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ABSTRACT

PERFORMANCE-BASED INCENTIVES IN PUBLIC SECTOR SERVICES

Vanitha Virudachalam

Sergei Savin

This dissertation studies the role of performance-based incentives in public sector service

operations. In particular, we consider incentives in the context of K-12 education and

healthcare. These systems share three key characteristics: the quality of service provision

depends both on the efforts of the service provider and customer, the provider is paid by

a third-party, and measuring the quality of service provision is difficult. In three chapters,

we study different facets of the incentive problem. In the first chapter, we consider the

problem faced by school districts seeking to maximize student performance, as measured

by annual state exams. Using a dynamic two-period principal-agent model, we study the

interaction between two levers that the school district can use to improve performance:

a midyear “interim assessment,” which will more accurately gauge whether students are

on track to perform well, and performance-based incentives for teachers. We show that

investing in an interim assessment is beneficial in only a limited number of scenarios; our

results suggest that the growing dependence on third-party assessments may be misplaced.

In the second chapter, we turn to healthcare. We study the problem faced by a profit-

maximizing, resource-constrained hospital that controls patient inflows by designing a case-

mix of its elective procedures and patient outflows via patient discharges. We consider a

hospital that makes these decisions in the presence of bundled payments, which implicitly

penalize high readmission rates. In our analysis, we focus on assessing the benefits associated

with the hospital employing a coordinated decision-making process, in which both portfolio

and discharge decisions are made in tandem. We compare a coordinated decision-making

structure to two commonly utilized decision-making structures and characterize when the

hospital can most benefit from coordination. Finally, in the third chapter, we return to K-12
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education. We study the impact of coproduction on the student performance in the presence

of merit-based rewards for both teachers and students, using a Cobb-Douglas formulation

of the education production function and a Stackelberg model of teachers’ and students’

effort decisions. We characterize students’ and teachers’ optimal effort levels for a given

reward allocation, and we illustrate the impact on student performance.
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PREFACE

In this dissertation, I study public sector service operations, specifically, K-12 education and

healthcare. While clearly distinct, healthcare and education share many key similarities.

Both are vast systems staffed with multiple providers that must coordinate their efforts.

For both, service provision and its outcome are determined by the joint efforts of the

customer (student or patient) and the provider (educator or healthcare worker). In both

systems, strategies to improve service provision have been transformed by technology and

an increasing ability to collect data. And, simply put, the efficacy of both systems is vital

to ensure and sustain the well-being of a population.

In addition, both systems share a similar payment and incentive structure, in which a

service provider serves a customer who does not directly provide compensation. Rather,

a third-party payer, whether that is the government or an insurance company, must pay

the provider – but this is complicated by the difficulty of measuring the quality of service

provision. Thus, the payer must determine a compensation scheme that incentivizes the

provider to exert the appropriate level of effort.

In the chapters that follow, I focus specifically on the role of performance-based incentives

in these two systems. In the first chapter, I study the interaction between end-of-the year

performance-based incentives and the provision of more accurate midyear information in K-

12 education in the United States. In the second chapter, I turn to healthcare and analyze

the optimal patient portfolio and discharge threshold for a resource-constrained hospital

under a reimbursement policy that penalizes readmissions. Finally, in the third chapter, I

return to education, and, recognizing the coproduced nature of education, I consider the

optimal allocation of performance-based incentives between teachers and students.

In Chapter 1, the focus is on the problem faced by school districts seeking to maximize stu-

dent performance, as measured by annual state exams. Legislation over the last two decades

has led to a dramatic increase in the frequency of state standardized testing in schools. More-
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over, technological advances that have made possible the collection of tremendous amounts

of student performance data. A consequence of this has been the explosive growth of the

for-profit testing industry, with school districts spending hundreds of thousands of dollars

on “interim assessments,” formal, point-in-time tests designed to gauge student progress

during the school year. This additional informational input into the educational process is

being introduced at a time when a number of school districts are also experimenting with

performance-based incentives for teachers. Thus, school districts must consider the relative

benefits and interaction of these two strategies.

We examine the relationship between information on student performance and incentives

for teachers using a dynamic two-period principal-agent model. In our model, the school

district (principal) chooses whether to invest in interim assessments, and, also, how much

merit-based compensation to offer teachers, while the teachers (agents) decide on the level

of effort to exert in each period. Our results indicate that interim assessments are beneficial

in only a limited number of scenarios. For schools that begin the year already behind and

not on track to meet state proficiency standards, interim assessments have a limited impact

on teachers’ efforts if the baseline probability of moving to the proficient state is low. If

there is higher baseline probability of moving to the proficient state, an interim assessment

may be valuable under low-to-moderate budget levels. For schools that start the year on

track to achieve proficiency on the state tests, the school district should invest in an interim

assessment if the budget is moderate, the formative assessments are reasonably accurate,

and the probability of transitioning to the proficient state from the not-proficient state is

significantly lower than the probability of remaining in the proficient state.

Next, in Chapter 2, we turn to the healthcare domain. Specifically, we study the problem

faced by a profit-maximizing, resource-constrained hospital that controls patient inflows by

designing a case-mix of its elective procedures and patient outflows via patient discharges.

We consider a hospital that makes these decisions in the presence of bundled payments,

which implicitly penalize high readmission rates. Our model analyzes the impact of pa-

xii



tient flow management decisions on the utilization of two main classes of hospital resources,

“front-end” (such as operating rooms), and “backroom” (such as recovery beds). We intro-

duce a new approach for modeling the patient recovery process and use it to characterize

the relationship between a patient’s length of stay and probability of readmission. On the

basis of this modeling approach we develop a two-moment approximation for the utilization

of front-end and backroom resources.

Front-end and backroom resources are typically managed by different teams of providers,

with varying degrees of coordination between the two. In our analysis, we focus on as-

sessing the benefits associated with the hospital employing a coordinated decision-making

process, in which both portfolio and discharge decisions are made in tandem. Specifically,

we compare the hospital’s profits in the coordinated setting to those under two decentralized

approaches: a “front-end” approach, under which both decisions are made based exclusively

on the front-end costs, and a “siloed” approach, where discharge decisions are made based

on backroom costs, and the case-mix is determined as the optimal match for the discharge

policy. We show that hospitals operating under the front-end policy can significantly benefit

from coordination when backroom costs are sufficiently high, even if they do not exceed sur-

gical costs. On the other hand, for hospitals operating under the siloed policy, coordination

brings significant benefits only when surgical costs are high and significantly dominate the

cost structure.

Finally, in Chapter 3, we build upon the work in the first chapter to explicitly investigate

the impact of coproduction on performance-based financial incentives in education. In par-

ticular, we formulate a model to characterize the impact of joint production on a school’s

probability of meeting state-specified proficiency standards using a Cobb-Douglas formula-

tion. We include the effort decisions made by both teachers and students in the presence

of performance-based incentives offered to both parties by a school district. We assume

that these decisions are made in turn, as in a Stackelberg model, where teachers lead and

students follow. We characterize students’ and teachers’ optimal effort levels for a given

xiii



reward allocation, and we illustrate the impact on student performance. Although teacher

incentives and student incentives have been studied separately in the existing literature,

there is limited work understanding the dynamics that occur when both types of incentives

are offered simultaneously. Our work bridges this gap.
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CHAPTER 1 : Too Much Information: When Does Additional Testing Benefit

Schools?

1.1. Introduction

Performance-based contracts have long been identified as a way to incentivize workers when

direct oversight is not possible. Yet the effectiveness of such contracts depends on far more

than simply the level of incentives offered — in particular, workers must have access to the

resources and information necessary to do their jobs, which often require additional mone-

tary expenditures by the company. In this chapter, we study one system where employers

combine monetary incentives with investments in additional information for employees: K-

12 education in the United States. Specifically, we investigate the relationship between

the frequent provision of information on student progress and end-of-the-year merit-based

bonuses for teachers.

For decades, student assessments have been an integral source of information on the quality

of education provided in the U.S. education system (Linn, 2000), but the form and extent of

testing have varied considerably over time and across individual states. With the passage of

the No Child Left Behind Act of 2001 (NCLB), a greater emphasis was placed on frequent

testing based on a well-defined set of standards. In particular, states were required to ensure

student “proficiency” on state tests in reading and math by 2013-14, and individual schools

were required to show “adequate yearly progress” (AYP) for the overall student population

as well as key subgroups, such as minority students and students in special education (United

States General Accounting Office, 2003; Klein, 2015; Dillon and Rotherham, 2007).

State tests are just one example of the many different assessments educators use. A

commonly-cited typology of assessments is that given by Perie et al. (2007), who define

three categories of assessments used in the U.S. K-12 system: summative, formative, and

interim. The annual state tests mandated by NCLB are an example of a summative as-

sessment, which are given at the end of an instructional period to check student knowledge
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against a broad set of content standards determined by an external entity. On the other

hand, formative assessments are continuously used by educators to obtain ongoing feedback

about how well students understand the material being taught. Finally, interim assessments

lie between these two types of assessments in terms of both frequency and scope. These are

used to evaluate students against a specific set of achievement goals, and the results guide

both teaching within the classroom and decision-making more broadly at the school and

district levels. Although NCLB only emphasizes summative assessments, it “enshrined the

logic of data-driven decision-making in education” (Young and Kim, 2010), leading school

districts to increasingly rely on costly third-party interim assessments as a way to evaluate

students’ and schools’ progress towards meeting year-end proficiency goals. These assess-

ments are widely considered to be more reliable indicators of student performance than

formative assessments, despite a lack of research that supports this claim (Bulkley et al.,

2010).

Additionally, in 2009, shortly after the passage of NCLB, the $4.35 billion Race to the

Top Fund (RTTT) was launched with a focus on four core goals: updating educational

standards; building data systems to measure student performance and inform educators;

“recruit[ing], develop[ing], reward[ing], and retain[ing]” effective teachers and principals;

and turning around low-performing schools (U.S. Department of Education, 2009). In part

due to RTTT, school districts have been experimenting with pay-for-performance contracts

for teachers designed to improve educational outcomes.

Thus, school districts have been both investing in a midyear interim assessment to get an ac-

curate measure of student progress and exploring merit-based rewards. Anecdotal evidence

suggests that overall more money is allocated towards ongoing assessments than towards

additional teacher compensation. For example, the Teacher Incentive Fund, established

by Congress in 2006 to provide grants to support performance-based teacher and principal

compensation in high-needs schools, allocated $225 million for such awards in 2016. At the

same time, total U.S. spending on classroom assessments in 2017-18 exceeded $1.63 billion
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(Raugust et al., 2019), up from $434 million in 2001-02 (Cavanagh, 2015). Moreover, de-

spite the vast sums of money being spent on these two approaches to improve educational

outcomes, to the best of our knowledge, there are no studies of their comparative benefits

and the interaction between them.

In this chapter, we seek to address this gap in the extant literature. We analyze the

problem faced by a school district that wants to maximize the probability of students being

“proficient” on the end-of-the-year standardized test by allocating a fixed budget between

an “interim” assessment and a merit-based incentive for teachers. In our model, the district

plays the role of a principal that can provide an agent (teachers) with financial incentives

tied to the achieved educational outcome, and can, at a cost, improve the quality of the

information set under which the agent operates. Since the educational process unfolds over

a protracted period of time (e.g., a year) and the additional information on the state of

student proficiency is provided by the interim assessment in the middle of this process,

our model uses a two-period dynamic principal-agent framework. If the district invests in

an interim assessment midway through the school year, both the district and the teachers

will know the state of student proficiency at that time; otherwise, they will rely only on

the less-accurate information from the low-cost formative assessments. In addition to the

information provided by an interim assessment, the district may offer teachers a merit-based

bonus, which they earn if a sufficient portion of their students show “proficiency” on the

year-end standardized test. Teachers respond to both the merit-based incentive and the

information they possess about midyear student progress by choosing a dynamic policy

that defines their effort levels. In our model, we use a scalar as a simplified representation

of the multiple levers a teacher can use to influence educational outcomes, such as spending

extra time working with students or creating detailed lesson plans.

We seek to answer two key questions for a school district that is considering using both an

interim assessment and merit-based rewards to improve school performance:

1. When should a school district invest in a mid-year interim assessment?

3



2. What level of merit-based reward should a school offer teachers?

Our results show that, for low-performing schools that are already behind, investing in

interim assessments is usually not an effective strategy. Rather, the school district should

invest solely in merit-based incentives. The exception to this is when there is a high baseline

level of effort that increases the probability that the school will achieve proficiency even in

the absence of additional effort induced by the merit-based incentive. For schools that start

the year on track to achieve proficiency, there are a limited number of cases where investing

in an interim assessment is valuable, which we outline below.

The rest of the chapter is organized as follows. In Section 1.2, we discuss the relevant

literature. Our model is presented in Section 1.3, followed by its analysis in Section 1.4.

Finally, in Section 1.5, we discuss our results and future avenues of research.

1.2. Literature Review

Our analysis draws on the principal-agent model literature in economics and operations

management, as well as the literature on performance pay in K-12 education.

The role of information in principal-agent models has been studied extensively. In par-

ticular, there is much work that considers the optimal policy when the agent has, or can

independently gain, private information about the production environment. For example,

Baron and Myerson (1982) derive the optimal regulatory policy for a monopolistic firm

with privately-known costs. Lewis and Sappington (1997) determine the optimal contract

to incentivize the agent to acquire and reveal information. Crémer et al. (1998) study when

it is optimal for the principal to induce the agent to gather additional information at a

cost. On the other hand, multi-period dynamic models account only for a rather small,

and a more recent, fraction of the vast principal-agent literature. Fudenberg et al. (1990)

introduce stochastic elements to a dynamic principal-agent model and identify conditions

under which a long-term contract can be implemented as a sequence of short-term con-

tracts. Plambeck and Zenios (2000) provide an analysis of a previously intractable setting

relying on assumptions about the “economic structure” of principal-agent interaction, and
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Fuloria and Zenios (2001) build upon this dynamic model in the context of healthcare con-

tracting. Shumsky and Pinker (2003) study the compensation system a firm should offer a

gatekeeper who has private knowledge about the complexity of a customer’s problem and

their ability to treat it. Zhang and Zenios (2008) use a dynamic principal-agent model with

hidden information, where the state is known to the agent but not to the principal. Chu

and Sappington (2009) characterize the optimal contract when a principal and agent begin

with symmetric information but the agent will ultimately acquire superior information.

Our approach follows the spirit of these models: in our model, the agent (teachers) solves

a dynamic program to determine the optimal effort allocation policy. The dynamic nature

of the agent’s response in our model is dictated by the setting we describe: the information

brought in by additional costly testing is revealed “in the middle” of a protracted instruc-

tion period, potentially altering the agent’s decision-making process and, thus, requiring a

“closed-loop” modeling approach. The principal’s ability to invest in the enhancement of

the information set used by the agent is a distinguishing, novel feature of our analysis.

More broadly, our work is also related to the supply chain literature on asymmetric cost

information. For example, Corbett and De Groote (2000) study a supplier’s optimal quan-

tity discount policy when the buyer’s cost is unknown. Ha (2001) analyzes a supplier-buyer

relationship with asymmetric cost information under stochastic, price-sensitive demand.

Lutze and Özer (2008) characterize a promised-lead time contract, which includes an opti-

mal promised lead time and corresponding payments, that a supplier should offer a retailer

who has private information about shortage costs. Additionally, our research relates to

work that characterizes the relationship between worker effort and labor costs, e.g. Tan

and Netessine (2014).

In our model, the overall effort level of the agent is affected by the monetary incentive

offered by the principal and contingent on achieving a pre-specified performance level. In

this regard, our work adds to a rich stream of papers focused on contracting and performance

pay, also commonly called “merit pay,” in K-12 education in the United States. On the
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theoretical side, Murnane and Cohen (1986) use the microeconomics contracting framework

to argue that merit-pay contracts may be difficult to implement in education settings.

They argue that the very nature of the teaching process makes it difficult for supervisors

to articulate why some teachers may receive merit pay but others do not, which can lead

to dissatisfaction for teachers that do not receive the reward. Similarly, Johnson (1984)

points out potential negative effects of teacher-level merit compensation such as harmful

competition among teachers and low morale. The lack of precise guidelines that teachers can

follow to earn the reward is another complicating factor for the use of merit-based incentives.

The concern about rewarding only some teachers within a school can be ameliorated through

the use of school-level, rather than teacher-level, incentives (Clotfelter and Ladd, 1996).

Still, empirical work suggests that teacher-level incentives remain common, and in the

presence of such incentives schools can mitigate the potential negative effects by making

merit pay inconspicuous or awarding it to almost everyone (Murnane and Cohen, 1986).

In our work, we assume that teachers within a school form a homogeneous group that can

earn a school-level reward. Additionally, although teaching remains as much an art as a

science, providing teachers with timely information about their progress toward achieving

performance targets may alleviate teachers’ uncertainty about the path to earning a merit-

based reward. The growing availability of interim assessments has made it easier for districts

to do just that, and, in our model, we explore the new dynamics brought in by these

assessments. In more recent work, Barlevy and Neal (2012) propose a pay-for-percentile

incentive scheme that overcomes some of the unintended consequences of existing pay-for-

performance schemes, such as coaching and scale manipulation. In our work, we take it as

given that schools will use a generic incentive scheme and consider how a district should

allocate resources to maximize the probability of achieving a goal. We do not specify

the precise type of incentive scheme, only the transition probabilities that determine the

likelihood that teachers will earn the reward.

The empirical evidence on the effects of merit pay remains mixed. Eberts et al. (2002) find

that teacher-level merit pay improved student retention but negatively impacted student
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attendance and course passing rates, with student GPAs remaining unchanged. Figlio and

Kenny (2007) use survey data from 390 schools to show that merit pay (defined as “at least

one [teacher] ... reported having a merit pay bonus”) is correlated with higher test scores.

Springer et al. (2011) implemented a short-term, experimental teacher-level performance

pay program in Metro Nashville Public Schools (MNPS) where teachers were eligible for up

to $15,000 per year in bonuses based on student test-score gains. Although the program

did not have a significant, lasting effect on student test scores, it did impact the way some

teachers approached their jobs: while 80 percent of teachers believed that the program did

not change their teaching practices, teachers in the “treatment group” were more likely

to collaborate with other teachers and align their instruction with test preparation. Fryer

(2013) studies an experimental school-level incentive program in over 200 high-needs New

York City public schools, which was implemented as a randomized school-based trial from

the 2007-08 school year through the 2009-10 school year. The author finds no evidence that

financial incentives lead to improvements in student performance outcomes or in teacher or

student behavior.

The results from longer-term merit-pay experiments are more promising, if modest. Dee and

Wyckoff (2015) analyze IMPACT, the teacher evaluation reform introduced during the 2009-

10 school year in the District of Columbia Public Schools. IMPACT offers strong financial

incentives for highly effective teachers, where effectiveness is determined based on multiple

components, such as classroom observation scores and students’ performance on standard-

ized tests. The researchers find that for highly effective teachers, the base pay incentives

for scoring “highly effective” for another year were associated with a seven-percentile in-

crease in teacher effectiveness. Unlike many earlier studies that focused specifically on

short-term, experimental performance pay programs, IMPACT is a multi-pronged, long-

term program. Chiang et al. (2017) evaluate the Teacher Incentive Fund (TIF), a program

which was established by the U.S. Congress in 2006 and “which provides grants to support

performance-based compensation systems for teachers and principals in high-need schools.”

Specifically, they evaluate ten districts in which the pay-for-performance component of TIF
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was randomly assigned. The program was implemented over a four-year period, and, by

the second year, it led to a slight increase in student achievement that held steady in the

remaining years of the program. In this program, although most educators received a bonus,

the actual bonus level was differentiated based on the performance of their students.

These empirical studies focus specifically on the impact of a performance-based incentive

and do not consider the influence of midyear assessments on teaching practices and student

performance. In our analysis, we focus on identifying the school districts that, in the

presence of merit-based teacher compensation, may benefit from additional information

brought in by interim assessments as well as the the school districts that are better off

using formative assessments.

1.3. Model: Combining Assessments and Merit-Based Pay to Achieve Proficiency

In this section, we present a dynamic principal-agent model that captures the interaction

between the school district (principal) and the group of teachers at a school (agent). In

our model, the district explores the option of investing in additional information on the

state of student performance and providing incentives to maintain or achieve standards of

performance, and teachers respond to information and incentives by selecting a dynamic

policy defining their effort levels.

1.3.1. Time Horizon, System States and Actions

Consider a discrete-time, two-period model, with time indices t = 0, 1 corresponding to the

beginning and middle of the school year, respectively, and the index t = 2 corresponding to

the end of the school year and indicating the time at which the proficiency of the student

body at the school is measured via a state-administered standardized assessment. At time

t = 0, 1, 2, the school proficiency is given by βt ∈ {P,N}, which indicates whether that

school is “proficient” (P) or “not proficient” (N). We define “proficient” to mean that

a sufficient fraction of the school’s students are either on track to satisfy state-imposed

learning standards at t = 0, 1 or satisfy these standards at t = 2. (We provide a summary

of our notation in Table 3 in the Appendix.)

8



In each period, teachers decide how much effort to allocate towards activities they believe

will improve student performance. We use et ≥ 0, t = 0, 1 to denote the teachers’ effort

level in the first and second semesters of the school year, respectively. Two features of our

approach to modeling teachers’ effort are important to underscore. First, in our model, we

assume that the school’s teachers are homogeneous and act as a group, with et reflecting

teachers’ joint effort. This assumption approximates a more complex reality where the effort

levels of individual teachers will vary, with et reflecting the “average” school-level effort.

We believe such a modeling simplification is justified since, in practice, the proficient/not-

proficient designation is often applied to the entire school, as are the performance-based

incentives. Modeling the “average” effort level thus allows us to focus on the “first-order”

effect of the incentives. Second, we approximate the multidimensional nature of efforts that

teachers make in reality by a single “aggregate” measure represented by a scalar. Although

no single measure can be a perfect representation of teachers’ efforts, this scalar can be a

proxy, for example, for the extra time that teachers may spend working with students.

We use vector e = (e0, e1) to represent the effort level decisions for the two periods. The

evolution of the student proficiency state in each period is influenced by the state in the

beginning of the period and by the teachers’ effort decision in that period. Figure 1 il-

lustrates the state transition diagram for the discrete-time Markov chain in each period,

where α(e) represents the effort-dependent probability of transitioning from “N” in the be-

ginning to “P” in the end of the time period, and δ(e) represents the respective probability

of transitioning from “P” to “N.”

Figure 1: Transition probabilities between proficient (“P”) and not proficient (“N”) states
during each time period as functions of effort level.
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In modeling α(e) (the probability of moving to a proficient state) and 1−δ(e) (the probability

of remaining in a proficient state), we use the following functional form, which reflects the

standard assumptions of monotonicity and non-increasing return-on-effort:

Assumption 1 a)

α(e) = A(N)e+B(N), (1.1)

1− δ(e) = A(P )e+B(P ), (1.2)

where 0 ≤ e ≤ 1, 0 ≤ B(N) < B(P ) ≤ 1, 0 ≤ A(N) < A(P ) ≤ 1, and A(P ) +B(P ) ≤ 1.

b)

A(N)

A(P )
=
B(N)

B(P )
= µ. (1.3)

Under Assumption 1a, probabilities α(e) and 1− δ(e) are monotonic and concave in e. We

normalize to 1 the maximum effort level producing an increase in the probability of being

in the proficient state at the end of period. Our model treats e as “additional” effort that

can be elicited through merit-based incentives, resulting in enhanced probability of reaching

the proficient state. Accordingly, we allow for a “base” effort that can result in a non-zero

probability of reaching proficiency even when e = 0; this baseline transition probability is

captured by B(N) and B(P ). In particular, B(P ) characterizes the probability that the

school remains in the proficient state in the absence of teacher effort, i.e. the “stickiness”

of the proficient state.

The maximum probability values A(N) + B(N) and A(P ) + B(P ) reflect the co-produced

nature of teaching, where the outcome depends both on the teachers’ and students’ efforts.

Thus, teachers’ efforts alone may not guarantee that the proficient state is reached if these

probability values are less than 1. The condition A(N) + B(N) ≤ A(P ) + B(P ) implies

that it is more difficult to attain proficiency than to maintain it. The literature supports
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this assumption: Davison et al. (2004) suggest that groups of students often have difficulty

overcoming even small achievement gaps, while Neal and Schanzenbach (2010) argue that

the incentives for teachers in many school-accountability systems inevitably lead to students

at the lowest end of the achievement distribution getting “left behind.” For tractability,

we further assume that the ratios of A(N) to A(P ) and of B(N) to B(P ) are equal to the

constant term µ (Assumption 1b). This term captures the extent to which the school can

recover when they fall behind, i.e. the “resilience” of the student population.

Furthermore, we assume that the transition dynamic described by (1.1)-(1.2) is stationary

and does not depend on the time period. This stationarity assumption is reasonable given

that the time periods we consider correspond to several months and that the progress in the

previous time period is captured by the baseline transition probability parameters, B(N)

and B(P ). Finally, for tractability we assume that the marginal impact of effort when the

system is in the not-proficient state is less than that when the system is in the proficient

state.

1.3.2. Interim and Formative Assessments: Cost and Information Structure

We assume that the teachers’ choice of effort levels cannot be directly observed by the

school district. Furthermore, the initial state β0 is known to both the teachers and the

district, and the final state β2 will be made known to both parties after the end-of-year

standardized assessment. However, both the teachers and the district may have imperfect

knowledge of the intermediate state of the system β1: students are assessed at the midyear

point to determine whether the school is in the proficient or not-proficient state, but this

assessment may be inaccurate. The degree of accuracy depends on the type of assessment

used. In particular, the district chooses between two options: to administer an interim

assessment or to rely exclusively on the formative assessments already being administered

by teachers. The interim assessment has a fixed cost F that the district must incur and

perfectly reveals β1, the state of the system at t = 1, whereas formative assessments do not

incur any additional cost for the district but are less accurate than the interim assessment.

For either choice, both the teachers and the school district will know the results of the
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assessment at t = 1.

We use X1 ∈ {P,N} to denote the proficiency level indicated by the formative assessments.

That is, X1 = P (X1 = N) if the formative assessments indicate that the school is in the

proficient (not-proficient) state at t = 1. The probability that the formative assessments

result X1 takes a particular value given the true intermediate state β1 is captured by the

parameters φP |P and φP |N , where

Pr [X1 = P |β1 = P ] = φP |P , (1.4)

Pr [X1 = P |β1 = N ] = φP |N . (1.5)

These parameters represent the true positive and false positive rates, respectively. We

assume that the formative assessments can never perfectly assess the midyear state, i.e. it

is never the case that φP |P = 1 and φP |N = 0, and that the false positive rate never exceeds

the true positive rate:

Assumption 2 1 > φP |P ≥ φP |N > 0.

1.3.3. District Decisions and the Timeline of Events

For the analysis of the district’s decision problem, we introduce the following notation.

At t = 0, the district chooses whether to administer an interim assessment in the middle

of the year (t = 1) and offers teachers a compensation contract that includes a base-pay

component that we normalize to zero and a merit (performance-based) pay component:

w =


π, if β2 = P,

0, if β2 = N,

(1.6)

where π > 0 is the level of merit-based incentive. At the beginning of the school year,

teachers know whether the district has chosen to invest in an interim assessment and the

terms of the contract, and they receive compensation after the end-of-the-year assessment.

The payment of the reward at a single point in time is consistent with current practice in
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the field of education. For example, Fryer (2013) describes an incentive scheme in New York

City Public Schools in which teachers were given a reward based on annual performance

targets. Chiang et al. (2017) study the implementation of the Teacher Incentive Fund (TIF)

in ten school districts. They state that in seven out of ten of districts in the study, teachers

received their one-time reward during the subsequent school year.

The timeline of events is illustrated in Figure 2. At the beginning of the school year (at

t = 0), β0 is known to both the teachers and the district. Based on this information, the

district decides whether to implement an interim assessment (zI) and the merit pay level

(π). The teachers respond by determining the policy they will use in selecting their effort

levels at the beginning and middle of the school year (t = 0 and t = 1, respectively). Given

the initial state of the system and the effort level teachers select at t = 0 (e0), the system

transitions to state β1. Then, depending on the school district’s choice of assessment, the

school either conducts an interim assessment or relies on the formative assessment results

at the end of the first half of the school year. If the district invests in an interim assessment,

both the teachers and the district will know the midyear proficiency state β1 (Figure 2a).

If the district relies on formative assessments, the teachers and district will use the result

X1 to estimate the probability that the proficiency state β1 is proficient (Figure 2b). Based

on the assessment results, teachers select the effort level (e1) to be applied in the second

half of the school year (at t = 1). At the end of the school year (at t = 2), a standardized

assessment is administered and the proficiency state β2 is revealed to both the teachers

and the school district. The teachers are then paid according to the compensation contract

(1.6).

We assume that both the district and the teachers are risk-neutral. Below we describe the

problems faced by the teachers (agent) and the district (principal).

1.3.4. Teachers’ Problem: Dynamic Response to District’s Decisions

Given whether the district invests in an interim assessment and the merit-based contract

that the district proposes, teachers choose the effort levels that maximize their expected
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Figure 2: Timeline of events: proficiency states (β0, β1, and β2), the outcome of the forma-
tive assessment (X1), and teachers’ actions (e0 and e1) when a) the district chooses interim
assessment (zI = 1) and when b) the district relies exclusively on formative assessment
(zI = 0).

merit-based compensation net of the cost of effort they incur. It follows that, in the ab-

sence of a merit-based incentive, teachers will not exert any additional effort, regardless of

the district’s assessment decision. In modeling the teachers’ cost, we use a simple linear

functional form representing stationary and constant marginal cost-of-effort.

Assumption 3 The teachers’ cost-of-effort at time t = 0, 1 is given by c (et) = γet, with

γ > 0.

Note that the teachers’ decision problem is represented by a two-period dynamic program,

where their effort decision in the second half of the school year depends on the information

they receive after the first half of the school year, and the decision in the first half of the

year is influenced by the policy they adopt for the second half. In order to provide a formal

description of the teachers’ problem, we define

S0 = β0, (1.7)

S1 =


(X1, e0,S0) , if zI = 0,

β1, if zI = 1,

(1.8)
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and

S2 = β2, (1.9)

to describe the states of the system at t = 0, 1, and 2, respectively. The teachers will use the

states at t = 0 and t = 1 to make their effort decisions at t = 0 and t = 1, respectively. Note

that the state of the system at t = 1 has different “content” depending on whether or not

an interim assessment is used. In particular, if teachers’ information about the proficiency

at t = 1 is imprecise (zI = 0), they must use both the initial state S0 as well as their action

taken at t = 0 (e0) to calculate the expected net earnings stemming from their action at

t = 1 (e1), as we will show below. For each combination of the district’s decisions (π, zI),

we can use the notation in (1.7)-(1.9) to express the dynamic program that teachers solve

as

Jt(St) = max
et≥0

[E [Jt+1 (ht+1 (et,St))]− γet] , t = 0, 1, (1.10)

where the expectation is taken over the random state of the system ht+1 (et,St) at time

t+ 1 and

J2(S2) =


π, if S2 = P,

0, if S2 = N.

(1.11)

For convenience, we summarize the description of the state ht+1 (et,St), for each state-action

combination (et,St) in Lemma 3 in the Appendix.

To emphasize the connection between the district’s decision and the teachers’ response, we

will use (e∗0 (S0, π, zI) , e
∗
1 (S1, π, zI)) to denote the optimal effort policy, i.e. the policy that

solves the dynamic program (1.10)-(1.11) for a given set of district decisions (π, zI).

1.3.5. District’s Problem: Choosing the Optimal Assessment-Incentive Combination

For each school, the district wants to select the assessment type and matching merit pay

compensation to incentivize teachers to choose effort levels that will maximize the school’s

probability of being in the proficient state when the standardized test is administered. The

total amount of investment in the information provided by the interim assessment and
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the incentive payments is limited by the school-level budget M . Because each district is

likely to manage a number of schools, we assume that it is acceptable for payments to

a particular school to exceed the allocated budget, as long as the budget constraint is

satisfied in expectation. In order to formulate the district’s decision problem, we use, at

the slight abuse of notation, Pr∗[S2 = P |S0] to denote, for fixed π and zI , the probability

that the school is in the proficient state at t = 2 under the optimal-response teachers’

policy (e∗0 (S0, π, zI) , e
∗
1 (S1, π, zI)), given that the school starts in the state S0. Then, for a

given initial performance state S0, the district’s decision can be expressed as the following

optimization problem:

max
π≥0,zI∈{0,1}

Pr∗[S2 = P |S0] (1.12)

s.t. πPr∗[S2 = P |S0] + FzI ≤M. (1.13)

In summary, (1.10)-(1.11) and (1.12)-(1.13) describe a principal-agent problem where a

principal selects the combination of information set and incentives for the agent and the

agent’s response is represented by a dynamic programming policy.

Below we provide an analysis of this principal-agent problem. First, we describe the optimal

merit pay selection and the optimal teachers’ response policy under a given assessment

decision (Section 1.4.1). We then analyze the problem of the optimal selection of the

assessment type (Section 1.4.2).

1.4. Analysis

We begin this section by determining the teachers’ optimal effort decision in each semester

for any given testing and merit-based incentive scheme. Using these results, we deter-

mine the optimal level of merit-based incentive under both assessment decisions and, as a

consequence, the districts’ optimal assessment decision.
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1.4.1. Optimal Teachers’ Effort Policy in the Presence of Merit-Based Incentive

The teachers’ problem is a two-period dynamic program (1.10)-(1.11). We first characterize,

for given π, the teachers’ effort decision for the second half of the school year (i.e., at t = 1).

This effort decision depends on the magnitude of the ratio of the merit-based incentive π

to the cost of effort γ. We call this the scaled incentive π̂, where

π̂ =
π

γ
. (1.14)

Proposition 1 describes the optimal effort level at t = 1.

Proposition 1 (Optimal Teachers’ Effort in Second Half of School Year) a) Teach-

ers will exert effort if and only if the scaled incentive is above a certain threshold value. In

that case, they will exert maximum effort.

b) The effort-inducing incentive threshold is decreasing in the level of proficiency observed

in the midyear assessment, in the level of student resilience µ, and in the teacher effort

levels in the first half of the school year.

The expanded version of the Proposition is presented in the Appendix.

First, as expected, the optimal effort level is an increasing function of the scaled incentive.

Second, it is cheaper to incentivize high effort levels when the midyear assessment result is

proficient than when the result is not proficient, holding all else constant. This is driven

by the greater difficulty of achieving proficiency faced by teachers at a school in the not-

proficient state. Thus, in schools that fall behind, teachers will only be incentivized to

exert effort if the school district had chosen to offer higher rewards. In practice, this need

for extra incentives is further compounded by the fact that more effective teachers tend to

be distributed towards more advantaged schools (Clotfelter et al., 2006). Of course, this

depends on the degree to which a proficient school differs from a not-proficient school. High

levels of student resilience mitigate the difficulty faced by teachers when the school is in the
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not-proficient state and thus moderate the optimal level of incentive that the school district

should offer.

When teachers do not know the true intermediate state (zI = 0), they rely on both the

results of the formative assessments and the first-semester teacher effort level to estimate

the probability that the school is in the proficient state and select their second-semester

effort level. This reflects the reality that teachers often use multiple inputs throughout the

course of the school year to gauge student progress, weighting those inputs based on their

experience. Thus, teachers take into account that if they exert high effort levels in the first

half of the year, there is a greater likelihood that the school will be in the proficient state

by midyear, and therefore a lower incentive is necessary to motivate effort in the second

half of the year

We next consider the teachers’ effort level decision at t = 0.

Proposition 2 (Optimal Teachers’ Effort in First Half of School Year) Suppose

that a school’s formative assessments are reasonably accurate. Then, the following results

hold.

a) The optimal teachers’ effort level in the first half of the school year follows a threshold

policy depending on the scaled incentive, where teachers will exert maximum effort if the

scaled incentive is above a certain threshold value and zero effort otherwise.

b) If the school starts the year in the not-proficient state, then the effort-inducing threshold

is decreasing in the response-to-effort parameter A(P ) and stickiness of the proficient state

B(P ).

c) If the school starts the year in the proficient state, for sufficiently high levels of student

resilience, the effort-inducing threshold is increasing in student resilience µ.

The expanded version of the Proposition is presented in the Appendix.

As with teachers’ effort levels in the second half of the year, optimal effort in the first half
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of the year is positive if and only if the incentive offered by the school district exceeds a

threshold. For schools that begin the year in the not-proficient state, this threshold does

not depend on the accuracy of the midyear assessment. Due to the high level of incentive

necessary to induce positive teacher effort at the beginning of the school year in such schools,

the magnitude of this incentive level always exceeds the incentive level necessary to induce

positive effort in the second semester, regardless of the midyear assessment accuracy or

result. Thus, the quality of midyear information is no longer a factor, and the optimal effort

decision is driven entirely by the initial state and teachers’ effort levels in the first-semester.

While this result may seem extreme, it reflects the magnitude of the challenge faced by

teachers in low-performing schools. This is particularly problematic if absolute measures of

achievement are used, in which case success can be nearly impossible to attain for students

and schools that begin at a disadvantage. In practice, school districts and departments of

education have attempted to account for this in various ways, such as achievement measures

benchmarked against the previous year’s performance or against comparable students and

schools.

The costliness of incentivizing positive effort in such schools is mitigated by the efficacy of

teachers’ effort and the stickiness of the proficient state, since these increase the probability

of the school ultimately ending the year in the proficient state. On the other hand, student

resilience may have a non-monotonic effect on the scaled incentive threshold. For schools

that begin the year in the not-proficient state, the threshold is initially decreasing and then

increasing in student resilience levels. The cost of incentivizing positive effort is lowest

for moderate levels of student resilience: in this case, the consequence of remaining in the

not-proficient state after the first semester is significant but so is the probability of moving

to the proficient state.

For schools that begin the year in the proficient state, the effort-inducing threshold depends

on the accuracy of the midyear assessment, as well as the response-to-effort parameters and

the level of student resilience. In this case, for sufficiently high levels of student resilience,
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the cost of incentivizing positive teacher effort is increasing in resilience. This is because,

as the implicit penalty from falling into the not-proficient state midyear decreases, teachers

become more inclined to wait until the second half of the year to exert high effort levels.

Under only formative assessments, the inexact nature of the midyear assessment results

leads to non-monotonicity in this relationship. However, under an interim assessment, the

effort-inducing threshold is always increasing in student resilience levels.

1.4.2. District’s Merit-Based Incentive and Assessment Decisions

Using the characterization of the optimal teachers’ response policy in the presence of merit-

based incentives and information about midyear student performance, we analyze the dis-

trict’s decision on the optimal incentive level. In particular, we solve the district’s opti-

mization problem, (1.12)-(1.13), where we hold the interim assessment decision zI fixed and

maximize the probability that the system will be in the proficient state at the end of the

school year under the optimal teachers’ response to the merit-based incentive π.

It is straightforward to show that the district’s estimate of the probability of achieving

proficiency in the final state is a non-decreasing function of the merit-based incentive (see

Proposition 14 and Lemma 15 in the Appendix), a property that facilitates the search for

the optimal level of the merit-based incentive. Additionally, recall that M represents the

school’s budget and F represents the cost of the interim assessment. Then, for the analysis

below, we use

M̂ − zI F̂ =
M − zIF

γ
(1.15)

to represent the school the district’s scaled available budget. Proposition 3 describes the

optimal choice of the scaled incentive π∗

γ as a function of the district’s scaled available

budget for the case where there is zero stickiness of the proficient state (B(P ) = 0).

Proposition 3 (Optimal Scaled Incentive when B(P ) = 0) Suppose that there is no

stickiness in the proficient state. Then, it is optimal for the school district to offer a scaled

incentive only above certain levels of the scaled budget, and the optimal incentive level is
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monotone increasing in the scaled available budget. Moreover, when the scaled available

budget is large, the optimal incentive level is always higher if the school starts the year in

the not-proficient state.

The expanded version of the Proposition is presented in the Appendix. Furthermore, Propo-

sition 16 in the Appendix characterizes the optimal choice of the scaled incentive as a

function of the district’s scaled available budget in the case where the proficient state has

non-zero stickiness and the formative assessments are sufficiently accurate.

As expected, the optimal reward is non-decreasing in the scaled budget. Furthermore, the

formative assessment accuracy parameters play a role in determining the optimal incentive

level only when the school starts the year in the proficient state and student resilience is

sufficiently low. This follows from the results in Proposition 2.

Using these results, we now turn to the district’s optimal interim assessment decision for a

particular school, where the district’s optimization problem is given in (1.12)-(1.13). For a

given budget M and cost of interim assessment F , the district must decide whether to invest

in an interim assessment. Recall that teachers use formative assessments throughout the

school year, so the district must determine whether it is advantageous to supplement the

information gathered from the formative assessments with an interim assessment. These

are widely considered to be more accurate measures of students’ proficiency levels, since

they are closely modeled after end-of-the-year state exams. We assume that the district

will only invest in an interim assessment when the probability that the school is proficient

at the end of the year is strictly greater under an interim assessment than when the district

relies only on formative assessments.

As one might expect, there are two trivial budget levels for which the interim assessment

decision does not change the probability that the school is in the proficient state at the

end of the year. First, when the budget is sufficiently small, the school district can never

afford to offer a reward that is high enough to induce teachers to exert any additional
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effort. Therefore, the probability of achieving proficiency in the final period is smallest in

this region. Conversely, when the budget is sufficiently large and the cost of an interim

assessment is sufficiently small, the school district can offer a reward that is high enough

to incentivize maximum effort levels throughout the school year, regardless of the school’s

midyear performance. It follows that the school district can maximize the probability of

the school achieving proficiency no matter the interim assessment decision.

We characterize the district’s optimal decision in the case where each school is allocated a

non-trivial budget in the following Propositions. In Proposition 4, we describe the district’s

optimal decision in the case the school starts the year in the not-proficient state for two

cases: when there is zero stickiness of the proficient state (B(P ) = 0) and when there is

non-zero stickiness paired with a reasonably accurate formative assessment. We consider the

setting when the school starts the year in the proficient state in the subsequent Proposition.

Proposition 4 (Optimal Assessment Decision when S0 = N) Suppose that the school

starts the year in the not-proficient state. Then, the following results hold.

a) If there is no stickiness in the proficient state (B(P ) = 0), then it is optimal for the

school district to forego investing in an interim assessment, regardless of the accuracy of

the formative assessments.

b) If there is stickiness in the proficient state (B(P ) > 0) and the school’s formative as-

sessments are reasonably accurate, and if interim assessment costs are sufficiently low, then

the optimality of investing in an interim assessment depends on student resilience µ. For

sufficiently high levels of student resilience, investing in an interim assessment is optimal

for moderate levels of the scaled available budget. For moderate levels of student resilience,

investing in an interim assessment is optimal for low-to-moderate scaled available budget

levels, and for sufficiently low levels of student resilience, the interim assessment is an

optimal investment only for low levels of the scaled available budget.

The expanded version of the Proposition is presented in the Appendix.
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Our results suggest that, contrary to the prevailing wisdom, for schools that start the year

in the not-proficient state, an interim assessment is not necessarily a worthwhile investment.

This outcome is strongest in the case where there is no possibility of moving to the proficient

state without additional effort (i.e., when B(P ) = 0). In this case, it is always more costly

to incentivize effort in the first half of the year than the second, and if the merit-based

incentive is not high enough to incentivize first-semester effort, then the school will remain

“behind” with certainty. Thus, the midyear interim assessment either does not provide any

additional information about the state of student proficiency or the information it provides

is not relevant to teachers’ effort decisions. Thus, the school district should choose to forego

investing in an interim assessment.

Next, consider the case where there is a non-zero probability of moving to the proficient

state in the absence of additional effort (i.e., B(P ) ≥ 0) and the formative assessment is

reasonably accurate. Just as in the previous case, it is more costly to incentivize effort in

the first semester than it is in the second semester, and, as one would expect, it is always

cheaper to incentivize second-semester effort if the mid-year assessment result is proficient

(under either assessment decision) than if it is not proficient. Effort is most expensive to

induce under a not-proficient midyear assessment result from an interim assessment. In this

case, since teachers recognize that the negative feedback is accurate, their expectation of

earning the merit-based incentive is lowest. That is, more-accurate unfavorable information

can have a demotivating effect that requires additional compensation to overcome.

Note that when determining the optimal assessment decision, the district must consider both

the probability the school achieves proficiency at the end of the year and the total expected

cost under a given assessment decision. Based on these factors, the interim assessment is a

valuable investment in two cases. The first case occurs when the school has a small budget

and the total expected cost of assessments and rewards is lowest (and only affordable)

when incentivizing effort after a proficient midyear result from an interim assessment. This

holds as long as student resilience levels are sufficiently small. In this case, the difficulty
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of transitioning from the not-proficient state is high, which drives the need for a higher

reward in order to incentivize effort after a proficient midyear assessment result under the

less-accurate formative assessments.

The second case occurs when the district has a slightly larger budget and can afford the

expected costs needed to incentivize positive effort after a proficient midyear result under

either assessment decision (but not after a not-proficient midyear result) and the probability

of achieving proficiency at the end of the year is higher under an interim decision. This

occurs for sufficiently large levels of student resilience. (Note, however, that for small values

of B(P ), the necessary threshold may exceed feasible values of student resilience levels.) In

this case, there is a higher probability of moving to the proficient state by the middle of

the year from teachers’ baseline effort; then, teachers’ positive efforts after a proficient

midyear assessment result under the interim assessment are more beneficial. Note that for

moderate levels of student resilience, both cases hold. Furthermore, once the budget level

is high enough that the school district can afford to incentivize effort after a not-proficient

midyear, it is never optimal to invest in the interim assessment.

Figure 3: Regions showing where an interim assessment has positive (+), negative (–), or

zero value by student resilience µ and scaled budget M̂ when a) A(P ) = 0.22 and B(P ) = 0.5
and b) A(P ) = 0.5 and B(P ) = 0.22 (S0 = P , φP |N = 0.1, φP |P = 0.85, F = 0).

We illustrate this in Figure 3, in which we identify three regions that capture the value

of interim assessments. In the darkest shaded region, interim assessments have a negative
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value, and relying solely on formative assessments is the unique optimal decision. In the

lightest shaded region, interim assessments have a positive value, and investing in an interim

assessment is the unique optimal decision. Finally, in the medium shaded region, the

district’s testing decision does not affect the school’s end-of-the-year proficiency level. This

region includes the trivial settings of high and low budgets that we describe above. The

chosen parameters are based on an estimation of the model parameters using data from the

District of Columbia Public Schools, which is described in Section A.2 in the Appendix.

Note that the Figure illustrates the best-case scenario for the value of information, since we

assume that the cost of an interim assessment is zero.

In Figure 3a, the interim assessment is optimal only for smaller values of student resilience µ.

This region becomes larger when µ is sufficiently large, so that the probability of achieving

proficiency is higher under the formative assessment. There is also a small region of the

highest student resilience levels for which the interim assessment is not optimal for lower

budget levels, since the budget cannot support the higher probability of disbursing the

merit-based incentive. Comparing Figure 3a to Figure 3b illustrates the sensitivity of the

regions of µ to the other parameters. In Figure 3b, the effect of the lower marginal impact

of effort in this case is that student resilience levels are never high enough to result in the

optimality of the interim assessment for moderate budget levels.

In Proposition 5, we consider the case where school starts the year in the proficient state

and the proficient state has zero stickiness (B(P ) = 0).

Proposition 5 (Optimal Assessment Decision when S0 = P and B(P ) = 0) Suppose

the school starts the year in the proficient state and that there is no stickiness in the profi-

cient state. Then, the following results hold.

a) If students have sufficiently high levels of resilience, then it is optimal for the school dis-

trict to forego investing in an interim assessment, regardless of the accuracy of the formative

assessments.
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b) If there are sufficiently low levels of student resilience, investing in an interim assessment

is optimal for moderate levels of the budget and sufficiently low interim assessment costs.

The expanded version of the Proposition is presented in the Appendix.

In the case where the school begins the year on track to achieve proficiency on the state-

mandated summative assessments, we again find that interim assessments are beneficial

in only a limited number of scenarios. Moreover, even in settings where they do lead

to improved proficiency levels, their optimality is fragile: a slight increase in the budget

level results in the unique optimal assessment decision being to not invest in an interim

assessment.

First, when students have high levels of resilience, there is minimal benefit to teachers from

exerting effort in the first half of the school year. Therefore, just as in the case where the

school starts the year in the not-proficient state and there no stickiness of the proficient state,

the cost of incentivizing first-period effort is always greater than the cost of incentivizing

second-period effort. Thus, if the reward is high enough to incentivize first-semester effort,

teachers will also exert in the second half of the year, regardless of the state of student

proficiency. If, on the other hand, the reward does not incentivize effort in the first half

of the year, then teachers know with certainty that the state of student proficiency has

deteriorated to the not-proficient state by midyear, regardless of the assessment result.

On the other hand, when there are low levels of student resilience, it is never possible to

induce second-period effort, even in limited scenarios, without also inducing first-period

effort. Just as in the case when the school begins the year in the not-proficient state, the

consideration of both the probability that the school achieves proficiency on the end-of-the-

year state assessments and the total expected cost of either assessment decision ultimately

determine the optimality of investing in an interim assessment.

We illustrate this in Figure 4 below. As in the previous Figure, we identify three regions

that capture the value of interim assessments and illustrate the best-case scenario for the
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value of information.

Figure 4: Regions showing where an interim assessment has positive (+), negative (–), or

zero value by scaled budget M̂ and a) student resilience µ when φP |P = 0.85 and b) accuracy
parameter φP |P when µ = 0.18 (S0 = P , A(P ) = 0.72, φP |N = 0.1, F = 0 ).

Figure 4a shows the value of information as function of student resilience levels and the

scaled budget. As described above, for large levels of student resilience, the accuracy of the

midyear result does not impact teachers’ effort decision; hence, the interim assessment has

neither a positive nor negative value in this region. For small levels of student resilience, the

region of budget levels for which an interim assessment is valuable is bounded below by a

region in which an interim assessment has negative value. In this case, although the optimal

reward under an interim assessment is lower than that under only the formative assessments,

the higher probability of achieving end-of-the-year proficiency under an interim assessment

makes that optimal incentive unaffordable for lower budget levels. Thus, the probability of

achieving proficiency at the end of the year is actually lower under the interim assessment.

For slightly higher budget levels, the budget can support rewards that incentivize effort

after a positive midyear result under either assessment decision, and in this case, the school

district should invest in an interim assessment. However, once the budget is sufficiently

high, the school district can first afford to incentivize second-semester effort under formative

assessments, after either a proficient or not-proficient midyear result. This is because a not-

proficient result under the formative assessment preserves the possibility that students are

actually in the proficient state. Consequently teachers’ expectations that they will receive
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the merit-based incentive at the end of the year remain somewhat high, which makes them

easier to incentivize.

In Figure 4b, we further illustrate the value of information as a function of the accuracy of

the formative assessments result. Consider the scaled budget levels for which the interim

assessment is optimal for true-positive rates less than 0.88. In this region, under an interim

assessment, the district can choose a reward that incentivizes teachers to always exert

effort in the first half of the year and only exert effort in the second half of the year

given a positive midyear interim assessment result. Here, paradoxically, relying only on the

formative assessments is “too expensive”: because the cost of inducing second-semester-

effort even after a negative assessment result is less than the cost of incentivizing effort

in the first half of the year, offering any non-trivial reward will result in teachers exerting

effort throughout the year, and the expected cost for the district will exceed their budget.

When the formative assessment is sufficiently accurate, then the district can incentivize

“selective” effort under both the formative and interim assessments. (The effort is selective

in the sense that teachers will not exert effort in the second-half of the year after a negative

assessment result.) As in Figure 4a,it is more expensive to incentivize second-semester effort

under the positive formative assessment result than under a positive interim assessment

result, while at the same time, the expected probability of achieving proficiency at the end-

of-the-year is higher under the positive interim assessment result. Again, this leads to a

small region of low budget levels for which the district relies on the formative assessment only

because the expected cost of merit-based incentives under the interim assessment exceeds

the budget. For slightly higher budgets, the district can afford the higher probability

of achieving proficiency that comes from investing in an interim assessment, and so that

becomes the optimal decision. If the budget is sufficiently large, then the district is better

off relying solely on the formative assessments, because it can afford to incentivize maximal

teacher effort throughout the year, regardless of the midyear result.

Finally, notice that there is a small region where the true positive rate is close to 1 where
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it is optimal to forego the interim assessment. In these regions, even if teachers are induced

to selectively exert effort, the school has a higher probability of being in the proficient state

at the end of the year if it relies only on formative assessments. Here, teachers will almost

always exert effort when the true state of midyear student performance is proficient, and

they will also exert effort in a subset of cases when the true midyear state is not proficient.

Thus, if the district invested in an interim assessment in this case, the additional benefit

from always exerting effort when the true state is proficient would be outweighed by the

lost potential to recover if the students have fallen to the not-proficient state.

1.5. Discussion

Our research is driven by a desire to understand the strong hold that testing — and, in

particular, private testing companies — has taken on public schools in the United States.

The assessment industry has experienced exponential growth over the last two decades,

with a significant portion of that market arising from the demand for midyear classroom

assessments. School districts have invested in such assessments in the hope of improving

student learning and, ultimately, performance on end-of-the-year state exams that serve

as a key oversight mechanism of schools and school districts. Yet, the efficacy of such a

strategy is unclear, particularly when implemented in conjunction with teacher incentive

programs. In this chapter, we construct a stylized model to gain insight into the benefits

and limitations of these policies.

We find that, in many settings, this growing dependence on such tests is misplaced. Notably,

we find that for low-performing schools, i.e. schools that begin the year “behind,” perfect

accuracy is overrated, and the school district rarely benefits from investing in the interim

assessment. In particular, when the probability of students moving to the proficient state

is low under baseline levels of effort, the interim assessment is unlikely to be a worthwhile

investment. In this case, the challenge of achieving proficiency at the end of the year is

great, and offering a commensurately high incentive is the most effective way to incentivize

teachers to exert additional effort during the course of the school year. When the probability

of transitioning to the proficient state is higher under baseline effort levels, then the interim
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assessment is more likely to be a valuable investment, particularly for moderate levels of

student resilience.

Similarly, for schools that begin the year on track to achieve proficiency, there are only a

limited number of scenarios in which the accurate information from an interim assessment

is of value — and, strikingly, there are also a number of scenarios in which this information

proves detrimental to a school’s performance. To identify which of these scenarios will

hold, a school district should consider both the level of student resilience and the level of

accuracy of the existing formative assessments used by teachers. For high levels of student

resilience, there is little difference between the school being in the not-proficient state and

the proficient state. Hence, the accuracy of midyear assessment results does not affect

teachers’ effort decisions.

For lower levels of student resilience, midyear assessments play a more important role.

Specifically, in the absence of clear information, teachers are inclined to believe that the

state will remain proficient if they exert effort in the first half of the academic year. This,

in turn, makes it easier to motivate teachers using merit-based incentives. In this case,

the district is better off foregoing investment in an interim assessment, as long as they can

afford the higher probability of disbursing the merit-based incentives. Relying only on the

formative assessments enables them to incentivize maximal effort throughout the year for

a lower level of merit-based incentive.

On the other hand, when the formative assessments relay the true midyear state of profi-

ciency with reasonable (but imperfect) accuracy, the school district generally benefits from

investing in information for moderate budget values. In this case, the relative accuracy of

the formative assessment makes teachers less likely to rely on their knowledge of students’

high performance at the beginning of the year, which consequently raises the level of merit-

based incentive required to motivate them. A counterintuitive exception to this is when the

formative assessment almost perfectly predicts when students are proficient; at these high

levels of accuracy, investing in information has minimal impact on teachers’ behavior when
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students perform well on the midyear assessment, but it reduces to zero the probability that

teachers’ exert effort when students have fallen behind. In such settings, the school district

should rely on the formative assessment. Finally, as the budget increases, the school district

is first able to afford to incentivize teachers to exert maximal effort throughout the year

when they are relying only on formative assessments. In this case, investing in the interim

assessment is no longer optimal.

Our stylized model results in a “bang-bang” solution, in which teachers will either exert

maximum effort or no effort. We recognize that, in practice, K-12 education is a far more

complex system, which our model does not fully capture. First, we characterize effort as

a single-dimensional decision made solely by teachers. In practice, teaching and the effort

put into it consist of many distinct components, such as lesson planning and professional

development. Moreover, students also make an effort decision: they actively determine the

type and level of their own effort to exert throughout the year. The information provided

by an interim assessment may allow both students and teachers to target their effort more

effectively, resulting in a higher probability of students succeeding at no additional “cost” to

teachers. We expect that extending our work to include such features will broaden the range

of settings for which midyear performance information has positive value. Furthermore, we

focus on the level of proficiency attained by a school and do not take into account student

“growth.” Student growth targets are designed to standardize the level of effort necessary

for teachers and district to meet their performance goals, regardless of the initial state of

student proficiency. In reality, both measures are important for school accountability. A

simple way to adapt our model to this setting is by assuming that every schools starts in the

“proficient” state, and letting high-performing and low-performing schools vary in terms of

how easily they can transition to the proficient state or recover from falling behind. Finally,

although we include a baseline level of effort in our model, we take this as given. In reality,

there are a multitude of factors that can increase this baseline effort level, thus diminishing

the need for either interim assessments or merit-based incentives.
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Still, while these limitations impact the quantitative results in our model, the qualitative

insights are robust and, we believe, noteworthy. In practice, school districts often focus

on the potential benefits from providing additional information, but not on the potential

drawbacks stemming from it. Our analysis identifies settings where extra information is

beneficial, but also settings where it may have a demotivating effect. We view our model

as the first step in exploring the rich and complex environment of education.
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CHAPTER 2 : Surgical Case-Mix and Discharge Decisions: Does Within-Hospital

Coordination Matter?

2.1. Introduction

It has long been recognized that the organizational complexity of hospitals requires a high

degree of patient care coordination (Georgopoulos and Mann, 1962). To be sure, care

coordination can take many forms and impact the provision of healthcare in many ways.

Lower mortality rates and other positive outcomes are associated both with coordinated

operational decision-making among hospital department heads (Shortell et al., 1976) and

physician-nurse collaboration (Mitchell and Shortell, 1997; Nair et al., 2012). Baker et al.

(2004) partially attribute a higher incidence of adverse events in teaching hospitals than

in community hospitals to miscommunications and poor care coordination. Nagpal et al.

(2012) find information transfer and communication failures to be common across the entire

surgical pathways, a key source of patient harm. Care coordination can also influence

the patient experience indirectly by facilitating the optimal utilization of limited hospital

resources, such as operating rooms, staff, and inpatient beds. Indeed, one key benefit of

decision support systems is their ability to synthesize information from different parts of

the patient care process for the purposes of resource management and admission planning

(e.g., Kusters and Groot, 1996; Beliën et al., 2009; Matos and Rodrigues, 2011).

We study one specific type of coordination, namely that between case-mix and patient

discharge policies for a profit-maximizing, resource-constrained hospital. Specifically, we

consider a hospital with two types of resources: “front-end” resources, such as an operating

room, and “backroom” resources, such as recovery beds. The hospital can manage its prof-

itability by restricting the size and composition of its elective patient portfolio and by using

discharges to control patients’ length of stay. These decisions are often made by different

parties: case-mix decisions are the result of policies developed by hospital administrators

and surgeons, whereas discharge decisions are often made by attending physicians (Cen-

ters for Medicare and Medicaid Services, 2008). For a resource-constrained hospital, there
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is a complex interdependence between these two decisions: a given case-mix requires the

availability of both types of resources, and discharge decisions must balance the opposing

pressures of backroom congestion and the probability of readmission. Moreover, there is

ample evidence that patient discharge decisions are already impacted by hospital occupancy

levels, both in the emergency department (Forster et al., 2003) and ICU (Kc and Terwi-

esch, 2012; Long and Mathews, 2017), as are readmission decisions (Fisher et al., 1994).

Given the prevalence of this ad hoc approach, it is likely that a hospital would benefit from

a process in which the optimal case-mix and discharge policies are determined in tandem.

However, in reality such degree of coordinated decision-making among different stakeholders

is associated with costs of introducing and maintaining new information flow processes and

overcoming the “status quo” organizational norms. The estimation of such organizational

costs is a challenging task that often goes beyond the scope of operational investigation.

We leave this task outside of the scope of this study, and, instead, focus on the estimation

of potential gains that a hospital can realize from coordinating the case-mix and patient

discharge policies.

In this chapter, we characterize the benefits of a coordinated decision-making by comparing

it to two decision-making approaches likely to arise in realistic hospital settings that employ

decentralized patient flow management. The first approach that we label the “front-end”

policy is one where both the portfolio and the discharge decisions are dictated exclusively

by the hospital’s front-end costs. This approach approximates the setting where surgeons’

influence make operating room constraints especially salient to the hospital. The second

approach is a “siloed” policy, in which for any given portfolio of procedures, discharge

decisions are made based on backroom costs, and the elective case-mix is set in response

to the patient discharge policy. Our analysis relies on an “open-loop” approach, in which

we determine the strategic match between patient flows and hospital capacity. We do not

explicitly consider the state of resource utilization in the hospital.

We build on the earlier work by Bavafa et al. (2019) that focuses exclusively on the optimal

34



case-mix of the elective procedures. Our modeling approach, however, is different in two key

aspects. First, we extend the analysis of hospital actions to include the patient discharge

policies, and introduce a model of patient recovery that uses a notion of health state. In

particular, we tie patient health state at discharge to patient readmission probability and

length of stay. Second, in order to facilitate the joint analysis of portfolio and discharge

decisions, we employ quadratic front-end and backroom cost structures as opposed to a

threshold-based cost model in Bavafa et al. (2019). This quadratic cost structure may

provide a more realistic representation of the impact of increased resource utilization on

hospital expenses. Additionally, in combination with the Central Limit Theorem-based

approximation to stochastic resource utilization, such cost structure allows for analytical

characterization of the joint portfolio and discharge decisions. In order to connect our

modeling approach to hospital realities, we employ two separate data sources to estimate

the “base-case” set of modeling parameters. The 2016 Nationwide Readmissions Database

enables us to estimate parameters related to patient readmission probability and length of

stay, and we leverage data from a medium-sized teaching hospital to estimate the parameters

related to surgery durations.

Using our modeling approach, we establish the following results:

1. We derive, for a given portfolio of surgical procedures and patient discharge policy,

the closed-form expressions for the first two moments of the front-end and backroom

resource utilization (Propositions 6 and 7).

2. We characterize the optimal coordinated policy for a single-specialty hospital, de-

tailing the optimal portfolio of elective procedures and the optimal patient discharge

decision (Proposition 8).

3. We provide sufficient conditions for the optimality of “extreme” patient flow policies

that combine either “no elective” or “max elective” case-mix with “full recovery” or

“minimal recovery” discharge policies for a single-specialty hospital (Proposition 9).
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4. We derive the optimal portfolio and discharge decisions under two decentralized poli-

cies that are likely to reflect the realities of patient flow management in hospital

settings: the “front-end” (Proposition 10) and “siloed” policies (Proposition 11); we

then compare their performance to that of the optimal policies.

The remainder of the chapter is organized as follows. Section 2.2 reviews the relevant

literature. We present the model and base-case estimates of the parameters in Section 2.3,

and we derive the optimal elective case-mix and discharge policies under the coordinated

approach in Section 2.4. In Section 2.5, we compare the coordinated approach to the

two decentralized decision-making settings likely to be encountered in practice. Finally,

Section 2.6 presents a discussion of the results and directions for future research.

2.2. Literature Review

We study the benefits of coordinating the decisions regarding optimal elective case-mix

and discharge policies for a profit-maximizing hospital. These decisions have been studied

separately in the existing literature, so our work brings together distinct bodies of research.

The case-mix planning problem involves choosing the optimal size and composition of a

hospital’s portfolio of procedures. This is a key strategic consideration for a hospital that

must manage its profitability in the face of resource constraints, and it has become increas-

ingly important in recent decades, as reimbursement schemes have centered on diagnostic

related groups (DRGs) (Roth and Van Dierdonck, 1995; Hof et al., 2017). We study this

question for a hospital considering the capacity of two resources: the operating room (OR)

and recovery beds. Therefore, our work fits into the growing literature on quantity-based

revenue management for multiple resources.

Within this area, some authors have explicitly characterized the optimal case-mix, some-

times referred to as the patient mix. Adan and Vissers (2002) develop an integer linear

programming model to determine the optimal patient mix for elective procedures based

on multiple resource constraints assuming deterministic length of stay (LOS). Ma and De-

meulemeester (2013) take a multilevel approach, first determining the optimal case-mix, and
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then using these results to build the master surgical schedule. They assume that the mean

LOS is fixed, and the number of beds and OR time allocated to each procedure are decision

variables. Freeman et al. (2018) develop a multi-phase approach that utilizes mathematical

programming to determine a set of solutions for the case-mix and master surgery schedule,

assuming stochastic LOS, and then use simulation to assess the quality of each candidate

solution.

Our work is closely related to Bavafa et al. (2019) who characterize the optimal number

of elective procedures for a single-specialty hospital using a two-moment approximation

of OR and recovery bed usage. The authors established the validity of this approach by

comparing these approximations to the exact values from a real-life dataset. We extend

this work by jointly determining the optimal discharge decision for each procedure in the

hospital’s portfolio. The consideration of the discharge decision, which in turn determines

the distribution of LOS, is the key element that distinguishes our work from the existing

literature in this area. Additionally, unlike some of the aforementioned work, we do not

explicitly characterize the optimal number of beds or operating rooms, or consider a hard

capacity constraint. Rather, we determine the case-mix and discharge policies assuming

capacity constraints are nominal and can be exceeded at a cost.

There is also a body of work which focuses on short-term decisions that ultimately determine

the case-mix, e.g., the master surgery schedule. Beliën and Demeulemeester (2007) are

the first to consider optimal bed usage when building cyclic surgery schedules; they build

a master schedule which levels bed usage, using stochastic patients per operating room

block and stochastic LOS. Adan et al. (2009) extend their previous work by considering

a stochastic, rather than deterministic, patient LOS. They develop a mixed integer linear

programming model to generate a master surgical schedule that balances the patient mix

to optimize the utilization of multiple resources. Rath et al. (2017) use a two-stage mixed-

integer stochastic dynamic programming model to determine the optimal allocation of two

parallel resources—operating rooms and anesthesiologists—and the sequencing of surgeries.
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Although this work is related to the question we study, our focus is on the long-term case-

mix decision. Finally, note that the preceding discussion focuses specifically on quantity-

based revenue management for multiple resources in a healthcare setting. Bavafa et al.

(2019) provide a broader discussion of the quantity-based revenue management literature,

including the single-resource setting. For a recent review of the literature on the case-

mix planning problem, including a discussion of how it relates to other hospital planning

problems, see Hof et al. (2017).

An additional body of related literature is on discharge decisions in a hospital setting.

Within this, there are three broad areas. First, researchers have studied the relationship

between patient LOS and the likelihood of readmission. For heart attack and heart failure

patients, Carey and Lin (2014) find a negative correlation between LOS and readmission

probability. In our analysis, we assume that this negative correlation holds. Taking a cost

perspective, Carey (2015) shows that the expected cost savings from avoiding readmission

is between 15% to 65% of the cost of an additional day of stay.

Second, there is considerable evidence that physicians respond to congestion when deter-

mining discharge levels, which in turn impacts the likelihood that the patient is readmitted.

Kc and Terwiesch (2012) show that during busy periods, ICUs ration bed capacity through

a more aggressive discharge policy, which leads to an increased likelihood of a “revisit” to

the ICU with a longer LOS. Long and Mathews (2017) show that in the ICU, there is a

discretionary “boarding” time that increases significantly when ward occupancy levels are

high, but that “service” times are unaffected by occupancy levels. This work supports our

view that discharge policies should be considered at the strategic level.

Third, due to the complexity of balancing a longer LOS with resource constraints, there is a

stream of work on the optimal discharge policy. Chan et al. (2012) devise an ICU discharge

policy taking into account readmission risks that results in significant throughput gains

without adversely impacting patient mortality rates. This policy focuses on the tactical

discharge necessitated by a patient arrival. Shi et al. (2019) create a discharge decision sup-

38



port tool that dynamically determines how many and which patients should be discharged

each day by determining each patient’s personalized readmission probability. Although we

also study discharge decisions, our focus is on the strategic, long-term policy necessary to

most profitably manage resources.

We employ an “open-loop” modeling approach given our focus on the portfolio and discharge

decisions at a strategic level. This approach complements the studies that are focused on

the tactical management of hospital resources; such dynamic models require “closed-loop”

approaches that track the state of the system, e.g., bed occupancy (Ayvaz and Huh 2010,

Helm et al. 2011, Shi et al. 2019, Liu et al. 2019). In a similar vein, our analysis leaves

out the optimization of intra-day scheduling of procedures. There is an extant literature in

operations management that studies such scheduling problems (Patrick et al. 2008, Begen

and Queyranne 2011, Helm and Van Oyen 2014, Zacharias and Pinedo 2017, Diamant et al.

2018).

2.3. Managing Elective Procedures and Patient Discharges: A Model

In the presence of any particular reimbursement structure introduced by the payer (such

as a government agency or a private insurance company), a hospital can utilize two main

levers to manage its profitability. On the patient admissions side, the hospital can control

the demand for its resources by limiting the size and the composition of its portfolio of

elective procedures. On the patient discharge side, the hospital may use early discharges

to modify the distribution of patient LOS and relieve the pressure on its resources. In this

section, we present and analyze a model that describes the trade-offs faced by a hospital in

using these managerial levers.

Consider a daily portfolio of N types of elective surgical procedures, ae = (ae1, . . . , a
e
N ),

where aei ∈ [0, Ei] , i = 1, . . . , N is the daily number of type-i procedures that the hospital

performs. Here, E = (E1, . . . , EN ) represents the vector of daily demand values for elective

procedures, i.e., the maximum numbers of elective procedures that the market in which the

hospital operates can support. In our analysis, we assume, for the sake of tractability, that
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the daily numbers of elective procedures, aei , i = 1, . . . , N , can take fractional values.

In addition to elective procedures, a hospital may have to perform urgent procedures that

represent the unscheduled part of the demand, e.g., coming from patients admitted into

the hospital through the emergency department. We represent this daily demand by au =

(au1 , . . . , a
u
N ), so the hospital’s total daily portfolio of procedures is represented by a =

ae + au. The emergency procedures create additional, exogenous load on hospital resources

that translate into additional hospital costs. In our model, we consider the influence of

emergency procedures when calculating the hospital’s operating costs.

Any hospital manages multiple distinct resources (such as operating rooms, recovery beds,

imaging and labs) that can be considered as belonging to one of two broad categories. The

first category is “front-end” resources such as operating room; these resources are utilized

“infrequently” during the patient’s hospital stay, for example, only on the day of surgery.

In other words, the utilization of a front-end resource is independent of patient LOS. The

second category is backroom resources, e.g., hospital beds; these resources are utilized

throughout patient stay at the hospital and their usage is positively correlated with patient

LOS. In our model, we focus on two key hospital resources: a single front-end resource,

OR capacity, and a single backroom resource, the recovery beds. Our analysis, however,

can be readily extended to the setting with arbitrary numbers of front-end and backroom

resources.

2.3.1. Modeling Hospital Resource Utilization

Below we present a model that connects the daily portfolio of elective procedures that the

hospital chooses and the utilization of its front-end (surgery time) and backroom (recovery

beds) resources.

Duration of Surgical Procedures, Health State and Recovery Dynamics

We use Si,j,t to denote the random variable describing the duration of the j-th procedure

of type i (0 ≤ j ≤ ai, i = 1, . . . , N) on day t (t = 1, 2, . . .).
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In modeling the patient LOS and discharge process, it is important to realize that, in

practice, a patient is discharged from a hospital when, according to the judgment of the

hospital’s physicians, the patient is likely to have recovered sufficiently to continue follow-up

care in a non-hospital environment, e.g., the patient’s home. In particular, every discharge

decision represents a judgment call that always carries a non-zero probability of less-than-

full recovery and subsequent readmission to the hospital. Below we describe our model of

patient recovery dynamics that follows the procedure of type i.

More specifically, we consider the following model of patient recovery and discharge. Let

hi ∈
[
hmin
i , hmax

i

]
be a scalar quantity, observable to the attending physician, that describes

the health state of a patient who underwent a procedure of type i = 1, . . . , N . In practice,

the true health state of a patient is a multi-dimensional entity. However, we assume that

the attending physician aggregates the numerous factors that determine the true health

state of a patient into a single quantity that she uses to determine whether the patient has

sufficiently recovered to be discharged. It is this quantity that hi designates in our model.

Without loss of generality, we normalize the health state scale so that hmax
i = 1, for i =

1, . . . , N . Thus, hi = 1 denotes a state of complete recovery without the possibility of

readmission. In any real hospital environment, physicians have some flexibility regarding the

discharge decisions and must use their judgment to decide on a threshold health state hi to

initiate patient discharge. Thus, discharge decisions involve a trade-off between continuing

patient care in the hospital environment and allowing the recovery to be completed outside

of the hospital.

In modeling the patient recovery process, we assume that for a patient that undergoes the

j-th procedure of type i (0 ≤ j ≤ ai, i = 1, . . . , N) on day t (t = 1, 2, . . .), the recovery

process starts at the state hi = 0 and proceeds to improve the patient’s health state at the

daily rate ri,j,t.

A pair of quantities (Si,j,t, ri,j,t) determine the usage of surgery time and recovery bed
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resources by the j-th patient of type i on day t. We make the following distributional

assumptions regarding these quantities.

Assumption 4 (Surgery Durations and Recovery Rates) Si,j,t and ri,j,t are distributed

according to a joint continuous probability distribution with a finite support, and both the

support and the probability density function (PDF) of the distribution depend only on i, but

not on j or t:

Prob (Si,j,t ≤ x, ri,j,t ≤ y) =

∫ x

0

∫ y

rmin
i

fi(s, r)drds, x ∈ [0, Smax
i ] , y ∈

[
rmin
i , rmax

i

]
,

i = 1, . . . , N, j = 1, . . . , ai, t = 1, 2, . . . , (2.1)

where 0 < Smax
i and 0 < rmin

i ≤ rmax
i , and

∫ Smax
i

0

∫ rmax
i

rmin
i

fi(s, r)drds = 1, i = 1, . . . , N. (2.2)

Assumption 5 (Inter-Day Independence) The pairs (Si1,j1,t1 , ri2,j2,t1) and

(Si1,j1,t2 , ri2,j2,t2) for all procedures performed on different days t1 6= t2 are independent

random variables.

Assumption 6 (Inter-Procedure Independence) The pairs (Si1,j1,t, ri1,j1,t) and

(Si2,j2,t, ri2,j2,t) for all procedures of different types (i1 6= i2) performed on the same day t

are independent random variables.

For the following analysis, it is convenient to introduce the marginal cumulative distribution
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function (CDF) for the procedure duration and the recovery rate:

Prob (Si,j,t ≤ x) = ΦS
i (x) =

∫ x

0

∫ rmax
i

rmin
i

fi(s, r)drds,

i = 1, . . . , N, j = 1, . . . , ai, t = 1, 2, . . . , x ∈ [0, Smax
i ] , (2.3)

Prob (ri,j,t ≤ y) = Φr
i (y) =

∫ Smax
i

0

∫ y

rmin
i

fi(s, r)drds,

i = 1, . . . , N, j = 1, . . . , ai, t = 1, 2, . . . , y ∈
[
rmin
i , rmax

i

]
. (2.4)

We assume that both ΦS
i (x) and Φr

i (y) are continuously differentiable over their respective

domains.

Discharge Threshold and Patient Length of Stay

We assume that hospital physicians select a discharge threshold hd
i ∈

[
hmin
i , 1

]
, such that

any patient recovering from procedure i is discharged once his health state reaches the level

hd
i . Thus, under the discharge policy characterized by the threshold hd

i , the hospital LOS,

Lo
i , for a patient that undergoes a procedure i is

Lo
i

(
hd
i

)
=
hd
i

ri
, (2.5)

a random variable distributed on the interval
[
Lmin
i

(
hd
i

)
, Lmax

i

(
hd
i

)]
with

Lmin
i

(
hd
i

)
=

hd
i

rmax
i

, (2.6)

Lmax
i

(
hd
i

)
=

hd
i

rmin
i

, (2.7)

according to the CDF

ΦL,o
i (z|hd

i ) = Pr
(
Lo
i

(
hd
i

)
≤ z
)

= Pr

(
hd
i

ri
≤ z
)

= Pr

(
ri ≥

hd
i

z

)
= 1− Φr

i

(
hd
i

z

)
. (2.8)

Note that in (2.5)-(2.8) we have used a streamlined notation for the recovery rate ri that

does not include indices j and t.
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Readmission Dynamics

Hospital readmissions are often used by payers as an indicator for the quality of hospital

care. In the US, Medicare keeps track of hospital readmissions that occur within the 30-day

period after discharge, considering readmissions related to the original complaint as part of

the original “care episode.” In our model, we assume that, upon discharge, there exists a

likelihood that a patient returns to the hospital for readmission within a certain time period

defined by the payer. Under the “bundled” compensation approach, the hospital does not

receive any additional payment for care provided upon patient readmission. In other words,

from both the payer’s and the hospital’s perspectives, the readmission care is “rework”

caused by a “defect” in the original care and/or patient recovery. While, for any surgical

procedure, a certain rate of readmissions cannot be avoided and is treated as acceptable by

the payer, a high rate of readmissions may be interpreted as related to hospital discharge

policy. In Section 2.3.4 we provide a detailed discussion of the hospital compensation and

cost structure. In the current section, we provide a foundation for this discussion and focus

on modeling the impact of readmissions on the utilization of hospital resources.

For the hospital discharge policy defined by patient health status at the time of discharge,

hd
i , we use pa

i

(
hd
i

)
to denote the probability that a patient gets readmitted. We formalize

our assumptions on the readmission dynamics as follows.

Assumption 7 (Patient Readmission Dynamics) a) When a patient that underwent a

procedure of type i is discharged in the health state hd
i , she will be readmitted with probability

pa
i

(
hd
i

)
, where pa

i (·) is a monotone decreasing function with pa
i (1) = 0.

b) If a patient is readmitted, she must undergo procedure i and repeat the recovery process.

c) The procedure duration-recovery rate pair of values observed upon readmission are per-

fectly correlated with the procedure duration-recovery rate pair observed upon original ad-

mission.

d) Any patient will be readmitted at most once.

44



Assumption 7a is intuitive and does not result in a loss of generality. Assumption 7b mod-

els the impact of readmissions on the use of front-end and backroom hospital resources by

treating the readmission as rework, requiring that the patient care be repeated upon read-

mission. While our analysis below explicitly relies on this Assumption, it can be extended

to handle a more general setting where a readmitted patient may not require the repeat of

the original surgical procedure as well as settings where she may require a different surgical

procedure. In reality, it is likely that, for a given patient, the readmission surgery duration

and the following recovery rate are correlated with the original pair of values for the surgery

duration and the recovery rate. Assumption 7c maintains the analytical tractability of the

resulting model by treating this correlation as perfect. While this Assumption is admit-

tedly strong, we believe that it allows for substantial analytical headway without altering

the qualitative nature of the results. Finally, Assumption 7d avoids modeling complexities

caused by potential multiple readmissions that, while possible, are likely to be rare in prac-

tice. This Assumption, however, does not impact the generality of our analysis, since, in

the settings with substantial presence of multiple readmissions, pa
i

(
hd
i

)
can be interpreted

as the quantity representing the cumulative effect of multiple readmissions.

Our approach to modeling the impact of readmission is designed to allow us to study a

trade-off between the “immediate” cost savings resulting from earlier patient discharges

and potential “delayed” costs associated with patient readmissions. The advantage of our

modeling approach is that these delayed readmission costs are completely characterized by

a single function pa
i

(
hd
i

)
. Our analysis, however, can be extended to include more complex

modeling of readmission dynamics, such as different distributions of front-end and backroom

resource utilizations upon readmission.

Using our Assumptions, we summarize the description of the stochastic utilization by a

“type-i” patient of the front-end and the backroom hospital resources, that includes the

original admission and a potential readmission, as follows.

Lemma 1 (Distributions of Resource Usage in the Presence of Discharge Management)
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Under Assumptions 4-7, when the discharge policy characterized by the threshold hd
i is em-

ployed, the total use of operating room time by any “type-i” patient is given by a random

variable Fi
(
hd
i

)
distributed on the interval [0, 2Smax

i ] with the CDF

ΦF
i

(
x|hd

i

)
=
(

1− pa
i

(
hd
i

))
ΦS
i (x) + pa

i

(
hd
i

)
ΦS
i

(x
2

)
, (2.9)

and the total hospital length of stay Li
(
hd
i

)
is distributed on the interval

[
Lmin
i

(
hd
i

)
, 2Lmax

i

(
hd
i

)]
with the CDF

ΦL
i (z|hd

i ) =
(

1− pa
i

(
hd
i

))(
1− Φr

i

(
hd
i

z

))
+ pa

i

(
hd
i

)(
1− Φr

i

(
2hd

i

z

))
. (2.10)

2.3.2. Base-Case Estimation

In this section we use two separate data sources to estimate the base-case parameters for

our model. First, we use the 2016 Nationwide Readmissions Database (Healthcare Cost

and Utilization Project, 2016) to estimate the parameters related to patient LOS and to

characterize the readmission function. Second, we use data on the surgeries performed at a

medium-sized teaching hospital between January 1, 2014 and December 31, 2016 to obtain

information on surgery durations.

Our modeling approach relies on the hospital being able to reliably estimate the readmission

function pa
i

(
hd
i

)
, a novel modeling element we introduced. The 2016 Nationwide Readmis-

sions Database is a comprehensive sample of patient discharges from hospitals across the

US, reflecting more than half of all hospitalizations. For each discharge, a wide range of

data, including patient and hospital characteristics as well as clinical information, are re-

ported. In particular, for each discharge, the dataset records the Diagnostic Related Group

(DRG) that provides a summary of the care received by the patient and that also forms the

basis for the compensation the hospital receives. In addition, for each discharged patient,

all subsequent readmissions (if any) are documented.

The approach we use for estimating the base-case parameters is as follows. For the purposes
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of estimation, we focus on a single DRG = 470 (“Major Joint Replacement or Reattach-

ment of Lower Extremity without Major Complication or Comorbidity”) that corresponds

to the largest number of discharges across all DRGs and all hospitals. The patient dis-

charges were grouped according to the combination of hospital ownership and teaching

status. In particular, the nine hospital groups we use based on the designations in the

database are constructed as elements of a 3 × 3 matrix, reflecting three ownership types

(“government, non-federal,” “private, not-for-profit,” and “private, investor-owned”) and

three teaching designations (“metropolitan non-teaching,” “metropolitan teaching,” and

“non-metropolitan”). The rationale for using these nine groups is that a hospital’s dis-

charge policy is most likely driven by the combination of financial incentives reflected in

the ownership type and the practicing style reflected in the hospital’s teaching status.

In particular, we assume that each of the nine hospital groups, k = 1, ..., 9, share a common

level of patient health at discharge, hd,k (for the remainder of this section, in our notation

we drop the procedure index i assuming that it corresponds to DRG= 470).

The database contains patient LOS and 30-day readmission events. We assume that, irre-

spective of the hospital delivering care, all patients share a common distribution of recovery

rates, described by a four-parameter beta distribution with the pdf

φr (x, α, β, rmin, rmax) =
(x− rmin)α−1 (rmax − x)β−1

(rmax − rmin)α+β−1B (α, β)
, (2.11)

parameterized by α, β, rmin, and rmax, with B (α, β) representing the beta function. In

addition, we consider the following family of readmission functions:

pa
(
hd,k

)
= 1−

(
hd,k

)θ
. (2.12)

For a given combination of parameters α, β, rmin, rmax, θ, and discharge thresholds hd,k, k =

1, ..., 9, we can compute the expected readmission rate and LOS distribution for each of the

nine hospital groups. To estimate these parameters for the base-case, we select them to
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Quantity Value Quantity Value
α 1.639 hd,1 0.233
β 1.893 hd,2 0.204

rmin, 1/day 0.008 hd,3 0.212
rmax, 1/day 0.229 hd,4 0.233

θ 0.023 hd,5 0.209
hd,6 0.235
hd,7 0.247
hd,8 0.231
hd,9 0.245

Table 1: Base-case parameter estimates for DRG = 470.

make sure that the predicted readmission rates and LOS distributions are closely matched

by the observed data. This estimation is implemented by minimizing the sum of the squared

percentage deviations between the readmission rate, mean LOS, standard deviation of LOS,

minimum LOS, and maximum LOS for each of the nine hospital groups.

Table 1 provides a summary of the base-case estimates for the parameters of our model.

The resulting probability of patient readmission, pa, as a function of patient health state,

hd,k, is shown in Figure 5.

Note that our goal here is to provide a simple way to estimate the model parameters

based a national dataset. In the case of an individual hospital, a similar estimation can be

implemented using detailed data on factors such as bed occupancy and dynamic observable

patient health outcomes (Shi et al., 2019).

Finally, as noted earlier, we use data from a medium-sized teaching hospital to obtain

information on surgery durations. In particular, we have collected the data for 462 surgeries

related to DRG= 470 over the course of three years. The distribution of durations for these

surgeries is shown in Figure 6: the mean and the standard deviation of the distribution are

106.98 and 24.81 minutes, respectively.

Below, we will use the base-case parameter set reported in Table 1 and the estimates

for the first two moments of the distribution of surgery durations, E [S] = 106.98 and
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Figure 5: The probability of patient readmission, pa, as a function of the discharge threshold
for patient health state, hd,k, k = 1, ..., 9. Each data point represents one of the nine hospital
groups that were formed according to the combination of hospital ownership and teaching
status.

Var [S] = (24.81)2 = 615.54 in our numerical examples.

2.3.3. Utilization of Hospital Resources: Central-Limit Approximation

Consider a hospital that uses a daily portfolio of elective procedures ae = (ae1, . . . , a
e
N ) and

the discharge thresholds hd =
(
hd

1 , . . . , h
d
N

)
in the presence of random daily portfolio of

urgent procedures au = (au1 , . . . , a
u
N ). We assume that the numbers of urgent procedures

on any day t follow a stationary distribution that does not depend on t and is described by

the PDF fu (n1, . . . , nN ), 0 ≤ ni ≤ Ui, i = 1, . . . , N with

∫ UN

0
. . .

∫ U1

0
fu (n1, . . . , nN ) dn1 . . . dnN = 1. (2.13)
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Figure 6: The distribution of surgery durations for DRG= 470 (n = 462).

For the analysis below, it is convenient to introduce the following notation for the first and

second moments of the distribution of daily numbers of urgent procedures:

µui =

∫ UN

0
. . .

∫ U1

0
(ni) f

u (n1, . . . , nN ) dn1 . . . dnN , i = 1, . . . , N, (2.14)

(σui )2 =

∫ UN

0
. . .

∫ U1

0
(ni − µui )2 fu (n1, . . . , nN ) dn1 . . . dnN , i = 1, . . . , N, (2.15)

ρuij =

∫ UN
0 . . .

∫ U1

0

(
(ninj) f

u (n1, . . . , nN )− µui µuj
)
dn1 . . . dnN

σui σ
u
j

, i, j = 1, . . . , N, i 6= j.

(2.16)

Then, for a = ae + au, let Ft
(
a,hd

)
and Bt

(
a,hd

)
be the total number of hours of OR

time and the total number of recovery beds required, respectively, on day t.

For the following analysis, we define the parameters

µFi

(
hd
i

)
=

∫ 2Smax
i

0

(
1− ΦF

i

(
x|hd

i

))
dx (2.17)

50



and (
σFi

(
hd
i

))2
=

∫ 2Smax
i

0

(
x− µFi

(
hd
i

))2
dΦF

i

(
x|hd

i

)
(2.18)

to represent the expected value and the variance of type-i procedure duration. For the

recovery beds, we define

µBi

(
hd
i

)
= Lmin

i

(
hd
i

)
+

∫ 2Lmax
i (hdi )

Lmin
i (hdi )

(
1− ΦL

i (z|hd
i )
)
dz, (2.19)

(
σBi

(
hd
i

))2
=

∫ 2Lmax
i (hdi )

Lmin
i (hdi )

ΦL
i (z|hd

i )
(

1− ΦL
i (z|hd

i )
)
dz. (2.20)

Proposition 6 (Limiting Approximations for the Resource Usage) Let a = ae +

au ≥ 0 be the vector of the total numbers of procedures performed each day and 0 ≤ hd ≤ 1

be the vector of discharge thresholds. Define

MF
(
a,hd

)
=

N∑
i=1

aiµ
F
i

(
hd
i

)
, (2.21)

(
ΣF
(
a,hd

))2
=

N∑
i=1

ai

(
σFi

(
hd
i

))2
, (2.22)

MB
(
a,hd

)
=

N∑
i=1

aiµ
B
i

(
hd
i

)
, (2.23)

(
ΣB
(
a,hd

))2
=

N∑
i=1

ai

(
σBi

(
hd
i

))2
. (2.24)

Then, for a fixed hd, as ai →∞, i = 1, . . . , N ,

Ft
(
a,hd

)
−MF

(
a,hd

)
ΣF (a,hd)

d−→ N (0, 1) , (2.25)

and

Bt
(
a,hd

)
−MB

(
a,hd

)
ΣB (a,hd)

d−→ N (0, 1) . (2.26)

Note that results analogous to those in Proposition 6 can be obtained for settings with an
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arbitrary numbers of front-end and backroom resources. As Proposition 6 states, the impact

of the discharge threshold choices hd
i , i = 1, .., N, on the utilization of hospital resources

under a central-limit approximation is succinctly described by the first and second moment

parameters in (2.17)-(2.20). For the following analysis, it is convenient to define

γli = min
hdi ∈[hmin

i ,1]

(∣∣∣∣ dpa

dhd
i

∣∣∣∣) , (2.27)

γhi = max
hdi ∈[hmin

i ,1]

(∣∣∣∣ dpa

dhd
i

∣∣∣∣) . (2.28)

The result below contrasts the impact of the discharge threshold on the front-end and the

backroom resources.

Proposition 7 (Analytical Characterization of the Moments of Resource Usage)

Consider a procedure of type i = 1, . . . , N .

a) µFi
(
hd
i

)
is given by

µFi

(
hd
i

)
= E [Si]

(
1 + pa

i

(
hd
i

))
, (2.29)

where E [Si] is the expected value of the duration of a surgical procedure of type i, and is

monotone decreasing in hd
i . Also,

(
σFi
(
hd
i

))2
is given by

(
σFi

(
hd
i

))2
=
(

1 + 3pa
i

(
hd
i

))
Var [Si] + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
(E [Si])

2 , (2.30)

where Var [Si] is the variance of the type-i surgical procedure duration, and is monotone

decreasing in hd
i if and only if

pa
i

(
hd
i

)
≤ 1

2
+

3

2

(
Var [Si]

(E [Si])
2

)
. (2.31)

b) µBi
(
hd
i

)
is given by

µBi

(
hd
i

)
= hd

i

(
1 + pa

i

(
hd
i

))
E

[
1

ri

]
, (2.32)
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where

E

[
1

ri

]
=

∫ rmax
i

rmin
i

1

y
dΦr

i(y). (2.33)

Moreover,
(
σBi
(
hd
i

))2
is given by

(
σBi

(
hd
i

))2
= hd

i

((
1 + pa

i

(
hd
i

))
Gri + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
Hr
i

)
, (2.34)

where

Gri =

∫ rmax
i

rmin
i

(
Φr
i (y) (1− Φr

i (y))

y2

)
dy, (2.35)

Hr
i =

∫ rmax
i

rmin
i
2

(
Φr
i (2y)− Φr

i (y)

y

)2

dy. (2.36)

Finally, both µBi
(
hd
i

)
and

(
σBi
(
hd
i

))2
are monotone increasing in hd

i if

γhi ≤
Gri

Gri +Hr
i

. (2.37)

The results of Proposition 7 play a key role in understanding the trade-off faced by the

hospital management in setting the patient discharge levels. On the one hand, longer

hospital stays always reduce the load that patients place on the “front-end” resources. The

mechanism of such reduction is clear: longer stays reduce the probability of readmissions

and, consequently, of the rework/repeat of surgical procedures. On the other hand, the

higher discharge levels will increase the load on the “backroom” resources unless the delay

in patient discharges will significantly reduce the expected impact of readmissions. Figure 7

illustrates the results of Proposition 7 in the case of a single surgical procedure. The Figure

underscores, on the one hand, a tension created by the opposing impacts that the discharge

threshold may have on the expected utilization of the“front-end” and “backroom” resources,

as well as on the behavior of the second moments of the resource utilization.

In a typical hospital setting the “front-end” resources are considered to be “revenue gen-
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Figure 7: First two moments of the OR and the recovery bed utilization as functions of the
discharge threshold hd: a) expected OR utilization, b) variance of the OR utilization, c)
expected number of required recovery beds, d) variance of the number of required recovery
beds (hmin = 0.15, E[S] = 106.98, Var[S] = 615.54, E

[
1
r

]
= 12.963, α = 1.639, β = 1.893,

rmin = 0.008, rmax = 0.229, θ = 0.023).

erating,” and their optimal utilization may often be associated with the best policy that a

hospital can adopt. Under such policy, a proper accounting for the possibility of patient

readmissions will result in keeping patients in the hospital until the readmission probability

is 0. This is not unexpected, given the motivation behind the replacement of fee-for-service

hospital compensation by the “bundled payments” approach. In particular, while under

the fee-for-service approach, the hospital had every incentive to play down the effects of

readmissions since it could charge for all services performed upon readmission. As a conse-

quence, it would have been optimal for a hospital to prefer patient discharges at the earliest

feasible stage. Under “bundled” payments, a hospital no longer receives any extra compen-

sation for extra work it has to perform if the patient is readmitted, resulting in a hospital
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focusing on reducing the readmissions as much as possible. This approach, however, may

create a situation in which the “backroom” resources can get overloaded. Resolving this

tension between the front-end and backroom resources is a focus of the analysis below.

2.3.4. Hospital Compensation, Operating Costs and Optimization Problem

In our model, we use Ri to denote the “bundled” payment that a hospital receives for an

entire episode of care associated with performing a procedure of type i. We assume that

the hospital incurs the daily fixed cost of operating its facilities, which we normalize to

0, as well as potential extra costs associated with patient demands for hospital resources

exceeding hospital nominal capacity. For a given portfolio of surgical procedures, a, operat-

ing under the discharge thresholds hd, we denote the random daily operating room cost as

CF
(
a,hd

)
and the random recovery bed cost CB

(
a,hd

)
. We treat the costs of using hospi-

tal resources as being additive across resources and adopt a widely-used convex functional

form to represent the cost of using a particular hospital resource.

Assumption 8 (Resource Cost Functions) a) For a resource k = F,B, let Uk
(
a,hd

)
be the random variable representing the daily usage of that resource under the procedure

portfolio a and discharge levels hd. Then, the cost associated with the usage of resource k

is given by

Ck

(
a,hd

)
= ck

(
Uk

(
a,hd

))2
, (2.38)

where ck ≥ 0 is a resource-specific cost parameter.

b) The hospital’s total daily cost is additive across the front-end and backroom resources:

C
(
a,hd

)
= CF

(
a,hd

)
+ CB

(
a,hd

)
. (2.39)
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The hospital’s expected daily profit for a given portfolio of surgical procedures and discharge

threshold values can be expressed as

Π
(
a,hd

)
=

N∑
i=1

aiRi − E
[
CF

(
a,hd

)]
− E

[
CB

(
a,hd

)]
. (2.40)

Note that under this reimbursement structure, hospitals are implicitly penalized for read-

missions. Under a scheme such as the Hospital Readmissions Reduction Program (HRRP),

hospitals are explicitly penalized for high readmission rates, via a reduced reimbursement

rate Ri.

Consider a setting where a hospital selects a portfolio of elective procedures ae in the

presence of urgent procedures au it must accommodate, so that a = ae+au. For convenience,

we express the hospital optimization problem in the form of a Lemma.

Lemma 2 (Hospital Optimization Problem) Let

Ai
(
hd
)

=Ri − cF

2µFi

(
hd
i

) N∑
j=1

µuj µ
F
j

(
hd
j

)
+
(
σFi

(
hd
i

))2


− cB

2µBi

(
hd
i

) N∑
j=1

µuj µ
B
j

(
hd
j

)
+
(
σBi

(
hd
i

))2

 , (2.41)

Bi
(
hd
)

=µui Ri

− cF

((σui )2 + (µui )2
)(

µFi

(
hd
i

))2
+ µui

(
σFi

(
hd
i

))2

+
∑
j 6=i

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µFi

(
hd
i

)
µFj

(
hd
j

)
− cB

((σui )2 + (µui )2
)(

µBi

(
hd
i

))2
+ µui

(
σBi

(
hd
i

))2

+
∑
j 6=i

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µBi

(
hd
i

)
µBj

(
hd
j

) . (2.42)
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The approximate hospital expected daily profit is

ΠA

(
ae,hd

)
=

N∑
i=1

aeiAi
(
hd
)
−cF

(
N∑
i=1

aeiµ
F
i

(
hd
i

))2

−cB

(
N∑
i=1

aeiµ
B
i

(
hd
i

))2

+
N∑
i=1

Bi
(
hd
)
,

(2.43)

and the hospital’s optimization problem can be expressed as

max
ae,hd

(
ΠA

(
ae,hd

))
(2.44)

s.t. 0 ≤ aei ≤ Ei, i = 1, . . . , N, (2.45)

hmin
i ≤ hd

i ≤ 1, i = 1, . . . , N. (2.46)

2.4. Optimal Elective and Discharge Policies: Single-Procedure Setting

In this section we analyze the optimization problem (2.44)-(2.46) for a single-specialty

hospital. In the following analysis we drop the surgical procedure index.

Proposition 8 (Optimal Policies for a Single-Specialty Hospital) For a single-

specialty hospital, let

M
(
hd
)

= cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

, (2.47)

V
(
hd
)

= cF

(
σF
(
hd
))2

+ cB

(
σB
(
hd
))2

, (2.48)

and

fe
(
hd
)

= max

(
0,min

(
R− V

(
hd
)

2M (hd)
− µu, E

))
. (2.49)

Then, the discharge level and the number of elective procedures that optimize (2.44)-(2.46)

are given by

ĥd = arg max
hd∈[hmin,1]

((
fe
(
hd
)

+ µu
)(

R− V
(
hd
))

−
((

fe
(
hd
)

+ µu
)2

+ (σu)2

)
M
(
hd
))

(2.50)
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and

âe = fe
(
ĥd
)
. (2.51)

Proposition 8 connects the optimal number of elective procedures and the optimal discharge

threshold level, and expresses the optimal discharge threshold level in terms of a solution of a

one-dimensional optimization problem, for arbitrary readmission function pa
(
hd
)
. Figure 8

illustrates how the optimal elective and discharge policies change with the expected cost of

using “front-end” and “backroom” resources relative to the reimbursement rate.

To determine realistic ranges for these values, we consider the amount hospitals charge for

knee-replacement and hip-replacement surgeries, two common procedures that correspond

to DRG=470 (Centers for Medicare and Medicaid Services, 2019). In an analysis of the

charges for total hip arthoplasty, Bertin (2005) finds that for an inpatient procedure, the

total average reimbursement was $13,950, with an average billed amount for surgery of

$2,874 and an average charge for nursing and room usage of $4,404. These correspond to 21

and 32 percent of the hospital’s total reimbursement, respectively. (Note that the largest

charge for such surgeries is typically the implant charge, which is not included in either

of these numbers; in this study, the average implant charge was $12,182, or 87 percent

of the total reimbursement.) King et al. (2011) and Richter and Diduch (2017) conduct

similar studies on the charges for knee arthroplasty. These studies suggest that the charges

corresponding to OR and recovery bed usage relative to the reimbursement rate range from

20 to 45 percent, and that backroom resource usage results in higher charges than that of

front-end resources. However, with the exception of King et al. (2011), these studies only

consider the amount the hospital bills, not the actual cost of using each resource. Indeed,

even for procedures as common as these, actual costs are not well known, and prices and

reimbursement rates can depend greatly on the hospital and payer (Blue Cross Blue Shield,

2015; Evans, 2018). We assume the charged amounts are higher than the true costs, but

that the allocation of charges for each resource is proportional to the distribution of costs.

Further study limitations such as small sample sizes and differing categorization of costs,
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in addition to the variety of procedures that correspond to DRG code 470, suggest that

the range of expected resource costs to reimbursement rates could be even wider. This is

reflected in the Figure.

Note the general trends displayed in the Figure. On the one hand, as the recovery beds

become more expensive to manage, the hospital curtails patient LOS and, to a lesser degree,

limits the inflow of elective procedures. On the other hand, as the costs associated with OR

capacity increase, the hospital, while limiting the patient inflow, allows for longer recovery

times. Thus, while both types of costs produce similar “inflow” control, the discharge

policies contrast sharply depending on which type of resource is more costly. Figure 9

presents a more detailed picture of the sensitivity of the optimal discharge and case-mix

policies to changes in front-end and backroom costs. In particular, as recovery bed costs

increase, the hospital should first limit the number of elective procedures. As backroom

costs increase, the hospital should also discharge patients prior to a full recovery. If instead

the OR becomes more costly to utilize, the hospital’s optimal first response is to increase

patients’ LOS. As costs continue to increase, the hospital should limit the number of elective

patients, as well. The Figure also suggests that there are ranges of cost parameters that

result in four “limiting” patient-flow management policies: “full recovery” (ĥd = 1) vs.

“minimal recovery” (ĥd → hmin) discharge policies in combination with “max-elective”

(âe = E) vs. “no-elective” (âe = 0) inflow policies.

Below we describe sufficient conditions for the optimality of these “extreme” policies.

Proposition 9 (Sufficient Conditions for the Optimality of “Extreme” Policies)

Consider a single-specialty hospital with γh < 1.

a) Suppose that

R ≤ cF
(

2µu (E [S])2 + Var [S]
)
. (2.52)
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Figure 8: Optimal number of elective procedures (a) and the optimal discharge threshold
(b) as functions of cost parameters cB and cF (hmin = 0.15, E[S] = 106.98, Var[S] = 615.54,
E
[

1
r

]
= 12.963, α = 1.639, β = 1.893, rmin = 0.008, rmax = 0.229, θ = 0.023, µu = 0.1,

σu = 0.2).

Then, the optimal daily number of elective procedures is âe = 0. If, in addition,

cB ≤ cFγl
 3 min

(
µu, (µu)2 + (σu)2

)(
Var [S] + (E [S])2

)
µu (2Gr + (0.25 + γh)Hr) + 8

(
(µu)2 + (σu)2

) (
E
[

1
r

])2
 , (2.53)

where Gr and Hr are defined in (2.35), the optimal patient discharge level is ĥd = 1. On

the other hand, if

Gr ≥ γh

1− γh

(
4

(
(µu)2 + (σu)2

µu

)(
E

[
1

r

])2

+Hr

)
(2.54)

and

cB ≥ cF

 3Var [S] + (E [S])2
(

1 + 4
(

(µu)2+(σu)2

µu

))
(

1−γh
γh

)
Gr −Hr − 4

(
(µu)2+(σu)2

µu

) (
E
[

1
r

])2
 (2.55)

the optimal patient discharge level ĥd = hmin.
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Figure 9: Optimal number of elective procedures and the optimal discharge threshold as
functions of cost parameters cB (a, b) and cF (c, d) (hmin = 0.15, E[S] = 106.98, Var[S] =
615.54, E

[
1
r

]
= 12.963, α = 1.639, β = 1.893, rmin = 0.008, rmax = 0.229, θ = 0.023,

µu = 0.1, σu = 0.2).
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b) Suppose, for E + µu ≥ 1, that

R ≥cF

8 (E [S])2 (E + µu) + Var [S] +

(
3Var [S] + (E [S])2

2E [S]

)2


+ cB

(
8

(
E

[
1

r

])2

(E + µu) +Gr +
(Gr +Hr)2

4Hr

)
. (2.56)

Then, the optimal daily number of elective procedures is âe = E. If, in addition,

cB ≤ cFγl
 3

(
Var [S] + (E [S])2

)
2Gr + (0.25 + γh)Hr + 8

(
(E+µu)2+(σu)2

E+µu

) (
E
[

1
r

])2
 , (2.57)

the optimal patient discharge level is ĥd = 1. On the other hand, if

Gr ≥ γh

1− γh

(
4

(
(E + µu)2 + (σu)2

(E + µu)

)(
E

[
1

r

])2

+Hr

)
(2.58)

and

cB ≥ cF

 3Var [S] + (E [S])2
(

1 + 4
(

(E+µu)2+(σu)2

(E+µu)

))
(

1−γh
γh

)
Gr −Hr − 4

(
(E+µu)2+(σu)2

(E+µu)

) (
E
[

1
r

])2
 (2.59)

the optimal patient discharge level ĥd = hmin.

The results of Proposition 9, illustrated in Figure 10, provide important insights on the

revenue-cost trade-offs faced by the hospital. On the one hand, if the hospital compensation

rate R is insufficient to cover the procedure costs, the hospital opts for the policy that allows

the access to hospital resources only for emergency patients. Whether these emergency

patients will be allowed to fully utilize the recovery bed resources depends, however, on the

relative values of the backroom and front-end costs, with the discharge policy shifting from

“complete recovery” if the front-end costs dominate, to “limited recovery” if the backroom

costs become prominent. On the other hand, under generous compensation, the hospital

allows as many elective procedures as possible, augmenting this policy by the spectrum of
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Figure 10: Sufficient conditions for optimality of “extreme” policies: a) âe = 0, ĥd = 1 and
âe = 0, ĥd = hmin, b) âe = E, ĥd = 1 and âe = E, ĥd = hmin (hmin = 0.5, E[S] = 106.98,
Var[S] = 615.54, E

[
1
r

]
= 12.963, α = 1.639, β = 1.893, rmin = 0.008, rmax = 0.229,

θ = 0.023, µu = 0.01, σu = 0.02).

discharge management approaches ranging from “complete recovery” to “limited recovery,”

depending on the relative values of the front-end and the backroom cost parameters.

2.5. Front-End and Siloed Policies

In real hospital settings, the optimal management of patient inflows and discharges may rep-

resent a hard-to-achieve theoretical limit of efficiency. In practice, front-end and backroom

resources may be managed by different decision makers, and the attainment of hospital-wide

optimality relies on the ability of hospital management to achieve a perfect alignment of

their objectives and actions. On the one hand, the front-end resources are often considered

to be the main engines of hospital revenue generation, and their utilization is managed by

surgeons, actors with substantial influence on hospital operations. On the other hand, the

backroom resources are often treated as main cost centers, and their management is typi-

cally placed in the hands of attending physicians (that may or may not be the surgeons who

performed the actual procedure) and head nurses. In addition, the actual patient inflow and

discharge decisions are naturally separated in time, a factor that can in practice increase

the cost of coordinating these decisions.

In this section we focus on understanding the impact of these coordination costs by consider-

ing two alternative policies that are likely to reflect the realities of patient flow management
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in hospital settings.

The first policy places the entire decision-making power in the hands of surgeons and as-

sumes that the elective surgery decisions and patient discharge decisions are made exclu-

sively on the basis of front-end costs. Specifically, under this policy, the best values for

ae and hd are chosen by setting cB = 0. We use the term “front-end” (FE) to designate

such a policy. The FE policy is designed to approximate the decisions in hospital settings

operating under the strong influence of surgeons who ignore the impact of the front-end

decisions on the backroom resources. Formally, the elective-discharge decisions under this

policy,
(
âeFE, ĥ

d
FE

)
, are set to optimize (2.44)-(2.46) under cB = 0:

(
âeFE, ĥ

d
FE

)
= arg max

ae∈[0,E],hd∈[0,1]

(
ΠA

(
ae,hd

) ∣∣∣∣cB = 0

)
. (2.60)

The following result provides an analytical description of the hospital’s decisions under the

FE policy.

Proposition 10 (Front-End Policy: Optimal Portfolio and Discharge Decisions)

Without loss of generality, assume

R1 − cFVar [S1]

E [S1]
≥ R2 − cFVar [S2]

E [S2]
≥ . . . ≥ RN − cFVar [SN ]

E [SN ]
. (2.61)

Under the FE policy, the hospital allows all patients to completely recover,

ĥd
FE = (1, . . . , 1) , (2.62)

and selects the elective portfolio as follows. For

R1 − cF
(

Var [S1] + 2E [S1]
(∑N

j=1 µ
u
jE [Sj ]

))
2cF (E [S1])2 < E1, (2.63)
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the optimal elective portfolio is given by

(âeFE)1 =

(
R1 − cF

(
Var [S1] + 2E [S1]

(∑N
j=1 µ

u
jE [Sj ]

)))+

2cF (E [S1])2 , (2.64)

(âeFE)i = 0, i = 2, . . . , N. (2.65)

For

RN − cF
(

Var [SN ] + 2E [SN ]
(∑N

j=1 µ
u
jE [Sj ]

))
2cFE [SN ]

>
N∑
j=1

EjE [Sj ] , (2.66)

the optimal elective portfolio is given by

(âeFE)i = Ei, i = 1, . . . , N. (2.67)

Finally, for

E1 ≤
R1 − cF

(
Var [S1] + 2E [S1]

(∑N
j=1 µ

u
jE [Sj ]

))
2cF (E [S1])2 ,

RN − cF
(

Var [SN ] + 2E [SN ]
(∑N

j=1 µ
u
jE [Sj ]

))
2cFE [SN ]

≤
N∑
j=1

EjE [Sj ] , (2.68)

let

i∗FE = 1 + max

i ∈ {1, . . . , N} ∣∣∣∣∣Ri − cF
(

Var [Si] + 2E [Si]
(∑N

j=1 µ
u
jE [Sj ]

))
2cFE [Si]

>
i∑

j=1

EjE [Sj ]

 .

(2.69)
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Then, the optimal elective portfolio is given by

(âeFE)i =


Ei, i = 1, . . . , i∗FE − 1,

Ri−cFVar[Si]

2cF (E[Si])
2 −

∑N
j=1(µuj E[Sj ])+

∑i−1
j=1(EjE[Sj ])

E[Si]
, i = i∗FE,

0, i = i∗FE + 1, . . . , N.

(2.70)

Figure 11: The relative profit gap resulting from the use of the FE policy as a function of
cost parameters cB and cF (hmin = 0.15, E[S] = 106.98, Var[S] = 615.54, E

[
1
r

]
= 12.963,

α = 1.639, β = 1.893, rmin = 0.008, rmax = 0.229, θ = 0.023, µu = 0.1, σu = 0.2).

Figure 11 illustrates the potential profit loss resulting from the use of the FE policy as

a function of the front-end and backroom cost parameters. As expected, the front-end

approach works well in settings where backroom costs are low or, if OR costs are sufficiently

high, where surgery-related costs dominate the hospital cost structure. The Figure also

highlights the non-monotonicity of the profit gap: for smaller front-end cost values, the
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FE policy initially does worse as front-end usage costs increase. In this region, under the

optimal policy, patients are discharged as quickly as possible, i.e., ĥd = hmin, resulting in a

higher probability that the hospital will incur costs from a readmission. Thus, for low OR

costs, the profit under the optimal policy is decreasing in OR costs at a significantly faster

rate than under the FE policy.

The second policy, that we call “siloed” (SI), reflects the setting in which the actors manag-

ing the backroom resources retain some control over their utilization and are able to select

the patient discharge level that minimizes, under any elective policy, the backroom costs.

Specifically, we assume that, under the SI policy, the surgeons play the role of the “principal”

that determines the portfolio of elective procedures, and the “backroom” managers play the

role of an agent that responds to the principal’s actions by setting the discharge policies.

The SI policy reflects the reality where the elective portfolio decisions are “imposed” on

the actors that manage backroom resources within a principal-agent framework, and the

front-end profit and backroom costs are managed separately by the principal and the agent,

respectively. Formally, the elective-discharge decisions under this policy,
(
âeSI, ĥ

d
SI

)
, are

determined as follows:

âeSI = arg max
ae∈[0,E]

(
ΠA

(
ae,hd

r (ae)
) ∣∣∣∣cB = 0

)
, (2.71)

ĥd
SI = hd

r (âeSI) , (2.72)

where

hd
r (ae) = arg min

hd∈[hmin,1]

 N∑
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σBi

(
hd
i

))2
+ 2µBi
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hd
i

)( N∑
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µukµ
B
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hd
k

)))
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B
i

(
hd
i
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+
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i=1

(µui (σBi (hd
i

))2
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µBi
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+2
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µui µ
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j + ρuijσ

u
i σ
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µBi

(
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)
µBj

(
hd
j

) . (2.73)
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The following proposition describes the patient discharge and elective portfolio decisions

under the SI policy.

Proposition 11 (Siloed Policy: Optimal Portfolio and Discharge Decisions) For each

procedure i = 1, . . . , N , define

ĀSI
i =Ri − cF

2E [Si] (1 + pmax
i )

 N∑
j=1

µujE [Sj ]
(
1 + pmax

j

)+ (1 + 3pmax
i ) Var [Si]

+ pmax
i (1− pmax

i ) (E [Si])
2

 , (2.74)

and, without loss of generality, assume that

ĀSI
1

E [S1] (1 + pmax
1 )

≥ · · · ≥
ĀSI
N

E [SN ]
(
1 + pmax

N

) . (2.75)

Under the SI policy, when γhi ≤
Gri

Gri+H
r
i

for all i = 1, . . . , N , the hospital discharges all

patients as soon as possible,

ĥd
SI =

(
hmin

1 , . . . , hmin
N

)
, (2.76)

and selects the elective portfolio as follows. For

ĀSI
1

2cF (E [S1] (1 + pmax
1 ))2 < E1, (2.77)

the optimal elective portfolio is given by

(âeSI)1 =
ĀSI

1

2cF (E [S1] (1 + pmax
1 ))2 , (2.78)

(âeSI)i = 0, i = 2, . . . , N. (2.79)
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For

ĀSI
N

2cFE [SN ]
(
1 + pmax

N

) > N∑
j=1

EjE [Sj ]
(
1 + pmax

j

)
, (2.80)

the optimal elective portfolio is given by

(âeSI)i = Ei, i = 1, . . . , N. (2.81)

Finally, for

E1 ≤
ĀSI

1

2cF (E [S1] (1 + pmax
1 ))2 and

ĀSI
N

2cFE [SN ]
(
1 + pmax

N

) ≤ N∑
j=1

EjE [Sj ]
(
1 + pmax

j

)
,

(2.82)

let

i∗SI = 1 + max

i ∈ {1, . . . , N} ∣∣∣∣∣ ĀSI
i

2cFE [Si] (1 + pmax
i )

>
i∑

j=1

EjE [Sj ]
(
1 + pmax

j

) . (2.83)

Then, the optimal elective portfolio is given by

(âeSI)i =



Ei, i = 1, . . . , i∗SI − 1,

ĀSI
i

2cF (E[Si](1+pmax
i ))

2 −
∑i−1
j=1(EjE[Sj ](1+pmax

j ))
E[Si](1+pmax

i )
, i = i∗SI,

0, i = i∗SI + 1, . . . , N.

(2.84)

Figure 12 shows how the use of the SI policy impacts the hospital’s profit under various

values of front-end and backroom cost parameters. Note that the SI policy displays perfor-

mance that is somewhat complementary to that of the FE policy, with near-optimal profits

generated in settings where front-end costs are low or the backroom costs are sufficiently

high.
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Figure 12: The relative profit gap resulting from the use of the SI policy as a function of
cost parameters cB and cF (hmin = 0.15, E[S] = 106.98, Var[S] = 615.54, E

[
1
r

]
= 12.963,

α = 1.639, β = 1.893, rmin = 0.008, rmax = 0.229, θ = 0.023, µu = 0.1, σu = 0.2).
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2.6. Discussion

In many hospital environments, the autonomy of decision-makers throughout the patient

care process is deeply ingrained in the hospital’s culture and is taken as given. Such au-

tonomy is a manifestation of organizational costs associated with maintaining coordinated

flow of information and of concerted focus on hospital-wide priorities. Yet, in the absence of

coordinated decision-making, hospitals may fail to account for the interconnected nature of

patient flow management decisions, potentially resulting in a lower quality of patient care,

underutilized resources, and suboptimal financial performance. A combination of sustained

pressure on hospitals to maintain their financial viability and proliferation of technology-

driven coordination solutions is accentuating the need for careful assessment of costs and

benefits of coordination. In this chapter, we present a model that is designed to estimate

the potential benefits of coordinated decision-making on two main aspects of patient flow

management: the case-mix of elective procedures and patient discharge policies. Our anal-

ysis relies on a novel approach to modeling patient recovery and readmission processes that

allows for closed-form asymptotic characterization of the first two moments of the utiliza-

tion of main hospital resources, and, consequently, of hospital expected daily profit, for

any combination of elective portfolio and patient discharge decisions. For a single-specialty

hospital, we derive patient flow management policies that maximize the hospital’s expected

profits associated with two main resource groups: “front-end” (e.g., operating rooms) and

“backroom” (e.g., recovery beds).

We leverage our model to provide guidance on the settings where the benefits from patient

flow coordination may be especially pronounced as well as the settings where those benefits

are modest. In particular, we compare the hospital profits under perfect coordination with

those achieved under two decentralized policies: the “front-end” policy, where surgeons

determine both the patient portfolio and the discharge policy exclusively on the basis of

operating room costs, and the “siloed” policy, where patient discharge decisions are driven

only by the backroom costs, and are used as the basis for the elective portfolio decisions.

Our results establish that, if the existing decision-making process is similar to a front-end
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policy, implementing a coordinated decision-making process is beneficial when recovery bed

costs are sufficiently high relative to operating room costs, even if recovery bed costs do

not dominate the cost structure. On the other hand, hospitals using a siloed policy should

move to a coordinated policy only if OR costs are sufficiently high and dominant. Given

the high cost of changing established processes in a complex organization, these findings

are particularly useful for administrators seeking to assess whether to implement such a

change.

Our aim is to construct a parsimonious, strategic-level model of portfolio and discharge

decisions that provides closed-form, qualitatively valid prescriptions to hospital managers.

In designing such a model, we have to make several assumptions that, while facilitating the

analytical tractability of our analysis, may affect the quantitative precision of our recom-

mendations. First, we assume that for a given procedure, the random variables describing

the procedure duration and patient recovery process are independent across days. At the

same time, in our model, a readmission will result in the patient undergoing the exact same

procedure and recovery process as during the original admission. In reality, in both cases

these values are likely to be correlated, but are neither identical nor independent.

Second, we assume that any procedure will require an identical pair of resources: a “front-

end” OR and a “backroom” recovery bed. Realistically, different procedures will require a

combination of specialized and generic resources, which are unlikely to be perfectly cate-

gorized into two distinct categories. Third, our analysis focuses on the optimal decisions

that are identical day-to-day, whereas a hospital administrator would realistically take a

longer, i.e., weekly, view when planning, to account for daily fluctuations in demand, and

in physician and resource availability.

Additionally, we take an “open-loop” modeling approach, in which establish the optimal

strategic match between patient flows and the hospital’s resource capacity. In future work,

it will be useful to extend our analysis to consider patient flow management from a dynamic,

“closed-loop” perspective.
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Finally, we study a hospital that is reimbursed under a “bundled” compensation scheme,

which provides an implicit incentive for hospitals to reduce readmissions. However, as the

results of Propositions 7 and 9 indicate, this may not be enough to prevent early patient

discharges in settings with high costs associated with backroom resources. In practice, the

payers for hospital services have been augmenting bundled payments with additional penal-

ties for excessive readmissions. Most notably, with the creation of the Hospital Readmissions

Reduction Program (HRRP) in 2010, hospitals with excessive 30-day readmission rates for

targeted conditions forfeit a percentage of their Medicare compensation. Extending our

analysis to include such performance-based hospital compensation schemes is a promising

direction for future research.

73



CHAPTER 3 : Coproduction in the Classroom: Optimally Allocating Incentives

Between Teachers and Students

3.1. Introduction

For as long as coproduction has been studied, education has served as a quintessential

example of a service that requires the participation of both the service provider and the

consumer. Indeed, the notion of the consumer participating in service production was first

discussed in Fuchs (1968), in which the author noted “the importance of the consumer

as a cooperating agent in the production process.” He subsequently observed that this is

common knowledge for educators: “[productivity] in education, as every teacher knows, is

determined largely by what the student contributes.” Whitaker (1980) expanded on this in

the context of public services, stating that “[c]oproduction is essential in services which seek

to change the client,” in contrast to those policies that can simply be deployed without active

participation from citizens. He points out that “[t]he best of lesson plans, instructional

materials, and teaching techniques cannot educate the child who will not learn.” This has

been recognized in the operations management literature as well: Karmarkar and Pitbladdo

(1995) highlight education an example of a service where the “customer . . . participat[es] in

service production” and which is “complex . . . in terms of output measurement.”

Yet, despite the widespread recognition of the crucial role students play in their own ed-

ucation, until recently, this has not carried over to discussions of financial incentives in

education. The debate on financial incentives in K-12 education has largely been centered

on performance-based rewards for teachers alone, even as teachers’ performance is measured

based on student performance. More recently, consideration has been given to monetary

incentives for students, but the focus has been on student incentives that are offered sep-

arately from teacher incentives. There are only a small number of studies that investigate

the synergies from concurrently incentivizing teacher and students. This chapter aims to

contribute to this nascent literature.
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We analyze a model in which a school district allocates a monetary incentive between

teachers and students at a school, and teachers and then students respond to this allocation

by choosing the level of additional effort to exert. We seek to understand how teachers and

students will respond to this incentive.

The rest of this chapter is organized as follows. In Section 3.2, we review the relevant

literature. In Section 3.3, we present the model, followed by analysis in Section 3.4. In

Section 3.5, we present a numerical study. Finally, we discuss our results and next steps in

Section 3.6.

3.2. Literature Review

This work primarily lies at the intersection of two streams of research: the study of co-

production in operations management (where it is also known as joint production) and the

study of financial incentives in K-12 education. We also draw on research on the education

production function.

The concept of coproduction was first introduced by Fuchs (1968), in an analysis of the

growing service economy in the United States. It was linked to operations management by

Chase (1978, 1981), when he used the idea of “consumer contact” to distinguish between

different types service systems. Karmarkar and Pitbladdo (1995) expanded on this early

work by considering the distinguishing features of a service system, including the degree of

joint production, and investigating the implications on service design and competition. They

illustrate this using a linear model of joint production. Xue and Harker (2002) introduce

the notion of “customer efficiency,” recognizing the need to take into account the caliber

of a customer’s performance when maximizing the quality of service delivery, especially for

self-service activities. They propose a customer efficiency management framework. In Xue

et al. (2007), the authors draw on the previous work to empirically study the relationship to

customer efficiency to measures of firm performance. Xue and Field (2008) study contracts

for collaborative services under uncertainty about service needs. They determine optimal

pricing and self-service levels under such contracts, assuming efforts between the client
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and service provider are substitutes. Roels et al. (2010) determine the preferred contract

type for collaborative services given different characteristics of the service environment

and assuming complementary efforts. The authors study a single-period Stackelberg game,

where either party can offer a contract and, upon acceptance, both parties determine their

optimal effort levels. Roels (2014) characterizes how a service provider should structure

its coproductive system, based on the degree of standardization of the task, where a high

degree of standardization is characterized by “predictably high marginal returns to effort.”

More recently, coproduction has been studied in the healthcare operations literature to

model the importance of patient participation in the healthcare process. Andritsos and

Tang (2018) incorporate coproduction when evaluating different hospital reimbursement

schemes. Unlike previous work, they consider a three-level Stackelberg problem, in which a

payer provides a contract, and the hospital and patient respond by determine their optimal

effort levels.

Our work is most closely related to that of Andritsos and Tang (2018), although we study

coproduction in the context of public education. We also introduce the element of informa-

tion asymmetry, which differs from previous work. In particular, we assume that teachers

do not know the cost of effort for students. This differs from, e.g. Roels et al. (2010),

but is somewhat similar to Andritsos and Tang (2018), who assume the existence of two

types of patients with different “effectiveness of the coproductive relation”. However, in

their model, the hospital can choose a different effort level for each type. In our case, since

teachers “treat” an entire class of students concurrently, teachers must choose one effort

level that takes into account their beliefs about the distribution of students’ cost of effort.

Finally, in our work, the customer (student) is directly affected by the allocation decision.

There is a large body of work on the impact of financial incentives in K-12 education in

the United States. The majority of this work focuses on performance-based incentives for

teachers, also commonly referred to as “merit pay.” This literature goes back decades, and

the findings tend to be mixed, with some researchers finding positive, if modest, effects
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(e.g., Figlio and Kenny (2007); Dee and Wyckoff (2015); Chiang et al. (2017)) and some

finding mixed or no significant impact (e.g., Eberts et al. (2002); Springer et al. (2011))

Understanding the efficacy of merit-based incentives is complicated by the varying level

of incentives and durations of incentive programs, since many earlier experiments with

incentives offered small rewards as part of a short-term program. (See Chapter 1 for a

detailed discussion of this literature.)

There is a complementary but smaller body of work on student financial incentives. There

are opposing theoretical arguments for the implementation of such programs. On the one

hand, Oreopoulos (2007) finds that additional years of compulsory schooling are associated

with multiple long-term benefits. The author observes that the fact that high school stu-

dents drop out in spite of this is “consistent with recent studies in neurology and psychology

that suggest adolescents are particularly predisposed to myopic behavior.” Financial incen-

tives are put forward as one way to address this blind spot. On the other hand, Gneezy

et al. (2011) point out that an important shortcoming of incentives is that they can crowd

out intrinsic motivation or change the subject’s expectation about the task, thus having no

or a negative effect. The authors note that programs are most beneficial when incentives

are “for concrete tasks” and “offered to families and not to the children specifically,” since

such programs offer rewards for tasks that are clearly understood and do not crowd out

students’ intrinsic motivation to learn.

One way such programs have been implemented in practice are through “conditional cash

transfer” (CCT) programs, means-tested programs that “attempt to encourage students to

stay in school, rather than simply raising the compulsory school-leaving age” (Dearden et al.,

2009). Such programs have been most widely implemented outside of the United States,

although they have also been tested in the United States. The most notable example of

this is Opportunity NYC, a CCT piloted by New York City from 2007 to 2010, which

“tied cash rewards to pre-specified activities and outcomes in children’s education, families’

preventive health care, and parents’ employment.” An evaluation of the program found
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that it had mixed effects in terms of educational outcomes: it had the most positive impact

on high school students “who entered the study more academically prepared than their

peers,” resulting in higher graduation rates and a higher likelihood of passing the required

number of New York State Regents exams for this cohort. However, there was no effect for

elementary or middle school students, perhaps because of limited opportunities for rewards

for these students (Riccio et al., 2013).

Other researchers have also found mixed results. Fryer (2011) studies the impact of student

financial incentives on performance using three different incentive programs in three different

cities. He finds no significant impact of such programs in each city on student performance,

although in one city, there is a negative effect on the subgroup of students in bilingual classes

and a positive effect on the subgroup of students in regular (non-bilingual) classes. The

author hypothesizes that this may be due to students’ “lack of knowledge of the education

production function,” i.e., how to improve their performance, and finds qualitative evidence

of this. Bettinger (2012) studies a program in Coshocton, Ohio that provided cash incentives

to elementary school students for “successful completion of their standardized testing,”

where students were randomly selected for the program. The author finds that the incentives

led to a substantial improvement in students’ math scores, but there were no improvements

in test scores for other subjects. Levitt et al. (2016) study a program that provided financial

incentives to high school freshman based on multiple measures of student achievement. They

find that while the overall effects are modest, the program does have “large and significant

impact among students on the threshold of meeting the achievement standard.”

Finally, there is a nascent literature on the effect of providing monetary incentives to teach-

ers and students simultaneously. Jackson (2010) studies the Advanced Placement Incentive

Program (APIP), a unique program targeting underprivileged students in Texas, which

“includes cash incentives for both teachers and students for each passing score earned on

an advanced placement (AP) exam.” The author finds that the program produces posi-

tive student achievement outcomes, while avoiding any negative distortions in student or
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teacher behavior. For example, students did not “substitut[e] away from other advanced

courses toward AP courses.” The author concludes that it is likely the combination of both

teacher and students incentives as well as “better instruction” that led to these improve-

ments. Behrman et al. (2015) evaluate an experiment in Mexican high schools in which

three different incentive schemes were implemented: incentivizing only teachers, incentiviz-

ing only students, and incentivizing teachers, students, and administrators. The authors

state that this “is the first randomized control trial to incorporate incentive payments to

both students and teachers.” Note that for the first two incentive schemes, teachers and

students were rewarded based on their individual performance, where teachers’ performance

was measured via the performance of the students they taught. However, in the third in-

centive scheme, students and teachers were rewarded both for their individual performance

and for the performance of their peers. Thus, the third scheme explicitly encouraged active

cooperation. The authors find that the joint incentives led to the largest average effects

on student achievement. Finally, Todd and Wolpin (2018) develop and estimate a game

theoretic model of student and teacher effort decisions, in which the optimal effort levels of

students and teachers are a function of student attributes, such as previous knowledge level,

and teacher attributes, such as instructional ability. Using data from Mexican high schools,

they determine that the main reason for poor performance on end-of-year curriculum-based

mathematics examinations was insufficient prior preparation. Our work is closest to that

of Todd and Wolpin (2018), although they do not consider merit-based incentives in their

model.

Underpinning our work is the idea that education is a system with a series of inputs that lead

to some tangible output. This notion was first formally studied in the landmark government

report Equality of Educational Opportunity (Coleman et al., 1966), more commonly known

as the Coleman Report. The Coleman Report analyzed the impact of inputs, such as

school and peer characteristics, on student achievement. This led to the conception of

an “education production function,” which drew on established work on firm production

functions in economics. This was first introduced by Hanushek (1968), in which he compared
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the educational production function of black sixth-graders to white sixth-graders in order

to understand the relative impact of schools on educational achievement. This idea has

been widely accepted and studied since then. (See, e.g., Levin, 1974; Hanushek, 1979, 1986;

Rivkin et al., 2005, but this is only a partial list.)

Although an educational production function can take many forms, it typically combines

inputs related to family background, school and teacher characteristics, peer characteristics,

and a student’s individual endowments to produce an output, namely, student achievement

(Levin, 1974; Hanushek, 2020). Standardized test scores are a widely used, if imperfect,

measure of student achievement. As stated by Hanushek (2020), “[t]est scores, or measures

of cognitive skills more generally, have been interpreted as proxies for skills that are valued

in the labor market and elsewhere and, as such, more immediate measures of human capital

differences.” Researchers have used a variety of functional forms when empirically estimat-

ing the education production function, among them both linear and log-log (Cobb-Douglas)

forms. For example, Hanushek (1968) estimated both a linear and a log-log production func-

tion and found the log-log model to be superior.

In our work, we assume that the educational production function takes a Cobb-Douglas

form, where students’ and teachers’ effort levels are the inputs and productivity is scaled

based on the starting level of student achievement.

3.3. Model

In this section, we present a model that captures the interaction between teachers and

students at a given school in the presence of merit-based incentives. We model this as a

Stackelberg game with information asymmetry. Specifically, we assume that a school district

has exogenously allocated a performance-based reward between the students and teachers

to induce additional effort, where the probability of earning the reward is determined by

both parties’ effort levels. Observing this, teachers determine the total amount of effort

they will exert, and subsequently, students determine the total amount of effort they will

exert. Teachers have imperfect information about students’ cost of exerting effort.
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3.3.1. System States and Students’ and Teachers’ Actions

We consider a single-period game, where t = 0 corresponds to the beginning of the period

and t = 1 corresponds to the end of the period. At time t = 0, 1, the school’s state of

proficiency βt is either “proficient” (P) or “not proficient” (N). As in Chapter 1, we define

proficient to mean that a sufficient fraction of the school’s students satisfy or are on track

to satisfy state-imposed learning standards. We assume that the state of proficiency is

known by both the teachers and students at the start of the period (t = 0) and that it will

be assessed and made known to both parties at the end of the period (t = 1) through a

state-administered standardized assessment.

The probability that the school is in the proficient state at the end of the period is de-

termined based on the initial proficiency state β0 and the total effort exerted by teachers

and by students. We assume that within each school, all teachers are homogeneous and act

as a group, and similarly, all students are homogeneous and act as a group. Furthermore,

teachers and students each exert two types of effort: individual effort and joint effort. For

example, for a teacher, individual effort may be additional time spent lesson planning or

designing instructional materials, whereas, for a student, individual effort may be additional

time spent studying. Joint effort, on the other hand, requires that both parties exert ef-

fort, such as with classroom time or additional, after-school tutoring that the teacher may

provide to students. We use et and es to denote teachers’ and students’ total effort levels,

respectively. For both teachers and students, the joint effort level, captured by ej , is a

lower bound on these values that is exogenously determined and known to both players.

Because there is a finite amount of effort either player can exert, we further assume that

the maximum possible effort is normalized to be 1.

In modeling the transition probability of the schools’ proficiency state, we assume this

takes the form of a Cobb-Douglas production function, where the teachers’ and students’

effort levels are inputs, and the productivity of these inputs is scaled by a function of the

initial state β0. The Cobb-Douglas production function has been widely used both in the
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operations management literature on coproduction (see, e.g., Leonard and Zivin (2005),

Roels et al. (2010), and Andritsos and Tang (2018)) and for education production functions

(see, e.g. Hanushek (1968)).

Assumption 9

Pr [β1 = P |β0] = g (β0) (es)
a (et)

b , (3.1)

where ej ≤ es ≤ 1, ej ≤ et ≤ 1, a + b < 1, and 0 ≤ g (N) ≤ g (P ) ≤ 1, with 0 ≤ ej and

0 < a, b.

Under Assumption 9, a and b capture the relative weights placed on student and teacher

effort, respectively, in the transition probability, and there are decreasing returns to scale.

The function g (β0) reflects the maximum probability of transitioning to the proficient state,

which is higher when the school starts the period in the proficient state than when it starts

in the not-proficient state. This is supported by the literature. Ding and Davison (2005)

conduct a longitudinal study of math achievement and find that “disadvantaged students

began with a lower initial achievement level, but their rates of gain were not significantly

different from those of other students.” They observe that “closing gaps once they emerge

poses a particularly challenging task.” In another article, Davison et al. (2004) note that

“data suggest that groups of students seldom make up even small amounts of lost ground.”

Note that because students and teachers must exert a minimum level of effort, there is

always a positive probability of achieving proficiency at the end of the period, as long as

g (β0) is non-zero.

3.3.2. Cost of Effort and Timeline

We assume that the school district cannot directly observe teachers’ and students’ effort lev-

els. However, in order to incentivize both teachers and students to exert high levels of effort,

the district will offer each group a performance-based bonus. Teachers and students will

receive the bonus if the school is in the proficient state at the end of the period (t = 1) but

will otherwise forego it. The school district will allocate a budget M between performance-
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based bonuses for teachers and students, which we denote by πt and πs, respectively. We

take this reward allocation as given.

Teachers and students will observe the reward allocation πt and πs and respond sequentially,

as in a Stackleberg game where the teacher is the leader and the student is the follower.

Both the teacher and student incur a cost from exerting effort.

Assumption 10 Teachers’ and students’ cost of effort is given by

Ck (ek) = ckek, k = s, t, (3.2)

where ck ∈
{
ch, cl

}
and ch > cl.

We assume that each player has a convex cost of effort, where this cost can either be high

(ch) or low (cl). While each player knows their own cost of effort, players do not know each

others’ cost of effort. However, teachers believe that students’ cost of exerting effort has

the following distribution:

cs =


ch with probability phs

cl with probability 1− phs .
(3.3)

Then, upon observing the reward allocation, the teachers (leader) will move first and de-

termine their total effort level et, taking into account their belief about the distribution

of the students’ cost of effort. Next, the students (follower) will observe both the total

reward allocation and teachers’ effort decision et and then determine their total effort level

es. Students know their own cost of effort and, because they observe the teachers’ effort

decision, they do not need to form any beliefs about teachers’ cost of exerting effort. Finally,

the school will transition to a new proficiency state, according to (3.1). This state will be

revealed at t = 1 when an assessment is administered. If the school is in the proficient state,

both teachers and students will receive their merit-based incentives, πt and πs, respectively.

83



3.3.3. Students’ and Teachers’ Problems

Given the districts’ allocation decision and the teachers’ effort level decisions, students will

choose a total effort level es that balances the cost of exerting this additional effort with

their expected reward. In particular, students’ effort decision satisfies the following:

e∗s (et, πs) = arg max
ej≤es≤1

{πsPr [β1 = P |β0]− cses} . (3.4)

Similarly, given the district’s allocation decision and their beliefs about students’ cost of

exerting effort given in (3.3), teachers will choose a total effort level et that balances their

expected costs and rewards. That is,

e∗t (πs, πt) = arg max
ej≤et≤1

{πtPr [β1 = P |β0]− ctet} . (3.5)

In summary, (3.4)-(3.5) describe the students’ and teachers’ maximization problems, where

the teachers’ beliefs about the cost of effort for students is given in (3.3). In the next section,

we present a preliminary analysis of this problem as well as an outline of future directions

for this work.

3.4. Analysis

In this section, we present an analysis of the Stackelberg game. We work backwards, first

solving for the students’ optimal effort decision and then for the teachers’ optimal effort

decision.

3.4.1. Optimal Effort Levels

The students’ optimal effort satisfies (3.4). Recall that, prior to making their effort decision,

students observe the school district’s incentive allocation, πs and πt, and teachers’ effort

decision et, as well as the prespecified joint effort level ej . Proposition 12 characterizes

students’ optimal effort level.

Proposition 12 (Students’ Optimal Effort Levels) For any given total effort level ex-
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erted by teachers (et) and allocation scheme chosen by the school district (πs, πt), the stu-

dents’ best response is to exert total effort e∗s (et, πs), where

e∗s (et, πs, πt) = min

max

ej ,
(
πsg (β0) a (et)

b

cs

) 1
1−a
 , 1

 . (3.6)

Proposition 12 shows that, as one would expect, student effort levels are increasing in

the performance-based reward πs. However, because students cannot exert an unlimited

amount of effort, there is a point at which offering a higher reward becomes ineffective. In

reality, this reflects constraints on students’ time, as well as natural limitations that arise

due to students’ initial skills and endowments. Moreover, because the school district and

teachers can enforce a minimum level of joint effort, any small reward offered by the district

is pointless, since it will not change students’ behavior.

Additionally, we see that, as expected, students’ optimal effort levels are increasing in teach-

ers’ total effort levels et. This reflects the complementary nature of teachers’ and students’

efforts and highlights the importance of an efficient allocation of the reward between teach-

ers and students; namely, direct monetary incentives are not the sole means of incentivizing

high levels of student effort.

Observe that, because we assume that teachers are also required to exert a minimum level

of effort, it is always possible for the school district to incentivize students to exert the

maximum effort level, as long as the budget is sufficiently large. Nevertheless, this may be

more easily achieved by concurrently increasing the teachers’ reward allocation. To under-

stand these dynamics, we analyze the teachers’ optimal effort decision in the subsequent

Proposition.

Recall that teachers know their own cost of effort but only know the distribution of students’

cost of effort, as given in (3.3). Then, when determining their own optimal effort level,

teachers must consider six possible cases of students’ effort levels, based on whether students’

85



effort levels under either cost of effort are the minimum level ej , the maximum level 1, or

an interior solution. In Proposition 13, we describe the teachers’ optimal effort level in the

case that students’ resulting optimal effort level is an interior solution under both high and

low costs of effort, ch and cl, respectively. For an analysis of each of the six possible cases,

see the Appendix.

Proposition 13 (Teachers’ Optimal Effort Levels) Suppose that students’ optimal ef-

fort level is between ej and 1 for either possible cost of effort cs and for any et ∈ [ej , 1].

Then, for any given allocation scheme chosen by the school district (πs, πt), the teachers’

best response is to exert total effort e∗t (πs, πt), where

e∗t (πs, πt) =

min

max

ej ,
g (β0) (πsa)a

((
b

1− a

)(
πt
ct

)(
phs

(ch)
a

1−a
+

(
1− phs

)
(cl)

a
1−a

))1−a
 1

1−a−b
 , 1

 .

(3.7)

In this case, as one would expect, teachers’ effort levels are increasing in their performance-

based reward πt. Just as with the students’ incentive allocation, the district runs the risk

of choosing an inefficient allocation if it is either too high or too low, given the bounds on

teachers’ effort decision. Additionally, because teachers choose their effort levels first, their

decision is also explicitly increasing in the students’ performance-based reward πs: they

use this information to refine their expectation of students’ effort levels. Observe that the

weight given to these incentive levels varies based on the relative weights given to teacher

and student effort levels in the production function.

The formulation of the teachers’ optimal effort decision in (3.7) belies the complexity of

the teachers’ optimal effort decision that arises due to the piecewise nature of the students’

optimal effort decision. That is, changes in parameter values or reward allocations may

require teachers’ to choose an optimal effort level that results in students’ effort level being
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the minimum or maximum value for either cost level – in which case, the closed-form

characterization of Proposition 13 is no longer relevant. As shown in the Appendix, closed-

form characterizations of the optimal effort level are possible for only a subset of cases.

Therefore, we further analyze teachers’ optimal effort level through a numerical study.

3.5. Numerical Study

In this section, we numerically analyze the teachers’ optimal decision, as well as the prob-

ability that the school reaches the proficient state by the end of the year. The parameter

values used in this study are summarized in Table (2). The maximum probability of tran-

sitioning to the proficient state is higher when the initial state is proficient than when it is

not proficient. Furthermore, the minimum level of effort ej and student and teacher effort

weights are fixed, and we allow that the teachers’ effort level has a greater impact on the

transition probability than the students’ effort level. We consider high and low probabilities

that students have a high cost of effort (phs ). Finally, we consider two scenarios for the cost

of effort: one in which the range of effort costs is narrow (ch = 7 and cl = 5) and one in

which it is wide (ch = 9 and cl = 3).

Parameters Values

Maximum probability of transitioning to proficient state
g (β0), β0 = N,P

0.6, 0.8

Minimum effort level ej 0.1

Student effort weight a 0.35

Teacher effort weight b 0.65

Probability of high cost of effort for students’ phs 0.35 or 0.75

High and low cost of effort (ch, cl) (7, 5) or (9, 3)

Table 2: Parameter values used in figures.

3.5.1. Teachers’ Effort Level Decision

As described in the discussion of Proposition 13, teachers’ effort level decisions are compli-

cated by the minimum and maximum bounds on students’ effort levels. Figures 13 and 14

illustrate the teachers’ optimal effort decision as a function of the teachers’ and students’

reward allocation, respectively. In each Figure, we compare the four possible scenarios

that result when the range of efforts costs is wide (blue) versus narrow (red) and when the
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probability that students have a high cost of effort is high (solid line) versus low (dashed

line).

In Figure 13, we compare teachers’ optimal effort level e∗t as a function of their reward

allocation πt when their own cost of effort is low (Figure 13a) and high (Figure 13b). The

Figure confirms our intuition: teachers’ effort levels are increasing in the optimal reward

πt and teachers are cheaper to incentivize when their own cost of effort is low. When

teachers have a low cost of effort, there is a clear and intuitive ordering of the costliness of

incentivizing them to exert effort: they are easiest to incentivize when the range of costs

for student effort is wide and when there is a low probability that students have a high cost

of effort. On the other hand, when teachers themselves have a high cost of effort, then they

are less sensitive to their beliefs about students’ costs and the range of efforts, with the

exception of the case where they believe students have a wide range of costs and there is a

high probability that students have a high cost of effort.

Figure 13: The teachers’ optimal effort decision e∗t as a function of the teachers’ reward
allocation πt when teachers have a) a low cost of effort cl and b) a high cost of effort ch

((cl, ch) = (3, 9) or (5, 7), phs = 0.35 or 0.75, β0 = N , g(N) = 0.6, phs = 0.35, ej = 0.1,
a = 0.35, b = 0.6, πs = 12).

Figure 14 shows teachers’ optimal effort level e∗t as a function of the students’ reward

allocation πs, where Figure 14a shows the case where teachers’ own cost of effort is low

and Figure 14b shows the case where it is high. In contrast to the previous Figures, here

we see that teachers’ optimal effort decision does not have a monotonic relationship with

88



the student reward allocation. Rather, although the optimal effort decision is initially

increasing in πs, once the reward is sufficiently high, teachers’ effort levels first decrease

before eventually recovering. This behavior is driven by the bounds on students’ effort

level. In particular, when students’ optimal effort level is characterized by an interior

solution, i.e. e∗s ∈ (ej , 1), it is increasing in both the reward πs and teachers’ effort levels et.

However, once their reward allocation is sufficiently high, students will exert the maximum

effort level. Anticipating this, as the reward allocation increases, teachers can decrease their

effort while maintaining a stable level of student effort. (Specifically, for the regions of πs

where teachers’ effort level is decreasing, students will exert maximum effort if their cost of

effort is low and a fixed interior effort level if their cost is high.) These Figures highlight

the importance of properly allocating rewards: an improper allocation may not only be

wasteful – it may be detrimental to the district’s ultimate objective.

Figure 14: The teachers’ optimal effort decision e∗t as a function of the students’ reward
allocation πt when teachers have a) a low cost of effort cl and b) a high cost of effort ch

((cl, ch) = (3, 9) or (5, 7), phs = 0.35 or 0.75, β0 = N , g(N) = 0.6, phs = 0.35, ej = 0.1,
a = 0.35, b = 0.6, πt = 12).

3.5.2. Probability of Achieving Proficiency

Finally, we evaluate the probability that the school reaches the proficient state by the end

of the year (at t = 1) under teachers’ and students’ optimal effort levels. Using the previous

results, we can determine the optimal effort decisions for a given reward allocation and,

therefore, the probability of moving to the proficient state. We use Pr∗ [β1 = P |β0] to

represent the probability that the school is in the proficient state at the end of the period

under the teachers’ and students’ optimal effort decisions, namely e∗s (et, πs) and e∗t (πs, πt),
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for given values of the teachers’ and students’ actual costs of effort, ct and cs.

Figure 15 shows the probability that the school is in the proficient state at the end of the

period under the optimal effort decisions as a function of the student and teacher reward

allocations. Dashed lines illustrate two possible values of the budget constraint M .

Figure 15: The probability that the school ends the year in the proficient state,
Pr∗ [β1 = P |β0] as a function of the students’ and teachers’ reward allocation, πs and πt
with budget constraint M = 20 and M = 40 shown (β0 = N , g(N) = 0.6, phs = 0.35,
ej = 0.1, a = 0.35, b = 0.6, cl = 3, ch = 9, ct = ch, and cs = cl).

The Figures make clear that for lower budgets (M = 20), the allocation may be irrelevant,

since it will not be possible to incentivize effort beyond the minimum requirement. We

see that when the district has a larger budget (M = 40), the reward allocation appears

to be more consequential. In this illustration, allocating the entire reward to teachers

(πt = 40, πs = 0) results in less than a 20 percent probability of ending the year in the

proficient state, whereas an optimal allocation (πt = 26, πs = 14) can result in a 60 percent

probability, a threefold improvement.

3.6. Discussion

In this chapter, we present a Stackelberg model of coproduction in a classroom setting. We

assume that the school district offers performance-based incentives to teachers and students
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at the beginning of the year, which they will earn if a sufficient proportion of students in the

school are assessed to be proficient or higher on the end-of-the-year assessments. Observing

that reward, teachers and students, in turn, determine whether to exert effort beyond an

exogenously-determined minimum effort level.

Our initial results highlight the differing levels of complexity of the teachers’ and students’

effort decisions. In particular, students, who make their decision having observed both the

district’s allocation decision and teachers’ effort level decision, will make an effort decision

that is always increasing in both their reward allocation and teachers’ effort level decision.

On the other hand, teachers makes their effort level decision having observed the reward

allocation but uncertain about students’ cost of exerting effort. Thus, while their effort

level will increase in their own reward, it is non-monotone in students’ reward allocation.

Specifically, it will temporarily decrease in students’ reward allocation when it is high enough

to induce students to exert a maximum level of effort under low costs.

These results give us the building blocks for further analysis. In particular, in this work, we

consider only the students’ and teachers’ optimal effort decisions and take the performance-

based incentives as given. We leave to future work the study of the optimal allocation of

incentives by the school district.
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APPENDIX

A.1. Notation Table for Chapter 1

Notation Description

t = 0, 1, 2 Time indices corresponding to beginning, middle, and end
of the school year, respectively

βt State of proficiency at time t, either proficient (P) or not
proficient (N)

α(e) Probability of transitioning from N to P as a function of
effort e at any period t

1− δ(e) Probability of transitioning from P to P as a function of
effort e at any period t

A(P ) Response-to-effort parameter
B(P ) “Stickiness” of the proficient state
µ Student resilience parameter
zI District’s binary choice of whether to invest in an interim

assessment
X1 Midyear result from formative assessments, either proficient

(P) or not proficient (N)
φP |P , φP |N True positive rate and false positive rate of the formative

assessments result, respectively
π Merit-based incentive
γ Marginal cost of effort at time t
St State of the system at time t
M School’s available budget
F Cost of interim assessment
et (St, π, zI) Effort at time t as a function of state St, merit-based incen-

tive π, and assessment decision zI
(e∗0 (S0, π, zI) , e

∗
1 (S1, π, zI)) Optimal teachers’ response policy

Pr∗ [S2|S0] Probability school will be in proficient state at the end of
the year under optimal teachers’ response policy for fixed π
and zI

Pr∗zI [S2|S0] Probability school will be in proficient state at the end of
the year under optimal teachers’ response policy and optimal
merit-based incentive for fixed zI

Table 3: Description of model’s notation.

A.2. Parameter Estimation for Chapter 1

In the Figure above, we use “base-case” parameters that we estimated using data from

several sources. First, we use results from the DC Comprehensive Assessment System (DC

CAS), the end-of-year standardized tests for District of Columbia Public Schools (DCPS)
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(District of Columbia Public Schools, 2018a). This is a publicly-available dataset that

includes eight years of school performance data (2006-07 through 2013-14) for both reading

and math. For each school year, the number and percentage of test takers that fall into

each proficiency category (below basic, basic, proficient, and advanced) are given by school

and grade level for both the reading and math assessments.

Figure 16: Probability of achieving proficiency (P ) at the end of a given year based on the
state of proficiency (P or N) in the previous year by subject for District of Columbia Public
Schools from 2006-2014.

We base school-level proficiency targets on the 2006-07 annual measurable objectives for

DCPS, given in the Assessment and Accountability Manual (District of Columbia Office of

the State Superintendent of Education, 2011). In particular, for each subject, we average

the elementary and secondary targets for the 2006-07 school year and round to the nearest

integer. Thus, we define a school as being in the proficient state if at least 45 percent of

students are proficient or above in reading and at least 40 percent of students are proficient

or above in math. We use these target values for all of the school years in the dataset. Using

these values, we calculate that the overall probability that a proficient school remains in the

proficient state the following year is 84 percent for the reading assessment and 60 percent

for the math assessment, and the probability that a not-proficient school moves to the

proficient state is 12 percent for reading and 14 percent for math. We average these and use

72 percent as an estimate of A(P )+B(P ) and 13 percent as an estimation of A(N)+B(N).
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Therefore, the average level of student resilience µ is 0.18. We recognize the inexact nature

of these estimates. First, these transition probabilities are likely to depend on each school,

but we rely on the aggregate district-wide data in the absence of a sufficient number of data

points for each individual school. Moreover, our model specifically considers the impact of

the additional effort teachers might exert given appropriate incentives, but we are unable to

pinpoint that effect by estimating A(P ) and B(P ) separately, nor are we able to estimate the

effort level that resulted in these transition probabilities. Although this data does include

a short period before and after the implementation of IMPACT, accurately accounting for

the effect of that program would require teacher- and classroom-level information which we

do not have.

Additionally, according to Topol et al. (2012), “school districts are spending an average of

$15–$20 or more per student on interim assessments and data management systems to house

their test data.” DCPS enrollment was approximately 45, 000 during this period across 115

schools (District of Columbia Public Schools, 2018b), which suggests a district-wide cost

of at least $675,000–$900,000 if the district chooses to implement interim assessments, or

approximately $5,870–$7,826 per school. Although Figures 3 and 4 show the extreme case

of a free interim assessment, this number provides a useful point of comparison.

The most difficult value to parameterize is the marginal cost of effort each semester (γ),

which represents the maximum cost to teachers for exerting additional effort. Recall that

IMPACT is one of the few programs where financial incentives produced measurable results.

In that program, teachers were eligible for rewards that ranged from $5,000 to $25,000 per

teacher, although only a subset of teachers were eligible for rewards at the upper end of

that range. Furthermore, the average number of full-time teachers at a DC public school is

35 (District of Columbia Public Schools, 2018c). Based on these values, we assume that the

average maximum cost of effort per teacher is $10,000 over the entire school year. Then,

for one school, 2γ is $350,000.

Finally, we recognize that the accuracy of formative assessments can vary greatly depending
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on the teacher and setting.

A.3. Proofs of Analytical Results

Lemma 3 Define

m(e0,S0) =


1− δ(e0), if S0 = P,

α(e0), if S0 = N.

(A.1)

Then,

Pr [h1 (e0,S0) = (P, e0,S0)] = φP |Pm(e0,S0) + φP |N (1−m(e0,S0)) , (A.2)

and

Pr [h2 (e1,S1) = P ] = (1− δ (e1))Pr [β1 = P |S1] + α (e1) (1− Pr [β1 = P |S1]) , (A.3)

where

Pr [β1 = P |S1] =


φP |Pm(e0,S0)

φP |Pm(e0,S0)+φP |N (1−m(e0,S0)) , if S1 = (P, e0,S0) ,

(1−φP |P )m(e0,S0)

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))
, if S1 = (N, e0,S0) .

(A.4)

Proof of Lemma 3

When zI = 0, the value of β1 is not known with certainty, and at t = 1, the result of

the formative assessment, X1, is revealed. Focusing on X1 = P , we have to consider two

possible combinations for S1: (P, e0, P ) and (P, e0, N). The probability of having the first

combination is the sum of two probabilities: the one having β1 = P and then generating

X1 = P ((1− δ (e0))φP |P ) and the one having β1 = N and then generating X1 = P

(δ (e0)φP |N ). Thus, we obtain the first line in (A.2). The derivation of the second line in

(A.2) follows the same steps.

The analysis for t = 2 involves two steps. First, (A.3) connects the probability that β1 = P
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to the probability that β2 = P as well, accounting for transitions between β1 = P and

β1 = N and β2 = P . Second, (A.4) looks at four possible values of the state at t = 1,

(X1, e0,S0): S1 = (P, e0, P ), S1 = (N, e0, P ), S1 = (P, e0, N), and S1 = (N, e0, N). For

each of these states, (A.1)-(A.4) express the probability that β1 = P . Below we show

the derivation of this probability for the case of S1 = (P, e0, P ); the derivations for the

remaining cases follows the same steps. Using Bayes’ rule, we have

Pr [β1 = P |X1 = P, e0,S0 = P ]

= (Pr [X1 = P |β1 = P, e0,S0 = P ]Pr [β1 = P |e0,S0 = P ])

÷ (Pr [X1 = P |β1 = P, e0,S0 = P ]Pr [β1 = P |e0,S0 = P ]

+Pr [X1 = P |β1 = N, e0,S0 = P ]Pr [β1 = N |e0,S0 = P ])

=
φP |P (1− δ (e0))

φP |P (1− δ (e0)) + φP |Nδ (e0)
. (A.5)

When zI = 1, the probabilities are obtained by letting φP |P = 1 and φP |N = 0. In this

case, β1 is known exactly, and the response to the effort levels at both t = 0 and t = 1 is

described by (1.1)-(1.2). �

Proof of Proposition 1

The teachers’ “profit-to-go” function at t = 1 is

J1 (S1) = max
e1≥0

[πPr [S2 = P |S1]− γe1] , (A.6)

where the state of the system at t = 1 is given in (1.8), i.e.,

S1 =


(X1, e0,S0) , if zI = 0,

β1, if zI = 1.

(A.7)

The maximization in the expression for the profit-to-go function for t = 1 when zI = 0 is

carried over a concave function of e1 for any value of S1. In particular, using (A.3) and
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(A.6), this is represented by

J1(S1) = max
e1∈[0,1]

[π ((1− δ (e1))Pr [β1 = P |S1] + α (e1) (1− Pr [β1 = P |S1]))− γe1] ,

(A.8)

with α (e1) and δ (e1) given by (1.1) and (1.2), respectively, and Pr [β1 = P |S1] given by

(A.4). Then, the effort level maximizing (A.8) is given by

e∗1 (S1) =


0, if π

γ < T1 (S1) ,

1, if T1 (S1) ≤ π
γ ,

(A.9)

and the corresponding profit-to-go function is

J1(S1) =


π ((B(P )−B(N))Pr [β1 = P |S1] +B(N)) , if π

γ < T1 (S1) ,

π ((A(P )−A(N) +B(P )−B(N))Pr [β1 = P |S1]

+A(N) +B(N))− γ, if T1 (S1) ≤ π
γ ,

(A.10)

where

T1 (S1) =
1

(A(P )−A(N))Pr [β1 = P |S1] +A(N)
(A.11)

and

Pr [β1 = P |S1] =


φP |Pm(e0,S0)

φP |Pm(e0,S0)+φP |N (1−m(e0,S0)) , if S1 = (P, e0,S0) ,

(1−φP |P )m(e0,S0)

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))
, if S1 = (N, e0,S0) .

(A.12)

We refer to T1 (S1) as the effort-inducing incentive threshold for the second half of the year.

The optimal effort level at t = 1 when the district invests in an interim assessment (zI = 1)

is the special case when φP |P = 1 and φP |N = 0. (Here and below we omit, for simplicity,

the designation (π, zI) when referring to the profit-to-go functions and the optimal effort
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levels.)

Under Assumptions 1 and 2 and using (A.4), we have that

Pr [β1 = P |S1 = (P, e0,S0)] ≥ Pr [β1 = P |S1 = (N, e0,S0)] , (A.13)

which implies that T1 (P, e0,S0) ≤ T1 (N, e0,S0) . Thus, the threshold is decreasing in the

observed midyear level of proficiency.

Next, to show that the threshold is decreasing in the level of student resiliency, first rewrite

the threshold, combining (A.11) and (A.12):

T1 (S1) =


φP |P (A(S0)e0+B(S0))+φP |N (1−(A(S0)e0+B(S0)))

A(P )(φP |P (A(S0)e0+B(S0))+µφP |N (1−(A(S0)e0+B(S0))))
, if S1 = (P, e0,S0) ,

(1−φP |P )(A(S0)e0+B(S0))+(1−φP |N)(1−(A(S0)e0+B(S0)))

A(P )((1−φP |P )(A(S0)e0+B(S0))+µ(1−φP |N)(1−(A(S0)e0+B(S0))))
, if S1 = (N, e0,S0) .

(A.14)

Applying Assumption 1:

T1 (X1, e0, N) =



µ(A(P )e0+B(P ))φP |P+(1−µ(A(P )e0+B(P )))φP |N

A(P )(µ(A(P )e0+B(P ))φP |P+µ(1−µ(A(P )e0+B(P )))φP |N)
,

if S1 = (P, e0, N) ,

µ(A(P )e0+B(P ))(1−φP |P )+(1−µ(A(P )e0+B(P )))(1−φP |N)
A(P )(µ(A(P )e0+B(P ))(1−φP |P )+µ(1−µ(A(P )e0+B(P )))(1−φP |N))

,

if S1 = (N, e0, N) .

(A.15)

98



and

T1 (X1, e0, P ) =



(A(P )e0+B(P ))φP |P+(1−(A(P )e0+B(P )))φP |N

A(P )((A(P )e0+B(P ))φP |P+µ(1−(A(P )e0+B(P )))φP |N)
,

if S1 = (P, e0, P ) ,

(A(P )e0+B(P ))(1−φP |P )+(1−(A(P )e0+B(P )))(1−φP |N)
A(P )((A(P )e0+B(P ))(1−φP |P )+µ(1−(A(P )e0+B(P )))(1−φP |N))

,

if S1 = (N, e0, P ) .

(A.16)

It is clear that T1 (X1, e0, P ) is decreasing in µ. Furthermore,

∂

∂µ
T1 (P, e0, N) = (A(P )e0 +B(P ))

(
φP |P − φP |N

)
×
(
µA(P )

(
φP |N +

(
φP |P − µφP |N

)
(A(P )e0 +B(P ))

))−1

−
(
A(P )φP |N +

(
A(P )φP |P − 2µA(P )φP |N

)
(A(P )e0 +B(P ))

)
×
(
φP |N + µ (A(P )e0 +B(P ))

(
φP |P − φP |N

))
×
(
µA(P )

(
φP |N +

(
φP |P − µφP |N

)
(A(P )e0 +B(P ))

))−2
. (A.17)

Then,

∂

∂µ
T1 (P, e0, N) < 0

⇐⇒ 0 < (1− µ (A(P )e0 +B(P )))φP |N

+ (A(P )e0 +B(P ))
(
φP |P − µφP |N − µ2

(
φP |P − φP |N

)
(A(P )e0 +B(P ))

)
, (A.18)
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which clearly holds. Furthermore,

∂

∂µ
T1 (N, e0, N)

= − (A(P )e0 +B(P ))
(
φP |P − φP |N

)
×
(
µA(P )

((
1− φP |N

)
+
((

1− φP |P
)
−
(
1− φP |N

)
µ
)

(A(P )e0 +B(P ))
))−1

−
((

1− φP |N
)
− µ (A(P )e0 +B(P ))

(
φP |P − φP |N

))
×
(
µA(P )

((
1− φP |N

)
+
((

1− φP |P
)
−
(
1− φP |N

)
µ
)

(A(P )e0 +B(P ))
))−2

×
(
A(P )

(
1− φP |N

)
+
(
A(P )

(
1− φP |P

)
− 2µ

(
1− φP |N

)
A(P )

)
(A(P )e0 +B(P ))

)
.

(A.19)

Then,

∂

∂µ
T1 (N, e0, N) < 0

⇐⇒ 0 < (1− µ (A(P )e0 +B(P )))2 (1− φP |N)
+ (A(P )e0 +B(P ))

(
1− φP |P

) (
1− µ2 (A(P )e0 +B(P ))

)
, (A.20)

which clearly holds. Therefore, the midyear effort-inducing incentive threshold is decreasing

in student resilience.

Finally, it is straightforward to show that

T1 (X1, 1,S0) ≤ T1 (X1, 0,S0) ⇐⇒ 1 ≥ µ, (A.21)

for X1 = P,N , which holds under Assumption 1. �

Proof of Proposition 2

To establish the results of this Proposition, we rely on the assumption given in (A.22).

Assume that the false positive and true positive rates of the formative-assessment result

and the response-to-effort and baseline transition probability parameters are related by the
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following equation:

(
1− φP |P

)
φP |N

φP |P − φP |N
≤ (1− (A(P ) +B(P )))B(P )

A(P )
. (A.22)

Note that this condition holds when φP |P is sufficiently high and φP |N is sufficiently low,

i.e. for a reasonably accurate formative assessment.

Additionally, we use the following results.

Lemma 4 Let

C3 (S0) =
(
1 + φP |N +

(
φP |P − φP |N

)
(A(S0) +B(S0))

)
÷
(
A(S0)

(
A(P )φP |P +B(P )− µ

(
A(P )φP |N +B(P )

))
+A(P )

(
φP |P − µφP |N

)
B(S0) + µA(P )φP |N

)
. (A.23)

Then, for all values of S0,

max{T1 (P, 1,S0) , C3 (S0)} = C3 (S0) , and (A.24)

min

{
T1 (P, 1,S0) ,

1

(1− µ)A(S0)B(P )

}
= T1 (P, 1,S0) . (A.25)

Proof of Lemma 4

Let

E4 (S0) =
A(P )φP |P (A(S0) +B(S0)) + µA(P )φP |N (1− (A(S0) +B(S0)))

A(S0)
(
φP |P (A(S0) +B(S0)) + φP |N (1− (A(S0) +B(S0)))

) + (1− µ)A(P ).

(A.26)
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Then,

T1 (P, 1,S0) ≤ C3 (S0)

⇐⇒
φP |P (A(S0) +B(S0)) + φP |N (1− (A(S0) +B(S0)))

A(P )φP |P (A(S0) +B(S0)) + µA(P )φP |N (1− (A(S0) +B(S0)))

≤
(
1 + φP |N +

(
φP |P − φP |N

)
(A(S0) +B(S0))

)
÷
(
A(S0)

(
A(P )φP |P +B(P )− µ

(
A(P )φP |N +B(P )

))
+A(P )B(S0)

(
φP |P − µφP |N

)
+ µA(P )φP |N

)
⇐⇒ (1− µ) (A(P ) +B(P ))

≤
A(P )φP |P (A(S0) +B(S0)) + µA(P )φP |N (1− (A(S0) +B(S0)))

A(S0)
(
φP |P (A(S0) +B(S0)) + φP |N (1− (A(S0) +B(S0)))

) + (1− µ)A(P )

⇐⇒ (1− µ) (A(P ) +B(P )) ≤ E4 (S0) . (A.27)

Note that E4(N) ≥ 1. Furthermore,

E4(P ) ≥ (1− µ) (A(P ) +B(P ))

⇐⇒
φP |P (A(P ) +B(P )) + µφP |N (1− (A(P ) +B(P )))

φP |P (A(P ) +B(P )) + φP |N (1− (A(P ) +B(P )))
+A(P )(1− µ)

≥ (1− µ) (A(P ) +B(P ))

⇐⇒ µ ≥
B(P )φP |N − (A(P ) +B(P ))

(
(1−B(P ))φP |P +B(P )φP |N

)
B(P )φP |P (A(P ) +B(P )) + φP |N (1 +B(P )) (1− (A(P ) +B(P )))

. (A.28)

Consider the term on the right-hand side of the inequality in (A.28). Under Assumptions 1

and 2, the denominator is clearly positive, and the numerator is negative, since

B(P )

A(P ) +B(P )
<

(1−B(P ))φP |P +B(P )φP |N

φP |N
. (A.29)

Thus, (A.28) holds. (A.24) follows.
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Additionally, it is straightforward to show that

1

(1− µ)A(S0)B(P )
≥ T1 (P, 1,S0) ⇐⇒ E4 (S0) ≥ (1− µ) (A(P ) +B(P )) , (A.30)

which we show to be true above. (A.25) follows. �

Lemma 5 The second-period effort-inducing incentive threshold is decreasing in first-period

effort, i.e.

T1 (P, 1,S0) ≤ T1 (P, 0,S0) and T1 (N, 1,S0) ≤ T1 (N, 0,S0) . (A.31)

Furthermore, when (A.22) holds, then the cost-to-incentive ratio threshold is always lower

under a proficient formative-assessment result, i.e.

T1 (N, 1,S0) ≥ T1 (P, 0,S0) . (A.32)

Proof of Lemma 5

As noted in Proposition 1,

T1 (X1, 1,S0) ≤ T1 (X1, 0,S0) . (A.33)

Next, compare the boundaries on the cost-of-effort to reward ratio under different values of
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the formative assessment result. Specifically,

min {T1 (N, 0,S0) , T1 (N, 1,S0)} ≥ max {T1 (P, 0,S0) , T1 (P, 1,S0)}

⇐⇒ T1 (N, 1,S0) ≥ T1 (P, 0,S0)

⇐⇒
(
1− φP |P

)
(A(S0) +B(S0)) +

(
1− φP |N

)
(1− (A(S0) +B(S0)))

A(P )
((

1− φP |P
)

(A(S0) +B(S0)) + µ
(
1− φP |N

)
(1− (A(S0) +B(S0)))

)
≥

φP |PB(S0) + φP |N (1−B(S0))

A(P )
(
φP |PB(S0) + µφP |N (1−B(S0))

)
⇐⇒ (1− (A(S0) +B(S0)))B(S0)

A(S0)
≥
(
1− φP |P

)
φP |N

φP |P − φP |N
. (A.34)

Then, if S0 = P ,

T1 (N, 1, P ) ≥ T1 (P, 0, P ) ⇐⇒ (1− (A(P ) +B(P )))B(P )

A(P )
≥
(
1− φP |P

)
φP |N

φP |P − φP |N
, (A.35)

and if S0 = N ,

T1 (N, 1, N) ≥ T1 (P, 0, N) ⇐⇒ (1− µ (A(P ) +B(P )))B(P )

A(P )
≥
(
1− φP |P

)
φP |N

φP |P − φP |N
,

(A.36)

where (1−(A(P )+B(P )))B(P )
A(P ) ≤ (1−µ(A(P )+B(P )))B(P )

A(P ) . Then, (A.32) follows from (A.22). �
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Lemma 6 Define the following constants:

E1 (S0) =
A(P )

(
1− φP |P

)
B(S0) + µA(P )

(
1− φP |N

)
(1−B(S0))

A(S0)
((

1− φP |P
)
B(S0) +

(
1− φP |N

)
(1−B(S0))

) , (A.37)

E2 (S0) =
(
A(P ) (A(S0) +B(S0))

(
1− φP |P

)
+ µA(P ) (1− (A(S0) +B(S0)))

(
1− φP |N

)
+A(S0)A(P ) (1− µ)

(
1− φP |N

) (
1− φP |P

))
÷
(
A(S0)

((
1− φP |P

)
(A(S0) +B(S0)) +

(
1− φP |N

)
(1− (A(S0) +B(S0)))

))
,

(A.38)

E3 (S0) =

(
A(P )φP |PB(S0) + µA(P )φP |N (1−B(S0))

) (
1 +

(
φP |P − φP |N

)
A(S0)

)
A(S0)

(
B(S0)φP |P + (1−B(S0))φP |N

)
+A(P )

(
1− φP |P

)
− µA(P )

(
1− φP |N

)
, (A.39)

C1 (S0) =
(
2−

(
φP |P − φP |N

)
B(S0)− φP |N

)
÷ ((1− µ)A(S0) (A(P ) +B(P ))

+A(P )B(S0)
(
1− φP |P

)
+ µA(P ) (1−B(S0))

(
1− φP |N

))
, (A.40)

C2 (S0) =
1 +

(
φP |P − φP |N

)
A(S0)

A(S0)
((
A(P )φP |P +B(P )

)
− µ

(
A(P )φP |N +B(P )

)) , (A.41)

C3 (S0) =
(
1 + φP |N +

(
φP |P − φP |N

)
(A(S0) +B(S0))

)
÷
(
A(S0)

(
A(P )φP |P +B(P )− µ

(
A(P )φP |N +B(P )

))
+A(P )

(
φP |P − µφP |N

)
B(S0) + µA(P )φP |N

)
. (A.42)

Then, the following statements are true:

a)

max

{
T1 (N, 0,S0) ,

1

(1− µ)A(S0) (A(P ) +B(P ))

}

=



1
(1−µ)A(S0)(A(P )+B(P )) , if S0 = N, or

if S0 = P and E1(P ) ≥ (1− µ) (A(P ) +B(P )) ,

T1 (N, 0,S0) , if S0 = P and E1(P ) < (1− µ) (A(P ) +B(P )) .

(A.43)
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b)

min{T1 (N, 0,S0) , C1 (S0)}

=


T1 (N, 0,S0) , if S0 = N, or

if S0 = P and E1(P ) ≥ (1− µ) (A(P ) +B(P )) ,

C1 (S0) , if S0 = P and E1(P ) < (1− µ) (A(P ) +B(P )) .

(A.44)

c)

max{T1 (N, 1,S0) , C1 (S0)}

=


C1 (S0) , if S0 = N, or

if S0 = P and E2(P ) ≥ (1− µ) (A(P ) +B(P )) ,

T1 (N, 1,S0) , if S0 = P and E2(P ) < (1− µ) (A(P ) +B(P )) .

(A.45)

d)

min {T1 (N, 1,S0) , C2 (S0)}

=


C2 (S0) , if S0 = P and E2(P ) < (1− µ) (A(P ) +B(P )) ,

T1 (N, 1,S0) , if S0 = N, or

if S0 = P and E2(P ) ≥ (1− µ) (A(P ) +B(P )) .

(A.46)
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e)

max{T1 (P, 0,S0) , C2 (S0)}

=


T1 (P, 0,S0) , if S0 = P and E3(P ) < (1− µ) (A(P ) +B(P )) ,

C2 (S0) , if S0 = N, or

if S0 = P and E3(P ) ≥ (1− µ) (A(P ) +B(P )) .

(A.47)

f)

min{T1 (P, 0,S0) , C3 (S0)}

=


T1 (P, 0,S0) , if S0 = N, or

if S0 = P and E3(P ) ≥ (1− µ) (A(P ) +B(P )) ,

C3 (S0) , if S0 = P and E3(P ) < (1− µ) (A(P ) +B(P )) .

(A.48)

Proof of Lemma 6

We use (A.11) and (A.12) and plug in the relevant values of e0 to simplify these boundaries.

Then, when e0 = 0,

T1 (S1) =


B(S0)φP |P+(1−B(S0))φP |N

A(P )(B(S0)φP |P+µ(1−B(S0))φP |N)
, if S1 = (P, 0,S0) ,

B(S0)(1−φP |P )+(1−B(S0))(1−φP |N)
A(P )(B(S0)(1−φP |P )+µ(1−B(S0))(1−φP |N))

, if S1 = (N, 0,S0) .

(A.49)

and when e0 = 1,

T1 (S1) =


(A(S0)+B(S0))φP |P+(1−(A(S0)+B(S0)))φP |N

A(P )((A(S0)+B(S0))φP |P+µ(1−(A(S0)+B(S0)))φP |N)
, if S1 = (P, 1,S0) ,

(A(S0)+B(S0))(1−φP |P )+(1−(A(S0)+B(S0)))(1−φP |N)
A(P )(A(S0)+B(S0))(1−φP |P )+µA(P )(1−(A(S0)+B(S0)))(1−φP |N)

, if S1 = (N, 1,S0) .

(A.50)
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a) From (A.37),

E1 (S0) =
A(P )B(S0)

(
1− φP |P

)
+ µA(P ) (1−B(S0))

(
1− φP |N

)
A(S0)

(
B(S0)

(
1− φP |P

)
+ (1−B(S0))

(
1− φP |N

)) . (A.51)

Then,

max

{
T1 (N, 0,S0) ,

1

(1− µ)A(S0) (A(P ) +B(P ))

}

=


(1− µ) (A(P ) +B(P ))A(S0), if E1 (S0) ≥ (1− µ) (A(P ) +B(P )) ,

T1 (N, 0,S0) , if E1 (S0) < (1− µ) (A(P ) +B(P )) .

(A.52)

Note that E1(N) ≥ 1. (A.43) follows.

b) The following result, which always holds when S0 = N , gives (A.44):

C1 (S0) ≥ T1 (N, 0,S0)

⇐⇒
2−

(
φP |P − φP |N

)
B(S0)− φP |N

(1− µ)A(S0) (A(P ) +B(P )) +A(P )B(S0)
(
1− φP |P

)
+ µA(P ) (1−B(S0))

(
1− φP |N

)
≥

(
1− φP |P

)
B(S0) +

(
1− φP |N

)
(1−B(S0))

A(P )
(
B(S0)

(
1− φP |P

)
+ µ (1−B(S0))

(
1− φP |N

))
⇐⇒ E1 (S0) ≥ (1− µ) (A(P ) +B(P )) . (A.53)

c) From (A.40),

C1 (S0) =
(
2−

(
φP |P − φP |N

)
B(S0)− φP |N

)
÷
(
(1− µ)A(S0) (A(P ) +B(P )) +A(P )B(S0)

(
1− φP |P

)
+µA(P ) (1−B(S0))

(
1− φP |N

))
, (A.54)
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and from (A.38),

E2 (S0) =
(
A(P ) (A(S0) +B(S0))

(
1− φP |P

)
+ µA(P ) (1− (A(S0) +B(S0)))

(
1− φP |N

)
+A(S0)A(P )(1− µ)

(
1− φP |N

) (
1− φP |P

))
÷
(
A(S0)

((
1− φP |P

)
(A(S0) +B(S0)) +

(
1− φP |N

)
(1− (A(S0) +B(S0)))

))
.

(A.55)

Then,

C1 (S0) ≥ T1 (N, 1,S0)

⇐⇒
2−

(
φP |P − φP |N

)
B(S0)− φP |N

(1− µ)A(S0) (A(P ) +B(P )) +A(P )B(S0)
(
1− φP |P

)
+ µA(P ) (1−B(S0))

(
1− φP |N

)
≥

(A(S0) +B(S0))
(
1− φP |P

)
+ (1− (A(S0) +B(S0)))

(
1− φP |N

)
A(P ) (A(S0) +B(S0))

(
1− φP |P

)
+ µA(P ) (1− (A(S0) +B(S0)))

(
1− φP |N

)
⇐⇒ E2 (S0) ≥ (1− µ) (A(P ) +B(P )) . (A.56)

Note that E2(N) ≥ 1. (A.45) follows.

d) Recall from (A.41)

C2 (S0) =
1 +

(
φP |P − φP |N

)
A(S0)

A(S0)
((
A(P )φP |P +B(P )

)
− µ

(
A(P )φP |N +B(P )

)) . (A.57)

Then,

C2 (S0) ≥ T1 (N, 1,S0)

⇐⇒
1 +

(
φP |P − φP |N

)
A(S0)

A(S0)
((
A(P )φP |P +B(P )

)
− µ

(
A(P )φP |N +B(P )

))
≥

(A(S0) +B(S0))
(
1− φP |P

)
+ (1− (A(S0) +B(S0)))

(
1− φP |N

)
A(P ) (A(S0) +B(S0))

(
1− φP |P

)
+ µA(P ) (1− (A(S0) +B(S0)))

(
1− φP |N

)
⇐⇒ E2 (S0) ≥ (1− µ) (A(P ) +B(P )) . (A.58)

Note that E2(N) ≥ 1. (A.46) follows.
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e) From (A.39),

E3 (S0) =

(
A(P )φP |PB(S0) + µA(P )φP |N (1−B(S0))

) (
1 +

(
φP |P − φP |N

)
A(S0)

)
A(S0)

(
B(S0)φP |P + (1−B(S0))φP |N

)
+A(P )

(
1− φP |P

)
− µA(P )

(
1− φP |N

)
. (A.59)

Then,

C2 (S0) ≥ T1 (P, 0,S0)

⇐⇒
1 +

(
φP |P − φP |N

)
A(S0)

A(S0)
((
A(P )φP |P +B(P )

)
− µ

(
A(P )φP |N +B(P )

))
≥

B(S0)φP |P + (1−B(S0))φP |N

A(P )
(
B(S0)φP |P + µ (1−B(S0))φP |N

)
⇐⇒ E3 (S0) ≥ (1− µ) (A(P ) +B(P )) . (A.60)

Note that E3(N) ≥ 1. (A.47) follows.

f) Recall from (A.42) that

C3 (S0) =
(
1 + φP |N +

(
φP |P − φP |N

)
(A(S0) +B(S0))

)
÷
(
A(S0)

(
A(P )φP |P +B(P )− µ

(
A(P )φP |N +B(P )

))
+A(P )

(
φP |P − µφP |N

)
B(S0) + µA(P )φP |N

)
. (A.61)
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Then,

C3 (S0) ≥ T1 (P, 0,S0)

⇐⇒
(
1 + φP |N +

(
φP |P − φP |N

)
(A(S0) +B(S0))

)
÷
(
A(S0)

(
A(P )φP |P +B(P )− µ

(
A(P )φP |N +B(P )

))
+A(P )

(
φP |P − µφP |N

)
B(S0) + µA(P )φP |N

)
≥

B(S0)φP |P + (1−B(S0))φP |N

A(P )
(
B(S0)φP |P + µ (1−B(S0))φP |N

)
⇐⇒ E3 (S0) ≥ (1− µ) (A(P ) +B(P )) . (A.62)

Since E3(N) ≥ 1, (A.48) follows. �

Lemma 7 When (A.22) holds, then

E1(P ) ≤ E2(P ) ≤ E3(P ). (A.63)

Proof of Lemma 7

From (A.37)–(A.39),

E1(P ) =
B(P )

(
1− φP |P

)
+ µ

(
1− φP |N

)
(1−B(P ))

B(P )
(
1− φP |P

)
+ (1−B(P ))

(
1− φP |N

) ,
E2(P ) =

(
(A(P ) +B(P ))

(
1− φP |P

)
+ µ (1− (A(P ) +B(P )))

(
1− φP |N

)
+A(P )(1− µ)

(
1− φP |N

) (
1− φP |P

))
÷
((

1− φP |P
)

(A(P ) +B(P )) +
(
1− φP |N

)
(1− (A(P ) +B(P )))

)
,

E3(P ) =

(
B(P )φP |P + µ (1−B(P ))φP |N

) (
1 +

(
φP |P − φP |N

)
A(P )

)
B(P )φP |P + (1−B(P ))φP |N

+A(P )
((

1− φP |P
)
− µ

(
1− φP |N

))
. (A.64)
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Then,

E1(P ) < E2(P )

⇐⇒
B(P )

(
1− φP |P

)
+ µ

(
1− φP |N

)
(1−B(P ))

B(P )
(
1− φP |P

)
+ (1−B(P ))

(
1− φP |N

)
≤
(
(A(P ) +B(P ))

(
1− φP |P

)
+ µ (1− (A(P ) +B(P )))

(
1− φP |N

)
+A(P )(1− µ)

(
1− φP |N

) (
1− φP |P

))
÷
((

1− φP |P
)

(A(P ) +B(P )) +
(
1− φP |N

)
(1− (A(P ) +B(P )))

)
⇐⇒ B(P )φP |P + (1−B(P ))φP |N ≤ 2, (A.65)

which holds under Assumptions 1 and 2. Moreover,

E2(P ) ≤ E3(P )

⇐⇒
(
(A(P ) +B(P ))

(
1− φP |P

)
+ µ (1− (A(P ) +B(P )))

(
1− φP |N

)
+A(P )(1− µ)

(
1− φP |N

) (
1− φP |P

))
÷
((

1− φP |P
)

(A(P ) +B(P )) +
(
1− φP |N

)
(1− (A(P ) +B(P )))

)
≤
(
B(P )φP |P + µ (1−B(P ))φP |N

) (
1 +

(
φP |P − φP |N

)
A(P )

)
B(P )φP |P + (1−B(P ))φP |N

+A(P )
((

1− φP |P
)
− µ

(
1− φP |N

))
⇐⇒

φP |N
(
1− φP |P

)
φP |P − φP |N

≤ B(P ) (1−A(P )−B(P ))

A(P )
, (A.66)

which holds by assumption, as given in (A.22). �

The profit-to-go function for t = 0 under the formative assessment (zI = 0) is

J0(S0) = max
e0∈[0,1]

[Pr [h1 (e0,S0) = (N, e0,S0)] J1 (N, e0,S0)

+Pr [h1 (e0,S0) = (P, e0,S0)] J1 (P, e0,S0)− γe0] , (A.67)

with Pr [h1 (e0,S0)] given in (A.2) and J1 (S1) given in (A.10). Using the results from
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Lemma 3 and (A.10), the first term in the expression is

Pr [h1 (e0,S0) = (N, e0,S0)] J1 (N, e0,S0)

=



π
(
B(P )

(
1− φP |P

)
m(e0,S0) +B(N)

(
1− φP |N

)
(1−m(e0,S0))

)
,

if π
γ < T1 (N, e0,S0) ,

((A(P ) +B(P ))π − γ)
(
1− φP |P

)
m(e0,S0)

+ (µ (A(P ) +B(P ))π − γ)
(
1− φP |N

)
(1−m(e0,S0)) ,

if T1 (N, e0,S0) ≤ π
γ ,

(A.68)

and the second term is

Pr [h1 (e0,S0) = (P, e0,S0)] J1 (P, e0,S0)

=


π
(
B(P )φP |Pm(e0,S0) +B(N)φP |N (1−m(e0,S0))

)
, if π

γ < T1 (P, e0,S0) ,

((A(P ) +B(P ))π − γ)φP |Pm(e0,S0)

+ (µ (A(P ) +B(P ))π − γ)φP |N (1−m(e0,S0)) , if T1 (P, e0,S0) ≤ π
γ .

(A.69)

Both terms are clearly linear functions of e0, as is the third term, γe0. Therefore, the

optimal value of e0 must be 0 or 1.

We next characterize the conditions under which each value is optimal. Recall from (A.13)

that for any e0,

T1 (P, e0,S0) ≤ T1 (N, e0,S0) , (A.70)

where from (A.11) and (A.12)

T1 (S1) =


φP |Pm(e0,S0)+φP |N (1−m(e0,S0))

A(P )(φP |Pm(e0,S0)+µφP |N (1−m(e0,S0)))
, if S1 = (P, e0,S0) ,

(1−φP |P )m(e0,S0)+(1−φP |N)(1−m(e0,S0))

A(P )((1−φP |P )m(e0,S0)+µ(1−φP |N)(1−m(e0,S0)))
, if S1 = (N, e0,S0) .

(A.71)
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and from (1.1), (1.2), and (A.1),

m(e0,S0) =


B(S0), if e0 = 0,

A(S0) +B(S0), if e0 = 1.

(A.72)

Furthermore, by Lemma 5,

T1 (P, 1,S0) ≤ T1 (P, 0,S0) ≤ T1 (N, 1,S0) ≤ T1 (N, 0,S0) . (A.73)

Then, we must consider the following regions of the scaled incentive π
γ . First, if T1 (N, 0,S0) ≤

π
γ , then e∗1 (S1) = 1 for all S1, so (A.67) is

J0(S0) = max
e0∈[0,1]

[((A(P ) +B(P ))π − γ)m(e0,S0)

+ (µ (A(P ) +B(P ))π − γ) (1−m(e0,S0))− γe0] . (A.74)

Comparing the case where e0 = 0 to e0 = 1 gives the following result:

e∗0 =


0, if T1 (N, 0,S0) ≤ π

γ <
1

(1−µ)A(S0)(A(P )+B(P )) ,

1, if max
{
T1 (N, 0,S0) , 1

(1−µ)A(S0)(A(P )+B(P ))

}
≤ π

γ .

(A.75)

Second, if T1 (N, 1,S0) ≤ π
γ < T1 (N, 0,S0), then

e∗1 (S1) =


0, if S1 = (N, 0,S0) ,

1, if S1 = (N, 1,S0) or S1 = (P, e0,S0) ,

(A.76)

so (A.67) is J0(S0) = max
[
J 0,J 1

]
, where

J 0 =
(
B(P )π + (A(P )π − γ)φP |P

)
B(S0) +

(
µB(P )π + (µA(P )π − γ)φP |N

)
(1−B(S0))

(A.77)
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corresponds to the case where the function being maximized in the profit-to-go function is

evaluated at e0 = 0, and

J 1 = ((A(P ) +B(P ))π − γ) (A(S0) +B(S0))

+ (µ (A(P ) +B(P ))π − γ) (1− (A(S0) +B(S0)))− γ (A.78)

corresponds to the case where e0 = 1. Now,

J 1 ≥ J 0 ⇐⇒ π

γ
≥ C1 (S0) , (A.79)

where, from (A.40),

C1 (S0)

=
2−

(
φP |P − φP |N

)
B(S0)− φP |N

(1− µ)A(S0) (A(P ) +B(P )) +A(P )B(S0)
(
1− φP |P

)
+ µA(P ) (1−B(S0))

(
1− φP |N

) .
(A.80)

Therefore,

e∗0 =


0, if T1 (N, 1,S0) ≤ π

γ < min{T1 (N, 0,S0) , C1 (S0)},

1, if max{T1 (N, 1,S0) , C1 (S0)} ≤ π
γ < T1 (N, 0,S0) .

(A.81)

Third, if T1 (P, 0,S0) ≤ π
γ < T1 (N, 1,S0), then

e∗1 (S1) =


0, if S1 = (N, e0,S0) ,

1, if S1 = (P, e0,S0) ,

(A.82)
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so (A.67) is

J0(S0) = max
e0∈[0,1]

[(
B(P )π + (A(P )π − γ)φP |P

)
m(e0,S0)

+
(
µB(P )π + (µA(P )π − γ)φP |N

)
(1−m(e0,S0))− γe0

]
. (A.83)

Therefore,

e∗0 =


0, if T1 (P, 0,S0) ≤ π

γ < min {T1 (N, 1,S0) , C2 (S0)} ,

1, if max{T1 (P, 0,S0) , C2 (S0)} ≤ π
γ < T1 (N, 1,S0) ,

(A.84)

where, from (A.41),

C2 (S0) =
1 +

(
φP |P − φP |N

)
A(S0)

A(S0)
((
A(P )φP |P +B(P )

)
− µ

(
A(P )φP |N +B(P )

)) . (A.85)

Fourth, if T1 (P, 1,S0) ≤ π
γ < T1 (P, 0,S0), then

e∗1 (S1) =


0, if S1 = (N, e0,S0) or S1 = (P, 0,S0) ,

1, if S1 = (P, 1,S0) ,

(A.86)

so (A.67) is J0(S0) = max
[
J 0,J 1

]
, where

J 0 =πB(P ) (B(S0) + µ (1−B(S0))) (A.87)

corresponds to the case where e0 = 0, and

J 1 =
(
B(P )π + (A(P )π − γ)φP |P

)
(A(S0) +B(S0))

+
(
µB(P )π + (µA(P )π − γ)φP |N

)
(1− (A(S0) +B(S0)))− γ (A.88)
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and corresponds to the case where e0 = 1. Now,

J 1 ≥ J 0 ⇐⇒ π

γ
≥ C3 (S0) , (A.89)

where, from (A.42),

C3 (S0) =
(
1 + φP |N +

(
φP |P − φP |N

)
(A(S0) +B(S0))

)
÷
(
A(S0)

(
A(P )φP |P +B(P )− µ

(
A(P )φP |N +B(P )

))
+A(P )

(
φP |P − µφP |N

)
B(S0) + µA(P )φP |N

)
. (A.90)

and from (A.24) in Lemma 4,

max{T1 (P, 1,S0) , C3 (S0)} = C3 (S0) . (A.91)

Therefore,

e∗0 =


0, if T1 (P, 1,S0) ≤ π

γ < min{T1 (P, 0,S0) , C3 (S0)},

1, if C3 (S0) ≤ π
γ < T1 (P, 0,S0) .

(A.92)

Finally, if π
γ < T1 (P, 1,S0), then e∗1 (S1) = 0 for all S1, so (A.67) is

J0(S0) = max
e0∈[0,1]

[πB(P ) (m(e0,S0) + µ (1−m(e0,S0)))− γe0] . (A.93)

From (A.25) in Lemma 4,

min

{
T1 (P, 1,S0) ,

1

(1− µ)B(P )A(S0)

}
= T1 (P, 1,S0) . (A.94)

Therefore,

e∗0 = 0, if
π

γ
< T1 (P, 1,S0) . (A.95)
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Combining this and applying Lemmas 6 and 7 gives the optimal effort level at t = 0:

e∗0 (S0) =


0, if π

γ < T0 (S0) ,

1, if T0 (S0) ≤ π
γ ,

(A.96)

where

T0(P ) =



1
(1−µ)A(P )(A(P )+B(P )) , if 0 ≤ (1− µ) (A(P ) +B(P )) ≤ E1(P ),

C1(P ), if E1(P ) < (1− µ) (A(P ) +B(P )) ≤ E2(P ),

C2(P ), if E2(P ) < (1− µ) (A(P ) +B(P )) ≤ E3(P ),

C3(P ), if E3(P ) < (1− µ) (A(P ) +B(P )) ,

(A.97)

and

T0(N) =
1

µ(1− µ)A(P ) (A(P ) +B(P ))
. (A.98)

Under the interim assessment, the threshold when school is in the proficient state at the

beginning of the year simplifies to

T0(P ) =


1

(1−µ)A(P )(A(P )+B(P )) , if 0 ≤ (1− µ) (A(P ) +B(P )) ≤ µ,

1+A(P )
A(P )(A(P )+(1−µ)B(P )) , if µ < (1− µ) (A(P ) +B(P )) .

(A.99)

We claim that if the school starts the year in the not-proficient state, the threshold, given

in (A.98), is decreasing in the response-to-effort and stickiness of the proficient state. To

see this, note that

∂

∂A(P )
T0(N) = − 2A(P ) +B(P )

µ(1− µ)A(P ) (A(P ) +B(P ))2 < 0, (A.100)
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and it is clear that T0(N) is decreasing in B(P ). On the other hand, note that

∂

∂µ
T0(N) = − 1− 2µ

µ2(1− µ)2A(P ) (A(P ) +B(P ))
, (A.101)

which is negative for 0 ≤ µ ≤ 1
2 and positive for 1

2 ≤ µ ≤ 1. Additionally, we claim that

T1 (X1, e0, N) ≤ T0(N). From Lemma 5, T1 (P, e0, N) ≤ T1 (N, e0, N), so it suffices to show

that T1 (N, e0, N) ≤ T0(N). Applying Assumption 1 to (A.11),

T1 (N, e0, N) =
µ (A(P )e0 +B(P ))

(
1− φP |P

)
+ (1− µ (A(P )e0 +B(P )))

(
1− φP |N

)
µA(P )

(
(A(P )e0 +B(P ))

(
1− φP |P

)
+ (1− µ (A(P )e0 +B(P )))

(
1− φP |N

)) .
(A.102)

Then,

T1 (N, e0, N) ≤ T0(N)

⇐⇒ − (1− µ (A(P )e0 +B(P ))) (1− (1− µ) (A(P ) +B(P )))
(
1− φP |N

)
≤ (A(P )e0 +B(P )) (1− µ(1− µ) (A(P ) +B(P )))

(
1− φP |P

)
, (A.103)

which always holds under Assumptions 1 and 2. Thus, the claim is true.

Next, consider the change in the threshold levels with respect to µ when the school begins

the year in the proficient case, first note that under Assumptions 1 and 2, E1(P ) > 0 and

E1(P ) ≤ A(P ) +B(P )

⇐⇒ µ ≤ A(P ) +B(P )−
B(P ) (1− (A(P ) +B(P )))

(
1− φP |P

)
(1−B(P ))

(
1− φP |N

) , (A.104)

where the right-hand side of the above inequality is positive:

A(P ) +B(P )−
B(P ) (1− (A(P ) +B(P )))

(
1− φP |P

)
(1−B(P ))

(
1− φP |N

) > 0

⇐⇒ A(P ) > −B(P ) (1−B(P ))

(
φP |P − φP |N

(1−B(P ))
(
1− φP |N

)
+B(P )

(
1− φP |P

)) . (A.105)
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Therefore, there exists µ̄ ∈ (0, 1) such that for µ ∈ [µ̄, 1], 0 ≤ (1 − µ) (A(P ) +B(P )) ≤

E1(P ), and therefore, T0(P ) = 1
(1−µ)A(P )(A(P )+B(P )) . Now, the threshold is clearly increasing

in µ in this region. Furthermore, we can solve for µ̄:

(1− µ̄) (A(P ) +B(P )) = E1(P )

⇐⇒ µ̄ =
(1−B(P )) (A(P ) +B(P ))

(
1− φP |N

)
−B(P ) (1− (A(P ) +B(P )))

(
1− φP |P

)
(1−B(P )) (1 + (A(P ) +B(P )))

(
1− φP |N

)
+B(P ) (A(P ) +B(P ))

(
1− φP |P

) .
(A.106)

Based on the first terms in the numerator and denominator, it is clear that the denominator

is at least twice the numerator, so µ̄ ≤ 1
2 for all values of the parameters. In the case of

the interim assessment, this result is even stronger: the threshold is always increasing in µ.

�

Lemma 8 Recall that e∗0 (S0) and e∗1 (S1) are the optimal teachers’ effort policies. Then,

for the case where the district chooses to rely only on the formative assessment,

Pr∗[S2 = P |S0 = P ] = (1− δ (e∗0 (P ))) (1− δ (e∗1 (P, e∗0 (P ) , P )))φP |P

+ δ (e∗0(P ))α (e∗1 (P, e∗0(P ), P ))φP |N

+ (1− δ (e∗0(P ))) (1− δ (e∗1 (N, e∗0(P ), P )))
(
1− φP |P

)
+ δ (e∗0(P ))α (e∗1 (N, e∗0(P ), P ))

(
1− φP |N

)
, (A.107)

Pr∗[S2 = P |S0 = N ] =α (e∗0(N)) (1− δ (e∗1 (P, e∗0(N), N)))φP |P

+ (1− α (e∗0(N)))α (e∗1 (P, e∗0(N), N))φP |N

+ α (e∗0(N)) (1− δ (e∗1 (N, e∗0(N), N)))
(
1− φP |P

)
+ (1− α (e∗0(N)))α (e∗1 (N, e∗0(N), N))

(
1− φP |N

)
. (A.108)

The probability that the final state is proficient if the district relies on the interim assessment

is obtained by letting φP |P = 1 and φP |N = 0 in (A.107) and (A.108).
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Proof of Lemma 8

When S0 = P , we have

Pr [β1 = P |S1] =


φP |P (1−δ(e∗0(P )))

φP |P (1−δ(e∗0(P )))+φP |N(δ(e∗0(P )))
, if S1 = (P, e∗0(P ),S0) ,

(1−φP |P )(1−δ(e∗0(P )))
(1−φP |P )(1−δ(e∗0(P )))+(1−φP |N)(δ(e∗0(P )))

, if S1 = (N, e∗0(P ),S0) .

(A.109)

Then, with (A.2) and (A.3),

Pr∗[S2 = P |S0 = P ] = (1− δ (e∗1 (X1, e
∗
0(P ), P )))Pr [β1 = P |S1]

+ α (e∗1 (X1, e
∗
0(P ), P )) (1− Pr [β1 = P |S1])

=Pr [S1 = (P, e∗0(P ), P )]

× ((1− δ (e∗1 (P, e∗0 (P ) , P )))Pr [β1 = P |S1 = (P, e∗0(P ),S0)]

+α (e∗1 (P, e∗0(P ), P )) (1− Pr [β1 = P |S1 = (P, e∗0(P ),S0)]))

+ Pr [S1 = (N, e∗0(P ), P )]

× ((1− δ (e∗1 (N, e∗0 (P ) , P )))Pr [β1 = P |S1 = (N, e∗0(P ),S0)]

+α (e∗1 (N, e∗0(P ), P )) (1− Pr [β1 = P |S1 = (N, e∗0(P ),S0)])) .

(A.110)

Simplifying this gives (A.107). Following similar steps for when S0 = N gives (A.108). �

Proposition 14 Suppose the condition in (A.22) holds. Then, the probability that the state

at t = 2 is proficient (S2 = P ) can be described as follows.
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a) For S0 = N ,

Pr∗[S2 = P |S0 = N ]

=



µB(P ) (1 + (1− µ)B(P )) , if 0 ≤ π
γ < T1 (P, 0, N) ,

µ
(
B(P )

(
A(P )φP |P +B(P )

)
+ (1− µB(P ))

(
A(P )φP |N +B(P )

))
, if T1 (P, 0, N) ≤ π

γ < T1 (N, 0, N) ,

µ (A(P ) +B(P )) (1 + (1− µ)B(P )) , if T1 (N, 0, N) ≤ π
γ < T0 (N) ,

µ (A(P ) +B(P )) (1 + (1− µ) (A(P ) +B(P ))) , if T0 (N) ≤ π
γ .

(A.111)

b) For S0 = P and 0 ≤ (1− µ) (A(P ) +B(P )) ≤ E1(P ),

Pr∗[S2 = P |S0 = P ]

=



B(P ) (µ+ (1− µ)B(P )) , if 0 ≤ π
γ < T1 (P, 0, P ) ,

B(P )
(
A(P )φP |P +B(P )

)
+µ (1−B(P ))

(
A(P )φP |N +B(P )

)
, if T1 (P, 0, P ) ≤ π

γ < T1 (N, 0, P ) ,

(A(P ) +B(P )) (µ+ (1− µ)B(P )) , if T1 (N, 0, P ) ≤ π
γ < T0 (P ) ,

(A(P ) +B(P )) (µ+ (1− µ) (A(P ) +B(P ))) , if T0 (P ) ≤ π
γ .

(A.112)
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c) For S0 = P and E1(P ) < (1− µ) (A(P ) +B(P )) ≤ E2(P ),

Pr∗[S2 = P |S0 = P ]

=



B(P ) (µ+ (1− µ)B(P )) , if 0 ≤ π
γ < T1 (P, 0, P ) ,

B(P )
(
A(P )φP |P +B(P )

)
+µ (1−B(P ))

(
A(P )φP |N +B(P )

)
, if T1 (P, 0, P ) ≤ π

γ < T0 (P ) ,

(A(P ) +B(P )) (µ+ (1− µ) (A(P ) +B(P ))) , if T0 (P ) ≤ π
γ .

(A.113)

d) For S0 = P and E2(P ) < (1− µ) (A(P ) +B(P )) ≤ E3(P ),

Pr∗[S2 = P |S0 = P ]

=



B(P ) (µ+ (1− µ)B(P )) , if 0 ≤ π
γ < T1 (P, 0, P ) ,

B(P )
(
A(P )φP |P +B(P )

)
+µ (1−B(P ))

(
A(P )φP |N +B(P )

)
, if T1 (P, 0, P ) ≤ π

γ < T0 (P ) ,

(A(P ) +B(P ))
(
A(P )φP |P +B(P )

)
+µ (1− (A(P ) +B(P )))

(
A(P )φP |N +B(P )

)
, if T0 (P ) ≤ π

γ < T1 (N, 1, P ) ,

(A(P ) +B(P )) (µ+ (1− µ) (A(P ) +B(P ))) , if T1 (N, 1, P ) ≤ π
γ .

(A.114)
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e) For S0 = P and E3(P ) < (1− µ) (A(P ) +B(P )) ≤ 1,

Pr∗[S2 = P |S0 = P ]

=



B(P ) (µ+ (1− µ)B(P )) , if 0 ≤ π
γ < T0 (P ) ,

(A(P ) +B(P ))
(
A(P )φP |P +B(P )

)
+µ (1− (A(P ) +B(P )))

(
A(P )φP |N +B(P )

)
, if T0 (P ) ≤ π

γ < T1 (N, 1, P ) ,

(A(P ) +B(P )) (µ+ (1− µ) (A(P ) +B(P ))) , if T1 (N, 1, P ) ≤ π
γ .

(A.115)

Proof of Proposition 14

First, consider the probability that the final state is proficient when the district relies on

the formative assessment.

Suppose that S0 = N . Then, from (A.98) in Proposition 2, the cost-to-incentive ratio

threshold in period 1 is

T0(N) =
1

µ(1− µ)A(P ) (A(P ) +B(P ))
, (A.116)

and, from (A.15) , the period 2 threshold when S0 = N is

T1 (S1) =


µ(A(P )e0+B(P ))φP |P+(1−µ(A(P )e0+B(P )))φP |N

µA(P )((A(P )e0+B(P ))φP |P+(1−µ(A(P )e0+B(P )))φP |N)
, if S1 = (P, e0, N) ,

µ(A(P )e0+B(P ))(1−φP |P )+(1−µ(A(P )e0+B(P )))(1−φP |N)
µA(P )((A(P )e0+B(P ))(1−φP |P )+(1−µ(A(P )e0+B(P )))(1−φP |N))

, if S1 = (N, e0, N) .

(A.117)

From Lemma 5 and from (A.43) in Lemma 6,

T1 (P, 1, N) ≤ T1 (P, 0, N) ≤ T1 (N, 1, N) ≤ T1 (N, 0, N) ≤ T0(N). (A.118)

For each possible region of π
γ , it is straightforward to determine the optimal effort in each
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period and, plugging that into (A.108), the probability that final state is proficient. Then,

(A.111) follows.

Next, suppose that S0 = P . From (A.97) in Proposition 2, the period 1 cost-to-incentive

ratio threshold is

T0(P ) =



1
(1−µ)A(P )(A(P )+B(P )) , if 0 ≤ (1− µ) (A(P ) +B(P )) ≤ E1(P ),

C1(P ), if E1(P ) < (1− µ) (A(P ) +B(P )) ≤ E2(P ),

C2(P ), if E2(P ) < (1− µ) (A(P ) +B(P )) ≤ E3(P ),

C3(P ), if E3(P ) < (1− µ) (A(P ) +B(P )) ≤ 1,

(A.119)

where, as given above, in (A.37)–(A.42),

E1(P ) =
B(P )

(
1− φP |P

)
+ µ (1−B(P ))

(
1− φP |N

)
B(P )

(
1− φP |P

)
+ (1−B(P ))

(
1− φP |N

) , (A.120)

E2(P ) =
(
(A(P ) +B(P ))

(
1− φP |P

)
+ µ (1− (A(P ) +B(P )))

(
1− φP |N

)
+A(P ) (1− µ)

(
1− φP |N

) (
1− φP |P

))
÷
((

1− φP |N
)
−
(
φP |P − φP |N

)
(A(P ) +B(P ))

)
, (A.121)

E3(P ) =

(
B(P )φP |P + µ (1−B(P ))φP |N

) (
1 +

(
φP |P − φP |N

)
A(P )

)(
B(P )φP |P + (1−B(P ))φP |N

)
+A(P )

((
1− φP |P

)
− µ

(
1− φP |N

))
, (A.122)

C1(P ) =
(
2−

(
φP |P − φP |N

)
B(P )− φP |N

)
(A.123)

÷
(
(1− µ)A(P ) (A(P ) +B(P )) +A(P )B(P )

(
1− φP |P

)
+µA(P ) (1−B(P ))

(
1− φP |N

))
, (A.124)

C2(P ) =
1 +

(
φP |P − φP |N

)
A(P )

A(P )
((
A(P )φP |P +B(P )

)
− µ

(
A(P )φP |N +B(P )

)) , (A.125)

C3(P ) =
(
1 + φP |N +

(
φP |P − φP |N

)
(A(P ) +B(P ))

)
÷
(
A(P )

(
A(P )φP |P +B(P )− µ

(
A(P )φP |N +B(P )

))
+A(P )

(
φP |P − µφP |N

)
B(P ) + µA(P )φP |N

)
. (A.126)
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From (A.11) and (A.12) in Proposition 1, the period 2 threshold is

T1 (S1) =


(A(P )e0+B(P ))φP |P+(1−(A(P )e0+B(P )))φP |N

A(P )((A(P )e0+B(P ))φP |P+µ(1−(A(P )e0+B(P )))φP |N)
, if S1 = (P, e0, P ) ,

(A(P )e0+B(P ))(1−φP |P )+(1−(A(P )e0+B(P )))(1−φP |N)
A(P )((A(P )e0+B(P ))(1−φP |P )+µ(1−(A(P )e0+B(P )))(1−φP |N))

, if S1 = (N, e0, P ) .

(A.127)

When 0 ≤ (1− µ) (A(P ) +B(P )) ≤ E1(P ), from Lemma 5 and from (A.43) in Lemma 6,

T1 (P, 1, P ) ≤ T1 (P, 0, P ) ≤ T1 (N, 1, P ) ≤ T1 (N, 0, P ) ≤ T0(P ). (A.128)

Then, applying (A.108), (A.112) follows.

When E1(P ) < (1−µ) (A(P ) +B(P )) ≤ E2(P ), from Lemma 5 and from (A.44) and (A.45)

in Lemma 6,

T1 (P, 1, P ) ≤ T1 (P, 0, P ) ≤ T1 (N, 1, P ) ≤ T0(P ) ≤ T1 (N, 0, P ) . (A.129)

Then, applying (A.108), (A.113) follows.

If E2(P ) < (1− µ) (A(P ) +B(P )) ≤ E3(P ), from Lemma 5 and from (A.46) and (A.47) in

Lemma 6,

T1 (P, 1, P ) ≤ T1 (P, 0, P ) ≤ T0(P ) ≤ T1 (N, 1, P ) ≤ T1 (N, 0, P ) . (A.130)

Then, applying (A.108), (A.114) follows.

Finally, if E3(P ) < (1 − µ) (A(P ) +B(P )) ≤ 1, from Lemma 5, from (A.48) in Lemma 6,

and from (A.24) in Lemma 4,

T1 (P, 1, P ) ≤ T0(P ) ≤ T1 (P, 0, P ) ≤ T1 (N, 1, P ) ≤ T1 (N, 0, P ) . (A.131)
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Then, applying (A.108), (A.115) follows.

Note that in each case, it is straightforward to show that the the probability that final state

is proficient is non-decreasing in the scaled incentive threshold. �

Proposition 15 Suppose that B(P ) = 0. Then, the probability that the state at t = 2 is

proficient (S2 = P ) can be described as follows.

a) For S0 = N ,

P̃ r
∗
[S2 = P |S0 = N ] =


0, if 0 ≤ π

γ <
1

µA(P ) ,

µA(P ), if 1
µA(P ) ≤

π
γ < T̃0 (N) ,

µA(P ) (1 + (1− µ)A(P )) , if T̃0 (N) ≤ π
γ .

(A.132)

b) For S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ,

P̃ r
∗
[S2 = P |S0 = P ] =


0, if 0 ≤ π

γ <
1

µA(P ) ,

µA(P ), if 1
µA(P ) ≤

π
γ < T̃0 (P ) ,

A(P ) (µ+ (1− µ)A(P )) , if T̃0 (P ) ≤ π
γ .

(A.133)

c) For S0 = P and µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

P̃ r
∗
[S2 = P |S0 = P ] =


0, if 0 ≤ π

γ < T̃0 (P ) ,

A(P ) (A(P ) + µ (1−A(P ))) , if T̃0 (P ) ≤ π
γ .

(A.134)
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d) For S0 = P and
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1− µ)A(P ) ≤ 1,

P̃ r
∗
[S2 = P |S0 = P ]

=


0, if 0 ≤ π

γ < T̃0 (P ) ,

A(P )
(
A(P )φP |P + µ (1−A(P ))φP |N

)
, if T̃0 (P ) ≤ π

γ < T̃1 (N, 1, P ) ,

A(P ) (A(P ) + µ(1−A(P ))) , if T̃1 (N, 1, P ) ≤ π
γ .

(A.135)

Under the interim assessment, the case for S0 = P simplifies as follows.

a) For S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ,

P̃ r
∗
[S2 = P |S0 = P ] =


0, if 0 ≤ π

γ <
1

µA(P ) ,

µA(P ), if 1
µA(P ) ≤

π
γ < T̃0 (P ) ,

A(P ) (µ+ (1− µ)A(P )) , if T̃0 (P ) ≤ π
γ .

(A.136)

b) For S0 = P and µ < (1− µ)A(P ) ≤ 1,

P̃ r
∗
[S2 = P |S0 = P ] =


0, if 0 ≤ π

γ < T̃0 (P ) ,

(A(P ))2 , if T̃0 (P ) ≤ π
γ < T̃1 (N, 1, P ) ,

A(P ) (A(P ) + µ (1−A(P ))) , if T̃1 (N, 1, P ) ≤ π
γ .

(A.137)

Proof of Proposition 15

To establish the results of this Proposition, we use the following result.

Lemma 9 Suppose that B(P ) = 0. (In this case, we do not assume that (A.22) holds.)
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Then the optimal effort level in the first half of the year is as follows:

ẽ∗0 (S0) =


0, if π

γ < T̃0 (S0) ,

1, if T̃0 (S0) ≤ π
γ ,

(A.138)

where

T̃0(P ) =



1
(1−µ)(A(P ))2

, if 0 ≤ (1− µ)A(P ) ≤ µ,

2
A(P )(A(P )+µ(1−A(P ))) , if µ < (1− µ)A(P )

≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
, if

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

< (1− µ)A(P ),

(A.139)

and

T̃0(N) =
1

µ(1− µ)(A(P ))2
. (A.140)

Proof of Lemma 9

As in the proof of Proposition 2, the profit-to-go function for t = 0 is

J0(S0) = max
e0∈[0,1]

[Pr [h1 (e0,S0) = (N, e0,S0)] J1 (N, e0,S0)

+Pr [h1 (e0,S0) = (P, e0,S0)] J1 (P, e0,S0)− γe0] , (A.141)

with Pr [h1 (e0,S0)] given in (A.2) and J1 (S1) given in (A.10), and e0 must equal 0 or 1.

For clarity, we use a tilde to denote function values for the case where B(P ) = 0. Then,

129



from (A.68) and (A.69),

P̃ r [h1 (e0,S0) = (N, e0,S0)] J̃1 (N, e0,S0)

=


0, if π

γ < T̃1 (N, e0,S0) ,

(A(P )π − γ)
(
1− φP |P

)
m̃(e0,S0)

+ (µA(P )π − γ)
(
1− φP |N

)
(1− m̃(e0,S0)) , if T̃1 (N, e0,S0) ≤ π

γ ,

(A.142)

and the second term is

P̃ r [h1 (e0,S0) = (P, e0,S0)] J̃1 (P, e0,S0)

=


0, if π

γ < T̃1 (P, e0,S0) ,

(A(P )π − γ)φP |P m̃(e0,S0)

+ (µA(P )π − γ)φP |N (1− m̃(e0,S0)) , if T̃1 (P, e0,S0) ≤ π
γ .

(A.143)

Furthermore, from (A.11) and (A.12)

T̃1 (S1) =


φP |P m̃(e0,S0)+φP |N (1−m̃(e0,S0))

A(P )(φP |P m̃(e0,S0)+µφP |N (1−m̃(e0,S0)))
, if S1 = (P, e0,S0) ,

(1−φP |P )m̃(e0,S0)+(1−φP |N)(1−m̃(e0,S0))

A(P )((1−φP |P )m̃(e0,S0)+µ(1−φP |N)(1−m̃(e0,S0)))
, if S1 = (N, e0,S0) .

=



A(S0)φP |P+(1−A(S0))φP |N

A(P )(A(S0)φP |P+µ(1−A(S0))φP |N)
, if S1 = (P, 1,S0) ,

A(S0)(1−φP |P )+(1−A(S0))(1−φP |N)
A(P )(A(S0)(1−φP |P )+µ(1−A(S0))(1−φP |N))

, if S1 = (N, 1,S0) ,

1
µA(P ) , if S1 = (X1, 0,S0) ,

(A.144)

where from (1.1), (1.2), and (A.1), and by assumption,

m̃(e0,S0) =


0, if e0 = 0,

A(S0), if e0 = 1.

(A.145)
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Moreover, from (A.13), for a given e0,

T̃1 (P, e0,S0) ≤ T̃1 (N, e0,S0) , (A.146)

and under Assumption 2, T̃1 (P, 0,S0) ≥ T̃1 (N, 1,S0). Therefore,

T̃1 (P, 1,S0) ≤ T̃1 (N, 1,S0) ≤ T̃1 (P, 0,S0) = T̃1 (N, 0,S0) . (A.147)

Note that the ordering of the middle two terms and the equality of the last two terms

differs from the ordering given in (A.73) in the Proposition. Therefore, we rely on our

earlier results for select cases.

First, if 1
µA(P ) ≤

π
γ , then from (A.75),

e∗0 =


0, if 1

µA(P ) ≤
π
γ <

1
(1−µ)A(S0)A(P ) ,

1, if max
{

1
µA(P ) ,

1
(1−µ)A(S0)A(P )

}
≤ π

γ .

(A.148)

It is straightforward to show that

max

{
1

µA(P )
,

1

(1− µ)A(S0)A(P )

}
=



1
(1−µ)A(S0)A(P ) , if S0 = N, or

if S0 = P and µ ≥ (1− µ)A(P ),

1
µA(P ) , if S0 = P and µ < (1− µ)A(P ).

(A.149)

Then, when S0 = N , or when S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ,

e∗0 =


0, if 1

µA(P ) ≤
π
γ <

1
(1−µ)A(S0)A(P ) ,

1, if 1
(1−µ)A(S0)A(P ) ≤

π
γ ,

(A.150)
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and when S0 = P and µ < (1− µ)A(P ),

e∗0 = 1, for
1

µA(P )
≤ π

γ
. (A.151)

Second, if T̃1 (N, 1,S0) ≤ π
γ <

1
µA(P ) , then

e∗1 (S1) =


0, if S1 = (X1, 0,S0) ,

1, if S1 = (X1, 1,S0) ,

(A.152)

and the reward function is

J0(S0) = max
[
J 0,J 1

]
, (A.153)

where J 0 = 0 corresponds to the case where e0 = 0, and

J 1 =A(P ) (A(S0) + µ (1−A(S0)))π − 2γ (A.154)

and corresponds to the case where e0 = 1. Now,

J 1 ≥ J 0 ⇐⇒ π

γ
≥ 2

A(P ) (A(S0) + µ (1−A(S0)))
. (A.155)

Therefore,

e∗0 =


0, if T̃1 (N, 1,S0) ≤ π

γ < min
{

1
µA(P ) ,

2
A(P )(A(S0)+µ(1−A(S0)))

}
,

1, if max
{
T̃1 (N, 1,S0) , 2

A(P )(A(S0)+µ(1−A(S0)))

}
≤ π

γ <
1

µA(P ) .

(A.156)

Note that

1

µA(P )
>

2

A(P ) (A(S0) + µ (1−A(S0)))
⇐⇒ (1− µ)A(S0) > µ, (A.157)
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which never holds when S0 = N . Furthermore,

T̃1 (N, 1,S0) >
2

A(P ) (A(S0) + µ (1−A(S0)))

⇐⇒
(
1− φP |P

)
A(S0) +

(
1− φP |N

)
(1−A(S0))

A(P )
((

1− φP |P
)
A(S0) + µ

(
1− φP |N

)
(1−A(S0))

)
>

2

A(P ) (A(S0) + µ (1−A(S0)))

⇐⇒ (1− µ)A(S0) >
A(S0)

(
1− φP |P

)
+ µ (1−A(S0))

(
1− φP |N

)
(1−A(S0))

(
φP |P − φP |N

) . (A.158)

When S0 = N , (A.158) becomes

0 > A(P )
(
1− φP |P

)
+ (1− µA(P ))

((
1− φP |N

)
− (1− µ)A(P )

(
φP |P − φP |N

))
, (A.159)

which never holds. When S0 = P , (A.158) becomes

(1− µ)A(P ) >
A(P )

(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

)
(1−A(P ))

(
φP |P − φP |N

) , (A.160)

Note that under the Assumptions,

A(P )
(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

)
(1−A(P ))

(
φP |P − φP |N

) ≥ µ. (A.161)

Therefore, when S0 = N or when S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ,

e∗0 = 0, for T̃1 (N, 1,S0) ≤ π

γ
<

1

µA(P )
, (A.162)

when S0 = P and µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

, then

e∗0 =


0, if T̃1 (N, 1,S0) ≤ π

γ <
2

A(P )(A(S0)+µ(1−A(S0))) ,

1, if 2
A(P )(A(S0)+µ(1−A(S0))) ≤

π
γ <

1
µA(P ) .

(A.163)
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and when S0 = P and
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1− µ)A(P ), then

e∗0 = 1, for T̃1 (N, 1,S0) ≤ π

γ
<

1

µA(P )
. (A.164)

Third, if T̃1 (P, 1,S0) ≤ π
γ < T̃1 (N, 1,S0), then

e∗1 (S1) =


0, if S1 = (P, 0,S0) or S1 = (N, e0,S0) ,

1, if S1 = (P, 1,S0) ,

(A.165)

and the reward function is

J0(S0) = max
[
J 0,J 1

]
, (A.166)

where J 0 = 0, and corresponds to the case where e0 = 0, and

J 1 =A(S0) (A(P )π − γ)φP |P + (1−A(S0)) (µA(P )π − γ)φP |N − γ, (A.167)

and corresponds to the case where e0 = 1. Now,

J 1 ≥ J 0 ⇐⇒ π

γ
≥

1 +A(S0)φP |P + (1−A(S0))φP |N

A(P )
(
A(S0)φP |P + µ (1−A(S0))φP |N

) . (A.168)

Clearly,

1 +A(S0)φP |P + (1−A(S0))φP |N

A(P )
(
A(S0)φP |P + µ (1−A(S0))φP |N

) ≥ T̃1 (P, 1,S0) (A.169)
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Therefore,

e∗0 =


0, if T̃1 (P, 1,S0) ≤ π

γ < min

{
T̃1 (N, 1,S0) ,

1+A(S0)φP |P+(1−A(S0))φP |N

A(P )(A(S0)φP |P+µ(1−A(S0))φP |N)

}
,

1, if
1+A(S0)φP |P+(1−A(S0))φP |N

A(P )(A(S0)φP |P+µ(1−A(S0))φP |N)
≤ π

γ < T̃1 (N, 1,S0) .

(A.170)

Furthermore,

T̃1 (N, 1,S0) >
1 +A(S0)φP |P + (1−A(S0))φP |N

A(P )
(
A(S0)φP |P + µ (1−A(S0))φP |N

)
⇐⇒

(
1− φP |P

)
A(S0) +

(
1− φP |N

)
(1−A(S0))

A(P )
((

1− φP |P
)
A(S0) + µ

(
1− φP |N

)
(1−A(S0))

)
>

1 +A(S0)φP |P + (1−A(S0))φP |N

A(P )
(
A(S0)φP |P + µ (1−A(S0))φP |N

)
⇐⇒ (1− µ)A(S0) >

A(S0)
(
1− φP |P

)
+ µ (1−A(S0))

(
1− φP |N

)
(1−A(S0))

(
φP |P − φP |N

) . (A.171)

The last line of the inequality is identical to (A.158). Therefore, when S0 = N or when

S0 = P and (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

e∗0 = 0, for T̃1 (P, 1,S0) ≤ π

γ
< T̃1 (N, 1,S0) , (A.172)

and when S0 = P and
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1− µ)A(P ),

e∗0 =


0, if T̃1 (P, 1,S0) ≤ π

γ <
1+A(S0)φP |P+(1−A(S0))φP |N

A(P )(A(S0)φP |P+µ(1−A(S0))φP |N)
,

1, if
1+A(S0)φP |P+(1−A(S0))φP |N

A(P )(A(S0)φP |P+µ(1−A(S0))φP |N)
≤ π

γ < T̃1 (N, 1,S0) .

(A.173)

Finally, if π
γ < T̃1 (P, 1,S0), then from (A.95), e∗0 = 0.

135



Combining this gives the optimal effort level at t = 0:

e∗0 (S0) =


0, if π

γ < T̃0 (S0) ,

1, if T̃0 (S0) ≤ π
γ ,

(A.174)

where

T̃0(P ) =



1
(1−µ)(A(P ))2

, if 0 ≤ (1− µ)A(P ) ≤ µ,

2
A(P )(A(P )+µ(1−A(P ))) , if µ < (1− µ)A(P )

≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
, if

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

< (1− µ)A(P ),

(A.175)

and

T̃0(N) =
1

µ(1− µ)(A(P ))2
. (A.176)

�

First, consider the probability that the final state is proficient when the district relies on

the formative assessment.

Suppose that S0 = N . Then, from (A.140), the incentive-to-cost threshold in period 1 is

T̃0(N) =
1

µ(1− µ)(A(P ))2
. (A.177)
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and, from (A.144), the threshold in the second-half of the year is

T̃1 (X1, e0, N) =



µA(P )φP |P+(1−µA(P ))φP |N

A(P )(µA(P )φP |P+µ(1−µA(P ))φP |N)
, if S1 = (P, 1, N) ,

µA(P )(1−φP |P )+(1−µA(P ))(1−φP |N)
A(P )(µA(P )(1−φP |P )+µ(1−µA(P ))(1−φP |N))

, if S1 = (N, 1, N) ,

1
µA(P ) , if S1 = (X1, 0, N) ,

(A.178)

From (A.147) and applying (A.43) in Lemma 6,

T̃1 (P, 1, N) ≤ T̃1 (N, 1, N) ≤ T̃1 (P, 0, N) = T̃1 (N, 0, N) ≤ T̃0(N). (A.179)

For each possible region of π
γ , it is straightforward to determine the optimal effort in each

period and, plugging that into (A.108), the probability that final state is proficient. Then,

(A.132) follows.

Next, suppose that S0 = P . From (A.139), the period 1 cost-to-incentive ratio threshold is

T̃0(P ) =



1
(1−µ)(A(P ))2

, if 0 ≤ (1− µ)A(P ) ≤ µ,

2
A(P )(A(P )+µ(1−A(P ))) , if µ < (1− µ)A(P )

≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
, if

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

< (1− µ)A(P ),

(A.180)

and from (A.144), the threshold in the second-half of the year is

T̃1 (X1, e0, P ) =



A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
, if S1 = (P, 1, P ) ,

A(P )(1−φP |P )+(1−A(P ))(1−φP |N)
A(P )(A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N))

, if S1 = (N, 1, P ) ,

1
µA(P ) , if S1 = (X1, 0, P ) ,

(A.181)
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When 0 ≤ (1− µ)A(P ) ≤ µ, from (A.147) and applying (A.43) in Lemma 6,

T̃1 (P, 1, P ) ≤ T̃1 (N, 1, P ) ≤ T̃1 (P, 0, P ) = T̃1 (N, 0, P ) ≤ T̃0(P ). (A.182)

Then, applying (A.107), (A.133) follows.

When µ < (1 − µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

, from (A.147) and applying

(A.157) and (A.158),

T̃1 (P, 1, P ) ≤ T̃1 (N, 1, P ) ≤ T̃0(P ) ≤ T̃1 (P, 0, P ) = T̃1 (N, 0, P ) . (A.183)

Then, applying (A.107), (A.134) follows.

When
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1 − µ)A(P ), from (A.147) and applying (A.169)

and (A.171),

T̃1 (P, 1, P ) ≤ T̃0(P ) ≤ T̃1 (N, 1, P ) ≤ T̃1 (P, 0, P ) = T̃1 (N, 0, P ) . (A.184)

Then, applying (A.107), (A.135) follows.

Note that in each case, it is straightforward to show that the the probability that final state

is proficient is non-decreasing in the scaled incentive threshold. �
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Proposition 16 (Optimal Merit-Based Incentive) Define the following constants:

H1 =
µ
(
B(P )

(
A(P )φP |P +B(P )

)
+ (1− µB(P ))

(
A(P )φP |N +B(P )

))
T1 (P, 0, N)

, (A.185)

H2 =
µ (A(P ) +B(P )) (1 + (1− µ)B(P ))

T1 (N, 0, N)
, (A.186)

H3 =
B(P )

(
A(P )φP |P +B(P )

)
+ µ (1−B(P ))

(
A(P )φP |N +B(P )

)
T1 (P, 0, P )

, (A.187)

H4 =
(A(P ) +B(P )) (µ+ (1− µ)B(P ))

T1 (N, 0, P )
, (A.188)

H5 =
(A(P ) +B(P )) (µ+ (1− µ) (A(P ) +B(P )))

C1(P )
, (A.189)

H6 =
(A(P ) +B(P ))

(
A(P )φP |P +B(P )

)
+ µ (1− (A(P ) +B(P )))

(
A(P )φP |N +B(P )

)
C2(P )

,

(A.190)

H7 =
(A(P ) +B(P )) (µ+ (1− µ) (A(P ) +B(P )))

T1 (N, 1, P )
, (A.191)

H8 =
(A(P ) +B(P ))

(
A(P )φP |P +B(P )

)
+ µ (1− (A(P ) +B(P )))

(
A(P )φP |N +B(P )

)
C3(P )

.

(A.192)

Suppose the condition in (A.22) holds. Then, the optimal scaled merit-based incentive can

be characterized as follows.

a) For S0 = N ,

π

γ

∗
=



0, if 0 ≤ M−FzI
γ < H1,

T1 (P, 0, N) , if H1 ≤ M−FzI
γ < H2,

T1 (N, 0, N) , if H2 ≤ M−FzI
γ < 1+(1−µ)B(P )

(1−µ)A(P ) + 1,

T0 (N) , if (1+(1−µ)B(P ))
(1−µ)A(P ) + 1 ≤ M−FzI

γ .

(A.193)

139



b) For S0 = P and 0 ≤ (1− µ) (A(P ) +B(P )) ≤ E1(P ),

π∗ =



0, if 0 ≤ M−FzI
γ < H3,

T1 (P, 0, P ) , if H3 ≤ M−FzI
γ < H4,

T1 (N, 0, P ) , if H4 ≤ M−FzI
γ < µ(1−B(P ))+B(P )

(1−µ)A(P ) ,

T0 (P ) , if µ(1−B(P ))+B(P )
(1−µ)A(P ) ≤ M−FzI

γ .

(A.194)

c) For S0 = P and E1(P ) < (1− µ) (A(P ) +B(P )) ≤ E2(P ),

π∗ =


0, if 0 < M−FzI

γ < H3,

T1 (P, 0, P ) , if H3 ≤ M−FzI
γ < H5,

T0 (P ) , if H5 ≤ M−FzI
γ .

(A.195)

d) For S0 = P and E2(P ) < (1− µ) (A(P ) +B(P )) ≤ E3(P ),

π∗ =



0, if 0 < M−FzI
γ < H3,

T1 (P, 0, P ) , if H3 ≤ M−FzI
γ < H6,

T0 (P ) , if H6 ≤ M−FzI
γ < H7,

T1 (N, 1, P ) , if H7 ≤ M−FzI
γ .

(A.196)

e) For S0 = P and E3(P ) < (1− µ) (A(P ) +B(P )) ≤ 1,

π∗ =


0, if 0 < M−FzI

γ < H8,

T0 (P ) , if H8 ≤ M−FzI
γ < H7,

T1 (N, 1, P ) , if H7 ≤ M−FzI
γ .

(A.197)
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Proof of Proposition 16

From (1.12)-(1.13), the school district’s maximization problem is

max
π≥0

Pr∗[S2 = P |S0] (A.198)

s.t. πPr∗[S2 = P |S0] + FzI ≤M, (A.199)

with Pr∗[S2 = P |S0] given in (A.111)-(A.115).

In the proof of Proposition 14, we show that Pr∗[S2 = P |S0] is a non-decreasing step

function of the scaled incentive threshold. Therefore, the expression on the left-hand side

of the district’s constraint (A.199) is an increasing function of π, and we must consider

the value of the objective function (A.198) at the endpoints of each interval of π
γ that

corresponds to a “step.” We assume that if Pr∗ [S2 = P |S0] is constant over a region of π

and any value of π in that region is optimal, the district will choose the smallest value of π

in that region.

To determine the optimal merit-based incentive π∗ and the corresponding probability that

the final state is proficient, we must consider the several cases stated in Proposition 14 that

determine the characterization of Pr∗ [S2 = P |S0].

We begin with the case where S0 = N and Pr∗ [S2 = P |S0] is given by (A.111).

First, π
γ
∗ = 0 if 0 ≤M − FzI and

M − FzI < T1 (P, 0, N) γµ

×
(
B(P )

(
A(P )φP |P +B(P )

)
+ (1− µB(P ))

(
A(P )φP |N +B(P )

))
⇐⇒ M − FzI

γ
< H1, (A.200)
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where

H1 =

(
1 +

B(P ) (1 + (1− µ)B(P ))

A(P )
(
B(P )φP |P + φP |N (1− µB(P ))

)) ((φP |PµB(P ) + φP |N (1− µB(P ))
))
.

(A.201)

Second, π
γ
∗ = T1 (P, 0, N) if H1 ≤ M−FzI

γ and

M − FzI < T1 (N, 0, N) γ (µ (A(P ) +B(P )) (1 + (1− µ)B(P )))

⇐⇒ M − FzI
γ

< H2, (A.202)

where

H2 =
(A(P ) +B(P )) (1 + (1− µ)B(P ))

((
1− φP |P

)
µB(P ) +

(
1− φP |N

)
(1− µB(P ))

)
A(P )

(
B(P )

(
1− φP |P

)
+
(
1− φP |N

)
(1− µB(P ))

) .

(A.203)

Third, π
γ
∗ = T1 (N, 0, N) if H2 ≤ M−FzI

γ and

M − FzI < T0 (N) γµ (A(P ) +B(P )) (1 + (1− µ) (A(P ) +B(P )))

⇐⇒ M − FzI
γ

<
(1 + (1− µ)B(P ))

(1− µ)A(P )
+ 1. (A.204)

Finally, π
γ
∗ = T0 (N) if

(1 + (1− µ)B(P ))

(1− µ)A(P )
+ 1 ≤ M − FzI

γ
. (A.205)

(A.193) combines these results. We follow similar steps for the cases where S0 = P , using

the functional forms for Pr∗ [S2 = P |S0] given by (A.112)-(A.115).

Combining these results gives the statement in Proposition 16. From the proof of Proposi-

tion 14, it follows that the optimal reward is increasing in the budget. �
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Proof of Proposition 3

From (1.12)-(1.13), the school district’s maximization problem is

max
π≥0

Pr∗[S2 = P |S0] (A.206)

s.t. πPr∗[S2 = P |S0] ≤M − FzI , (A.207)

with Pr∗[S2 = P |S0] given in (A.132)-(A.135).

In the proof of Proposition 15, we show that P̃ r
∗
[S2 = P |S0] is a non-decreasing step

function of the scaled incentive threshold, where the tilde denotes that this is the optimal

probability in the case where there is no stickiness in the proficient state, i.e. B(P ) = 0.

Therefore, the expression on the left-hand side of the district’s constraint (A.207) is an

increasing function of the scaled reward, and we must consider the value of the objective

function (A.206) at the endpoints of each interval of the scaled reward that corresponds to

a “step.” We assume that if Pr∗ [S2 = P |S0] is constant over a region of π and any value

of π in that region is optimal, the district will choose the smallest value of π in that region.

To determine the optimal scaled incentive and the corresponding probability that the final

state is proficient, we must consider the several cases stated in Proposition 15 that determine

the characterization of Pr∗ [S2 = P |S0].

When S0 = N , from (A.140), the incentive-to-cost threshold in the first half of the year is

T̃0(N) =
1

µ(1− µ)(A(P ))2
, (A.208)
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and from (A.178), the threshold in the second-half of the year when S0 = N is

T̃1 (X1, e0, N) =



µA(P )φP |P+(1−µA(P ))φP |N

µA(P )(A(P )φP |P+(1−µA(P ))φP |N)
, if S1 = (P, 1, N) ,

µA(P )(1−φP |P )+(1−µA(P ))(1−φP |N)
µA(P )(A(P )(1−φP |P )+(1−µA(P ))(1−φP |N))

, if S1 = (N, 1, N) ,

1
µA(P ) , if S1 = (X1, 0, N) .

(A.209)

We begin with the case where S0 = N and Pr∗ [S2 = P |S0] is given by (A.132). First,

π̃∗

γ = 0 if

0 ≤ M − FzI
γ

< µA(P )T̃1 (N, 0, N) ⇐⇒ 0 ≤ M − FzI
γ

< 1. (A.210)

Second, π̃∗

γ = T̃1 (N, 0, N) if

µA(P )T̃1 (N, 0, N) ≤ M

γ
< µA(P ) (1 + (1− µ)A(P )) T̃0 (N)

⇐⇒ 1 ≤ M − FzI
γ

< 1 +
1

(1− µ)A(P )
. (A.211)

Third, π̃∗

γ = T̃0 (N) if

µA(P ) (1 + (1− µ)A(P )) T̃0 (N) ≤ M − FzI
γ

⇐⇒ 1 +
1

(1− µ)A(P )
≤ M − FzI

γ
.

(A.212)

Combining this, when S0 = N ,

π̃∗

γ
=


0, if 0 ≤ M−FzI

γ < 1,

1
µA(P ) , if 1 ≤ M−FzI

γ < 1 + 1
(1−µ)A(P ) ,

1
µ(1−µ)(A(P ))2

, if 1 + 1
(1−µ)A(P ) ≤

M−FzI
γ .

(A.213)

144



When S0 = P , from (A.139), the incentive-to-cost threshold in the first half of the year is

T̃0(P ) =



1
(1−µ)(A(P ))2

, if 0 ≤ (1− µ)A(P ) ≤ µ,

2
A(P )(A(P )+µ(1−A(P ))) , if µ < (1− µ)A(P )

≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
, if

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

< (1− µ)A(P ),

(A.214)

and from (A.181), the threshold in the second-half of the year is

T̃1 (X1, e0, P ) =



A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
, if S1 = (P, 1, P ) ,

A(P )(1−φP |P )+(1−A(P ))(1−φP |N)
A(P )(A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N))

, if S1 = (N, 1, P ) ,

1
µA(P ) , if S1 = (X1, 0, P ) .

(A.215)

When S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ, from (A.133),

P̃ r
∗
[S2 = P |S0 = P ] =


0, if 0 ≤ π

γ <
1

µA(P ) ,

µA(P ), if 1
µA(P ) ≤

π
γ <

1
(1−µ)(A(P ))2

,

A(P ) (µ+ (1− µ)A(P )) , if 1
(1−µ)(A(P ))2

≤ π
γ .

(A.216)

Then,

π̃∗

γ
=


0, if 0 ≤ M−FzI

γ < 1,

1
µA(P ) , if 1 ≤ M−FzI

γ < 1 + µ
(1−µ)A(P ) ,

1
(1−µ)(A(P ))2

, if 1 + µ
(1−µ)A(P ) ≤

M−FzI
γ .

(A.217)
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When S0 = P and µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

, from (A.134),

P̃ r
∗
[S2 = P |S0 = P ] =


0, if 0 ≤ π

γ <
2

A(P )(A(P )+µ(1−A(P ))) ,

A(P ) (A(P ) + µ (1−A(P ))) , if 2
A(P )(A(P )+µ(1−A(P ))) ≤

π
γ .

(A.218)

Then,

π̃∗

γ
=


0, if 0 ≤ M−FzI

γ < 2,

2
A(P )(A(P )+µ(1−A(P ))) , if 2 ≤ M−FzI

γ .

(A.219)

Finally, when S0 = P and
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1−µ)A(P ) ≤ 1, from (A.135),

P̃ r
∗
[S2 = P |S0 = P ]

=



0, if 0 ≤ π
γ <

1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
,

A(P )
(
A(P )φP |P + µ (1−A(P ))φP |N

)
,

if
1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
≤ π

γ <
A(P )(1−φP |P )+(1−A(P ))(1−φP |N)

A(P )(A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N))
,

A(P ) (A(P ) + µ(1−A(P ))) , if
A(P )(1−φP |P )+(1−A(P ))(1−φP |N)

A(P )(A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N))
≤ π

γ .

(A.220)
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Then,

π̃∗

γ
=



0, if 0 ≤ M−FzI
γ < 1 +A(P )φP |P + (1−A(P ))φP |N ,

1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
,

if 1 +A(P )φP |P + (1−A(P ))φP |N ≤ M−FzI
γ

<
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
,

A(P )(1−φP |P )+(1−A(P ))(1−φP |N)
A(P )(A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N))

,

if
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
≤ M−FzI

γ .

(A.221)

Then, the optimal scaled merit-based incentive can be characterized as follows.

a) For S0 = N ,

π̃∗

γ
=


0, if 0 ≤ M−FzI

γ < 1,

1
µA(P ) , if 1 ≤ M−FzI

γ < 1 + 1
(1−µ)A(P ) ,

1
µ(1−µ)(A(P ))2

, if 1 + 1
(1−µ)A(P ) ≤

M−FzI
γ .

(A.222)

b) For S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ,

π̃∗

γ
=


0, if 0 ≤ M−FzI

γ < 1,

1
µA(P ) , if 1 ≤ M−FzI

γ < 1 + µ
(1−µ)A(P ) ,

1
(1−µ)(A(P ))2

, if 1 + µ
(1−µ)A(P ) ≤

M−FzI
γ .

(A.223)
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c) For S0 = P and µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

π̃∗

γ
=


0, if 0 ≤ M−FzI

γ < 2,

2
A(P )(A(P )+µ(1−A(P ))) , if 2 ≤ M−FzI

γ .

(A.224)

d) For S0 = P and
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1− µ)A(P ) ≤ 1,

π̃∗

γ
=



0, if 0 ≤ M−FzI
γ < 1 +A(P )φP |P + (1−A(P ))φP |N ,

1+A(P )φP |P+(1−A(P ))φP |N

A(P )(A(P )φP |P+µ(1−A(P ))φP |N)
,

if 1 +A(P )φP |P + (1−A(P ))φP |N ≤ M−FzI
γ

<
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
,

A(P )(1−φP |P )+(1−A(P ))(1−φP |N)
A(P )(A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N))

,

if
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
≤ M−FzI

γ .

(A.225)

In the case of an interim assessment, the optimal incentive for schools that begin the year

in the proficient state becomes

a) For S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ,

π̃∗

γ
=


0, if 0 ≤ M−F

γ < 1,

1
µA(P ) , if 1 ≤ M−F

γ < 1 + µ
(1−µ)A(P ) ,

1
(1−µ)(A(P ))2

, if 1 + µ
(1−µ)A(P ) ≤

M−F
γ .

(A.226)
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b) For S0 = P and µ < (1− µ)A(P ) ≤ 1,

π̃∗

γ
=


0, if 0 ≤ M−F

γ < 1 +A(P ),

1+A(P )
A(P )2

, if 1 +A(P ) ≤ M−F
γ < 1 +

(
1−µ
µ

)
A(P ),

1
µA(P ) , if 1 +

(
1−µ
µ

)
A(P ) ≤ M−F

γ .

(A.227)

It directly follows from earlier results that the optimal scaled incentive is increasing in the

scaled budget.

We next compare the optimal reward under high levels of M for different values of that

starting state of proficiency. We claim that the maximum optimal reward when the school

starts in the not-proficient state is always higher than the maximum optimal reward when

the school starts in the proficient state. For large budget values and when S0 = N ,

π̃∗

γ
=

1

µ(1− µ)(A(P ))2
. (A.228)

For large M when S0 = P ,

π̃∗

γ
=



1
(1−µ)(A(P ))2

, if 0 ≤ (1− µ)A(P ) ≤ µ,

2
A(P )(A(P )+µ(1−A(P ))) , if µ < (1− µ)A(P )

≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

A(P )(1−φP |P )+(1−A(P ))(1−φP |N)
A(P )(A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N))

, if
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)

< (1− µ)A(P ) ≤ 1.

(A.229)

Clearly,

1

µ(1− µ)(A(P ))2
≥ 1

(1− µ)(A(P ))2
⇐⇒ 1 ≥ µ. (A.230)
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When µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

1

µ(1− µ)(A(P ))2
≥ 2

A(P ) (A(P ) + µ (1−A(P )))
⇐⇒ µ ≥ (1− µ)A(P ) (2µ− 1) .

(A.231)

This clearly holds for µ ≤ 1
2 , and for 1

2 < µ ≤ 1, this becomes

µ

2µ− 1
≥ (1− µ)A(P ), (A.232)

which holds since µ
2µ−1 ≥ µ. Finally,

1

µ(1− µ)(A(P ))2
≥

A(P )
(
1− φP |P

)
+ (1−A(P ))

(
1− φP |N

)
A(P )

(
A(P )

(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

))
⇐⇒ A(P ) (1− µ(1− µ)A(P ))

(
1− φP |P

)
+ µ (1−A(P )) (1− (1− µ)A(P ))

(
1− φP |N

)
≥ 0, (A.233)

which clearly holds. �

Lemma 10 When B(P ) = 0, the probability that the school is in the proficient state at the

end of the year (S2 = P ) when the school district offers teachers the optimal reward, given

in Proposition 3, can be described as follows.

a) For S0 = N ,

P̃ r
∗
zI

[S2 = P |S0 = N ] =


0, if 0 ≤ M−FzI

γ < 1,

µA(P ), if 1 ≤ M−FzI
γ < 1 + 1

(1−µ)A(P ) ,

µA(P ) (1 + (1− µ)A(P )) , if 1 + 1
(1−µ)A(P ) ≤

M−FzI
γ .

(A.234)
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b) For S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ,

P̃ r
∗
zI

[S2 = P |S0 = P ] =


0, if 0 ≤ M−FzI

γ < 1,

µA(P ), if 1 ≤ M−FzI
γ < 1 + µ

(1−µ)A(P ) ,

A(P ) (µ+ (1− µ)A(P )) , if 1 + µ
(1−µ)A(P ) ≤

M−FzI
γ .

(A.235)

c) For S0 = P and µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

P̃ r
∗
zI

[S2 = P |S0 = P ] =


0, if 0 ≤ M−FzI

γ < 2,

A(P ) (A(P ) + µ (1−A(P ))) , if 2 ≤ M−FzI
γ .

(A.236)

d) For S0 = P and
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1− µ)A(P ) ≤ 1,

P̃ r
∗
zI

[S2 = P |S0 = P ]

=



0, if 0 ≤ M−FzI
γ < 1 +A(P )φP |P + (1−A(P ))φP |N ,

A(P )
(
A(P )φP |P + µ (1−A(P ))φP |N

)
,

if 1 +A(P )φP |P + (1−A(P ))φP |N ≤ M−FzI
γ

<
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
,

A(P ) (A(P ) + µ(1−A(P ))) ,

if
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
≤ M−FzI

γ .

(A.237)

Proof of Lemma 10

This follows directly from the results in Propositions 15 and 3. �

151



Proof of Proposition 4

Suppose that S0 = N . We consider the school district’s optimal decision in two scenarios:

first, when B(P ) = 0, and second, when B(P ) ≥ 0 and the formative assessments result

is reasonably accurate, i.e., (A.22) holds. When B(P ) ≥ 0, let Z∗ denote the set of opti-

mal decisions, z∗I , for the district, where Z∗ ∈ {{0} , {1} , {0, 1}}. In keeping with earlier

notation, when B(P ) = 0 the set of optimal decisions is represented by Z̃∗.

First, consider the case where B(P ) = 0. Recall from (A.234) that

P̃ r
∗
zI

[S2 = P |S0 = N ] =


0, if 0 ≤ M−FzI

γ < 1,

µA(P ), if 1 ≤ M−FzI
γ < 1 + 1

(1−µ)A(P ) ,

µA(P ) (1 + (1− µ)A(P )) , if 1 + 1
(1−µ)A(P ) ≤

M−FzI
γ .

(A.238)

Considering each feasible range of M
γ gives the following result.

• If 0 ≤ M
γ < 1, then for all F

γ ≤
M
γ , Z̃∗ = {0, 1}.

• If 1 ≤ M
γ < 1 + 1

(1−µ)A(P ) , then

Z̃∗ =


{0, 1} , if F

γ ≤
M
γ − 1,

{0} , if M
γ − 1 < F

γ .

(A.239)

• If 1 + 1
(1−µ)A(P ) ≤

M
γ , then

Z̃∗ =


{0, 1} , if F

γ ≤
M
γ − 1− 1

1−µ)A(P ) ,

{0} , if M
γ − 1− 1

1−µ)A(P ) <
F
γ .

(A.240)

Next, consider the case where B(P ) > 0 and the condition in (A.22) holds. Recall from
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(A.111) in Proposition 14 that

Pr∗[S2 = P |S0 = N ]

=



µB(P ) (1 + (1− µ)B(P )) , if 0 ≤ π
γ < T1 (P, 0, N) ,

µ
(
B(P )

(
A(P )φP |P +B(P )

)
+ (1− µB(P ))

(
A(P )φP |N +B(P )

))
, if T1 (P, 0, N) ≤ π

γ < T1 (N, 0, N) ,

µ (A(P ) +B(P )) (1 + (1− µ)B(P )) , if T1 (N, 0, N) ≤ π
γ < T0 (N) ,

µ (A(P ) +B(P )) (1 + (1− µ) (A(P ) +B(P ))) , if T0 (N) ≤ π
γ ,

(A.241)

and from (A.193) in Proposition 16 that

π

γ

∗
=



0, if 0 ≤ M−FzI
γ < H1,

T1 (P, 0, N) , if H1 ≤ M−FzI
γ < H2,

T1 (N, 0, N) , if H2 ≤ M−FzI
γ < 1+(1−µ)B(P )

(1−µ)A(P ) + 1,

T0 (N) , if (1+(1−µ)B(P ))
(1−µ)A(P ) + 1 ≤ M−FzI

γ ,

(A.242)

where from (A.185) and (A.186)

H1 =
µ
(
B(P )

(
A(P )φP |P +B(P )

)
+ (1− µB(P ))

(
A(P )φP |N +B(P )

))
T1 (P, 0, N)

,

H2 =
µ (A(P ) +B(P )) (1 + (1− µ)B(P ))

T1 (N, 0, N)
. (A.243)

Then, the probability that the school ends the year in the proficient state under the optimal
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incentive is given by

Pr∗zI [S2 = P |S0 = N ]

=



µB(P ) (1 + (1− µ)B(P )) , if 0 ≤ M−FzI
γ < H1,

µ
(
B(P )

(
A(P )φP |P +B(P )

)
+ (1− µB(P ))

(
A(P )φP |N +B(P )

))
, if H1 ≤ M−FzI

γ < H2,

µ (A(P ) +B(P )) (1 + (1− µ)B(P )) , if H2 ≤ M−FzI
γ < 1+(1−µ)B(P )

(1−µ)A(P ) + 1,

µ (A(P ) +B(P )) (1 + (1− µ) (A(P ) +B(P ))) , if (1+(1−µ)B(P ))
(1−µ)A(P ) + 1 ≤ M−FzI

γ .

(A.244)

Under the interim assessment, this becomes

Pr∗zI [S2 = P |S0 = N ]

=



µB(P ) (1 + (1− µ)B(P )) , if 0 ≤ M−FzI
γ < HI1,

µB(P ) ((A(P ) +B(P )) + (1− µB(P ))) , if HI1 ≤
M−FzI

γ < HI2,

µ (A(P ) +B(P )) (1 + (1− µ)B(P )) , if HI2 ≤
M−FzI

γ < 1+(1−µ)B(P )
(1−µ)A(P ) + 1,

µ (A(P ) +B(P )) (1 + (1− µ) (A(P ) +B(P ))) , if (1+(1−µ)B(P ))
(1−µ)A(P ) + 1 ≤ M−FzI

γ ,

(A.245)

where

HI1 = µB(P )

(
A(P ) + 1 + (1− µ)B(P )

A(P )

)
,

HI2 =
(A(P ) +B(P )) (1 + (1− µ)B(P ))

A(P )
. (A.246)
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Comparing the second cases in (A.244) and (A.245), for µ > 0,

µ
(
B(P )

(
A(P )φP |P +B(P )

)
+ (1− µB(P ))

(
A(P )φP |N +B(P )

))
≤ µB(P ) ((A(P ) +B(P )) + (1− µB(P )))

⇐⇒ µ0 ≤ µ, where µ0 =
1

B(P )
−

1− φP |P
φP |N

. (A.247)

Note that this holds for φP |N sufficiently small and that this is less likely to hold for B(P )

small.

Furthermore, note that H2 ≤ HI2 follows from Assumption 1, but H1 and HI1 do not have

a clear ordering. In particular,

H1 ≤ HI1 ⇐⇒ (1− µB(P ))φP |N×(
(1− µ) (1 + (1− µ)B(P ))

A(P )
+

(1− µB(P ))φP |N

B(P )
+
(
φP |P − µ

(
1− φP |P

)))
≤ µB(P )φP |P

(
1− φP |P

)
. (A.248)

The left-hand side of inequality (A.248) is clearly decreasing in µ and the right-hand side is

increasing in µ. Therefore, if (A.248) holds, then there exists µ1 ∈ [0, 1] such that (A.248)

holds for all µ ≥ µ1, holding all other parameters constant. In particular, if (A.248) holds

for some feasible range of µ values, then it must hold for µ = 1. Plugging this into (A.248),

we have

H1 ≤ HI1 ⇒
φP |N

φP |N + 1− φP |P
≤ B(P ). (A.249)

Finally, we claim that if (A.248) holds, then (A.247) must hold as well. In particular, if

there exists µ1 ∈ [0, 1] such that (A.248) holds for all µ ≥ µ1 but H1 ≥ HI1 at µ0, then
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µ1 ≥ µ0, hence the claim is true. To see this is indeed the case, note that at µ0,

H1 ≥ HI1

⇐⇒ (1− µ0B(P ))φP |N

×
(

(1− µ0) (1 + (1− µ0)B(P ))

A(P )
+

(1− µ0B(P ))φP |N

B(P )
+
(
φP |P − µ0

(
1− φP |P

)))
≥ µ0B(P )φP |P

(
1− φP |P

)
⇐⇒ B(P ) ≥

φP |N

φP |N + 1− φP |P
, (A.250)

which we know to be true from (A.249). Therefore, H1 ≤ HI1 ⇒ µ0 ≤ µ.

Then, for smaller budgets, i.e. when M
γ < H2, we must consider the following cases. First,

suppose H1 ≤ HI1:

• If 0 ≤ M
γ < H1, then for all F

γ ≤
M
γ , Z∗ = {0, 1}.

• If H1 ≤ M
γ < HI1, then for all F

γ ≤
M
γ , Z∗ = {0}.

• If HI1 ≤ M
γ < H2, then

Z∗ =


{1} , if F

γ ≤
M
γ −H

I
1,

{0} , if M
γ −H

I
1 <

F
γ .

(A.251)

Second, suppose HI1 ≤ H1:

• If 0 ≤ M
γ < HI1, then for all F

γ ≤
M
γ , Z∗ = {0, 1}.

• If HI1 ≤ M
γ < H1, then

Z∗ =


{1} , if F

γ ≤
M
γ −H

I
1,

{0} , if M
γ −H

I
1 <

F
γ ,

(A.252)
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• If H1 ≤ M
γ < H2,

– if (A.247) holds, then

Z∗ =


{1} , if F

γ ≤
M
γ −H1,

{0} , if M
γ −H1 <

F
γ ,

(A.253)

– if (A.247) does not hold, then for all F
γ ≤

M
γ , Z∗ = {0}.

Finally, for budgets exceeding H2,

• If H2 ≤ M
γ < HI2, then for all F

γ ≤
M
γ , Z∗ = {0}.

• If HI2 ≤ M
γ < 1+(1−µ)B(P )

(1−µ)A(P ) + 1, then

Z∗ =


{0, 1} , if F

γ ≤
M
γ −H

I
2,

{0} , if M
γ −H

I
2 <

F
γ .

(A.254)

• If 1+(1−µ)B(P )
(1−µ)A(P ) + 1 ≤ M

γ , then

Z∗ =


{0, 1} , if F

γ ≤
M
γ −

1+(1−µ)B(P )
(1−µ)A(P ) − 1,

{0} , if M
γ −

1+(1−µ)B(P )
(1−µ)A(P ) − 1 < F

γ .

(A.255)

We assume that the district will only invest in the interim assessment if the probability

of achieving proficiency in that case is strictly greater than the probably under only the

formative assessment results. Furthermore, define ML ≥ 0 as the upper bound on the region

of budget levels for which the probability of reaching the proficient state at the end of the

year is smallest, regardless of the assessment decision, and define MU ≥ ML as the lower

bound on the region of budget levels for which the probability of reaching the proficient
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state at the end of the year is highest under either assessment decision for a sufficiently low

cost of interim assessment F . Put another way, ML (MU ) is the upper (lower) bound on

the region of trivially-small (large) budget levels.

Then, combining the above results gives the following.

a) If B(P ) = 0, then ML
γ = 1 and MU

γ = 1 + 1
(1−µ)A(P ) . For all values of the budget, the

school district will not invest in the interim assessment.

b) If B(P ) > 0 and the condition in (A.22) holds, then ML
γ = min

{
H1,HI1

}
and MU

γ =

1+(1−µ)B(P )
(1−µ)A(P ) + 1. Furthermore, the interim assessment is optimal in two possible scenarios:

first, if

HI1 ≤
M

γ
< H1 and

F

γ
≤ M

γ
−HI1, (A.256)

and second, if (A.247) holds and

max
{
H1,HI1

}
≤ M

γ
< H2 and

F

γ
≤ M

γ
−max

{
H1,HI1

}
. � (A.257)

Proof of Proposition 5

Suppose that S0 = P and B(P ) = 0. As in the previous Proposition, let Z̃∗ denote the set

of optimal decisions, z∗I , for the district, where Z̃∗ ∈ {{0} , {1} , {0, 1}}.

For S0 = P and 0 ≤ (1− µ)A(P ) ≤ µ, recall from (A.235) that

P̃ r
∗
zI

[S2 = P |S0 = P ] =


0, if 0 ≤ M−FzI

γ < 1,

µA(P ), if 1 ≤ M−FzI
γ < 1 + µ

(1−µ)A(P ) ,

A(P ) (µ+ (1− µ)A(P )) , if 1 + µ
(1−µ)A(P ) ≤

M−FzI
γ .

(A.258)

Then, we have the following result.
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• If 0 ≤ M
γ < 1, then for all F

γ ≤
M
γ , Z̃∗ = {0, 1}.

• If 1 ≤ M
γ < 1 + µ

(1−µ)A(P ) , then

Z̃∗ =


{0, 1} , if F

γ ≤
M
γ − 1,

{0} , if M
γ − 1 < F

γ .

(A.259)

• If 1 + µ
(1−µ)A(P ) ≤

M
γ , then

Z̃∗ =


{0, 1} , if F

γ ≤
M
γ −

µ
(1−µ)A(P ) ,

{0} , if M
γ −

µ
(1−µ)A(P ) <

F
γ .

(A.260)

For S0 = P and µ ≤ (1 − µ)A(P ), recall from (A.236) that, under only formative assess-

ments, if µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

,

P̃ r
∗
zI

[S2 = P |S0 = P ] =


0, if 0 ≤ M

γ < 2,

A(P ) (A(P ) + µ (1−A(P ))) , if 2 ≤ M
γ ,

(A.261)
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and from (A.237), if
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1− µ)A(P ) ≤ 1,

P̃ r
∗
zI

[S2 = P |S0 = P ]

=



0, if 0 ≤ M
γ < 1 +A(P )φP |P + (1−A(P ))φP |N ,

A(P )
(
A(P )φP |P + µ (1−A(P ))φP |N

)
,

if 1 +A(P )φP |P + (1−A(P ))φP |N ≤ M
γ

<
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
,

A(P ) (A(P ) + µ(1−A(P ))) ,

if
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
≤ M

γ .

(A.262)

Under the interim assessment, for all µ < (1− µ)A(P ) ≤ 1, these two cases simplify to

P̃ r
∗
zI

[S2 = P |S0 = P ]

=


0, if 0 ≤ M−F

γ < 1 +A(P ),

(A(P ))2 , if 1 +A(P ) ≤ M−F
γ < 1 +

(
1−µ
µ

)
A(P ),

A(P ) (A(P ) + µ (1−A(P ))) , if 1 +
(

1−µ
µ

)
A(P ) ≤ M−F

γ .

(A.263)

When determining the optimal assessment decision, we must consider two cases. First,

consider the case where the accuracy of the formative assessment is such that µ < (1 −

µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

. Comparing two of the bounds on M
γ , note that

2 < 1 +

(
1− µ
µ

)
A(P ) ⇐⇒ µ < (1− µ)A(P ). (A.264)

Then, we have the following result.

• If 0 ≤ M
γ < 1 +A(P ), then for all F

γ ≤
M
γ , Z̃∗ = {0, 1}.
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• If 1 +A(P ) ≤ M
γ < 2, then

Z̃∗ =


{1} , if F

γ ≤
M
γ − 1−A(P ),

{0, 1} , if M
γ − 1−A(P ) < F

γ .

(A.265)

• If 2 ≤ M
γ < 1 +

(
1−µ
µ

)
A(P ), then for all F

γ ≤
M
γ , Z̃∗ = {0}.

• If 1 +
(

1−µ
µ

)
A(P ) ≤ M

γ , then

Z̃∗ =


{0, 1} , if F

γ ≤
M
γ − 1−

(
1−µ
µ

)
A(P ),

{0} , if M
γ − 1−A(P ) < F

γ .

(A.266)

Next, consider the case where
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1 − µ)A(P ) ≤ 1. First,

rewrite the bound in this case in terms of µ:

A(P )
(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

)
(1−A(P ))

(
φP |P − φP |N

) < (1− µ)A(P )

⇐⇒ µ <
A(P )

(
(1−A(P ))

(
φP |P − φP |N

)
−
(
1− φP |P

))
(1−A(P ))

((
1− φP |N

)
+A(P )

(
φP |P − φP |N

)) (A.267)

Then, compare the smaller bound on M−F
γ in the interim case to the larger bound on M

γ in

the formative case:

1 +A(P ) ≤
(µ+ (1− µ)A(P ))

(
A(P )

(
1− φP |P

)
+ (1−A(P ))

(
1− φP |N

))
A(P )

(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

)
⇐⇒ µ ≤

(1−A(P ))
(
1− φP |N

)
−
(
1− φP |P

)
(1−A(P ))

((
φP |P − φP |N

)
+
(
1− φP |N

)) . (A.268)

The bound on µ in this case, (A.267), is stronger than the bound in (A.268); therefore,

161



(A.268) always holds in this case:

A(P )
(
(1−A(P ))

(
φP |P − φP |N

)
−
(
1− φP |P

))
(1−A(P ))

((
1− φP |N

)
+A(P )

(
φP |P − φP |N

))
≤

(1−A(P ))
(
1− φP |N

)
−
(
1− φP |P

)
(1−A(P ))

((
φP |P − φP |N

)
+
(
1− φP |N

))
⇐⇒ A(P )

(
φP |P − φP |N

)
≤ 1− φP |N . (A.269)

Furthermore, the larger bound on M
γ in the formative case is smaller than the larger bound

on M−F
γ in the interim case, since

(µ+ (1− µ)A(P ))
(
A(P )

(
1− φP |P

)
+ (1−A(P ))

(
1− φP |N

))
A(P )

(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

) ≤ 1 +

(
1− µ
µ

)
A(P )

⇐⇒ (1− µ)A(P )
(
1− φP |P

)(
A(P )

(
1− 1

µ

)
− 1

)
≤ 0, (A.270)

which clearly holds. Then, there are two possible orders of the bounds on M−FzI
γ . First,

suppose that

1 +A(P )

≤ 1 +A(P )φP |P + (1−A(P ))φP |N

≤
(µ+ (1− µ)A(P ))

(
A(P )

(
1− φP |P

)
+ (1−A(P ))

(
1− φP |N

))
A(P )

(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

)
≤ 1 +

(
1− µ
µ

)
A(P ). (A.271)

Then,

1 +A(P ) ≤ 1 +A(P )φP |P + (1−A(P ))φP |N ⇐⇒ A(P )
(
1− φP |P

)
≤ (1−A(P ))φP |N ,

(A.272)
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and therefore,

(A(P ))2 ≤ A(P )
(
A(P )φP |P + µ (1−A(P ))φP |N

)
⇐⇒ A(P )(1− φP |P ) ≤ µ (1−A(P ))φP |N (A.273)

holds, since µ ≤ 1. Then, we have the following result.

• If 0 ≤ M
γ < 1 +A(P ), then for all F

γ ≤
M
γ , Z̃∗ = {0, 1}.

• If 1 +A(P ) ≤ M
γ < 1 +A(P )φP |P + (1−A(P ))φP |N , then

Z̃∗ =


{1} , if F

γ ≤
M
γ − 1−A(P ),

{0, 1} , if M
γ − 1−A(P ) < F

γ .

(A.274)

• If 1+A(P )φP |P+(1−A(P ))φP |N ≤ M
γ <

(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

,

then for all F
γ ≤

M
γ , Z̃∗ = {0}.

• If
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
≤ M

γ < 1 +
(

1−µ
µ

)
A(P ), then for all

F
γ ≤

M
γ , Z̃∗ = {0}.

• If 1 +
(

1−µ
µ

)
A(P ) ≤ M

γ , then

Z̃∗ =


{0, 1} , if F

γ ≤
M
γ − 1−

(
1−µ
µ

)
A(P ),

{0} , if M
γ − 1−

(
1−µ
µ

)
A(P ) < F

γ .

(A.275)
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Second, suppose that

1 +A(P )φP |P + (1−A(P ))φP |N

≤ 1 +A(P )

≤
(µ+ (1− µ)A(P ))

(
A(P )

(
1− φP |P

)
+ (1−A(P ))

(
1− φP |N

))
A(P )

(
1− φP |P

)
+ µ (1−A(P ))

(
1− φP |N

)
≤ 1 +

(
1− µ
µ

)
A(P ) (A.276)

Then,

A(P )
(
A(P )φP |P + µ (1−A(P ))φP |N

)
≤ (A(P ))2 , (A.277)

and we have the following result.

• If 0 ≤ M
γ < 1 +A(P )φP |P + (1−A(P ))φP |N , then for all F

γ ≤
M
γ , Z̃∗ = {0, 1}.

• If 1 +A(P )φP |P + (1−A(P ))φP |N ≤ M
γ < 1 +A(P ), then for all F

γ ≤
M
γ , Z̃∗ = {0}.

• If 1 +A(P ) ≤ M
γ <

(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

, then

Z̃∗ =


{1} , if F

γ ≤
M
γ − 1−A(P ),

{0} , if M
γ − 1−A(P ) < F

γ .

(A.278)

• If
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
≤ M

γ < 1 +
(

1−µ
µ

)
A(P ), then for all

F
γ ≤

M
γ , Z̃∗ = {0}.

• If 1 +
(

1−µ
µ

)
A(P ) ≤ M

γ , then

Z̃∗ =


{0, 1} , if F

γ ≤
M
γ − 1−

(
1−µ
µ

)
A(P ),

{0} , if M
γ − 1−

(
1−µ
µ

)
A(P ) < F

γ .

(A.279)
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From Proposition 4, recall that we assume that the district will only invest in the interim

assessment if the probability of achieving proficiency in that case is strictly greater than

the probably under only the formative assessment results, and that ML (MU ) is the upper

(lower) bound for trivially small (large) budget levels.

Then, combining these results gives the school district’s optimal assessment decision.

a) If S0 = P and 0 ≤ (1 − µ)A(P ) ≤ µ, then ML
γ = 1 and MU

γ = 1 + µ
(1−µ)A(P ) with

F ′

γ = M
γ −

µ
(1−µ)A(P ) . For all values of the budget, the school district will not invest in the

interim assessment.

b) If S0 = P and µ < (1− µ)A(P ) ≤ A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
(1−A(P ))(φP |P−φP |N)

, then ML
γ = 1 +A(P )

and MU
γ = 1 +

(
1−µ
µ

)
A(P ) with F ′

γ = M
γ − 1−

(
1−µ
µ

)
A(P ). Furthermore,

• If 1 +A(P ) ≤ M
γ < 2, then

Z̃∗ =


{1} , if F

γ ≤
M
γ − 1−A(P ),

{0, 1} , if M
γ − 1−A(P ) < F

γ .

(A.280)

• If 2 ≤ M
γ < 1 +

(
1−µ
µ

)
A(P ), then for all F

γ ≤
M
γ , Z̃∗ = {0}.

c) If
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1−µ)A(P ) ≤ 1 and 1+A(P )φP |P+(1−A(P ))φP |N ≤

1 +A(P ), then ML
γ = 1 +A(P ) and MU

γ = 1 +
(

1−µ
µ

)
A(P ) with F ′

γ = M
γ −1−

(
1−µ
µ

)
A(P ).

Furthermore,

• If 1 +A(P ) ≤ M
γ < 1 +A(P )φP |P + (1−A(P ))φP |N , then

Z̃∗ =


{1} , if F

γ ≤
M
γ − 1−A(P ),

{0, 1} , if M
γ − 1−A(P ) < F

γ .

(A.281)
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• If 1 + A(P )φP |P + (1−A(P ))φP |N ≤ M
γ < 1 +

(
1−µ
µ

)
A(P ), then for all F

γ ≤
M
γ ,

Z̃∗ = {0}.

d) If
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

(1−A(P ))(φP |P−φP |N)
< (1 − µ)A(P ) ≤ 1 and 1 + A(P ) ≤ 1 + A(P )φP |P +

(1−A(P ))φP |N , then ML
γ = 1 + A(P )φP |P + (1−A(P ))φP |N and MU

γ = 1 +
(

1−µ
µ

)
A(P )

with F ′

γ = M
γ − 1−

(
1−µ
µ

)
A(P ). Furthermore,

• If 1 +A(P )φP |P + (1−A(P ))φP |N ≤ M
γ < 1 +A(P ), then for all F

γ ≤
M
γ , Z̃∗ = {0}.

• If 1 +A(P ) ≤ M
γ <

(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))
A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)

, then

Z̃∗ =


{1} , if F

γ ≤
M
γ − 1−A(P ),

{0} , if M
γ − 1−A(P ) < F

γ .

(A.282)

• If
(µ+(1−µ)A(P ))(A(P )(1−φP |P )+(1−A(P ))(1−φP |N))

A(P )(1−φP |P )+µ(1−A(P ))(1−φP |N)
≤ M

γ < 1 +
(

1−µ
µ

)
A(P ), then for all

F
γ ≤

M
γ , Z̃∗ = {0}. �

Proof of Lemma 1

Assuming a perfect correlation between the use of resources upon the original admission

and upon readmission, and assuming a single potential readmission, we obtain that the

total use of operating room time by any “type-i” patient, Fi is equal to Si, the duration

of the original surgery (with probability 1 − pa
i

(
hd
i

)
), or to 2Si (with probability pa

i

(
hd
i

)
).

Thus, Fi is distributed on the interval [0, 2Smax
i ], and its CDF is given by

ΦF
i

(
x|hd

i

)
= P [Fi ≤ x] =

(
1− pa

i

(
hd
i

))
P [Si ≤ x] + pa

i

(
hd
i

)
P [2Si ≤ x]

=
(

1− pa
i

(
hd
i

))
P [Si ≤ x] + pa

i

(
hd
i

)
P
[
Si ≤

x

2

]
=
(

1− pa
i

(
hd
i

))
ΦS
i (x) + pa

i

(
hd
i

)
ΦS
i

(x
2

)
. (A.283)

From the point of view of the total use of recovery beds, under the discharge policy charac-

terized by the threshold hd
i , each type-i patient with the recovery rate ri has a total hospital
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length of stay equal to the sum of the length of stay from the original admission and from

a potential readmission, i.e., Li
(
hd
i

)
= Lo

i

(
hd
i

)
+ La

i

(
hd
i

)
, equal to

Li

(
hd
i

)
=


hdi
ri
, with probability 1− pa

i

(
hd
i

)
,

2hdi
ri
, with probability pa

i

(
hd
i

)
.

(A.284)

Note that Li
(
hd
i

)
is distributed on the interval

[
Lmin
i

(
hd
i

)
, 2Lmax

i

(
hd
i

)]
, where from (2.6)

and (2.7)

Lmin
i

(
hd
i

)
=

hd
i

rmax
i

, (A.285)

Lmax
i

(
hd
i

)
=

hd
i

rmin
i

, (A.286)

with the CDF

ΦL
i (z|hd

i ) = P
[
Li

(
hd
i

)
≤ z
]

=
(

1− pa
i

(
hd
i

))
P

[
hd
i

ri
≤ z
]

+ pa
i

(
hd
i

)
P

[
2hd

i

ri
≤ z
]

=
(

1− pa
i

(
hd
i

))
P

[
ri ≥

hd
i

z

]
+ pa

i

(
hd
i

)
P

[
ri ≥

2hd
i

z

]
=
(

1− pa
i

(
hd
i

))(
1− Φr

i

(
hd
i

z

))
+ pa

i

(
hd
i

)(
1− Φr

i

(
2hd

i

z

))
. (A.287)

�

Proof of Proposition 6

For simplicity, in the proof we will omit the dependence of the involved quantities on the

discharge thresholds hd
i .

We first prove the normal approximation for the usage of the operating room time. Let

ki index each patient undergoing procedure i, where ki = 1, . . . , ai, and let F kit be a non-

negative random variable describing the total duration of the procedure for patient ki who

is first admitted at time t, where for procedure i, F kit are i.i.d. random variables with

mean µFi and variance
(
σFi
)2

. Then, the total front-end resource utilization associated with
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procedure i is F it (ai) =
∑ai

ki=1 F
ki
t , where E

(
F it (ai)

)
= aiµ

F
i and V

(
F it (ai)

)
= ai

(
σFi
)2

.

The Lyapunov Central Limit Theorem (Billingsley, 1995, p. 362) states that for a sequence

of m independent random variables Xn, n = 1, . . . ,m, each with finite expectation µn and

variance σ2
n, the expression

∑m
n=1 (Xn − µn)√∑m

n=1 σ
2
n

d−→ N (0, 1) (A.288)

when m→∞ provided there exists δ > 0 such that

lim
m→∞

∑m
n=1E

[
|Xn − µn|2+δ

]
(
∑m

n=1 σ
2
n)

2+δ
2

= 0. (A.289)

Applying this result to the sequence F kit , ki = 1, . . . , ai, we get that

F it (ai)− aiµFi√
aiσFi

d−→ N (0, 1) (A.290)

provided there exists δ > 0 such that

lim
ai→∞

∑ai
ki=1E

[∣∣∣F kit − µFi ∣∣∣2+δ
]

(∑ai
ki=1

(
σFi
)2) 2+δ

2

= 0. (A.291)

Since F kit are i.i.d random variables, the expression in the limit in (A.291) becomes

aiE

[∣∣∣F kit − µFi ∣∣∣2+δ
]

(
ai
(
σFi
)2) 2+δ

2

=

E
[∣∣∣F kit − µFi ∣∣∣2+δ

]
(
σFi
)2+δ

 a
− δ

2
i . (A.292)
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Then, (A.291) always holds since, for all δ > 0,

lim
ai→∞

a
− δ

2
i = 0. (A.293)

We can use this result to represent the limiting distribution of F it (ai) as a normal random

variable with mean aiµ
F
i and variance ai

(
σFi
)2

. Then, given the independence of resource-

utilization for different procedure types, the total front-end resource utilization across all

procedure types is represented by the normal random variable

Ft (a) =

N∑
i=1

F it (ai) ∼ N
(
MF (a) ,

(
ΣF (a)

)2)
, (A.294)

where

MF (a) =
N∑
i=1

aiµ
F
i , (A.295)

(
ΣF (a)

)2
=

N∑
i=1

ai
(
σFi
)2
. (A.296)

We next prove the normal approximation for the usage of recovery beds for a single proce-

dure. Recall that the minimum and maximum values for patient length of stay (LOS) after

a procedure are Lmin and 2Lmax days, respectively. (This includes recovery time after a

potential readmission.) Each day can be divided into η ∈ N equally sized periods of width 1
η .

Let L be a non-negative random variable describing patient LOS. Also, let pt = P
(
L ≥ t

η

)
be the probability that a patient stays at least t ∈ {1, 2, . . . , 2ηLmax} periods at the hospital,

with pηL
min

= 1, and pt ≥ pt+1. Define Xdt to be the number of patients who underwent

the procedure on period d and who also spent at least t periods at the hospital.

The hospital performs a procedures each day, so there are a
η procedures performed in each

period. Therefore, Xdt is a binomial random variable with parameters (aη , p
t). Let Y d be
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the number of patients who stay at the hospital in period d. Then,

Y d = Xd,1 +Xd−1,2 +Xd−2,3 + . . .+Xd−(2ηLmax−1),2ηLmax

=

(
a

η

)
ηLmin +Xd−ηLmin,ηLmin+1 +Xd−(ηLmin+1),ηLmin+2 + . . .+Xd−(2ηLmax−1),2ηLmax

= aLmin +

2ηLmax∑
t=ηLmin+1

Xd−t+1,t, (A.297)

where Xd−t+1,t are all independent random variables since they refer to patients who un-

derwent the procedure in different periods. Moreover, Xd−t+1,t is binomial with
(
a
η , p

t
)

for

each t ∈ {ηLmin + 1, ηLmin + 2, . . . , 2ηLmax}. Thus, Xdt and Y d have the same distribution

for any period d. Then, we can let Y denote the number of occupied beds in any period, so

that

Y = aLmin +

2ηLmax∑
t=ηLmin+1

Xt, (A.298)

where Xt is binomial with parameters
(
a
η , p

t
)

.

As (A.298) involves the convolution of η binomial random variables, we can compute the

expected value and the variance of Y , the number of occupied beds in a period. Since

Xt ∼ B
(
a
η , p

t
)

, we have E(Xt) =
(
a
η

)
pt. Then,

µY = E(Y ) = aLmin +

η2Lmax∑
t=ηLmin+1

(
a

η

)
pt = a

Lmin +

η2Lmax∑
t=ηLmin+1

pt
(

1

η

) . (A.299)

For the variance, V (Xt) =
(
a
η

)
pt(1− pt), and

σ2
Y = V (Y ) =

2ηLmax∑
t=ηLmin+1

(
a

η

)
pt(1− pt) = a

 2ηLmax∑
t=ηLmin+1

pt
(
1− pt

)(1

η

) . (A.300)
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As η →∞, we can replace pt with 1− ΦL and use the following notation for µY and σY :

µY = aµB, σ2
Y = a

(
σB
)2
, (A.301)

where

µB = Lmin +

∫ 2Lmax

Lmin

(
1− ΦL(x)

)
dx, (A.302)

(
σB
)2

=

∫ 2Lmax

Lmin

ΦL(x)
(
1− ΦL(x)

)
dx. (A.303)

As in the case of operating room usage, we apply the Lyapunov CLT to get Y ∼ N
(
µY , σ

2
Y

)
as a → ∞. In the multiple resource case, Y becomes the sum of independent normal

distributions for each procedure, so the limiting distribution is Y ∼ N
(
MB (a) ,

(
ΣB (a)

)2)
,

where

MB (a) =

N∑
i=1

aiµ
B
i , (A.304)

(
ΣB (a)

)2
=

N∑
i=1

ai
(
σBi
)2
. (A.305)

�

Proof of Proposition 7

a) Using (2.9) and S̄i = E [Si], we can express (2.17) as

E [Fi] = µFi

(
hd
i

)
=

∫ 2Smax
i

0

(
1−

(
1− pa

i

(
hd
i

))
ΦS
i (x)− pa

i

(
hd
i

)
ΦS
i

(x
2

))
dx

=
(

1− pa
(
hd
i

))
S̄i + pa

(
hd
i

) (
2S̄i
)

= S̄i

(
1 + pa

(
hd
i

))
. (A.306)

Then, since
dpai (hdi )
dhdi

< 0, we have
dµSi (hdi )
dhdi

< 0.
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Using this result, we can express (2.18) as

Var [Fi] =
(
σFi

(
hd
i

))2
=

∫ 2Smax
i

0

(
x− µFi

(
hd
i

))2
dΦF

i

(
x|hd

i

)
=pa

i

(
hd
i

)∫ 2Smax
i

0

(
x− µFi

(
hd
i

))2
dΦS

i

(x
2

)
+
(

1− pa
i

(
hd
i

))∫ 2Smax
i

0

(
x− µFi

(
hd
i

))2
dΦS

i (x)

=pa
i

(
hd
i

)∫ Smax
i

0

(
2x−

(
1 + pa

i

(
hd
i

))
S̄i

)2
dΦS

i (x)

+
(

1− pa
i

(
hd
i

))∫ Smax
i

0

(
x−

(
1 + pa

i

(
hd
i

))
S̄i

)2
dΦS

i (x)

=pa
i

(
hd
i

)∫ Smax
i

0

(
4x2 − 4x

(
1 + pa

i

(
hd
i

))
S̄i +

(
1 + pa

i

(
hd
i

))2
S̄2
i

)
dΦS

i (x)

+
(

1− pa
i

(
hd
i

))∫ Smax
i

0

(
x2 − 2x

(
1 + pa

i

(
hd
i

))
S̄i +

(
1 + pa

i

(
hd
i

))2
S̄2
i

)
dΦS

i (x)

=

∫ Smax
i

0

((
1 + 3pa

i

(
hd
i

))
x2 − 2

(
1 + pa

i

(
hd
i

))2
S̄ix+

(
1 + pa

i

(
hd
i

))2
S̄2
i

)
dΦS

i (x)

=
(

1 + 3pa
i

(
hd
i

))(
Var [Si] +

(
S̄i
)2)− 2

(
1 + pa

i

(
hd
i

))2
S̄2
i +

(
1 + pa

i

(
hd
i

))2
S̄2
i

=
(

1 + 3pa
i

(
hd
i

))
Var [Si] + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
S̄2
i , (A.307)

where Var [Si] is the variance of the type-i surgical procedure duration. Then, since

dpai (hdi )
dhdi

< 0 we have
d(σFi (hdi ))

2

dhdi
≤ 0 if and only if

3Var [Si] +
(

1− 2pa
i

(
hd
i

))
S̄2
i ≥ 0, (A.308)

or

pa
i

(
hd
i

)
≤ 1

2
+

3

2

(
Var [Si]

S̄2
i

)
. (A.309)
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b) Using (2.10) and integration by parts, we have

E
[
Li

(
hd
i

)]
=µBi

(
hd
i

)
=

∫ 2Lmax
i (hdi )

0

(
1− ΦL

i (z|hd
i )
)
dz

=
hd
i

rmax
i

+

∫ 2Lmax
i (hdi )

Lmin
i (hdi )

(
1− ΦL

i (z|hd
i )
)
dz

=
hd
i

rmax
i

+∫ 2Lmax
i (hdi )

Lmin
i (hdi )

(
1−

((
1− pa

i

(
hd
i

))(
1− Φr

i

(
hd
i

z

))
+ pa

i

(
hd
i

)(
1− Φr

i

(
2hd

i

z

))))
dz

=
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i
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i

+
(

1− pa
i

(
hd
i

))∫ 2Lmax
i (hdi )

Lmin
i (hdi )

Φr
i

(
hd
i

z

)
dz + pa

i

(
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i
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i (hdi )

Lmin
i (hdi )
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i

(
2hd

i

z

)
dz

=hd
i

[
1

rmax
i

−
(

1− pa
i

(
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i

))∫ rmax
i

rmin
i
2

Φr
i (y) d

(
1

y

)
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i

(
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i

)∫ rmax
i

rmin
i
2

Φr
i (2y) d

(
1

y

)]

=hd
i

[
1

rmax
i

−

(
1− pa

i

(
hd
i

))( 1

rmax
i

−
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i

rmin
i
2

1

y
dΦr

i (y)

)
− pa

i

(
hd
i

)( 1
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i

−
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i

rmin
i
2

1

y
dΦr

i (2y)
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=hd
i

[(
1− pa

i

(
hd
i

))∫ rmax
i

rmin
i
2

1

y
dΦr

i (y) + pa
i

(
hd
i

)∫ rmax
i

rmin
i
2

1

y
dΦr

i (2y)

]

=hd
i

(
1 + pa

i

(
hd
i

))
E

[
1

ri

]
, (A.310)

where we have denoted

E

[
1

ri

]
=

∫ rmax
i

rmin
i

1

y
dΦr

i (y) . (A.311)

and also used continuous differentiability of Φr
i (y) that, in turn, implies that the distribution

of the recovery rates does not have a “finite mass” at y = rmin
i .
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Thus, µBi
(
hd
i

)
is monotone increasing in hd

i on
[
hmin
i , 1

]
if and only if

dµBi
(
hd
i

)
dhd

i

= E

[
1

ri

][(
1 + pa

i

(
hd
i

))
+ hd

i

(
dpa

i

(
hd
i

)
dhd

i

)]
≥ 0

⇐⇒
1 + pa

i

(
hd
i

)
hd
i

≥

∣∣∣∣∣dpa
i

(
hd
i

)
dhd

i

∣∣∣∣∣ , (A.312)

since

dpa
i

(
hd
i

)
dhd

i

< 0, (A.313)

and (A.312) is ensured by γhi ≤ 1.

Next, consider

(
σBi

(
hd
i

))2
=

∫ 2Lmax
i (hdi )

Lmin
i (hdi )

ΦL
i (z|hd

i )
(

1− ΦL
i (z|hd

i )
)
dz

=

∫ 2hdi
rmin
i

hd
i

rmax
i

((
1− pa

i

(
hd
i

))(
1− Φr

i

(
hd
i

z

))
+ pa

i

(
hd
i

)(
1− Φr

i

(
2hd

i

z

)))

×
((

1− pa
i

(
hd
i

))
Φr
i

(
hd
i

z

)
+ pa

i

(
hd
i

)
Φr
i

(
2hd

i

z

))
dz. (A.314)

Let y =
hdi
z , so

dz = d

(
hd
i

y

)
= −h

d
i

y2
dy. (A.315)
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Then,

(
σBi

(
hd
i

))2

=hd
i

∫ rmax
i

rmin
i
2

1

y2

((
1− pa

i

(
hd
i

))
(1− Φr

i (y)) + pa
i

(
hd
i

)
(1− Φr

i (2y))
)

×
((

1− pa
i

(
hd
i

))
Φr
i (y) + pa

i

(
hd
i

)
Φr
i (2y)

)
dy

=hd
i

((
1− pa

i

(
hd
i

))2
K1 + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
(K2 +K3) +

(
pa
i

(
hd
i

))2
K4

)
,

(A.316)

where

K1 =

∫ rmax
i

rmin
i
2

Φr
i (y) (1− Φr

i (y))

y2
dy, (A.317)

K2 =

∫ rmax
i

rmin
i
2

Φr
i (2y) (1− Φr

i (y))

y2
dy, (A.318)

K3 =

∫ rmax
i

rmin
i
2

Φr
i (y) (1− Φr

i (2y))

y2
dy, (A.319)

K4 =

∫ rmax
i

rmin
i
2

Φr
i (2y) (1− Φr

i (2y))

y2
dy. (A.320)

Using integration by parts, we can rewrite each term as a function of ri. In particular,

K1 =

∫ rmax
i

rmin
i
2

Φr
i (y) (1− Φr

i (y))

y2
dy

= E

[
1− 2Φr

i (ri)

ri

]
, (A.321)

and

K4 =

∫ rmax
i

rmin
i
2

Φr
i (2y) (1− Φr

i (2y))

y2
dy

= 2E

[
1− 2Φr

i (ri)

ri

]
= 2K1. (A.322)
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Plugging this back into (A.316) yields

(
σBi

(
hd
i

))2

=hd
i

(((
1− pa

i

(
hd
i

))2
+ 2

(
pa
i

(
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i

))2
)
K1 + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
(K2 +K3)

)
=hd

i

((
1 +

(
pa
i

(
hd
i

))2
)
K1 + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
(K2 +K3 − 2K1)

)
=hd

i

((
1 + pa

i

(
hd
i

))
K1 + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
(K2 +K3 − 3K1)

)
. (A.323)

Furthermore, using (A.317)-(A.320),

K2 +K3 − 3K1 =K2 +K3 −K1 −K4

=

∫ rmax
i

rmin
i
2

Φr
i (2y) (1− Φr

i (y))

y2
dy +

∫ rmax
i

rmin
i
2

Φr
i (y) (1− Φr

i (2y))

y2
dy

−
∫ rmax

i

rmin
i
2

Φr
i (y) (1− Φr

i (y))

y2
dy −

∫ rmax
i

rmin
i
2

Φr
i (2y) (1− Φr

i (2y))

y2
dy

=

∫ rmax
i

rmin
i
2

(
(Φr

i (2y)− Φr
i (y))

y

)2

dy ≥ 0. (A.324)

Then,

(
σBi

(
hd
i

))2
=hd

i

(
1 + pa

i

(
hd
i

))
Gri + hd

i p
a
i

(
hd
i

)(
1− pa

i

(
hd
i

))
Hr
i , (A.325)

where

Gri =

∫ rmax
i

rmin
i
2

Φr
i (y) (1− Φr

i (y))

y2
dy ≥ 0, (A.326)

Hr
i =

∫ rmax
i

rmin
i
2

(
(Φr

i (2y)− Φr
i (y))

y

)2

dy ≥ 0. (A.327)
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Finally,

d
(
σBi
(
hd
i

))2
dhd

i

=

(
1 + pa

i

(
hd
i

)
+ hd

i

(
dpa

i

(
hd
i

)
dhd

i

))
Gri

+

(
pa
i

(
hd
i

)(
1− pa

i

(
hd
i

))
+ hd

i

dpa
i

(
hd
i

)
dhd

i

(
1− 2pa

i

(
hd
i

)))
Hr
i , (A.328)

and
(
σBi
(
hd
i

))2
is monotone increasing if and only if

(
1 + pa

i

(
hd
i

)
+ hd

i

(
dpa

i

(
hd
i

)
dhd

i

))
Gri

+

(
pa
i

(
hd
i

)(
1− pa

i

(
hd
i

))
+ hd

i

(
dpa

i

(
hd
i

)
dhd

i

)(
1− 2pa

i

(
hd
i

)))
Hr
i ≥ 0

⇐⇒
(

1 + pa
i

(
hd
i

))
Gri + pa

i

(
hd
i

)(
1− pa

i

(
hd
i

))
Hr
i

≥ hd
i

(
Gri +

(
1− 2pa

i

(
hd
i

))
Hr
i

) ∣∣∣∣∣dpa
i

(
hd
i

)
dhd

i

∣∣∣∣∣ . (A.329)

Notice that the left-hand side of the above inequality is greater than Gri and the right-hand

side of the inequality is less than (Gri +Hr
i ) γhi . Therefore, the above inequality is ensured

by

Gri
Gri +Hr

i

≥ γhi . (A.330)

�

Proof of Lemma 2

From Proposition 6, the random usage of a hospital resource k can be expressed as Uk =

µk + σkN (0, 1). Then, under Assumption 8, the expected hospital cost incurred from

using the resource can be expressed as ckE[U2
k ] = ck(µ

2
k + σ2

k) since E[N (0, 1)2] = 1, and

E[N (0, 1)] = 0. Then, for a resource k = F,B, the expected hospital cost incurred under
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the procedure portfolio a and discharge thresholds hd is given by

Ck

(
a,hd

)
= ck

((
Mk

(
a,hd

))2
+
(

Σk
(
a,hd

))2
)
. (A.331)

The approximate hospital expected daily profit for a given portfolio of elective procedures

and discharge threshold values can be expressed as

ΠA

(
ae,hd

)
=

N∑
i=1

(aei + µui )Ri

− cF
(
E

[(
MF

(
ae + au,hd

))2
]

+ E

[(
ΣF
(
ae + au,hd

))2
])

− cB
(
E

[(
MB

(
ae + au,hd

))2
]

+ E

[(
ΣB
(
ae + au,hd

))2
])

, (A.332)

where the expectations are taken with respect to the distribution of the daily numbers of

urgent procedures.

Note that

E

[(
MF

(
ae + au,hd

))2
]

=E

( N∑
i=1

(aei + aui )µFi

(
hd
i

))2


=

(
N∑
i=1

aeiµ
F
i

(
hd
i

))2

+ 2

(
N∑
i=1

aeiµ
F
i

(
hd
i

)) N∑
j=1

µuj µ
F
j

(
hd
j

)
+

N∑
i=1

N∑
j=1

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µFi

(
hd
i

)
µFj

(
hd
j

)

=

(
N∑
i=1

aeiµ
F
i

(
hd
i

))2

+ 2

(
N∑
i=1

aeiµ
F
i

(
hd
i

)) N∑
j=1

µuj µ
F
j

(
hd
j

)
+

N∑
i=1

(
(σui )2 + (µui )2

)(
µFi

(
hd
i

))2

+

N∑
i=1

∑
j 6=i

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µFi

(
hd
i

)
µFj

(
hd
j

)
(A.333)
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and

E

[(
ΣF
(
ae + au,hd

))2
]

=
N∑
i=1

aei

(
σFi

(
hd
i

))2
+

N∑
i=1

µui

(
σFi

(
hd
i

))2
. (A.334)

Using the same method,

E

[(
MB

(
ae + au,hd

))2
]

=

(
N∑
i=1

aeiµ
B
i

(
hd
i

))2

+ 2

(
N∑
i=1

aeiµ
B
i

(
hd
i

)) N∑
j=1

µuj µ
B
j

(
hd
j

)
+

N∑
i=1

(
(σui )2 + (µui )2

)(
µBi

(
hd
i

))2

+

N∑
i=1

∑
j 6=i

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µBi

(
hd
i

)
µBj

(
hd
j

)
, (A.335)

and

E
[(

ΣB
)2 (

ae + au,hd
)]

=
N∑
i=1

aei

(
σBi

(
hd
i

))2
+

N∑
i=1

µui

(
σBi

(
hd
i

))2
. (A.336)
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Substituting these expressions into (A.332) gives the following:

ΠA

(
ae,hd

)
=

N∑
i=1

(aei + µui )Ri

− cF

( N∑
i=1

aeiµ
F
i

(
hd
i

))2

+ 2

(
N∑
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F
i

(
hd
i
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j=1
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F
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(
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)(
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(
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i
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N∑
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∑
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u
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u
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u
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(
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i
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(
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)

+

N∑
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(
σFi

(
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i
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+

N∑
i=1
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(
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i
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B
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(
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i
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(
N∑
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B
i

(
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i

)) N∑
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µuj µ
B
j

(
hd
j

)
+

N∑
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(
(σui )2 + (µui )2

)(
µBi

(
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i

))2
+

N∑
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∑
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(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µBi

(
hd
i

)
µBj

(
hd
j

)

+
N∑
i=1

aei

(
σBi

(
hd
i

))2
+

N∑
i=1

µui

(
σBi

(
hd
i

))2
)

=
N∑
i=1

aeiAi
(
hd
)
− cF

(
N∑
i=1

aeiµ
F
i

(
hd
i

))2

− cB

(
N∑
i=1

aeiµ
B
i

(
hd
i

))2

+
N∑
i=1

Bi
(
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)
, (A.337)
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where

Ai
(
hd
)

=Ri − cF

2µFi

(
hd
i

) N∑
j=1

µuj µ
F
j

(
hd
j

)
+
(
σFi

(
hd
i

))2


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2µBi

(
hd
i

) N∑
j=1

µuj µ
B
j

(
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j

)
+
(
σBi

(
hd
i

))2

 , (A.338)

Bi
(
hd
)

=µui Ri

− cF
((

(σui )2 + (µui )2
)(

µFi

(
hd
i

))2
+ µui

(
σFi

(
hd
i

))2

+
∑
j 6=i

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µFi

(
hd
i

)
µFj

(
hd
j

)
− cB

((
(σui )2 + (µui )2

)(
µBi

(
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i

))2
+ µui

(
σBi

(
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i

))2

+
∑
j 6=i

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µBi

(
hd
i

)
µBj

(
hd
j

) . (A.339)

�

Proof of Proposition 8

For n = 1, (2.44)-(2.46) becomes

max
ae,hd

(
aeA

(
hd
)
− (ae)2

(
cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

)
+ B

(
hd
))

(A.340)

s.t. 0 ≤ ae ≤ E, (A.341)

hmin ≤ hd ≤ 1, (A.342)
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where we have dropped the index of the procedure, and

A
(
hd
)

=R− cF
(

2µu
(
µF
(
hd
))2

+
(
σF
(
hd
))2

)
− cB

(
2µu

(
µB
(
hd
))2

+
(
σB
(
hd
))2

)
, (A.343)

B
(
hd
)

=µuR− cF
((

(σu)2 + (µu)2
)(

µF
(
hd
))2

+ µu
(
σF
(
hd
))2

)
− cB

((
(σu)2 + (µu)2

)(
µB
(
hd
))2

+ µu
(
σB
(
hd
))2

)
. (A.344)

Then, the objective function (A.340) is

aeA
(
hd
)
− (ae)2

(
cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

)
+ B

(
hd
)

= (ae + µu)
(
R− V

(
hd
))
−
(

(ae + µu)2 + (σu)2
)
M
(
hd
)
, (A.345)

where

M
(
hd
)

= cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

(A.346)

V
(
hd
)

= cF

(
σF
(
hd
))2

+ cB

(
σB
(
hd
))2

(A.347)

(A.345) is a concave, quadratic function of ae, and the stationary point is at

ae =
R− V

(
hd
)

2M (hd)
− µu. (A.348)

Therefore, for a given discharge threshold hd, the optimal value of ae is its stationary point,

if it is between 0 and E; otherwise, the optimal value is 0, if ae is negative, or E, if it is

positive. The optimal value is given by fe
(
hd
)

in (2.49).

Finally, substituting fe
(
hd
)

into (A.345) gives

(
fe
(
hd
)

+ µu
)(

R− V
(
hd
))
−
((

fe
(
hd
)

+ µu
)2

+ (σu)2

)
M
(
hd
)
. (A.349)

182



The optimal discharge threshold is given by (2.50). �

Proof of Proposition 9

In order to establish the results of the Proposition, we first prove the following lemma.

Lemma 11 In the setting with a single procedure, let E [S] and Var [S] be the expectation

and the variance of the surgical procedure durations, and E
[

1
r

]
be the expectation of the

inverse of the recovery rate. Then,

E [S] ≤ µF
(
hd
)
≤ 2E [S] , (A.350)

Var [S] ≤
(
σF
(
hd
))2
≤ Var [S] +

(
3Var [S] + (E [S])2

2E [S]

)2

, (A.351)

hd

(
E

[
1

r

])
≤ µB

(
hd
)
≤ 2hd

(
E

[
1

r

])
, (A.352)

hdGr ≤
(
σB
(
hd
))2
≤ hd

(
Gr +

(Gr +Hr)2

4Hr

)
, (A.353)

where Gr and Hr are defined in (2.35).

Proof of Lemma 11. From (2.29),

µF
(
hd
)

= E [S]
(

1 + pa
(
hd
))

, (A.354)

and (A.350) follows since pa
(
hd
)
∈ [0, 1].

Next, from (2.30),

(
σF
(
hd
))2

=
(

1 + 3pa
(
hd
))

Var [S] + pa
(
hd
)(

1− pa
(
hd
))

(E [S])2

= Var [S] +
(

3Var [S] + (E [S])2
)
pa
(
hd
)
− (E [S])2

(
pa
(
hd
))2

, (A.355)

which is a concave function of pa
(
hd
)
. Then, (A.355) is minimized at either pa

(
hd
)

= 0 or

pa
(
hd
)

= 1. Comparing the two values, the minimum is Var [S]. The stationary point of
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the function is at

pa
(
hd
)

=
3Var [S] + (E [S])2

2 (E [S])2 , (A.356)

so the maximum of (A.355) is

Var [S] +

(
3Var [S] + (E [S])2

2E [S]

)2

. (A.357)

(A.351) follows. Furthermore, from (2.32),

µB
(
hd
)

= hd
(

1 + pa
(
hd
))

E

[
1

r

]
. (A.358)

(A.352) follows, since pa
(
hd
)
∈ [0, 1].

Finally, from (2.34),

(
σB
(
hd
))2

hd
=
(

1 + pa
(
hd
))

Gr + pa
(
hd
)(

1− pa
(
hd
))

Hr

= Gr + pa
(
hd
)

(Gr +Hr)−
(
pa
(
hd
))2

Hr, (A.359)

where

Gr =

∫ rmax

rmin

2

Φr (y) (1− Φr (y))

y2
dy, (A.360)

Hr =

∫ rmax

rmin

2

(
(Φr (2y)− Φr (y))

y

)2

dy, (A.361)

and both terms are clearly positive.

(A.359) is a quadratic, concave function of pa
(
hd
)
. The stationary point is at

pa
(
hd
)

=
Gr +Hr

2Hr
, (A.362)
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at which

(
σB
(
hd
))2

hd
= Gr +

(Gr +Hr)2

4Hr
. (A.363)

Furthermore, when pa
(
hd
)

= 0,

(
σB
(
hd
))2

hd
= Gr, (A.364)

and when pa
(
hd
)

= 1, (
σB
(
hd
))2

hd
= 2Gr, (A.365)

Note that

Gr +
(Gr +Hr)2

4Hr
≥ 2Gr ⇐⇒ (Gr −Hr)2 ≥ 0. (A.366)

Then, the minimum value of (A.359) is Gr, and the maximum value is Gr + (Gr+Hr)2

4Hr .

(A.353) follows. �

Now we prove the results of the Proposition. In general, note that when âe = x, from (2.50),

ĥd = arg max
hd∈[hmin,1]

(
(x+ µu)

(
R− V

(
hd
))
−
(

(x+ µu)2 + (σu)2
)
M
(
hd
))

= arg min
hd∈[hmin,1]

(
(x+ µu)V

(
hd
)

+
(

(x+ µu)2 + (σu)2
)
M
(
hd
))

. (A.367)
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Let Z
(
hd
)

represent the expression being minimized. Using the results from Proposition 7,

Z
(
hd
)

= (x+ µu)V
(
hd
)

+
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(x+ µu)2 + (σu)2
)
M
(
hd
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(
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(
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+ cB

(
σB
(
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)
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(
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(
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+ cB

(
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(
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(
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))
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(
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(
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))
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)

+ cB (x+ µu)
(
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((
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(
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))
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(
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)(
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(
hd
))

Hr
))

+ cF

(
(x+ µu)2 + (σu)2

)(
E [S]

(
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(
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)))2

+ cB

(
(x+ µu)2 + (σu)2

)(
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(

1 + pa
(
hd
))

E

[
1

r

])2

. (A.368)
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Then,

dZ

dhd
=cF (x+ µu)

((
3
dpa

dhd

)
Var [S] +

dpa

dhd

(
1− 2pa

(
hd
))

(E [S])2

)
+ cB (x+ µu)

(((
1 + pa

(
hd
))

+ hd

(
dpa

dhd

))
Gr

+

(
pa
(
hd
)(
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(
hd
))

+ hd dp
a
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(
1− 2pa

(
hd
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Hr

)
+ cF

(
(x+ µu)2 + (σu)2

)
(E [S])2 2

(
1 + pa

(
hd
)) dpa

dhd

+ cB

(
(x+ µu)2 + (σu)2

)(
E

[
1

r

])2

2
(
hd
(

1 + pa
(
hd
)))

((
1 + pa

(
hd
))

+ hd dp
a

dhd

)
=− cF

∣∣∣∣ dpa

dhd

∣∣∣∣ (3 (x+ µu) Var [S] + (E [S])2
(

(x+ µu)
(

1− 2pa
(
hd
))

+2
(

(x+ µu)2 + (σu)2
)(

1 + pa
(
hd
))))

+ cB

(
(x+ µu)

((
1 + pa

(
hd
)
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣)Gr
+

(
pa
(
hd
)(

1− pa
(
hd
))
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣ (1− 2pa
(
hd
)))

Hr

)
+ 2

(
(x+ µu)2 + (σu)2

)(
E

[
1

r

])2

×
(
hd
(

1 + pa
(
hd
))2
−
(
hd
)2 (

1 + pa
(
hd
)) ∣∣∣∣ dpa

dhd

∣∣∣∣)) , (A.369)

since dpa

dhd
≤ 0. Finally, for any x, if

dZ(hd)
dhd

≤ 0, then ĥd = 1. On the other hand, if

dZ(hd)
dhd

≥ 0, then ĥd = hmin. We determine sufficient conditions to ensure each case.

To begin, consider when
dZ(hd)
dhd

≤ 0. First, note that

3 (x+ µu) Var [S]

+ (E [S])2
(

(x+ µu)
(

1− 2pa
(
hd
))

+ 2
(

(x+ µu)2 + (σu)2
)(

1 + pa
(
hd
)))

≥ 3 min
(
x+ µu, (x+ µu)2 + (σu)2

)(
Var [S] + (E [S])2

)
≥ 0. (A.370)
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Furthermore, if pa
(
hd
)
≤ 0.5,

pa
(
hd
)(

1− pa
(
hd
))
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣ (1− 2pa
(
hd
))
≤ pa

(
hd
)(

1− pa
(
hd
))
≤ 0.25,

(A.371)

and if pa
(
hd
)
> 0.5,

pa
(
hd
)(

1− pa
(
hd
))
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣ (1− 2pa
(
hd
))
≤ pa

(
hd
)(

1− pa
(
hd
))

+ γh

≤ 0.25 + γh, (A.372)

since

max
x∈[0,1]

x (1− x) = 0.25. (A.373)

Thus,

(
1 + pa

(
hd
)
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣)Gr +

(
pa
(
hd
)(

1− pa
(
hd
))
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣ (1− 2pa
(
hd
)))

Hr

≤ 2Gr +
(

0.25 + γh
)
Hr. (A.374)

Finally,

hd
(

1 + pa
(
hd
))2
−
(
hd
)2 (

1 + pa
(
hd
)) ∣∣∣∣ dpa

dhd

∣∣∣∣ ≤ 4. (A.375)

Combining this,

dZ

dhd
≤ −cFγl

(
3 min

(
x+ µu, (x+ µu)2 + (σu)2

)(
Var [S] + (E [S])2

))
+ cB

(
(x+ µu)

(
2Gr +

(
0.25 + γh

)
Hr
)

+ 8
(

(x+ µu)2 + (σu)2
)(

E

[
1

r

])2
)
≤ 0.

(A.376)
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Therefore, ĥd = 1 if

cB ≤ cFγl
 3 min

(
x+ µu, (x+ µu)2 + (σu)2

)(
Var [S] + (E [S])2

)
(x+ µu) (2Gr + (0.25 + γh)Hr) + 8

(
(x+ µu)2 + (σu)2

) (
E
[

1
r

])2
 .

(A.377)

Next, we determine sufficient conditions to ensure
dZ(hd)
dhd

≥ 0. First, note that

3 (x+ µu) Var [S]

+ (E [S])2
(

(x+ µu)
(

1− 2pa
(
hd
))

+ 2
(

(x+ µu)2 + (σu)2
)(

1 + pa
(
hd
)))

≤ 3 (x+ µu) Var [S] + (E [S])2
(

(x+ µu) + 4
(

(x+ µu)2 + (σu)2
))

. (A.378)

Furthermore,

(
1 + pa

(
hd
)
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣)Gr +

(
pa
(
hd
)(

1− pa
(
hd
))
− hd

∣∣∣∣ dpa

dhd

∣∣∣∣ (1− 2pa
(
hd
)))

Hr

≥
(

1− γh
)
Gr − γhHr, (A.379)

and

2
(

(x+ µu)2 + (σu)2
)(

E

[
1

r

])2(
hd
(

1 + pa
(
hd
))2
−
(
hd
)2 (

1 + pa
(
hd
)) ∣∣∣∣ dpa

dhd

∣∣∣∣)
≥ −4

(
(x+ µu)2 + (σu)2

)(
E

[
1

r

])2

γh. (A.380)

Thus,

dZ

dhd
≥− cFγh

(
3 (x+ µu) Var [S] + (E [S])2

(
(x+ µu) + 4

(
(x+ µu)2 + (σu)2

)))
+ cB

(
(x+ µu)

((
1− γh

)
Gr − γhHr

)
− 4

(
(x+ µu)2 + (σu)2

)(
E

[
1

r

])2

γh

)

≥0, (A.381)

189



and therefore ĥd = hmin, if

Gr ≥ γh

1− γh

(
4

(
(x+ µu)2 + (σu)2

(x+ µu)

)(
E

[
1

r

])2

+Hr

)
(A.382)

and

cB ≥ cF

 3Var [S] + (E [S])2
(

1 + 4
(

(x+µu)2+(σu)2

(x+µu)

))
(

1−γh
γh

)
Gr −Hr − 4

(
(x+µu)2+(σu)2

(x+µu)

) (
E
[

1
r

])2
 . (A.383)

Using this result, we consider two extreme cases: âe = 0 and âe = E.

a) From (2.49), âe = 0 if

min

(
R− V

(
hd
)

2M (hd)
− µu, E

)
≤ 0. (A.384)

This holds if

R− V
(
hd
)

2M (hd)
− µu ≤ 0 ⇐⇒ R ≤2µuM

(
hd
)

+ V
(
hd
)

=2µu
(
cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

)
+ cF

(
σF
(
hd
))2

+ cB

(
σB
(
hd
))2

. (A.385)

Applying Lemma 11,

2µu
(
cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

)
+

(
cF

(
σF
(
hd
))2

+ cB

(
σB
(
hd
))2

)
≥ cF

(
2µu (E [S])2 + Var [S]

)
+ cB

(
2µu

(
hd

(
E

[
1

r

]))2

+ hdGr

)

≥ cF
(

2µu (E [S])2 + Var [S]
)
. (A.386)
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Then,

R ≤ cF
(

2µu (E [S])2 + Var [S]
)

(A.387)

ensures that âe = 0.

In this case, from (A.377), ĥd = 1, if

cB ≤ cFγl
 3 min

(
µu, (µu)2 + (σu)2

)(
Var [S] + (E [S])2

)
µu (2Gr + (0.25 + γh)Hr) + 8

(
(µu)2 + (σu)2

) (
E
[

1
r

])2
 . (A.388)

Additionally, from (A.382) and (A.383), ĥd = hmin, if

Gr ≥ γh

1− γh

(
4

(
(µu)2 + (σu)2

(µu)

)(
E

[
1

r

])2

+Hr

)
(A.389)

and

cB ≥ cF

 3Var [S] + (E [S])2
(

1 + 4
(

(µu)2+(σu)2

(µu)

))
(

1−γh
γh

)
Gr −Hr − 4

(
(µu)2+(σu)2

(µu)

) (
E
[

1
r

])2
 (A.390)

b) From (2.49), âe = E if

min

(
R− V

(
hd
)

2M (hd)
− µu, E

)
= E. (A.391)

Then,

R− V
(
hd
)

2M (hd)
− µu ≥ E ⇐⇒ R ≥2M

(
hd
)

(E + µu) + V
(
hd
)

=2

(
cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

)
(E + µu)

+ cF

(
σF
(
hd
))2

+ cB

(
σB
(
hd
))2

. (A.392)
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Applying Lemma 11,

2

(
cF

(
µF
(
hd
))2

+ cB

(
µB
(
hd
))2

)
(E + µu) + cF

(
σF
(
hd
))2

+ cB

(
σB
(
hd
))2

=cF

(
2
(
µF
(
hd
))2

(E + µu) +
(
σF
(
hd
))2

)
+ cB

(
2
(
µB
(
hd
))2

(E + µu) +
(
σB
(
hd
))2

)

≤cF

8 (E [S])2 (E + µu) + Var [S] +

(
3Var [S] + (E [S])2

2E [S]

)2


+ cB

(
8

(
E

[
1

r

])2

(E + µu) +Gr +
(Gr +Hr)2

4Hr

)
. (A.393)

Then, âe = E if

R ≥cF

8 (E [S])2 (E + µu) + Var [S] +

(
3Var [S] + (E [S])2

2E [S]

)2


+ cB

(
8

(
E

[
1

r

])2

(E + µu) +Gr +
(Gr +Hr)2

4Hr

)
, (A.394)

In this case, from (A.377), ĥd = 1, if E ≥ 1 and

cB ≤ cFγl
 3

(
Var [S] + (E [S])2

)
2Gr + (0.25 + γh)Hr + 8

(
(E+µu)2+(σu)2

E+µu

) (
E
[

1
r

])2
 , (A.395)

since

min
(
E + µu, (E + µu)2 + (σu)2

)
= E + µu (A.396)

if E ≥ 1. Additionally, from (A.382) and (A.383), ĥd = hmin, if

Gr ≥ γh

1− γh

(
4

(
(E + µu)2 + (σu)2

(E + µu)

)(
E

[
1

r

])2

+Hr

)
(A.397)
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and

cB ≥ cF

 3Var [S] + (E [S])2
(

1 + 4
(

(E+µu)2+(σu)2

(E+µu)

))
(

1−γh
γh

)
Gr −Hr − 4

(
(E+µu)2+(σu)2

(E+µu)

) (
E
[

1
r

])2
 . (A.398)

�

Proof of Proposition 10

From Lemma 2, the objective function of the hospital in the absence of backroom costs is

ΠFE
A

(
ae,hd

)
=

N∑
i=1

aeiAFE
i

(
hd
)
− cF

(
N∑
i=1

aeiµ
F
i

(
hd
i

))2

+
N∑
i=1

BFE
i

(
hd
)
, (A.399)

where

AFE
i

(
hd
)

=Ri − cF

2µFi

(
hd
i

) N∑
j=1

µuj µ
F
j

(
hd
j

)
+
(
σFi

(
hd
i

))2

 , (A.400)

BFE
i

(
hd
)

=µui Ri

− cF
((

(σui )2 + (µui )2
)(

µFi

(
hd
i

))2
+ µui

(
σFi

(
hd
i

))2

+
∑
j 6=i

(
ρuijσ

u
i σ

u
j + µui µ

u
j

)
µFi

(
hd
i

)
µFj

(
hd
j

) . (A.401)
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Substituting (2.29) and (2.30), we can rewrite the above expressions as functions of pa

instead of hd:

AFE
i (pa) =Ri − cF

2E [Si] (1 + pa
i )

N∑
j=1

(
µujE [Sj ]

(
1 + pa

j

))

+ (1 + 3pa
i ) Var [Si] + pa

i (1− pa
i ) (E [Si])

2

 , (A.402)

BFE
i (pa) =µui Ri − cF

((σui )2 + (µui )2
)

(E [Si] (1 + pa
i ))

2

+ µui

(
(1 + 3pa

i ) Var [Si] + pa
i (1− pa

i ) (E [Si])
2
)

+
∑
j 6=i

((
ρuijσ

u
i σ

u
j + µui µ

u
j

)
E [Si] E [Sj ] (1 + pa

i )
(
1 + pa

j

)) . (A.403)

Plugging this in gives,

ΠFE
A (ae,pa) =

N∑
i=1

(aeiRi)− cF

(
N∑
i=1

(
aei2 (E [Si] (1 + pa

i ))
2 µui

)

+

N∑
i=1

aei2E [Si] (1 + pa
i )
∑
j 6=i

(
µujE [Sj ]

(
1 + pa

j

))
+

N∑
i=1

(
aei

(
(1 + 3pa

i ) Var [Si] + pa
i (1− pa

i ) (E [Si])
2
))

− cF

(
N∑
i=1

aeiE [Si] (1 + pa
i )

)2

+

N∑
i=1

(µui Ri)− cF

(
N∑
i=1

((
(σui )2 + (µui )2

)
(E [Si] (1 + pa

i ))
2
)

+

N∑
i=1

(
µui

(
(1 + 3pa

i ) Var [Si] + pa
i (1− pa

i ) (E [Si])
2
))

+

N∑
i=1

∑
j 6=i

((
ρuijσ

u
i σ

u
j + µui µ

u
j

)
E [Si] E [Sj ] (1 + pa

i )
(
1 + pa

j

)) (A.404)
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Then, we can optimize the objective function over pa and ae. We first hold the latter fixed

and consider the optimal value of pa. Taking the partial derivative of the objective function

(A.399) with respect to pa
k, we get

∂ΠFE
A

∂pa
k

= −cF

4aek (E [Sk])
2 (1 + pa

k)µ
u
k + 2aekE [Sk]

∑
j 6=k

(
µujE [Sj ]

(
1 + pa

j

))
+ 2µukE [Sk]

∑
i 6=k

(aeiE [Si] (1 + pa
i ))

+ aek

(
3Var [Sk] + (1− 2pa

k) (E [Sk])
2
)

+ 2aekE [Sk]
N∑
i=1

(aeiE [Si] (1 + pa
i ))

+2
(

(σuk )2 + (µuk)2
)

(E [Sk])
2 (1 + pa

k)

+ µuk

(
3Var [Sk] + (1− 2pa

k) (E [Sk])
2
)

+2E [Sk]
∑
i 6=k

((ρuikσ
u
i σ

u
k + µui µ

u
k) E [Si] (1 + pa

i ))


= −cF

(
2 (E [Sk])

2 (1 + pa
k)
(

2aekµ
u
k + (σuk )2 + (µuk)2

)
+ 2aekE [Sk]

∑
j 6=k

(
µujE [Sj ]

(
1 + pa

j

))
+

N∑
i=1

(aeiE [Si] (1 + pa
i ))


+ 2µukE [Sk]

∑
i 6=k

(aeiE [Si] (1 + pa
i ))

+ (aek + µuk)
(

3Var [Sk] + (1− 2pa
k) (E [Sk])

2
)

+2E [Sk]
∑
i 6=k

((ρuikσ
u
i σ

u
k + µui µ

u
k) E [Si] (1 + pa

i ))

 , (A.405)
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which is a linear function of pa
k. Further note that at pa

k = 0,

∂ΠFE
A

∂pa
k

= −cF
(

2 (E [Sk])
2
(

2aekµ
u
k + (σuk )2 + (µuk)2

)
+ 2aekE [Sk]

∑
j 6=k

(
µujE [Sj ]

(
1 + pa

j

))
+

N∑
i=1

(aeiE [Si] (1 + pa
i ))


+ 2µukE [Sk]

∑
i 6=k

(aeiE [Si] (1 + pa
i ))

+ (aek + µuk)
(

3Var [Sk] + (E [Sk])
2
)

+2E [Sk]
∑
i 6=k

((ρuikσ
u
i σ

u
k + µui µ

u
k) E [Si] (1 + pa

i ))


≤ 0. (A.406)

Then, there are two possibilities. First, if (A.405) is negative for all pa
k ∈ [0, 1], then the

objective function is maximized at pa
k = 0. On the other hand, if (A.405) switches from

negative to positive for some pa
k ∈ (0, 1), then the objective function is a convex function of

pa
k and maximized at either pa

k = 0 or pa
k = 1.

Suppose the latter case is true, and consider the value of the objective function at the end

points. In both cases, any term containing pa
k (1− pa

k) is equal to 0, and the remaining

terms are decreasing in pa
k, the objective function is maximized at pa

k = 0. Therefore, for

any ae, the global maximizer of (A.399) is pa = (0, . . . , 0), or equivalently, hd = (1, . . . , 1).

We can now consider the optimal value of ae. Plugging the above result into (A.399) gives

Π̄FE
A (ae) =

N∑
i=1

aei ĀFE
i − cF

(
N∑
i=1

aeiE [Si]

)2

+

N∑
i=1

B̄FE
i , (A.407)
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where

ĀFE
i =Ri − cF

Var [Si] + 2E [Si]

 N∑
j=1

µujE [Sj ]

 , (A.408)

B̄FE
i =µui Ri − cF

((σui )2 + (µui )2
)

(E [Si])
2 + µui (Var [Si])

+
∑
j 6=i

((
ρuijσ

u
i σ

u
j + µui µ

u
j

)
E [Si] E [Sj ]

) . (A.409)

Note that the Hessian matrix H of Π̄FE is given by

H = −2cF
(
MMT

)
, (A.410)

where

M = [E [S1] · · ·E [SN ]] . (A.411)

The Hessian is clearly negative definite, so the objective function is concave in aeFE and a

global maximum exists. Then, the Lagrangean is given by

L(ae, λ, ν) = Π̄FE (ae) +
N∑
i=1

λia
e
i +

N∑
i=1

νi (Ei − aei ) , (A.412)

and the optimal solution âe is a critical point of the Lagrangean satisfying the following

equations:

ĀFE
i + λ̂i − ν̂i
2cFE [Si]

=

N∑
j=1

(âeFE)j E [Sj ] , i = 1, . . . , N

λ̂i (âeFE)i = 0, i = 1, . . . , N

ν̂i (Ei − (âeFE)i) = 0, i = 1, . . . , N,

λi, νi ≥ 0, i = 1, . . . , N. (A.413)
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Without loss of generality, assume that

R1 − cFVar [S1]

E [S1]
≥ · · · ≥ RN − cFVar [SN ]

E [SN ]
, (A.414)

and define

I+ =

i ∈ {1, . . . , N}
∣∣∣∣∣ ĀFE

i

2cFE [Si]
>

N∑
j=1

(âeFE)j E [Sj ]

 , (A.415)

I =

i ∈ {1, . . . , N}
∣∣∣∣∣ ĀFE

i

2cFE [Si]
=

N∑
j=1

(âeFE)j E [Sj ]

 , (A.416)

I− =

i ∈ {1, . . . , N}
∣∣∣∣∣ ĀFE

i

2cFE [Si]
<

N∑
j=1

(âeFE)j E [Sj ]

 . (A.417)

Then,

(âeFE)i = Ei for i ∈ I+,

0 < (âeFE)i < Ei for i ∈ I,

(âeFE)i = 0 for i ∈ I−. (A.418)

We consider three possible cases. First, if

ĀFE
1

2cF (E [S1])2 < E1, (A.419)

then I = {1}, I− = {2, . . . , N}, and I+ = ∅, with

(âeFE)1 =

(
R1 − cF

(
Var [S1] + 2E [S1]

(∑N
j=1 µ

u
jE [Sj ]

)))+

2cF (E [S1])2 . (A.420)
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Second, if

ĀFE
N

2cFE [SN ]
>

N∑
j=1

EjE [Sj ] , (A.421)

then I = ∅, I− = ∅, and I+ = {1, . . . , N}.

Finally, if

E1 ≤
ĀFE

1

2cF (E [S1])2 ,
ĀFE
N

2cFE [SN ]
≤

N∑
j=1

EjE [Sj ] , (A.422)

then define

i∗FE = 1 + max

i ∈ {1, . . . , N} ∣∣∣∣∣ ĀFE
i

2cFE [Si]
>

N∑
j=1

(âeFE)j E [Sj ]

 . (A.423)

Therefore, I = {i∗FE}, I− = {i∗FE + 1, . . . , N}, and I+ = {0, . . . , i∗FE − 1}, with

âei∗FE
=
Ri∗FE

− cF
(

Var
[
Si∗FE

]
+ 2cFE

[
Si∗FE

] (∑N
j=1 µ

u
jE [Sj ]

))
2cF

(
E
[
Si∗FE

])2 −
∑i∗FE−1

j=1 EjE [Sj ]

E
[
Si∗FE

] .

(A.424)
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Proof of Proposition 11

As stated in (2.73), the optimal discharge policy is determined by minimizing the backroom

costs under an arbitrary portfolio of elective procedures:

hd
r (ae) = arg min

hd∈[hmin,1]

 N∑
i=1

((
σBi

(
hd
i

))2
+ 2µBi

(
hd
i

)( N∑
k=1

µukµ
B
k

(
hd
k

)))
aei +

(
N∑
i=1

aeiµ
B
i

(
hd
i

))2

+
N∑
i=1

((
µui

(
σBi

(
hd
i

))2
+ (µui )2 + (σui )2

)(
µBi

(
hd
i

))2

+2
∑
j 6=i

(
µui µ

u
j + ρuijσ

u
i σ

u
j

)
µBi

(
hd
i

)
µBj

(
hd
j

) . (A.425)

Notice that if
(
σBi
(
hd
i

))2
and µBi

(
hd
i

)
are increasing in hd

i , the expression being minimized is

also increasing in hd
i , and therefore ĥd

i = hmin
i . Thus, from Proposition 7, if for i = 1, . . . , N ,

γhi ≤
Gri

Gri +Hr
i

, (A.426)

then under any portfolio of elective procedures, the hospital will always discharge patients

as quickly as possible, i.e.

hd
r =

(
hmin

1 , . . . , hmin
N

)
. (A.427)

Define the probability that a patient undergoing procedure i will be readmitted under this

policy as

pmax
i = pa

i

(
hmin
i

)
. (A.428)

Then, the objective function of the hospital under this discharge policy is

Π̄SI
A (ae) =

N∑
i=1

aei ĀSI
i − cF

(
N∑
i=1

aeiE [Si] (1 + pmax
i )

)2

+

N∑
i=1

B̄SI
i , (A.429)
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where

ĀSI
i =Ri − cF

2E [Si] (1 + pmax
i )

N∑
j=1

(
µujE [Sj ]

(
1 + pmax

j

))

+ (1 + 3pmax
i ) Var [Si] + pmax

i (1− pmax
i ) (E [Si])

2

 , (A.430)

B̄SI
i =µui Ri − cF

((σui )2 + (µui )2
)

(E [Si] (1 + pmax
i ))2

+ µui

(
(1 + 3pmax

i ) Var [Si] + pmax
i (1− pmax

i ) (E [Si])
2
)

+
∑
j 6=i

((
ρuijσ

u
i σ

u
j + µui µ

u
j

)
E [Si] E [Sj ] (1 + pmax

i )
(
1 + pmax

j

)) . (A.431)

Assume without loss of generality that

ĀSI
1

E [S1] (1 + pmax
1 )

≥ · · · ≥
ĀSI
N

E [SN ]
(
1 + pmax

N

) . (A.432)

We can apply the results from Proposition 10, substituting ĀSI
i , B̄SI

i , and E [Si] (1 + pmax
i )

for ĀFE
i , B̄FE

i , and E [Si], respectively, for all i. �

Proof of Proposition 12

As given in (3.4), students’ best response function is given by

e∗s (et, πs) = arg max
ej≤es≤1

{πsPr [β1 = P |β0]− cses} . (A.433)

The second derivative of the objective function is clearly negative. Therefore, applying (3.1)

and the first-order condition, the unconstrained maximum is given by,

aπsg (β0) (e∗s)
a−1 (et)

b − cs = 0 ⇐⇒ e∗s =

(
aπsg (β0) (et)

b

cs

) 1
1−a

, (A.434)

where, for clarity, we omit the designation (et, πs). Applying the constraints on effort, (3.6)

follows. �
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Proof of Proposition 13

Teachers’ maximization problem is given in (3.5). Because teachers anticipate students’

response but are uncertain about their cost of exerting effort, this becomes

e∗t (πs, πt) = arg max
ej≤et≤1

{
πtg (β0)E [(e∗s)

a] (et)
b − ctet

}
. (A.435)

The second derivative of the objective function is clearly negative. For notational conve-

nience, let ehs and els refer to the unconstrained optimal effort level for students under high

and low cost of effort, respectively. That is,

ehs =

(
aπsg (β0) (et)

b

ch

) 1
1−a

and els =

(
aπsg (β0) (et)

b

cl

) 1
1−a

. (A.436)

Since ch > cl, then ehs < els. Then, there are six possible cases: i) 1 < ehs , ii) ej ≤ ehs ≤ 1 < els,

iii) ehs < ej ≤ 1 < els, iv) ej ≤ ehs < els ≤ 1, v) ehs < ej ≤ els ≤ 1, and vi) els < ej . We

consider each of these in turn below. Two of these cases do not result in a closed-form

solution for teachers’ optimal effort level.

Case 1: 1 < ehs . Suppose that students exert the maximum effort level, for any possible

cost of effort. That is, suppose that

1 <

(
aπsg (β0) (et)

b

ch

) 1
1−a

⇐⇒
(

ch

aπsg (β0)

) 1
b

< et. (A.437)

Then, plugging in the students’ effort level and applying the first-order condition, the

teachers’ unconstrained optimal effort decision is

e∗t =

(
bπtg (β0)

ct

) 1
1−b

. (A.438)

If (A.438) is between ej and 1, then, comparing (A.438) to (A.437), this case holds if
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and only if

(
ch

aπs

)1−b(
ct
bπt

)b
< g (β0) . (A.439)

Case 2: ej ≤ ehs ≤ 1 < els. Suppose that students exert maximum effort if the cost of effort

is low and some effort level between the minimum and maximum possible values if

the cost is high. That is, suppose that

1 <

(
aπsg (β0) (et)

b

cl

) 1
1−a

⇐⇒
(

cl

aπsg (β0)

) 1
b

< et and

ej ≤

(
aπsg (β0) (et)

b

ch

) 1
1−a

≤ 1 ⇐⇒
(
ch(ej)

1−a

aπsg (β0)

) 1
b

≤ et ≤
(

ch

aπsg (β0)

) 1
b

. (A.440)

Then, plugging in the students’ effort level and applying the first-order condition, the

teachers’ unconstrained optimal effort decision satisfies

(
ct

πtg (β0)

)
(e∗t )

1−a−b
1−a −

(
1− phs

)
b (e∗t )

−ab
1−a = phs

(
aπsg (β0)

ch

) a
1−a
(

b

1− a

)
. (A.441)

A closed-form solution cannot be obtained.

Case 3: ehs < ej ≤ 1 < els. Suppose that students exert maximum effort if the cost of effort

is low and minimum effort if the cost of effort is high. That is, suppose that

1 <

(
aπsg (β0) (et)

b

cl

) 1
1−a

and

(
aπsg (β0) (et)

b

ch

) 1
1−a

< ej

⇐⇒ cl < aπsg (β0) (et)
b < ch(ej)

1−a. (A.442)

Then, plugging in the students’ effort level and applying the first-order condition, the
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teachers’ unconstrained optimal effort decision is

e∗t =

(
bπtg (β0)

(
phs (ej)

a +
(
1− phs

))
ct

) 1
1−b

. (A.443)

If (A.438) is between ej and 1, then, comparing (A.443) to (A.442), this case holds if

and only if

cl < aπsg (β0)

(
bπtg (β0)

(
phs (ej)

a +
(
1− phs

))
ct

) b
1−b

< ch(ej)
1−a. (A.444)

Case 4: ej ≤ ehs < els ≤ 1. Suppose that students exert some effort level between the min-

imum and maximum possible values, for any possible cost of effort. That is, suppose

that

ej ≤

(
aπsg (β0) (et)

b

ch

) 1
1−a

and

(
aπsg (β0) (et)

b

cl

) 1
1−a

≤ 1

⇐⇒ ch(ej)
1−a ≤ aπsg (β0) (et)

b ≤ cl. (A.445)

Then, plugging in the students’ effort level and applying the first-order condition, the

teachers’ unconstrained optimal effort decision is

e∗t =

g (β0) (πsa)a
((

b

1− a

)(
πt
ct

)(
phs

(ch)
a

1−a
+

(
1− phs

)
(cl)

a
1−a

))1−a
 1

1−a−b

(A.446)

If (A.438) is between ej and 1, then, comparing (A.446) to (A.445), this case holds if
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and only if

ch(ej)
1−a ≤(aπsg (β0))1−b

((
b

1− a

)(
πtg (β0)

ct

)(
phs

(ch)
a

1−a
+

(
1− phs

)
(cl)

a
1−a

))b 1−a
1−a−b

≤ cl.

(A.447)

Case 5: ehs < ej ≤ els ≤ 1. Suppose that students exert minimum effort when the cost of

exerting effort is high and some effort level between the minimum and maximum

possible values when the cost is low. That is, suppose that

(
aπsg (β0) (et)

b

ch

) 1
1−a

< ej ≤

(
aπsg (β0) (et)

b

cl

) 1
1−a

≤ 1

⇐⇒ aπsg (β0) (et)
b < ch(ej)

1−a and cl (ej)
1−a ≤ aπsg (β0) (et)

b ≤ cl. (A.448)

Then, plugging in the students’ effort level and applying the first-order condition, the

teachers’ unconstrained optimal effort decision satisfies

bphs (ej)
a =

(
ct

πtg (β0)

)
(e∗t )

1−b −
(

b

1− a

)(
1− phs

)(aπsg (β0)

cl

) a
1−a

(e∗t )
ab

1−a .

(A.449)

A closed-form solution cannot be obtained.

Case 6: els < ej. Suppose that students exert minimal effort, for any possible cost of effort.

That is, suppose that

(
aπsg (β0) (et)

b

cl

) 1
1−a

< ej ⇐⇒ aπsg (β0) (et)
b < cl (ej)

1−a . (A.450)

Then, plugging in the students’ effort level and applying the first-order condition, the
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teachers’ unconstrained optimal effort decision is

e∗t =

(
bπtg (β0) (ej)

a

ct

) 1
1−b

. (A.451)

If (A.438) is between ej and 1, then, comparing (A.451) to (A.450), this case holds if

and only if

(aπs
cl

)1−b
(
bπt
ct

)b
g (β0) < (ej)

1−(a+b) . (A.452)

�
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S. Hof, A. Fügener, J. Schoenfelder, and J. O. Brunner. Case mix planning in hospitals: a
review and future agenda. Health Care Management Science, 20(2):207–220, 2017.

C. K. Jackson. A little now for a lot later a look at a texas advanced placement incentive
program. Journal of Human Resources, 45(3):591–639, 2010.

S. M. Johnson. Merit pay for teachers: A poor prescription for reform. Harvard Educational
Review, 54(2):175–186, 1984.

U. S. Karmarkar and R. Pitbladdo. Service markets and competition. Journal of Operations
Management, 12(3-4):397–411, 1995.

D. S. Kc and C. Terwiesch. An econometric analysis of patient flows in the cardiac intensive
care unit. Manufacturing & Service Operations Management, 14(1):50–65, 2012.

J. C. King, P. A. Manner, D. L. Stamper, D. C. Schaad, and S. S. Leopold. Is minimally in-
vasive total knee arthroplasty associated with lower costs than traditional TKA? Clinical
Orthopaedics and Related Research, 469(6):1716–1720, 2011.

A. Klein. No child left behind: An overview. Education Week, April
10, 2015. URL http://www.edweek.org/ew/section/multimedia/

no-child-left-behind-overview-definition-summary.html.

R. J. Kusters and P. M. Groot. Modelling resource availability in general hospitals de-

211

https://www.hcup-us.ahrq.gov/nrdoverview.jsp
http://www.edweek.org/ew/section/multimedia/no-child-left-behind-overview-definition-summary.html
http://www.edweek.org/ew/section/multimedia/no-child-left-behind-overview-definition-summary.html


sign and implementation of a decision support model. European Journal of Operational
Research, 88(3):428–445, 1996.

K. L. Leonard and J. G. Zivin. Outcome versus service based payments in health care:
lessons from african traditional healers. Health economics, 14(6):575–593, 2005.

H. M. Levin. Measuring efficiency in educational production. Public Finance Quarterly, 2
(1):3–24, 1974.

S. D. Levitt, J. A. List, and S. Sadoff. The effect of performance-based incentives on
educational achievement: Evidence from a randomized experiment. Technical report,
National Bureau of Economic Research, 2016.

T. R. Lewis and D. E. Sappington. Information management in incentive problems. Journal
of political Economy, 105(4):796–821, 1997.

R. L. Linn. Assessments and accountability. Educational researcher, 29(2):4–16, 2000.

N. Liu, V.-A. Truong, X. Wang, and B. Anderson. Integrated scheduling and capacity
planning with considerations for patients’ length-of-stays. Production and Operations
Management, 0(ja), 2019.

E. F. Long and K. S. Mathews. The boarding patient: Effects of ICU and hospital occupancy
surges on patient flow. Production and Operations Management, Forthcoming, 2017.
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