centrality.

Definition 1: Bonacich Centrality:
For a network with weighted adjacency matrix G and scalar
α, the Bonacich centrality vector of parameter α is defined
by κ(G,α) = (I − αG)−1~1, if (I − αG) is invertible and
non-negative.
Therefore, by this definition equation (7) becomes

~x∗s = (
qb

qa + qb
)1s+(

1

2
+
pb − pa

2a0
− qb
qa + qb

)κ(G,
qa + qb

2a0
).

(8)
The first term in equation (8) is the amount that all agents
purchase from the product a in the Nash equilibrium irre-
spective of the network structure. In other words, this term,
i.e. xc = qb

qa+qb
= 1

qa
qb

+1
, can be thought of as the offset

of agents’ actions in the Nash equilibrium. The second term
which is proportional to the agents’ centrality shows how
much agents are inclined to purchase the product a or b
from their offset actions. In equation (8) we can see that
the parameter of centrality is only function of the quality
of products, i.e. qa and qb. However, the coefficient which
amplifies the centrality effect is a function of both the quality
and the price, i.e. pa, pb, qa and qb. As we expected and
can be easily seen from equation (8), ~x∗s is a decreasing
(increasing) function of pa (pb). This means that increasing
the price of products by firms leads to less consumption of
that product by agents. On the other hand, the consumption
at the equilibrium would not change if both firms change
their prices in the same amount. Knowing this fact might
potentially result in collusion between firms in order to
increase their price and make more profit. Also, we can see



that the offset of actions is a function of the ratio of products’
payoffs, i.e. qa

qb
. However, contrary to our expectation, xc is a

decreasing function of qa
qb

, meaning that the agents purchase
less of product a when qa

qb
is greater or when the product a is

more attractive to them. The reason for this contrary is that
we have not considered the effect of the second term yet. In
section IV we will see that as we expected the consumption
of a product in Nash equilibrium is an increasing function
of its payoff and a decreasing function of the other product’s
payoff.

In the next section, we study the game between firms when
agents take their actions in the Nash equilibrium as it was
described in this section.

IV. FIRST STAGE GAME

In this section we obtain utility functions of firms resulting
from actions of agents in the Nash equilibrium. We find the
best response functions of firms from their utility functions.
Using best response functions, we finally characterize prices
of firms in the Nash equilibrium of the game played between
them. Finally, we conclude this section with an analysis of
our results.

Theorem 2: Conditioned on the actions of agents in the
Nash equilibrium of the second stage game in (6) and when
sa = sb = 0 (restricting the analysis and the network to those
agents with feasible best responses), the Nash equilibrium of
the game between firms with utility functions defined in (3)
is given by

p∗a =
2ca + cb

3
+ (

qa − qb
3(qa + qb)

)
1T
s (As − ( qa+qb

2 )Gs)
−1~as

1T
s (As − ( qa+qb

2 )Gs)−11s

+ (
2(qa + 2qb)

3(qa + qb)
)

1T
s 1s

1T
s (As − ( qa+qb

2 )Gs)−11s

,

p∗b =
2cb + ca

3
+ (

qb − qa
3(qa + qb)

)
1T
s (As − ( qa+qb

2 )Gs)
−1~as

1T
s (As − ( qa+qb

2 )Gs)−11s

+ (
2(qb + 2qa)

3(qa + qb)
)

1T
s 1s

1T
s (As − ( qa+qb

2 )Gs)−11s

.

Proof: If we plug actions of agents in the Nash
equilibrium in (6) into the utility functions of firms in
equation (3) we get the following utility functions for firms

Ua(pa, qa, pb, qb) = (pa − ca)1T~x∗ = (pa − ca)1T
s {(

1

2
)(As−

(
qa + qb

2
)Gs)

−1(~as + (pb − pa)1s − qbGs1s)}+ (pa − ca)sa,

Ub(pb, qb, pa, qa) = (pb − cb)1T
s {1s − (

1

2
)(As − (

qa + qb
2

)Gs)
−1

(~as + (pb − pa)1s − qbGs1s}+ (pb − cb)sb.

In order to find the optimal price offered by firms, we take
the derivative of their utility functions with respect to their
prices and set it to zero. This is in fact the best response
of a firm conditioned on the price of the other firm. After
simplification and using the fact that As1s = ~as and

(As − αGs)
−1G =

(As − αGs)
−1As − I

α
,

for best responses of firms we obtain

βa(pb) =
pb + ca

2
+ (

qa − qb
2(qa + qb)

)
1T
s (As − ( qa+qb

2
)Gs)

−1~as

1T
s (As − ( qa+qb

2
)Gs)−11s

+
( qb
qa+qb

)s+ sa

1T
s (As − ( qa+qb

2
)Gs)−11s

,

βb(pa) =
pa + cb

2
+ (

qb − qa
2(qa + qb)

)
1T
s (As − ( qa+qb

2
)Gs)

−1~as

1T
s (As − ( qa+qb

2
)Gs)−11s

+
( qa
qa+qb

)s+ sb

1T
s (As − ( qa+qb

2
)Gs)−11s

.

(9)

Notice that if in the above equation we set qa = 1, qb = 0,
pb = 0 and sa = 0, we get

βa(pb) =
ca
2

+ (
1

2
)
1T
s (As − ( 1

2 )Gs)
−1~as

1T
s (As − ( 1

2 )Gs)−11s

,

which is the optimal price charged by a monopolist obtained
in [4]. Now in order to find the Nash equilibrium of the game
between firms, we plug the best response of each firm into the
other firm’s best response and solve the resulting equation.
After simplification we get the following Nash equilibrium
in the first stage game

p∗a =
2ca + cb

3
+ (

qb − qa
3(qa + qb)

)
1T
s (As − ( qa+qb

2 )Gs)
−1~as

1T
s (As − ( qa+qb

2 )Gs)−11s

+
( 2s
3 )( qb

qa+qb
+ 1 + 2sa

s + sb
s )

1T
s (As − ( qa+qb

2 )Gs)−11s

,

p∗b =
2cb + ca

3
+ (

qa − qb
3(qa + qb)

)
1T
s (As − ( qa+qb

2 )Gs)
−1~as

1T
s (As − ( qa+qb

2 )Gs)−11s

+
( 2s
3 )( qa

qa+qb
+ 1 + 2sb

s + sa
s )

1T
s (As − ( qa+qb

2 )Gs)−11s

.

(10)

If we let sa = sb = 0 and s = 1T
s 1s we get the result in

theorem 2.
Theorem 2 implicitly shows the effect of the cost and the
quality of a firm’s product on her Nash equilibrium price.
However, in order to see this effect more clearly we need to
make the model simpler. We investigate these effects further
in section IV.

Corollary 2: When agents only differ in their network
position, i.e., ai = a0 for all i ∈ I and sa = sb = 0,
the Nash equilibrium of the game between firms is given by

p∗a =
2ca + cb

3
+
a0(qa − qb)
3(qa + qb)

+ (
2a0(qa + 2qb)

3(qa + qb)
)

1T
s 1s

1T
s (Is − αGs)−11s

,

p∗b =
2cb + ca

3
+
a0(qb − qa)

3(qa + qb)

+ (
2a0(qa + 2qb)

3(qa + qb)
)

1T
s 1s

1T
s (Is − αGs)−11s

.



where α = qa+qb
2a0

.
Proof: From equation (10) and after setting As = a0Is

and ~as = a01s we get

p∗a =
( 2a0s

3
)( qb

qa+qb
+ 2sa

s
+ sb

s
+ 1)

1T
s (Is − αGs)−11s

+
a0(qa − qb)
3(qa + qb)

+
2ca + cb

3
,

p∗b =
( 2a0s

3
)( qa

qa+qb
+ 2sb

s
+ sa

s
+ 1)

1T
s (Is − αGs)−11s

+
a0(qb − qa)
3(qa + qb)

+
2cb + ca

3
.

(11)

Now if we let sa = sb = 0 and s = 1T
s 1s we get the result

in corollary 2.
If we consider the case where both firms have the same
cost and quality for their products, i.e. qa = qb = q and
ca = cb = c, and also assuming sa = sb = 0, then the Nash
equilibrium becomes

p∗ = c+
a01

T
s 1s

1T
s (Is − αGs)−11s

.

This result indicates that even when all agents are homoge-
nous and firms are similar, the Nash equilibrium price de-
pends on the network structure. This result is different from
the monopoly market where the optimal price is independent
of the network structure and is given by

p∗ =
c+ a0

2
,

when agents are homogenous. In the next section, we study
the Nash equilibrium of the first and second stage games
when the network is row or column stochastic and give an
analysis of our results.

V. NASH EQUILIBRIUM IN STOCHASTIC NETWORKS

In this section we study the Nash equilibrium of the second
and first stage games when agents only differ in their network
position, i.e., ai = a0 for all i ∈ I and the weighted
adjacency matrix of the network is normalized to a row
or column stochastic matrix. If matrix Gs is row (column)
stochastic, then it means that its rows (columns) sum up to
one. In other words, it has a right (left) eigenvector of 1s

corresponding to its eigenvalue of λ1 = 1. Therefore, we
have one of these two cases

Gs1s = 1s if Gs is row stochatsic,

1T
s Gs = 1T

s if Gs is column stochatsic.

In the next corollary we describe actions of agents in the
Nash equilibrium when the weighted adjacency matrix of
the network is normalized to a row stochastic matrix and
compare its sensitivity with respect to the price and the
payoff a product.

Corollary 3: If the weight adjacency matrix of the net-
work G is normalized to a row stochastic matrix and agents
only differ in their network position, i.e., ai = a0 for all
i ∈ I, then in the Nash equilibrium the consumptions of all
agents are equal and independent of the network structure
and is given by

~x∗s = (
a0 + pb − pa − qb
2a0 − (qa + qb)

)1s.

Moreover, agents consumption is more sensitive with respect
to the price than to the quality. In other words,

‖∂x
∗

∂qa
‖ ≤ ‖∂x

∗

∂pa
‖,

‖∂(1− x∗)
∂qb

‖ ≤ ‖∂(1− x∗)
∂pb

‖.
Proof: First note that from the definition of centrality

we have
(I − αGs)

−1 = Σ∞k=0(αGs)
k. (12)

It can be easily seen that for any power of row (column)
stochastic matrix Gs, the vector 1s is still its right (left)
eigenvector corresponding to the eigenvalue of λ1 = 1.
Therefore, from equation (12) we have

(I − αGs)
−11s = Σ∞k=0(αk)Gk

s1s

= Σ∞k=0(αk)1s = (
1

1− α
)1s.

Therefore, setting α = qa+qb
2a0

, rearranging terms in equation
(8) and simplifying them, we obtain the following actions
vector for a row stochastic network

~x∗s = (
a0 + pb − pa − qb
2a0 − (qa + qb)

)1s.

From this equation and the assumption of 2a0 > qa + qb in
section II, it can be seen that as we had expected ~x∗s is an
increasing (decreasing) function of qa (qb) meaning that the
quality (payoff) of a product leads to more consumption of
that product. Also, ~x∗s is a decreasing (increasing) function of
pa (pb) meaning that if a firm charges more for her product,
people consume less. More precisely, we can see that for
firm a we have

∂x∗

∂pa
=

−1

2a0 − (qa + qb)
,

∂x∗

∂qa
=

a0 + pb − pa − qb
(2a0 − (qa + qb))2

.

(13)

Since x∗ ≤ 1, it follows that ‖∂x
∗

∂qa
‖ ≤ ‖∂x

∗

∂pa
‖. Similarly, we

can see that
∂(1− x∗)
∂pa

=
−1

2a0 − (qa + qb)
,

∂(1− x∗)
∂qa

=
a0 + pa − pb − qa
(2a0 − (qa + qb))2

.

Hence, ‖∂(1−x
∗)

∂qb
‖ ≤ ‖∂(1−x

∗)
∂pb

‖. Therefore, in the Nash
equilibrium the consumption of an agent is more sensitive
with respect to the price than to the quality (payoff).
Note that from equation (13) we can also see that agents are
more sensitive with respect to the price when the quality of
a product is higher. In other words,

∂2(x∗)

∂qa∂pa
< 0

∂2(1− x∗)
∂qb∂pb

< 0.

Corollary 4: If the weighted adjacency matrix of a net-
work is normalized to a row or column stochastic matrix
and agents only differ in their network position, i.e. ai = a0
for all i ∈ I, and sa = sb = 0, then the price in the Nash



equilibrium of the game between firms is independent of the
network structure and is given by

p∗a =
3a0 + 2ca + cb − qa − 2qb

3
,

p∗b =
3a0 + 2cb + ca − qb − 2qa

3
.

Proof: From the fact that for any row (column) stochas-
tic graph G, the vector 1s is still its right (left) eigenvector
corresponding to the eigenvalue of λ1 = 1 of Gk

s we get

1T
s (I − αGs)

−11s = Σ∞k=0(αk)1T
s G

k
s1s

= Σ∞k=0(αk)1T
s 1s = sΣ∞k=0α

k = s
1

1− α
.

Therefore, using this fact, setting α = qa+qb
2a0

and sa = sb =
0 along with equation (9) we get following best responses
for firms

βa(pb) =
a0 + ca + pb − qb

2
,

βb(pa) =
a0 + cb + pa − qa

2
.

(14)

Solving the above equation for prices, we get the result in
Corollary 4.
First notice that if two firms are similar, i.e. ca = cb and
qa = qb, the Nash equilibrium in corollary 4 becomes

p∗ = a0 + c− q.

Also note that equation (14) implies that increasing a firm’s
price results in increasing her opponent’s best response price.
This is because of the fact that by increasing a firm’s price
agents in the market become more inclined towards the other
firm. As a result, the other firm can take advantage of this
opportunity and increase her price too. Another point here
is that a firm’s best response price decreases if her opponent
increases her product’s quality. This is clear due to the
competitive nature of the market, since when her opponent
increases her product’s quality, the firm has to decrease her
price so that she does not lose her costumers. Also notice
that the price of a firm in Nash equilibrium in corollary 4
is not only an increasing function of her cost, but also an
increasing function of her opponent’s cost. This could be
due to the fact that if her opponent’s cost increases, then her
opponent has to increase her price to cover her cost and as
it was explained this yields to the increasing of the firm’s
best response price. Moreover, corollary 4 states that in the
Nash equilibrium increasing a firm’s product quality results
in decreasing her price. This might be counter intuitive at
the first glance but can be explained in the following way. If
a firm increases her product’s quality, as can be seen from
equation (14) her opponent’s best response price decreases.
This in turn leads to the decreasing of the firm’s best response
price. Also notice that the optimal price of a monopolist in
this case is given by

p∗m =
a0 + c

2
.

Comparing this with the best responses of firms in equation
(14), it follows that depending on the sign of p−q of a firm’s

opponent, the best response price of the firm in duopoly
market can be greater, equal or less than her optimal price in
a monopoly market. In other words, if her opponent charges
more (less) price than the quality that she provides for her
product, the best response price of the firm would be higher
(lower) than as if she was in a monopoly market.

VI. CONCLUSION

We studied a duopoly pricing problem of competing firms
in social networks. Two firms selling substitute products
in a social network decide on the uniform price that they
charge agents for their products and the quality of the
products they offer. For agents, the quality is the payoff
of a local coordination game played among them in the
network. This payoff can also be interpreted as the positive
externality effect of a product in the network. After firms
make their decisions, agents in the network decide what
fraction of these two products to purchase. Similar to results
of [6] and [4] we showed that agents consumption in the
Nash equilibrium consists of a constant term and a term
which depends on their Bonacich centrality in the network.
We then characterized the Nash equilibrium of two firms
and showed that even when firms are similar and offer a
single uniform price for all agents, their price in the Nash
equilibrium depends on the structure of the network, which
is different from the monopoly case. Next we considered the
case when the adjacency matrix of the network is normalized.
We showed that in this case, consumptions of all agents
are equal and Nash equilibrium price is independent of the
network structure. We then analyzed the sensitivity of an
agent’s consumption with respect to the price and the quality
of a product and showed that an agent is more sensitive
with respect to the price. We finally showed that in this
case, depending on a firm’s opponent’s price and quality, the
optimal price of the firm can be higher, equal or less than
the monopoly’s optimal price. Directions for future research
could include studying distinctive prices for agents and also
the case that there are more than two products in the market
and the relationship among firms also is represented by a
network.
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