Some Undecidable Implication Problems for
Path Constraints

Peter Buneman* Wenfei Fan' Scott Weinstein!
peter@central.cis.upenn.edu wfan@saul.cis.upenn.edu weinstein@linc.cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania

April 1997

Abstract

We present a class of path constraints of interest in connection with both structured and
semistructured databases, and investigate their associated implication problems. These path
constraints are capable of expressing natural integrity constraints that are not only a funda-
mental part of the semantics of the data, but are also important in query optimization. We show
that, despite the simple syntax of the constraints, the implication problem for the constraints is
r.e. complete and the finite implication problem for the constraints is co-r.e. complete. Indeed,
we establish the existence of a conservative reduction of the set of all first-order sentences to
the path constraint language.

1 Introduction

Path inclusion constraints have been studied in [5] in the context of semistructured data.
Consider the following object-oriented schema:

class student{
Name : string;
Taking: set(course);

class course{
CName : string;
Enrolled: set(student);

Students: set(student);
Courses: set (course) ;

in which we assume that the declarations Students and Courses define (persistent) entry points
into the database. As it stands, this declaration does not provide full information about the intended
structure. Given such a database we would expect the following informally stated constraints to
hold:

*This work was partly supported by the Army Research Office (DAAH04-95-1-0169) and NSF Grant CCR92-16122.
tSupported by an IRCS graduate fellowship.
fSupported by NSF Grant CCR-9403447.

S1

C1 S C
Enrolled Enrolled Enrolled
%e

2

"Smith" "Chem3" "Jones" "Phil4"

Figure 1: Representation of a student/course database

(a) Vs € Students V¢ € s.Taking (¢ € Courses)
(b) Ve € Courses Vs € c.Enrolled (s € Students)

That is, any course taken by a student must be a course that occurs in the database extent of courses
and any student enrolled in a course must be a student that similarly occurs in the database. We
shall call such constraints exztent constraints.

We might also expect an inverse relationship to hold between Taking and Enrolled. Object-
oriented databases differ in the ways they enable one to state and enforce extent constraints and
inverse relationships. Compare, for example, Oy [6] and ObjectStore [21]. The presence of such
constraints is important both for database and for query optimization.

Let us develop a more formal notation for describing such constraints. To do this we borrow an
idea that has been exploited in semistructured data models (e.g., [26, 11, 4, 25, 22]) of regarding
semistructured data as an edge-labeled graph. The database consists of two sets, and we express this
by a root node r with edges emanating from it that are labeled either Students or Courses. These
connect to nodes that respectively represent students and courses which have edges emanating from
them that respectively describe the structure of students and courses. For example a student has a
single Name edge connected to a string node, and multiple Taking edges connected to course nodes.
See Figure 1 for an example of such a graph.

Using this representation of data we can examine certain kinds of constraints.

Extent Constraints. By taking edge labels as binary predicates, constraints of the form (a) and
(b) above can be stated as:

Ve (s (Students(r,s) A Taking(s,c)) — Courses(r,c))
Vs (J¢ (Courses(r,c) A Enrolled(c,s)) — Students(r, s))

These constraints are examples of “word constraints” studied in [5]; the implication problems
for word constraints were shown to be decidable there.
Inverse Constraints. These are common in object-oriented databases [13]. With respect to our
student/course schema, the inverse between Taking and Enrolled is expressed as:

Vs ¢ (Students(r,s) A Taking(s,c) — Enrolled(c,s))
Ve s (Courses(r,c) A Enrolled(c,s) — Taking(s,c))

Such constraints cannot be expressed as word constraints or even by the more general path
constraints given in [5].
Local Database Constraints. In database integration it is sometimes desirable to make one
database a component of another database, or to build a “database of databases”. Suppose, for
example, we wanted to bring together a number of student/course databases as described above.
We might write something like:

class School-DB{
DB-identifier: string;
Students:set(student); // as defined above
Courses: set(course); // as defined above

Schools: set(School-DB);

Now we may want certain constraints to hold on components of this database. For example, the
“extent constraints” described above now hold on each member of the Schools set. Here we refer to
a component database such as a member of the set Schools as a local database and its constraints
as local database constraints. Extending our graph representation by adding Schools edges from
the new root node to the roots of local databases, the local extent constraints are:

Vd ¢ (Schools(r,d) A s (Students(d, s) A Taking(s,c)) — Courses(d,c))
Vds (Schools(r,d) N Jc(Courses(d,c) N Enrolled(c,s)) — Students(d, s))

Again, these cannot be stated as path constraints of [5].

These considerations give rise to the question whether there is a natural generalization of the
constraints of [5] which will capture these slightly more complicated forms. Here we consider a
class of path constraints of either the form

Vay (alr,z) NSz, y) = v(z,y)),

or the form
Vay(a(r,z) AB(z,y) = v(y,),

where a(z,y) (B(x,y), v(z,y)) represents a path from node z to node y.

This class of path constraints can be used to express all the constraints we have so far en-
countered. For semistructured data, in particular, this class of constraints is useful not only for
optimizing navigational queries, but also for inferring structure (see [10, 24, 25] on this subject).
Surprisingly, the implication problems for this mild generalization of word constraints are unde-
cidable. However, certain restricted cases are decidable in semistructured databases, and these
cases are sufficient to express at least the constraints we have described above. In this paper, we
establish the undecidability of the implication problems for this class of path constraints. We defer
to another paper [12] a full treatment of the decidability results.

Related work

The idea of representing data as an edge-labeled graph and using paths to specify navigational
queries dates back to the early 1980s [23, 30]. Recently, the idea has been exploited and adapted
to a variety of new database applications, ranging from querying object-oriented databases (e.g.,
XSQL [20], OQL-doc [3]) to querying semistructured data (e.g., UnQL [11], Lorel [4], WebSQL
[22], STRUQL [16]).

There has also been work in constraint languages defined in terms of paths for structured data
[28, 14, 8, 18, 29, 19] as well as for semistructured data [5]. A class of functional constraints, called

path functional dependencies, was proposed in [28, 14]. The axiomatizability and decidability of
its associated unrestricted implication problem were established in [28, 8, 18]. This constraint
language generalizes functional dependencies in the relational data model for semantic and object-
oriented data models. It differs significantly from ours, which is a generalization of (unary) inclusion
dependencies in the relational model for both structured and semistructured data.

In [29, 14], a class of constraints for specifying range restrictions associated with paths, called
specialization constraints, was proposed for object-oriented data models. The axiomatizability
and decidability of its associated implication problems were established in [19]. A specialization
constraint asserts a type condition which is often specified by a schema. The central difference
between specialization constraints and our path constraints is that specialization constraints are
type constraints for a graph representing a schema, whereas our path constraints specify inclusion
relations for a graph representing data. In particular, specialization constraints must be associated
with a schema, whereas our path constraints are defined for both structured and semistructured
data.

Closer to our work is the path inclusion constraint language introduced and investigated in [5].
A constraint in this language is an expression of the form p C ¢ or p = ¢, where p and ¢ are regular
expressions denoting paths in a graph representing semistructured data. In particular, if p and
q are simply sequences of labels, the constraint is called a word constraint. A constraint p C ¢
(p = q) expresses the inclusion (equality) relation between the two sets of nodes reachable via p
and q. The decidability of the implication problems for the language was established in [5]. In
addition, [5] also showed that word constraint implication is decidable in PTIME. This constraint
language differs from ours in expressive power. On the one hand, the constraint language of [5]
allows a more general form of path expressions than ours. On the other hand, it does not capture
inverse constraints and local database constraints mentioned above, whereas these constraints can
be expressed in our language. In short, our constraints language is a generalization of the class of
word constraints given in [5].

The rest of the paper is organized as follows. Section 2 formally presents our path constraint
language and identifies two of its fragments. Section 3 and 4 show that for each of the two fragments,
the implication problem is r.e. complete and the finite implication problem is co-r.e. complete, and
therefore establish the undecidability of the implication problems for our path constraint language.

2 Path Constraint Language P

In this section, we formalize the path constraints language, P. We first present an abstraction of
semistructured databases, and define the language P in terms of first-order logic. We then describe
the implication problems for P and state the main results of the paper.

We assume the standard notions of sentences, models and implication used in first-order logic
[15].

2.1 Abstraction of semistructured data

Semistructured data is usually represented as an edge-labeled (rooted) directed graph, e.g., in
UnQL [11] and in OEM [26, 4, 25]. See [2] for a survey of semistructured data models. Along
the same lines, here we use an abstraction of semistructured databases as (finite) first-order logic

structures of signature
o=(r, E),

where 7 is a constant denoting the root and F is a finite set of binary relations denoting the edge
labels.

2.2 Path constraints

A path, i.e., a sequence of labels, can be represented as a logic formula with two free variables.

Definition 2.1: A path is a formula a(z,y) having one of the following forms:
e z =y, denoted €(z,y) and called an empty path;
e K(z,y), where K € E; or
e d2(K(x,2) AB(z,y)), where K € E and ((z,y) is a path.

Here the free variables x and y denote the tail and head nodes of the path, respectively. We write
a(z,y) as a when the parameters z and y are clear from the context. [

The path constraint language P is formalized as follows.

Definition 2.2: A path constraint ¢ is an expression of either the forward form

Vzy(a(r,z) AB(z,y) = v(z,y)),

or the backward form
Vay(a(r,z) AB(z,y) = vy, z)),
where a, 3,y are paths. The path « is called the prefiz of . The paths a, 8 and « are denoted by

pf(p), lt(p) and rt(p), respectively.
The set of all path constraints is denoted by P. -

For example, all the path constraints presented in the last section are constraints in the set P.

Next, we identify several special subclasses of P.

We call a path constraint ¢ in P a simple path constraint if pf(p) = e. That is, ¢ is of either
the form

Vy (B(r,y) = v(r,y)),

or the form
Vy (B(r,y) — v(y,r))-

The set of all simple path constraints is denoted by Px.
A proper subclass of simple path constraints, called word constraints and denoted by P,, was
introduced and investigated in [5]. A word constraint can be represented as

Vy (B(r,y) = v(r,y)),

where 8 and y are paths.

2.3 Path constraint implication

We next describe the implication problems for path constraints in P.

We borrow the standard notations of models and implication from first-order logic [15]. For a
o-structure G and a constraint ¢ in P, we use G = ¢ to denote that G satisfies ¢ (i.e., G is a
model of ¢). For any finite subset ¥ U {¢} of P, we use ¥ = ¢ to denote that ¥ implies ¢. That
is, for every structure G, if G = X, then G |= ¢. Similarly, we use X |=; ¢ to denote that ¥ finitely
implies @. That is, for every finite structure G, if G |= X, then G = ¢.

The implication problem for P is the problem of determining, given any finite set ¥ U {y} of
sentences in P, whether 3 = ¢. The finite implication problem for P is the problem of determining,
given any finite subset ¥ U {¢} of P, whether ¥ =; ¢.

As observed by [5], every word constraint (in fact, every simple path constraint) can be expressed
by a sentence in two-variable first-order logic (FO?), the fragment of first-order logic consisting
of all relational sentences with at most two distinct variables. Recently, [17] has shown that the
satisfiability problem for FO? is NEXPTIME-complete by establishing that any satisfiable F'O?
sentence has a model of size exponential in the length of the sentence. The decidability of the
implication and finite implication problems for word constraints (and for simple constraints) follows
immediately. In fact, [5] directly establishes (without reference to the embedding into FO?) that
the implication problems for word constraints are in PTIME.

In contrast to word constraint implication, both the implication and the finite implication prob-
lems for P are undecidable. These undecidability results, which are the main results of the paper,
are stated as follows.

Theorem 2.1: The implication problem for P is r.e. complete, and the finite implication problem
for P is co-r.e. complete. [

In fact, these results hold true for two proper subclasses of P. One of the subclasses, Py, is the
set of all the constraints of the forward form in P. The other, P, is the set

{o | pe P lt(p) #e¢, rt(p) # €}

Note that P, is the largest subset of P without equality.
For P, and P we have the following theorems, from which Theorem 2.1 follows immediately.

Theorem 2.2: The implication problem for P, isr.e. complete, and the finite implication problem
for P, is co-r.e. complete.]
Theorem 2.3: The implication problem for P; is r.e. complete, and the finite implication problem
for Py is co-r.e. complete. [

We prove Theorem 2.2 and 2.3 in the next two sections.

3 The Implication Problems for P,

In this section, we establish the undecidability of the implication and finite implication problems
for P,.

3.1 Preliminaries

We first recall the definitions of two-register machines and conservative reduction classes from [1, 9].

3.1.1 Two-register machines

A two-register machine (2-RM) M consists of two registers registery, registers, and is programmed
by a numbered sequence Iy, I1, ..., I; of instructions. Each register contains a natural number.

An instantaneous description (ID) of M is (i,m,n), where i € [0,l], m and n are natural
numbers. It indicates that M is ready to execute instruction I; (or at “state i”) with register; and
registers containing m and n, respectively.

An instruction of M is either an addition or a subtraction, which defines a relation — ;; between
1Ds, described as follows:

e addition: (i,rg,j), where rg is either register, or registery, 0 < 4,5 < I. The semantics of
the addition instruction is: at state 7, M adds 1 to the content of g, and then goes to state

j. Accordingly:
. (j,m+ 1,n) if rg = register,
— . .
(&, m,n) = m { (j,m,n 4+ 1) otherwise
e subtraction: (i,rg,J, k), where rg is either register; or registers, 0 <i,j,k <I. The seman-
tics of the subtraction instruction is: at state ¢, M tests whether the content of rg is 0, and
if it is, then goes to state j; otherwise M subtracts 1 from the content of rg and goes to the
state k. Accordingly:

(7,0 n) if rg = register; and m =0

. (k, ,n) if rg = register; and m # 0
(i, m,n) = (j,m 0) if rg = registers and n =0
(k,m,n —1) if rg = registery and n # 0

The relation —;; can be understood as a set of rewrite rules for IDs.

We use =), to denote the reflexive and transitive closure of — ;. The relation of M-reachability
C = D holds just in case M, started from ID C, reaches ID D by application of zero or more
—p rewrite rules.

We will need the following definitions from [1, 9].
Definition 3.1 [1, 9]: Let X be a class of sentences. We write

e N(X) for the set of all unsatisfiable sentences in X; that is,

N(X) ={¢ | ¢ € X, 1 does not have a model};

e F(X) for the set of all finitely satisfiable sentences in X; that is,

F(X)={¢ | ¢ € X, 9 has a finite model}.

We write F'O for the set of all first-order sentences. [
Recall the following well-known result [27]:
There is an effective partial procedure by which, given a sentence in F'O, we can test

whether it has no model, a finite model, or only infinite models. The procedure termi-
nates in the first two cases, but does not terminate in the last case.

We fix M, to be a two-register machine with the following behavior (the existence of such a
machine follows from the result just quoted. See [9] for additional discussions). The two-register
machine M}, has two halting states: (1,0,0) and (2,0,0). For each ¢ € FO, let m(y)) be an
appropriate encoding of ¢ (a natural number) and C(1)) the ID (0,m(+)),0) of My. Started from

C(y),
e My halts at (1, 0, 0) iff ¢ is not satisfiable;
e M halts at (2, 0, 0) iff 4 has a finite model.
In other words, M, has the following property. For ¢ = 1, 2, let
Hatypi = {0 | & € FO,C($) =, (i,0,0)}.

Then Hyy, 1 is N(FO) and Hyy, 2 is F(FO).
Here halting of M}, means that the ID sequence becomes constant when reaching a stop state.
This stop condition can be assumed without loss of generality [9].

3.1.2 Conservative reductions

Recall the following definitions from [1, 9].

Definition 3.2 [9]: Let X and Y be recursive classes of sentences. A reduction from X to Y is a
recursive function f : X — Y such that for any ¢ € X, 1 is satisfiable iff f(v) is satisfiable.

A conservative reduction from X to Y is a recursive function f : X — Y such that for any
e

e) is satisfiable iff f(v) is satisfiable; and
e 1 is finitely satisfiable iff f(1)) is finitely satisfiable.

A recursive class of sentences X is a conservative reduction class if there exists a conservative
reduction from FO to X. n

The (finite) satisfiability problem for a recursive class of sentences X is the problem of deter-
mining, given any ¢ € X, whether 1) has a (finite) model.
Obviously, if a recursive class of sentences X is a conservative reduction class, then

e the satisfiability problem for X is co-r.e. complete; and
e the finite satisfiability problem for X is r.e. complete.

To show that a recursive subset X of FO is a conservative reduction class, it suffices to reduce
N(FO) and F(FO) to N(X) and F(X), respectively. More precisely, we define the notion of
semi-conservative reductions as follows.

Definition 3.3 [9]: Let X and Y be recursive classes of sentences. A semi-conservative reduction
from X to Y is a recursive function f : X — Y such that

e F(N(X)) C N(Y); and

o [(F(X)) C F(Y). -
Lemma 3.1 [9]: If there exists a semi-conservative reduction from FO to a recursive subset X of
FO, then X is a conservative reduction class. [

3.2 Reduction from the halting problem for 2-RMs

We next show Theorem 2.2. It suffices to show that the set
S(Py)={\ESA-¢|p€P,, TCP,, Tis finite}

is a conservative reduction class. To establish the conservative reduction class property for S(Py),
by Lemma 3.1, it suffices to show that there is a semi-conservative reduction from FO to S(Py).

We establish the existence of such a semi-conservative reduction by reduction from the halting
problem for two-register machines. We first present an encoding of two-register machines by sen-
tences in Py, and then prove a reduction property of the encoding. Using this reduction property,
we define a semi-conservative reduction from FO to S(P;).

3.2.1 Encoding

Let M be a two-register machine. Assume that M is programmed by
Iy, I, ..., 1.
We also assume that the set E of binary relations in the signature o includes:
e the predicates encoding the states of M:
- Ky, Ky, ..., K,
- Ky, K ,...,K;
e the predicates encoding the contents of the registers (natural numbers):

— Rf, R, : to encode the successor and the predecessor of the contents of register:;
— R2 , R, : to encode the successor and the predecessor of the contents of registersy;
— FEoi1, Ey;: to indicate that the content of register; is 0;

— FEyo, Ey,: to indicate that the content of register, is 0;
e the predicates distinguishing register; from registers:

— Ly, Ly : to identify register:;
— L9, Ly : to identify registers; and
— L,: to identify the root r.

We now define the encoding as follows.

Registers
We encode the contents of the registers by ® 5, which is the conjunction of the path constraints
of P, given below.

e Successor, predecessor:

— ¢1 = Vay(Li(r,z) AR (z,y) = Ry (y,2))
— o = Vay(Li(r,z) A Ry (z,y) = R (y,z))
— ¢3 = Vay(Ly(r,z) A Ry (z,y) = Ry (y,2))
— s = Vay(Ly(r,z) A Ry (z,y) = Ry (y,z))

b

(¢1, P2, p3 and ¢4 are constraints of the
— ¢5 = Va(Li(r,z) = Jy(R{ (z,y) A Ly (y,7))).
— ¢6 = Ya(La(r,z) = Jy(R3 (z,y) A Ly (y,7))).

(¢5 and ¢g are simple constraints of the backward form.)

ackward form.)

e Register identification:

— ¢7 =V (3y(Li(r,y) A Ry (y, 7)) = La(r,2))
— ¢8 =V (Jy(Li(r,y) ARy (y,x)) = La(r, z))
— ¢9 =V (3y(La(r,y) A Ry (y,2)) — La(r,z))
— ¢10 = Vo (Jy(La(r,y) A Ry (y,2)) = La(r, 7))
(¢7, s, Pg and ¢y are simple constraints of the forward form.)

e States: for i € [0,],

— ¢y = Vay(Li(r,z) A Ki(z,y) = K; (y,))
- ¢112 = VJL"ZJ(L2(7“, T) A K; (Tay) - Kl(yam))

(¢, and ¢}, are constraints of the backward form.)

e Zeros:

— ¢13 = Voy(Li(r,z) A By (z,y) = Eoi(y,))

— ¢1a = Vay(Li(r,z) A Eg (z,y) = Ly(r,y))

— ¢15 = Vay(Ly(r,z) A En(z,y) = Eoi(r,y))

— ¢16 = Vo (3z(L1(r, 2) A Jy(Eg (2, y) A Eo2(y, z))) = Ep2(r, x))

13 is a constraint of the backward form 14, P15 and 16 are simple constraints of the
’) p
forward form.)

— ¢17 =V (Eg (r,z) = Li(r,x))
— ¢18 = VZL‘(E[]Q(’I‘,ZL‘) — LQ(’I‘,IL‘))

(¢17 and ¢1g are simple constraints of the forward form.)

IDs
We encode each ID C' = (i,m,n) of M by

oo = Vay(Li(r,z) A (Ry)™ - By, - Eoa - (R3)" (z,y) = Ki(z,y)),
where

e « - [(abbreviation for a(z,z) - B(z,y)) stands for the concatenation of paths «(z,z) and
B(z,y), which is defined by:

B(z,y) ifa=ce
a(z,2) Blzy) = { F(K(w,2) A=) if o — K
HU(K(ZL‘,’U,) N (OZI(U,Z) ' ﬁ(zay))) if Oé(:L‘,Z) = HU(K(T,U) N OL’(’LL,Z))

e ()™ stands for the m-time concatenation of o, which is defined by:

ym € ifm=20
T] a- (@)™ ! otherwise

It is easy to see that the constraint ¢c is in Py. It has the forward form with pf(pc) = Ly,
It(pc) = (B)™ - By - Eoz - (B3)". and rt(pc) = K;.

Instructions
For each i € [0,!1], we encode the instruction I; by ¢;, given below.

e Addition:
— For (i,register, j), ¢r, is
21 =Vzy(Li(r,z) A3z (Ry (z,2") N Ki(2',y)) = Kj(z.y)).
Here q’)f“ is a constraint of the forward form with pf(fh) = L, lt(gbf“) = R, - K; and
rt(dy,) = Kj.

10

— For (i,registers, j), ¢r, is
be = Voy(La(r,2) A3y (Ki(z,y') A RS (Y, y) = Kj(x,y)).

Here ¢!, is a constraint of the forward form with pf(¢%,) = L1, lt(¢4},) = K; - Ry and
T‘t(22) = Kj.

e Subtraction:

— For (i,registery, j, k), ¢r, is

b = Do N Bl
where
¢, o = Yoy(Boi (r,z) A Ki(z,y) = Kj(z,y)),
and

Fr = Yoy (La(r,z) A3 (RY (2,27) A Ki(a', y)) — Ki(,)).

Here gbil is a conjunction of two constraints having the forward form. The first conjunct
is a constraint with pf(¢5,) = For, lt(¢,) = Ki and ri(é;,) = K;. In the second
conjunct, pf(ZSM) = Ly, It(ZSM) = R} - K; and rt(im) = Ky.
— For (i,registery, j, k), ¢r, is . ‘ ‘
50 = Png N Bsy s
where
o0 = Yoy (Boa(r,y) A K (y,2) = Kj(2,y)),

$2,0

and
Pss,, = Voy(Li(r,2) A3y (Ki(z,9') ARy (v, y)) — Ki(z,y)).

Here q’)éz is a conjunction of two constraints. The first conjunct is a constraint of the
backward form with pf(¢.) = Li, lt(¢:) = K, and rt(¢’) = K;. The second

52,0 82,0 i 82,0]
conjunct is a constraint of the forward form with pf(¢;,)= L1, lt(¢;,) = Ki- Ry and

rt(¢h,,) = K.

!
The encoding of the program of M is &,y = /\¢1i. Clearly, ®,; is a conjunction of path
i=0

constraints in Py .

3.2.2 Reduction property

Now we show that the encoding above has the following reduction property.

Proposition 3.2: Let M be a two-register machine. For all IDs C' and D of M,

C=uD iff Oy APy Apc — pp is valid.
[
Proof:

(1) Assume C =3; D. We show that for each model G of ®x A @y A o, G = pp. To show
this, it suffices to show that for each natural number ¢ and each ID E of M, if E is reached by M
in ¢ steps starting from C (denoted C =, E), then G |= pr. We prove this by induction on ¢.

Base case: If t = 0, then the claim holds since G = ¢¢.

Inductive step: Assume the claim for ¢.

11

Suppose that C =14, C; —>5\i, E, where Cy = (i,m,n), and C; —>f\j[E stands for that E is
reached by executing instruction I; at Cj. Then by the induction hypothesis, we have G = ¢¢, .
That is

G ‘: V:I:y(Ll(r, LE) N (R;)m ’ E[ﬁ - By - (R;)n(xuy) - Kl(xuy))

We show that the claim holds for ¢ + 1 for each case of I;, which has six cases in total.

Case 1: I; = (i,registery, j). In this case, E must be (j,m + 1,n).

Suppose, for reductio, that there exist a,b € |G|, such that

G ‘: Ll('ra a) A (R;)m+1 ’ E[;l - By - (R;—)n(aa b) A _'Kj(aa b)a
then there exists ¢ € |G|, such that
G = Ry (a,¢) N (RY)™ - Egy - Eg2 - (RF)"(c, b).
By ¢s in @y, we have G |= Ly(r,¢). Thus by G |= ¢¢,, G = K;i(c,b). Hence
G = Li(r,a) N Ry (a,c) N K;(c, b).

Thus by ¢fll in @7, we have G |= K;(a,b). This contradicts the assumption.

Case 2: I; = (i,registery, 7). In this case, E must be (j,m,n + 1).
Suppose, for reductio, that there exist a,b € |G|, such that

G [= Li(r,a) A (RY)™ - Bgy - Eoa - (R3)" " (a,b) A =Kj(a,b),
then there exists ¢ € |G|, such that
G = (R))™ By - Eoz - (R3)"(a,¢) A Ry (c,).
By G = ¢¢,, we have G |= K;(a,c). Hence
G = Li(r,a) A Ki(a,c) A RS (c,b).

Thus by ¢f12 in @7, we have G |= K;(a,b). This contradicts the assumption.

Case 3: I; = (i,registery, j, k) and m = 0. In this case, E must be (7,0, n).
Suppose, for reductio, that there exist a,b € |G|, such that

G | Li(r,a) A Ey; - Ego - (R3)"(a,b) A =Kj(a,b),
then by G |= ¢, , we have G |= K;(a,b). In addition, there exists ¢ € |G|, such that
G = Li(r,a) N\ Egy(a,c).
By ¢13, ¢14 and ¢15 in @, we have G |= Eyi(r,a). Hence
G = Epi(r,a) A Ki(a,b).

Thus by ¢¢ in @), we have G |= K;(a,b). This contradicts the assumption.

51,0

Case 4: I; = (i,registery, j, k) and m = p + 1. In this case, ¥ must be (k,p,n).
Suppose, for reductio, that there exist a,b € |G|, such that

G = Li(r,a) A (Ry)? - Ey, - Eoz - (RF)"(a,b) A ~Kg(a,b),

12

then by ¢5 in @, there exists ¢ € |G|, such that
G = Li(r,a) A Rf (a,c).
By ¢7,¢1 in @, we have G |= Li(r,c¢) A Ry (¢c,a). Hence
G | Li(r,¢) A(RY)PT - By, - Ega - (RS)™(c,b).
Thus by G = ¢¢,, G = Ki(c,b). Hence
G = Li(r,a) A R (a,c) A K;(c, b).
Thus by gbil’n in &/, we have G |= Ki(a,b). This contradicts the assumption.

Case 5: I; = (i,registery, j, k) and n = 0. In this case, E must be (j,m,0).
Suppose, for reductio, that there exist a,b € |G|, such that

G = Li(r,a) A (R;)m - By, - Epo(a,b) A —|Kj(a,b),

then by G = ¢¢,, we have G = K;(a,b). By ¢!, in ®y, G |= K, (b,a). Moreover, there exist
¢,d € |G|, such that
G = (R,)™(a,d) N Ey,(d,c) A\ Epz(c,b).

By G = Li(r,a) and ¢g in @, we have G |= Li(r,d). Thus by ¢15 in @y, G |= Ega(r,b). Hence
G ‘: EUQ(T‘, b) NK; (b, a).

Thus by ¢,

2o 10 @ar, we have G |= Kjj(a,b). This contradicts the assumption.

Case 6: I; = (i,registery, j, k) and n = p 4+ 1. In this case, E must be (k,m,p).
Suppose, for reductio, that there exist a,b € |G|, such that

G = Li(r,a) A (R))™ - Eyy - Eog - (RY)P(a,b) A =Kg(a,b),
then there exist ¢,d € |G|, such that
G = (Ry)™(a,c) A Ey; - Ega(c,d) A (RF)P(d,b).

By ¢s in @y, we have G |= Li(r,c). By ¢15 in ®n, G = Epo(r,d). By ¢ig in @, G |= La(r,d).
By ¢g in @y, G |= Ly(r,b). Therefore, by ¢¢ in @y, there exists e € |G|, such that

G = RJ (be).

Hence
G | Li(r,a) A (R7)™ - Egy - Ego - (RSP (a, e).

By G |= ¢¢,, we have G |= K;(a,e). By ¢3 in ®y and G |= RJ (b,e), G = R, (e,b). Hence
G = Li(r,a) N Ki(a,e) A Ry (e,b).

Thus by gbiQ . in @7, we have G = Ky (a,b). This contradicts the assumption.
Hence the claim holds for ¢ + 1 for all the cases of I;.

(2) Conversely, assume C %3y D. We show that ®n A @ A oo — pp is not valid. That is, we
show that @y A @y A oo A —pp is satisfiable. To show this, we construct a structure G such that
G ‘: Oy APy Ape and G ‘: —Qp.

13

The structure G is defined as follows. The universe of G consists of a distinguished node ¢, which
is the interpretation of the constant r in G, and two distinct infinite chains of natural numbers.
More specifically, let IN denote the set of all natural numbers, then

G| = {rt} UN U { | i € N}.

The binary relations in G are populated as follows:

L, = {(rt,rt)}

En = {(rt,0)} By = {(0,rt)}

Egp = {(rt,0')} Ey = {(0,rt)}

Ly = {(rt,i) | i e N} Ly = {(,rt)|ie N}

Ly = {(rt,i') | i€ N} Ly = {(@',rt)|ieN}

R = {(i,i+1)]ieIN} Ry = {(z+1z)|z€]N}
Ry = {(",(i+1))]ieN} R, = {(((+1),i)]ieN}
K; = {(m,n) | C=wn (i,m,n)} K = A", m) | (m,n) € K}

See Figure 2 for the structure G (Ey;, Egy, Ly . Ly , Ry, Ry, K, edges are omitted in the graph).
It is easy to verify the following claims.

Claim 1: G = oo N\ —¢p.

This is because C =y C and C % D.

Claim 2: G |= dy.
This is immediate from the construction of G.

Claim 3: G |= @y
Claim 3 follows from the simple facts given below.

o Fuct 1: G = Ki(m,n') iff C = (i,m,n).

e Fact 2: If C = (i,m,n) —)5@[E., then C =), E. Moreover, E must satisfy the following

conditions.
— If I; = (i,registery, j), then E = (j,m + 1,n).
— If I; = (i,registery, j), then E = (j,m,n +1).
— If I; = (i,registery, j, k) and m = 0, then E = (j,0,n).
— If I; = (i,registery, j, k) and m = p+ 1, then E = (j,p,n).
— If I; = (i,registery, j, k) and n = 0, then E = (j, m,0).
— If I; = (i,registery, j, k) and n = p + 1, then E = (j,m, p).

o Fact 3: If G [= Oy, i.e., there exists ; for some ¢ € [0,[] such that G [~ ¢r,, then there exist
m,n' € |G|, such that
— if I; = (i, registery, j), then G = K;(m,n') A =K;j(m + 1,n'),
— if I; = (i, registersy, j), then G = K;(m,n') A =K;(m, (n + 1)),
if I; = (i,registery, j, k), then either
* G |= Ki(0,n") A —K;(0,n"), where m = 0, or
x G = Ki(p+1,n') AN =Kg(p,n'), where m = p + 1,

— if I; = (i, registers, j, k), then either
* G |= Ki(m,0') A=K;j(m,0'), where n = 0, or

14

|

Figure 2: The structure GG in Proposition 3.2

15

x G = Ki(m,(p+1))AN=Kg(m,p'), where n = p + 1.

Using these facts, Claim 3 can be easily verified by reductio. More specifically, suppose that
G [~ ®p. Then there is i € [0,1] such that G [~ ¢;,. Here I; has six cases. For each of these
cases, the assumption contradicts the facts above. As an example, consider the case in which
I; = (i,registery, j). By Fact 3, there exist m,n’ € |G|, such that G = K;(m,n') A =K;(m+1,n').
By Fact 1, C =/ (i,m,n’). In addition, by Fact 2, C = (4,m + 1,n’). Thus again by Fact 1,
G = Kj(m + 1,n). This contradicts the assumption. The proofs for the other cases are similar.

Therefore, if C' Ay D, then ®n A $pr A wo A —pp is satisfiable.
This completes the proof of Proposition 3.2.]

3.2.3 Semi-conservative reduction

Taking advantage of the reduction property established above, we now define a recursive function
f: FO — S(Py) by:
f@) = @n APy Apcw) N =900

where C(v) is the ID (0,m(4)),0) of M with an appropriate encoding m (1)) of 1, as described in
Section 3.1.1.
The proposition below shows that f is indeed a semi-conservative reduction from FO to S(Py).

Proposition 3.3: Let M, be the two-register machine described in Section 3.1.1. For each first-
order sentence 1,

1. ¢ € Hpp, 1 iff f(4) is not satisfiable; and
2. if 1 € Hypy, 2, then f(¢)) has a finite model.

Proof:
(1) By Proposition 3.2, we have that

C () =My (1,0,0) iff dx APy A Po) — P(1,0,0) is valid.
Therefore,
C() =m; (1,0,0) iff &y ADy A Vo) N 7P1,0,0) 18 not satisfiable.

Notice that ¢ € Hyy, 1 iff C(¢p) =1, (1,0,0). Therefore, p € Hyy, 1 iff f(1)) is not satisfiable.
This completes the proof of claim 1.

(2) We show that if 9» € Hyy, o, then f(¢)) has a finite model.

First note that if ¢y € Hps, o, then the computation of My with initial ID C(%) is finite.
Therefore, the set

SIDC('zp) = {(Zumun) ‘ C(i/)) =My (vavn)}

is finite. Hence there is a natural number p, such that for each (i,m,n) € SID¢(y), m +2 < p and
n+2<p.

Now we construct a finite model H for ®n A @ A po(y) A ~p(1,0,0)- The universe of H has
2p + 1 nodes. More specifically,

|H| = {rt,1,2,...p} U {1,2',....p"},

where rt is the interpretation of the constant r in H.

16

The binary relations L., Fo1, Ey2, By, Eyy, K; and K; in H are exactly the same as those in the
structure G given in the proof of Proposition 3.2. The binary relations Ly, Ly, L2, Ly , R{ , Ry , Ry
and R, are populated in H as follows:

Rf = {(,i+1)]0<i<p}U{(p,p)}

Ry = {(+1,9)0<i<p}U{(p,p)}

Ry = {(/, (i +1))[0<i<ptuf.p)}

Ry, = {(G+1),i)]0<i<p}U{(p,p)}

Ly = {(rt,i) |0 <i <p} Ly = {(i,rt)|0<i<p}
Ly = A{(rt,i") | 0 <i<p} Ly, = {@,r)|0<i<p}

See Figure 3 for the structure H (Ey,, Ey,, L, , L, , R, . R, , K, edges are omitted in the graph).

Note that the relations K; and K, in H are well-defined, since if C(1) =ar, (i,m,n), then
m <p—1and n < p— 1. In addition, it is easy to verify that H is well-defined.

We now show that H is indeed a model of ®n A s A poy) A =0(1,0,0-

First, by C(¢) = n, C(¢) and C(¢) #um,, (1,0,0), we have that H |= oc(y) A 2¢1,0,0)-

Second, it is easy to verify that H = ®x. Note here it is to ensure H = ¢5 A ¢ that we require
H = R (p,p) NR3 (P, p).

Finally, we show that H = ®j,. It is straightforward to verify the following simple facts.

e Fact 4: If C(¢) =, (i,m,n), then m <p—1andn <p—1.

e Fact 5: If (i,m,n) —)g\ih (7,m1,m1), then mqy <m + 1 and ny < n+ 1. As a result of Fact 4,
m1 < p and ny < p.

Consequently, Facts 1, 2 and 3 for showing G |= ®,; in the proof of Proposition 3.2 are also true
here. Therefore, the argument for showing G = @,/ in the proof of Proposition 3.2, together with
Facts 4 and 5 above, proves H |= ® ;.

Hence H is indeed a finite model of ®n A @ A po(y) A —9(1,0,0)-

This completes the proof of Proposition 3.3.]

Corollary 3.4: The function f defined above is a reduction from FO to S(Py).]
Proof: By the definition of My, for each ¢ € FO, 4 is satisfiable iff ¢y ¢ Hj, 1. As shown in the
proof of Proposition 3.3, ¢ & Hpy, 1 iff f(¢) is satisfiable. Therefore, f is a reduction from FO to
S(_P+)]

As an immediate result of Proposition 3.3 and Lemma 3.1, we have the following corollary.

Corollary 3.5: The set S(Py) is a conservative reduction class. n

From Corollary 3.5, Theorem 2.2 follows immediately.

4 The Implication Problems for P
In this section, we establish Theorem 2.3. As in the proof of Theorem 2.2, we show that the set
S(Pr) ={\EXA—p| g€ P %C P, ¥ is finite}

is a conservative reduction class. To do this, we first present an encoding of two-register machines
by sentences in Py, and then prove a reduction property of the encoding. Using this reduction
property, we define a semi-conservative reduction from FO to S(Py).

17

© e

= @

Figure 3: The structure H in Proposition 3.3

18

4.1 Encoding

Let M be a two-register machine, as described in Section 3.2.1. Assume that the set E of binary
relations in the signature o is the same as the one described in Section 3.2.1, except that the
predicates L, and K, for i € [0,[] are no longer required here.

We define the encoding as follows.

Registers
We encode the contents of the registers by @{v, which is the conjunction of the path constraints
of P; given below.

e Successor, predecessor:

— ¢ = Vay(Li(r,z) A 3z(R{ (z,2) A Ry (2,y)) = €(z,y))
(pf(#1) = L1, lt(¢1) = R - Ry and rt(¢1) = €.)

~ o = Vay(Li(r,z) A 32(Ry (2,2) A R} (2,9)) = e(z,1))
~ §s = Vay(La(r,z) A 32(R] (2,2) A Ry (2.9)) = e(x.1))
~ §u = Vay(La(r,z) A 32(R, (v,2) A R (2.9)) = e(.1))
~ s = Vay(Ln(r,) Aele,y) —» F2(BY (2,2) A By (2,9)))

(pf(¢s) = Ly, It(¢s) = € and rt(¢s) = Ry - Ry)
— ¢6 = Voy(La(r,z) A e(z,y) = 32(Ry (z,2) A Ry (2,9)))

e Register identification: ¢7, ¢g, g and ¢1¢ are the same as given in Section 3.2.1.

e 7Zeros:

— ¢ = Vo (Iy(Li(r,y) A By (y,) = €(r, z))
(¢11 is a simple path constraint with [t(¢11) = Ly - Ey; and rt(¢11) = €.)
— ¢12 =Vzy(Li(r,z) A By (z,y) = 32(Ey, (z,2) A 32 (Eni(z,2") AN Ey (2',9))))
(pf(12) = Lu. lt(d12) = Eyy and ri(d12) = Eyy - Eo - Ey,)
— 13 = Voy(Li(r,z) A Tz(Ey (z,2) A En(z,y)) = e(z,y))
(pf(¢13) = La, lt(d13) = Eyy - En and rt(¢r13) =€)
— ¢1u = Vo (3y(Li(r,y) A Fz(Eg (y, 2) A Egz(z,2))) = Eoa(r, z))
(¢14 is a simple path constraint with lt(¢14) = L1 - Ey; - Eo2 and rt(¢14) = Ep2.)
— ¢15 = Vaoy(Eoa(r,z) A e(z,y) = Fz(Egy(z,2) A E(z,y)))
(pf(b15) = Eoz, lt(¢15) = € and rt(¢15) = Eyy - Eo2.)
— ¢16 = VY (Ega(r,z) — Lo(r,x))

IDs
The encoding of each ID C of M, ¢¢, is the same as the one given in Section 3.2.1.
Note that p¢ is in Py.

Instructions
The encoding of each instruction I;, ¢r,, is the same as the one given in Section 3.2.1, except

i =Vay(Li(r,z) A 32(Ki(z,2) A Egy - Eoa(2,y)) — Kj(z,9)).

52,0

Here pf (4L,) = L1, lH(h,) = Ki - By - Eoa, and ri(},) = K.

52,0

19

l
The encoding of the program of M is ! = /\(;’)11..
=0
It is clear that @{\/1 is a conjunction of path constraints in P;.

4.2 Reduction property

Analogous to Proposition 3.2, we establish the reduction property of the encoding above as follows.
Proposition 4.1: Let M be a two-register machine. For all IDs C' and D of M, we have that
C=uD iff &L AL Ape— opis valid.

]
Proof:
(1) Assume that C =7 D. As in the proof of Proposition 3.2, we prove by induction on step
t that for each ID E of M and each model G of @{V A <I>£/[A e, if C =, E then G = ¢g. This
can be shown in basically the same way as for Proposition 3.2, except for the following cases in the
inductive step.
Case 3: I; = (i,registery, j, k) and m = 0. In this case, E must be (j,0,n).
Suppose, for reductio, that there exist a,b € |G|, such that
G | Li(r,a) A Ey; - Ega - (RS)"(a,b) A —=Kj(a,b).
Then by G |= ¢¢,, we have G = K;(a,b). In addition, there exists e € |G|, such that
G = Li(r,a) N\ Egy(a,e).
By ¢12 in (ID{V, there exist ¢, d € |G|, such that
G |= Li(r,a) AN Ey (a,c) A\ Egi(c,d).
Thus by ¢35 in @{V, we have G |= €(a,d). Hence
G = Li(r,a) N Ey(a,c) A Egi(c, a).
By G = Li(r,a) A Eg,(a,c) and ¢11 in @{V, we have G = €(r,c¢). Thus G = Ey(r,a). Hence
G ‘: E(]l(’l‘, a) A Kz-(a, b)

Thus by ¢! in @{VI, we have G |= Kj(a,b). This contradicts the assumption.

51,0

Case 4: I; = (i,registery, j, k) and m = p 4+ 1. In this case, ¥ must be (k,p,n).
Suppose, for reductio, that there exist a,b € |G|, such that

G = Li(r,a) A (Ry)? - Egy - Egza - (RF)"(a,b) A =Kg(a,b).
Then by ¢5 in @{V, there exists ¢ € |G|, such that
G = Li(r,a) A Rf (a,c) A Ry (c,a).
By ¢7 in @{V, we have G = Li(r,¢) A Ry (c,a). Hence

G | Li(r,e) AN(BD)P™ - Egy - Eoo - (BY)"(c,b).

20

Thus by G = ¢¢,, we have G |= K;(c,b). Hence
G = Li(r,a) A Rf (a,c) A K;(c, b).

Thus by gbil L, in @{VI, we have G = Ki(a,b). This contradicts the assumption.

Case 5: I; = (i,registery, j, k) and n = 0. In this case, E¥ must be (j,m,0).
Suppose, for reductio, that there exist a,b € |G|, such that

G |= Li(r,a) N (R)™ - Ey, - Egz(a,b) A —~Kj(a,b).
Then by G |= ¢¢,, we have G = K;(a,b). Moreover, there exist ¢,d € |G|, such that
G = (R,)™(a,d) N Ey,(d,c) A\ Epz(c,b).
By G |= Li(r,a) and ¢g in @{v, we have G |= Li(r,d). Thus by ¢14 in @{V, we have
G = Eyy(r,b).
By ¢15 in @{V, there exists e € |G|, such that
G |= Eyy(b,e) A Epa(e,b).

Hence
G = Li(r,a) N Ki(a,b) N\ Eqgy(b,e) A Epa(e, b).

Thus by ¢ in q){\/p we have G |= Kj(a,b). This contradicts the assumption.

52,0

Case 6: I; = (i,registers, j, k) and n = p+ 1. In this case, E must be (k,m,p).
Suppose, for reductio, that there exist a,b € |G|, such that

G = Li(r,a) A (R))™ - Eyy - Egg - (RF)P(a,b) A =Kg(a,b).
Then there exist ¢,d € |G|, such that
G = (R{)™(a,c) A Ey; - Ega(c,d) A (RF)P(d,b).

By ¢g in @4, we have G |= Li(r,c). By ¢iq in ®L, G = Egy(r,d). By ¢i6 in @4, G = Lo(r,d).
By ¢9 in @{V, G |= Lo(r,b). Therefore, by ¢¢ in @{V, there exists e € |G|, such that

G = R (b,e) A R, (e,b).

Hence
G | Li(r,a) A (R7)™ - Egy - Ego - (RSP (a,e).

By G = ¢¢,, we have G |= K(a,e). Hence
G = Li(r,a) N K;(a,e) A R, (e,b).

Thus by ¢22 _in @{V[, we have G |= Kj(a,b). This contradicts the assumption.

(2) Conversely, assume that C' 7%, D. It is easy to verify that the structure G (without L, and
K, edges) constructed in the proof of Proposition 3.2 is a model of @{V A (I){\/[Ao A =pp. [

21

4.3 Semi-conservative reduction

We define a recursive function g : FO — S(Py) by

g() = (I){V N ‘1)£4 N @c) N 79(1,0,0)-

where C(v) is the ID (0,m(4)),0) of M with an appropriate encoding m (1)) of 1, as described in
Section 3.1.1.

Proposition 4.2 below shows that the function g is indeed a semi-conservative reduction from
FO to S(Pf)

Proposition 4.2: Let M be the two-register machine described in Section 3.1.1. For each first-
order sentence 1,

1. ¢ € Hypy o iff g(4) is not satisfiable; and

2. if p € Hypy, 2, then g(¢)) has a finite model.

(]
Proof: The proof is the same as the proof of Proposition 3.3, except that here in the structure H
shown in Figure 3, there are no L, and K, edges.]
Corollary 4.3: The function g defined above is a reduction from FO to S(Py). [
Corollary 4.4: The set S(Py) is a conservative reduction class.]

From Corollary 4.4, Theorem 2.3 follows immediately.

5 Conclusions

We have presented a class of path constraints, P. These constraints are important in both struc-
tured and semistructured data for specifying natural integrity constraints. They are not only a
fundamental part of the semantics of the data; they are also important in query optimization. For
example, the familiar inverse constraints that occur in object-oriented databases can be stated as
path constraints of P.

For semistructured data, we have shown that, despite the simple syntax of the language P,
its associated implication problem is r.e. complete and its finite implication problem is co-r.e.
complete. Indeed, we have established these undecidability results for two fragments of P. One of
the fragments is the largest subset of P without equality. The other is the set of path constraints
of the forward form in P.

These undecidability results motivate our search for decidable fragments of P. In [12], we
establish the decidability of the implication problems for several fragments of P, which retain
sufficient expressive power to capture important semantic information such as inverse constraints
and local database constraints commonly found in object-oriented databases.

Acknowledgements. The authors thank Victor Vianu, Val Tannen and Susan Davidson for
helpful discussions.

References

[1] S. O. Aanderaa. “On the decision problem for formulas in which all disjunctions are binary”.
In Proc. 2nd Scandinavian Logic Symp., pp. 1-18, 1971.

22

2]
3]

[4]

S. Abiteboul. “Querying semi-structured data”. In Proc. ICDT, 1997.

S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Siméon. “Querying
documents in object databases”. Journal of Digital Libraries, 1(1), 1997.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Weiner. “The lorel query language for
semistructured data”. Journal of Digital Libraries, 1(1), 1997.

S. Abiteboul and V. Vianu. “Regular path queries with constraints”, In Proc. ACM Symp. on
Principles of Database Systems, 1997.

F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an object-oriented database
system: the story of 02. Morgan Kaufmann, San Mateo, California, 1992.

J. Barwise. “On Moschovakis closure ordinals”. Journal of Symbolic Logic, 42:292-296, 1977.

M. F. van Bommel and G. E. Weddell. “Reasoning about equations and functional dependen-
cies on complex objects”. IEEE Trans. on Knowledge and Data Engineering, 6(3): 455-469,
1994.

E. Borger, E. Gradel, and Y. Gurevich. The classical decision problem. Springer, 1997.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. “Adding structure to unstructured
data”. In Proc. ICDT, 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. “A query language and optimization
techniques for unstructured data”. In Proc. ACM SIGMOD International Conf. on Manage-
ment of Data, pp. 505-516, 1996.

P. Buneman, W. Fan, and S. Weinstein. “The decidability of some restricted implication
problems for path constraints”. Technical Report MS-CIS-97-15, Department of Computer
and Information Science, University of Pennsylvania, 1997.

R. G. G. Cattell (ed.). The object-oriented standard: ODMG-93 (Release 1.2). Morgan Kauf-
mann, San Mateo, California, 1996.

N. Coburn and G. E. Weddell. “Path constraints for graph-based data model: Towards s
unified theory of typing constraints, equations and functional dependencies”. In Proc. 2nd
International Conf. on Deductive and Object-Oriented Databases, pp. 312-331, 1991.

H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. “A query language and processor for a
web-site management system”. In Workshop on Management of Semistructured Data, 1997.

E. Gradel, P. Kolaitis, and M. Vardi. “On the decision problem for two-variable first-order
logic”. Bulletin of Symbolic Logic, 3(1): 53-69, March 1997.

M. Ito and G. E. Weddell. “Implication problems for functional constraints on databases
supporting complex objects”. Journal of Computer and System Science, 50: 165-187, 1995.

M. Tto, G. E. Weddell, and N. Coburn. “On specialization constraints over complex objects”.
Technical Report CS-91-62, Department of Computer Science, University of Waterloo, 1991.

M. Kifer, W. Kim, and Y. Sagiv. “Querying object-oriented databases”. In Proc. ACM SIG-
MOD International Conf. on Management of Data, pp. 393-402, 1992.

23

[21]

22]

23]

[24]

[25]

[26]

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. “The ObjectStore Database system”.
Comm. ACM, 34(10): 51-63, October 1991.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. “Querying the World Wide Web”. In Proc.
PDIS, pp. 80-91, 1996.

J. Mylopoulos, P. Bernstein, and H. Wong. “A language facility for designing database-intensive
applications”. ACM Trans. on Database Sys., 5(2), June 1980.

S. Nestorov, S. Abiteboul, and R. Motwani. “Inferring structure in semistructured data”. In
Workshop on Management of Semistructured Data, 1997.

S. Nestorov, J. Ullman, J. Weiner, and S. Chawathe. “Representative objects: Concise rep-
resentations of semistructured, hierarchical data”. In Proc. Thirteenth International Conf. on
Data Engineering, 1997.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. “Object exchange across heteroge-

neous information sources”. In Proc. Eleventh International Conf. on Data Engineering, pp.
251-260, March 1995.

H. Wang. “Dominoes and the V3V-case of the decision problem”. In Proc. Symp. on Mathe-
matical Theory of Automata, Brooklyn Polytechnic Institute, pp. 23-55, 1962.

G. E. Weddell. “Reasoning about functional dependencies generalized for semantic data mod-
els.” ACM Trans. on Database Sys., 17(1): 32-64, March 1992.

G. E. Weddell and N. Coburn. “A theory of specialization constraints for complex objects.”
In Proc. of 3rd International Conf. on Database Theory, pp. 229-244, December 1990.

C. Zaniolo. “The database language GEM”. In Proc. ACM SIGMOD International Conf. on
Management of Data, pp. 423-434, 1983.

24

