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Abstract
A prerequisite for using corrective gene therapy to treat humans with inherited retinal degenerative
diseases that affect primarily rods is to develop viral vectors that target specifically this population
of photoreceptors. The delivery of a viral vector with photoreceptor tropism coupled with a rod-
specific promoter is likely to be the safest and most efficient approach to target expression of the
therapeutic gene to rods. Three promoters that included a fragment of the proximal mouse opsin
promoter (mOP), the human G-protein coupled receptor protein kinase 1 promoter (hGRK1), or
the cytomegalovirus immediate early enhancer combined with the chicken beta actin proximal
promoter CBA) were evaluated for their specificity and robustness in driving GFP reporter gene
expression in rods, when packaged in a recombinant adeno-associated viral vector of serotype 2/5
(AAV2/5), and delivered via subretinal injection to the normal canine retina. Photoreceptor
specific promoters (mOP, hGRK1) targeted robust GFP expression to rods, while the ubiquitously
expressed CBA promoter led to transgene expression in the retinal pigment epithelium, rods,
cones and rare Müller, horizontal and ganglion cells. Late onset inflammation was frequently
observed both clinically and histologically with all three constructs when the highest viral titers
were injected. Cone loss in the injected regions of the retinas that received the highest titers
occurred with both the hGRK1 and CBA promoters. Efficient and specific rod transduction,
together with preservation of retinal structure was achieved with both mOP and hGRK1 promoters
when viral titers in the order of 1011 vg/ml were used.
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INTRODUCTION
With substantial evidence from studies conducted in animal models1–3 that the retinal
pigment epithelium (RPE) can be efficiently transduced for corrective gene therapy in
humans4–6, emphasis has now shifted at developing and evaluating viral vectors that will
enable targeting other retinal cell populations. The need for efficient and safe viral vector
constructs with specific photoreceptor (PR) tropism is essential for targeting retinal
degenerative diseases such as retinitis pigmentosa, cone dystrophies, cone-rod dystrophies,
and the non-exudative form of age-related macular degeneration.

Adeno-associated viruses (AAV) are the most commonly used vectors in retinal gene
therapy as they offer several advantages over other viral vectors, e.g. low immunogenicity,
prolonged transgene expression, and ability to transduce postmitotic cells. There are
currently nine different AAV serotypes (1–9) commonly used as vectors.7 The discovery
that their specific cell tropism is under the control of their capsid proteins has led to the
development of chimeric recombinant AAV (rAAV) serotypes (also termed pseudotypes).8

These vectors are generated by inserting the promoter, transgene, and poly-A site of interest
between two AAV2 internal terminal repeats (ITRs), and packaging the DNA vector into the
desired capsid serotype.

Large animal models such as the dog have been used by several groups both to confirm cell
tropism, and to demonstrate proof of principle of viral-mediated gene therapies. To this date,
5 different rAAV chimeric serotypes (rAAV2/1, rAAV2/2, rAAV2/4, rAAV2/5, and
rAAV2/8) have been tested in the canine retina (for review see 9), and of these, only
rAAV2/2, rAAV2/5 and rAAV2/8 target, albeit not specifically, PR cells. rAAV2/2 has
been used by several groups to transduce the RPE in a canine model of Leber’s congenital
amaurosis,1, 10, 11 yet a single study has reported that in this species rAAV2/2 may also
target PRs, and a small number of ganglion cells.12 In a study that examined the tropism of a
rAAV2/8 delivered to the canine retina via subretinal injection, the authors reported GFP
expression in the RPE, PRs, inner nuclear layer (INL) and ganglion cells. GFP was also
found in the brain along the visual pathway, and detection of the vector genome by PCR in
the lateral geniculate nucleus, optic radiations, and visual cortex suggested that this vector
has the potential for transfer across synapses.13 For obvious safety reasons, the widespread
dissemination of this virus may limit its use for PR gene therapy in human patients.

Although rAAV2/5 has a slower onset of transgene expression than that of rAAV2/8,14 it is
a promising vector for PR targeting. Indeed, several groups have demonstrated high
efficiency transduction of both RPE and PRs with this serotype,15–17 and it has been shown
to target GFP expression to cones when specific cone promoters are incorporated in the
construct.18–21

The use of a constitutively expressed promoter in rAAV2/2, rAAV2/5, and rAAV2/8 vectors
has been shown to drive expression of the reporter gene in PRs but also in the RPE and inner
retinal cells. 12, 22 To further restrict transgene expression to a particular retinal cell type,
substantial effort is now being placed on identifying and validating promoters that are
activated specifically in the cell of interest. The choice of a particular rAAV serotype
coupled with a cell-specific promoter is currently considered as the safest approach to
achieve sustained transgene levels while avoiding off-target expression.

The availability of a panel of viral constructs with different promoters that can drive the
expression of a transgene in both rods and cones, or alternatively, in subpopulations of these
PRs, is a prerequisite for developing efficient and safe gene therapies. Viral vectors that
target cones have been developed,21 and are currently being used in a canine model of
achromatopsia,23 yet there is currently a dearth of vectors that target rods. This study
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examined the efficiency of three rAAV2/5 constructs, and reports rod-specific expression in
the normal adult canine retina with a mouse opsin (mOP) promoter, or a human G-protein-
coupled receptor protein kinase 1 (hGRK1) promoter, while transgene expression was found
in rods, cones, and other non-photoreceptor retinal cells when a constitutive chicken beta
actin (CBA) promoter was used.

RESULTS
Clinical evaluation and histopathology

Subretinal injections performed through a transvitreal approach without vitrectomy enabled
injection of 150 μl of viral vector preparation in young adult canine eyes. This resulted in
subretinal blebs in 10/14 eyes that covered up to 1/4 of the entire retinal surface (Figure 2A).
In two eyes (E1048-L; E1055-L) a subretinal bleb was formed but some viral vector solution
entered under the RPE (sub-RPE). This could be clearly observed during the injection by
noticing the sudden and localized persistent pink/copper discoloration of the tapetal fundus.
In one eye (E1053-L), despite a successful retinotomy, the entire injected volume failed to
form a subretinal bleb, and refluxed into the vitreous. Finally, in another eye (P1476-R) a
small amount of viral solution went sub-RPE, and the rest refluxed into the vitreous. These
eyes were included in the study to examine the effects of sub-optimal or failed subretinal
injections. As noted in Table 1, these eyes showed intense GFP expression in rods, although
in most cases, the area of coverage was reduced to the immediate injection site.

Clinical assessment throughout the injection-termination period revealed a number of fundus
abnormalities with all three constructs. Focal signs of inflammation (retinitis, chorioretinitis,
or vasculitis) in the injected area occurred only with the highest viral titers (~1012 – 1013 vg/
ml), and were seen in (6/10 eyes). Another common finding that was observed in eyes
treated with either high or low viral titers was an increase in the diameter of retinal vessels
(6/16 eyes) that was not limited to the injection site. In two retinas (E1055-R, and E1050-R)
that had reattached well shortly after the formation of the subretinal bleb, a subsequent
detachment was noted, at 48 and 26 days post-injection, respectively. As these detachments
were temporally associated with the onset of inflammatory changes, they were not thought
to have been surgically induced. With the exception of one eye (E1050-R), clinical signs
were controlled with additional anti-inflammatory medications. The frequent late-onset of
these retinal alterations (approx 6 weeks post-injection) suggests that these may have been
triggered by an immune-mediated response.

Retinal histopathology
Retinal histopathology performed on H&E stained sections that included the region of the
bleb as well as surrounding non-injected areas confirmed most of the clinical signs observed
ophthalmoscopically (Figure 3).

rAAV2/5-mOP-GFP—With the mOP promoter histological anomalies were found with the
two highest titers. The eye that received the highest titer (E1048-R; 3.27 × 1013 vg/ml) had a
focal retinal atrophy in close proximity to the site of retinotomy. In surrounding regions,
(Fig 3A1–2) reduced density of PRs resulted in ONL thinning, and the remaining cells had
shortened inner segments (IS; arrows) and disrupted outer segments (OS; asterisks).
Lymphoplasmacytic cell infiltrates were seen throughout the inner retina length, and around
blood vessels (Fig 3A1–2, arrowheads), even at sites distant from the subretinal bleb. A 3.27
× 1012 vg/ml titer caused similar but less extended damage in eye E1048-L (Fig 3A3). Focal
regions of atrophy (asterisk), and perivascular cell infiltrates (arrowheads) were present but
were surrounded by well-preserved retina. At the two lowest titers used (P1473-R; 3.27 ×
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1011 vg/ml; P1473-L: 3.27 × 1010 vg/ml), there was good structural preservation in the
region of the bleb, and no invasion of the retina by inflammatory cells (Fig 3A4).

rAAV2/5-hGRK1-GFP—In retinas treated with the highest titer (1.51 × 1013 vg/ml) of the
construct that contained the hGRK1 promoter, variation in ONL thickness (E1055-R; Fig
3B1), loss of IS/OS (E1055-R; Fig 3B2, asterisks), and retinal atrophy (E1055-R; not shown)
were observed in localized regions within the bleb area. Lymphoplasmacytic perivascular
cell infiltrates (Fig 3B2, arrowheads) were seen predominantly in the injected areas of all
eyes that received the highest titer, as well as in P1476-L (1.51 × 1012 vg/ml; Fig 3B3,
arrowheads), consistent with the observed clinical findings (Table 1). Sections stained with
H&E showed good preservation of the retinal structure both in the injected and non-injected
areas of eyes treated with titers of 1.51 × 1012 vg/ml or lower (Fig 3B4).

rAAV2/5-CBA-GFP—Histopathological findings with the construct that included the CBA
promoter showed some of the most severe retinal alterations when the two highest titers
(4.79 × 1013 and 4.79 × 1012 vg/ml) were used. This included localized retinal atrophy and
detachment in E1050-R (4.79 × 1013 vg/ml; Fig 3C1), perivascular and inner retinal
infiltration with lymphocytes and plasmocytes (Fig 3C2, arrowheads), loss of PR OS (Fig
3C3, asterisks) and shortened IS (Fig 3C3, arrows) in eye E1050-L (4.79 × 1012 vg/ml).
Absence of perivascular infiltrates and preserved retinal structure was seen in eye P1475-R
treated with a lower titer of 4.79 × 1011 vg/ml (Fig 3C4), and in eye P1475-L that received
the lowest titer (4.79 × 1010 vg/ml).

In summary, clinical and histopathological signs of inflammation were seen with all three
promoters. These were most severe when titers in the order of 1012 – 1013 vg/ml were used.
Increased dilation of retinal vessels was the only clinical sign observed when constructs with
the mOP and CBA promoters were used with the lowest titers (~1010 – 1011 vg/ml). This
increase in vessel diameter appeared to have been transient or responsive to anti-
inflammatory therapy, as no vascular abnormalities were detected by histology at
termination.

Retinal transduction efficiency
rAAV2/5-mOP-GFP—GFP expression was observed with and without immunolabeling in
all eyes, and was limited, predominantly, to rods in the retinal region where the subretinal
bleb was formed (Fig 4). The intensity of GFP labeling was correlated to the dose of viral
vector preparation. To compare the expression levels by vector dose, we selected for
examination, areas at the center of the injected bleb. Preparations with the two highest titers
(3.27 × 1013, and 3.27 × 1012 vg/ml) resulted in intense labeling of the IS and ONL. With
the exception of a single row of somatas located at the scleral side of the ONL, the
remaining ONL nuclei were intensely labeled (Fig 4A1–2, arrows). The potent GFP labeling
in the central region of the previously formed bleb was associated with significant ONL
thinning, particularly with the 3.27 × 1013 vg/ml titer. Faint signal was detected in the inner
nuclear layer (INL) and ganglion cell layer (GCL) (data not shown), and by
immunohistochemistry, GFP expression could also be detected in rod OS (Fig 4A2,
asterisks). Lower titers (3.27 × 1011 vg/ml) caused a decrease in staining intensity (Fig 4A3),
and only rare rods were found to express GFP at 3.27 × 1010 vg/ml (Fig 4A4, arrows). With
these two low titers no thinning of the GFP-labeled ONL was seen across the injected
region. Confocal microscopy using a cone arrestin antibody which labels both S and L/M
cones confirmed that the GFP expression in the ONL was restricted to rods since no co-
localization was observed in somatas, IS or OS of cones (Fig 4B1–3, arrows). In the
transduced region of the E1048-R retina which had received the highest viral titer (3.27 ×
1013 vg/ml), the morphology of cones was abnormal, and characterized by shortened and
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enlarged IS, and disrupted OS (Fig 4B2,3). This structural alteration was most likely
secondary to rod loss and caused by decreased lateral support of cone OS/IS in the PR layer,
and/or reduced production of rod-derived cone viability factors. Such changes were not seen
in non-injected regions of this same retina (Fig 4B4).

rAAV2/5-hGRK1-GFP—GFP expression was observed with and without immunolabeling
in all injected eyes in the region where the subretinal bleb was formed, and was found to be
primarily restricted to rods (Fig 5). When images were digitally captured with the same
settings for exposure time and gain, the highest intensity of fluorescence was observed in the
ONL, IS and OS of retinas treated with a titer of 1.51 × 1012 vg/ml (P1476-L; Fig 5A2),
while decreased labeling was seen with lower titers (Fig 5A3–4). In eyes treated with the
highest titer (1.51 × 1013 vg/ml) intensity of GFP labeling was lower than in those treated
with a 10-fold lower dose, and was associated with reduced ONL thickness (Fig 5A1), an
indication of outer retinal damage associated with vector administration. Immunolabeling
with an anti-GFP antibody showed a similar pattern as that observed with native GFP
fluorescence, but in addition, also detected expression of the reporter gene in the OS (Fig
5A2, asterisks). In one single eye (P1476-L; 1.51 × 1012 vg/ml), GFP expression was also
detected in cells located on the vitreal side of the INL (Fig 5A2, arrows), and GCL (Fig 5A2,
arrowhead), as well as in the IPL. Confocal microscopy revealed that in eyes treated with
titers of 1.51 × 1012 vg/ml and lower, GFP expression could be seen throughout the ONL
except in a single row of somatas located at the scleral side of the ONL (Fig 5B1, arrows).
Cone arrestin antibody labeling confirmed that this single row of somatas represented cones,
and that GFP expression was restricted to rods (Fig 5B2–3).

rAAV2/5-CBA-GFP—GFP expression was observed with and without any
immunolabeling in all injected eyes in the region where the subretinal bleb was formed, and
was found predominantly in RPE cells, rods, and cones (Fig 6A1–4). The intensity of the
labeling and number of cells expressing GFP was highest in the retina treated with a titer of
4.70 × 1011 vg/ml (Fig 6A3). With higher titers, even though the fluorescence intensity of
individual transduced cells was elevated, there was a moderate decrease in ONL thickness in
the retina (E1050-L; 4.70 × 1012 vg/ml) (Fig 6A2). In the eye (E1050-R) that received the
highest titer (4.70 × 1013 vg/ml), an extended area of complete ONL loss was found, and
GFP expression in PRs was observed only over a limited distance at the border of this area
of atrophy (Fig 6A1). This region of complete PR loss corresponded to the large area of
retinal detachment that was observed histologically (Fig 3C1). Immunolabeling with the
GFP antibody confirmed transduction of the RPE, rods and cones but also showed that
occasional horizontal (Fig 6A3, arrows), ganglion, and Müller cells (Fig 6A3, arrowheads)
expressed the transgene. Staining of the inner plexiform layer (IPL) and nerve fiber layer
(NFL) could also be detected, and extended far beyond the region of transduced PRs (data
not shown).

Cone toxicity
In addition to the dose-dependent pathological alterations observed with the three viral
constructs, cone-specific damage was found with vectors that carried the hGRK1 and CBA
promoters.

rAAV2/5-hGRK1-GFP—In eyes that were subretinally injected with the highest titer of
viral construct (E1053-R, E1055-R; 1.51 × 1013 vg/ml), there was a different pattern of GFP
labeling than that observed with lower titers. In most of the injected area, GFP labeling was
found throughout the entire thickness of the ONL (Fig 5C1), and only in limited peripheral
areas of the injected region, was a similar pattern of unlabeled cone somatas observed
(E1053-R; data not shown). To determine whether the absence of an unlabeled layer of
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somatas on the scleral side of the ONL resulted from GFP expression in cones or
alternatively in the loss of this population of photorececeptors, double labeling with cone
arrestin was performed. This showed a significantly reduced number of cells labeled with
this marker, as well as a reduced intensity in the cone arrestin staining (Fig 5C1–2). Careful
examination of DAPI, and H&E stained sections revealed a drastically reduced density of
large euchromatic cone nuclei (data not shown), thus confirming that cone loss occurred in
the retinal area transduced by this viral construct when used at a titer of 1.51 × 1013 vg/ml.
At the border of this region, between treated and non-treated areas, a sharp demarcation was
seen with a sudden increase in the number of cones, more intense cone arrestin
immunolabeling, and improved morphology of the cones when moving out of the transduced
area (Fig 5D1–2). Outside the injected region, cone density and morphology was normal (Fig
5E1–2). Despite extended areas of cone loss, there were within the injection margin of the
GFP labeled retina, some patches of surviving, but structurally compromised cones that
expressed GFP (Fig 5F1–3, arrows).

rAAV2/5-CBA-GFP—Cone arrestin immunolabeling showed a prominent decrease in cone
density and altered cellular morphology at the border of the transduced region in retina of
E1050-L treated with 4.70 × 1012 vg/ml of viral construct (Fig 6B1–3). Within the central
region of the transduced area, rare cones were found, and ONL thickness was reduced (Fig
6B4). Confocal microscopy imaging of this same retina (Fig 6C1–3) showed that some of the
remaining cones expressed GFP (Fig 6C3, arrows), and that both rods and cones had
abnormally short IS, and had lost their OS. A ten-fold reduction in the titer of the viral
vector delivered (4.70 × 1011 vg/ml), achieved potent and widespread transduction that was
limited to rods and RPE, and did not alter PR morphology (Fig 6C4).

DISCUSSION
This study compared the effectiveness and cell-specificity of three promoters (mOP,
hGRK1, and CBA) in driving the expression of GFP in rods when packaged in a rAAV2/5
vector, and delivered via subretinal injection to the canine eye. Both mOP and hGRK1
enabled rod-specific expression of the transgene. Some degree of inflammation was
observed with all constructs, and cone toxicity was found with the highest titers when
hGRK1 and CBA promoters were used. Efficient transduction and limited ocular side-
effects were achieved with lower titers.

Although chimeric rAAV have been developed to enhance cell-specific tropism, there is
currently no single AAV serotype for which the capsid proteins enable restricted
transduction of PR cells. rAAV2/5 is no exception, with tropism primarily directed towards
RPE and PRs. In this study we also report that rAAV2/5 carrying the CBA promoter can
drive low GFP expression in other retinal cells (Müller, ganglion, and horizontal cells).
Thus, there is a need for cell-specific promoters that can further increase the safety of the
viral constructs by turning on transgene expression solely in the targeted cells.

In most injected eyes, clinical signs of ocular inflammation were observed approximately 6
weeks post-injection. These ranged from increase in retinal vessel diameter, to focal damage
in the bleb region with occasional retinal detachment, and these more severe lesions were
confirmed by histology. Ocular inflammation was closely associated with dose, and was
more frequent with the higher vector titers. Although this same vector serotype has been
previously used at titers as high as 1.36 × 1013 vg/ml without causing any side-effects in
normal adult canine retinas.21, we cannot exclude that the late-onset complications observed
in this study may have been triggered by an immune reaction towards rAAV2/5 capsid
proteins.24 Another possibility is that high expression of the transgene GFP may be
immunogenic. This has been suggested by Bainbridge and associates12 who observed
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similar late-onset complications in the canine retina following subretinal delivery of an
rAAV2/2-CMV-GFP construct. The absence of such inflammatory responses in the study
that used rAAV2/5 vectors to target GFP expression in cones may be explained by the lower
levels of overall transgene expression in comparison to that achieved when only rods are
transduced.21 Further investigation of the occurrence of potential immune reactions to either
capsid proteins or the transgene following subretinal injections of rAAV2/5 vectors is
warranted.

When delivered by means of an rAAV2/2 vector, the proximal region of the mouse opsin
promoter has been shown to target transgene expression to rods and cones in rodents after
subretinal delivery.25 More recently, studies have demonstrated GFP reporter gene
expression in rods and cones of both mice and rats when packaged into a rAAV2/5 vector.
18, 26 Here, we provide the first report on the use of this promoter in a large animal model,
and show that in the dog, contrary to what is observed in rodents, mOP restricts gene
expression predominantly to rods. This finding highlights differences in cell-tropism across
species, and supports the need for testing every new viral construct (i.e., new viral
pseudotype, or new promoter) in a variety of animal models, including non-human primates,
prior to the initiation of clinical trials in man. The rationale for using the dog to evaluate
new viral vectors lies in the possibility for subsequently testing viral vector-mediated gene
therapy for various naturally-occurring forms of retinal degeneration in this animal model.
At the highest titer used in this study (3.27 × 1013 vg/ml), low levels of GFP expression
were detected by immunohistochemistry in cells of the INL, IPL, and GCL. Transgene
expression, and detection of rAAV genome and intact viral particles outside of the area of
the subretinal injection has led some to suggest that rAAV vectors may potentially
disseminate beyond the targeted cell population via transsynaptic transport.13, 27, 28

The G-protein-coupled receptor protein kinase 1 (GRK1) promoter targets transgene
expression to both rods and cones in mice when incorporated in a rAAV2/5 vector.19 In the
canine retina, we now show that this promoter drives expression of the reporter gene
exclusively in rods, except when high viral vector titers are used. This discrepancy may be
explained by the species-specific differences in expression of G-protein coupled receptor
kinases in rods and cones. Indeed, while GRK1 is expressed in both populations of PRs in
mice and rats, it is only found in rods of the canine and pig retina.29 Desensitization of cones
in these species occurs via GRK7, a cone-specific GRK. In monkey and human retinas on
the other hand, GRK1 is localized to rods, and also is co-expressed with GRK7 in cones.29

These inter-species differences need to be taken into account when extrapolating results
obtained in animal models to human. The lack of GRK1 expression in canine cones
precludes evaluating viral vector constructs carrying the hGRK1 promoter for gene therapy
targeted at cones in this animal model. While such a limitation may not be a concern when
using rodent models, the lack of redundant GRK isoforms in rats and mice, may be
responsible for the high activity of the hGRK1 promoter in cones. The contribution of
GRK1 to the overall cone GRK activity in primates is unknown. For that reason, it is
important to evaluate both hGRK1 and the mOP promoters for targeting specificity in the
non-human primate retina.

The constitutive CMV immediate early promoter/enhancer has been widely used in gene
therapy studies. When introduced into a rAAV2/5 vector, this promoter enables gene
expression primarily in the RPE and PRs in the murine and canine retina3, 16 Because the
CMV promoter can be silenced via DNA methylation,30 a hybrid promoter composed of the
CMV enhancer coupled to the chicken beta actin proximal promoter was used in this study.
We confirm that this ubiquitously active promoter enables transgene expression primarily in
the RPE and PRs (both rods and cones), but also at lower levels in horizontal, Müller, and
ganglion cells. Transduction of Müller and ganglion cells with rAAV2/5-CBA-GFP has
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been reported following intravitreal injection in the mouse.31 Thus, we cannot exclude that
the targeting of inner retinal cells may have been caused by some degree of reflux of the
viral solution from the subretinal space into the vitreal cavity.

Cone toxicity was induced by high titers of viral constructs carrying either the hGRK1 or
CBA promoters. This toxicity was limited to the retinal region where the subretinal bleb was
formed, and resulted in a prominent loss of cones and decreased expression of cone arrestin
in the remaining cells. Such a finding could be easily overlooked if solely assessing retinal
toxicity on H&E stained sections, particularly in species that have low cone-to-rod ratios.
Our finding highlights the need for proper evaluation of the density and morphology of the
various retinal cell populations, when testing novel viral vectors in the context of preclinical
studies and safety trials. There is evidence from studies conducted in mouse, rat, guinea pig,
ferret and dog retinas that AAV2/5 vectors can mediate gene transfer to cones. 19–21 In
primates, the absence of expression in cones of the AAV5 receptor, platelet-derived growth
factor receptor alpha (PDGFR-A), is thought to be the molecular basis for selective tropism
of this serotype to rods.15 However, this explanation seems to be challenged by a recent
study in which an rAAV2/5 vector containing the L opsin gene under the control of the L/M
opsin promoter and enhancer was shown to efficiently transduce primate cones.32 This cone
transduction barrier does not appear to exist in the canine retina either, as there is good
evidence that the AAV2/5 pseudotype which expresses the same capsid proteins that are
recognized by PDGFR-A, is an efficient vector for cone-targeted gene therapy.21, 23

At present, we do not know the cause for the dose-related cone toxicity seen with the
hGRK1 and CBA promoters. When elevated viral titers in the order of 1012– 1013 vg/ml
were administered, a severe decrease in the density of cones, particularly in the center of the
injected area was observed with both promoters. Yet, rare cones expressing the GFP
transgene were found surviving close to the border region of the bleb. This observation was
particularly surprising with the hGRK1 promoter as no transgene expression was seen in
cones with lower titers (see above). Although rod loss was also observed in those areas
treated with high viral titers, the effect appeared to be more severe on cones. However, this
might simply reflect the lower density of cones versus rods in the canine retina. Cone loss
may occur, following rod death, through a bystander effect (loss of structural/trophic
support). Yet, it is also possible that cones are more sensitive to elevated levels of GFP
expression. One plausible mechanism for this toxicity is that highly efficient transduction of
GFP driven by these two promoters could overwhelm the translational machinery of cones
and leads to their death.

The findings emphasize the importance of selecting the optimal promoters with the goal of
maximizing specific transduction, and minimizing adverse sequelae. Proposing a titer that
achieves optimal transduction requires reconciling the need to attain sustained and potent
transgene expression while, at the same time, delivering a dose of viral vector that is not
retinotoxic. Although this study did not quantitatively evaluate the levels of GFP expression,
nor the percentage of rods that were efficiently transduced in the bleb region, the results
support using the rAAV2/5-mOP, rAAV2/5-hGRK1, and rAV2/5-CBA constructs at a titer
of 3.27 × 1011 vg/ml, 1.51 × 1011 vg/ml, and 4.79 × 1011 vg/ml, respectively. Cautious
comparison of the two rod-specific promoters (mOP and hGRK1) would suggest that higher
transgene expression levels are achieved with rAAV2/5-hGRK1.

In summary, this study demonstrates that two rod-specific promoters (mOP, and hGRK1)
can be used in a rAAV2/5 vector to efficiently target this cell population in the canine retina.
It also identifies optimal viral titers that can induce high level of transgene expression
without causing any significant clinical or histopathological complications (summarized in
Fig 7). These results, together with the recent development and validation of viral constructs

Beltran et al. Page 8

Gene Ther. Author manuscript; available in PMC 2011 March 1.



that enable gene transduction in cones,21 has widened the palette of rAAV2/5 vectors
available to target the various populations of PRs in dogs. This is particularly relevant for
on-going preclinical studies aimed at developing corrective gene therapy approaches for
RHO autosomal dominant RP, and RPGR X-linked RP.

MATERIAL & METHODS
rAAVvector production and purification

Three different promoters driving humanized green fluorescent protein (GFP) were
evaluated in recombinant adeno-associated virus vector of serotype 5 (rAAV2/5). These
included a 476 nt fragment of the proximal mouse opsin promoter from positions 944–1420
(mOP, Genbank Accession no 55171), a 292 nt segment (positions 1793 to 2087) of the
human G-protein-coupled receptor protein kinase 1 promoter (hGRK1, GenBank
AY327580), and the cytomegalovirus (CMV) immediate early enhancer combined with the
chicken beta actin proximal promoter (referred throughout the text as CBA promoter)33.
These fragments were ligated into a recombinant AAV vector plasmid containing a SD/SA,
GFP and polyadenylation sites. The resulting plasmid DNA constructs (mOP-GFP-rAAV,
hGRK1-GFP-rAAV, and CBA-GFP-rAAV) (Figure 1) were then packaged into rAAV
particles using standard vector preparation methods,34, 35 and titered for DNase-resistant
vector genomes by Real-Time PCR relative to a standard. For these three plasmids, a pair of
oligonucleotides was synthesized that target the SV40 polyadenylation signal (Forward: 5′-
TTTGTGAAATTTGTGATGCT-3′; Reverse: 5′–TGAATGCAATTGTTGTTGTT–3′;
PCR product: 85 base pairs). Along with theses primers a reaction mix was set up using iQ
SYBR® Green Supermix (Bio-Rad Laboratories, Hercules, CA). The reaction was
performed in a MyiQ™ Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules,
CA), and the data was collected and titer calculated using the MyiQ™ Optical System
Software, (Bio-Rad Laboratories Hercules, CA). The standard used for the Real-Time PCR
was an AAV with a known titer that was independently verified by PCR, dot blot and
Infectious Center Assay (Univ. Florida Vector Core facility). Finally, the purity of the vector
was validated using three standard assays. First by silver-stained SDS-PAGE to confirm
presence of only the 3 capsid proteins; secondly, by assay screening for bioburden by
spreading 10 μL of the final product on a non-selective LB-agar plate; and lastly, the final
product was assayed for endotoxin using the Endosafe-PTS, portable test system (Charles
River Laboratories, Charleston, SC, USA). Viral vector stocks were kept at −80 °C in
Balance Salt Solution (BSS; Alcon, Fort Worth, TX), and all subsequent dilutions were done
using BSS.

Animals
Both eyes of 8 non-affected crossbred dogs were used for this study (see Table I). The
animals were bred and/or maintained at the Retinal Disease Studies Facility (RDSF, New
Bolton Center, University of Pennsylvania, Kennett Square, PA), and all procedures were in
compliance with the ARVO statement for the Use of Animals in Ophthalmic and Vision
Research.

Subretinal injections and clinical examinations
Subretinal injections of rAAV2/5 carrying 3 different promoter constructs driving the GFP
reported gene were performed under general anesthesia following previously published
procedures.21, 36 A total of volume of 150 μl of the viral vector solution was delivered
under direct visualization with an operating microscope via a transvitreal approach without
vitrectomy using a Retinaject subretinal injector (SurModics Inc., Eden Prairie, MN).
Visualization of the fundus was achieved with either a Machemer magnifying vitrectomy
lens (OMVI; Ocular Instruments Inc., Bellevue, WA), or a vitreoretinal surgery contact lens
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(Acrivet Vit.Lens; Acrivet, Salt Lake City, UT). Several concentrations of each of the rAAV
preparations were injected to determine the lowest titers capable of achieving sufficient
expression of GFP in the targeted PRs (see titers in Table 1). As previous reports from our
group have shown that subretinal injection of 150 μl of isotonic sodium chloride solution is
safe and does not cause any structural alterations in the dog,36, 37 no virus-free vehicle
controls were included in the current study. At the time of the injection it was noted whether
a subretinal bleb was formed, and its location and extent were recorded on a diagram of the
animal’s fundus (Figure 2A). Failed subretinal injections caused by either a sub-RPE
injection, or by reflux into the vitreous, were also recorded. An anterior chamber
paracentesis was immediately performed after the injection to prevent any increase in
intraocular pressure, and a subconjunctival injection of 4 mg of triamcinolone acetonide was
done in each eye.

Ophthalmic examinations, including biomicroscopy, indirect ophthalmoscopy, and fundus
photography (Figs 2B1–2, C1–2) were conducted on a regular basis throughout the injection-
termination time interval. Postoperative topical medication included application of atropine
sulfate 1% drops once daily for 6 days, and prednisolone acetate 1% drops twice daily for 18
days. Systemic antibiotics (amoxicillin trihydrate/clavulanate potassium 20 mg/kg) were
given orally twice daily for 1 week, and prednisolone oral solution (0.5 mg/kg) was
administered twice daily for 5 days, followed by once daily for 1 week. Animals that
showed signs of ocular inflammation after the completion of this initial treatment received a
second subconjunctival injection of triamcinolone, oral administration of prednisolone, with
or without topical application of prednisolone acetate 1%, and atropine sulfate 1%. In one
case where improvement did not occur in one eye after the second round of treatment (Table
1; dog E1050), euthanasia was performed and eyes collected.

Tissue processing, histology, and immunohistochemistry
Dogs were euthanatized by intravenous injection of pentobarbital sodium. After enucleation,
the globes were fixed and processed as previously described.38 Briefly, a slit was made
through the globe at the level of the ora serrata and the entire eye was immerged in 4%
paraformaldehyde in 0.1 M phosphate-buffered saline (PBS) for 1 hour, the posterior eyecup
was then separated and fixed for two additional hours, followed by overnight fixation in 2%
paraformaldehyde. The eyecup was trimmed using the peri-operative diagrams that
illustrated the placement and extent of the subretinal bleb as a guide (Figure 2A), and tissues
cryoprotected in gradient concentrations of sucrose diluted in 0.1 M PBS, prior to
embedding in optimal cutting temperature (OCT) medium. Cryosections (10-μm thick) that
included both the area of the previous subretinal bleb and non-injected regions, were cut and
stained with H&E for histological assessment, or used for evaluation of GFP expression, and
immunohistochemistry (IHC) as described below.

Native GFP expression was assessed by examining unstained sections with an
epifluorescence microscope (Axioplan; Carl Zeiss Meditech, Oberkochen, Germany). To
identify whether low levels of GFP expression were present in the retina but not detected on
unlabeled sections, IHC directed against GFP was carried out using a polyclonal rabbit
antibody (1:1 000; provided by W Clay Smith). Co-labeling with a rabbit polyclonal
antibody directed against human cone arrestin (LUMIf; 1/10 000 provided by Cheryl Craft)
was also performed to identify cones transduced by the viral vectors. The antigen-antibody
complexes were visualized with fluorochrome-labeled secondary antibodies (Alexa Fluor,
1:200; Molecular Probes, Eugene, OR, USA), and DAPI stain was used to detect cell nuclei.
Slides were mounted with gelvatol, a medium composed of polyvinyl alcohol and DABCO
(Sigma-Aldrich, St Louis, MO, USA), coverslipped, and examined by epifluorescence
microscopy. Images were digitally captured (Spot 4.0 camera, Diagnostic Instruments,
Sterling Heights, MI), and imported into a graphics program (Photoshop; Adobe, Mountain
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View, CA, USA) for display. When precise localization of transgene expression was needed,
sections were also imaged by confocal microscopy using a Leica TCS-SP5 tunable confocal
system with a Leica DM 6000 CFS upright microscope (Leica Microsystems, Wetzlar,
Germany) through a 40x oil lens and a 1.25 numerical aperture. The specimens were excited
at 488 nm and 543 nm, respectively, with Argon and Helium Neon lasers.
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Figure 1. Schematic diagrams of the plasmid constructs used to produce rAAV
(A) Map of the pTR-mOP-hGFP plasmid DNA used to make the rAAV2/5-mOP-GFP virus.
(B) Map of the pTR-hGRK1-hGFP plasmid DNA used to make the rAAV2/5-hGRK1-GFP
virus. (C) Map of the pTR-CBA-hGFP plasmid DNA used to make the rAAV2/5-CBA-GFP
virus. TR represents AAV2 inverted terminal repeats; mOP represents a fragment of the
proximal mouse opsin promoter; hGRK1 represents a fragment of the human G-protein-
coupled receptor protein kinase 1 promoter; CMV ie represents the cytomegalovirus
immediate early enhancer; CBA represents the chicken beta-actin promoter; SV40 SD/SA
represents the SV40 late viral protein gene 16S/19S splice donor and acceptor signal; hGFP
represents the coding sequence of the humanized green fluorescence protein gene; SV40
(poly A) and bGH poly (A) represent polyadenylation signals; HSV-tk represents the
thymidine kinase promoter of the herpes simplex virus, and Neo R represents the coding
sequence of the neomycin resistance gene.

Beltran et al. Page 14

Gene Ther. Author manuscript; available in PMC 2011 March 1.



Figure 2. Location and extent of subretinal injections
(A) Diagrams of the fundus of the 16 eyes in which a subretinal injection was attempted.
The green areas show the locations where subretinal blebs were achieved. The dark spot
within the area of the subretinal bleb shows the location of the retinotomy. Purple areas
show the location where some viral solution was seen injected under the RPE. [Note: the
canine fundus is comprised of a tapetal region (superior; labeled in yellow; RPE non
pigmented) and a non-tapetal region (inferior; labeled in brown; RPE pigmented)].
(B1–2) Fundus photographs of the right eye of dog X235 immediately after performing the
subretinal injection (B1) and at termination (day 56; B2). (C1–2) Fundus photographs of the
left eye of dog X235 immediately after performing the subretinal injection (C1) and at
termination (day 56; C2). Asterisks show the same retinal location at time of injection and
termination; small black arrows point to the edge of the subretinal bleb; large white arrows
show the retinotomy site (at time of injection), and large black arrows point to the
subsequent scar visible at termination.
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Figure 3. Histopathological findings following subretinal injection with three different rAAV2/5
constructs
(A1–4) H&E stained retinal section of eyes treated with different titers of rAAV2/5-mOP-
GFP: E1048-R (3.27 × 1013 vg/ml) (A1–2); E1048-L (3.27 × 1012 vg/ml) (A3); and P1473-R
(3.27 × 1011 vg/ml)) (A4).
(B1–4) H&E stained retinal section of eyes treated with different titers of rAAV2/5-hGRK1-
GFP: E1055-R (1.51 × 1013 vg/ml) (B1–2); P1476-L (1.51 × 1012 vg/ml) (B3); and E1055-L
(1.51 × 1012 vg/ml) (B4).
(C1–4) H&E stained retinal section of eyes treated with different titers of rAAV2/5-CBA-
GFP: E1050-R (4.79 × 1013 vg/ml) (C1); E1050-L (4.79 × 1012 vg/ml) (C2–3); P1475-R
(4.79 × 1011 vg/ml) (C4).
Abbreviations: ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.
Scale bars: (A1, A3, A4, B1, B4, C2) 40 μm; (B3, C4) 20 μm; (C1) 80 μm.
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Figure 4. Transduction pattern of AAV2/5-mOP-GFP following subretinal delivery to the
normal canine retina
Native GFP fluorescence (green) and GFP immunolabeling (red) images merged with DIC/
Nomarski optics; images show the GFP expression with decreasing viral vector titers (A1–4).
A1) Retina of E1048-R (3.27 × 1013 vg/ml). A2) Retina of E1048-L (3.27 × 1012 vg/ml). A3)
Retina of P1473-R (3.27 × 1011 vg/ml). A4) Retina of P1473-L (3.27 × 1010 vg/ml).
Confocal microscopy images of native GFP (green) and cone arrestin (red) immunolabeling
in the injected area (B1–3) and non-injected area (B4) of retina E1048-R.
Abbreviations: IS, inner segments; ONL, outer nuclear layer; GFP, green fluorescent
protein; IHC, immunohistochemistry; Cone Arr. cone arrestin.
Scale bars: (A1–4) 20 μm; (B1–4) 25 μm.

Beltran et al. Page 17

Gene Ther. Author manuscript; available in PMC 2011 March 1.



Figure 5. Transduction pattern of AAV2/5-hGRK1-GFP following subretinal delivery to the
normal canine retina
(A1–4) Native GFP fluorescence (green) and GFP immunolabeling (red) images merged with
DIC/Nomarski optics; images show the GFP expression with decreasing viral vector titers.
(A1) Retina of E1055-R (1.51 × 1013 vg/ml). (A2) Retina of P1476-L (1.51 × 1012 vg/ml).
(A3) Retina of X235-R (1.51 × 1011 vg/ml). (A4) Retina of X235-L (1.51 × 1010 vg/ml).
(B1–3) Confocal microscopy images of native GFP (green) and cone arrestin (red)
immunolabeling in the injected area of retina P1476-L.(C–E) Epifluorescence microscopy
images of native GFP (green) and cone arrestin (red) immunolabeling in the center (C1–2), at
the border (D1–2), and outside the injected retinal area of E1055-R. (F1–3) Confocal
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microscopy images of native GFP (green) and cone arrestin (red) immunolabeling in the
injected area of retina E1055-R.
Abbreviations: OS, outer segments; IS, inner segments; ONL, outer nuclear layer; INL;
GFP, green fluorescent protein; IHC, immunohistochemistry; Cone Arr. cone arrestin.
Scale bars: (A1–4; C1–2, D1–2, E1–2) 20 μm; (B1–3) 10 μm; (F1–3) 25 μm.
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Figure 6. Transduction pattern of AAV2/5-CBA-GFP following subretinal delivery to the normal
canine retina
Native GFP fluorescence (green) and GFP immunolabeling (red) images merged with DIC/
Nomarski optics; images show the GFP expression with decreasing viral vector titers (A1–4).
A1) Retina of E1050-R (4.79 × 1013 vg/ml). A2) Retina of E1050-L (4.79 × 1012 vg/ml). A3)
Retina of P1475-R (4.79 × 1011 vg/ml). A4) Retina of P1475-L (4.79 × 1010 vg/ml).
Epifluorescence microscopy images at the border (B1–3) and in the center (B4) of the
injected retinal area of E1050-L (4.79 × 1012 vg/ml). Confocal microscopy images of native
GFP (green) and cone arrestin (red) immunolabeling in the injected area of retina E1050-L
(4.79 × 1012 vg/ml)(C1–3), and retina P1475-R (4.79 × 1011 vg/ml) (C4).
Abbreviations: RPE, retinal pigment epithelium, ONL, outer nuclear layer; GFP, green
fluorescent protein; IHC, immunohistochemistry; Cone Arr. cone arrestin.
Scale bars: (A1–4) 20 μm; (B1–4) 40 μm; (C1–4) 10 μm.
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Figure 7.
Summary of rod transduction efficiency and complications observed with the three viral
vector constructs evaluated in this study. (A) rAAV2/5-mOP-GFP; (B) rAAV2/5-hGRK1-
GFP; (C) rAAV2/5-CBA-GFP. +: limited; ++: moderate; +++: intense.
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