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ABSTRACT
Signal Temporal Logic (STL) is a prominent specification formalism

for real-time systems, and monitoring these specifications, specially

when (for different reasons such as learning) behavior of systems

can change over time, is quite important. There are three main

challenges in this area: (1) full observation of system state is not

possible due to noise or nuisance parameters, (2) the whole execu-

tion is not available during the monitoring, and (3) computational

complexity of monitoring continuous time signals is very high. Al-

though, each of these challenges has been addressed by different

works, to the best of our knowledge, no one has addressed them

all together. In this paper, we show how to extend any parameter

invariant test procedure for single points in time to a parameter
invariant test procedure for efficiently monitoring continuous time
executions of a system against STL properties. We also show, how

to extend probabilistic error guarantee of the input test procedure

to a probabilistic error guarantee for the constructed test procedure.
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1 INTRODUCTION
Many properties of concurrent and reactive systems can be formally

specified using Linear Temporal Logic (LTL) [18], in which time

is a discrete entity. In this logic, an execution of a system can be

considered as a (countably infinite) sequence of events. However, no

timing constraints can be specified on these events. This inability

to express any timing constraint, severely limits usability of LTL
for real time systems. Therefore, researchers looked for different

extensions of LTL with the ability to specify timing requirements.

Metric Interval Temporal Logic (MITL) is the most well-known such
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extension, where temporal operators can have timing constraints

as well [15]. In MITL, atomic propositions are abstract entities and

might change their truth values arbitrarily over time. For example,

suppose velocity of an object at time t is denoted by ν (t ). According
to MITL, for any positive value ϵ , it is possible for ν (t ) > 1 and ν (t +
ϵ ) < −1 to be both true. However, in real world, there is always a

bound on possible accelerations which makes this arbitrary change

in velocity impossible. This intuitively means MITL abstracts away

too much information. Signal Temporal Logic (STL) [16] is same

as MITL, except that atomic propositions in STL are not abstract

entities anymore, and one can use the extra information about each

atomic proposition to bound how fast each one of them can change

in the near future.

STL was first introduced in [16] for monitoring continuous sig-
nals. As opposed to the model checking problem, in monitoring we

do not have access to an underlying model of the system (we might

have some assumptions like Lipschitz continuity about it though).

We can only look at a single execution of the system as it happens,
and based on our observations we should decide to either stop

or continue the monitoring. In case we decide to stop, we should

output one of three possibilities: (1) the execution satisfies the in-

put STL formula, (2) the execution does not satisfy the input STL
formula, or (3) no matter how much longer we monitor, it would

be impossible to conclude with certainty that one of the previous

cases is true. The last case could happen if we fail to observe the

system during some critical points in time. It could also happen if

the observation cannot be performed precisely, and the amount of

information that is lost become too much. Clearly, algorithms that

always terminate and correctly return one of the first two outputs

are more desirable.

Most research regardingmonitoring and verification of STL prop-
erties assume exact state of the system can be observed at any point

in time [6–8, 12, 16, 22]. However, this is usually not a feasible

assumption. Let us consider monitoring of a diabetic patient as

an example. Human physiology is inherently partially observable

and we can only measure parts of it. These systems are often mod-

eled as dynamical systems with state and output variables [14, 25],

and although we can only look at output variables (i.e. state vari-
ables are not directly observable), many atomic propositions in

STL properties are defined over state variables. The situation be-

comes even worse, when we take two more facts/challenges into

account: (1) Output variables are often affected by noise in the en-

vironment/sensors. Therefore, even if we know the exact relation

https://doi.org/
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between state and output variables, observing an output which is

already affected by noise, does not give us the actual output value.

(2) Current human physiology models are usually parametric. This

intuitively means, while there is a general agreement on the shape

of a model, many of its parameters cannot be estimated by con-

ventional techniques or it would be quite costly and/or invasive

to estimate them [4, 25]. Either way, these parameters, which we

call nuisance parameters, may vary with time. As a result of these

challenges, we cannot precisely evaluate atomic propositions used

in a STL formula. For example, the metabolic rate affects the insulin-

glucose dynamics but is difficult to estimate this effect in real-time

and it is therefore considered a nuisance parameter. Note that re-

quiring to only have atomic propositions on output variables is

often impossible. As an example, consider an artificial pancreas

which is a medical cyber-physical system that integrates a constant

glucose monitor, wearable insulin pump, and control algorithms

running on embedded computing devices. To monitor an artificial

pancreas’ response to meal ingestion requires us to know when a

meal is taken [25] which is not an output variable of this device

or its model. Therefore, we avoid relying on an exact model and

turn to statistical techniques instead to reason about probabilistic

beliefs about the system state.

Authors in [26] have recently introduced a test procedure that

can only be used for obtaining probabilistic beliefs about state of

the system at single points in time (a.k.a. atomic propositions in

STL), but is maximally invariant to nuisance parameters (e.g. insulin
sensitivity and metabolic rate). This intuitively means, not only

this test procedure is able to ignore parts of information that are

corrupted by the nuisance parameters, it only ignores a minimum

amount of them. For example, suppose o1 and o2 are two observa-

tions that could have been affected by the nuisance parameters, and

let o′
1
and o′

2
be what the algorithm in [26] obtains after filtering

some of the information out. Being invariant to nuisance param-

eters means if they can change o1 to o2 or o2 to o1 then o′
1
= o′

2
.

Being maximally invariant to nuisance parameters means if o′
1
= o′

2

then we know nuisance parameters can always change o1 to o2 and
o2 to o1.

There are two more challenges in monitoring continuous time

system behaviors against STL properties. First, monitoring contin-

uous time signals is computationally very expensive if not unde-

cidable. For example, observing state of a system (a.k.a. monitor-

ing state of a system) can only happen at discrete points in time.

However, we are interested in verifying behavior of a system over

continuous time domain. Second, when behavior of a system is

monitored, we want to stop the procedure as soon as whatever has

been observed so far is enough for making a decision
1
. This means

the monitoring algorithm should be able to proceed without all

data being available and should be able to terminate as soon as a

decision can be made. Each of these problems has been considered

in the past and researchers have already came up with solutions

for them. However, to the best of our knowledge, none of these

works addresses all these challenges combined. Some monitoring

algorithms only work for discrete time executions [2, 3, 5, 11], while

1
In this paper we do not consider offline monitoring, which means looking at a system

execution after it is over.

others assume piecewise constant or linear continuous time sig-

nals [6, 8]. But in our setting, we consider continuous time signals

and only assume a bound on their Lipschitz continuity. Most of

monitoring approaches, assume one can fully observe the system
state at any point in time [2, 3, 5–8, 11, 12, 16, 22], however in our

setting one can only have some probabilistic belief about system

state at any point in time (see Section 5 for related works). Further-

more, we consider the case where nuisance parameters that are

involved in our observations, are non-constant non-probabilistic

entities affecting what we see as system state at different points in

time.

Our main contribution in this paper is to show how one can

extend any parameter invariant test procedure for atomic proposi-

tions (including the one that is introduced in [26]) to a parameter

invariant test procedure for efficiently monitoring STL properties
over continuous time signals. Furthermore, if the test procedure for

atomic propositions is maximally invariant then the test procedure

that we construct will be maximally invariant as well. Therefore,

this would be the first time one addresses all these challenges in

a single procedure. Note that our procedure relies only on proba-

bilistic beliefs about truth values of atomic propositions at different

points in time, and not on the actual truth values. If the test proce-

dure for atomic propositions provides guaranteed error probability,

our constructed test procedure provides guaranteed error proba-

bility as well. In this case, our algorithm takes an error parameter

α : (0, 1) as one of its inputs, and guarantees the probability of

returning an incorrect answer is always less than α . Although, in
theory one can make α very small, making it too small may cause

the test procedure for single points in time to fail.

Outline of the paper. In Section 2, we review definitions and

results that we use in the rest of the paper. In Section 3, we show

how to develop a parameter invariant monitor for STL properties. In
Section 4, we show experimental results about using our algorithm.

Finally, in Section 5, we review related works in this area, and

conclude the paper in Section 6.

2 PRELIMINARIES
We denote the set of natural, positive natural, real, positive real, and
non-negative real numbers by N, N+, R, R+, and R≥0, respectively.
For any two sets A and B, size of A is denoted by |A|, Cartesian
product of A and B is denoted by A×B, and the set of functions from
A to B is denoted by A −→ B or BA. For any set C ⊆ A and function

f : A −→ B, we use f↾C to denote the restriction of f to C . We

denote domain of f by dom( f ). For any two functions f : A −→ B
and д : B −→ C , composition of f and д is denoted by f ◦ д.

For any value r : R, absolute value of r is denoted by |r |. Fur-
thermore, we define r+ and r− to respectively be max{0, r } and
max{0,−r }. Intuitively, they are positive and negative parts of r .
Similarly, for any function f : A −→ R, functions f + and f − map

a to respectively ( f (a))+ and ( f (a))−. For any two real numbers

a,b : R, we use a ⊔ b and a ⊓ b to denote sup{a,b} and inf {a,b},
respectively. Finally, for any function f : R≥0 −→ A and value r : R≥0,
function f r : R≥0 −→ A : t 7→ f (r + t ) shifts f by r .

An interval is a convex subset of real numbers. For any a : R ∪
{−∞} and b : R∪{∞}, we use the usual notations [a,b], (a,b), (a,b],
and [a,b) to denote different types of intervals. We define width of
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an interval to be zero if it is empty, and b −a, otherwise. Finally, we
use I≥0 to denote the set of non-empty intervals that have positive

width and only contain non-negative values.

For any two sets A and B, matrix with rows in A and columns
in B is a function of type RA×B . For any matrix M : RA×B , trans-
pose of M , denoted by M⊤ is a function of type RB×A that maps

(b,a) to M (a,b). Also, norm of M , denoted by ∥M ∥, is defined to

be

√∑
a:A,b :B (M (a,b))2. A (column) vector is a matrix in which

|B | = 1. With a slight abuse of notation, we do not show B for

vectors. Multiplication of matrices and vectors are defined in the

usual way. If {M1, . . . ,Mn } is a set of matrices with the same set of

row indices, columns ofM1, . . . ,Mn are called orthonormal iff for

any two columns c1 and c2 of these matrices, ∥c1∥ = ∥c2∥ = 1 and

inner product of c1 and c2 be zero.

2.1 Signal Temporal Logic
Let Z be a finite set of variables of a system that does not include

variable t . In this paper a system signal is a function of typeR≥0 −→ RZ

that maps a point in time to a valuation of variables in Z. Let f be an

arbitrary system signal, and let θ : RZ −→ R be an arbitrary function.

Function θ ◦ f maps a point in time t to a real value r . Whenever

r > 0, we say θ is true on f at t , whenever r < 0, we say θ is false on
f at t , and whenever r = 0, we say truth value of θ is unknown on f
at t . Intuitively, absolute value of r represents a robustness degree
for its truth value (larger absolute values of r represent stronger
truth values). Every θ defines two predicates over RZ (set of points
for which θ is positive and set of points for which θ is negative)

and because of that we call θ a test function. Therefore, one can use

θ as an atomic proposition in different kinds of temporal logic. We

let Θ be a finite set of functions of type RZ −→ R that are used in

this paper as atomic propositions. First, in Definition 2.1 we define

syntax of STL formulas. We then define semantics of STL formulas

for both continuous and discrete times signals. These semantics

that are first introduced in [9] are usually called robust semantics,

and are specifically introduced to tackle computational complexity

of verifying continuous time signals against STL properties.

Definition 2.1 (STL Syntax). Syntax of a STL formula is defined

using the following BNF formula, where by Θ and I≥0 we mean an

arbitrary element of these sets.

φ ::= ⊤ | ⊥ | Θ | ¬Θ | φ ∨ φ | φ ∧ φ | φUI≥0φ | φRI≥0φ

In this definition, atomic propositions are by definition test func-

tions. Other operators can be defined as syntactic sugars. For exam-

ple, ♢Iφ (i.e. eventually ϕ within I) and □Iφ (i.e. always ϕ within

I) operators are respectively defined to be ⊤UIφ and ⊥RIφ. Note
that allowing negation only in front of atomic propositions, which

is called negated normal form is not a restriction, and in general

every formula that is not in negated normal form can be converted

to an equivalent one that is in negated normal form [1, 9, 10, 19].

Therefore, for any STL formula φ, we use ¬φ to denote a STL for-
mula in negated normal form that is equivalent with negation of

φ.
Semantics of a STL formula can be defined on both continu-

ous and discrete time domains. While continuous semantics are

usually what one uses for specifying desired behavior of a cyber-

physical system, directly verifying them is often computationally

very expensive if not undecidable [1, 9, 17, 19]. One the other hand,

discrete semantics are usually easier to verify. An approach intro-

duced in [9, 10] is to first prove a property holds using the discrete

time semantics and then conclude that the same property or a slight

modification of it holds using the continuous time semantics. Let

f : R≥0 −→ R
Z
be a signal defined over continuous time domain. Let

τ : N −→ R≥0 be a function that maps natural numbers to points

in time. Function д B f ◦ τ maps a natural number n to the state

of the system at time τ (n) defined by f . In other words, д is a dis-
crete signal that always agrees with f . We call τ a sampling time
function. We first define continuous semantics of STL formulas in

Definition 2.2, then we define discrete semantics of STL formulas

in Definition 2.3. We use the symbol |= in definition of semantics.

To make distinguishing these two semantics easier, we write words

CNT and DSC, in gray, below |= to respectively refer to continuous

and discrete semantics.

Note that in both Definition 2.2 and Definition 2.3, if robustness

degree is positive, we say input signal satisfies the STL formula,

and if robustness degree is negative, we say input signal does not

satisfy the STL formula. Robustness degree 0 implies the signal

neither satisfies nor not satisfies the formula. Special treatment

of 0 implies semantics of STL as specified in these definitions, do

not follow the law of excluded middle (i.e. it is possible for both a

formula and its negation not to be true over a signal). However, the

law of non-contradiction is still implied by these definitions (i.e. it
is impossible for both a formula and its negation to be true over a

signal). This is quite common whenever one considers some kind

of robust semantics [9, 10, 20].

Definition 2.2 (Continuous Time STL Semantics). Let f : R≥0 −→ R
Z

be a system signal, and φ be an arbitrary STL formula. Robustness
degree for f and φ at time r : R≥0, denoted by f , r |=

CNT
φ, is a function

that maps f , φ, and r , to a value in R ∪ {−∞,∞}. It is defined
according to the following inductive rules:

f , r |=
CNT
⊤ B ∞ f , r |=

CNT
⊥ B −∞

f , r |=
CNT
θ B θ ( f (r )) f , r |=

CNT
¬θ B −θ ( f (r ))

f , r |=
CNT
φ ∨ψ B ( f , r |=

CNT
φ) ⊔ ( f , r |=

CNT
ψ )

f , r |=
CNT
φ ∧ψ B ( f , r |=

CNT
φ) ⊓ ( f , r |=

CNT
ψ )

f , r |=
CNT
φUIψ B

⊔
t :r+I

( f , t |=
CNT
ψ ⊓

l

r ≤t ′<t

f , t ′ |=
CNT
φ)

f , r |=
CNT
φRIψ B

l

t :r+I
( f , t |=

CNT
ψ ⊔

⊔
r ≤t ′<t

f , t ′ |=
CNT
φ)

We use f |=
CNT
φ to denote f , 0 |=

CNT
φ.

Definition 2.3 (Discrete Time STL Semantics). Let f : R≥0 −→ R
Z

be a system signal, φ be an arbitrary STL formula, and τ : N −→ R≥0
be sampling time function. Robustness degree for д B f ◦ τ , φ, and
step n : N, denoted by д,n |=

DSC
φ, is a function that maps д, φ, and n

to a value in R ∪ {−∞,∞}. It is defined according to the following
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inductive rules:

д,n |=
DSC
⊤ B ∞ д,n |=

DSC
⊥ B −∞

д,n |=
DSC
θ B θ (д(n)) д,n |=

DSC
¬θ B −θ (д(n))

д,n |=
DSC
φ ∨ψ B (д,n |=

DSC
φ) ⊔ (д,n |=

DSC
ψ )

д,n |=
DSC
φ ∧ψ B (д,n |=

DSC
φ) ⊓ (д,n |=

DSC
ψ )

д,n |=
DSC
φUIψ B

⊔
i :τ −1 (τ (n)+I)

(д, i |=
DSC
ψ ⊓

l

n≤j<i
д, j |=

DSC
φ)

д,n |=
DSC
φRIψ B

l

i :τ −1 (τ (n)+I)

(д, i |=
DSC
ψ ⊔

⊔
n≤j<i

д, j |=
DSC
φ)

We use д |=
DSC
φ to denote д, 0 |=

DSC
φ.

Before we state the relation between the two semantics specified

in Definition 2.2 and Definition 2.3, we need to define an auxiliary

function. It slightly shorten intervals ofU formulas and slightly

widen intervals of R formulas. The intuition is that robustness with

respect to atomic propositions is not enough, and robustness with

respect to time constraints is also required.

Definition 2.4 (Strengthening STL Formulas). For any STL formula

φ and parameter δ : R≥0, formula φδ is defined according to the

following inductive rules:

⊤δ B ⊤ ⊥δ B ⊥ pδ B p (¬p)δ B ¬p

(φ ∨ψ )δ B φδ ∨ψ δ (φ ∧ψ )δ B φδ ∧ψ δ

(φUIψ )
δ B φδU(

I+δ,I−δ
)ψ δ (φRIψ )

δ B φδR (
(I−δ )+,I+δ

)ψ δ

If τ is strictly increasing and diverges to infinity then it would

be easy to see that for any STL formula φ, system signal f , value
δ : R+, and sample time function τ with ∆τ B

⊔
n:N+ (τ (n) − τ (n −

1)), if ( f ◦ τ |=
DSC
φ∆τ ) > δ holds then ( f ◦ τ |=

DSC
φ) > δ holds as

well [13]. Note that this immediately gives us ( f ◦ τ |=
DSC
φ2∆τ ) > δ

implies ( f ◦ τ |=
DSC
φ∆τ ) > δ . However, to conclude ( f |=

CNT
φ) > 0 from

( f ◦ τ |=
DSC
φ∆τ ) > δ , function τ and value δ should satisfy additional

constraints. Theorem 2.5 formalizes a set of sufficient conditions

and the relation between discrete and continuous semantics they

entail.

Theorem 2.5 (Main Result of [9]). Let φ be a STL formula,
f : R≥0 −→ R

Z be a system signal, and τ : N −→ R≥0 be a sampling
time function, with ∆τ B

⊔
n:N+ (τ (n) − τ (n − 1)). For any δ : R+,

the following conditions guarantee

( f ◦ τ |=
DSC
φ∆τ ) > δ ⇒ ( f |=

CNT
φ) > 0

( f ◦ τ |=
DSC
(¬φ)∆τ ) > δ ⇒ ( f |=

CNT
φ) < 0

(1) τ must be started early, i.e. τ (0) < ∆τ .
(2) τ must be strictly increasing, i.e.∀i, j : N·i < j ⇒ τ (i ) < τ (j ).
(3) τ must diverges to infinity, i.e. ∀r : R·∃n : N·τ (n) > r .
(4) There must be λ : R+ such that for any θ : Θ, function θ ◦ f is

λ-Lipschitz continuous.
(5) δ must be large enough, i.e. λ∆τ < δ .
(6) ∆τ must be small enough, i.e.∆τ < 1

3
minI:Iφ (I−I), whereIφ

is the set of intervals that are appeared in temporal operators
of formula φ.

We use Theorem 2.5 to address computational complexity of

monitoring continuous time system signals. We assume λ : R+
is given such that for any θ : Θ, function θ ◦ f is λ-Lipschitz

continuous. We then use Theorem 2.5 and find a small enough

∆τ and large enough δ that satisfy all conditions in this theorem.

Knowing λ, ∆τ , and δ , instead of trying to prove ( f |=
CNT
φ) > 0

or ( f |=
CNT
φ) < 0 directly, we try to prove ( f ◦ τ |=

DSC
φ∆τ ) > δ or

( f ◦ τ |=
DSC
(¬φ)∆τ ) > δ 2

. Of course, Theorem 2.5 does not address

the other two challenges. We cannot directly look at values of

θ ◦ f at different points in time, because of noise and nuisance

parameters in the environment. Also, we cannot wait until the

execution is completely over and then compute robustness degree

defined by discrete semantics, which is what is required according

to Definition 2.3.

Whenwe verify a system signal f using a sampling time function

τ , ideally we would like to see f (0), which can only happen when

τ (0) = 0. Unfortunately, this cannot be guaranteed in practice.

However, if we let τ ′ maps n to τ (n)−τ (0), and д′ B f τ (0) ◦τ ′ then
it is easy to see (д |=

DSC
φ) = (д′ |=

DSC
φ). Using Theorem 2.5, intuitively

this means if д′ robustly satisfies φ then both f and f τ (0) satisfy φ.
To make the notations simpler, for the rest of the paper, wlog., we
assume τ (0) = 0.

2.2 Parameter Invariant Test Statistic
For every test function θ and system signal f , Theorem 2.5 as-

sumes at every sampling time that is defined by τ , we can fully

observe value of θ ◦ f . However, in this paper we assume that

direct observation of this value is impossible. This could happen for

different reasons. For example, it could be because of noise in the

environment or sensors, or because of some (unknown) nuisance

parameters in the system. In Definition 2.6 from [26], we formally

define what can be observed for each test function at different

points in time, and later we define what can be observed for each

system signal and sampling function.

Definition 2.6 (Observable States for a Single Test Function). To
every test function θ and point in time t : R≥0, we associate a tuple
(Y, µ, ρ0, ρ1,σ , F, G0, G1,n), where

• Y is an arbitrary finite non-empty set of observable variables.
We require the set Y be independent of time.

• µ : dom(µ ) −→ R and ρi : dom(ρi ) −→ R, for i : {0, 1}, are

unknown nuisance vectors. We require ∥ρ0∥ = ∥ρ1∥ = 1.

• σ : R+ is an unknown nuisance noise multiplier.
• F : RY×dom(µ ) and Gi : RY×dom(ρi ) , for i : {0, 1}, are known
signal matrices. We require that columns of {F, G0, G1} to be

orthonormal.

• n : (RY,F ,P) is a probability space of a noise, where RY

is a sample space, F is a sigma algebra on RY, and P is a
probability measure on F .

Every time we look at signal f , instead of observing θ ( f (t )), we
only seeO (θ , f , t ) B Fµ+θ+ ( f (t ))G0ρ0+θ

− ( f (t ))G1ρ1+σn, which
is a random variable with unknown parameters. Note that proba-

bility space of O (θ , f , t ) is uniquely determined by its parameters

(including those associated to θ and t ). We refer to the elements

associated to θ and t using subscripts. For example, we refer to

nuisance noise multiplier using σθ,t . Also, since Y is independent
in time, we refer to observable variables of θ using Yθ . We may

2
Monitoring correctness of a guessed λ and defining a proper action whenever it is

falsified would be among our future works.
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drop the subscripts whenever it causes no confusion. We require

∀θ ,θ ′ : Θ·θ , θ ′ ⇒ Yθ ∩ Yθ ′ = ∅. Finally, we define X B
⋃
θ :AP Yθ

to be the set of all observable variables.

Definition 2.6 specifies what can be observed for every test func-

tion θ , time t , and system signal f . Having X defined and knowing

different test functions use disjoint set of observable variables, what

can be observed at time t using all elements of Θ has a probabil-

ity space O ( f , t ) B (RX,F ,P), which is uniquely determined by

probability spaces of O (θ , f , t ) for different θ : Θ.
Let τ : N −→ R≥0 be an injective sampling time function. Accord-

ing to Definition 2.3, for every test function θ : Θ and step n : N,
we find value of θ ( f (τ (n))). Therefore, we would like to observe a

function of type N −→ RΘ that maps n to values of atomic proposi-

tions (a.k.a. test functions) at time τ (n). However, we already know

that we cannot directly observe these values, and our observation

at each point in time is a random value with a probability space

O ( f , t ) B (RX,Ff ,t ,Pf ,t ). Let Ωf ,τ B N −→ R
X
be the product

space of all possible observable values at different sample times. Let

F be the set of all subsets of Ωf ,τ that can be written in the form

of {ω | ∀n : N·ω (n) ∈ An }, where ∀n : N·An ∈ Ff ,τ (n) and for

all but finitely many n : N, An = R
X
(every element of F is called

a cylinder set). Define Ff ,τ to be the sigma algebra generated by

F , and let P : F −→ [0, 1] be a function that maps every element

of F that is obtained from A0,A1, . . . to Πn:NPf ,τ (n) (An ). Author
in [21] proved that there is a unique probability measure on Ff ,τ
that extends P . We let Pf ,τ denote to that probability measure.

According to Definition 2.6, nuisance parameters can change the

probability space of what can be observed at each point in time.

Clearly, these nuisance parameters can also change the probabil-

ity space of observable signals. Let Ω be a sampling space of an

arbitrary probability space. A group of transformation on Ω is a set

K of functions of type Ω −→ Ω that includes identity. Intuitively,

functions inK are the result of nuisance parameters and any one of

them can be applied to our observation; Meaning just by changing

nuisance parameters it is possible to observe k (ω) instead of ω,
where k : K is some transformation and ω : Ω is an observation.

Knowing that K can affect our observations, one can benefit

from designing a test statistic that is invariant to nuisance param-

eters [26]. Intuitively, a test statistic η is invariant to nuisance

parameters iff different transformations in K cannot change its

value. Definition 2.7 precisely states when a test statistic is invari-

ant. Unfortunately, only requiring a test statistic to be invariant

is not enough. For example, if η maps every input to 0 then it is

clearly invariant to all nuisance parameters. However, it is obvious

that such a test statistic is useless as it provides no information

about the observed event. Definition 2.8 defines what is called maxi-

mally invariant test statistic. Intuitively, a test statistic is maximally

invariant iff it only looses those parts of information that can be

changed by nuisance parameters.

Definition 2.7 (Invariant Test Statistic). Let Ω be a sampling space

of an arbitrary probability space, and K ⊆ Ω −→ Ω be a group of

transformation. A test statistic η : Ω −→ Ω′, for some sampling

space Ω′, is called invariant to the group of transformations K , iff

∀ω : Ω,k : K ·η(ω) = η(k (ω))

Definition 2.8 (Maximally Invariant Test Statistic). Let Ω, K , and

η be as defined in Definition 2.7. Test statistic η is called maximally
invariant to the group of transformations K iff in addition to be an

invariant test statistic it satisfies the following condition:

∀ω,ω ′ : Ω·η(ω) = η(ω ′) ⇒ ∃k : K ·ω = k (ω ′)

3 PARAMETER INVARIANT TEST FOR STL
In this section, let f be a system signal, τ be a sampling time func-

tion, д B f ◦ τ be the corresponding discrete signal, h be the

corresponding observable random signal, and φ be a STL formula.

Let H0 B ( f |=
CNT
φ) > 0 and H1 B ( f |=

CNT
φ) < 0 be the null and

alternative hypotheses. Note that these hypotheses are by defini-

tion disjoint. Furthermore, knowing τ , every system signal can be

thought as a parameter that induces a probability space defined

in Section 2.2. Therefore, H0 and H1 are composite hypotheses.

In this section, we develop a statistical procedure for testing H0

againstH1. We assume there is a procedure for estimating values of

test functions at different points in time, and is precisely specified

in Assumption 1.

Assumption 1. For any sequence x : Ωf ,τ , test function θ : Θ,
error parameter α ′ : R+, and indifference region δ ′ : R+, one can
find an algorithm A (x,τ ,θ ,α ′,δ ′) that terminates with probability
1 and outputs value r : R. The algorithm guarantees Rθ,α ′,δ ′ B {x :

Ωf ,τ | |θ ( f (τ (0))) − r | > δ ′} is measurable (i.e. Rθ,α ′,δ ′ ∈ Ff ,τ ),
and Pf ,τ (Rθ,α ′,δ ′ ) < α ′ (i.e. the probability of returning an answer
that is more than δ ′ away from the true answer is less than α ′).

Suppose A in Assumption 1 uses a (maximally) invariant test

statistic. It would be valuable if we can use that test statistic and

construct a test statistic for observable signals that is also (maxi-

mally) invariant. In Theorem 3.1, we show this is always possible.

In other words, for any test statistic η that is defined for single

points in time, one can construct a test statistic η′ that is defined for
random observable signals, such that if η is (maximally) invariant

then η′ is also (maximally) invariant.

Results in [26] are defined when we only consider one test func-

tion and look at a single point in time. However, in this paper we

are dealing with multiple test functions at multiple points in time.

Therefore, in order to establish our theoretical results, we also need

to extend group of transformations twice. Once group of transfor-

mations that deals with multiple test functions, and once group

of transformations that deals with multiple points over time. Let

Kθ,f ,τ (n) ⊆ R
Yθ −→ RYθ be the group of transformations for the

test function θ and signal f at time τ (n). Group of transformations

for what can be observed at every step using all test functions,

denoted by Kf ,τ (n) , is a subset of R
X −→ RX and is completely de-

termined by Kθ,f ,τ (n) , since if θ , θ ′ then Yθ ∩ Yθ ′ = ∅. More

precisely, for every ν : RX, θ : Θ, and k : Kf ,τ (n) , function k maps

ν↾Yθ to kθ (ν↾Yθ ), for some arbitrary kθ : Kθ,f ,τ (n) , and there is

no restriction on choosing kθ . Finally, group of transformations

for the whole observable signal, denoted by Kf ,τ , is a subset of

Ωf ,τ −→ Ωf ,τ and is completely determined by Kf ,τ (n) , since ac-

cording to Definition 2.6, nuisance parameters at different times

are not required to have any relation with each other. More pre-

cisely, for every ω : Ωf ,τ , n : N, and k : Kf ,τ , function k maps
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ω (n) to kn (ω (n)), for some arbitrary kn : Kf ,τ (n) , and there is no

restriction on choosing kn .

Theorem 3.1. For any system signal f , sampling time function τ ,
test function θ , and stepn, let test statistic ηθ,f ,τ (n) : RY −→ Ω′θ,f ,τ (n)
be invariant with respect to the group of transformations Kθ,f ,τ (n) .
There is a test statistic ηf ,τ : Ωf ,τ −→ Ω′f ,τ that is invariant to the
group of transformations Kf ,τ . Furthermore, if every ηθ,f ,τ (n) is
maximally invariant then ηf ,τ is also maximally invariant.

A crucial assumption in proving Theorem 3.1 is that not only

nuisance parameters of different test functions are not assumed

to have any particular relation with each other, but they can also

change arbitrarily over discrete time steps specified by τ . If this
assumption does not hold in practice, the test statistic that is created

in Theorem 3.1 may not be maximal anymore. However, it will

remain invariant to the group of transformations.

Theorem 3.1 immediately gives us a (maximally) invariant test

procedure to verify discrete time signals against STL properties.

Note that using Theorem 2.5, if a discrete time signal f ◦ τ robustly

satisfies STL formulaφ∆τ then the continuous time signal f satisfies
φ as well (not necessarily robustly). In this procedure, an estimation

of robustness degrees for atomic propositions at all points in times

that are specified by τ is obtained using Assumption 1
3
. Then one

uses Definition 2.3 to compute the robustness degree f ◦ τ |=
DSC
φ∆τ .

Theorem 3.1 guarantees this procedure is (maximally) invariant

with respect to the group of transformations Kf ,τ . However, nei-

ther Theorem 3.1 nor Theorem 2.5 consider the next challenge in

monitoring, which is the requirement to be able to proceed when

not all the data is provided and to stop the procedure as soon as

enough information has been obtained.

3.1 Algorithm
We use the results from [6] for monitoring. Authors in that paper,

monitor a STL signal with continuous time semantics by assum-

ing it is piecewise constant. However, this is very similar (but not

the same) to what one can assume about our discrete time signal,
meaning value of observed signal is constant between consecutive

observations
4
. First, in Assumption 2, we precisely state the main

result of [6]. Later we show how to use this result in our case.

Assumption 2 (Monitoritng Piecewise Constant Signals).

Let τ : N −→ R≥0 be a strictly increasing sampling time function,
д′ : R≥0 −→ R

X be continuous time signal, and φ be a STL formula.
If д′ is piecewise constant with respect to τ , meaning ∀n : N, t :

[τ (n),τ (n + 1))·д′(t ) = д′(τ (n)) then there is an algorithmM for
monitoring д′ against φ. Let n : N be an arbitrary value and N B
{0, . . . ,n} be the set of steps up ton. Also, let l : N −→ RΘ be robustness
degrees for every test function in Θ at every time step in N . More
precisely, l maps n : N and θ : Θ to θ (д′(τ (n))↾Yθ ). The algorithm
takes three inputs: (1) l , as what has been observed/monitored so far,
(2) τ↾N , as times at which each observation has been made, and (3) φ,
as a STL formula to monitor the input signal against. The algorithm
outputs an interval [a,b]. It guarantees that a and b are respectively
3
An explanation on how to handle error probability and indifference region is be given

in Section 3.1.

4
Authors in [7] introduced an algorithm for monitoring discrete time signals. In

Section 5, we explain why we did not use their results.

the infimum and supremum of all possible robustness degrees (i.e.
д′ |=

CNT
φ) that one can possibly gets if what has been already observed

(i.e. input functions l and τ↾N ) be extended to functions with N as
their domain in an arbitrary way.

Three remarks are in order regarding Assumption 2 and the

algorithm introduced in [6]. First, the implementation in [6] creates

an internal state for the algorithm. There will be some initialization,

but at any step n : N, one only gives l (n) and τ (n) to the algorithm.

Clearly, this could save a lot of time, but the functionality remains

the same. Second, if all intervals used in the input STL formula

are bounded then it can be handled by [6]. However, STL formulas

with unbounded intervals are not fully supported in that paper.

Nonetheless, [6, Theorem 1] proves the following STL formulas

can be monitored by their algorithm: (1) □φ, (2) ♢φ, (3) φUψ ,
(4) □(φ ∨ ♢ψ ), (5) ♢(φ ∧ □ψ ), (6) □♢φ, (7) ♢□φ, (8) ♢(φ ∧ ♢ψ ),
and (9) □(φ ∧ □ψ ), where φ and ψ are arbitrary non-temporal

STL formulas, and interval in all temporal operators is (0,∞). The
third remark is about whether or not the input STL formula should

be given in negated normal form. Theorem 2.5 requires the input

formula to be in negated normal form, however, the algorithmM,

as described in [6] does not require that. As a result, [6] does not

directly support ∨ nor R operators, because one can always encode

them using ∧,U , and ¬ operators. We need to make sure that this

inconsistency is not going to be a problem, and in fact it is not.

The assumption of input formula being in negated normal form

is only used in Definition 2.4, where intervals ofU operators are

always shortened and intervals of R are always widened. However,

if it was possible to write ¬(φUIψ ) then interval I must have been

extended. After this step, one can remove all ∨ and R operators by

encoding them using ∧ andU operators [10, P. 4268]
5
.

Let д′ be the piecewise constant continuous time signal that is

constructed from д and τ as specified in Assumption 2. According

to Theorem 2.5, in order to conclude ( f |=
CNT
φ) > 0, it is enough

to verify (д |=
DSC
φ∆τ ) > δ . However, using Assumption 2, we can

only check (д′ |=
CNT
φ∆τ ) > δ . Lemma 3.2 solves this problem, by

proving (д′ |=
CNT
φ2∆τ ) ≤ (д |=

DSC
φ∆τ ). Therefore, in order to conclude

( f |=
CNT
φ) > 0, it is enough to verify (д′ |=

CNT
φ2∆τ ) > δ . Similarly, in order

to conclude ( f |=
CNT
φ) < 0, it is enough to verify (д′ |=

CNT
(¬φ)2∆τ ) > δ

(note that, as stated in Section 2.1, by ¬φ we mean a formula in

negated normal form that is equivalent with ¬φ). Also, since we are

monitoring д′ |=
CNT
φ2∆τ and д′ |=

CNT
(¬φ)2∆τ , we can stop the algorithm

as soon asM outputs [a,b] with a > δ for any of φ2∆τ or (¬φ)2∆τ

formulas.

Lemma 3.2 (Piecewise Constant and Discrete Semantics).

For any system signal f , strictly increasing sampling time function τ
with finite ∆τ B supn:N τ (n + 1) − τ (n) and τ (0) = 0, let д B f ◦ τ

be the corresponding discrete signal, and д′ : R≥0 −→ RX that maps
t : R≥0 to д(n) with n being the unique number determined by τ (n) ≤
t < τ (n + 1), be the piecewise constant signal corresponding to д. The
following inequality holds:

(д′ |=
CNT
φ∆τ ) ≤ (д |=

DSC
φ)

To provide the values of signal at discrete times, we use Assump-

tion 1. Let θ : Θ be an arbitrary test function, and α : (0, 1) be an

5
Furthermore, neither ⊤ nor ⊥ are supported in [6]. However, one can trivially encode

them using a constant test function which is always∞ or always −∞.
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arbitrary bound on the error probability. Using Assumption 1 at

step n : N, suppose we know with error probability < α , value
of p B θ ( f (τ (n))) is within the interval [p′ − δ ′,p′ + δ ′], where
p′ is the output of algorithm and δ ′ : R+ is an arbitrary value. If

p′−δ ′ > 0 then we know (with probability at least 1−α ) p > 0 and

if p′ + δ ′ < 0 then we know (with probability at least 1 − α ) p < 0.

However, if neither of these cases hold we cannot conclude p > 0

nor p < 0. In the first two cases, we respectively use p′ − δ ′ and
p′ + δ ′ as the robustness degree of θ at time τ (n). In the third case

we use 0 as the robustness degree of θ , meaning we don’t know

enough about value of θ at time τ (n).
In the previous paragraph, we have explained how to use As-

sumption 1 to provide input to the monitoring algorithm in [6].

However, using Assumption 1 involves probabilistic errors and we

have to bound this error. In order to estimate value of an arbitrary

θ : Θ at an arbitrary step n : N, if we use error bound α
2
n+1 |Θ |

then

the total error after any number of steps will be < α . Note that we
do not assume any independence between outputs of the algorithm

in Assumption 1 at different steps or for different test functions.

Algorithm 1 puts all the steps of our approach together. Inputs

to this algorithm are a system signal f , a STL formula φ, a bound
on error probability α : (0, 1), a Lipschitz constant λ : R+, and an

indifference region δ ′ : R+. Note that the algorithm cannot look at

f directly. Parameter δ ′ will be used when A from Assumption 1

is invoked. Smaller values make our algorithm more precise, but

too much small values may causeA to fail. Parameter α is a bound

on error probability that our algorithm guarantees, and will be

discussed later. However, similar to δ ′, smaller values of α make

the algorithm more precise with the possibility of causingA to fail

for values that are too small.

First an empty sequence of observations is created and the cur-

rent step is set to 0. Then, using Theorem 2.5 and the input λ, two
values are fixed for δ and ∆τ . Value of ∆τ is assumed to be an upper

bound on the actual value of infn:N τ (n + 1) − τ (n), meaning time

of consecutive samples must not be more than ∆τ apart. In practice,

this value is determined based on the system/sensor specifications

(meaning how fast one can sample from the input signal). Knowing

∆τ and λ and using Theorem 2.5, we set value of δ to be slightly

larger than λ∆τ . After initializing these variables at the beginning,

we initialize two instances of algorithmM for φ2∆τ and (¬φ)2∆τ

at Line 24 and Line 25. Inside the while loop at Line 28, we monitor

the signal for as long as we could not prove robustness degree for

φ2∆τ or (¬φ)2∆τ is larger than δ . At any point in time, if a1 > δ
then using Lemma 3.2 and Theorem 2.5, we know ( f |=

CNT
φ) > 0.

Similarly, if a2 > δ then using the same lemma and theorem, we

know ( f |=
CNT
φ) < 0. Note that since the law of non-contradiction is

satisfied by both Definition 2.2 and Definition 2.3, using Lemma 3.2

and Theorem 2.5, we know it would be impossible for a1 > δ and

a2 > δ to hold at the same time. However, it is possible that b1 ≤ δ
and b2 ≤ δ both become true. If this happens, using what is guar-

anteed aboutM in Assumption 2, we know no matter how much

longer we monitor the system, none of a1 > δ and a2 > δ would

ever become true. In this case, we immediately stop the algorithm

and return unknown. As far as termination is concerned, the algo-

rithm will not continue if a1 = b1 and a2 = b2 are both true. If

intervals in the input STL formula are all bounded, this will always

happen. However, if input STL formula has unbounded intervals it

is possible for the algorithm not to terminate. For example, consider

φ B ♢(0,∞)ψ formula and assume the input system signal f does

not satisfy it (i.e. robustness degree is < 0). Value of a1 will always
be negative and value of b1 will always be∞. Therefore, our algo-
rithm will not terminate (unless it makes a mistake). However, this

is true for all monitoring algorithms, since in this case, any finite

prefix of f can be extended in way to satisfy φ or not to satisfy

φ. Also, in this paper it is assumed that the input signal is defined

over all of R≥0. However, if for any reason, the signal is defined only
over a bounded time domain and if the algorithm did not terminate

after all the observations are made, one can look at the last value of

[a1,b1] and [a2,b2] and take a proper action based on those values.

Function estimate is where we use Assumption 1. First, note

that according to Assumption 1, we need to give A two infinite

sequences. However, it is impossible to actually wait for infinite

amount of time and obtain all those data. Furthermore, if A ever

terminates, it can only read finite amount of data from these se-

quences. That is why, instead of reading an infinite amount of

information, we pass the observe function to A. This way A can

access all the information that are needed and function observe
will provide them on the fly. However, even if A looks at each

point in time at most once, we need to temporarily save all the

observations as later invokations of estimate may need them. As

soon as estimation of test functions at time t is over, we remove all

data collected at time t from memory. Note that function observe
returns both time and observation at that time. That is why we do

not give two separate sequences to A (one for observations and

one for times of those observations).

It is only remained to show that the probability of returning

an incorrect answer is < α . Output accept is considered incorrect

iff ( f |=
CNT
φ) < 0, and output reject is considered incorrect iff

( f |=
CNT
φ) > 0. However, the algorithm can also return unknown

as its output. We consider unknown as an incorrect answer iff the

piecewise constant signal that is induced by f and τ , either robustly

satisfies φ2∆ or robustly satisfies (¬φ)2∆. Theorem 3.3 precisely

states all of these cases about our error guarantee.

Theorem 3.3. For every system signal f , Lipschitz constant λ,
sampling time function τ , and STL formula φ, if f , λ, τ , and φ, satisfy
conditions of Theorem 2.5 then Algorithm 1 can be used to test H0

againstH1. The algorithm guarantees

Pf ,τ (accept | H1 is true) < α
Pf ,τ (reject | H0 is true) < α
Pf ,τ (unknown | (д

′ |=
CNT
φ2∆τ ) > δ + δ ′∨

(д′ |=
CNT
(¬φ)2∆τ ) > δ + δ ′) < α

where, д′ is the peicewise constant continuous time signal correspond-
ing to f ◦ τ and is formally specified in Lemma 3.2. Also, δ is defined
in Theorem 2.5, and δ ′ is the indifference parameter given as input to
Algorithm 1.

Proof. First note that what Algorithm 1 constructs is д′′, which
is not exactly equal to д′. However, with error probability < α ,
we know ∀t : R≥0,θ : Θ·|θ (д′′(t )) | ≤ |θ (д′(t )) | ∧ |θ (д′′(t )) −
θ (д′(t )) | ≤ δ ′, which means (1) abosolute value of robustness

degree of every test function in Θ is always smaller in д′′ than д′,
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and (2) robustness dgrees of any test function Θ is always δ ′-close
in д′′ and д′.

From the first property, we know if (д′′ |=
CNT
φ2∆τ ) > δ then (д′ |=

CNT

φ2∆τ ) > δ . Similarly, if (д′′ |=
CNT
(¬φ)2∆τ ) > δ then (д′ |=

CNT
(¬φ)2∆τ ) > δ .

Therefore, the first two probabilities are clear from the explanations

right before Algorithm 1 is explained and Line 14 in this algorithm.

The last inequality intuitively says that the probability of re-

turning unknown, if φ2∆τ or (¬φ)2∆τ are robustly satisfied by д′,
is less than α . The second property in the first paragraph of this

proof implies if (д′ |=
CNT
φ2∆τ ) > δ + δ ′ then (д′′ |=

CNT
φ2∆τ ) > δ . Simi-

larly, if (д′ |=
CNT
(¬φ)2∆τ ) > δ + δ ′ then (д′′ |=

CNT
(¬φ)2∆τ ) > δ . Either

way, with probability > 1 − α , unknown will not be returned by the

algorithm. □

Using Theorem 3.1, we know if the test procedure in Assump-

tion 1 is invariant to the nuisance parameters then our algorithm

defines a parameter invariant test procedure for monitoring STL
properties. The same theorem also proves that if the algorithm in

Assumption 1 is maximally invariant then our algorithm will be

maximally invariant as well. Using Theorem 3.3, we know if the

algorithm in Assumption 1 fulfills its guarantee then the probability

that our algorithm returns a wrong answer would be < α .

4 EXPERIMENTAL RESULTS
There are about 1.25 million people with Type 1 diabetes (T1D) in

the United States; a number that is expected to rise to 5 million

by 2050 [25]. T1D patients control their glucose levels through

daily insulin therapy to avoid numerous long-term complications

associated with hyperglycemia. A significant disturbance to a T1D

patient’s glucose level can be caused by meal carbohydrates. There-

fore, it is crucial to monitor insulin injections around meal times to

avoid postprandial hyperglycemia and subsequent postcorrection

hypoglycemia. Whenever a patient receives a meal, (s)he is sup-

posed to either already received a bolus not longer than t1 units of
time ago, or be going to receive a bolus not later than t2 units of
time in the future. Similarly, whenever a patient receives a bolus,

(s)he is supposed to either already received a meal not longer than

t1 units of time ago, or be going to receive a meal not later than t2
units of time in the future. These two requirements are specified in

Formula 1a and Formula 1b.

The amount of bolus that is received by a patient, denoted by

B, is known exactly (i.e. there is no noise or nuisance parameter

involved in measuring B). However, the amount of meal that is

received by a patient, denoted byM , cannot be observed directly

and our observations can be affected by noise as well as nuisance

parameters. We used maximally invariant test procedure that is

developed in [25, 26] to monitor values of M at different points

in time. We used c1 = 0.4697, which is exactly what is used in

the experimental results of [25] (i.e. we consider a meal is taken

whenever maximally invariant test statistic developed in that paper

is larger than 0.4697). We used c2 = 0.1, since we want to consider

B = 0 as no bolus with non-zero robustness degree. The time bound

on □ operator starts from t1 as opposed to 0. Because, for example,

if a patient takes a meal at some time t < t1 then t − t1 < 0 and we

Figure 1: Sample signal of one observation of a patient. No er-
ror is involved inmeasuring bolus. Meal cannot be observed
directly and its graph is the output of the algorithm in [26].

don’t know if any bolus has been taken before the monitor started.

We used t1 = t2 = 30 minutes in our experiments.

□
[t1,∞)

(
(M > c1) → ♢(−t1,t2 ) (B > c2)

)
(1a)

□
[t1,∞)

(
(B > c2) → ♢(−t1,t2 ) (M > c1)

)
(1b)

The problem with these formulae is that intervals used in them

contains negative values. Strictly speaking, this makes them not
STL formulae. The two formulae are very similar to each other.

Therefore, we only present results of monitoring Formula 1a. For-

mula 2a specifies the same requirement as in Formula 1a using a

STL formula (intervals are all non-negative values). It intuitively

says the following must be true at all points r : R≥0 in time: Either

there must be a bolus somewhere during (r , r + t1 + t2), or if this is
not the case then at any point r ′ : [r + t1, r + t1 + t2) if a meal is

taken then a bolus should be taken not later than t2 units of time in

the future. Note that we already know that no bolus is taken during

interval of times (r − t1, r ], therefore we only need to look into the

future.

□
[0,∞)

*
,

♢(0,t1+t2 ) (B > c2) ∨

□
[t1,t1+t2 )

(
(M > c1) → ♢(0,t2 ) (B > c2)

) +
-

(2a)

We ran our algorithm on real medical data gathered from 61

patients. For each patient we have different number of observed

signals that span over time from few hours to few days. Since

the STL formula in Formula 2a is not currently supported by the

implementation in [6], we have implemented a monitor for this

formula ourselves. All the experiments were performed on a laptop

with Intel i7 2.4GHz CPU, 8 GB of memory, and Kubuntu as its

operating system.

Figure 1 shows robustness degrees of Formula 2a over time for

M > c1 and B > c2 for one observed signal of a patient. The lower

bound(a1) on the robustness degree of the Formula 2a will always be

−∞ because we want it to be true always, even at all times in future.

Similarly, eventually true property of the negation of Formula 2a

will fix the upper bound(b2) on its robustness degree to +∞. So, in

order to check for the termination condition of our algorithm, we
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Figure 2: Number of sample executions and number of
alarms for different patients

need to keep track of the upper bound(b1) on the robustness degree

of Formula 2a and lower bound(a2) on the robustness degree of

its negation. In this figure, red and blue lines represent b1 and a2
respectively. We can see that at t = 421, the patient had his/her first

meal but did not inject bolus in the time window 391 ≤ t ≤ 451. So,

at t slightly greater than 451, a2 becomes greater than δ (which is

equal to 0.007) and the algorithm terminates by raising an alarm

on rejection of the Formula 2a.

Figure 2 compares the number of alarms (i.e. number of times

that the algorithm proves property specified in Formula 1a is false)

that is raised by our algorithm for each patient with total number

of signals(or observations) we have in our data for that patient.

This figure is created when δ ′, an input to our algorithm, is set to

0.05. Smaller values of δ ′ increase number of raised alarms with the

possibility that the algorithm in [26] fails. Similarly, larger values

of δ ′ decreases number of raised alarms with the possibility of

returning to many unknown answers.

Finally, the current implementation for the algorithm in [26] does

not provide any probabilistic error guarantee (in particular it does

not satisfy Assumption 1). Therefore, our current implementation

does not provide any probabilistic error guarantee either. However,

the current implementation in [26] guarantees being maximally

invariant to nuisance parameters, and hence our current imple-

mentation provides the same guarantee as well. Note that, being

invariant to nuisance parameters implies that the probability of

returning an incorrect answer does not depend on value of nuisance

parameters. Therefore, even when we don’t provide probabilistic

error guarantee, the actual probability of returning an incorrect

answer does not change with nuisance parameters.

5 RELATEDWORK
In the context of LTL and ω-regular languages, monitoring execu-

tions has been considered before in [2, 3, 5, 11]. Beside not being

developed for real-time systems, none of these works consider the

inability to fully observe system states at different points in time.

Note that one of the algorithms developed in [11], is stochastic. But

even in this algorithm, one knows exactly which atomic proposition

is true and which one is not.

(Robust) monitoring MITL and STL properties have been studied

in [6–8, 12, 16, 22] before. None of these works consider the effect

of noise or nuisance parameters. [16] is one of the early papers

that introduced STL in the context of monitoring temporal proper-

ties. The algorithm in this paper only supports bounded temporal

operators and is suitable only for offline monitoring, meaning the

whole execution should be at hand. In [6] authors assume signals

remain constant between consecutive observations. In [8] authors

assume signals are piecewise linear between consecutive obser-

vations. They also consider only offline monitoring. In [12, 22]

authors consider only discrete signals (each event is time stamped).

We could not directly use any of these papers instead of [6] in

Assumption 2, because in these papers, at every step one has to

specify which atomic proposition is true and which one is false. But

since we cannot look at the system state directly, it is possible that

at some step we won’t know if an atomic proposition is true or false.

Also, output of the algorithms in [12, 22] is binary true or false.

But output of [6] is a robustness degree which is what we need in

Theorem 2.5. The main benefit of [12, 22] comparing to [6, 8] is that

the memory that is used by the algorithms in [12, 22] does not de-

pend on the length of execution. This is exactly, why the algorithm

in [6] does not fully support unbounded temporal operators. The

algorithm developed in [7] can replace the algorithm in [6] that we

use in our paper. However, the focus of [7] is on supporting the

past time temporal operators when one only has bounded future

time operators. Since results in [9, 10] do not consider past time

temporal operators, Theorem 2.5 does not allow any such operator.

Therefore, we decided to use the results from [6], since it partially

supports unbounded future time temporal operators.

The inability to directly look at system state, has been considered

in [20, 23, 24]. However, none of these works considered nuisance

parameters. Furthermore, [20] is for synthesizing controllers and

not monitoring them. Also, algorithms in [23, 24] are statistical

verifiers, meaning they can sample from each point in time as many

time as they want, which is never possible in monitoring.

6 CONCLUSION
In this paper we developed a test procedure for monitoring con-

tinuous time signals against STL properties. We proved if the test

procedure used for atomic propositions is (maximally) invariant

to nuisance parameters then our test procedure will also be (max-

imally) invariant to nuisance parameters. We also proved that as

soon as the test procedure for atomic propositions fulfills its proba-

bilistic error guarantee, our algorithm guarantees the probability of

returning an incorrect answer can be made arbitrarily close to zero.

We assumed there is a procedure for monitoring piecewise constant

signals against STL properties. However, the input signal to our

algorithm could be any continuous signal with a known Lipschitz

constant.

There are at least two future directions for this work. The first

one is to develop a method that can monitor Lipschitz continuity

and adapt time steps accordingly. Furthermore, if this new monitor

says the Lipschitz continuity is violated, we believe, there is no

need to cancel the whole procedure and it would be enough to set

the robustness degree of the corresponding atomic proposition at

the corresponding time to zero. The second direction is to combine

continuous time monitoring algorithms for MITL formulas with the
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Algorithm 1: Parameter Invariant Monitoring Algorithm for

Signal Temporal Logic

Input: system signal f , STL formula φ, error parameter

α : (0, 1), Lipschitz constant λ : R+, and indifference

parameter δ ′ : R+.
Output: accept, reject, or unknown

1 x← nil /* sequence of observations tagged with their times */

2 n ← 0 /* current step in monitoring */

3 δ ,∆τ ← some values according to Theorem 2.5 using input λ
/* an upper bound for δ and a lower bound for ∆τ is enough */

4 Function observe(n : N/* step number */, θ : Θ/* test func. */)

/* returns τ (n) + an observation for θ (f (τ (n))) (from RYθ ) */

5 while |x| ≤ n do /* |x | is the length of x */

6 ν : RX

7 t ← current time

8 forall θ ← Θ do
9 ν↾Yθ ← current sensor value for θ /* sampling from

Ωθ , f ,t */

10 Add (t ,ν ) to the end of x

11 (t ,ν ) ← the nth element of x

12 return (t ,ν↾Yθ )

13 Function estimate()
/* returned object maps θ to an estimation of θ (f (τ (n)))

using Assumption 1 */

14 α ′ ← α
2
n+1 |Θ |

15 ν : RΘ

16 forall θ ← Θ do
17 a ← A (observe,θ ,α ′,δ ′) /* A is defined in

Assumption 1 */

18 if a − δ ′ > 0 then ν (θ ) ← a − δ ′

19 else if a + δ ′ < 0 then ν (θ ) ← a + δ ′

20 else ν (θ ) ← 0

21 (t , _) ← first element of x /* we won’t use the 2nd element */

/* next line is required for saving memory and correctness

of observe function */

22 x← remove the first element of x

23 return (t ,ν )

24 M1 ← initializeM for φ2∆τ /*M is defined in Assumption 2 */

25 M2 ← initializeM for (¬φ)2∆τ

26 [a1,b1]← [−∞,∞]

27 [a2,b2]← [−∞,∞]

28 while a1 ≤ δ ∧ a2 ≤ δ ∧ (δ < b1 ∨ δ < b2) do
29 (t ,ν ) ← estimate ()

30 [a1,b1]←M1 (ν , t )

31 [a2,b2]←M2 (ν , t )

32 n ← n + 1

33 if a1 > δ then return accept

34 if a2 > δ then return reject

35 return unknown

full support for unbounded time operators that only require con-

stant amount of memory with respect to the execution length and

monitoring algorithms for STL formulas that return the robustness

degree instead of a binary/ternary value.
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