
Some Undecidable Implication Problems forPath ConstraintsPeter Buneman�peter@central.cis.upenn.edu Wenfei Fanywfan@saul.cis.upenn.edu Scott Weinsteinzweinstein@linc.cis.upenn.eduDepartment of Computer and Information ScienceUniversity of PennsylvaniaApril 1997AbstractWe present a class of path constraints of interest in connection with both structured andsemistructured databases, and investigate their associated implication problems. These pathconstraints are capable of expressing natural integrity constraints that are not only a funda-mental part of the semantics of the data, but are also important in query optimization. We showthat, despite the simple syntax of the constraints, the implication problem for the constraints isr.e. complete and the �nite implication problem for the constraints is co-r.e. complete. Indeed,we establish the existence of a conservative reduction of the set of all �rst-order sentences tothe path constraint language.1 IntroductionPath inclusion constraints have been studied in [5] in the context of semistructured data.Consider the following object-oriented schema:class studentfName: string;Taking: set(course);gclass coursefCName: string;Enrolled: set(student);gStudents: set(student);Courses: set(course);in which we assume that the declarations Students and Courses de�ne (persistent) entry pointsinto the database. As it stands, this declaration does not provide full information about the intendedstructure. Given such a database we would expect the following informally stated constraints tohold:�This work was partly supported by the Army Research O�ce (DAAH04-95-1-0169) and NSF Grant CCR92-16122.ySupported by an IRCS graduate fellowship.zSupported by NSF Grant CCR-9403447. 1

Name

C1 S2S1 C2

Students Courses Students Courses

"Phil4""Smith" "Chem3" "Jones"

CName CNameName

Taking

Enrolled

Taking

Enrolled

Taking

Enrolled

r

Figure 1: Representation of a student/course database(a) 8 s 2 Students 8 c 2 s:Taking (c 2 Courses)(b) 8 c 2 Courses 8 s 2 c:Enrolled (s 2 Students)That is, any course taken by a student must be a course that occurs in the database extent of coursesand any student enrolled in a course must be a student that similarly occurs in the database. Weshall call such constraints extent constraints.We might also expect an inverse relationship to hold between Taking and Enrolled. Object-oriented databases di�er in the ways they enable one to state and enforce extent constraints andinverse relationships. Compare, for example, O2 [6] and ObjectStore [21]. The presence of suchconstraints is important both for database and for query optimization.Let us develop a more formal notation for describing such constraints. To do this we borrow anidea that has been exploited in semistructured data models (e.g., [26, 11, 4, 25, 22]) of regardingsemistructured data as an edge-labeled graph. The database consists of two sets, and we express thisby a root node r with edges emanating from it that are labeled either Students or Courses. Theseconnect to nodes that respectively represent students and courses which have edges emanating fromthem that respectively describe the structure of students and courses. For example a student has asingle Name edge connected to a string node, and multiple Taking edges connected to course nodes.See Figure 1 for an example of such a graph.Using this representation of data we can examine certain kinds of constraints.Extent Constraints. By taking edge labels as binary predicates, constraints of the form (a) and(b) above can be stated as:8 c (9 s (Students(r; s) ^ Taking(s; c))! Courses(r; c))8 s (9 c (Courses(r; c) ^Enrolled(c; s))! Students(r; s))These constraints are examples of \word constraints" studied in [5]; the implication problemsfor word constraints were shown to be decidable there.Inverse Constraints. These are common in object-oriented databases [13]. With respect to ourstudent/course schema, the inverse between Taking and Enrolled is expressed as:8 s c (Students(r; s) ^ Taking(s; c)! Enrolled(c; s))8 c s (Courses(r; c) ^Enrolled(c; s)! Taking(s; c))2

Such constraints cannot be expressed as word constraints or even by the more general pathconstraints given in [5].Local Database Constraints. In database integration it is sometimes desirable to make onedatabase a component of another database, or to build a \database of databases". Suppose, forexample, we wanted to bring together a number of student/course databases as described above.We might write something like:class School-DBfDB-identifier: string;Students:set(student); // as defined aboveCourses: set(course); // as defined abovegSchools: set(School-DB);Now we may want certain constraints to hold on components of this database. For example, the\extent constraints" described above now hold on each member of the Schools set. Here we refer toa component database such as a member of the set Schools as a local database and its constraintsas local database constraints. Extending our graph representation by adding Schools edges fromthe new root node to the roots of local databases, the local extent constraints are:8 d c (Schools(r; d) ^ 9 s (Students(d; s) ^ Taking(s; c)) ! Courses(d; c))8 d s (Schools(r; d) ^ 9 c (Courses(d; c) ^Enrolled(c; s)) ! Students(d; s))Again, these cannot be stated as path constraints of [5].These considerations give rise to the question whether there is a natural generalization of theconstraints of [5] which will capture these slightly more complicated forms. Here we consider aclass of path constraints of either the form8x y (�(r; x) ^ �(x; y)!
(x; y));or the form 8x y (�(r; x) ^ �(x; y)!
(y; x));where �(x; y) (�(x; y),
(x; y)) represents a path from node x to node y.This class of path constraints can be used to express all the constraints we have so far en-countered. For semistructured data, in particular, this class of constraints is useful not only foroptimizing navigational queries, but also for inferring structure (see [10, 24, 25] on this subject).Surprisingly, the implication problems for this mild generalization of word constraints are unde-cidable. However, certain restricted cases are decidable in semistructured databases, and thesecases are su�cient to express at least the constraints we have described above. In this paper, weestablish the undecidability of the implication problems for this class of path constraints. We deferto another paper [12] a full treatment of the decidability results.Related workThe idea of representing data as an edge-labeled graph and using paths to specify navigationalqueries dates back to the early 1980s [23, 30]. Recently, the idea has been exploited and adaptedto a variety of new database applications, ranging from querying object-oriented databases (e.g.,XSQL [20], OQL-doc [3]) to querying semistructured data (e.g., UnQL [11], Lorel [4], WebSQL[22], STRUQL [16]).There has also been work in constraint languages de�ned in terms of paths for structured data[28, 14, 8, 18, 29, 19] as well as for semistructured data [5]. A class of functional constraints, called3

path functional dependencies, was proposed in [28, 14]. The axiomatizability and decidability ofits associated unrestricted implication problem were established in [28, 8, 18]. This constraintlanguage generalizes functional dependencies in the relational data model for semantic and object-oriented data models. It di�ers signi�cantly from ours, which is a generalization of (unary) inclusiondependencies in the relational model for both structured and semistructured data.In [29, 14], a class of constraints for specifying range restrictions associated with paths, calledspecialization constraints, was proposed for object-oriented data models. The axiomatizabilityand decidability of its associated implication problems were established in [19]. A specializationconstraint asserts a type condition which is often speci�ed by a schema. The central di�erencebetween specialization constraints and our path constraints is that specialization constraints aretype constraints for a graph representing a schema, whereas our path constraints specify inclusionrelations for a graph representing data. In particular, specialization constraints must be associatedwith a schema, whereas our path constraints are de�ned for both structured and semistructureddata.Closer to our work is the path inclusion constraint language introduced and investigated in [5].A constraint in this language is an expression of the form p � q or p = q, where p and q are regularexpressions denoting paths in a graph representing semistructured data. In particular, if p andq are simply sequences of labels, the constraint is called a word constraint . A constraint p � q(p = q) expresses the inclusion (equality) relation between the two sets of nodes reachable via pand q. The decidability of the implication problems for the language was established in [5]. Inaddition, [5] also showed that word constraint implication is decidable in PTIME. This constraintlanguage di�ers from ours in expressive power. On the one hand, the constraint language of [5]allows a more general form of path expressions than ours. On the other hand, it does not captureinverse constraints and local database constraints mentioned above, whereas these constraints canbe expressed in our language. In short, our constraints language is a generalization of the class ofword constraints given in [5].The rest of the paper is organized as follows. Section 2 formally presents our path constraintlanguage and identi�es two of its fragments. Section 3 and 4 show that for each of the two fragments,the implication problem is r.e. complete and the �nite implication problem is co-r.e. complete, andtherefore establish the undecidability of the implication problems for our path constraint language.2 Path Constraint Language PIn this section, we formalize the path constraints language, P . We �rst present an abstraction ofsemistructured databases, and de�ne the language P in terms of �rst-order logic. We then describethe implication problems for P and state the main results of the paper.We assume the standard notions of sentences, models and implication used in �rst-order logic[15].2.1 Abstraction of semistructured dataSemistructured data is usually represented as an edge-labeled (rooted) directed graph, e.g., inUnQL [11] and in OEM [26, 4, 25]. See [2] for a survey of semistructured data models. Alongthe same lines, here we use an abstraction of semistructured databases as (�nite) �rst-order logicstructures of signature � = (r; E);where r is a constant denoting the root and E is a �nite set of binary relations denoting the edgelabels. 4

2.2 Path constraintsA path, i.e., a sequence of labels, can be represented as a logic formula with two free variables.De�nition 2.1: A path is a formula �(x; y) having one of the following forms:� x = y, denoted �(x; y) and called an empty path;� K(x; y), where K 2 E; or� 9z(K(x; z) ^ �(z; y)), where K 2 E and �(z; y) is a path.Here the free variables x and y denote the tail and head nodes of the path, respectively. We write�(x; y) as � when the parameters x and y are clear from the context.The path constraint language P is formalized as follows.De�nition 2.2: A path constraint ' is an expression of either the forward form8x y (�(r; x) ^ �(x; y)!
(x; y));or the backward form 8x y (�(r; x) ^ �(x; y)!
(y; x));where �; �;
 are paths. The path � is called the pre�x of '. The paths �, � and
 are denoted bypf('), lt(') and rt('), respectively.The set of all path constraints is denoted by P .For example, all the path constraints presented in the last section are constraints in the set P .Next, we identify several special subclasses of P .We call a path constraint ' in P a simple path constraint if pf(') = �. That is, ' is of eitherthe form 8 y (�(r; y)!
(r; y));or the form 8 y (�(r; y)!
(y; r)):The set of all simple path constraints is denoted by Ps.A proper subclass of simple path constraints, called word constraints and denoted by Pw, wasintroduced and investigated in [5]. A word constraint can be represented as8 y (�(r; y)!
(r; y));where � and
 are paths.2.3 Path constraint implicationWe next describe the implication problems for path constraints in P .We borrow the standard notations of models and implication from �rst-order logic [15]. For a�-structure G and a constraint ' in P , we use G j= ' to denote that G satis�es ' (i.e., G is amodel of '). For any �nite subset � [f'g of P , we use � j= ' to denote that � implies '. Thatis, for every structure G, if G j= �, then G j= '. Similarly, we use � j=f ' to denote that � �nitelyimplies '. That is, for every �nite structure G, if G j= �, then G j= '.The implication problem for P is the problem of determining, given any �nite set � [f'g ofsentences in P , whether � j= '. The �nite implication problem for P is the problem of determining,given any �nite subset � [f'g of P , whether � j=f '.5

As observed by [5], every word constraint (in fact, every simple path constraint) can be expressedby a sentence in two-variable �rst-order logic (FO2), the fragment of �rst-order logic consistingof all relational sentences with at most two distinct variables. Recently, [17] has shown that thesatis�ability problem for FO2 is NEXPTIME-complete by establishing that any satis�able FO2sentence has a model of size exponential in the length of the sentence. The decidability of theimplication and �nite implication problems for word constraints (and for simple constraints) followsimmediately. In fact, [5] directly establishes (without reference to the embedding into FO2) thatthe implication problems for word constraints are in PTIME.In contrast to word constraint implication, both the implication and the �nite implication prob-lems for P are undecidable. These undecidability results, which are the main results of the paper,are stated as follows.Theorem 2.1: The implication problem for P is r.e. complete, and the �nite implication problemfor P is co-r.e. complete.In fact, these results hold true for two proper subclasses of P . One of the subclasses, Pf , is theset of all the constraints of the forward form in P . The other, P+, is the setf' j ' 2 P; lt(') 6= �; rt(') 6= �g:Note that P+ is the largest subset of P without equality.For P+ and Pf we have the following theorems, from which Theorem 2.1 follows immediately.Theorem 2.2: The implication problem for P+ is r.e. complete, and the �nite implication problemfor P+ is co-r.e. complete.Theorem 2.3: The implication problem for Pf is r.e. complete, and the �nite implication problemfor Pf is co-r.e. complete.We prove Theorem 2.2 and 2.3 in the next two sections.3 The Implication Problems for P+In this section, we establish the undecidability of the implication and �nite implication problemsfor P+.3.1 PreliminariesWe �rst recall the de�nitions of two-register machines and conservative reduction classes from [1, 9].3.1.1 Two-register machinesA two-register machine (2-RM) M consists of two registers register1; register2, and is programmedby a numbered sequence I0; I1; :::; Il of instructions. Each register contains a natural number.An instantaneous description (ID) of M is (i;m; n), where i 2 [0; l], m and n are naturalnumbers. It indicates that M is ready to execute instruction Ii (or at \state i") with register1 andregister2 containing m and n, respectively.An instruction ofM is either an addition or a subtraction, which de�nes a relation!M betweenIDs, described as follows:� addition: (i; rg; j), where rg is either register1 or register2, 0 � i; j � l. The semantics ofthe addition instruction is: at state i, M adds 1 to the content of rg, and then goes to state6

j. Accordingly: (i;m; n)!M ((j;m+ 1; n) if rg = register1(j;m; n+ 1) otherwise� subtraction: (i; rg; j; k), where rg is either register1 or register2, 0 � i; j; k � l. The seman-tics of the subtraction instruction is: at state i, M tests whether the content of rg is 0, andif it is, then goes to state j; otherwise M subtracts 1 from the content of rg and goes to thestate k. Accordingly:(i;m; n)!M 8>>><>>>: (j; 0; n) if rg = register1 and m = 0(k;m� 1; n) if rg = register1 and m 6= 0(j;m; 0) if rg = register2 and n = 0(k;m; n� 1) if rg = register2 and n 6= 0The relation !M can be understood as a set of rewrite rules for IDs.We use)M to denote the re
exive and transitive closure of!M . The relation of M-reachabilityC)M D holds just in case M , started from ID C, reaches ID D by application of zero or more!M rewrite rules.We will need the following de�nitions from [1, 9].De�nition 3.1 [1, 9]: Let X be a class of sentences. We write� N(X) for the set of all unsatis�able sentences in X; that is,N(X) = f j 2 X; does not have a modelg;� F (X) for the set of all �nitely satis�able sentences in X; that is,F (X) = f j 2 X; has a �nite modelg:We write FO for the set of all �rst-order sentences.Recall the following well-known result [27]:There is an e�ective partial procedure by which, given a sentence in FO, we can testwhether it has no model, a �nite model, or only in�nite models. The procedure termi-nates in the �rst two cases, but does not terminate in the last case.We �x ML to be a two-register machine with the following behavior (the existence of such amachine follows from the result just quoted. See [9] for additional discussions). The two-registermachine ML has two halting states: (1; 0; 0) and (2; 0; 0). For each 2 FO, let m() be anappropriate encoding of (a natural number) and C() the ID (0;m(); 0) of ML. Started fromC(),� ML halts at (1, 0, 0) i� is not satis�able;� ML halts at (2, 0, 0) i� has a �nite model.In other words, ML has the following property. For i = 1; 2, letHML;i = f j 2 FO;C())ML (i; 0; 0)g:Then HML;1 is N(FO) and HML;2 is F (FO).Here halting of ML means that the ID sequence becomes constant when reaching a stop state.This stop condition can be assumed without loss of generality [9].7

3.1.2 Conservative reductionsRecall the following de�nitions from [1, 9].De�nition 3.2 [9]: Let X and Y be recursive classes of sentences. A reduction from X to Y is arecursive function f : X ! Y such that for any 2 X, is satis�able i� f() is satis�able.A conservative reduction from X to Y is a recursive function f : X ! Y such that for any 2 X,� is satis�able i� f() is satis�able; and� is �nitely satis�able i� f() is �nitely satis�able.A recursive class of sentences X is a conservative reduction class if there exists a conservativereduction from FO to X.The (�nite) satis�ability problem for a recursive class of sentences X is the problem of deter-mining, given any 2 X, whether has a (�nite) model.Obviously, if a recursive class of sentences X is a conservative reduction class, then� the satis�ability problem for X is co-r.e. complete; and� the �nite satis�ability problem for X is r.e. complete.To show that a recursive subset X of FO is a conservative reduction class, it su�ces to reduceN(FO) and F (FO) to N(X) and F (X), respectively. More precisely, we de�ne the notion ofsemi-conservative reductions as follows.De�nition 3.3 [9]: Let X and Y be recursive classes of sentences. A semi-conservative reductionfrom X to Y is a recursive function f : X ! Y such that� f(N(X)) � N(Y); and� f(F (X)) � F (Y).Lemma 3.1 [9]: If there exists a semi-conservative reduction from FO to a recursive subset X ofFO, then X is a conservative reduction class.3.2 Reduction from the halting problem for 2-RMsWe next show Theorem 2.2. It su�ces to show that the setS(P+) = f^� ^ :' j ' 2 P+; � � P+; � is �nitegis a conservative reduction class. To establish the conservative reduction class property for S(P+),by Lemma 3.1, it su�ces to show that there is a semi-conservative reduction from FO to S(P+).We establish the existence of such a semi-conservative reduction by reduction from the haltingproblem for two-register machines. We �rst present an encoding of two-register machines by sen-tences in P+, and then prove a reduction property of the encoding. Using this reduction property,we de�ne a semi-conservative reduction from FO to S(P+).
8

3.2.1 EncodingLet M be a two-register machine. Assume that M is programmed byI0; I1; : : : ; Il:We also assume that the set E of binary relations in the signature � includes:� the predicates encoding the states of M :{ K0;K1; :::;Kl,{ K�0 ;K�1 ; :::;K�l ;� the predicates encoding the contents of the registers (natural numbers):{ R+1 ; R�1 : to encode the successor and the predecessor of the contents of register1;{ R+2 ; R�2 : to encode the successor and the predecessor of the contents of register2;{ E01; E�01: to indicate that the content of register1 is 0;{ E02; E�02: to indicate that the content of register2 is 0;� the predicates distinguishing register1 from register2:{ L1; L�1 : to identify register1;{ L2; L�2 : to identify register2; and{ Lr: to identify the root r.We now de�ne the encoding as follows.RegistersWe encode the contents of the registers by �N , which is the conjunction of the path constraintsof P+ given below.� Successor, predecessor:{ �1 = 8xy(L1(r; x) ^R+1 (x; y)! R�1 (y; x)){ �2 = 8xy(L1(r; x) ^R�1 (x; y)! R+1 (y; x)){ �3 = 8xy(L2(r; x) ^R+2 (x; y)! R�2 (y; x)){ �4 = 8xy(L2(r; x) ^R�2 (x; y)! R+2 (y; x))(�1; �2; �3 and �4 are constraints of the backward form.){ �5 = 8x(L1(r; x)! 9y(R+1 (x; y) ^ L�1 (y; r))).{ �6 = 8x(L2(r; x)! 9y(R+2 (x; y) ^ L�2 (y; r))).(�5 and �6 are simple constraints of the backward form.)� Register identi�cation:{ �7 = 8x(9y(L1(r; y) ^R+1 (y; x))! L1(r; x)){ �8 = 8x(9y(L1(r; y) ^R�1 (y; x))! L1(r; x)){ �9 = 8x(9y(L2(r; y) ^R+2 (y; x))! L2(r; x)){ �10 = 8x(9y(L2(r; y) ^R�2 (y; x))! L2(r; x))(�7; �8; �9 and �10 are simple constraints of the forward form.)9

� States: for i 2 [0; l],{ �i11 = 8xy(L1(r; x) ^Ki(x; y)! K�i (y; x)){ �i12 = 8xy(L2(r; x) ^K�i (x; y)! Ki(y; x))(�i11 and �i12 are constraints of the backward form.)� Zeros:{ �13 = 8xy(L1(r; x) ^E�01(x; y)! E01(y; x)){ �14 = 8xy(L1(r; x) ^E�01(x; y)! Lr(r; y)){ �15 = 8xy(Lr(r; x) ^E01(x; y)! E01(r; y)){ �16 = 8x(9z(L1(r; z) ^ 9y(E�01(z; y) ^E02(y; x)))! E02(r; x))(�13 is a constraint of the backward form, �14; �15 and �16 are simple constraints of theforward form.){ �17 = 8x(E01(r; x)! L1(r; x)){ �18 = 8x(E02(r; x)! L2(r; x))(�17 and �18 are simple constraints of the forward form.)IDsWe encode each ID C = (i;m; n) of M by'C = 8xy(L1(r; x) ^ (R�1)m �E�01 � E02 � (R+2)n(x; y)! Ki(x; y));where� � � � (abbreviation for �(x; z) � �(z; y)) stands for the concatenation of paths �(x; z) and�(z; y), which is de�ned by:�(x; z) � �(z; y) = 8><>: �(x; y) if � = �9z(K(x; z) ^ �(z; y)) if � = K9u(K(x; u) ^ (�0(u; z) � �(z; y))) if �(x; z) = 9u(K(x; u) ^ �0(u; z))� (�)m stands for the m-time concatenation of �, which is de�ned by:(�)m = (� if m = 0� � (�)m�1 otherwiseIt is easy to see that the constraint 'C is in P+. It has the forward form with pf('C) = L1,lt('C) = (R�1)m �E�01 �E02 � (R+2)n, and rt('C) = Ki.InstructionsFor each i 2 [0; l], we encode the instruction Ii by �Ii given below.� Addition:{ For (i; register1; j), �Ii is�ia1 = 8xy(L1(r; x) ^ 9x0(R�1 (x; x0) ^Ki(x0; y))! Kj(x; y)):Here �ia1 is a constraint of the forward form with pf(�ia1) = L1, lt(�ia1) = R�1 �Ki andrt(�ia1) = Kj . 10

{ For (i; register2; j), �Ii is�ia2 = 8xy(L1(r; x) ^ 9y0(Ki(x; y0) ^R+2 (y0; y))! Kj(x; y)):Here �ia2 is a constraint of the forward form with pf(�ia2) = L1, lt(�ia2) = Ki � R+2 andrt(�ia2) = Kj .� Subtraction:{ For (i; register1; j; k), �Ii is �is1 = �is1;0 ^ �is1;n ;where �is1;0 = 8xy(E01(r; x) ^Ki(x; y)! Kj(x; y));and �is1;n = 8xy(L1(r; x) ^ 9x0(R+1 (x; x0) ^Ki(x0; y))! Kk(x; y)):Here �is1 is a conjunction of two constraints having the forward form. The �rst conjunctis a constraint with pf(�is1;0) = E01, lt(�is1;0) = Ki and rt(�is1;0) = Kj. In the secondconjunct, pf(�is1;n) = L1, lt(�is1;n) = R+1 �Ki and rt(�is1;n) = Kk.{ For (i; register2; j; k), �Ii is �is2 = �is2;0 ^ �is2;n ;where �is2;0 = 8xy(E02(r; y) ^K�i (y; x)! Kj(x; y));and �is2;n = 8xy(L1(r; x) ^ 9y0(Ki(x; y0) ^R�2 (y0; y))! Kk(x; y)):Here �is2 is a conjunction of two constraints. The �rst conjunct is a constraint of thebackward form with pf(�is2;0) = L1, lt(�is2;0) = K�i and rt(�is2;0) = Kj . The secondconjunct is a constraint of the forward form with pf(�is2;n) = L1, lt(�is2;n) = Ki �R�2 andrt(�is2;n) = Kk.The encoding of the program of M is �M = l̂i=0�Ii . Clearly, �M is a conjunction of pathconstraints in P+.3.2.2 Reduction propertyNow we show that the encoding above has the following reduction property.Proposition 3.2: Let M be a two-register machine. For all IDs C and D of M ,C)M D i� �N ^�M ^ 'C ! 'D is valid:Proof:(1) Assume C)M D. We show that for each model G of �N ^ �M ^ 'C , G j= 'D. To showthis, it su�ces to show that for each natural number t and each ID E of M , if E is reached by Min t steps starting from C (denoted C)tM E), then G j= 'E . We prove this by induction on t.Base case: If t = 0, then the claim holds since G j= 'C .Inductive step: Assume the claim for t. 11

Suppose that C)tM C1 !IiM E, where C1 = (i;m; n), and C1 !IiM E stands for that E isreached by executing instruction Ii at C1. Then by the induction hypothesis, we have G j= 'C1 .That is G j= 8xy(L1(r; x) ^ (R�1)m � E�01 �E02 � (R+2)n(x; y)! Ki(x; y)):We show that the claim holds for t+ 1 for each case of Ii, which has six cases in total.Case 1 : Ii = (i; register1; j). In this case, E must be (j;m + 1; n).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)m+1 �E�01 � E02 � (R+2)n(a; b) ^ :Kj(a; b);then there exists c 2 jGj, such thatG j= R�1 (a; c) ^ (R�1)m �E�01 � E02 � (R+2)n(c; b):By �8 in �N , we have G j= L1(r; c). Thus by G j= 'C1 , G j= Ki(c; b). HenceG j= L1(r; a) ^R�1 (a; c) ^Ki(c; b):Thus by �ia1 in �M , we have G j= Kj(a; b). This contradicts the assumption.Case 2 : Ii = (i; register2; j). In this case, E must be (j;m; n + 1).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)m �E�01 �E02 � (R+2)n+1(a; b) ^ :Kj(a; b);then there exists c 2 jGj, such thatG j= (R�1)m �E�01 � E02 � (R+2)n(a; c) ^R+2 (c; b):By G j= 'C1 , we have G j= Ki(a; c). HenceG j= L1(r; a) ^Ki(a; c) ^R+2 (c; b):Thus by �ia2 in �M , we have G j= Kj(a; b). This contradicts the assumption.Case 3 : Ii = (i; register1; j; k) and m = 0. In this case, E must be (j; 0; n).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^E�01 � E02 � (R+2)n(a; b) ^ :Kj(a; b);then by G j= 'C1 , we have G j= Ki(a; b). In addition, there exists c 2 jGj, such thatG j= L1(r; a) ^E�01(a; c):By �13; �14 and �15 in �N , we have G j= E01(r; a). HenceG j= E01(r; a) ^Ki(a; b):Thus by �is1;0 in �M , we have G j= Kj(a; b). This contradicts the assumption.Case 4 : Ii = (i; register1; j; k) and m = p+ 1. In this case, E must be (k; p; n).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)p � E�01 �E02 � (R+2)n(a; b) ^ :Kk(a; b);12

then by �5 in �N , there exists c 2 jGj, such thatG j= L1(r; a) ^R+1 (a; c):By �7; �1 in �N , we have G j= L1(r; c) ^R�1 (c; a). HenceG j= L1(r; c) ^ (R�1)p+1 �E�01 � E02 � (R+2)n(c; b):Thus by G j= 'C1 , G j= Ki(c; b). HenceG j= L1(r; a) ^R+1 (a; c) ^Ki(c; b):Thus by �is1;n in �M , we have G j= Kk(a; b). This contradicts the assumption.Case 5 : Ii = (i; register2; j; k) and n = 0. In this case, E must be (j;m; 0).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)m �E�01 � E02(a; b) ^ :Kj(a; b);then by G j= 'C1 , we have G j= Ki(a; b). By �i11 in �N , G j= K�i (b; a). Moreover, there existc; d 2 jGj, such that G j= (R�1)m(a; d) ^E�01(d; c) ^E02(c; b):By G j= L1(r; a) and �8 in �N , we have G j= L1(r; d). Thus by �16 in �N , G j= E02(r; b). HenceG j= E02(r; b) ^K�i (b; a):Thus by �is2;0 in �M , we have G j= Kj(a; b). This contradicts the assumption.Case 6 : Ii = (i; register2; j; k) and n = p+ 1. In this case, E must be (k;m; p).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)m � E�01 �E02 � (R+2)p(a; b) ^ :Kk(a; b);then there exist c; d 2 jGj, such thatG j= (R�1)m(a; c) ^E�01 � E02(c; d) ^ (R+2)p(d; b):By �8 in �N , we have G j= L1(r; c). By �16 in �N , G j= E02(r; d). By �18 in �N , G j= L2(r; d).By �9 in �N , G j= L2(r; b). Therefore, by �6 in �N , there exists e 2 jGj, such thatG j= R+2 (b; e):Hence G j= L1(r; a) ^ (R�1)m � E�01 �E02 � (R+2)p+1(a; e):By G j= 'C1 , we have G j= Ki(a; e). By �3 in �N and G j= R+2 (b; e), G j= R�2 (e; b). HenceG j= L1(r; a) ^Ki(a; e) ^R�2 (e; b):Thus by �is2;n in �M , we have G j= Kk(a; b). This contradicts the assumption.Hence the claim holds for t+ 1 for all the cases of Ii.(2) Conversely, assume C 6)M D. We show that �N ^�M ^ 'C ! 'D is not valid. That is, weshow that �N ^�M ^ 'C ^ :'D is satis�able. To show this, we construct a structure G such thatG j= �N ^ �M ^ 'C and G j= :'D. 13

The structureG is de�ned as follows. The universe of G consists of a distinguished node rt, whichis the interpretation of the constant r in G, and two distinct in�nite chains of natural numbers.More speci�cally, let IN denote the set of all natural numbers, thenjGj = frtg [IN [fi0 j i 2 INg:The binary relations in G are populated as follows:Lr = f(rt; rt)gE01 = f(rt; 0)g E�01 = f(0; rt)gE02 = f(rt; 00)g E�02 = f(00; rt)gL1 = f(rt; i) j i 2 INg L�1 = f(i; rt) j i 2 INgL2 = f(rt; i0) j i 2 INg L�2 = f(i0; rt) j i 2 INgR+1 = f(i; i + 1) j i 2 INg R�1 = f(i+ 1; i) j i 2 INgR+2 = f(i0; (i + 1)0) j i 2 INg R�2 = f((i + 1)0; i0) j i 2 INgKi = f(m;n0) j C)M (i;m; n)g K�i = f(n0;m) j (m;n0) 2 KigSee Figure 2 for the structure G (E�01; E�02; L�1 ; L�2 ; R�1 ; R�2 ;K�i edges are omitted in the graph).It is easy to verify the following claims.Claim 1: G j= 'C ^ :'D.This is because C)M C and C 6)M D.Claim 2: G j= �N .This is immediate from the construction of G.Claim 3: G j= �M .Claim 3 follows from the simple facts given below.� Fact 1 : G j= Ki(m;n0) i� C)M (i;m; n).� Fact 2 : If C)M (i;m; n) !IiM E, then C)M E. Moreover, E must satisfy the followingconditions.{ If Ii = (i; register1; j), then E = (j;m + 1; n).{ If Ii = (i; register2; j), then E = (j;m; n + 1).{ If Ii = (i; register1; j; k) and m = 0, then E = (j; 0; n).{ If Ii = (i; register1; j; k) and m = p+ 1, then E = (j; p; n).{ If Ii = (i; register2; j; k) and n = 0, then E = (j;m; 0).{ If Ii = (i; register2; j; k) and n = p+ 1, then E = (j;m; p).� Fact 3 : If G 6j= �M , i.e., there exists Ii for some i 2 [0; l] such that G 6j= �Ii , then there existm;n0 2 jGj, such that{ if Ii = (i; register1; j), then G j= Ki(m;n0) ^ :Kj(m+ 1; n0),{ if Ii = (i; register2; j), then G j= Ki(m;n0) ^ :Kj(m; (n+ 1)0),{ if Ii = (i; register1; j; k), then either� G j= Ki(0; n0) ^ :Kj(0; n0), where m = 0, or� G j= Ki(p+ 1; n0) ^ :Kk(p; n0), where m = p+ 1,{ if Ii = (i; register2; j; k), then either� G j= Ki(m; 00) ^ :Kj(m; 00), where n = 0, or14

0 0’

1 1’

2 2’

m n’

Lr

R
+
1

R
+
1

R
+
1

R
+
1

R
+
2

R
+
2

R
+
2

R
+
2

K i

L

L

L

L

L

L

L

L

1

1

1

1

2

2

2

2

E 01 E 02

R
+
1

R
+
2

rt

Figure 2: The structure G in Proposition 3.2
15

� G j= Ki(m; (p+ 1)0) ^ :Kk(m; p0), where n = p+ 1.Using these facts, Claim 3 can be easily veri�ed by reductio. More speci�cally, suppose thatG 6j= �M . Then there is i 2 [0; l] such that G 6j= �Ii . Here Ii has six cases. For each of thesecases, the assumption contradicts the facts above. As an example, consider the case in whichIi = (i; register1; j). By Fact 3, there exist m;n0 2 jGj, such that G j= Ki(m;n0)^:Kj(m+1; n0).By Fact 1, C)M (i;m; n0). In addition, by Fact 2, C)M (j;m + 1; n0). Thus again by Fact 1,G j= Kj(m+ 1; n0). This contradicts the assumption. The proofs for the other cases are similar.Therefore, if C 6)M D, then �N ^ �M ^ 'C ^ :'D is satis�able.This completes the proof of Proposition 3.2.3.2.3 Semi-conservative reductionTaking advantage of the reduction property established above, we now de�ne a recursive functionf : FO ! S(P+) by: f() 7! �N ^ �M ^ 'C() ^ :'(1;0;0)where C() is the ID (0;m(); 0) of ML with an appropriate encoding m() of , as described inSection 3.1.1.The proposition below shows that f is indeed a semi-conservative reduction from FO to S(P+).Proposition 3.3: Let ML be the two-register machine described in Section 3.1.1. For each �rst-order sentence ,1. 2 HML;1 i� f() is not satis�able; and2. if 2 HML;2, then f() has a �nite model.Proof:(1) By Proposition 3.2, we have thatC())ML (1; 0; 0) i� �N ^ �M ^ 'C() ! '(1;0;0) is valid:Therefore, C())ML (1; 0; 0) i� �N ^ �M ^ 'C() ^ :'(1;0;0) is not satis�able:Notice that 2 HML;1 i� C())ML (1; 0; 0). Therefore, 2 HML;1 i� f() is not satis�able.This completes the proof of claim 1.(2) We show that if 2 HML;2, then f() has a �nite model.First note that if 2 HML;2, then the computation of ML with initial ID C() is �nite.Therefore, the set SIDC() = f(i;m; n) j C())ML (i;m; n)gis �nite. Hence there is a natural number p, such that for each (i;m; n) 2 SIDC(), m+2 � p andn+ 2 � p.Now we construct a �nite model H for �N ^ �M ^ 'C() ^ :'(1;0;0). The universe of H has2p+ 1 nodes. More speci�cally,jHj = frt; 1; 2; :::; pg [f10; 20; :::; p0g;where rt is the interpretation of the constant r in H.16

The binary relations Lr; E01; E02; E�01; E�02;Ki and K�i in H are exactly the same as those in thestructure G given in the proof of Proposition 3.2. The binary relations L1; L�1 ; L2; L�2 ; R+1 ; R�1 ; R+2and R�2 are populated in H as follows:R+1 = f(i; i + 1) j 0 � i < pg [f(p; p)gR�1 = f(i+ 1; i) j 0 � i < pg [f(p; p)gR+2 = f(i0; (i + 1)0) j 0 � i < pg [f(p0; p0)gR�2 = f((i + 1)0; i0) j 0 � i < pg [f(p0; p0)gL1 = f(rt; i) j 0 � i � pg L�1 = f(i; rt) j 0 � i � pgL2 = f(rt; i0) j 0 � i � pg L�2 = f(i0; rt) j 0 � i � pgSee Figure 3 for the structure H (E�01; E�02; L�1 ; L�2 ; R�1 ; R�2 ;K�i edges are omitted in the graph).Note that the relations Ki and K�i in H are well-de�ned, since if C())ML (i;m; n), thenm < p� 1 and n < p� 1. In addition, it is easy to verify that H is well-de�ned.We now show that H is indeed a model of �N ^ �M ^ 'C() ^ :'(1;0;0).First, by C())ML C() and C() 6)ML (1; 0; 0), we have that H j= 'C() ^ :'(1;0;0).Second, it is easy to verify that H j= �N . Note here it is to ensure H j= �5 ^�6 that we requireH j= R+1 (p; p) ^R+2 (p0; p0).Finally, we show that H j= �M . It is straightforward to verify the following simple facts.� Fact 4: If C())ML (i;m; n), then m < p� 1 and n < p� 1.� Fact 5: If (i;m; n)!IiML (j;m1; n1), then m1 � m+ 1 and n1 � n+ 1. As a result of Fact 4,m1 < p and n1 < p.Consequently, Facts 1, 2 and 3 for showing G j= �M in the proof of Proposition 3.2 are also truehere. Therefore, the argument for showing G j= �M in the proof of Proposition 3.2, together withFacts 4 and 5 above, proves H j= �M .Hence H is indeed a �nite model of �N ^ �M ^ 'C() ^ :'(1;0;0).This completes the proof of Proposition 3.3.Corollary 3.4: The function f de�ned above is a reduction from FO to S(P+).Proof: By the de�nition of ML, for each 2 FO, is satis�able i� 62 HML;1. As shown in theproof of Proposition 3.3, 62 HML;1 i� f() is satis�able. Therefore, f is a reduction from FO toS(P+).As an immediate result of Proposition 3.3 and Lemma 3.1, we have the following corollary.Corollary 3.5: The set S(P+) is a conservative reduction class.From Corollary 3.5, Theorem 2.2 follows immediately.4 The Implication Problems for PfIn this section, we establish Theorem 2.3. As in the proof of Theorem 2.2, we show that the setS(Pf) = f^� ^ :' j ' 2 Pf ; � � Pf ; � is �nitegis a conservative reduction class. To do this, we �rst present an encoding of two-register machinesby sentences in Pf , and then prove a reduction property of the encoding. Using this reductionproperty, we de�ne a semi-conservative reduction from FO to S(Pf).17

0 0’

1 1’

2 2’

m n’

Lr

R
+
1

R
+
1

R
+
1

R
+
1

R
+
2

R
+
2

R
+
2

R
+
2

K i

L

L

L

L

1

1

2

2

E 01 E 02

R
+
1

R
+
2

R
+
1 R

+
2

p p’

R
+
1 R

+
2

rt

L 1 L 2

L 1 2L

2K

L 2L 1

Figure 3: The structure H in Proposition 3.3
18

4.1 EncodingLet M be a two-register machine, as described in Section 3.2.1. Assume that the set E of binaryrelations in the signature � is the same as the one described in Section 3.2.1, except that thepredicates Lr and K�i for i 2 [0; l] are no longer required here.We de�ne the encoding as follows.RegistersWe encode the contents of the registers by �fN , which is the conjunction of the path constraintsof Pf given below.� Successor, predecessor:{ �1 = 8xy(L1(r; x) ^ 9z(R+1 (x; z) ^R�1 (z; y))! �(x; y))(pf(�1) = L1, lt(�1) = R+1 � R�1 and rt(�1) = �.){ �2 = 8xy(L1(r; x) ^ 9z(R�1 (x; z) ^R+1 (z; y))! �(x; y)){ �3 = 8xy(L2(r; x) ^ 9z(R+2 (x; z) ^R�2 (z; y))! �(x; y)){ �4 = 8xy(L2(r; x) ^ 9z(R�2 (x; z) ^R+2 (z; y))! �(x; y)){ �5 = 8xy(L1(r; x) ^ �(x; y)! 9z(R+1 (x; z) ^R�1 (z; y)))(pf(�5) = L1, lt(�5) = � and rt(�5) = R+1 � R�1 .){ �6 = 8xy(L2(r; x) ^ �(x; y)! 9z(R+2 (x; z) ^R�2 (z; y)))� Register identi�cation: �7; �8; �9 and �10 are the same as given in Section 3.2.1.� Zeros:{ �11 = 8x(9y(L1(r; y) ^E�01(y; x))! �(r; x))(�11 is a simple path constraint with lt(�11) = L1 � E�01 and rt(�11) = �.){ �12 = 8xy(L1(r; x) ^E�01(x; y)! 9z(E�01(x; z) ^ 9z0(E01(z; z0) ^E�01(z0; y))))(pf(�12) = L1, lt(�12) = E�01 and rt(�12) = E�01 �E01 � E�01.){ �13 = 8xy(L1(r; x) ^ 9z(E�01(x; z) ^E01(z; y))! �(x; y))(pf(�13) = L1, lt(�13) = E�01 �E01 and rt(�13) = �.){ �14 = 8x(9y(L1(r; y) ^ 9z(E�01(y; z) ^E02(z; x)))! E02(r; x))(�14 is a simple path constraint with lt(�14) = L1 � E�01 �E02 and rt(�14) = E02.){ �15 = 8xy(E02(r; x) ^ �(x; y)! 9z(E�02(x; z) ^E02(z; y)))(pf(�15) = E02, lt(�15) = � and rt(�15) = E�02 �E02.){ �16 = 8x(E02(r; x)! L2(r; x))IDsThe encoding of each ID C of M , 'C , is the same as the one given in Section 3.2.1.Note that 'C is in Pf .InstructionsThe encoding of each instruction Ii, �Ii , is the same as the one given in Section 3.2.1, except�is2;0 = 8xy(L1(r; x) ^ 9z(Ki(x; z) ^E�02 �E02(z; y))! Kj(x; y)):Here pf(�is2;0) = L1, lt(�is2;0) = Ki �E�02 � E02, and rt(�is2;0) = Kj .19

The encoding of the program of M is �fM = l̂i=0�Ii .It is clear that �fM is a conjunction of path constraints in Pf .4.2 Reduction propertyAnalogous to Proposition 3.2, we establish the reduction property of the encoding above as follows.Proposition 4.1: Let M be a two-register machine. For all IDs C and D of M , we have thatC)M D i� �fN ^�fM ^ 'C ! 'D is valid:Proof:(1) Assume that C)M D. As in the proof of Proposition 3.2, we prove by induction on stept that for each ID E of M and each model G of �fN ^ �fM ^ 'C , if C)tM E then G j= 'E . Thiscan be shown in basically the same way as for Proposition 3.2, except for the following cases in theinductive step.Case 3 : Ii = (i; register1; j; k) and m = 0. In this case, E must be (j; 0; n).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^E�01 � E02 � (R+2)n(a; b) ^ :Kj(a; b):Then by G j= 'C1 , we have G j= Ki(a; b). In addition, there exists e 2 jGj, such thatG j= L1(r; a) ^E�01(a; e):By �12 in �fN , there exist c; d 2 jGj, such thatG j= L1(r; a) ^E�01(a; c) ^E01(c; d):Thus by �13 in �fN , we have G j= �(a; d). HenceG j= L1(r; a) ^E�01(a; c) ^E01(c; a):By G j= L1(r; a) ^E�01(a; c) and �11 in �fN , we have G j= �(r; c). Thus G j= E01(r; a). HenceG j= E01(r; a) ^Ki(a; b):Thus by �is1;0 in �fM , we have G j= Kj(a; b). This contradicts the assumption.Case 4 : Ii = (i; register1; j; k) and m = p+ 1. In this case, E must be (k; p; n).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)p � E�01 �E02 � (R+2)n(a; b) ^ :Kk(a; b):Then by �5 in �fN , there exists c 2 jGj, such thatG j= L1(r; a) ^R+1 (a; c) ^R�1 (c; a):By �7 in �fN , we have G j= L1(r; c) ^R�1 (c; a). HenceG j= L1(r; c) ^ (R�1)p+1 �E�01 � E02 � (R+2)n(c; b):20

Thus by G j= 'C1 , we have G j= Ki(c; b). HenceG j= L1(r; a) ^R+1 (a; c) ^Ki(c; b):Thus by �is1;n in �fM , we have G j= Kk(a; b). This contradicts the assumption.Case 5 : Ii = (i; register2; j; k) and n = 0. In this case, E must be (j;m; 0).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)m �E�01 � E02(a; b) ^ :Kj(a; b):Then by G j= 'C1 , we have G j= Ki(a; b). Moreover, there exist c; d 2 jGj, such thatG j= (R�1)m(a; d) ^E�01(d; c) ^E02(c; b):By G j= L1(r; a) and �8 in �fN , we have G j= L1(r; d). Thus by �14 in �fN , we haveG j= E02(r; b):By �15 in �fN , there exists e 2 jGj, such thatG j= E�02(b; e) ^E02(e; b):Hence G j= L1(r; a) ^Ki(a; b) ^E�02(b; e) ^E02(e; b):Thus by �is2;0 in �fM , we have G j= Kj(a; b). This contradicts the assumption.Case 6 : Ii = (i; register2; j; k) and n = p+ 1. In this case, E must be (k;m; p).Suppose, for reductio, that there exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1)m � E�01 �E02 � (R+2)p(a; b) ^ :Kk(a; b):Then there exist c; d 2 jGj, such thatG j= (R�1)m(a; c) ^E�01 � E02(c; d) ^ (R+2)p(d; b):By �8 in �fN , we have G j= L1(r; c). By �14 in �fN , G j= E02(r; d). By �16 in �fN , G j= L2(r; d).By �9 in �fN , G j= L2(r; b). Therefore, by �6 in �fN , there exists e 2 jGj, such thatG j= R+2 (b; e) ^R�2 (e; b):Hence G j= L1(r; a) ^ (R�1)m � E�01 �E02 � (R+2)p+1(a; e):By G j= 'C1 , we have G j= Ki(a; e). HenceG j= L1(r; a) ^Ki(a; e) ^R�2 (e; b):Thus by �is2;n in �fM , we have G j= Kk(a; b). This contradicts the assumption.(2) Conversely, assume that C 6)M D. It is easy to verify that the structure G (without Lr andK�i edges) constructed in the proof of Proposition 3.2 is a model of �fN ^�fM ^ 'C ^ :'D.21

4.3 Semi-conservative reductionWe de�ne a recursive function g : FO ! S(Pf) byg() 7! �fN ^ �fM ^ 'C() ^ :'(1;0;0):where C() is the ID (0;m(); 0) of ML with an appropriate encoding m() of , as described inSection 3.1.1.Proposition 4.2 below shows that the function g is indeed a semi-conservative reduction fromFO to S(Pf).Proposition 4.2: Let ML be the two-register machine described in Section 3.1.1. For each �rst-order sentence ,1. 2 HML;1 i� g() is not satis�able; and2. if 2 HML;2, then g() has a �nite model.Proof: The proof is the same as the proof of Proposition 3.3, except that here in the structure Hshown in Figure 3, there are no Lr and K�i edges.Corollary 4.3: The function g de�ned above is a reduction from FO to S(Pf).Corollary 4.4: The set S(Pf) is a conservative reduction class.From Corollary 4.4, Theorem 2.3 follows immediately.5 ConclusionsWe have presented a class of path constraints, P . These constraints are important in both struc-tured and semistructured data for specifying natural integrity constraints. They are not only afundamental part of the semantics of the data; they are also important in query optimization. Forexample, the familiar inverse constraints that occur in object-oriented databases can be stated aspath constraints of P .For semistructured data, we have shown that, despite the simple syntax of the language P ,its associated implication problem is r.e. complete and its �nite implication problem is co-r.e.complete. Indeed, we have established these undecidability results for two fragments of P . One ofthe fragments is the largest subset of P without equality. The other is the set of path constraintsof the forward form in P .These undecidability results motivate our search for decidable fragments of P . In [12], weestablish the decidability of the implication problems for several fragments of P , which retainsu�cient expressive power to capture important semantic information such as inverse constraintsand local database constraints commonly found in object-oriented databases.Acknowledgements. The authors thank Victor Vianu, Val Tannen and Susan Davidson forhelpful discussions.References[1] S. O. Aanderaa. \On the decision problem for formulas in which all disjunctions are binary".In Proc. 2nd Scandinavian Logic Symp., pp. 1-18, 1971.22

[2] S. Abiteboul. \Querying semi-structured data". In Proc. ICDT , 1997.[3] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Sim�eon. \Queryingdocuments in object databases". Journal of Digital Libraries, 1(1), 1997.[4] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Weiner. \The lorel query language forsemistructured data". Journal of Digital Libraries, 1(1), 1997.[5] S. Abiteboul and V. Vianu. \Regular path queries with constraints", In Proc. ACM Symp. onPrinciples of Database Systems, 1997.[6] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an object-oriented databasesystem: the story of O2 . Morgan Kaufmann, San Mateo, California, 1992.[7] J. Barwise. \On Moschovakis closure ordinals". Journal of Symbolic Logic, 42:292-296, 1977.[8] M. F. van Bommel and G. E. Weddell. \Reasoning about equations and functional dependen-cies on complex objects". IEEE Trans. on Knowledge and Data Engineering , 6(3): 455-469,1994.[9] E. B�orger, E. Gr�adel, and Y. Gurevich. The classical decision problem. Springer, 1997.[10] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. \Adding structure to unstructureddata". In Proc. ICDT , 1997.[11] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. \A query language and optimizationtechniques for unstructured data". In Proc. ACM SIGMOD International Conf. on Manage-ment of Data, pp. 505-516, 1996.[12] P. Buneman, W. Fan, and S. Weinstein. \The decidability of some restricted implicationproblems for path constraints". Technical Report MS-CIS-97-15, Department of Computerand Information Science, University of Pennsylvania, 1997.[13] R. G. G. Cattell (ed.). The object-oriented standard: ODMG-93 (Release 1.2). Morgan Kauf-mann, San Mateo, California, 1996.[14] N. Coburn and G. E. Weddell. \Path constraints for graph-based data model: Towards suni�ed theory of typing constraints, equations and functional dependencies". In Proc. 2ndInternational Conf. on Deductive and Object-Oriented Databases, pp. 312-331, 1991.[15] H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.[16] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. \A query language and processor for aweb-site management system". In Workshop on Management of Semistructured Data, 1997.[17] E. Gr�adel, P. Kolaitis, and M. Vardi. \On the decision problem for two-variable �rst-orderlogic". Bulletin of Symbolic Logic, 3(1): 53-69, March 1997.[18] M. Ito and G. E. Weddell. \Implication problems for functional constraints on databasessupporting complex objects". Journal of Computer and System Science, 50: 165-187, 1995.[19] M. Ito, G. E. Weddell, and N. Coburn. \On specialization constraints over complex objects".Technical Report CS-91-62, Department of Computer Science, University of Waterloo, 1991.[20] M. Kifer, W. Kim, and Y. Sagiv. \Querying object-oriented databases". In Proc. ACM SIG-MOD International Conf. on Management of Data, pp. 393-402, 1992.23

[21] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. \The ObjectStore Database system".Comm. ACM , 34(10): 51-63, October 1991.[22] A. O. Mendelzon, G. A. Mihaila, and T. Milo. \Querying the World Wide Web". In Proc.PDIS , pp. 80-91, 1996.[23] J. Mylopoulos, P. Bernstein, and H. Wong. \A language facility for designing database-intensiveapplications". ACM Trans. on Database Sys., 5(2), June 1980.[24] S. Nestorov, S. Abiteboul, and R. Motwani. \Inferring structure in semistructured data". InWorkshop on Management of Semistructured Data, 1997.[25] S. Nestorov, J. Ullman, J. Weiner, and S. Chawathe. \Representative objects: Concise rep-resentations of semistructured, hierarchical data". In Proc. Thirteenth International Conf. onData Engineering , 1997.[26] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. \Object exchange across heteroge-neous information sources". In Proc. Eleventh International Conf. on Data Engineering , pp.251-260, March 1995.[27] H. Wang. \Dominoes and the 898-case of the decision problem". In Proc. Symp. on Mathe-matical Theory of Automata, Brooklyn Polytechnic Institute, pp. 23-55, 1962.[28] G. E. Weddell. \Reasoning about functional dependencies generalized for semantic data mod-els." ACM Trans. on Database Sys., 17(1): 32-64, March 1992.[29] G. E. Weddell and N. Coburn. \A theory of specialization constraints for complex objects."In Proc. of 3rd International Conf. on Database Theory , pp. 229-244, December 1990.[30] C. Zaniolo. \The database language GEM". In Proc. ACM SIGMOD International Conf. onManagement of Data, pp. 423-434, 1983.

24

