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Abstract: Gene regulatory networks capture interactions between genes and other cell substances, resulting in
various models for the fundamental biological process of transcription and translation. The expression levels
of the genes are typically measured as mRNA concentration in micro-array experiments. In a so-called genetic
perturbation experiment, small perturbations are applied to equilibrium states and the resulting changes in
expression activity are measured. One of the most important problems in systems biology is to use these data
to identify the interaction pattern between genes in a regulatory network, especially in a large scale network.
The authors develop a novel algorithm for identifying the smallest genetic network that explains genetic
perturbation experimental data. By construction, our identification algorithm is able to incorporate and
respect a priori knowledge known about the network structure. A priori biological knowledge is typically
qualitative, encoding whether one gene affects another gene or not, or whether the effect is positive or
negative. The method is based on a convex programming relaxation of the combinatorially hard problem of L0

minimisation. The authors apply the proposed method to the identification of a subnetwork of the SOS
pathway in Escherichia coli, the segmentation polarity network in Drosophila melanogaster, and an artificial
network for measuring the performance of the method.
1 Introduction
The use of RNA microarray has made it possible to have an
expression profile for a large number of genes when exposed
to different conditions. One of the most important problems
in systems biology is to use these data to identify the
interaction pattern between genes in a regulatory network,
especially in a large scale network. In the literature, this is
sometimes called reverse engineering the genetic network.
Genetic network identification has important potential
applications, for example, in drug discovery where a systems
wide understanding of the regulatory network is crucial for
identifying the targeted pathways.

Genetic network identification is a very active research field.
For an overview on existing results and methodologies, we refer
the reader to [1–5] and the references therein. On the basis of
the technique, we identify two classes of methods for network
identification. The first class consists of methods that infer
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the network by clustering the genes based on their expression
profiles. These methods do not view the network as a
dynamical system, and the inferred network typically lacks
causality.

The second class consists of methods that infer the cause-
effect relation between genes through various representations.
Several typical representations are information-theoretic
network Bayesian network and dynamical network described
by ordinary differential equations (see the survey in [5].
Information-theoretic network-based methods typically lack
the causality information, as they identify the network as
undirected graphs. Bayesian network-based methods identify
the genetic network as directed graph and thus convey some
causality information. However, they typically do not
accommodate cycles in the network graph. This limitation
can be significant, as feedback motifs are very common in
genetic regulatory networks. Both causality and feedback
motives limitation are not present in methods that model the
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network as the network is modelled as a set of differential
equations [6–9]. The method that we propose in this paper
belongs to this class.

On the basis of the type of data used in the identification,
there are two classes of methods. The first class deals with
data obtained from dynamic time-series measurement of
the expression profiles. The second class deals with steady-
state data, obtained by measuring the expression profiles
when the network reaches an equilibrium. Our method
belongs to the second class, where the identification of the
interconnection pattern is done locally by perturbing the
network around a given equilibrium. It is generally known
that a regulatory network can have multiple stable equilibria.

The method that we propose aims at providing a minimal
model that explains given genetic perturbation data.
Obtaining such a minimal model is computationally very
hard, as it involves combinatorial exploration of all possible
network topologies. Such a problem has been shown to
have NP-Hard complexity [10]. Pioneering works by
Collins and coworkers [6, 7, 11] provided an important
step towards addressing this problem. In [11], the authors
propose a method for noiseless measurements, where the
optimisation is relaxed as a non-recursive l1 optimisation
problem. In [6, 7], the method that they use introduces an
a priori limitation on the connectivity of the network, and
perform a combinatorial search on this limited set. The
connectivity limitation is that each gene in the network has
the same number of inputs. Another different approach
where the connectivity is imposed on the number of
outputs is reported in [12]. For every combination, the
parameters of the model are deduced through a least-square
fitting. Similar approach that uses least-square fitting but
without minimisation of the model is also reported in [13].

In solving this problem, we take a different approach.
Instead of imposing a connectivity limitation on the
network, we do not have any limit on how many inputs each
gene should have. The hard combinatorial problem is solved
using a mathematical technique called convex optimisation
[14] after relaxing it as a recursive l1 optimisation problem
[15]. The same technique has been applied successfully in
various fields where sparsity optimisation is needed such as,
portfolio optimisation in finance [16] and controller design
in engineering [17]. Different techniques of convex l1

relaxation have been used in other works in reverse
engineering of gene networks, such as [18–22]. Posing the
problem as a convex optimisation problem is actually very
advantageous from the complexity point of view, as convex
optimisation algorithms can be implemented reliably to
solve large scale problems.

Solving the problem with convex l1 relaxation has an
advantage of being able to handle noisy data, incorporate a
priori knowledge about the network structure, encoding
whether one gene affects another gene or not, or whether
The Institution of Engineering and Technology 2009
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the effect is positive or negative. The identified model is
then constructed to satisfy the a priori knowledge by default.

In this paper, we apply our method to two networks that
have been previously identified in the literature: the SOS
pathway in Escherichia coli [16] and the segmentation
polarity network in Drosophila melanogaster [7]. We also
apply our method to an artificial network to assess its
performance, primarily in relation to other convex l1

relaxation methods.

2 Gene network modelling and
identification
2.1 Notations

In this paper, we use the following matrix notation. If X is a
matrix with n rows and m columns, we write X [ Rn�m. The
symbol Xij refers to the the entry of X at the ith row, jth
column. A single index such as Xj refers to the column
vector corresponding to the jth column of X. The operator
E[Xj] is the probabilistic expectation of Xj. The operator
Var [Xj] is the covariance of Xj.

A genetic regulatory network consisting of n genes in a
genetic perturbation experiment can be modelled as a
dynamical system [6, 7]. In general, such a model assumes
the following form

dx̂

dt
¼ F (x̂, ŷ, û), x̂ [ Rn, ŷ [ Rn, û [ Rp (1)

dŷ

dt
¼ G(x̂, ŷ) (2)

where x̂i [ R denotes the transcription activity (typically
measured as mRNA transcript concentration) of gene i in
the network, ŷi denotes the protein concentration of
protein i and ûi is the so called transcription perturbation.
In very large networks, we can typically assume that not all
genes can be perturbed in the experiment, resulting in p , n.

The functions F and G summarise the dynamics of
transcription and translation, as well as factors such as the
degradation and dilution of transcripts and proteins. Such
nonlinear genetic networks can have multiple stable
equilibria. Each equilibrium typically corresponds to a
phenotypical state of the system. The dynamics close to a
given equilibrium (xeq, yeq) can be approximated by the set
of linear differential equations

dx

dt
¼ A11xþ A12 yþ u (3)

dy

dt
¼ A21xþ A22 y (4)

where x :¼ x̂� xeq and y :¼ ŷ� yeq [8, 13]. The matrices
Aij , i, j ¼ 1, 2 are the linearisation of the dynamics near
the equilibrium, while the vector u [ Rn represents the
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effect of the perturbation inputs in the linear model. In the
case that not all genes can be perturbed, u is constrained in
a subspace of Rn. Given that the system is stable around
the equilibrium (x, y) ¼ (0, 0), if u is small enough, the
system will move to a new equilibrium (x, y), for which

A11xþ A12yþ u ¼ 0 (5)

A21xþ A22Ay ¼ 0 (6)

We formulate a theory for the case when only the transcript
concentrations are measured. In this case, we can flatten the
transcription and translation layer of the regulatory system
into an effective gene–gene regulatory network, by
eliminating the protein concentration y. We therefore obtain

y ¼ �A
�1
22 A21x (7)

A11 � A12A
�1
22 A21

� �
xþ u ¼ 0 (8)

We then define the matrix

A :¼ A11 � A12A
�1
22 A21

� �
(9)

The matrix A [ Rn�n encodes the effective pairwise
interactions between the individual genes in the network.
In this representation, we have the relation

Axþ u ¼ 0 (10)

Let U ¼ [U1 . . . Um] [ Rp�m denote the stack matrix of
the transcription perturbations for different m experiments
and X ¼ [X1 . . . Xm] [ Rn�m denote the stack matrix of
the corresponding steady-state mRNA concentrations. In
large networks or in cases where experiments are costly, we
can typically assume that the experimental data set is
smaller than the network size [2]. That is, we assume m , n.

By collecting all m experiments at steady state, the
equilibrium conditions (10) can be written as

AX þ U ¼ 0 (11)

In (11), the matrices X and U are known, since they are
measured (possibly with noise). The goal of the method we
propose in this paper is to find unknown matrix A, which
models genetic network interactions and best explains the
genetic perturbation experiments.

We aim at constructing a model that not only explains the
perturbation data, but also incorporates some a priori
knowledge about the system. Here a priori biological
knowledge is typically qualitative, encoding whether one
gene affects another gene or not, or whether the effect is
positive or negative. This knowledge is then manifested as
pre-specified signs of some entries of the matrix A.
Furthermore, we would like to develop a model that
constitutes a minimal network.
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
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We quantify the size of the model as the number of
connections in the network, that is, the number of non-
zeros entries in the matrix A. This is known as the L0

norm of the matrix A. (Even though it is not a norm in a
strict mathematical sense, it is common to refer to it as the
L0 norm.) The minimal model then corresponds to a
network with as few connections as possible, or
equivalently, the sparsest possible matrix A.

Obtaining a minimal model is clearly beneficial, as it reduces
the complexity the model. A non-minimal model might be able
to explain the data slightly better than a minimal one, for
example, due to measurement noise. However, this can lead
to a phenomenon called overfitting, where a model includes
unnecessary features to accommodate the noise. A minimal
model is also desirable when the identified model is used in a
pathway knockout. A non-minimal model might contain
falsely identified spurious pathways.

3 Identification algorithm
Consider (11), if we assume that the measurements are noise
free and if we have a sufficient number m ¼ n of independent
experiments, X is an invertible matrix, and we could obtain A
using A ¼ �UX�1. However, as genetic networks grow
dramatically in size as we reach genome-scale networks,
having n independent experiments can be costly, both
financially and timewise. Furthermore, the absence of noise is
not a realistic assumption, except when we are dealing with in
silico model. Consequently, we are not going to assume that
right hand side of (11) is zero. Instead, we define
identification error as

h :¼ AX þ U (12)

and try to minimise h (as a function of A) with respect to some
metric, while obtaining a minimal model for A and satisfying
the a priori constraints that might be imposed on A.

3.1 Error criterion

In this paper, we use the total squared error as the error
criterion

Err ¼
X

j¼1,...,m

X
i¼1,...,n

h2
ij (13)

However, if the covariance of the error in the jth experiment
is known, then the sum can be replaced by a more accurate
weighted sum

Err ¼
X

j¼1,...,m

X
i¼1,...,n

X
k¼1,...,n

hijhkj R
j
ik ¼

X
j¼1,...,m

hT
j Rjhj

(14)

where Rj is the inverse of the error covariance matrix in
the jth experiment. The intuition behind this weight is that
the identification error in the experiments with more
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reliable data (smaller variance) weights more than that
coming from less reliable data.

3.2 Model minimality criterion

We define the size of a model given by the matrix A as the
number of non-zero entries in A, which is denoted by
kAk0. This is the number of connections in the model.

3.3 Priori knowledge constraint

Such knowledge typically has the form of (partial) sign
pattern of the matrix A. We encode this by a matrix S [
{0, þ , � , ?}n�n, where

Sij ¼ þ

Sij ¼ �

Sij ¼ 0
Sij ¼ ?

2
664

3
775,

Aij � 1

Aij � �1

� 1
2 � Aij �

1
2

Aij [ R

2
664

3
775 (15)

Here 1 is a small number, below which a connection is
considered negligible. In this paper, we set 1 ¼ 10�3. In
short, such a pattern encodes known positive interactions
(þ), negative interactions (2), the absence of interactions
(0), or simply lack of knowledge (?) between any two genes
in the network. For example, a matrix consisting of only (?)
indicates no a priori knowledge about the network.
Hereafter, we shall denote the set of all matrices A that
satisfy a given a priori knowledge constraint S as S. A
critical property of the set S that can be easily shown is
that it is convex [14].

3.4 Bias due to mRNA decay

As defined in (9), the effective gene–gene network model A
is comprised of two parts. The direct transcript–transcript
factor A11 and the regulation through protein factor
�A12A

�1
22 A21.

We can typically assume that the dynamics of the
concentration of protein i, yi, is determined solely by its own
transcript concentration xi and its decay and/or dilution
process. In this case, both A21 and A22 in (7) are diagonal
matrices with positive and negative entries, respectively. We
can therefore write

�A
�1
22 A21 ¼: L1 (16)

where L1 is a a diagonal matrix with positive entries. Similarly,
if we assume that the dynamics of the transcript concentration,
xi, is due to decay, we can write

A11 ¼: �L2 (17)

where L2 is another diagonal matrix with positive entries. We
then have

A ¼ L1A12 �L2 (18)
8
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where A12 represents transcription regulation by proteins.
Consequently, any network model that results from
identification using genetic perturbation data will have a
negative bias on the diagonal terms. When the decay rates L2

are known, which is the case for the in silico model of the
Drosophila segmentation polarity network, we can remove
the bias. Otherwise, we have to take this into account when
making statements about autoregulation of genes.

3.5 Convex programming

The method that we propose in this paper is based on a
mathematical technique called convex programming.
Basically, convex programming is a mathematical theory for
minimisation of a convex cost function over a convex set of
feasible solutions. Formulating the identification problem as
convex programming is attractive because there are techniques
for solving convex programming problems efficiently; see,
example, [14].

3.6 Convex optimisation solver

The convex optimisation problems that we pose in this paper
are solved using MATLAB with the toolbox cvx [23]
running on an Intel Xeon 2.8 Ghz processor with 4 GB
RAM. Here cvx makes forming and solving the problem
easy, but at the cost of efficiency. However, custom-made
implementations of convex optimisation algorithms can
easily handle problems with thousands of variables allowing
us in the future to handle genome scale problems.

The method that we use in this paper can be explained in
two steps.

3.6.1 Step 1 – establishing baseline error level: In
this step, we establish the least error level that a model can
attain, while disregarding the model minimality criterion.
As discussed above, when we assume no a priori knowledge
about the statistics of the error, we can simply use the total
squared error as the error criterion. Consequently, finding
the baseline error level Ebs amounts to solving the
following convex programming problem

minimise
P

j¼1,...,m

P
i¼1,...,n h2

ij

subject to h ¼ AX þ U , A [ S
(19)

with optimisation variable A.

When the statistics of the measurement errors in each
experiment for X and U are known, we can compute the
associated covariance of the error criterion as

Var[hj] ¼ AVar[Xj]AT
þ Var[Uj] (20)

As discussed above, the error criterion that we use is given
in (14), where

Rj
¼ (Var[hj])

�1 (21)
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
doi: 10.1049/iet-syb.2008.0130

009 at 14:42 from IEEE Xplore.  Restrictions apply.



IET
do

www.ietdl.org
Consequently, finding the baseline error level Ebs amounts to
solving the following optimisation problem

minimise
P

j¼1,...,m hT
j Rjhj

subject to h ¼ AX þ U , A [ S,

Rj
¼ (AVar[Xj]AT

þ Var[Uj])
�1

(22)

where A is the variable.

However, this formulation is not convex. In order to solve
it efficiently, we relax the problem by approximating the
covariance matrices. First, assuming that the covariance
matrices are identity matrices, we find the best model that
minimises the error criterion (19). Denote this model as Ã.
The weight matrices Rj are then given by

Rj
¼ ~AVar[Xj]Ã

T
þ Var[Uj]

� ��1

(23)

The baseline error level Ebs is then computed by solving the
following convex optimisation problem.

minimise
P

j¼1,...,m hT
j Rjhj

subject to h ¼ AX þ U , A [ S
(24)

with A as the variable.

3.6.2 Step 2 – minimising the model: The baseline
error level and the approximated error covariance matrix that
we obtain in Step 1 above are used in finding a minimal
model that can explain the data reasonably well. That is,
we search for a minimal model that results in an error level
of at most bEbs, where b � 1 is a predetermined
parameter. The bigger the b, the more variation we allow
for the identified model, and thereby possibly obtain a
smaller model at the cost of higher error level. Thus, b

allows us to control the trade-off between model accuracy
and model minimality.

Mathematically, Step 2 can be formulated as the following
optimisation problem

minimise kAk0

subject to h ¼ AX þ U , A [ SP
j¼1,...,m hT

j Rjhj � bEbs

(25)

where A is the variable. We denote the solution of this
problem as Amin. Although the constraints in the problem
above defines a convex feasible set, the cost function itself
is not convex. In fact, the problem has combinatorial
complexity as we have to search in the set of all possible
interconnection patterns. This means that the complexity
of the problem increases very rapidly with its size, and thus
makes it practically impossible to solve it on a large scale.
In order to solve this problem with convex programming,
we relax the L0 minimisation problem as a recursive
weighted l1 minimisation.
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
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Step 2.1: Initiate Aold ¼ 0 and Wij ¼ 1, i ¼ 1, 2, . . . , n,
j ¼ 1, 2, . . . , n

Step 2.2: Find Aupdate by solving the convex optimisation
problem

minimise
P

i¼1,...,n

P
j¼1,...,n Wij jAij j

subject to h ¼ AX þ U , A [ SP
j¼1,...,m hT

j Rjhj � bEbs

(26)

where A is the variable.

Step 2.3: Update Wij ¼ f (Aupdate,ij). Here f (.) is a function
that assigns a weight matrix for the convex cost function in
Step 2.2. The choice for the function is explained in more
detail later.

Step 2.4: If kAold � AupdatekF � 1, then update Aold ¼ Aupdate

and go to step 2.2, otherwise stop the iteration and return the
current solution as the optimal value

Amin ¼ Aupdate (27)

Here 1 is a small number that we choose to indicate the
convergence of the iteration. Throughout this paper, we use
1 ¼ 1023.

3.7 Choosing the weight function

The weight function f (Aij) is designed such that the entries of
A that are small are given larger weight than the larger entries
[15]. This is because we are interested in maximising the
number of zero entries in A. We thus emphasise more on
reducing the entries that are already small. The generic form
of f (Aij) that we use in this paper is as follows

f (Aij) ¼
dp

dp þ jAij j
p (28)

where d is a small number that acts as a treshold, below which a
number is considered ‘small’. The parameter d thus determines
the ‘boundary’ between small values and large values. The term
‘boundary’ is to be interpreted loosely, as the transition is
smooth. The exponent p determines the shape of the
function, and how abruptly the weight transitions take place
from 1 to 0. The plot of the function f (Aij) can be seen in
Fig. 1. Throughout this paper, we use d ¼ 10�2 and p ¼ 1.

The overall identification procedure can be summarised in
the flowchart in Fig. 2.

4 Results and discussion
4.1 The segmentation polarity network of
Drosophila melanogaster

We apply our proposed method to genetic perturbation data
obtained from an in numero experiment based on the model
159
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given in [7]. The network model captures the interaction
between five genes and five transcription factors (Fig. 3).

The gene ci produces the Cubitus interruptus protein that
further undergoes a post-translational modification into the
activator form (CI) or the repressor form (CN). Cubitus
interruptus activator acts as an activator for the genes ptc
and wg, while the Cubitus interruptus repressor represses
the genes ptc, wg, en and hh. The gene wg produces the

Figure 1 The plots of the weight function f (Aij) against
jAijj/d for various shape parameters p

Notice that scaling the factor d amounts to shifting the transition
between high weight and the low weight

Figure 2 The flowchart summarising the method proposed
in this paper

The inputs to the algorithm are the perturbation data represented
by the matrices X and U, as well as potential a priori structural
knowledge about the network, which is represented by S
The output of the algorithm is the identified model, represented
by the matrix A
he Institution of Engineering and Technology 2009
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protein wingless (WG) that in turn acts as a self-activator.
The gene ptc produces the protein patched (PTC) that
inhibits the modification of Cubitus interruptus into the
activator form and promotes the modification into the
repressor form, effectively forming a negative feedback
loop. The gene en produces the protein engrailed (EN) that
represses the transcription of ci and promotes the
transcription of hh.

We obtain the perturbation data X and U by numerically
integrating the model provided in [7]. We first simulate the
model without any perturbation to obtain an equilibrium.
We then perform simulations with constant perturbation to
each of the five genes in the model. The perturbation is set
at 1023. Thus, U ¼ 10�3

� I , where I is an identity matrix.
The deviations from the unperturbed equilibrium are
recorded in the X matrix.

Since the data is noiseless, we obtain the baseline error level
by solving (19). We do not estimate any error covariance
matrices, and the performance measure is thus given by (13).
We then proceed with Step 2, and use b ¼ 1.1.

From the numerical model, we have precise knowledge
about the mRNA decay rate. Using this information, we
eliminate the negative (auto repression) bias in the
identified network by adding a diagonal matrix L2 (18).

Given the matrix A of the identified model, we denote the
strongest intergene interaction as

m :¼ max
i=j
kAijk (29)

An interaction represented by Aij is considered strong if
kAijk . 0:1 � m, and weak if 10�3

� kAijk � 0:1 � m:

We execute our method to obtain a network model. The
execution takes about 6 s on the platform that is detailed in
the previous section. Fig. 4 shows the result of our network
identification method and the network identified in [7]. Our
model uses the full set of numerical data from the model, in

Figure 3 The segmentation polarity network of Drosophila
melanogaster [7]
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
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which all five genes are perturbed separately. We can see that
our method produces a smaller model, and that all the
identified connections can be accounted for based on
the description of the network earlier in this section. The
network in [7] contains a self-repression loop in en, which is
a false positive as it is not included in the real model. The
connections from ci to wg and ptc are not present in our
model. As explained above, ci produces both an activator
and repressor for wg and ptc. These connections are thus
very weak and not included in our model.

We also apply the method on a partial data set. In this set,
we do not include the data from the perturbation of ptc. The
network identified using this data set is shown in Fig. 5b.
Observe that the connections from ptc to other genes
disappear as expected, since there is no data that dictates
their existence. This lack of data can be supplemented by a
priori knowledge. We then include a sign pattern matrix as a
constraint. The result is shown in Fig. 5a. This network
includes weak connections from ptc to itself, en, and hh as

Figure 4 Identified network using full numerical data from
the model of the segmentation polarity network of
Drosophila melanogaster

a The network identified using the method proposed in this
paper
b The network identified in [7]
Solid lines indicate strong interaction, while broken lines indicate
weak interaction

Figure 5 Identified network using partial numerical data
from the model of the segmentation polarity network of
Drosophila melanogaster

a The network identified when a priori knowledge about the sign
pattern is incorporated
Arrows with black dots indicate interactions that are included in
the a priori knowledge
b The network identified without incorporating any a priori
knowledge
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
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required by the constraint. These connections are weak
because their existence is required by the a priori knowledge
without any supporting data.

4.2 SOS pathway in Escherichia coli

We also apply our proposed method on a subnetwork of the
SOS pathway in Escherichia coli, using the genetic
perturbation experimental data set provided in [6]. The
subnetwork that we consider consists of nine genes and
several transcription factors and metabolites (see Fig. 2 in
the Supplementary Material).

The main pathway featured in this network is the pathway
between the single-stranded DNA (ssDNA) and the protein
LexA that acts as a repressor to several other genes (recA, ssb,
dinI, umuDC and rpoD). The protein RecA, which is
activated by the SSDNA, cleaves LexA and thus upregulates
the above mentioned genes. Other key regulators in the
network are the sigma factors s70, s32 and s38. These
sigma factors play an important role in initiating
transcription in heat shock and starvation responses.

We obtain the perturbation data X from [6]. Since there is
no explicit mentioning of U, we assume that it is an identity
matrix. Notice that this is a justifiable assumption, as a
different value of U would just result in a scaling of the model.

The covariance matrix of the measurement in X is obtained
by processing the standard error matrix provided in [6].
Assuming that the measurement errors of different genes
are uncorrelated, we can obtain

(Var[Xj])ik ¼
s2

ij , i ¼ k
0, i = k

�
(30)

where sij is the standard error of the measurement of gene i
in the jth experiment. Since there is no information about the
measurement error for U, we assume it is zero.

We compile the connections that are included in the a
priori knowledge in Table 1. This list is compiled based on
the diagram in Fig. 6. We begin with Step 1 of the
method to obtain a baseline error level and estimated error
covariance. We use the estimated error covariance to obtain
the weight matrices Rj that are used in the error criterion
(14). We then proceed to Step 2, and use different b values
obtain different models and analyse them (as detailed below).

As a comparison, we also perform the identification
without estimating the error covariance and using the
weighted sum (14) as our error criterion. Instead, we use
identity weight matrices. This approach turns out to be
inferior to the one with estimated error covariance.

The result of our method is shown in Fig. 7. In panel (a),
we see the network identified using our method with
estimated error covariance and b ¼ 1.75. The network
161
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Table 1 A summary of a priori knowledge used in the network identification

Genes recA lexA ssb recF dinI umuDC rpoD rpoH rpoS

recA ? 2 ?(2) ?(þ) ?(þ) ?(2) þ ?(0) ?(0)

lexA þ 2 ?(2) ?(þ) ?(þ) ?(2) þ ?(0) ?(0)

ssb þ 2 ?(2) ?(þ) ?(þ) ?(2) þ ?(0) ?(0)

recF ?(0) ?(0) ?(0) ?(2) ?(0) ?(0) þ ?(0) þ

dinI þ 2 ?(2) ?(þ) ? ?(2) þ ?(0) ?(0)

umuDC þ 2 ?(2) ?(þ) ?(þ) ?(2) þ ?(0) ?(0)

rpoD þ 2 ?(2) ?(þ) ?(þ) ?(2) ? þ ?(0)

rpoH ?(0) ?(0) ?(0) ?(0) ?(0) ?(0) þ ? ?(0)

rpoS ?(0) ?(0) ?(0) ?(0) ?(0) ?(0) þ ?(0) ?

The values in brackets represent known connections based on [6]. A þ sign indicates known activation, 2 indicates known
inhibition, 0 indicates the absence of connection and ? indicates unknown connection
identified in [6] is shown in Fig. 7 panel (b). Comparing it to
our result in panel (a), we can see that the network in (b)
misidentifies several known one-hop interconnections, such
as the mutual repression between recA and rpoD.

Figure 6 (Taken from [6]) The diagram of interactions in the
SOS network

DNA lesions caused by mitomycin C (MMC) (light grey hexagon)
are converted to single-stranded DNA during chromosomal
replication. Upon binding to ssDNA, the RecA protein is
activated (RecA�) and serves as a coprotease for the LexA
protein. The LexA protein is cleaved, thereby diminishing the
repression of genes that mediate multiple protective responses.
Boxes denote genes, ellipses and denote proteins, hexagons
indicate metabolites, arrows denote positive regulation, filled
circles denote negative regulation. Dark grey emphasis and
denotes the primary pathway by which the network is activated
after DNA damage
The Institution of Engineering and Technology 2009
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The network that we identify in panel (a) includes a
number of interactions that are not included in the a priori
knowledge. Upon cross-validation with the literature about
the SOS network, we found that some of these new
interactions are valid. For example, the protein dinI is
known to stabilise recA�, the activated form of recA [24].
Thereby, it effectively promotes the degradation of LexA,
and thus activates recA, lexA, ssb, dinI, umuDC and rpoD.
Our result correctly predicts the positive interaction with
rec A, ssb and umuDC.

A summary of other known interactions in the literature
has been compiled by [6] and shown as the values between
brackets in Table 1. We use this list as the ‘ground truth’
and compare the results of the network identification
methods with it.

The plot in Fig. 8 shows a performance comparison of
various identified models. Several observations that can be
made from the comparison are as follows:

1. Incorporating the estimated error covariance in the error
assessment improves the performance of the method.
Comparing Models A and D, we can see that using the
estimated error covariance gives us a smaller model with
fewer false positives and negatives.

2. By increasing the value of b, we emphasise more on
obtaining a smaller model (fewer connections) and less on
the accuracy. Observing the results from Models B, C, D
and E, we can see that it leads to fewer false positives and
more false negatives. The model is the fewest total error
(Model D) is shown in Fig. 7 panel (a).

3. The models identified using our method results in fewer
errors compared to that in [6]. In particular, by tuning the
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
doi: 10.1049/iet-syb.2008.0130
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Figure 7 Identification results of the Escherichia coli SOS network

a The result of our method using estimated error covariance and b ¼ 1.75
b The network identified in [6]
Lines with arrows indicate activation, while circles indicate repression
Solid lines denote strong interaction, while dotted lines denote weak interaction
The distinction between strong and weak connections follows the same convention as in the segmentation polarity network
value of b carefully, we can obtain models with very low
number of false positives (less than 5%).

4.3 Heterozygous knockdown of an
in silico network

We generate an artificial network with 20 genes and study the
performance of our method for various b parameters. As the
measure of performance, we use the receiver operating

Figure 8 Performance comparison of various identified
models of the Escherichia coli SOS network

Model A is the result of our method without using error
covariance estimation and b ¼ 1.75
Model B, C, D and E are the results of our method using error
covariance estimation, with b ¼ 1.1, 1.25, 1.75 and 2, respectively
Model D is shown in Fig. 7 panel (a)
Model F is the network identified in [6], as also shown in Fig. 7
panel (b)
Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
: 10.1049/iet-syb.2008.0130
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characteristic (ROC) curve. The ROC curve plots the
sensitivity of the prediction results against (1 – specificity).
These quantities are given by the following formula [25]

Sensitivity ¼
TP

TPþ FN
, Specificity ¼

TN

TNþ FP
(31)

where T ¼ True’, F ¼ False’, P ¼ Positives’ and N ¼
Negatives’.

Figure 9 The in silico network used in Section 4.3
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As the true system, we use the network shown in Fig. 9.
This network has a fan-like topology with a few regulator
genes and a larger number of genes that are regulated
directly or indirectly. The center of the network is formed
by Genes 1 and 2, that are interconnected in a mutual
inhibition. As such, these two genes form a toggle switch
[26], in which they can only be active complementarily.
Gene 1 acts as an inhibitor to another pair of genes (Genes
3 and 4) that also form a toggle switch. This group of four
genes thus form a staged toggle switch than can hold one
of the following three states: (on, off, off, off), (off, on, off,
on) and (off, on, on, off). The remaining 16 genes in the
network are regulated by these master genes directly or
indirectly, as shown in Fig. 9.

We assume that in the wild-type specimen, each gene has
two copies. Perturbation of the network is then performed by
removing on the copies (heterozygous knockdown).

The dynamics of gene transcription and translation are
modelled as a nonlinear system as follows

dxi

dt
¼ G0 þ

Y
j[Inhi

K n

K n þ yn
j

Y
j[Acti

yn
j

K n þ yn
j

0
@

1
AGi � lixi (32)

dyi

dt
¼ xi � kiyi , i [ {1, . . . , 20} (33)

where xi is the transcript concentration of gene i, yi is the
concentration of protein i, Inhi and Acti are the set of
genes that inhibit and activate gene i, respectively. The
variable Gi represent the availability of gene i. In the wild
type, Gi,i[{1,...,20} ¼ 1. When gene i is knocked down,
Gi ¼ 1/2. The parameters of the model are G0 (basal
transcription rate), K (inhibition and activation treshold), n
(Hill coefficient), li (transcript decay rate), and ki (protein
decay rate).

We generate the data that we use in the identification by
computing the steady state values of the transcript
concentrations (x) in (33), for the wild-type case and for
each of the perturbations. The perturbation input U is
taken to be a negative identity matrix of size 20. To
simulate noisy measurement, we add some zero-mean
Gaussian noise with uniform standard deviation to the
computed transcript concentrations.

As we have seen in the previous sections, tuning the
parameter b affects the performance of our algorithm.
Since b represents a trade-off between sparsity and model
completeness that cannot be known a priori, a fair
assessment of the performance of the algorithm should be
done by testing the algorithm for a wide range of choice of
b. This is plotted in Fig. 10.

4.3.1 Non-weighted recursive algorithm: This
algorithm is based on the approach taken in [21, 22]. This
The Institution of Engineering and Technology 2009
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algorithm does not use any weighting scheme in the l1

optimisation. Instead, in each iteration of the sparsity
optimisation, entries that are small (,d) are constrained to
be zero in the subsequent iterations. The recursion is
performed until it converges. The value of d can be tuned
to adjust the sparsity of the result.

4.3.2 Non-recursive regularisation algorithm:
This algorithm based on the approach taken in, for
example [18–20]. As suggested by the name, this
algorithm does not involve any iteration. To obtain a sparse
model, a term with the l1 norm of the identified model is
added to the cost function. Therefore instead of
minimising

P
j¼1, ... , m hT

j Rjhj in (24), we minimiseP
j¼1, ... , m hT

j Rjhj þ w �
P

i, j jAi, j j. The weight w can be
tuned to adjust the sparsity of the result. Specifically, larger
w means higher priority on the sparsity of the model, and
thus results in a sparser model.

The performance comparison between our method and
these two methods are plotted in Fig. 10. We can see that
for this example, our algorithm performs better than the
other two relaxation techniques.

5 Conclusion
We propose a method for identifying genetic regulatory
networks using expression profiles from genetic perturbation
experiments. Some of the features of our method are, first,
we aim at deriving a minimal model (characterised by the
least number of connections) that explains the experimental
data. Second, we can incorporate a priori information about
the structure of the network. Third, we take into account the
statistics of the measurement noise in formulating the cost
function of our identification optimisation.

Figure 10 The ROC curves of various convex l1 relaxation
techniques

Curve 1 is the result of non-weighted recursive algorithm, Curve 2
is the result of our algorithm and Curve 3 is the result of the non-
recursive regularisation algorithm
IET Syst. Biol., 2009, Vol. 3, Iss. 3, pp. 155–166
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Our method is based on convex programming relaxation,
that approaches the combinatorially hard problem of
finding a minimal model with efficient computational
scheme. In this paper, we test our method in a prototypical
implementation that handles module size networks.
However, as efficient customised implementation of convex
optimisation algorithms are known to handle problems
with thousands of variables, our method has a potential of
solving the identification problem on a much larger scale.
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