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Sharing graphs are an implementation of linear logic proof-nets in
such a way that their reduction never duplicate a redex. In their
usual formulations, proof-nets present a problem of coherence: if the
proof-net N reduces by standard cut-elimination to N’, then, by
reducing the sharing graph of N we do not obtain the sharing graph
of N’. We solve this problem by changing the way the information
is coded into sharing graphs and introducing a new reduction rule
(absorption). The rewriting system is confluent and terminating.
The proof of this fact exploits an algebraic semantics for sharing
graphs.

1 Introduction

Implementations of functional languages based on graph rewriting need so-
phisticated techniques to control the runtime duplication of subgraphs. From
a theoretical point of view, we know after [Lév78] that given a normalizable A-
term there is an optimal (in the number of beta-reductions) reduction strategy
to reach the normal form. Since, however, it is a parallel strategy (counting
as a single step the simultaneous reduction of several redexes, those belong-
ing to the same family), how to implement this strategy remained open until
Lamping [Lam90] introduced his sharing graphs.
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Sharing graphs are based on three main ideas. First, any time a duplica-
tion seems required (e.g., when a bound variable appears several times in the
body of a term), it is not actually performed; it is instead indicated (in a
somewhat lazy way) by specific (new) nodes in the graph (fans, in Lamping’s
terminology). Second, special reduction rules are added to perform the actual
duplication in a controlled way (a redex will be never duplicated). Finally
(and non trivially), there is a way to mark the boundary of the subgraph
where duplication has to happen (again new nodes, the brackets). The re-
duction then proceeds in a distributed and asynchronous way, firing locally
those reduction rules which apply. The crucial properties to show are then: (i)
this asynchronous process terminates (if the term has a normal form); (ii) the
normal form is (a possibly shared representative of) the same we would reach
doing the reduction in the standard way; and (iii) no useless duplication is
ever done (i.e., optimality of beta-reduction).

Following Lamping’s breakthrough, several papers generalized and improved
his result. First, Gonthier, Abadi, and Lévy [GAL92a,GAL92b] realized that
Lamping’s method was in fact a way to reduce linear logic proof-nets [Gir87]
and that the information needed to mark the boundary of the subgraph to be
duplicated was a local and distributed representation of the (global) notion
of (linear logic) “box”. Asperti showed how the same problems might be ap-
proached from a categorical point of view [Asp95b], and Asperti and Laneve
generalized the theory to the “interaction systems” [AL93]. The relations with
the geometry of interaction are investigated in [ADLR94].

Sharing graphs present a problem of coherence. Suppose that the proof-net (or
lambda-term) N reduces by standard cut-elimination (beta-reduction) to N’.
Then, by reducing the sharing graph corresponding to N we do not obtain the
sharing graph corresponding (in the given translation) to N’. The recovering
of the proof-net N’ is instead obtained by the so-called read-back process, a
semantically based procedure external to the reduction system, which essen-
tially computes the equivalence quotient of all the sharing graphs representing
the same proof-net (term). A first contribution towards the solution of this
problem is the notion of safeness in [Asp95]. In presence of certain safety
conditions (which may be computed along the computation) some additional
reductions may be performed, allowing a further simplification of the net.

We adopt, instead, a different approach. The main contribution of this paper
is a solution to the coherence problem (for restricted proof-nets, see below)
obtained by changing the way the information is coded into sharing graphs.
This is achieved via two technical tools: (i) a new reduction rule (absorption)
allowing a simplification of the net in some critical cases; (ii) a clear separation
of the logical and control information in the representation of a net. The logical
information takes the form of levels on the formulas of the proof-net; control
is expressed by unifying fans and brackets into one single node (muz). It is



this separation to allow the formulation of the absorption reduction and to
enforce coherence.

Our results, like those of most of the literature, hold for restricted proof-nets,
where weakening is not allowed. It should be clear that any approach to cut-
elimination based on a local graph exploration may work only on connected
components. If the syntax allows, during reduction, the creation of distinct
components out of a single connected graph, then any local approach is bound
to fail. This is why we ban weakening from our logic (cf. also [GAL92b]). A
different solution is to allow weakening, but also to change the logic; e.g., take
intuitionistic logic coded inside linear logic; this is (typed) A-calculus, treated
in [Gue95].

The insight needed to introduce our new techniques came from the proof
theory of modal logics. In the context of proof-nets, the already mentioned
notion of box is necessary to ensure soundness of the introduction of a modal
connective (the of-course “!”) and to allow the proper reduction of the proof-
net during the cut-elimination process. A box is a global, explicitly given
notion: each occurrence of an of-course connective in the proof-net “comes
together” with a certain subgraph, its box. In [MM95]—applying to linear
logic ideas and techniques previously developed for modal logic, see [MM96]|—
we discovered that a different, straightforward approach was possible, labeling
with natural number indexes the formulas of the proof-net. The approach of
[MM95], moreover, allowed a clear recognition, at any time, of the boundary
of the box. This suggested our new, simple absorption rule. The approach has
been applied to the optimal reduction of lambda terms in [Gue95], where the
main algebraic techniques necessary to prove its correctness are developed. A
generalization of the technique and detailed proofs may be found in Guerrini’s
thesis [Gue96] or in [Gue97].

Finally, we attract the attention of the reader to the formalization of proof-
nets as hypergraphs: it was implicit in the original formulation of proof-nets,
but not clearly stated yet.

2 Formulas, levels, and exponentials: from natural deduction to
proof-nets

In [MM95] we have presented an approach to the linear logic modality of-
course in a natural deduction setting.

In the proof-theory of modal logics there is a long tradition—starting from
Kripke himself—devoted to indezed systems, where formulas are suitably dec-
orated in order to enforce the context constraints on the rules of the various



logics. The approach followed in [MM95] is to index usual linear formulas with
natural numbers. The formula A indexed with n, say the level of A, is denoted
by A™.

Levels allow the formulation of introduction/elimination rules for ! without
explicit reference to the shape of the context:

r I
Ak.-H ’Ak
!Ak g k>#T Ak—l—v !8‘)20
where #I" denotes the maximum level of the formulas in I'; #I' = —1 when T’

is empty.

It is worth to compare the two exponential rules with the rules for universal
quantification:
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Indeed, as the introduction of “!” decrements the level of the conclusion of

exactly one, so the introduction of V binds exactly one variable. The side
condition k > #T', is the analogous of the usual constraint that x be not free
in the active premises of the derivation. Again, as the elimination of “!” raises
the level of the conclusion of an arbitrary increment, so the elimination of V
allows the introduction of a new term t with an arbitrary number (possibly
zero) of new free variables. This analogy has been a leading idea of the 2-
sequents approach and keeps holding when we consider reduction of proofs.

In such linear, natural deduction proofs, exponential redexes and their reduc-
tions may be defined as follows:
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where the (meta) notation [n]xD means the result of incrementing of n all the
levels greater than k in the deduction D. Formally:



absorption:
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The side condition on !J ensures correctness of the reduction. Under the anal-
ogy “modalities are quantifiers”, this process of reindexing corresponds to
substitution in first-order logic (the absorption case corresponding to a test
on the freeness of the involved variable. For a rigorous treatment of the first
order case see [TvD88]).

Let us now move towards a proof-net framework. We build proof-structures
as usual, but we label (hyper)nodes with indexed formulas. As usual, (natu-
ral deduction) introduction rules of a connective x, become *-links in proof-
structures; elimination rules of * become x*-links, where ** is the dual of *.
In particular, !J introductions become ! links, while ! eliminations become ?
links:

Ak+1 Ak+v
%g ﬁg
1Ak N

The other multiplicative links are given as usual, with the restriction that all
the formulas involved in a link must have the same level (in the case of natural
deduction this is not true in the case of ® and 1 elimination rules).

The key point is now that levels allow the elimination of the global concept
of boxr as a primitive notion—by using levels we may reconstruct boxes. For
a given ! link with conclusion !A¥, an associated box will be a subnet whose
nodes (formulas) must have a level greater than k, and a set of formulas I’
as secondary doors, s.t. k > #I'; note that the level constraint on secondary
doors corresponds exactly to the side condition of the !J rule.

Since we have (implicit) boxes, the reduction of an exponential cut
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may be performed as usual, even though, in general, that might involve rein-
dexing a subnet. In fact, after the elimination of an exponential cut, the interior
of a box is moved inside other boxes, increasing thus the box-nesting-depth
of the formulas in the box, that is, their levels. It should be clear that this
operation closely corresponds to what we indicated as [n]iD in the natural
deduction setting. The general situation of an exponential cut (contraction
included) is depicted in Figure 3, where the notation TT[k; — k] means that all
the levels of the subnet TT have been incremented by k; — k.

In this standard exponential cut-elimination, the reindexing (and duplication)
of a subnet is thought of as a single, global (meta) operation. In this paper,
following the sharing graph approach, we will internalize it by means of explicit
operators (links). Thus, to reduce the exponential cut in (1), we introduce a
new [ift link and rewrite the cut to

‘1‘k A 1 k-1+4

P

Ak—1+j

-

Lifts mimic (at the object level) the reindexing operation: they reindex the
box associated to the ! link eliminated reducing an exponential cut by means
of local rewriting rules. To constrain lifts to the interior of their boxes, an
absorption rule is introduced to stop lift propagation:

J
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Observe that the constraint on the absorption rule is ezactly the same as that
of the natural deduction case.

In nets with contractions, the duplication process too may be handled in a
“lazy” way, similarly to reindexing. In full generality, therefore, we introduce
a new link (muz) in charge of both duplication and reindexing.

3 Leveled nets, proof-nets, reduction

We introduce in this section the net concepts we will use in the sequel. The
most standard notions are that of restricted proof {-structure and proof £
net (Definitions 3 and 4; restricted in that weakening is not allowed), though
given here as hypergraphs (consistently with the presentation of [Gir87], but
unlike most literature) and with levels instead of boxes—from which the € in
the name. Proof {-structures are special cases of s{-structures (sharing lev-
eled structures of links; Definition 1), which may contain additional links, in
charge of duplication: muz’s and their duals demuz’s. (A mux correspond, in
Lamping’s approach, to several fans and brackets, see Remark 2.) By formula,
we mean a multiplicative-exponential linear logic formula; an indexed formula
is a formula decorated with a non negative integer, the level of the formula.

Definition 1 An s{-structure is a finite connected hypergraph whose nodes
are labeled with indezed formulas and hyperedges (also called links) are labeled
from the set {cut,ax,?, ®, !, 2tU{mux[i]| 1 > 0}U{demux[i]| i > 0}; the integer i
in (de)muzes is the threshold of the link. Allowed links and nodes are drawn in
Figure 1. The source nodes of a link are its premises; the target nodes are the
conclusions. Premises and conclusions are assumed to be distinguishable (i.e.,
we will have left /right premises, i-th conclusion and so on), with the exception
of 2-links. In an s{-structure, each node must be conclusion of exactly one link
and premise of at most one link; those nodes that are not premises of any link
are the net conclusions; unary (de)muzes are also called lifts.

Ak @ Bk | Ak Bk
Al —{ ::)%Aik Ak < : ) >AJ‘k
A® Bk ApBl"'
) K<k ko k—1<ky e kr Ak
Ak+1 Ak r>1 YL Ak >1 Abr
: AR h1<ky ke AR
k <
A A" AF r>1

Fig. 1. sl-structure links

We assume that s{-structure axioms have only atomic conclusions. Such a
restriction does not decrease the expressive power of s{-structures. However,



it would be possible to have a more economic representation of nets, allowing
axioms with non exponential conclusions [Gue96].

Remark 2 Figure 2 states the correspondence between our s{-structures and
the nets of [GAL92b,Asp95b| (see also Remark 7). A (de)mux with n auxil-
iary ports corresponds (in Asperti’s notation) to a tree of fans with n leaves,
followed by chains of brackets closed at the top by a croissant—one chain for
each leaf. The length of a chain is the offset of the corresponding port (i.e., the
difference between the level of the formula assigned to such a port and the one
assigned to the principal port of the mux) increased by 1. The top of Figure 2
shows the binary case (the triangle on the right side of the equivalence is then
a fan and not a mux). A ?-link with a conclusion at level k corresponds to a
bracket with an index equal to k (the Gonthier index would be 0) followed by
a configuration analogous to that of a mux with threshold k and conclusion
at level k4 1 (cf. the D>ep rule). The corresponding binary case is drawn at
the bottom-left of Figure 2. An !-link is just a bracket indexed as the bottom
bracket of a corresponding ?-link.

Al Al+ha
it ith
Ab+h Ak+ha rh l l hhe
ihy—1 itha—1

Al.:+1
AI.:Jrhl AI.:+h;
k+hy l l k+ho
Al.:+1 Al.:+1
Ak+ha AF+he kthy—1 ktha—1 ‘

.
gy
1

Y
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k k T
ke
A 14% 14%
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Fig. 2. Correspondence between s{-structures and sharing graphs

Definition 3 A proof {-structure is an s{-structure that does not contain
(de)muzes.

Let PN be the set of proof-nets a la Girard. We will now show how to asso-
ciate to each P € PN a (unique!) proof {-structure Z[P], the decoration of P:



9IP] is obtained by assigning to each node of P a level (a natural number),
corresponding to the number of exponential boxes containing that node.

Definition 4 A proof {-structure S is a restricted proof {-net iff S = Z[P]
for some P € PN.

Definition 5 Let S be a proof {-structure and let A* be a premise of an !-
link; we call box of A* a sub-hypergraph bxs[A¥] of S verifying the following
properties:

(i) A% € bxs[AX] (A¥ is the principal door of bxs[A¥]);
(ii) bxs[AX] is a proof {-net;
(iii) each net conclusion of bxs[AN different from the principal door is a
premise, in S, of a ?-link with conclusion at level j < k (such ?-premises

are the secondary doors of the box);
(iv) for each B € S, if Bl € bxs[AX], then j > k.

We denote by BX[S] the set of boxes of S. Because of the definition of s(-
structure, boxes are connected.

Remark 6 According to Definition 5, the ! and ? links bounding a box are not
included into it. This choice is consistent with the inclusion of contraction into
? links, for otherwise we would loose the box nesting property (i.e., two boxes
are either disjoint or nested). By the way this is just a matter of presentation
(for instance, in [Gue97], where there is an explicit contraction link, ! and ?
links belong to their boxes).

3.1 Reduction

The s{-structures may be used to implement a local and asynchronous version
of the standard cut-elimination for proof-nets (as defined in [Gir87]). The
elimination of propositional cuts (i.e., those formed by pairs tensor/par and
axiom/cut) is directly mirrored in the corresponding rules. Figure 3 shows
how to perform standard exponential cut-elimination. Observe, first, that the
box TT is (globally) duplicated. Second, after the reduction the different copies
of TT may have been put inside other boxes (this happens when the ?-node is
a secondary door of another box). The notation TT[k; — k] means that all the
levels of TT have been incremented by k; — k.

Levels and (de)muxes are designed to take care in a local way of both these
aspects of the exponential reduction: multiple premises handle (incremental)
duplication, while the threshold handles the (incremental) reindexing of the
box—the re-computation of the new level of its nodes.
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Fig. 3. Exponential cut reduction

We distinguish the rules in two kinds: the logical (or ) rules (Figure 4),
where interaction happens through a cut-link (corresponding to a logical cut-
elimination step); and the 7t rules (Figures 5 to 9), when one of the interact-
ing nodes is a mux/demux (corresponding to a step of incremental duplica-
tion and/or reindexing). In the figures, we do not list the symmetric cases of
the ones shown (e.g., I>qup those where interaction happens through another
premise of the ? link); moreover, x stands for ® or 9.

The set Ttopr = TT— >q,p contains the only rules allowed during an optimal
reduction (see Section 3.3). We stress the presence of the absorption rule
(t>abs), corresponding to the case when the mux reaches the border of a box
(through one of its secondary doors) and has therefore exhausted its job. It is
motivated by the proof theoretical work in [MM95,MM96] (see also Section 6)
and it is a special case of a safe reduction [Asp95].

Remark 7 Any rule of 7,p, but >,ps, is admissible with respect to the re-

10
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Fig. 4. Logical (or ) rules.

ductions of [GAL92b| and the translation of Remark 2. The fact that >, is
not valid in that context depends on their choice to unify logical and control
information in the same nodes, since in this way it is impossible to recognize in
a local way whether a bracket configuration corresponds to a secondary door
of a box (see also Section 6). If one sticks to the notation of [GAL92b], the
solution is that indicated in [Asp95]: add another tag to each node, to record
its “safeness”.

Remark 8 Interactions between muxes are allowed only between pairs in
which the conclusion of a mux is the premise of a demux—in interaction nets
terminology, the mux and the demux are connected through their principal
ports (see Tewap and m,ah). Correspondingly, a non-identity logical link interacts
with a demux when its conclusion (i.e., its principal port) is the premise of
that demux (compare Toqup With 7luap). Generalizing the rules presented in
[Asp95b], a mux may interact with a logical link (see m4,,) when its conclusion
is a premise of that logical link. Identity links are straight connections between
their formulas, their only purpose is to invert orientation. Thus, a cut-link
interacts with a mux when one of its premises is a conclusion of that mux,
and vice versa for the complementary case of an axiom link and a demux
(see Thgyp)—the inversion between the formulas of identity links reflects in the

11
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Fig. 5. Duplication rules: axiom and cut.

mux/demux switching implied by a 74, interaction.

Remark 9 It is impossible for a mux to reach a net conclusion. In fact, let
i be the threshold of a (de)mux; and let A* be its (premise)conclusion. The
relation k > 1 > 0 is invariant under reduction, and any net conclusion has
level 0.

3.2 An example

Figures 10, 11 and 12 give a simple example of reduction. The example focuses
on the reindexing performed by muxes, that is, the core of our proposal.

The net on the left-hand side of Figure 10, call it Gy, is a restricted proof {-net.
Boxes are not really necessary—they are displayed to stress the relationship
between our restricted proof {-nets and the classical ones. Namely, erasing the
levels of G; we get a proof-net a la Girard. G; contains two cuts that can be
reduced by applying (twice) D>exp.

The right-hand side of Figure 10, call it G, is the net after the execution (in
any order) of the two exponential cuts. Such reductions inserted two demuxes:
one with threshold 0 and one with threshold 1.

The left-hand side of Figure 11, call it Gs, shows the result of a propagation

12
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Fig. 6. Duplication rules: non optimal duplication (* stands for ® or 7).

of the mux with threshold O by executing one >4qup and one >igyp.

G3 contains a redex given by two facing muxes. Noting that the thresholds are

13
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Fig. 7. Duplication rules: optimal duplication (* stands for ® or 7®).

different, we can apply Dewap (but not t>,nn). The result of such a reduction is
the right-hand side, call it Gy4, of Figure 10. Note the change of threshold in
one of the two muxes after the swap (the mux that before the swap had the
lower threshold).

The muxes of G4 can freely propagate; the result is the net Gs on the left-
hand side of Figure 12. In Gs the muxes are above the secondary doors of
the boxes (w.r.t. the original net G;) involved in the reductions. The side
condition of rule >, holds, and the result of its application is the net on the
right-hand side of Figure 12, say Gg. The boxes drawn on Gg are obtained

14
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Fig. 8. Duplication rules: swap.

Ak Akr
/& D> anh Ak1 AkT
Ak Ak
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Al Aln D> abs
C? where 1 > k

Fig. 9. Simplification rules

applying Definition 5 (note that Gg does not contain lifts). We see that Gg
is the net we would have obtained applying the standard global reduction to

15



eliminate the exponential cuts of Gj.
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Fig. 11. Example: Swap reduction
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Fig. 12. Example: Absorption

3.3  Optimality

Optimality for $ reduction of A-calculus was defined and studied by Lévy
[Lév78,Lév80]. Analogous analysis may be given for proof-nets (see [GAL92b],

16



or [AL93]). By a suitable labeling of (standard) proof-nets, a Lévy labeled
rewriting system for proof-nets is defined. In it, as in the A-calculus case,
residuals of a cut have the same label, and new labels appear only when new
cuts are created during reduction. Starting from a labeled proof-net N in which
all nodes have different labels, two cuts (not necessarily belonging to the same
reduct of N) are in the same Léuvy family iff they have the same label. A family
reduction is a sequence of parallel rewritings RyR; ... s.t. all the cuts in R; are
in the same family. A complete reduction is a sequence of rewritings where at
each step all the cuts of the same family are reduced (i.e., if r and 1’ are two
cuts in the same family, then v € R; implies v’ € R;). Finally, a call-by-need
reduction of N is a sequence of rewritings in which at least a needed cut is
reduced at any step (a cut is needed when it, or more precisely a residual of it,
appears in any reduction sequence starting from N). Main argument of Lévy
[Lév80] is that the optimal cost of the reduction of a A-term is the number
of B reductions of a call-by-need complete family reduction (in the A-calculus
case, the left-most-outer-most strategy is call-by-need). We assume the same
measure (3 contractions) for proof-nets.

Remark 10 Any redex of a restricted proof {-net is needed. This is not sur-
prising, since without weakenings no redex belongs to a subgraph that will be
erased. Therefore, any restricted {-net reduction strategy is call-by-need.

To conclude these notes on efficiency, we stress that the solution to the coher-
ence problem presented in this paper is motivated by pure proof theoretical
considerations. We have not studied the efficiency of our approach compared
with other approaches. Finding a good measure for the computational com-
plexity of asynchronous and local reductions in proof-nets (and A-calculus)
is an important open problem, outside the scope of the present paper (e.g.,
[Asp96,L.M9I6]).

4 Coherence

We state in this section our main results, whose proofs will be presented in
Section 5.8. Namely, that the reduction rules 347t solve the coherence problem
for sl-structures. This is not trivial, since the rules may be fired in any order
(logical and non-logical reductions will be in general interleaved). The proof
strategy, analogous to the one used in [Gue95]| for the A-calculus, is to simulate
s{-structures over restricted proof {-nets and will require the introduction of
an algebraic semantics for s-structures, here restricted to the essential (for a
detailed presentation of it we refer the reader to [Gue97]).

Let an sf-structure G be correct iff there exists a restricted proof £-net N s.t.
N >* G; informally, an s{-structure is correct if it represents a restricted proof

17



{-net.
Theorem 11 Let G be a correct s-structure.

(i) The 7t rules are strongly normalizing and confluent on G. The 1 normal
form of G is a restricted proof L-net.
(ii) The B + 7 rewriting rules are strongly normalizing and confluent on G.
The B + 7@ normal form of G is a restricted proof L-net.
(1ii) The 1 normal form of G reduces by standard cut-elimination to its B+
normal form.

The third item of Theorem 11 ensures the soundness of the system. The result
can be even stated in a stronger way, as in the following Theorem 13 (further,
D>ga denotes a standard cut-elimination reduction).

Definition 12 The read-back Z(G) of a correct st-structure G is the 7 nor-
mal form of G.

Theorem 13 Let G be a correct sb-structure and N be a restricted proof £-net
s.t. N>* G. Then N >l Z(G).

According to Section 3.3, there is a strategy minimizing the number of >g
rules.

Theorem 14 The  + T rewriting rules are Lévy optimal.
Confluence of 3 + 7t implies thus the following.

Theorem 15 Let G be a correct sl-structure and N be its 3 +7 normal form.
Let N be a B + mope normal form of G, then Ny >7 N.

By Theorem 15, normalization of correct sf-structures may be performed in
two distinct steps: first optimal reduction (3 + 7p), then read-back reduction

(70).

5 The inside of s{-structures

We give in this section the proof of the previous statements. The technical core
of the approach is an algebraic semantics of s{-structures widely presented in
[Gue96,Gue97], to which we refer the reader for more insight.

The proof goes as follows. Main tool is the notion of wl-structure, whose muxes
and demuxes are all unary (single premise; they are lifts, in the terminology of
Definition 1). Over uf-structures we define a reduction with global duplication

18



(for contractions) but local reindexing. Then, we assign an algebraic semantics
to wl-structures, and we exploit the semantics to prove confluence and strong
normalization of the wl-structure reduction.

By using the notion of sharing morphism, then, we prove that any sf-structure
has a least shared instance, which is a ul-structure.

Finally, we prove that reduction of sf-structures may be simulated over reduc-
tion of wl-structures. By a simple argument, this simulation establishes the
results.

5.1  Sharing morphisms

Definition 16 An s-morphism (sharing morphism) is a surjective homomor-
phism M : Gy — Gy of sl-structures which is injective when restricted to the
net conclusions and that preserves the labeling of the nodes/links (i.e., the type
of the links, the levels and the formulas of the nodes) and the names of the
ports to which the nodes are connected.

Let M : Gy — Gj. The sl-structure Gy is equal in all respects to Gy but for
the number of premises of (de)muxes and ? links (e.g., a k-ary mux may be
mapped to one with k' > k premises). Furthermore, since any node (link) of
G; is image of at least a node (link) of Gy, we may say that “Gg is a less-
shared-instance of G;.” Thus, we will write Gy < G7 to denote that there is
at least an s-morphism from Gy to Gy (and M : Gy < Gy to explicit that M
is one of such s-morphisms). Unfortunately, not all the less-shared-instances
definable in this way can be considered a “correct” unfolding of G;. In fact,
let us assume that G; contains a pair of binary muxes |; and 1, forming an
annihilating redex (a redex for the 7,,, rule) and that Gy contains two unary
muxes l; and 15 s.t. M(l{) = 1;, for i = 1,2. The annihilation rule for the
muxes l; and 1, suggests us that the label of the unique port of 1] and 15 must
coincide, otherwise Gy would contain a deadlock that was not present in Gj.
The reader may see [Gue97] for an unabridged discussion of how to obtain the
correct unsharings of a (general) sl-structure. Here, we proceed by assuming
further that s{-structures are correct, that is, obtained along the reduction of
a restricted proof {-net.

5.2 Unshared L-structures

We define in this section a notion of reduction living midway between stan-
dard proof-net reduction (global duplication, global box reindexing) and s{-
structure reduction (local duplication, local box reindexing).
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Let an sl-structure be unshared, if all (de)muxes are (negative) lifts, that
is, have a unique (conclusion)premise. A wl-structure U is an unshared s{-
structure U for which a box assignment is given, that is, a map associating a
box to each ! link of the net in accord with the usual constraints on boxes (the

box nesting condition, and that the auxiliary doors of each box are conclusions
of ? links).

The multiplicative 3 and the 7t rules apply unchanged to wl-structures (though
the 7t rules always with unary muxes). The $ rule for the exponential cut is
instead reformulated. In such unshared version of the (3 rule the boxes are
duplicated without altering their levels; the consistency of the level assignment
is achieved by the introduction of a lift at the principal door of each duplicated
box (see Figure 13).

box— box

B,

An+1

Fig. 13. The 3, rule.

Further, we will write U >, U’ to denote any (unshared) reduction of a uf-
structure, and in particular we will write G >, G’ in the case of an unshared
exponential (3 reduction.

Definition 17 The set of the correct wl-structures is the smallest set closed
under >, that contains the wl-structures obtainable from a restricted proof
(-net assigning boxres according to Definition 5.

Remark 18 As for restricted proof {-nets, also uf-structure boxes can be
avoided and computed using levels (see Proposition 23). However, the presence
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of lifts makes the definition of boxes more complex: it requires the introduction
of the algebraic semantics we will briefly present in section 5.3. The possibility
to compute boxes justifies why in the following we will sometimes identify a
correct wl-structure U with its underlying unshared s{-structure u.

Before stating the key properties of wl-structures, let us note that there is a
direct way to associate a restricted proof {-net to a correct wl-structure U.
In fact, let N be the net obtained erasing the levels of U and removing its
lifts (by merging their premise and conclusion nodes); if N is a proof-net a la
Girard, we define Z,(U) = Z[N] the read-back of U. It is worth noting that
such a read-back is invariant under 7t reduction and is well behaved w.r.t. 3,.

Fact 19 Let U be a correct wWl-structure for which %, (U) is defined.

(1) If U > W, then %, (U) =2, (U).
(i) If U >p, W, then Z.(U') is defined and % (U) >gqg Zu(U') by the
standard B-reduction of the corresponding cut.

In general, %, is a partial map from ul-structures to restricted proof {-nets,
but by induction on the definition of correct wl-structure and by the previous
fact, we see that correct ul-structures are a relevant case.

Fact 20 If U is a correct ul-structure, then %.(U) is always defined.

Further, we will also see that the read-back of a correct wl-structure corre-
sponds to its unique 7t normal form % (U), which is indeed an a posteriori
justification for the name given to these functions.

5.3  Solutions of correct ul-structures

For a complete presentation of the material in this subsection, we refer the
reader to [Gue97].

A lifting operator is a triple of integers L[m, q,a] s.t. m > 0, g > 1, and
a > 0; m is the threshold and q is the offset of the operator. The monoid of
the lifting sequences LSeq is the free monoid generated by the formal product
of lifting operators modulo the equivalence:

LMy, 4z, az] - LIma, qi, aq] = L[my, g1, a1l - LMz + d1, g2, @] (SW)
when my < my.
Let ng < ny. A lifting sequence from ng to ny is a formal product of lifting

operators H = [ [, ;< £my, qi, ail, in which, no <m; <n; + Zo<j<i q;, for
i=1,2,...,k. The set LSeq[ng, ny] is the family of the lifting sequences from
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Ny to ny. It is direct to check that the definition of LSeq[ng, ni] is sound w.r.t.
to the (SW) equivalence. The global offset ||H]|| of a lifting sequence H is the
sum of the offsets of the lifting operators in J.

Fact 21 Let n; <n < n,.

(Z) ]fg'f € LSeq[m,nz], then ny S n,; + HHH
(i1) If Hy € LSeq[ny,n] and H, € LSeqn,n,l, then H, - Hy € LSeq[ng, nyl.
(1ii) For any H € LSeqlng,nyl, there exists a unique pair H; € LSeq[ny,nl,
H, € LSeq[n,nz], s.t. Hy-Hy = H.

A lifting assignment for a wl-structure U is a map A from the nodes of U to
LSeq s.t.:

(i) A(v) € LSeql0,n], where n is the level of v;

(i) A(v2) = A(vq),if v; and v, are conclusion/premise nodes of the same mul-
tiplicative or identity link (that is, the type of the link is in {ax, cut, ', ®});

(iii) A(v2) = H-A(vy), for some H € LSeq[ny, nyl, if vi and v, are respectively
the conclusion and a premise of an exponential link (that is, an ! or a ?
link), and n; and n;, are the levels of v; and v, respectively;

(iv) A(vz) = L[m, q,al - A(vy), if vi and v, are respectively the (conclusion)
premise and (premise) conclusion of a (negative) lift with threshold m,
port offset ¢, and port name a. (The name of a port is an index assigned
to the port to distinguish it. The offset q of a port is the difference
between the level of its formula and the level of the (de)mux (premise)
conclusion; note that q > —1.)

Let 8 be a map from the ! links of a ul-structure U to LSeq. We say that &
is an internal state of U, when §(1) € LSeq[n,n + 1], being n the level of the
conclusion of L.

Let A be a lifting assignment for a wl-structure. To each ! link | whose con-
clusion is at level m, the assignment associates the lifting sequence H; €
LSeqmn,n + 1] s.t. A(vy) = Hy - A(vy), where v, is the premise of 1 and vy its
conclusion. By Fact 21, we see that this corresponds to associate the internal
state (1) = H; to the wl-structure U. Vice versa, given an internal state S
of the wl-structure U, we say that U has a solution for & if there is a lifting
assignment (the S-solution of U) s.t., for any ! link 1, A(v;) = 8(1) - A(vy),
where v, is the premise of 1 and vy its conclusion. Exploiting the fact that
a wl-structure is connected, and that for any lifting assignment A we have
A(v) =1 when v is a conclusion of U (since LSeq[0,0] = {1}), we see indeed
that, for any internal state, there is at most one S-solution. When, moreover,
the wl-structure is correct, this solution exists.

Lemma 22 A correct ul-structure has an S-solution for any internal state S.
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Proof. The proof is by induction on the definition of uf-structure. In the
base case the ul-structure U is obtained by assigning the boxes to a restricted
proof {-net. In the induction case there exists a ul-structure U’ s.t. W' >, U.
For the sake of the proof we also prove at the same time that: if two states
81 and &, differ only for their value on the ! link 1, then the corresponding
solutions coincide on the vertices that are not contained in the box of L.

(base) Let 8 be an internal state of U. Let us take the sequence of internal
states &g, 81,...,3x = 8, defined in this way: 8;(1) = 8(1) if the level of 1is
lower or equal than i, and 8;(1) = 1 otherwise. Note that this implies, S = J
(being J(1) = 1, for any 1). Since U does not contain lifts, we immediately
see that the J-solution is: Ag(v) =1 for any v. Hence, let B! be the box of
an ! link 1 whose conclusion has level i. We inductively define a sequence
of assignments by A 1(v) = 8(1) - Ai(v) if v is in the box B} for some 1,
and A 1(v) = Ai(v), otherwise. The assignments are well defined, for two
boxes at the same level are disjoint, and it is trivial to check that A; is an
Si-solution. By inspection of the way in which we get Ay = A, we conclude.

(U >g, U) Let 8§ be an internal state of U. We show how to build an 8-
solution A of U, given an 8'-solution A’ of U’, where 8’ is derived from 8.
Namely, in all the cases S = 8’, but in a duplication involving an ! link. The
way in which A will be defined also proves the independence of A(v) from
the value of §(1) when v is not in the box of 1, provided that the analogous
property holds for A" and 8’. We have several cases according to the 7t rule
applied.

(annihilation) Let vy be the node between the lifts, and let v; and v, be
the outer premise and conclusion of the pair of lifts. We have A'(vy) =
Llm,q,a] - A'(vi) = LIm,q, al - A'(v,2), being L[m, q, a] the triple as-
sociated to the facing lifts, and then H = A’(v;) = A’(v;). Thus, let us
define A(v) = A'(v), if v has not been involved in the reduction, and
A(v) = H, if v is the node that replaces the annihilated pair of lifts.

(swap) In this case, A'(vo) = Llmy,q1,aq] - A'(vi) = Llmy, g2, az] -
A'(v;), with m; < m,. By the properties of the lifting sequences, we
see that A'(vo) = Llmy, g1, aq] - LMy + g1, g2, az] - H = L[my, q2, az] -
Llmy, q1, ai] - H, for some H. Thus, if wg is the node of U between the
swapped lifts, then A(wy) = H; the other assignments are unchanged.

(duplication) Let us consider the case of the ! link and a lift pointing
to its premise only, the other exponential link cases being similar. The
identity and multiplicative link cases are trivial. The case we analyze and
the complementary one in which a demux points the conclusion of ! link,
are the only one in which 8’ £ 8§, as we will see in the following.

Let us assume that the lift points to the premise vy of the ! link 1, that v,
is the premise of the lift, and that v, is the conclusion of the ! link. For any
8'-solution A’, we have that A’'(vo) = L[m, q,a]-A'(vy) =8'(1) - A'(v2),
with 8'(l) € LSeqin,n 4+ 1] and m < n. By a simple induction on the
length of 8'(1), we see that 8’(1) - L[m, q,a]l = L[m, q,a] - 8'(1)*9, where
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H*T9 means that all the thresholds in H has been increased by q. Then,
A'(vg) = Llm, q,a]l- 8" (V)T H = 8'(1)-L[m, q, a] - H, for some H. As in
the swap case, we take A(wpy) = H for the conclusion wy of the image of
l in U, and we leave unchanged the other assignments. The map A is an
8-solution, being § the internal state that differs from 8’ only for its value
in 1, i.e., 8(1) = 8’(1)™9. Since any internal state of U can be obtained in
this way, we conclude.

(U >p, U) Let us consider the linear case (the ? link is unary), the extension
to the general case being trivial. Let 1 be the ! link involved in the reduction;
let wy,vq be the premise and the conclusion of the ? link; and let w,, v, be
the premise and the conclusion of 1. Let A’ be the 8'-solution of U'. At
the ? link we have that A'(wq) = 8, - A'(v,), for some §; € LSeq[n,n + pl,
where n is the level of vi and v,, and n + p is the level of wy. Let us take
the internal state 8” obtained from 8’ just changing its value in 1, that is,
8"(l) = Ln,p —1,d] - 8. We get a new solution A”. By the induction
hypothesis, we have that A”(vy) = A’(vy) and A”(w;) = A’(wq). Hence,
A"(wy) =Ln,p—1,ad]-8-A"(v2) = Ln,p—1, al- A”(wy), which justifies
the replacement of the ! and ? links by a lift whose tripleis Ln,p—1,al. O

5.4 Recovering the boxes of a correct ul-structure

Let U be a ul-structure. The internal state J which associates the empty lifting
sequence to each ! link of U (i.e., (1) = 1, for any 1) is the quiescence internal
state of U. The corresponding J-solution Q (if any) is said the quiescence
solution of U.

Let n be the level of a node v of a correct wul-structure (thus admitting a
quiescence solution) and let Q(v) = L[my, q7, ai] - - - L[my, qx, axl. The actual
level of v is the sum n + [|Q(v)||. Namely, the actual level of a node v is the
level of v increased by the sum of the offsets of the lifting operators that the
quiescence solution assigns to v.

Proposition 23 Let U be a correct wl-structure. If %, (U) is the st-structure
obtained from the unshared s{-structure of U by erasing its lifts and by asso-
ciating to each node its actual level, then %, (U) = Z.(U).

Proof. First of all we have to prove that %, (U) is well defined. In fact, let A
be the 8-solution of U. We have that £(v) 4 [|A(v)|| > 0, for any node v (being
£(v) or £y (v) the level of the node v in U) and, when the nodes vy and v, are
connected to the same link e:

(i) €(v1) + [[A(v1)]| = &(v2) + [JA(v2)]], when e is a multiplicative or identity
link—it follows from £(v;) = £(v;) and A(vy) = A(v2);
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(i) £(v1) + A1) < €(v2) + [[A(v2)ll, when v and v, are respectively the
conclusion and the premise of a ? or of an ! link—it follows from £(v,) +
AWl = €(v2) + 18Il + [lA(v1)ll, with § € LSeq[€(v1),£(v2]], and then
t(v2) + AVl = L(v1) + (A1) (by Fact 21);

(iii) £(v1) + AVl = £(v2) + |[A(v2)ll, when v; and v, are the conclusion
and the premise of a (negative) lift—it follows from £(vq) + [[A(v1)]| =
tv1) +11L[m, q, al - A(v2)ll = L(vp) + g + IA(v2) ] = €(v2) + [[A(v2)l.

In particular, in the case of the quiescence solution, the previous equations
imply that: (i) the actual levels of the multiplicative and identity links are
sound; (ii) for any ? link the difference between the actual levels of its premise
vy and of its conclusion v, may differ from £(v;)—£(v,), but it remains positive
in any case—the number of boxes closed by a ? link may vary, but cannot
become negative; (iii) the actual level of the premise of an ! link is equal to
the actual level of its conclusion plus 1; (iv) the actual levels of any premise
and conclusion of a (negative) lift coincide. From which we conclude that the
definition of #;(U) is correct.

The rest of the proof is by induction on the definition of correct ul-structure.

(base) By hypothesis, U = Z,(U) (being U the net underlying U). The
quiescence solution of U is Q(v) = 1, for any node v. Then £(v) is the actual
level of any node v and %, (U) = Z(U).

(U >, U) Immediate, by the definition of the 8-solution A from the §'-
solution A’ given in the corresponding case of Lemma 22. In fact, for any
v in U which is a copy of a node of U’, we see that &y (v) + [|[A' (V)| =
tu(v) + [[AMW)I.

(U >p, W) Let us assume that the ? link 1, involved in the reduction has only
one premise; the extension to the n-ary case is immediate. Let 1; be the !
link involved in the reduction. We have to prove that the actual level of any
v contained in the box of 1, is increased by the difference Q between the
actual level of v; (the premise of 1;) and the actual level of v, (the premise
of 1,). By the proof of Lemma 22, such an actual level can be found by
computing the solution A of U’ for the internal state §(1) = 1, when 1 # 1,
and 8(l;) = Ln,p —1,d] - 8, where 8, is imposed by the assignment at
the nodes connected to 1, and L[n,p—1, a] corresponds to the lift inserted
by the (3, rule. By easy computation, we see that Q = LIn,p —1,a] - 8,.
Let 8§ and 8’ be internal states that differ only for their value in 1;, and let
A and A’ be the respective solutions. Again by inspection of the proof of
Lemma 22, we see that:

@) AW =I1I8(e)ll = [[A"(v)[ — 8" (e:)l, when v is in the box Lj;

(i) [[AMW)] =[A"(v)]], otherwise.

The second item has been explicitly shown proving Lemma 22. To prove the
first item, let us start noticing that, when 8§ and 8’ differ for their values
in 1; and 1,, there exists 8” which differs from 8 for its value in 1; and
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differs from 8’ for its value in 1,. This trivial consideration allows to use
the induction of Lemma 22 to see that ||[A'(v)|| = [[A(V)]] — &1 (V) (IIS(L4)]| —
18" (L)1) — &2v) (I8(L)I] — [I8"(L2)1]), where 8i(v) = T if v is in the box of L,
and d;(v) = 0 otherwise, for i = 1,2. Hence, as in our case we have §(1,)
differing from J for its value in 1, only, and ||S(L))|| = Q, we conclude that
the actual level of any node in the box of 1, is increased by Q. O

Corollary 24 If U is a correct ul-structure with no lifts, then Z.(U) = U.

Proof. The map which associates 1 to each node is the quiescence solution
of U. Then, U=%(U) =Z%,(U). O

This corollary shows the soundness of the approach that uses lifting operators.
Indeed, it was not immediate that the boxing computed during the reduction
and the one induced by the levels coincide on the result of a computation.

5.5 On the solutions of correct ul-structures

Before applying the results obtained so far to the unshared reductions, let us
summarize some remarks we can infer from the proofs in the last two sections.

5.5.1 Scope of a lift

Let us assume that Q is the quiescence solution of U, that 1 is a lift whose
corresponding triple is £[m, g, al, and that v is the conclusion of 1. We see
that Q(v) contains £[m, g, al. Since we defined the actual level of a node as
the sum of its level plus the offsets of the lifting operators assigned to it, this
means that v is in the scope of the reindexing operator corresponding to 1. In
other words, the offset q of 1 contributes to determine the actual level of v.
More in general, we can say that v is in the scope of a lift | when the triple of
L, or a suitable transformation of it, appears in the lifting sequence that the
quiescence solution assigns to v. Then, Q(v) = L[my, q7, a1] - - - L[my, qx, axl
expresses that v is in the scope of k reindexing operators. Such an interpre-
tation has a direct correspondence in the fact that after a 7t rule involving 1,
the length of the lifting sequence assigned to the image of the conclusion v
of 1 decreases—for v is no more in the scope of the reindexing operator of 1.
The latter is the base property that will allow us to prove that the 7t rules are
strongly normalizing (Lemma 25).
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5.5.2  Independence property

The exponential links are global boundaries for the scope of the reindexing
operators: a lift with threshold m is absorbed by a ? link 1, whose conclusion
is at level n < m. Note, that an analogous situation for the ! link is instead
without meaning (and will be shown unreachable), for it would correspond
to end the reindexing of a box at its principal port (note that we have no
absorption rule for an ! link). After the execution of a 3,, rule, the boundary
corresponding to 1, disappears, and the scope of the lifts that would have been
absorbed by 1, spreads over the box of the ! link 1, which interacted with L.
Then, after a (3., rule, the lifting operators corresponding to such lifts must
be assigned to the nodes in the box of 1,. The internal states of a ul-structure
model this behavior. If n is the level of the conclusion of 1;, the ! link |, may
force an arbitrary reindexing to each node of its box, with the proviso that
it has to operate on the levels above n only. (As a consequence, a lift with
threshold n cannot reach the premise of 1;, since otherwise we would not get
a solution for any internal state.) Summarizing, while the behavior of an !
link is independent from the context, the ? links may only erase the lifting
operators originated inside the boxes they close, and the reindexing operators
forced by the ! link at the principal doors of such boxes. We remark that
this corresponds to the “property of independence” that Lamping proved in
[Lam90] for the sharing graphs implementing the A-calculus.

5.5.3 Deadlock-freeness

The existence of a quiescence solution for a uf-structure U implies the ab-
sence of deadlocks for the reindexing operators. Namely, it is not possible that
a (negative) lift gets stuck without the possibility to reindex its (premise)
conclusion. In fact, it is not possible to have pairs of facing lifts with the same
threshold but with different triples, and we have already seen that it is im-
possible that a lift might be stopped by an ! link. To conclude, let us note
that it is indeed impossible to have a lift whose conclusion is a conclusion of
U. In fact, by inspection of the rules, we see that: (i) the (3, rule inserts a
negative lift with threshold n whose premise is at level n+1; (ii) the property
“m < n, where m is the threshold of a (negative) lift, and n the level of its
(premise) conclusion” is invariant under 7 reduction. Thus, we cannot have a
lift pointing to a conclusion of U, for the conclusions of U have level 0. Such
a deadlock-freeness is the key property that will allow us to prove that the 7
normal form of a correct wl-structure is a restricted proof {-net (Lemma 25).
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5.6 Properties of the unshared reductions

Lemma 25 Let U be a correct ul-structure.

(i) There is no infinite 7 reduction of U.
(ii) The restricted proof L-net %, (U) is the unique @ normal form of U.

Proof.

(i) Let us consider the following two measures: (a) the sum ky of the length
of the lifting sequences assigned by the quiescence solution Q to the con-
clusion of any logical link of U; (b) the sum k; of the length of the lifting
sequences assigned by Q to the principal node of any lift. Any 7my,, rule
decreases kq but may increase k;. All the other 7t rules decrease at least
one of the previous measures. Hence, each 7t rule decreases the combined
measure (Kkq,kz) (w.r.t. the lexicographic order). From which we get that
the 7t rules are strongly normalizing over correct ul-structures.

(ii) Let U >% U'. By Lemma 22 both U and U’ admit a quiescence solution,
and then do not contain deadlocked lifts. As a consequence, any 7t normal
form of U does not contain lifts (since the conclusions of a wl-structure
have always level 0 we cannot have lifts pointing to them). Thus, let N
be a normal form of U. We have that N = %,,(N) (Corollary 24) and, by
the invariance of the read-back under 7t (Fact 19), N = %, (U). O

Corollary 26 The reduction rules @+ 3., are strongly normalizing and con-
fluent on correct ul-structures. The unique 1+ By normal form of a correct
wl-structure U is the standard normal form of the restricted proof L-net %, (U).

5.7 Correctness of sl-structure reduction

We may now simulate 7t and 3 reductions of sf-structures by unshared wf-
structure reductions.

Let us say that a correct s{-structure G has a complete unsharing when:

(i) There exists a correct wl-structure U s.t. M : U < G;
(i) If A is a solution of U and M : U < G, then M(v) = M(v') and A(v) =
AV') implies v =v'.

We will also say that U is a least-shared-instance of G, written U < G. The
fact that this is the correct notion of unfolding we were looking for will be
shown proving the existence of a unique least-shared-instance for any correct
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s{-structure (see Corollary 31). For the moment, let us note that such an
interpretation is sound at the level of restricted proof {-nets, for a restricted
proof {-net has no (proper) less-shared-instances.

Fact 27 Let N be a restricted proof L-net. If U < N or N < U, then N = U.

Proof.

(U < N) Since N is a restricted proof £-net, U does not contain lifts. Thus,
the quiescence solution Q of U assigns 1 to each node. By this, we have that
M : U < N is injective, for M(vi) = M(v,) implies vi = v;. Since M is
surjective by definition, we conclude N = .

(N < U) Analogous. O

The following simulation properties (Lemma 28 and Lemma 30) show that the
< is well behaved w.r.t. the reduction of correct sf-structures.

Lemma 28 Let Gy be a correct sl-structure and let Uy < Gg, for some Uy.
For any Go >, Gy, there exists Uy >F Uy s.t. Uy < Gy.

Proof. Let M be the s-morphism between Uy and Gy and let v be a redex of
Go. The counterimage M~ '(1) of T is a set of redexes that may contain only
a case of critical pair: two lifts pointing to the premises of the same ? link.
If the redex 1 is a duplication, the algebraic semantics (remember that Uy is
correct) allows to prove that such two lifts must be equal and then that such
a critical pair is confluent. Hence, let us execute in any order the redexes of
Uy in M} (1) (closing as previously stated the critical pairs present in it); the
result is Uy. It is also non difficult to see that the s-morphism between U; and
Gy maps any residual of a link v of Uy into the residual of M(v). O

As a corollary of the previous lemma, we can lift Lemma 25 to the s{-structures.
Lemma 29 Let G be a correct sl-structure s.t. U <K G, for some U.

(i) There is no infinite 7 reduction of G.

(i1) G has a unique @ normal form Z(G) = Z%.(U).

Proof.

(i) By Lemma 25, U strongly normalizes by 7t reduction to the restricted
proof £-net Z,(U). By Lemma 28, the existence of an infinite 7t reduction
of G would contradict that there are no infinite 7t reductions of U.
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(ii) For any 7 normal form Z(G), we have Z,(U) < Z(G) (by Lemma 28),
and thus Z,(U) = Z(G) (by Fact 27). O

The next step is the simulation of the sf-structure (3 reduction by a corre-
sponding 3., reduction.

Lemma 30 Let Gy be a correct sl-structure for which there exists Uy s.t.
Uy < Go. For any Go >p Gy, there exists Ug Dgu U; s.t. Uy <X Gjy.

Sketch of the proof. Let My : Uy < Gy and let r be a 3 redex of Gy. The
unshared reduction corresponding to the reduction of r is a development of
the set of redexes M (1) (a development of a set of B redexes of a proof-net
is the analogous of a development of a set of § redexes for the A-calculus).
The s-morphism M; between the wl-structure U; obtained in this way and
G; maps any residual of a link 1 of Uy to the residual of its image Mg(1) (see
the detailed proof given in [Gue96] for the A-calculus case or see [Gue97]). To
prove that M;(v) = M;(v') and A(v) = A(V') implies v = V', note that in
the unary case the property holds immediately. In fact, by inspection of the
proof of Lemma 22 we see that, if Uy >p, U"” >p, U, any assignment A’ of
U’ is obtained from an assignment A of Uy and that, for any pair of nodes s.t.
M(v) = M(V'), it is impossible to have A'(v) = A'(V') if A(v) # A(V'). So,
let Up >p, U’ be a reduction involving a k-ary ? link. The principal door of
the i-th instance of the duplicated box is replaced by L[n, g, ail, with a; = a;
only if 1 = j. Let now v; be the i-th instance of the node v; we see that for
the s-morphism M’ induced by the reduction, we have M'(v;) = M'(v), for
i=1,2,...,k. But, as the lifting sequence A'(v;) contains L[n, q;, a;] (again
by inspection of the proof of Lemma 22), we conclude that A'(v;) = A'(v;) iff
i=j. O

Corollary 31 Any correct st-structure G has a (unique) least-shared-instance.

Proof. The existence of a complete unsharing follows from Lemma 28 and
Lemma 30. Uniqueness is irrelevant for the proof of the main theorems (it
suffices the result of Fact 27), so for its proof we refer the reader to [Gue97].

5.8 Proofs of the main theorems

Theorem 32 (Theorem 11) Let G be a correct st-structure.

(i) The 7t rules are strongly normalizing and confluent on G. The @ normal
form of G is a restricted proof L-net.
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(ii) The B + 7 rewriting rules are strongly normalizing and confluent on G.
The B + 7 normal form of G is a restricted proof L-net.

(1ii) The 1 normal form of G reduces by standard cut-elimination to its B+
normal form.

Proof.

(i) By Corollary 31, G has a least-shared-instance U. By Lemma 29 and
Lemma 28 we have the strong normalization and that Z(G) = Z,(U) is
a restricted proof -net (%, (U) is a restricted proof £-net by definition).
(ii) Let us assume that G >3 G; > Gy, and that U < G. Again by
Lemma 29 and Lemma 28, plus Lemma 30, there exists a correspond-
ing unshared reduction U >3 Uy % Uy, s.t. Uy < Gy, Zu(U) = Z(G),
and Z,(U;) = Z(G;), for i = 1,2. Moreover, as Z,(U) >0, Z.(U;) =
Z.(Uy) (by Fact 19), Z(G) >ty #(G,). Thus, let us decompose a re-
duction of G in an alternating sequence of a non empty {3 reduction, and
of a finite (by Lemma 29) number of 7t rewritings. Since each element of
such a sequence corresponds to a non-empty sequence of g rewritings,
the alternating sequence cannot be infinite, for otherwise we would have
an infinite (standard) reduction of a proof-net. Let N be a normal form
of G. The confluence of (3 +7t is shown by proving the uniqueness of N. In
fact, by Corollary 26 the unique (3., + 7t normal form of U is the standard
normal form of %, (U), that is, a restricted proof {-net N,. But by the
simulation lemmas, N;, < N and then N = N,, (by Fact 27).
(iii) From the last considerations in the previous item. In fact, Z(G) = %, (U)
and N is the standard normal form of %, (U). O

Theorem 33 (13) Let G be a correct st-structure and N be a restricted proof
C-net s.t. N >* G. Then N >}y Z(G).

Proof. By the simulation lemmas (Lemma 29 and Lemma 28), we have N >*
U, where U is the least-shared-instance of G. By Fact 19, N %, Z.(U) =
Z(G). O

Theorem 34 (Theorem 14) The B+ Top rewriting rules are Lévy optimal.

Proof. According to the interpretation of the algorithm in terms of brackets
and croissants (Remark 2 and Figure 2), we see that the 7, rules correspond
to a particular optimal reduction strategy (see also Remark 7). O

Theorem 35 (Theorem 15) Let G be a correct sl-structure and N be its
B + 7 normal form. Let N, be a 3 + Tiope normal form of G, then N, >7 N.
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Proof. By inspection of the 7, rules we see that: if Z(G) contains a {3 redex
T, then there exists G >7,, G’ s.t. the image of rin G’ is a redex. Then, Z(N,)
is the 3 4+ 7 normal form of G. O

6 Conclusions

We have presented in this paper a solution to the coherence problem for the
sharing graph representation of (restricted) proof {-nets and their computa-
tions. This result has been made possible by a change in the representation
of the nets. As discussed in Remarks 2 and 7, there is a rather simple cor-
respondence between our approach (levels on formulas and only one kind of
control nodes—(de)muxes) and the one established in the literature (levels on
nodes, two kinds of control nodes—fans and brackets). This shift of notation,
however, is crucial and responds to a deep conceptual issue: separating logic
from control. The level of a formula, indeed, is a logical information, neces-
sary to ensure not only the correctness of the reduction, but even the static
correctness of a net. This has been clear since our previous work on leveled
approaches to modal and linear proof theory [MM95 MM96]. In that work,
what we have called here the reindexing of a box is a meta-level operation
(i.e., “control”), expressed in a formalism external to the logic itself. The sit-
uation is the exact analogous to substitution in first order logic: variables and
side-conditions on them are a logical concept; the substitution of a term for a
variable is a control operation, necessary during the cut-elimination procedure.
In the case of this paper, levels belong to logic (and as such are essentials for
the static correctness of a net) and (de)muxes and their reduction rules belong
to control. It is this separation to make coherence possible. In the standard
approach, instead, logic and control are blurred together. Brackets, fans and
indexes represent, depending on context, box nesting (i.e., levels), or logical
nodes (the why-not), or control nodes. There is more uniformity of notation,
but the price to be paid is the difficulty to recognize in a local way the border
of boxes, that is, to eventually guarantee coherence. A different solution is that
of the safe reductions of [Asp95], of which our absorption is a special case.

It remains to address the problem of full proof-nets, where weakening is al-
lowed. Weakening in linear logic can produce boxes whose contents are discon-
nected. Such boxes can be also generated by the cut-elimination procedure,
even starting from proof-nets whose boxes are connected. The crucial case is
that of a box whose principal door has as premise a weakening link, and hence
it needs a separate component S (that must be a proof-net) to be a valid
conclusion of the box. This separate component yields the secondary doors of
the box. Now, any attempt to reindex/duplicate the box through its principal
door will not reach the disconnected net S. Observe that this problem is shared
by all the approaches proposed so far, as any local graph rewriting procedure
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cannot deal with disconnected components. There is a simple way to bypass
this problem, e.g., by restricting the proof-net syntax to generate interaction
systems (this means for example to be able to code typed A-calculus, intu-
itionistic linear logic and so on). A solution to the general case, however, calls
for an extension of the proof-net syntax in order to avoid the formation of
disconnected boxes, see [GMMO97].
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