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Absbact-In this paper, we investigate data fusion tech- 
niques for target tracking using distributed sensors. Specif- 
ically, we are interested in how pairs of hearing or range 
sensors can be best assigned to targets in order to minimize 
the expected error in the estimates. We refer to this as the 
focus of attention (FOA) problem. 

In its general form, FOA is NP-hard and not well 
approximable. However, for specific geometries we obtain 
significant approximation results: a 2-approximation algo- 
rithm for s tem cameras on a line, a PTAS for when 
the cameras are equidistant, and a 1.42 approximation for 
equally spaced range sensors on a circle. By reposing as 
a maximization problem - where the goal is to maximize 
the number of tracks with bounded error - we are able 
to leverage results from maximum set-packing to render 
the problem approximable. We demonstrate the results in 
simulation for a target tracking task, and for localizing a 
team of mobile agents in a sensor network. These results 
prov<de insights into sensodtarget assignment strategies, as 
well as Sensor placement in a distributed network. 

I. INTRODUCTION 

Sensor networks are the enablers of a technology 
which can best be described as omni-presence. Small, 
inexpensive, low power sensors distributed throughout an 
environment can provide ubiquitous situational awareness. 
The technology lends itself well to surveillance and mon- 
itoring tasks - including target tracking ~ and it is in 
this application where our interests lie. Unfortunately, 
the sensors used for these tasks are inherently limited, 
and individually incapable of estimating the target state. 
Without additional constraints, a minimum of two hearing 
sensors (such as cameras) are required to estimate the 
position of a target. For range sensors, three are required 
to localize a target (although this can be reduced to two 
using filtering techniques). Noting that the measurements 
provided by these sensors are also cormpted by noise, 
we realize that the choice of which measurements to 
combme can greatly influence the accuracy of our tracking 
estimates. 

Consider a distributed set of such sensors charged with 
tracking groups of targets. It would be unrealistic to 
assume that each sensor could track multiple targets or that 
the network possessed unlimited computational power and 
bandwidth. With this in mind, our problem can be viewed 
as an optimal allocation of resources for target tracking. 
How should pairs of sensors he assigned to targets so that 

the sum of errors in target position estimates is minimized? 
We refer to this as the focus of attention problem for 
distributed sensors. 

Related Work Since the measurements of multiple 
sensors are combined to estimate target pose, our work 
relates strongly to research in sensor fusion. Fusing mea- 
surements from multiple sensors for improving tracking 
performance has been the subject of significant research 
[l]. However, the focus has been on combining mea- 
surements from sensors (radars, laser range-finders, etc.) 
individually capable of estimating the target state (po- 
sition, velocity, etc.). As our sensors require the fusion 
of pairs of measurements, we desire instead an optimal 
assignment of disjoint sensors pairs to targets. This added 
dimension changes the complexity of the problem entirely, 
and distinguishes our work from previous approaches. 

Within the robotics community, Durrant-Whyte et a1 
pioneered work in sensor fusion and robot localization. 
This yielded significant improvements to methods used in 
mobile robot navigation, localization and mapping [9], [4]. 
Thrun et a1 have also contributed significant research to 
these areas [ I l l ,  [121. However, our work distinguishes 
itself from traditional data fusion techniques in that the 
sensors themselves are actively managed to improve the 
quality of the measurements obtained prior to the data 
fusion phase, resulting in corresponding improvements in 
state estimation. 

11. THE FOCUS OF ATTENTION PROBLEM 

The focus of attention problem (FOA) is formally 
defined as as follows: The input is a cost function c(i, j ,  k )  
which indicates the cost of tracking target k using sensors 
i and j where i, j E [ l . .  .2n] and k~ [ l . .  .n]. In the sequel, 
this cost represents the expected error associated with a 
position estimate obtained by fusing the information from 
sensors i and j .  We are required to output an assignment: 
a set of n triples such that each target is tracked by two 
sensors, no sensor is used to track more than one target 
and the sum of errors associated with hiples is minimized. 

FOA is closely related to the following problem [5] :  
Definition 1 (3D-Assignment): Given three sets X, Y 

and W and a cost function c : X x Y x W + N, find an 
assignmentA (that is a subset of X x Y x W such that every 
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element of X U  Y U W belongs to exactly one element of 
A )  such that 

3D-Assignment (3DA) is NP-hard [3] and inapprox- 
imable [Z]. It is easy to see that any instance of 3DA 
can be reduced to an instance of FOA just by setting 
cFoa(i, j,k) =c3Da(i, j,k) whenever cjDA(i, j,k) is defined 
and infinite otherwise. Moreover, since this reduction is 
approximation preserving, FOA with arbitrary costs is not 
approximable as well. 

However, usually the error is not arbitrary hut a function 
of the location of the cameras and the target. In the next 
two sections, we consider two error meuics for specific 
sensor configurations: Cameras on the line and range 
sensors on the circle. 

A. Cameras on a line 
In this section, we consider collinear cameras located on 

line 1 tracking targets on the plane. The error associated 
with cameras i and j tracking target k is where Zk 

is the vertical distance of the target k to the line 1 and 
bij is the baseline, that is the distance between the two 
cameras (see figure 1). This metric can he used to gauge 
the e m r  in the stereo reconstruction and gives a good 
approximation when the targets are not too close to the 
cameras [SI. Note that this error metric fails if the targets 
are very close to 1,  therefore in this section we assume 
that there exists a minimum clearance 6 such that 2, > 6, 
for all targets i. 

Suppose that the cameras aTe sorted from left to right 
and let ci be the coordinate of the Zk camera. The 
following lemma enables us to separate matching cameras 
from matching targets to pairs. 

Lemma 2: Let 2, be the depths of targets, 2, 5 Z, 2 
. . .I 2" and b, be the baselines in an optimal assignment 
sorted such that b,  5 b2 5 . . . bn. There exists an optimal 
matching such that the target at depth 2, is assigned to the 
pair with baseline bi.  

Pm08 Suppose not. Then there exists two assign- 
ments (Zi, b,) and (Zk, bi)  such that 2, > 2, and bj  < b,. 
But then 

c(i, j, k) is minimized. 

b, j 

Zi -+- 2, > 'i -+- 'k 
bj  b, b, b j  

(z,>- (4 - 2,) 
bj b, 

wbich is always me .  Therefore we could improve the 
optimal matching by swapping the pairs leading to a 
contradiction. m 

It is easy to see that a greedy assignment that assigns 
the furthest target the maximum available baseline can 

'In facf a b e e r  approximation is Z2/b, but when all the cameras are 
c o l l i n a  the depth of a tmgn is the same for all cameras and therefme 
for simplicity we assume that the depths are squared and he error is 
Zlb 

Fig. 1. A p e d y  assignment assigns cI and cn to tagpet r1 and geu 
smck with the pair (c l>c3) .  The optimal assignment in this case is to 
assign r,  to (c,:cJ) and f2 to (c2,c4). 

be arbitrarily far from optimal: Consider the setting in 
figure 1 with four cameras where the two cameras in the 
middle are very close to each other. In this configuration, 
the greedy algorithm can produce an assignment that 
is arhitrarily more costly than the optimal assignment: 

1)  A 2-Appmximation Algorithm: In this section we 
present a 2-approximation algorithm for the previous 
assignment problem. The algorithm simply assigns camera 
i to camera n + i and these pairs are then assigned to the 
targets according to Lemma 2. Let 1, (resp. 1;) be the 
baselines of the pairs generated by our (resp. optimal) 
algorithm. The following lemmas show that we can find 
a one-to-one correspondence between 1, and 1; such that 
li are longer than half of their corresponding pairs in the 
optimal solution. 

( f l  ,CI I C g ) ,  (f* F2,CJ. 

L e m m  3: Vi3 j  such that I, 2 1;. 
Pm08 Let k be the the pair such that I ( c ~ , c ~ + ~ ) \  = 1,. 

Let A = {ck,ck+,, .  . . ,c"+~}.  Since 1.41 = n +  1, in the 
optimal matching there must he two cameras in A that 
match with each other and the baseline of that match is 
at most la. 8 

Lemma 4: Let S = { 1 1 ,  .. . ,In} and OPT = {I; , .  . . $E}. 
For any A C S ,  (AI = k, there exists a subset B OPT, (BI = 
k and a bijection uk : A  + B such that li 2 ot(li)/2 for all 
l i E A .  

We prove the lemma by induction on the 
number of cameras. For the basis, existence of ol for k = 1 
is a corollary of Lemma 3. 

Inductive Step: Let c, and c j  be the leftmost and 
rightmost cameras used by the edges in A.  W.1.o.g. assume 
that /cicn+,l 2 ( C , C , + ~ ] .  Let Y be the subset of pairs in OPT 
that matches cameras in the set C = {ci ,c i+,  , , . . , c j } .  

We first Observe that IY( >_ k.  This is because IC\ 2 n+k 
and hence at most n - k cameras in C could he matched 
by OPT to cameras outside C. 

The longest edge in B is easily seen to be at most 
Z(C~$,+~(. We now recursively compute ok-, for A' = 
A\{(c,,c,+~)}. Let B' he the range of ox-,. Since (YJ 2 k, 
Y must have at least one pair, say 1'. not in B'. We match 
this pair to (c,,cn+,): 

PmoR 
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Fig. 2. The matchings pmduced by our algorithm (shown in dotted lines) 
can be twice as bad as the optimal marching (shown in solid lines) by 
moving the fulthesr target to infinity. 

Therefore by Lemma 4 there exists a mapping c from 
S to the optimal matching such that 1, 2 9, Vl, E S 
which gives us the desired approximation guarantee. This 
analysis is tight, there are instances where our algorithm 
can be twice as costly as the optimal: 

The tight example consists of n/4 cameras at x = 0, n/4 
cameras at x = 1 - E ,  n/4 cameras at x = 1 + E  and n/4 
cameras at x = 2. There is one target at Z = F and n - 1 
targets at Z = E (see figure 2). 

The optimal cost in this case is 4 + (n - 2)& + 2. 
This is achieved by matching c I  to cb and c!+~ to cjn 
and imitating our algorithm otherwise. 

Our cost in this case is is & + (n - l )& which is 
20PT for large enough 2'. 

We summarize the main result of this section in the 
following theorem. 

Theorem 5: There exists an O(n)-time algorithm that 
simulfaneously gives a 2-approximation to minimizing the 
sum of errors metric as well as minimizing the maximum 
emor metric when the cameras are aligned and the cost of 
assigning cameras i and j to target k is 5 where b,, is 
the distance between the cameras and Z, IS the distance 
of target k to the Line that passes through the cameras. 

2) A PTAS for equidistant cameras: Our next result is 
a PTAS for equidistant cameras on the line. Let E > 0 
be a fixed constant. We are going to present an algorithm 
that computes a (1 + O(E))-approximate solution. Without 
any loss of generality assume that the distance between 
two consecutive cameras is 1, hence the length of the line 
segment is 2n - 1. 

Lemma 6: In an optimal matching leftmost n cameras 
match with rightmost n cameras. 

Proof: Assume c, is matched to c,, i, j 5 n in an 
optimal matching. This implies that among the rightmost 
n cameras at least two of them match with each other, 

a 

bsl 

Fii. 3. 
edge of type (1. j )  (doned line). 

Partitioning the line segment: A small edge (solid line) and an 

Fig. 4. Figure for lemma 8 

say ct and c,. But then, this matching can be improved 
by pairing ci with ck and cj  with cI which contradicts the 

Let p = E2n and q = 1 / E 2 .  Panition the n points on the 
left into equal sized blocks L, , . . . , L, so that each block 
has p cameras. Similarly, we partition the points on the 
right into equal sized blocks R I , .  . . ,Rq. Consider a camera 
pairing ( x , y )  in OPT. We call it of type (i, j )  if x is Li 
and y is in R j .  

Clearly, there are q2 (i.e. constant, for a given E )  
number of different types. We will enumerate all possible 
matcbings by guessing the number of edges in each type. 

Lemma 7: An edge is called small if its length is less 
than En. The number of small edges is at most En. 

Pmof: The lemma follows from the fact that the 
small edges may involve at most 1 / &  left blocks connected 

Given a guess, we use the following rule to match the 
cameras. Fix a block on the left, say L,. Suppose L, is 
connected to xI vertices in RI, ~2 vertices in R2, etc. Pair 
the x, leftmost vertices in L, to x l  leftmost vertices in RI.  
Then x2 leftmost among remaining ones and so on. 

This ensures that small edges in OPT are reduced by at 
most a factor of 2.  

Lemma 8: Let c1,cz,c3 and c4 be four cameras ordered 
from left to right, x = JcIc21, y = Jc2c3), z = Ic3c4J with 
z 3 x. In addition, let t1 and r, be two targets at distances z1 
and z, respectively (figure 4). If (c1,c4,t2) and (c2,c3,t1) 
are triples in an optimal assignment then: 

optimality. 

to the 1 / &  right blocks. 

Pmof: Consider the assignment obtained by crossing 
the pairs: (c1,c3,f , )  and (c2,c4,r2) (see figure 4). Due to 
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optimality we have 

and the lemma follows by simple algebraic manipulation. 

Lemma 9: Let the weight of an edge e for an assign- 
ment be 3 where 2, is the depth of the target assigned 
to this edge and le1 is the distance between the cameras 
connected by e. The total weight on the small edges is at 
most an 6 4 ~  fraction of the overall weight in any optimal 
assignment. 

Proof: Let M and N be the lefunost and rightmost 
cameras respectively. In an optimal matching, due to 

Lemma 6, the edges in M match with rightmost n edges 
and at least 8 of them are in N .  Let B = {b , ,  ..., b q }  be 
the set of any 5 “big” edges that match cameras from M 
to cameras in N and S = Is1, . . . , sk}  be the set of “small” 
edges. By Lemma I, k 5 En. 

Partition B into & 2 & groups Bi of size k arbitrarily. 
We pick any group B, and match the edges bi E B, 

to edges in S arbitrarily. Let Zf and 2 be the depths of 
targets assigned to si and bi respectively. By Lemma 8 
with x +  y I n + En, x +  y + z  2 and y + z 2 2 we get: 

Z; b ( n + & n )  8(1+&) 162; 

si T Z  
- 5 .q7=z;--- 5 -  . n  n 

Let w(S) be the total weight in set S. Since a baseline can 
be of length at most 2n, by summing up over the elements 
in S, we get w(S) 5 32w(Bj). 

Therefore we conclude: 

since the total weight is greater than w(B), the lemma 
follows. 

Theorem 10: There exists a PTAS for assigning 
equidistant cameras on a line. 

Proof: The matching described ensures that small 
edges in OPT are reduced by at most a factor of 2 and 
long edges are withim a factor of (1 +E). Using Lemma 9 
above, by combining these matchings, we get an overall 

B. Range-Sensors on a Circle 
In this section, we consider range-sensors located on 

a circle V at equidistant intervals, tracking targets that 
are located inside V. The error associated with a pair of 
range sensors (cI,c2) and a target f is approximated by 

where 0 = Lclrc,. This is the Geometric Dilution of 
Precision (GDOP) for sensors that measure distances from 
the targets [SI. In practice three range sensors are required 
for explicit target localization. However, target-tracking 
need not be an adversarial task. Consider a team of 

1 + O(e)-approximation. 

mobile robots negotiating a sensor network. Pairs of sensor 
measurements could be paired with heading information to 
enable localization. In this application, identifying optimal 
pairs would prove useful for providing optimal position 
estimates while minimizing network transmissions. 

For simplicity, assume there are 4n sensors and 2n 
targets. Let S be the set of pairs generated by matching 
sensor i with sensor i+n which is 90 degrees away 
clockwise from i .  Assign the targets arbitrarily to pairs. 

For two sensors c, and c,, let x be a point inside C 
such that Lc,xc, = 2 (see figure 5). Let Arcl(cl,c2) be 
the arc defined by c1 ,c2 and x and Arc2(c1 ,c,) be the arc 
axially symmetric with respect to the the chord cIc2. Note 
that Arc2 lies on V. 

We call the region inside Arcl(cl,cz) and Arc2(c,,cz) 
a defective region for the pair (c1,c2), because any target 
outside this region is viewed by an angle less than f and 
greater than 4 degrees from (cl,cz), This angle is enough 
to guarantee a 1.42-approximation since 1 /sin( 7 )  < 1.42 
and the least error possible in this metric is 1. We sum- 
marize the properties of defective regions in the following 
propositions, which can he proven using basic g e o m e ~ c  
formulas. We omit the proofs due to lack of space. 

Proposition I J :  Any target outside the defective region 
of sensors c1 and cz is viewed by an angle less than 
and greater than 4 from cI  and c2. 

Pmposifion 12: Let clrcZ,c3 and c4 be four sensors 4 
degrees apart. Defectiveregionsof (cl,cz),(cz,c3), (c3,c4) 
and (c4,cI) are disjoint (figure 5 right). 

Having assigned the targets to sensors T degrees apart 
we proceed as follows: We scan the pairs assigned to each 
target ti. Suppose the current pair is (c1,c2) . 

Now suppose that f l  assigned to (cI,cz) is defective 
(i.e. in the defective region of cI and c,). Consider the 
pair (c3,c4), such that c3 (resp. c4) is the antipodal of c1 
(resp. c3) and the target f2 assigned to (c3,c4). - if fz is also defective, we swap targets: the new 

assignment is (c1,c2,t2) and (c3,c4,rl). 
if f, is good and outside the defective region of 
(cI,cz) again we swap targets: the new assignment 

. if t2 is good and inside the defective region of (cI ,cz) 
we swap pairs: the new assignment is (cI,c4,f,) and 

is to make the 
defective regions disjoint: As the right figure in figure 
5 illustrates, by construction the defective regions only 
intersect at the sensors. This makes each assignment to 
have an error of 1.42 at most. In addition, once an 
assignment is modified we never return to it. Therefore 
this algorithm gives a 1.42-approximation for 1 /sin 8 error 
metric. 

The main result of this section is summarized in the 
following theorem: 

is (cI,c2,f2) and (c3%c47f1). 

(C2rC31t2). 
The reason we picked the angle as 
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Fig. 5. Sensors OD circle: LEFXThe defective regiaian for sensors c2 
and c2 is the shaded area defined by mcs Arcl(cl,c2) and Arc2(cllc2). 
RIGHT: The defective regions M disjoint. 

7heorem 13; There exists an O(n)-time algorithm that 
simultaneously gives a 1.42-approximation to minimizing 
the sum of errors metric as well as minimizing the 
maximum error metric when the 4n sensors are equally 
spaced on a circle and the cost of assigning sensors i and 
j to target k is A. 

Discussion: Universal Placement Note that the analy- 
sis above shows that the equidistant placement for 
metric is universal: No matter where the targets are 
located, our algorithm guarantees a 1.42-approximation 
for the optimal matchmgs generated by any placement of 
sensors on circle. 

Similarly, a universal placement for cameras on a line 
segment [x,y] for the Z / b  metric would be to put half of 
the cameras to x and the other half on y, which guarantees 
an optimal assignment for this metric. 

C. Arbiirary Sensor Placement 
The inapproximability of FOA for general sensor place- 

ment lead us to repose it as its "dual" maximization 
problem. To do this, we define the notion of a valid 
track. An assignment (c i ,c j , tk)  is considered a valid track 
if Err(ci,cj,rk) IS,, where So represents an acceptable 
error threshold predefined by the user. The problem then 
becomes: Given a set of sensors C with ci E C, a set of 
targets T with i E T, and an error threshold %, consmct 
a set of disjoint assignments A, where (ci,cj,rk) E A iff 
Err(ci ,cj , tk) 5 6,. such that IAl i s  maximized. 

When the error metric is arbitrary, this problem is 
equivalent to Maximum 3-Set Packing', which is known 
to be NP-hard [5].  It is also known that a greedy solution 
is within a factor of 3 of optimal. A "2-locally-optimal" 
solution is defined as a maximal solution that can not be 
improved further by removing any item from the current 
solution, and attempting to insert 2 non-conflicting items. 
It has been shown that any 2-locally optimal solution pro- 
vides a 3 approximation [6], [13]. One might suspect that a 

'Given a 3-sel system (S;C) - a set S and a collection C of si= 3 
subsets of S, find a maximum cardinality collectrnn of disjoint sets in C. 

2-locally optimal solution would yield better performance 
for restricted error metrics. However, it can be shown that 
there are instances of FOA where the 2-locally optimal 
solution can be a factor of away from the optimal value 
[7]. We further investigate the utility of the greedy and 
2-local algorithms in Section III. 

111. SIMULATION RESULTS 

We implemented simulations for several of our results 
in both target tracking and cooperative localization tasks. 
We contrasted the performance of these empirically with 
greedy approaches. Each sensor was constrained to track- 
ing a single target at any given time. For the line and circle 
cases, no limitations were assumed regarding sensor range. 

A. Cameras on the line 
In this simulation, we modeled the target tracking task 

as outlined in Section U-A. Specifically, we considered 
10 cameras charged with tracking 5 targets performing a 
random walk as shown in Figure 6. The sensors measured 
bearings to targets. Measurements from pairs of senson 
were then merged (via triangulation) to obtain an estimate 
of the position of the target. We modeled this scenario for 
two different algorithms. 

Algorithm 1 initially assigned each target to the best 
available pair and kept this assignment fixed through- 
out the simulation. Algorithm 2 employed the 2- 
approximation algorithm presented in Section 11-A. In this 
approach, sensor pairs communicated target position esti- 
mates (requiring O(n) communications), and sensor pair- 
target assignments were dynamically updated as necessary. 

We simulated the performance of these two algorithms 
for 1000 iterations. The error in bearing was simulated 
by drawing samples from zero mean Gaussian with CT = 
1". The middle figure in Figure 6 is the histogram of the 
average error for the dynamic update method. The mean 
squared error is 3.62 and the standard deviation of the error 
is 3.22. In this simulation, the 2-approximation algorithm 
performs better than the no-optimization version (given in 
Figure 6 right), whose mean error is 12.22 and the standard 
deviation of the error is 17.98. 

B. Sensors on rhe circle 
Target tracking need not be adversarial. We demonstrate 

this in a cooperative localization task. In this simulation, 
n robots are operating within a sensor network defined by 
212 range sensors on a circle. The robots rely on pairs of 
sensor measurements to fuse with odometry information. 
Both the sensor and odometry measurements are corrupted 
with random Gaussian noise. Additionally, the odometry 
measurements have an unmodeled bias (to reflect wheel 
imperfections, for example). Each robot employs a particle 
filter to fuse the imperfect odometry and sensor measure- 
ments to estimate its position. 
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Fig. 6. 
approximation and greedy algorithm with no re-assignment 

Len: A trackdng scenario with targee performing a random walk. Middle, Ribt:  Histograms of the meawsquared m a r  (MSE) for 2- 

Again, we modeled two algorithms for this scenario. 
Both initiated with a globally optimal assignment of 
sensor pairs to targets. In Algorithm 1, this assignment 
was maintained throughout the simulation. Algorithm 2 
followed the 1.42-approximation as outlined in Section 
II-B. In this case, reassignment of sensor pairs to targets 
was consuained to within the initial 4 sensorR target 
assignment. Localization then proceeded with each robot 
transmitting a position estimate to its assigned sensor pair. 
The sensor pair in turn transmitted range measurements 
to the target. These measurements, and the knowledge 
of sensor positions, allowed each robot to condition its 
particle filter set for improved position estimation. The 
procedure then iterated. 

Localization performance for both algorithms is re- 
flected in Figure 7. In this example, 8 robots were tracked 
by 16 sensors. The robots localized while following 
pseudo-random trajectories through the network. As ex- 
pected, results indicate that although both approaches rely 
on identical filtering techniques, significant improvements 
in localization performance can be achieved by intelli- 
gently assigning targets to sensors prior to the data fusion 
phase. 

C. Arbitrary Sensor Placement 
In this last simulation, we examined the arbitrary sensor 

placement problem as outlined in Section U-C. For this 
example, 20 cameras were distributed roughly uniformly 
on the plane and charged with tracking 10 targets. Here, 
the objective was to maximize the number of valid tracks, 
in contrast to the error minimization objective of pre- 
vious simulations. Targets followed random trajectories, 
and were tracked in simulation using particle filters. The 
respective particle sets were employed to generate a nu- 
merical error metric for the targets as discussed in [lo]. 

Two algorithms were investigated for this maximiza- 
tion approach. The first employed a greedy assignment 
strategy, and the second a 2-locally optimal approach as 
discussed in Section n-C. The latter took the greedy so- 

lution as input, and as a consequence could only improve 
on its performance. Reassignment was made for both 
algorithms at each timestep. Several trials were conducted 
corresponding to sparse and dense solution sets. Data from 
a representative trial can be found at figure 8. 

In each trial, the 2-local solotion improved over greedy 
by 5-15%. As expected, the larger improvements corre- 
sponded to dense solution sets - i.e. when there were 
more opportunities for finding local improvements. These 
results are by no means encompassing, and provide only 
insights into expected performance which is a function of 
too many variables to address here. However, they imply 
that unless the guarantee of improved performance is crit- 
ical, the significantly greater computational complexity of 
2-local may not be warranted by the expected performance 
improvement over greedy for real-time applications. 

IV. CONCLUSIONS AND DISCUSSION 

In this paper, we have introduced the focus of attention 
problem for distributed sensors. We observed that for a 
general cost metric, the problem is "-hard and not well 
approximable. However, for constrained geometric cases 
we were able to exploit relations between the sensor 
geometry and corresponding error mehics. From this, 
we obtained: a 2-approximation for stereo cameras con- 
strained to the same baseline, a €TAS solution for the same 
geometry when the cameras are spaced equidistantly, and 
a 1.42-approximation for 4n-range sensors equi-spaced on 
the circle. 

The 2-approximation for stereo cameras and the 1.42- 
approximation for range sensors have several desirable 
attributes. Their matchings have twofold approximation 
guarantees; the sums of errors are bounded, as are 
the individual target errors. Additionally, they are read- 
ily implemented, and are inexpensive both computation- 
ally (O(nlogn) and O(n), respectively) and in terms 
of network communications (O(n)). In simulation, both 
showed significant improvements in performance over 
greedylstatic assignment strategies. The constraints to ge- 
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Fig. 7. 
1.42-approximation and static assignment trials. The former reduces MSE in position by 50%. 

Left: Simulator snapshot showing robot positions overlaid with corresponding particle set estimates. Center, Right: MSE histograms for the 

o w  snrrn * A d  L.rm 

Fig. 8. 
strategies. In this example, Z-locsl improved over greedy by on average 15%. 

LeR: Simulator snapshot far I-local assignment trial. Center, Right: The number of valid backs recovered for greedy and 2-local search 

ometry are restrictive but still useful, and we are currently 
working to extend these to additional configurations. 

Empirical results for arbitrary sensor placement simu- 
lations indicate on average a 5-15% improvement for the 
:-approximate solution over a greedy approach. However, 
the former is more expensive computationally. As a con- 
sequence, a greedy strategy may be preferred for real-time 
applications. 
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