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ABSTRACT 

 

EVOLUTIONARY INSTABILITY OF GENOMIC MUTATION RATE IN RAPIDLY 

ADAPTING ASEXUAL MUTATOR ESCHERICHIA COLI POPULATIONS 

Mitra Eghbal 

Paul Sniegowski 

 

Alleles conferring higher mutation rates (mutators) can fix in asexual populations through 

a process called ‘mutator hitchhiking’. Theory predicts that repeated mutator hitchhiking 

can occur in an adapting asexual mutator population. I tested this prediction in two 

settings: a mutL- population under lethal selection and a mutS- population under soft 

selection. In both experiments, the starting mutation rate was 100-fold higher than wild-

type. In the lethal selection experiment, two replicate populations were exposed to a 

sequence of three different antibiotics. In both replicates, all survivors sampled after the 

final antibiotic exposure had undergone further genomic mutation rate increases. Whole-

genome and Sanger sequencing revealed that an identical spontaneous 1-bp insertion in 

mutT (a known mutator gene) rose to probable fixation in both populations. 

Complementation tests demonstrated that the mutT- defect was responsible for the 

increased mutation rates. In the soft selection experiment, 30 isogenic populations were 

propagated in limited glucose media. After 900 generations, five clones were isolated 

from each population. Relative to the ancestor, 9% of the clones had increased mutation 

rates and 68% had unchanged mutation rates; surprisingly, 23% had decreased mutation 

rates. Most populations (21 of 30) had at least one clone whose mutation rate either 
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increased or decreased. One population exhibited apparent fixation for a mutator and one 

other population exhibited apparent fixation for an antimutator. Some of the sequenced 

clones with altered mutation rates had mutations in known (anti)mutator loci. I conclude 

that the mutators likely arose by hitchhiking and that the antimutators likely confer 

pleiotropic direct fitness benefits. Competitions between the evolved clones and the 

ancestor demonstrated that all clones and populations had increased in fitness since 

generation 0. No relationship was detected, however, between mutation rate and relative 

fitness. These experiments provide evidence supporting the prediction of repeated 

mutator hitchhiking. More broadly, the work described in this dissertation reveals 

multiple ways in which the mutation rates of asexual populations may be evolutionarily 

unstable, with potential implications for evolving asexual systems, including infectious 

agents and cancer. 
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Chapter I: Introduction 

 
Overview 

All genetic variation ultimately originates from mutations. Mutations are spontaneous in 

origin, and their effects on their bearers can vary dramatically. Certain types of mutations 

can modify the rate of mutation acquisition. These mutation rate modifiers are known as 

‘mutators’ and ‘antimutators’: mutators increase mutation rates, and antimutators 

decrease mutation rates. Consequently, mutation rates can vary across both species and 

populations (Drake 1991; Lynch 2010). Not only can mutation rates affect the course of 

evolution, mutation rates themselves are subject to evolution. The random nature of 

mutations raises the question of how mutation rates evolve, in light of the fact that many 

mutations have little to no phenotypic effect. Of the mutations that do have any 

phenotypic effect, most are deleterious and few are beneficial. What is the evolutionary 

counterweight against the negative effects of the accumulation of deleterious mutations? 

 

Why the mutation rate is non-zero 

Nearly a century ago, Alfred Sturtevant asked why the mutation rate does not evolve to 

zero (Sturtevant 1937). In the subsequent eighty years, many researchers have sought 

answers to this question; at present time, at least three possible hypotheses have been 

extensively explored, with varying degrees of favor among the scientific community. 

Firstly, mutations are the original source of all evolutionary novelty. Beneficial mutations 

are crucial for adaptive progress in a changing environment (Kimura 1967; Ishii et al. 

1998; Lynch 2011). One might hypothesize, therefore, that selection would favor non-

zero mutation rates. Secondly, there has been debate over whether the energy cost of 
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replication fidelity forms a lower bound to mutation rates (Kondrashov 1995; André and 

Godelle 2006; Lynch 2008). Quick replication is especially important for prokaryotes, 

and high replication fidelity would ostensibly reduce the speed of replication, so one 

might then expect that prokaryotes have lower replication fidelity (Sniegowski and 

Raynes 2013). In reality, prokaryotes typically have lower mutation rates than eukaryotes 

(base-substitutional rates of E. coli and archaea vs. mammal, chicken, Drosophila, and 

yeast: see Lynch 2008; Drosophila vs. microorganisms: John Maynard Smith 1978); 

thus, it is unlikely that the cost of replication fidelity is actually the ultimate inhibitor of 

zero mutation rates (Lynch 2010). Thirdly, it has been suggested that genetic drift 

imposes a lower bound to mutation rate evolution, because genetic drift may limit the 

ability of natural selection to reduce mutation rate (Lynch 2010; Sung et al. 2012; 

reviewed in Sniegowski and Raynes 2013). 

 

Mutator hitchhiking: sexual vs. asexual  

Mutators have been detected in clinical and natural populations across a variety of 

microbial species (Gross and Siegel 1981; LeClerc et al. 1996; Oliver et al. 2000; 

Denamur et al. 2002; Baquero et al. 2004). Escherichia coli, with its small genome, short 

generation time, and ability to be cultivated in large numbers, is a common model 

organism in experimental evolution. It has been the subject of many evolutionary 

investigations, including fitness landscapes (Gordo and Campos 2013), epistasis (Wang 

et al. 2013), novel modes of metabolism (Blount et al. 2008), antibiotic resistance (Lenski 

and Hattingh 1986), and mutation rate (Sniegowski et al. 1997). In February 1988, 

Richard Lenski began propagating 12 isogenic populations of asexual E. coli in minimal 
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glucose media; every few hundred generations, samples of each evolving population were 

preserved in glycerol and archived in a frozen fossil bed (Lenski and Travisano 1994). 

Mutator alleles spontaneously emerged and fixed in three of the evolving populations at 

varying time points before 10,000 generations; the mutation rates were elevated by one to 

two orders of magnitude above the ancestor, which was attributed to the mutator alleles 

being mutations in genes of the methyl-directed mismatch repair pathway (Sniegowski et 

al. 1997). Tens of thousands of generations after this initial discovery, genomic and 

phenotypic studies confirmed the presence of mutators in three additional populations 

(Barrick et al. 2009). In adapting asexual populations, mutator alleles can increase in 

frequency because there is no recombination to break the linkage disequilibrium between 

the mutator allele and the beneficial mutation(s) whose existence is facilitated by the 

mutator allele; this process is called ‘mutator hitchhiking’ (Sniegowski et al. 1997). Thus, 

the immediate fitness advantage indirectly elevates the mutation rate, and the fitness cost 

of the deleterious mutations may only be exacted after the mutator allele has fixed in the 

population (Denamur and Matic 2006; Gerrish et al. 2007).  

 

In most theoretical work that explores the evolutionary trajectory of mutation rates, the 

mutation rate modifiers themselves are treated as having no direct effects on fitness 

(Holsinger and Feldman 1983; Tenaillon et al. 1999; Gerrish et al. 2007; Raynes et al. 

2013; Raynes and Sniegowski 2014). Yet although there is extensive literature on 

mutators hitchhiking through indirect selection (Chao and Cox 1983; Sniegowski et al. 

2000; Shaver et al. 2002; Palmer and Lipsitch 2006), there remains the formal possibility 

that mutator alleles may confer direct fitness benefits in some scenarios. The theoretical 
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treatment of mutator alleles as having no direct fitness effects receives some support from 

empirical studies that found no direct benefit to several mutator alleles in methyl-directed 

mismatch repair genes, including mutH, mutL, mutS, and uvrD (Mao et al. 1997; Shaver 

et al. 2002). However, there is evidence for direct selection for a mutS- mutator allele in 

an evolving population of Pseudomona aeruginosa (Torres-Barceló et al. 2013); it was 

proposed that the decreased fidelity of DNA repair allowed for greater resistance against 

the harmful effects of hydrogen peroxide. The question of whether mutation rate 

modifiers are truly neutral with regard to direct fitness effects is an empirical question 

that has yet to be addressed in many contexts. In real genomic contexts, the existence of 

pleiotropy may increase the likelihood that a mutation rate modifier possesses 

characteristics besides affecting the mutation rate; if these other properties happen to 

confer fitness benefits, then a mutator allele could hypothetically rise to fixation via these 

direct fitness effects, rather than via mutator hitchhiking (Raynes and Sniegowski 2014). 

 

Experimental work has demonstrated that, under long-term selection, a single-mutator 

strain (bearing one mutator allele) can outcompete a wild-type strain, if the mutators are 

seeded into the population above a threshold frequency at the start of propagation (Chao 

and Cox 1983). It is also known that double-mutators (bearing two mutator alleles) can 

outcompete single-mutators under short-term selection – if the double-mutators are 

seeded into the population above a threshold frequency at the start of propagation 

(Gentile et al. 2011). Though these findings are intriguing, the artificial seeding leaves 

unanswered the question of whether additional mutator alleles can spontaneously arise 

and fix in a preexisting mutator population. Theoretical predictions suggest that 
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additional mutator alleles may indeed emerge and rise to fixation in adapting asexual 

mutator populations (Gerrish et al. 2007), but this prediction of recurrent mutator 

hitchhiking has not been fully tested experimentally. Because recurrent mutator 

hitchhiking is predicted to occur more readily in a changing environment, such an 

experiment would ideally begin in a novel environment and the experimental populations 

would adapt for hundreds of generations (Gerrish et al. 2007). 

  

Antimutators: the reduction of mutation rates 

The work in this dissertation is exclusively concerned with asexuals. In a sexual 

population, mutators may be expected to decline in frequency, because frequent 

recombination has the potential to erode linkage disequilibrium between mutators and the 

beneficial mutations that they facilitate, and the preponderance of deleterious mutations 

will exact their fitness cost on the population (Kimura 1967; Raynes et al. 2011). How, 

then, do mutation rates decline in asexual populations? A case has been made against the 

existence of strong antimutators, both from an enzymatic and an evolutionary perspective 

(Drake 1993). However, these arguments lie in the context of wild-type backgrounds; we 

cannot assume that this reasoning automatically applies to all potential antimutators that 

may land on mutator backgrounds. Furthermore, an apparent antimutator mutation arising 

in a mutator background may not be an antimutator in a wild-type context; in E. coli, an 

example of this context-dependence is mutY-, which is a mutator allele in a wild-type 

background, but can be an antimutator allele if it lands on a mutT- mutator background 

(Fowler et al. 2003). It has been suggested that certain antimutator alleles may increase in 

frequency by conferring direct fitness benefits; for example, decreased mutation rates 
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were observed in an experimentally evolved population of mutS- E. coli that was 

originally isolated from a clinical patient (Turrientes et al. 2013). It was proposed that the 

bacteria had spontaneously acquired a new allele that rose to fixation by increasing 

adaptation to an aerobic environment, but had the additional effect of lowering the 

genomic mutation rate (Turrientes et al. 2013). 

 

Deleterious mutations contribute to genetic load, which can be described as the difference 

between the mean fitness of a population and the fitness of the population if all its 

members had an ideal genotype (Whitlock and Davis 2011). Thus, an accumulated 

deleterious mutational load has the potential to decrease fitness – although deleterious 

mutational load does not always impair fitness in the short-term (Bull and Wilke 2008). 

The reduction of deleterious mutational load can be facilitated by lowered mutation rates 

in mutator populations; the phenomenon can accompany situations such as repeated 

population bottlenecks and/or increased adaptation to the environment over time 

(Tenaillon et al. 2000). The outcome of repeated population bottlenecking has been 

explored through mutation accumulation (MA) experiments, where a genetically 

homogenous starting population is propagated at tiny population sizes (Lynch et al. 

2016). When 40 double-mutator E. coli populations were propagated at very small 

effective population sizes, several populations eventually went extinct; most of these 

extinct populations had evolved higher mutation rates at some point prior to extinction 

(Singh et al. 2017). However, the surviving populations generally had lowered mutation 

rates (Singh et al. 2017). In these experiments, the extreme bottlenecking intensified the 

accumulation of mutations; because most mutations with any phenotypic effect are 
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deleterious, there may have been strong selective pressure to lower the mutational load 

(Singh et al. 2017). Furthermore, the effective population sizes were so small that the 

mutators had only minimal advantage at rapidly acquiring beneficial mutations (Singh et 

al. 2017). 

 

However, MA experiments are not the only setting in which antimutators can emerge – 

the spread of antimutators was also observed in Lenski’s long-term evolution experiment, 

where the population sizes were sufficiently larger than in an MA experiment 

(Papadopoulos et al. 1999). One population acquired a mutT- mutator allele at some point 

between 20,000 and 30,000 generations of evolution (Barrick et al. 2009). After ~40,000 

generations, this mutT- population became fixed for a mutY- allele, which lowered the 

genomic mutation rate – not to wild-type levels, but by 40-60% (Wielgoss et al. 2013). 

Because the population had been adapting for many generations, the average effect of a 

beneficial mutation had decreased over time. Thus, the fitness advantage of a low 

genomic mutation rate increased, because the effect of the deleterious mutational load 

had exceeded the potential for continued adaptation (Wielgoss et al. 2013). Selection for 

reduced deleterious mutation load (and an accompanying reduction in mutation rate) has 

also been inferred in populations of mutator (msh2) yeast, Saccharomyces cerevisiae 

(McDonald et al. 2012). 

 

The broad relevance of mutation rates 

In addition to its significance within evolutionary theory and experimental evolution, 

mutation rate evolution is relevant to fields as diverse as biomedicine and astrobiology. 
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Mutators have been found in antibiotic-resistant and pathogenic populations of bacteria 

(LeClerc et al. 1996; Oliver et al. 2000; Schaaf et al. 2002), RNA viruses (Furio et al. 

2005; Vignuzzi et al. 2005; Elena and Sanjuán 2005), and coevolving populations of 

bacteria and viruses (Pal et al. 2007). Human tumor cells have long been thought to be 

genetically unstable (Nowell 1976), and there is indeed some evidence for elevated 

mutation rates in certain cancers (Modrich 1995; Sprouffske et al. 2012). Some 

theoretical work has gone so far as to speculate that the emergence of a mutator is 

required for the start of multistage carcinogenesis (Loeb 1991) (but see Shibata and 

Lieber 2010). The topic of mutator evolution is especially important for understanding 

the very first years of evolution on Earth, where early life-forms may have lacked 

contemporary mechanisms for genetic proofreading and recombination (Bernstein, Byers, 

and Michod 1980), even as they were being bombarded by mutagenic UV light 

penetrating the still-fragile atmosphere, which may have put them at risk for ‘mutational 

meltdown’ over extended periods of time (Hessen 2008). It has even been proposed that 

the damage repair mechanisms in cells have evolved to cope with levels of radiation 

almost one order of magnitude greater than the contemporary level of radiation (Karam 

and Leslie 1996). Additionally, the significantly warmer temperatures on the young Earth 

may have strongly increased the frequency of mutagenic events; for example, the 

cytosine deamination reaction is known to be sensitive to temperature and is responsible 

for many spontaneous mutations (Lewis et al. 2016).  

 

Intriguingly, the study of mutation rates may also be useful in understanding the demise 

of certain populations: much thought has been given to the possibility that evolving 
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mutation rates may become intolerably high and lead to extinction (Gerrish et al. 2007; 

Tejero et al. 2016). The potential for high mutation rates to cause ‘error catastrophe’ 

(where the number of mutations exceeds the point of viability) has been particularly of 

interest in the study of riboviruses and retroviruses, which possess the highest known 

mutation rates and are therefore thought to exist at the brink of error catastrophe (Graci 

and Cameron 2002; Anderson et al. 2004); indeed, the antiviral ribavirin has been 

demonstrated to induce error catastrophe in poliovirus via mutagenesis that is moderate in 

degree (~4-fold increase in mutation rate), yet lethal in its outcome (Crotty et al. 2001). 

 

The factors that complicate experimental investigations of mutation rates 

For many reasons, mutation rate is a challenging topic of study. Firstly, mutation rate is a 

trait that affects other traits. In hastening the rate of change of the genome, a mutator may 

change its own significance, due to the emerging new mutations, and possibly the 

potential epistatic interactions and pleiotropic effects accompanying those new mutations. 

Secondly, the genomic mutation rate ultimately affects the whole genome – and yet, 

because mutations are rare, only a small number of sites will be mutated, even when the 

mutation rate is high (Zhu et al. 2014). Among that small number of mutations, most will 

have no phenotypic effect. 

 

This raises a third point: the rarity of mutations can be a source of frustration to 

researchers because the mutation rate makes itself known only over multiple generations. 

Hence, measuring mutation rates is difficult, whether you measure them by phenotypic 

assays (e.g., fluctuation assays) or by whole genome sequencing. Mutation rates are 
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already time-consuming to measure in E. coli, but they are even harder to measure in 

organisms with larger genomes and/or longer lifespans. As an extreme case of a 

challenge in this field, it is worth noting the multiple attempts that have been made at 

measuring human mutation rates. Human pseudogene sequences have been compared to 

the respective chimpanzee homologous sequences, yielding an estimate of ~2.5 x 10-8 

mutations per nucleotide site per generation (or 175 mutations per diploid genome per 

generation) (Nachman and Crowell 2000), though this measurement cannot fully account 

for the possibility of convergent evolution between humans and chimpanzees. Y 

chromosome sequences were compared between two men who shared a distant common 

ancestor, yielding an estimation of 3.0 x 10−8 mutations per nucleotide per generation – 

yet there were only a scant few mutations between them, and the Y chromosome (small, 

largely non-recombinant, and confined to a single sex) is hardly representative of the 

whole human genome (Xue et al. 2009). The genomes of two family triads were 

sequenced, each triad consisting of two parents and one child, for an average of 1.0 x 10-8 

mutations per nucleotide per generation – but two generations is a mere snapshot of 

human evolution, and there was variation in mutation rate between the two families 

(Conrad et al. 2011). The fact that the three cited studies produced somewhat different 

estimations is telling of the challenges behind measuring mutation rates.  

 

But even in a simpler organism such as E. coli, there are challenges in measuring 

mutation rates. Fluctuation tests are a common method for measuring mutation rates: the 

individual of interest is grown to a large population size in permissive media, and then 

exposed to a selective agent. The numbers of surviving individuals, who have 
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spontaneously acquired a mutation conferring resistance at some point since the start of 

the test, are informative of the mutation rate (Luria and Delbrück 1943). However, when 

performing a fluctuation test, one must assume that resistance to the selective agent does 

not adversely affect fitness, even in a permissive environment (Pope et al. 2008). Yet 

there is some evidence suggesting that certain types of resistance are associated with a 

fitness deficit (for effects of rifampicin resistance in Mycobacterium tuberculosis, see 

Billington, McHugh, and Gillespie 1999). Additionally, a fluctuation test measures the 

mutation rate in only a small fraction of the genome – namely, whatever sites that are 

capable of conferring resistance to the selective agent, if mutated. 

 

Fourthly, although mutations are random, there are certain scenarios in which a higher 

mutation rate may offer a greater advantage than in other scenarios. When a population is 

under selection in a new environment, high mutation rates allow organisms to acquire 

new mutations that may increase fitness; after the population becomes better adapted, the 

number of available beneficial mutations decreases and the usefulness of a high mutation 

rate declines (Wielgoss et al. 2013; Tenaillon et al. 2016). Furthermore, under lethal 

selection, the need for beneficial mutations is more urgent than it would be under soft 

selection. The broad range of scenarios inviting the study of mutation rates could be 

viewed not so much as a difficulty, but rather as an intellectual challenge inherent to the 

field. The existence of mutations in every known living organism means that mutation 

rates could be hypothetically studied in any organism – yet, precisely because of the 

universal presence of mutations, these studies would take place in highly dissimilar 

experimental contexts. 
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The current state of progress in the study of mutation rates 

Despite the difficulties inherent to this field of research, this is an exciting time for the 

study of mutation rate evolution. With the surge of computational power, intensive 

genomic sequencing is increasingly feasible. And it is perhaps fortunate that mutation 

rate evolution was a topic of theoretical inquiry long before the data deluge, because 

population geneticists have had decades to develop the quantitative tools required for 

analyzing these data. But there remain certain gaps in our understanding of mutation rate 

evolution. Much of our current knowledge of the evolution of mutators comes from 

populations of wild-type origin that evolved mutator phenotypes. As discussed, this topic 

has recently been investigated theoretically and experimentally.  

 

This dissertation explores what happens to a population isogenic for a mutator at the start 

of selection – i.e., the mutator has fixed long before the potential to acquire mutations 

beneficial in that environment have been exhausted. Does the outcome matter to some 

degree on the type of selection? In the next chapter (which has been submitted as a 

manuscript for publication), I address the effects of repeated lethal selection, via a 

sequence of different antibiotics, on mutator (mutL-) populations. I hypothesized that the 

successive bouts of lethal selection would increase the frequency of any spontaneously 

arising additional mutator alleles, due to the great need for evolutionary novelty (in this 

case, antibiotic resistance mutations) in a harsh, changing environment. I measured the 

mutation rates of clones surviving this selective regime, and I investigated the identity 

and effects of the new mutations via whole-genome sequencing and plasmid 



13 

 

complementation. In the third chapter, I address the effects of long-term soft selection, 

via limited glucose growth media, on 30 mutator (mutS-) populations with isogenic 

starting genotypes. After ~900 generations of daily propagation, five clones were 

randomly isolated from each of the populations. Their mutation rates and fitnesses 

(relative to ancestor) were measured, and the genomes of 20 of the clones were 

sequenced. In the fourth chapter, I compare and contrast the outcomes of these two 

scenarios, and I discuss their relevance to biomedicine, astrobiology, experimental 

evolution, and fundamental evolutionary thought. 
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Chapter II: Mutator populations of Escherichia coli substitute additional, 

spontaneously originated mutator alleles under lethal selection. 

 

Abstract 

Recent theory suggests that rapidly adapting asexual populations will accumulate 

multiple mutator alleles, evolving progressively higher genomic mutation rates. If this 

theory is correct, then it should be possible to observe the substitution of new, 

spontaneously originated mutator alleles into asexual populations that already exhibit 

high mutation rates. To test this prediction, we exposed populations of mutator E. coli 

deficient in mismatch repair (MMR) to selection on three antibiotics in succession. The 

antibiotics were ordered from least strongly selective to most strongly selective. Our 

results support the prediction: all sampled surviving clones exhibited mutation rates 

approximately an order of magnitude higher than that of the mutator ancestor. Moreover, 

two clones’ genomes were sequenced and found to harbor a spontaneous 1-bp frameshift 

mutator mutation in a repeat region of mutT, in addition to the ancestral MMR mutator 

allele. Complementation tests with a mutT+ plasmid suggested that the mutT- mutation 

was indeed responsible for the elevation in mutation rates. Sanger sequencing revealed 

that all of the other seven clones that were randomly sampled from the final plate also 

harbored the same mutT- mutation, suggesting that the new mutator allele had risen to 

fixation in the population. When an independent replicate of the selection series was 

performed, the single surviving clone had a mutation rate elevated relative to that of the 

mutator ancestor. In a surprising incidence of convergent evolution, this clone also had 

the same 1-bp frameshift mutation in the same repeat region of mutT-. In all ten clones 
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across the two experimental replicates, the ancestral MMR mutator allele was retained. 

Few clones with increased mutation rates are observed after only one or two rounds of 

lethal selection, or after three rounds of lethal selection if exposure to the most selective 

antibiotic instead occurs first. 

 

Background 

Because mutations affecting the phenotype are far more likely to be deleterious than 

beneficial (Fisher 1930), natural selection is generally expected to favor the evolution of 

low mutation rates (Sturtevant 1937). However, selection can elevate the mutation rate of 

a population given sufficient genetic linkage: under these circumstances, mutator alleles 

can hitchhike to fixation in wild-type populations with the new beneficial mutations that 

they facilitate (Raynes & Sniegowski 2014). Recent theory suggests, moreover, that a 

rapidly adapting asexual population is susceptible to progressive upward evolution of its 

mutation rate via repeated hitchhiking of mutator alleles (Gerrish et al. 2007; André and 

Godelle 2006). A prediction of this theory is that additional spontaneously arising 

mutator alleles should hitchhike to fixation in a rapidly adapting asexual population that 

is already fixed for one mutator allele. This prediction remains empirically untested. To 

test this prediction, we exposed mutator populations of E. coli to selection on three 

different antibiotics in succession and characterized the mutation rates and genomes of 

survivors. 

 

Methods 

Ancestral strain 
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E. coli K-12 strain ES568 (= PS2533) was acquired from the Yale University E. coli 

Genetic Stock Center and used as the ancestor for the selection experiments. This strain is 

defective for mismatch repair: it harbors the mutL13 allele containing the point mutation 

A120T. We have previously estimated that the genomic mutation rate of strain ES568 is 

approximately 100-fold higher than that of wild-type E. coli (Gentile et al. 2011).  

 

Exposure to successive rounds of lethal selection 

Populations of the ancestral strain were exposed to lethal concentrations of fosfomycin 

(100 μg/mL), rifampicin (100 μg/mL), and streptomycin (100 μg/mL)) on lysogeny broth 

(LB) agar plates (Miller 1972) in succession, as follows (see figure 1): the ancestor was 

inoculated from frozen stock into liquid LB (without antibiotics) and grown overnight at 

37 °C with shaking at 120 rpm. 100 μL (approximately 108 cells) of the resulting culture 

was then spread on a single LB agar plate (without antibiotics) and grown overnight at 37 

°C, yielding a lawn. The lawn was replica-plated to an LB-fosfomycin plate and the 

fosfomycin plate was incubated overnight at 37 °C. The resulting fosfomycin-resistant 

colonies were suspended in 150 μL of sterile saline diluent pipetted directly onto the 

plate, and the cell suspension was spread across the same plate. The plate was incubated 

overnight again, resulting in a lawn of fosfomycin-resistant cells. This lawn was then 

replica-plated to an LB-rifampicin plate, and the process was repeated as described 

above, with the resulting lawn of rifampicin-resistant cells being replica-plated to an LB-

streptomycin plate. The three antibiotics were deployed in increasing order of selectivity 

(in that spontaneous acquisition of streptomycin resistance is typically rarer than it is for 
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rifampicin resistance, which is typically rarer than it is for fosfomycin resistance). 

However, the above protocol was also performed with the antibiotic exposures in reverse 

order (i.e. decreasing order of selectivity): streptomycin, rifampicin, fosfomycin. 

Resistances to these three antibiotics are conferred through biochemically distinct modes 

of action (Nilsson et al. 2003; Goldstein 2014; Springer et al. 2001). 

 

Colonies representing resistant clones arising at all stages of the experiments were 

randomly sampled from the antibiotic plates (if a given plate contained very few colonies, 

all colonies were sampled), inoculated into liquid LB (without antibiotics), grown 

overnight, and archived in 15% glycerol at -80 °C. 
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Figure 1: Overview of the antibiotic selection experimental protocol. 
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Mutation rate estimation 

Mutation rates to nalidixic acid resistance were measured using a modified Luria-

Delbrück fluctuation assay (Luria and Delbrück 1943; Gerrish 2008) in the evolved 

clones, the ancestor, and clones transformed with plasmids. Resistance to nalidixic acid 

can be conferred through mutations in gyrA and parC (Nakamura et al. 1989; Saenz et al. 

2003), which prevent nalidixic acid from binding to DNA gyrase and topoisomerase IV 

(Saenz et al. 2003). As a control, the mutation rate of the ancestor was always measured 

alongside those of the evolved and transformed clones. For each assay, 10 mL of liquid 

LB was inoculated from a frozen stock of the clone of interest and incubated overnight at 

37 °C with shaking at 120 rpm. The resulting culture was then diluted 100,000-fold, and 

100-μL aliquots (representing approximately 1000 cells) of this dilution were transferred 

to each of a set of replicate flasks (three replicates for the evolved and transformed clones 

and six replicates for the ancestor), each containing 30 mL of LB. The resulting cultures 

were incubated for 48 h at 37 °C with shaking at 120 rpm. To enumerate mutants, 100 μL 

from each 30 mL culture was spread on an LB plate containing 25 μg/mL of nalidixic 

acid. To estimate the total population sizes of the cultures, another 100 uL from each 

culture was diluted 1,000,000-fold and 300 μL of this dilution was spread on an LB plate 

without nalidixic acid. All plates were incubated at 37 °C. Colonies were enumerated on 

both sets of plates at 24 h. To account for the possibility of slowly growing resistant 

mutants, the LB-nalidixic acid plates were incubated another 24 h and colonies were 

again enumerated. The inferred total number of mutants in each culture never approached 

the number expected if a pre-existing mutant had been seeded into the culture (see table 
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S3), indicating that all observed mutants originated from mutations that occurred during 

culture growth as assumed by the fluctuation assay. 

 

Maximum likelihood mutation rates and associated 95% confidence limits were 

calculated from the 48 h LB-nalidixic acid counts and the 24 h permissive LB counts 

with a program kindly provided by Dr. Philip Gerrish (Gerrish 2008); significance of 

mutation rate differences was inferred from non-overlap of 95% confidence limits (Zheng 

2015).  

 

Genomic sequencing 

Genomic DNA from two random clones (designated FRS13 and FRS16) that survived 

exposure to all three antibiotics in the first replicate series (concluding with streptomycin) 

was extracted for sequencing using the QIAGEN DNeasy Blood & Tissue Kit (69504) 

according to the manufacturer’s instructions. Library preparations and genome 

sequencing were performed by the University of Pennsylvania’s Next Generation 

Sequencing Core using the Illumina Nextera XT DNA library preparation kit (FC-131-

109), the Illumina Nextera XT index kit (FC-131-1002), and Illumina NextSeq (150 

paired-end) for a mean 325-fold coverage. Mutations were detected using the 

computational pipeline breseq version 0.27 (Deatherage and Barrick 2014). The 

sequences of the evolved clones were aligned against the reference sequence, E. coli K-

12 MG1655 (NC_000913.3, downloaded from 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3?report=gbwithparts&log$=seqview 

on July 15, 2016). 



21 

 

 

Complementation tests 

Cells were rendered competent as follows: liquid inocula of the single-mutator ancestor, 

evolved clone FRS13, and evolved clone FRS16 were centrifuged for 10 minutes at 

13,000 rpm at 4 °C. Supernatants were discarded and cells were resuspended in 100 mM 

MgCl2 and incubated on ice for 20-30 minutes. Cells were then centrifuged for 10 

minutes at 7,000 rpm at 4 °C. Supernatants were discarded and cells were resuspended in 

100 mM CaCl2 with 15% glycerol before they were frozen at -80 °C.  

 

Competent cells (the single-mutator ancestor, evolved clones FRS13 and FRS16, and a 

positive control of ThermoFisher Scientific E. coli Subcloning Efficiency™ DH5α™ 

Competent Cells) were transformed with a mutT+ ampR plasmid and an empty ampR 

plasmid, yielding a total of eight transformant groups. The mutT+ plasmid pSK25 

(Bhatnagar and Bessman 1988) was isolated from a strain of REL606 E. coli (Jeong et al. 

2009) via a QIAprep spin miniprep kit from QIAGEN (product number 27104). The 

empty plasmid pBR322 was purchased from ThermoFisher Scientific (product number 

SD0041). 

 

Transformations were conducted as follows: competent cells were thawed on ice and 

incubated in the presence of plasmid DNA for 30 minutes, then heat-shocked for 20 

seconds in a 42 °C water bath, then incubated on ice for 2 minutes. 950 μL of liquid LB 

was added to each transformation reaction before the reactions were incubated at 37 °C 
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for 1 hour at 120 rpm. The transformation reactions were plated on LB containing 

ampicillin at a concentration of 50 μg/ml. Two colonies were harvested from each 

ampicillin plate, inoculated into liquid LB-amp, grown overnight, and archived in 15% 

glycerol at -80 °C. Mutation rates of the transformants were measured via fluctuation 

assays using nalidixic acid as the selective agent; all LB-based media contained 

ampicillin. 

 

Polymerase chain reaction (PCR) and Sanger sequencing 

Genomic DNA of all surviving clones of the FRS triple selection series was extracted for 

sequencing using the QIAGEN DNeasy Blood & Tissue Kit (69504) according to the 

manufacturer’s instructions. DNA concentration was quantified with a Qubit fluorometer. 

Primers for the mutT repeat region of interest were designed as follows: forward, 

GCGCACATGGCGAATAAAC; reverse, TTCATTGGCTGGCGGAAA. Primers for the 

mutL gene were designed as follows: forward, CAGCAACAACAGCGAAGAA; reverse, 

CGGCCCCATCAAAAAAAT. Each PCR reaction was assembled as follows: 25 uL 

iProof master mix, 18 uL nuclease-free water, 1 uL 10 uM respective (mutT or mutL) 

forward primer, 1 uL 10 uM respective reverse primer, and 5 uL of 10 ng/ul DNA 

extraction. The mutT PCR thermocycler program was 98 degrees C for 3 minutes, then 30 

rounds of the following: 98 degrees at 10 seconds, 55 degrees at 30 seconds, and 72 

degrees at 10 seconds; the final extension period was 72 degrees for 5 minutes. The mutL 

program was 98 degrees C for 3 minutes, then 30 rounds of the following: 98 degrees for 
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10 seconds, 54 degrees for 30 seconds, and 72 degrees for 2 minutes 5 seconds; the final 

extension period was 72 degrees for 5 minutes. 

 

After PCR was completed, each PCR sample clean-up was assembled as follows: 17 uL 

of PCR sample, 0.3 uL Exonuclease I, 0.3 uL Antarctic phosphatase, and 2 uL nuclease-

free H2O, which was run in a PCR thermocycler for 15 minutes at 37 degrees C, then 15 

minutes at 80 degrees. Cleaned-up PCR samples were then submitted for Sanger 

sequencing. The chromatograms were viewed with the software Chromas. 

 

Results 

Two replicate runs were performed. In the first run, numerous clones survived and nine 

random clones were sampled; in the second run, one clone survived and was sampled. 

Mutation rates were significantly and similarly elevated (approximately one order of 

magnitude above that of the mutator ancestor and 1,000-fold above wild-type) in all 10 of 

the sampled endpoint clones (figure 2a; appendix, table S1). Genomic sequencing of two 

clones from the first experimental run confirmed the presence of a second mutator allele 

in addition to the original mutL mutation: a frameshift single-base insertion (C) in a 6-bp 

repeat region of mutT (see appendix, figure S2) (Fowler and Schaaper 1997). Expression 

of wild type MutT in these two clones restored the ancestral mutation rate, confirming the 

new mutT allele as a mutator (figure 2b). PCR and Sanger sequencing of the ten surviving 

clones sampled across the two independent experimental runs showed that all clones had 

the same 1-bp insertion in the same repeat region of mutT. In all ten surviving clones 

across the two experimental replicates, the original mutL- mutation was retained. 
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Figure 2a-b. Mutation rates to nalidixic acid resistance for all measured clones. The thick horizontal gray 

line represents the ancestral mutation rate to nalidixic acid resistance relative to itself; the thin lines 

above and below it represent the 95% confidence limits on the ancestral mutation rate. Error bars on the 

individual points represent 95% confidence limits on the mutation rates obtained from fluctuation assays, 

normalized by dividing each by the ancestral mutation rate. (See Table S1 for absolute mutation rate and 

confidence limit values.) 

(2a): Mutation rates in clones post-antibiotic exposure, plotted relative to the mutation rate of the single-

mutator ancestor. F: fosfomycin exposure only; R: rifampicin only; S: streptomycin only; FR: fosfomycin, 
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then rifampicin; FRS: fosfomycin, then rifampicin, then streptomycin; SRF: streptomycin, then rifampicin, 

then fosfomycin. The data include numerous different groups of fluctuation assays in which the ancestor 

was always measured alongside the evolved clones. Although the ancestral mutation rate estimate was 

approximately constant, its confidence intervals varied across assays. For each treatment (F, R, S, etc.), 

the 95% confidence limits plotted for the ancestral mutation rate represent the highest and lowest values 

obtained from the relevant group of assays. For FRS and SRF, the shading difference indicates clones 

isolated from two different replicate experiments. In FRS, the square and triangle represent two clones 

(FRS13 and FRS16, respectively; see appendix) whose genomes were sequenced.  

(2b): Transformation with a mutT+ plasmid restores the ancestral mutation rate in clones that had evolved 

elevated mutation rates. Here the thick gray line represents the mutation rate of the ancestor 

transformed with an empty control plasmid. Filled circle: mutation rate in the ancestral clone transformed 

with a mutT+ plasmid. Squares and triangles represent mutation rates (relative to the ancestral rate) in 

two evolved clones with elevated mutation rates that were both found to harbor a mutT frameshift. Solid 

square and triangle: mutation rates after transformation with mutT+ plasmid; open square and triangle: 

mutation rates after transformation with empty control plasmid. 
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Genomic sequencing uncovered non-synonymous mutations putatively responsible for 

antibiotic resistance in the two clones, as expected: FRS13 has a mutation (T36P) in ptsH, 

encoding a phosphocarrier protein, and FRS16 has a mutation (Y121D) in uhpA, encoding 

a transcriptional regulator; mutations in these genes can potentially cause fosfomycin 

resistance (Nilsson et al. 2003; Waygood et al. 1987). Furthermore, both clones exhibit 

substitutions in rpoB, encoding the β subunit of RNA polymerase, that may confer 

rifampicin resistance (Jin and Gross 1988): FRS13 has the mutation S512P and FRS16 has 

the mutation Q513P. Finally, both clones have the mutation K43T in rpsL; mutations in 

the 40-43 region of rpsL can confer streptomycin resistance (Timms et al. 1992). For 

additional information on the mutations in both clones, see figure S1 and tables S2a-c. 

 

Additional runs were performed with selection on single antibiotics and selection in the 

reverse order of antibiotics (i.e., streptomycin, rifampicin, fosfomycin); these produced 

significantly lower frequencies of clones with elevated mutation rates compared to the 

ancestor (see figure 2a and appendix).  

 

To test to what degree one round of lethal selection resulted in further increases in 

mutation rate, we characterized the mutation rates of randomly sampled clones surviving 

exposure to fosfomycin only (eight clones), rifampicin only (five clones), and 

streptomycin only (six clones). Two of these 19 single-exposure clones (both from the 

single-rifampicin exposure) displayed statistically significant increases in mutation rate 

compared with the mutator ancestor (figure 2a; table S1). The difference in the 
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prevalence of increased mutation rates between this outcome and the outcome of the 

original three-antibiotic experiment (10 of 10 with further increases in mutation rate) is 

highly significant (Fisher exact test: two-tailed p = 3x10-6). To test to what degree two 

rounds of lethal selection resulted in increased mutation rates, we characterized the 

mutation rates of five random clones surviving exposure to fosfomycin and then 

rifampicin. One clone showed a statistically significant increase in mutation rate 

compared with the mutator ancestor (figure 2a; table S1). The difference in the 

prevalence of increased mutation rates between this outcome and that of the original 

three-antibiotic experiment (10 of 10 with further increases in mutation rate) is significant 

(Fisher exact test: two-tailed p = 0.004). Finally, to test whether the order of exposure to 

the three antibiotics affected the prevalence of increased mutation rates, we characterized 

mutation rates of randomly sampled clones surviving sequential exposure to the same 

three antibiotics, but in reverse order, from most to least selective: streptomycin, 

rifampicin, fosfomycin. This reverse-order series was repeated for a total of two 

experimental replicates. Nine clones were randomly sampled from the final plate of the 

first replicate, and two clones were randomly sampled from the final plate of the second 

replicate. One of these 11 reverse-order clones displayed a statistically significant 

increase in mutation rate compared with the mutator ancestor (figure 2a; table S1). The 

difference in the prevalence of increased mutation rates between this outcome and that of 

the original three-antibiotic experiment (10 of 10 with further increases in mutation rate) 

is highly significant (Fisher exact test: two-tailed p = 3x10-5). 

 

Discussion 
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Previous experimental work has provided qualified support for the theory that mutation 

rate evolution in rapidly adapting asexual populations can be upwardly biased (Gerrish et 

al. 2007; André and Godelle 2006) by showing that a double-mutator E. coli strain 

(bearing two mutator alleles with cumulative effects on the genomic mutation rate) 

introduced into experimental populations at substantial frequency can hitchhike and 

displace a single-mutator strain (Gentile et al. 2011). The generality of that previous 

result was limited by the fact that new mutator alleles must originate in natural 

populations as rare spontaneous mutations rather than via experimental introduction at 

substantial frequencies. The results we have presented here overcome this limitation by 

demonstrating that additional, spontaneously arising mutator alleles can hitchhike to 

apparent fixation in populations already fixed for one mutator allele. Only one clone 

survived our second experimental run and it exhibited an elevated mutation rate in 

comparison with the ancestor, consistent with fixation of a new mutator allele in this 

population. All nine random clones sampled from the first run exhibited elevated 

mutation rates, strongly suggesting high frequency or fixation of an additional mutator or 

mutators in this population; the probability that all nine randomly sampled clones from 

this population would exhibit elevated mutation rates is < 0.05 for new mutator 

frequencies less than or equal to 0.7. Genomic sequencing and complementation test 

results indicate that a mutT mutator mutation was responsible for the high mutation rates 

of two clones sampled from the first experiment. Sanger sequencing of the other seven 

clones (that were randomly isolated from the same antibiotic plate) showed that they 

harbored the same 1-bp insertion in the same repeat region of mutT. A parsimonious 

explanation for the elevated mutation rates observed in all nine clones in the first 
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experimental run is that they are caused by the same mutator allele. To our knowledge, 

ours is the first observation of a second spontaneous mutator hitchhiking to fixation in a 

mutator population, though Kinnersley et al. have reported a double mutator genotype 

present at polymorphic frequency in one mutator experimental E. coli population 

(Kinnersley et al. 2014). 

 

The single surviving clone from our second replicate run was also shown to have a 1-bp 

insertion in the same repeat region of mutT; we note that the magnitude of the added 

mutator effect is similar between the two experimental runs. This genomic parallel 

between the survivors of the two existing experimental replicates has precedence in the 

literature: interestingly, the frameshift producing the new mutT mutator in our first 

experiment lies in the same cytosine string as a mutT mutation that spread in a bacterial 

population descended from a wild-type ancestor that had evolved experimentally for 

20,000+ generations (Barrick et al. 2009). This parallel is consistent with the higher 

mutation rate expected in such repeated sequences (Shaver and Sniegowski 2003). 

 

Exposure of E. coli to sublethal concentrations of fosfomycin may mildly enhance the 

frequency of mutants resistant to lethal rifampicin concentrations (Thi et al. 2011). 

Although there is no evidence that exposure to lethal fosfomycin concentrations enhances 

mutagenesis in fosfomycin-resistant survivors, it is nonetheless possible that such an 

effect could have enhanced the likelihood of mutator hitchhiking in our experiments. 

Additionally, fosfomycin was the least selective of our antibiotics: when comparing the 

number of colonies after single-exposure to each antibiotic, fosfomycin exposure resulted 
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in the highest number of survivors. The series beginning with streptomycin (the most 

selective antibiotic) did not result in detectable increases in mutation rate (figure 2a). A 

low number of survivors would conceivably decrease the likelihood of a new mutator 

being present on the streptomycin plate, making that first selective bout a lost opportunity 

for increased mutation rates. 

  

There are reasonable scenarios in which natural populations will encounter repeated 

lethal or very strong selection, as employed here and in similar previous work (Mao et al. 

1997) —most notably, through host-pathogen interactions and coevolution (Pal et al. 

2007; Graves et al. 2013). It is currently unclear whether any natural populations under 

such strong selection have substituted multiple new mutator alleles; this remains an 

avenue for further study. In ongoing work, we are also testing whether non-lethal 

selection can cause a rapidly adapting asexual mutator population to substitute additional 

spontaneously originated mutators. An obvious further step would be to test whether 

rapidly and continually adapting populations that are initially fixed for low, wild-type 

mutation rates can substitute multiple mutator alleles, as predicted by theory (Gerrish et 

al. 2007). Simulations of this process under non-lethal selection, however, suggest that it 

is likely to take a prohibitively long time to unfold in the laboratory (Gerrish et al. 2007). 

Using repeated rounds of lethal selection would be quicker, but is potentially limited by 

the number of lethal selective conditions to which cells would not exhibit cross-

resistance. 

 



31 

 

Our results have potential biomedical implications apart from their relevance to the 

general understanding of mutation rate evolution and the fate of asexual populations. 

Mutator lineages have been identified in pathogenic bacterial populations (LeClerc et al. 

1996) and are also implicated in certain forms of cancer, both in clinical studies (Loeb 

and Loeb 2000) and mathematical models (Solé and Deisboeck 2004). Both therapeutic 

intervention and the lethal, relentlessly specific host immune response in pathogen 

infections and cancers could conceivably result in the substitution of additional mutator 

alleles into such populations, as shown by our results. The implications of such 

progressive elevation of the mutation rate in clinical contexts may be frightening or 

encouraging. Pathogens or tumors with extremely high mutation rates might be highly 

treatment-resistant because they easily acquire further resistances (Sprouffske et al. 

2012). Alternatively, additional mutagenesis could potentially lead to the demise of such 

populations via the influx of deleterious mutations; the latter possibility has been 

considered for RNA viruses, which already tend to have extraordinarily high genomic 

mutation rates (Drake and Holland 1999). 

 

Data accessibility 

Source data will be available in Dryad (DOI:10.5061/dryad.k76d4) upon publication of 

the manuscript that is associated with this chapter 

(http://datadryad.org/review?doi=doi:10.5061/dryad.k76d4) (Eghbal et al. 2017). The 

Genbank accession number for the E. coli (MG1655) genome is NC_000913.3; mutT 

spans nucleotides 111044-111433. Mutations were detected via the computational 

pipeline breseq (Deatherage and Barrick 2014).  
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Chapter III: Investigating mutation rate evolution in experimental mutator 

Escherichia coli populations under long-term soft selection. 

 

Abstract 

In this study of asexual mutators under long-term soft selection, 30 near-isogenic mutS- 

populations were propagated via daily batch transfer in minimal glucose media. After 

~900 generations of evolution, five clones were randomly isolated from each population 

and their mutation rates were measured via fluctuation assays. Change in mutation rate 

was determined by non-overlap of 95% confidence intervals with the mutator ancestor. 

There was extensive polymorphism for mutation rate across populations and within many 

populations: 9% had increased mutation rates relative to the mutator ancestor, 23% had 

decreased mutation rates relative to the mutator ancestor, and 68% had unchanged 

mutation rates. Most populations had at least one clone whose mutation rate had either 

increased or decreased. Additionally, in one population, all five clones’ mutation rates 

were decreased, and in another population, all five clones’ mutation rates were increased, 

suggesting potential fixation of a new antimutator and mutator, respectively. The 

fitnesses of all evolved clones and populations were elevated relative to the ancestor. No 

relationship was detected between mutation rate and relative fitness. Whole-genome 

sequencing of 20 evolved clones, representing a range of mutation rates and populations, 

revealed that several of the sequenced clones with altered mutation rates had mutations in 

known (anti)mutator loci. PCR and Sanger sequencing of a few of the suspected 

(anti)mutator loci in some of the clones whose genomes had not been sequenced 

suggested, in several cases, a relationship between the presence of several suspected 
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(anti)mutator mutations and changes in mutation rates. I propose that the increased 

mutation rates were the result of hitchhiking of new mutator alleles and that the decreased 

mutation rates were most likely the result of new antimutator alleles that rose in 

frequency due to the conferring of pleiotropic fitness benefits. 

 
 
Introduction 

In 1937, Alfred Sturtevant proposed that the mutation rate itself can evolve, and he 

inquired why the mutation rate does not decline to zero (Sturtevant 1937). Indeed, theory 

predicts that in an unchanging environment, barring any physicochemical limitations, the 

mutation rate will evolve to zero (Feldman & Liberman 1986). Yet the mutation rate has 

never been observed to evolve to zero in any laboratory or natural population. This is 

unsurprising if we consider the fact that beneficial mutations, despite their rarity, are the 

ultimate source of all evolutionary novelty. The drift-barrier hypothesis and the cost of 

replication fidelity have also been proposed as explanations for why mutation rates are 

greater than zero; refer to Chapter I for a more detailed description of these hypotheses 

(Lynch 2010; Kondrashov 1995). 

 

The genomic mutation rate among most DNA-based haploid microbes is relatively 

constant (Drake 1991; Sniegowski and Raynes, 2013), yet variant mutation rates have 

been detected among many strains and individuals. In an asexual population, selection 

could hypothetically impel a spontaneously arising mutator (a variant allele that raises 

genomic mutation rate) to fixation through one of two different processes: by conferring 

a direct pleiotropic benefit to fitness or by mutator hitchhiking. Thus far, a mutator has 
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been shown to confer a direct fitness benefit in only one laboratory setting, involving 

Pseudomonas aeruginosa subjected to oxidative stress (Torres-Barceló et al. 2013). In an 

experimental population with a wild-type mutation rate, a spontaneously emerging 

mutator allele can hitchhike to fixation; due to the absence of recombination, the new 

mutator remains linked to the beneficial mutations it causes, thereby rising in frequency 

in the population (Sniegowski et al. 1997). The deleterious mutational load accumulates 

gradually and may not be realized until much later (Gerrish et al. 2007). In an adapting 

population, selection could conceivably impel a spontaneously arising antimutator to 

fixation through one of at least two different mechanisms: the antimutator could confer a 

direct pleiotropic benefit to fitness or there may be a strong advantage to reducing the 

genetic load. Direct fitness benefits stemming from an emergent antimutator allele have 

been proposed to exist in only one experimental scenario, involving a patient isolate of 

mutator Escherichia coli that underwent a reduction in mutation rate, despite the 

ancestral mutS- mutator allele remaining intact in the descendants (Turrientes et al. 2013). 

The benefit of reducing the genetic load has been observed in a mutator population that 

was invaded by an antimutator allele after tens of thousands of generations of 

propagation under soft selection exerted by a limited glucose environment (Wielgoss et 

al. 2013). 

 

Theoretical models suggest that a continually adapting asexual population may undergo 

repeated mutator hitchhiking events (André and Godelle 2006; Gerrish et al. 2007). 

Experimental work demonstrates that in an adapting asexual population, a double-

mutator strain will ultimately supplant a single-mutator strain, if the double-mutator is 
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seeded in at the start of propagation above a certain threshold frequency (Gentile et al. 

2011). In a mutY- mutator population evolving in a limited glucose environment for 765 

generations, a mutM- mutator (causing a 10-fold increase) was shown to have 

spontaneously arisen in at least one clone, although it was not present across the whole 

population (Kinnersley et al. 2014). The spontaneous emergence and fixation of a second 

mutator allele (i.e. hypermutator) has been observed in asexual populations under 

repeated exposure to lethal antibiotics (Eghbal et al. 2017, in review). However, the 

advantage of a hypermutator phenotype can be readily discerned in this scenario, as the 

populations were under immense and immediate pressure to acquire antibiotic resistance. 

This finding raises the question of whether a hypermutator could spontaneously emerge 

and rise to fixation in a preexisting mutator asexual population under a non-lethal, soft 

selective regime. 

 

The answer is far from obvious: a higher mutation rate need not always lead to a higher 

rate of adaptation, in part due to the potential for clonal interference (Sprouffske et al. 

2012). Furthermore, Muller's ratchet, characterized by the gradual but irreversible 

accumulation of deleterious mutations in asexuals, has been shown to cause fitness 

deterioration in bacteria (Andersson and Hughes 1996). An extremely elevated mutation 

rate carries with it the risk of attrition of genomic information (Eigen and Schuster, 

1977). Although mutators have been observed in carcinogenic human cell populations 

and in virulent microbial populations, pathogenic cells are not universally mutators 

(Jones et al. 2008; Tomlinson et al. 1996). 
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Here we describe the evolutionary paths of 30 mutator populations defective for 

mismatch repair (mutS-) that underwent 900 generations of propagation in minimal 

glucose medium. We randomly isolated five clones from each evolved population and we 

measured their mutation rates and their fitnesses relative to their ancestor. We sought to 

characterize the genomic changes in 20 evolved clones across eight populations, which 

represented a broad range of mutation rates. 

 

Methods 

Origin of experimental strains 

We established 30 populations of high-mutating asexual E. coli. These starting 

populations were isogenic except with respect to ara, an operon that codes for an enzyme 

enabling the breakdown of arabinose. 15 populations have the Ara- phenotype and the 

other 15 populations have the Ara+ phenotype. The Ara+/Ara- distinction is neutral with 

regard to fitness in glucose minimal medium (the medium of propagation). The Ara- 

colonies are red on tetrazolium arabinose (TA) agar, and the Ara+ colonies are white. 

These color differences were used as markers in competitive fitness assays, as described 

later.  

 

The strain PS174, which was previously constructed in the Sniegowski lab, possesses the 

mutS- mutator allele – identical in sequence to the mutS- allele that spontaneously 

emerged in an evolving population in Richard Lenski’s long-term evolution experiment 

(LTEE) (Sniegowski et al. 1997) – on the Lenski ancestral background (strain B 

REL606). Therefore, although mutS- can cause mismatch repair defects in both 
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experimental contexts, our experiment is not simply a continuation of Lenski’s LTEE. 

Upon initiation of this project, PS174 was plated onto minimal arabinose agar, and an 

Ara+ revertant colony (PS2717) was isolated. Thus, PS174 is the ancestor of all of the 

evolving Ara- strains in our project, and PS2717 is the ancestor of all of the evolving 

Ara+ strains. 

 

Daily propagation of experimental strains 

The 30 strains were propagated daily in two 96-well plates. One plate contained the 15 

Ara- populations, and the other plate contained the 15 Ara+ populations. Each well bore 

1.5 mL of Davis minimal broth medium (Carlton and Brown 1981) with glucose at 166.7 

μg/mL. To inhibit cross-contamination, the rows of populations were spaced apart from 

each other across each plate. To inhibit external contamination, all populations were 

located away from the periphery of each plate.  

 

The populations were housed inside a 37 degree C incubator shaking at 120 rpm. Each 

day, 15 μL from each population were transferred into fresh medium in the corresponding 

well on a fresh sterile plate. All transfers were conducted inside a sterile laminar flow 

hood. Cross-contamination (the most likely source of contamination) could be easily 

detected by plating the populations on TA agar. 

 

Each day, 12 extra wells of plain DM166.7 were added to the lower border of both plates 

to hinder evaporation of the experimental wells; these wells of plain DM166.7 were also 

transferred daily in an identical manner as the experimental populations. Samples from 
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each population were periodically frozen in 15% glycerol and stored at -80 degrees C (on 

average, every ~90 generations). Liquid from the plain wells was periodically plated on 

permissive LB agar plates to detect any global contamination in the medium, as the plain 

wells ideally should not yield any growth. In the few instances that a plain well yielded 

growth, the populations of that entire plate were restarted from their most recent frozen 

timepoints. 

 

Clonal isolation of the evolved experimental strains 

At approximately 900 generations, five clones were randomly isolated from each of the 

30 evolving populations. The isolation was accomplished by plating each of the evolved 

populations on permissive LB agar, incubating the plate overnight, and isolating a colony 

at random with a sterile implement; the dilution-streaking was repeated three times in 

total, to ensure the purity of the isolated colony. 

 

Fluctuation tests (FTs) to measure mutation rates 

Each clone’s mutation rate was measured by fluctuation tests, using the antibiotic 

nalidixic acid as a selective agent. In our modern adaptation of the classic fluctuation test 

(Luria and Delbrück 1943), each strain begins as a small number of cells in multiple 

replicate cultures. After several generations of growth, the cultures are exposed to a 

selective agent, such as an antibiotic. Most cells are sensitive to the agent and therefore 

are killed. However, a fraction of cells survive the selective agent, because they have 

spontaneously acquired mutations conferring resistance. If a resistance mutation emerges 

early in the lineage of cells (pre-exposure), there will be a greater number of resistant 
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descendants than if the mutation had occurred later in the lineage. The numbers of 

colonies on the plates are used to calculate the mutation rate for each strain. In the FTs 

described herein, mutations conferring resistance to nalidixic acid served as a proxy for 

the genomic mutation rate. A diagram of the experimental procedure can be found in 

Figure 3. 
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Figure 3: A diagram illustrating the methodology of a fluctuation assay, which is used for estimating the 

genomic mutation rate of a clone. 
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The FT methodology and analytical software can be found in Gerrish 2008 (Gerrish 

2008). For each clone whose mutation rate was being measured, an ancestral clone was 

assayed alongside for the sake of comparison. (The mutation rate measurement may vary 

slightly from day to day, due to factors such as minor changes in the environment.) The 

mutation rates of the evolved clones were compared to that of the mutator ancestor; 

statistical significance of differences in mutation rates was inferred from non-overlap of 

95% confidence intervals (Zheng 2015).  

 

On day 1 of the FT, flasks of DM1000 (Davis minimal broth medium containing glucose 

at 1mg/mL) were seeded with one frozen clone stock per flask; the cultures were grown 

overnight to a total of 1 x 1010 cells/flask. On day 2, cells from each flask were serially 

diluted through tubes of sterile saline. From the last dilution, a small number of cells 

were transferred into each of three new flasks of DM1000 (30 mL per flask), for a total of 

three replicates per evolved strain. (The ancestor was assayed with six replicates.) The 

dilution assured that each replicate flask started with a small population, making it highly 

unlikely that a mutant is seeded in the starting population purely by chance.  

 

The flasks incubated for 48 hours. A diluted fraction of each replicate flask’s culture was 

plated on permissive LB agar, to estimate the total population size of each flask. 

Additionally, an undiluted fraction of each replicate flask’s culture was plated undiluted 

on LB agar containing nalidixic acid, to estimate the number of resistant cells in each 

flask. All plates were incubated at 37 degrees C. After 24 hours from the start of plate 
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incubation, the colonies on both the permissive and selective LB plates were enumerated. 

The selective plates were incubated for another 24 hours, and then their colonies were 

enumerated a second time, so as to include the slower-growing resistant colonies.  

 

After performing fluctuation assays on the 150 clones, we decided to perform a closer 

characterization of the Ara-3 population. Hence, we randomly isolated an additional five 

clones from the Ara-3 population (again at ~900 generations). 

 

Relative fitness competitions 

To measure whether evolved strains (from generation ~900) had higher fitnesses relative 

to their ancestral clones (from generation 0), we performed fitness competition assays, 

both for the evolved clones and the evolved populations. These evolved clones were 

identical to the clones whose mutation rates were measured via fluctuation tests.  

 

On day 1, the frozen evolved clones/populations and ancestral clones were started from 

frozen stock in flasks containing 10 mL of DM1000 (one strain per flask). On day 2, the 

inocula of each evolved strain (clone or population) were transferred to separate wells in 

96-well plate containing DM166.7, after dilution through sterile saline; the arrangement 

and volume of the wells in the 96-well plates was identical to the setup of the 96-well 

plates during the daily propagation, aside from the total number of wells on each plate. 

On day 3, each of the acclimated strains were diluted with saline, then mixed 1:1 with the 

diluted ancestral clone of the opposite Ara-/+ marker in a fresh well of DM166.7 in a new 

96-well plate. Immediately after setting up the day 3 wells, 100 μL of the mixed culture 
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from each well was diluted through saline and plated on TA agar. Each strain competition 

was performed in triplicate. On day 4, 100 μL of each competition well was diluted 

through saline and plated on fresh TA plates. Additionally, the red and white colonies on 

the day 3 TA plates were counted. On day 5, the red and white colonies on the day 4 TA 

plates were counted. The red and white colony counts from day 4 and day 5 were used to 

calculate the selection coefficient (s) for each replicate, using the following equation 

from classical population genetics theory for haploids:  

s = (1/t) * (ln[p'(1-p)/p(1-p')]) 

where t = 6.64 (the number of generations per day), p is the percentage of colonies from 

evolved clones on day 4 (out of the total number of colonies on day 4), and p’ is the 

percentage of colonies from evolved clones on day 5 (out of the total number of colonies 

on day 5). The mean selection coefficient was then calculated for the three replicates of 

each evolved strain. Each mean selection coefficient calculation was added to the 

working selection coefficient dataset if the standard deviation of the mean selection 

coefficient for each evolved strain divided by the mean of the three replicates was ≤0.15. 

The working selection coefficient dataset can be found in the Appendix; the other 

selection coefficient calculations are located in a separate table in the Appendix. 

 

Whole genome sequencing 

To identify new mutations that emerged at some point during the 900 generations, we 

performed whole genome sequencing on select clones after ~900 generations. We 

extracted genomic DNA from 20 evolved clones that represented a broad range of 

mutation rates across eight different populations, and also the two ancestral clones (Ara- 
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and Ara+) for comparison. (The evolved clones were among the set of 155 clones whose 

mutation rates and relative fitnesses were measured.) Extractions were performed using 

the QIAGEN DNeasy Blood & Tissue Kit (69504). DNA concentrations were quantified 

with a Qubit Fluorometer. Library preparation and sequencing were conducted with the 

Illumina Nextera XT DNA library preparation kit (FC-131-109), the Illumina Nextera XT 

index kit (FC-131-1002), and Illumina NextSeq (150 paired-end) with a mean coverage 

of ~325-fold. The sequenced genomes were aligned against the reference sequence, E. 

coli B strain REL606. All new mutations were identified with the computational pipeline 

breseq (version 0.27) (Deatherage and Barrick 2014). The list of the 22 sequenced clones 

can be found in Table 1. 
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Parent strain # 

Strain 

# Identity 

MR 

change 

# new 

mutations 

Mutations detected in candidate 

mutation rate modifiers 

PS174 PS3840 Ara-3, c1 Unchanged 54 

recC (N354S (T-->C)), topA (I106T), 
mutS (R324R), dnaK (K55K), mukB 
(E1108E) 

PS174 PS3886 Ara-3, c2 Unchanged 43 rep (R615C) 

PS174 PS3887 Ara-3, c3 Unchanged 49 None found. 

PS174 PS3888 Ara-3, c4 Higher 63 miaA (E151G), mukB (E1108E) 

PS174 PS3889 Ara-3, c5 Lower 60 katG (1 bp del), recC (D646E) 

PS174 PS4326 Ara-3, c6 Unchanged  41 topA (A364V) 

PS174 PS4322 
Ara-3, c7 

Higher  49 
recC (D324G), topA (T110A), mukB 
(E1108E) 

PS174 PS4323 
Ara-3, c8 

Unchanged 42 
nrdA (Y379H), topA (A364V), sbcC 
(intergenic) (+302/+14). 

PS174 PS4324 
Ara-3, c9 

Higher 53 
gyrB (M461I), mukB (E1108E), sbcC 
(intergenic region) (+314/+2) 

PS174 PS4325 
Ara-3, c10 

Lower 58 
recC (D646E), recB (E1149E), oxyR 

(intergenic) 

PS174 PS3895 
Ara-5, c3 

Unchanged 65 
uvrC (L79S), priA (C30R), recN 

(V486A) 

PS174 PS3850 Ara-13, c1 Higher 56 nuoH (G106D) 

PS174 PS3939 Ara-13, c5 Lower  52 recC (L286P), topA (T613A) 

PS174 PS3941 
Ara-14, c3 

Higher  134 
gyrA (Y448C), dnaE (A518V), nfi 
(intergenic region) (+10/-33) 

PS174 PS3944 Ara-15, c2 Lower  56 None found. 

PS2717 PS3855 Ara+3, c1 Lower 64 None found. 

PS2717 PS3956 Ara+3, c2 Lower  46 None found. 

PS2717 PS3856 Ara+4, c1 Higher  45 None found. 

PS2717 PS3960 Ara+4, c2 Higher  48 recN (G467S) 

PS2717 PS3964 
Ara+5, c2 

Lower  59 
radA (1 bp del), nrdE (Y16C), rep 
(D218D) 

PS174 PS3870 
Ara- ancestor 
c N/A 20 None found. 

PS2717 PS3869 
Ara+ ancestor 
c N/A 21 gyrA (R365R) 

 
Table 1: Summary of whole genome sequence findings for clones propagated under soft selection for 

900 generations. The genomes of 20 evolved clones and the two ancestral clones were sequenced. Data on 

the number of new mutations found via the computational pipeline breseq are shown. Also listed are the 

new mutations in candidate mutation rate modifier loci, along with the specific residue that was mutated, if 
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applicable. If a mutation was a non-conservative substitution or an indel in a coding region, it is underlined 

and italicized. If a mutation was only nonsynonymous or intergenic, it is only italicized. 
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Results 

Mutation rates 

The fluctuation assays showed that (relative to the mutator ancestor at generation zero) 

9% of the evolved clones had higher mutation rates, 23% had lower mutation rates, and 

68% had similar mutation rates (Figure 4: Ara- and Ara+ mutation rate graphs). Of the 30 

evolved populations at generation ~900, 21 populations had at least one clone whose 

mutation rate differed from that of the single-mutator ancestor, meaning that only nine 

populations had zero clones with altered mutation rates. In the Ara+3 population, all five 

clones displayed mutation rates lower than ancestor. In the Ara+4 population, all five 

clones displayed mutation rates higher than ancestor. Two clones (one from the Ara-9 

population and one from Ara-13) did not yield any colonies on the selective plates and 

therefore did not have measurable mutation rates; in qualitative classifications, their 

mutation rates were listed as ‘lowered’. A table of fluctuation assay values can be found 

in the Appendix. 
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Figure 4a-b: Mutation rates for 80 evolved Ara- clones and 75 evolved Ara+ clones. After 900 

generations of propagation under soft selection, five clones were randomly isolated from each 

population (plus an additional five from population Ara-3). Their mutation rates were measured 

with nalidixic acid fluctuation assays. For each evolved clone, significance of mutation rate 

differences was determined by overlap between the 95% confidence intervals (CIs) of the clone 

and the ancestor, whose mutation rate was measured in the same assay batch as the evolved 

clone. Mutation rates are displayed on the y-axis as log values. Each clone is shown as a blue 

point; the brackets on each point represent 95% CIs of the clone’s mutation rate. The Ara- clones 

are shown in Fig. 4a, and the Ara+ clones are shown in Fig. 4b. For each of the two graphs, a 

median ancestral mutation rate (one for Ara- and one for Ara+) is shown as a thick horizontal line; 

the dotted horizontal lines are the 95% CIs of the ancestor. A complete list of mutation rate values 

can be found in the Appendix. 
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Figure 4c: Two sets of replicate fluctuation assays for a subset of the Ara- evolved clones. The 

mutation rates of seven clones (one from each population of Ara-1 through Ara-7) were re-

measured with fluctuation assays. These second measurements are plotted here with the same 

x-coordinate as their respective first measurement. The two measurements of each clone were 

assessed for overlap across the 95% confidence intervals. The ancestral Ara- mutation rate is 

plotted as a thick gray horizontal line. 
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Relative fitness 

All measured evolved populations and clones showed increased fitness relative to 

ancestor, although to varying degrees. In the evolved populations, the average selection 

coefficient was 0.28, with a standard deviation of 0.08, a median of 0.26, and a range of 

0.14 to 0.41 across all populations. (See Figure 5.) Across all 155 clones, the average 

selection coefficient was 0.24, with a standard deviation of 0.06, a median of 0.24, and a 

range of 0.09 to 0.41 across all populations. (See Figure 6.) No relationship between 

mutation rate and selection coefficient of the clones was detected: Spearman's correlation 

coefficient (rs) = 0.071; p-value = 0.808 
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Figure 5: Estimated relative fitnesses of all evolved populations. After 900 generations of 

propagation under soft selection, the 30 populations’ fitnesses were measured relative to that of 

the mutator ancestor of the opposite Ara-/+ genotype, through overnight growth competitions, 

which were performed in triplicate. The estimated relative fitnesses are shown here; each point 

represents one evolved population. They are listed in increasing numerical order of relative fitness. 

The colors of each point represent the mutation rate profile of each population’s five clones at 900 

generations. Blue represents a lowered mutation rate, red represents an elevated mutation rate, 

and yellow represents an unchanged mutation rate; all mutation rates are depicted relative to the 

ancestor at generation 0. The ‘shadows’ on some of the points represent mutation rate 

polymorphism; for example, if a yellow point has a blue shadow, that means that most of the 

clones in the population had unchanged mutation rates, but a minority had lowered mutation 

rates. The estimated selection coefficient values can be found in the Appendix.  
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Figure 6: Mutation rate vs. selection coefficient of evolved clones after 900 generations of 

soft selection, across 30 populations. After 900 generations of propagation under soft 

selection, five clones from each of the 30 populations (plus five additional clones from 

population Ara-3) were randomly isolated. The fitnesses of the 155 clones were measured, 

relative to that of the mutator ancestor of the opposite Ara-/+ genotype, through overnight 

growth competitions, which were performed in triplicate. The selection coefficients of the 

clones are shown here, relative to the mutation rate of the respective clone. The selection 

coefficient values can be found in the Appendix. 
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Whole genome sequencing 

Lists of new mutations detected by breseq for each sequenced strain are in the Appendix. 

To narrow down the list of likely causative (anti)mutators, I constructed a candidate gene 

table of loci already described in other literature as affecting the mutation rate (see table 

in Appendix) (Turrientes et al. 2013). If breseq detected that an evolved clone had a new 

mutation in one of these loci, it was marked in Table 1. As seen in Table 1, multiple 

nonsynonymous mutations were detected in multiple loci that have been described in the 

literature as potentially affecting the mutation rate. The supplemental genomic data and 

genomic sequences will be deposited in Dryad Digital Repository. Tables of breseq 

outputs for each sequenced clones are located in the Appendix.  

 

I sought to determine whether there was a correlation between mutation rate and number 

of detected new mutations at generation ~900. The Spearman’s correlation coefficient (rs) 

was -0.06, with a p-value of 0.60, which does not suggest a relationship between 

mutation rate and number of detected new mutations at generation ~900. The dataset used 

in this analysis consisted of the 2 ancestral clones and 19 sequenced evolved clones (one 

sequenced evolved clone was excluded from this analysis because its mutation rate was 

too low to be measured). A visual representation of the changes in mutation rate versus 

number of new single nucleotide polymorphisms (SNPs) is shown in Figure 7. A visual 

representation of the number of new SNPs in each clone, grouped by mutational class, is 

shown in Figure 8. 
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Figure 7: Mutation rate (-fold change relative to mutator ancestor) versus number of new 

single nucleotide polymorphisms (SNPs) per sequenced clone. After 900 generations of 

propagation under soft selection, five clones were randomly isolated from the evolving 30 

populations, and their mutation rates were measured. The genomes of a small subset of clones 

(representing a variety of mutation rates) were sequenced. The x-axis shows the number of 

single-nucleotide polymorphisms (SNPs) detected in each sequenced clone. The y-axis shows 

the change in mutation rates of each sequenced clone relative to the mutator ancestor at 

generation 0. The colors of the points represent the populations that the clones were isolated 

from. 
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Figure 8: Number of single-nucleotide polymorphisms (SNPs) per clone, classified by type of 

mutation. SNPs of a variety of types were found across the sequenced clones (harvested after 900 

generations of propagation under soft selection). On the y-axis, “num” is the number of SNPs of 

each mutational class. The types of SNPs are listed along the x-axis. 
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Sanger sequencing of suspected (anti)mutator loci 

In the Ara-13 population, the recC (L286P) and topA (T613A) mutations were present in 

clone 5 (as discovered through WGS), which had the most strongly lowered mutation rate 

in the population; Sanger sequencing showed that these two mutations were absent in the 

other four clones of this population, which include a clone with an elevated mutation rate 

(clone 1), two clones with unchanged mutation rates (clones 3 and 4), and a clone with a 

moderately lowered mutation rate (clone 2). 

In the Ara+3 population, whose five clones all had lowered mutation rates, the lpxA 

(D180G) mutation was present in the two clones whose genomes had been sequenced 

(clones 1 and 2); Sanger sequencing suggested that the mutation was present in the other 

three clones as well. Furthermore, the WGS showed that clones 1 and 2 had a mutation in 

nadR (T28A); Sanger sequencing showed that this T28A mutation was also present in 

two of the three other clones in the Ara+3 population. Although clone 3 did not have the 

T28A mutation, the Sanger sequencing targeting that locus revealed that clone 3 had a +1 

C insertion in a string of cytosines in codons 59-60 of nadR. Hence, all five clones had a 

mutation at some point in the NadR N-terminus. 

In the Ara+4 population, where all five clones had elevated mutation rates, a mutation in 

smf was found to be present in the two clones whose genomes had been sequenced; 

through Sanger sequencing, this mutation was shown to be present in at least two of the 

remaining three clones. (Clone 4’s Sanger sequencing chromatogram was ambiguous; 

thus, the PCR will be optimized and re-run.) 
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In the Ara+5 population, the nrdE (Y16C) and radA (1 bp deletion) mutation that were 

present in clone 2 (as shown by WGS) were absent in the other four clones of the 

population (as shown by Sanger sequencing). Clone 2 is the only clone with a lowered 

mutation rate in the Ara+5 population; all other Ara+5 clones have unchanged mutation 

rates. 

 

Discussion 

Mutation rate diversity 

Across the evolved clones in this study, we see evidence of mutation rate instability – 

both upward and downward instability. Among the five clones randomly isolated from 

the evolved Ara+3 population, all have significantly lowered mutation rates. Among the 

five clones randomly isolated from the evolved Ara+4 population, all have significantly 

elevated mutation rates. This raises the question of whether these two populations are 

fixed for (an) antimutator(s) and (a) mutator(s), respectively. Whole-population genomic 

sequencing is underway for all 30 evolved populations and may help determine whether 

any putative mutation rate modifiers are fixed in these two populations. The genomes of 

two clones from each of those two populations were already sequenced (as part of the 

batch of 20 evolved clones that were sequenced). Additionally, we are in the process of 

sequencing the other 3 clones from each of the two putative fixation populations. The 

population libraries are being prepared with the PCR-free Illumina TruSeq kits; the use of 

PCR would risk causing non-random apparent changes in the intra-population SNP 

distribution. 
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In the Ara+3 population (where all five randomly isolated clones were found to have 

decreased mutation rates), there were no mutations in known mutation rate modifier loci 

in either of the two sequenced clones. However, there were several non-conservative 

mutations in common between the two clones in loci coding for the following: 

acyl‑[acyl‑carrier‑protein]‑‑UDP‑N‑acetylglucosamine O‑acyltransferase (D180G), 

pyruvate dehydrogenase (ubiquinone) (1 bp deletion), galactarate transporter (P369S), 

porin (E218K), and trifunctional nicotinamide-nucleotide 

adenylyltransferase/ribosylnicotinamide kinase/transcriptional regulator NadR (T28A). 

Intriguingly, none of these mutated loci have been explicitly characterized as antimutator 

in the existing literature. 

 

In the Ara+4 population (where all five randomly isolated clones were found to have 

mutation rates elevated above the single-mutator ancestor), the sole mutation in any 

known mutation rate modifier among the two sequenced clones was in recC – and this 

mutation was only present in clone 2 (G467S). There are at least two possible 

explanations for this observation. One possibility is that the observed hypermutator 

phenotype is actually caused by different mutations in different individuals. Another 

possibility is that the responsible mutation has not been previously characterized as a 

mutator in the existing literature. Between the two sequenced clones, there were several 

non-conservative mutations in common across loci coding for: OLD family 

ATP‑dependent endonuclease (DUF2813 family protein) (E326G), pyruvate kinase I 
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(E71K), outer membrane assembly protein AsmA (stop codon at Q314), protein smf 

(coding mutation at nucleotide 567; deletion of one C), bifunctional (p)ppGpp synthetase 

II/ guanosine‑3',5'‑bis pyrophosphate 3'‑pyrophosphohydrolase (Y431C, which is in the 

region homologous to the TGS domain in the RelA (SpoT) protein), and a hypothetical 

protein (in genomic site 4,308,608; an insertion of one G in the coding region at 

nucleotide 535). Among these loci, smf is particularly interesting, as it may help RecA (a 

protein involved in DNA repair) load onto single-stranded DNA (Tadesse and Graumann 

2007). Sanger sequencing showed that the smf mutation is present in at least four out of 

the five clones in the Ara+4 population (clone 4’s Sanger sequencing results were 

ambiguous, necessitating a second replicate); these sequencing data encourage further 

exploration into the possibility of smf as a potential mutator allele. 

 

Extensive mutation rate polymorphism was revealed by assays of evolved clones within 

many populations as well as mutation rate divergence across all populations. The 

mutation rate polymorphism could be interpreted in one (or more) of at least three 

possible ways. Firstly, in a polymorphic population, the new (anti)mutator allele(s) could 

be currently in the midst of their trajectory to eventually sweep to fixation. Secondly, 

there could be balanced polymorphism for mutation rate modifiers in the population, 

maintained by frequency-dependent selection (Rozen and Lenski 2000); however, that 

scenario may necessitate either trade-offs between the multiple phenotypes and/or 

opportunistic exploitation of unoccupied niche space (Kinnersley et al. 2014). Thirdly, 

consideration of the multiple testing problem is important – due to the large number of 
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fluctuation assays performed (with change in mutation rate determined by lack of overlap 

between the 95% confidence intervals of ancestor and evolved clone), there is some 

chance that several measurements are misleading (Rice 1989; Benjamini and Hochberg 

1995). Note, however, that the fluctuation assays were repeated for clones 1 in Ara-1 

through Ara-7; the 95% confidence intervals (CIs) for the repeat measurements 

overlapped with those of the original measurements (refer to Figure 4c). These CIs are 

slightly more conservative than other CIs cited in the preexisting literature on fluctuation 

assays (Zheng 2015), so it is in fact possible that some of these evolved clones had subtle 

but genuine changes in mutation rate that were not detected in our own method of 

fluctuation analysis. Hypothetically, one could test statistical significance of mutation 

rate differences by repeating each fluctuation assay several times, and these additional 

measurements could account not only for the multiple testing problem, but also for the 

rate of experimental error and slight environmental variations -- however, this method is 

prohibitively time-consuming. 

 

It is worth noting that even outside the field of mutation rate evolution, the effects of hard 

and soft selection have been compared in experimental settings. In a recent empirical 

study, polymorphic E. coli populations in heterogeneous habitats were exposed to hard 

and soft selection; soft selection preserved the polymorphism and retarded the process of 

fixation (Gallet et al. 2017, preprint). 

 

The mutS- mutator allele does not have any known direct effect on fitness (Shaver et al. 

2002). Considering that direct fitness benefits to mutator alleles have very rarely been 
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described in the existing literature, we hypothesize that the increased mutation rates in the 

current study are most likely the result of mutator hitchhiking – which has been well 

documented in several different evolutionary contexts (Sniegowski et al. 1997, Gentile et 

al. 2011). Note that in Lenski’s LTEE, three out of 12 populations showed evidence of 

mutator hitchhiking as of 10,000 generations (Sniegowski et al. 1997). 

 

We were surprised to see so many lowered mutation rates; however, below, I suggest a 

reasonable explanation for them. But firstly, let us offer evidence against one hypothesis 

for the lowered mutation rates: pressure to reduce mutational load. The 30 populations 

have been evolving for only ~900 generations, so it is likely that there are many 

beneficial mutations still available to them. Thus, reduction of deleterious mutational 

load is unlikely to explain the decreased mutation rates. A more plausible explanation is 

that the antimutator alleles confer pleiotropic direct fitness benefits that allow them to 

spread in the population. In this case, the polymorphism and divergence of mutation rates 

across and within populations could be explained by the potential for fitness gains to be 

facilitated through mutator hitchhiking or through pleiotropic benefits of antimutator 

alleles. It should be noted that genetic drift is not a sufficient explanation for the mutation 

rate instability observed in these populations, due to factors such as the effective 

population size and the high presence of ongoing selection. The effective population size 

(Ne) in this experiment is 30 million, as it is the product of the number of cells transferred 

to fresh media each day and the number of generations it takes for this minimum 

population size to grow to the maximum daily population size: 

Ne = (5 x 106) x (log2100) = 3 x 107 
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This is identical (by design) to the effective population size of the Lenski’s LTEE, where 

it has already been argued that the power of adaptation exceeds the potential for drift 

(Lenski 2004); millions of generations would need to elapse in order for a mutator or 

antimutator to progress from low to high frequency solely through the power of drift 

(Crow and Kimura 1970). 

 

Relative fitness gains over 900 generations; is there a relationship between mutation rate 

and relative fitness? 

The relative fitness data were consistent with the original hypothesis of increased fitness. 

As a point of reference, Lenski’s experimental E. coli lines had an average selection 

coefficient of 0.20235 after 1000 generations (Lenski and Travisano 1994). Thus far, we 

have not detected any relationship between mutation rate and relative fitness (at the 

population level or at the clone level). Bear in mind that the fluctuation test measures the 

mutation rate of one clone; the fluctuation test cannot measure the mutation rate of a 

population. However, we performed fitness competitions on both the evolved clones and 

evolved populations (always relative to the ancestor at generation 0). Refer to Figure 5 

for population fitness data; refer to Figure 6 for clone fitness data. 

 

As mentioned in the Results section, we did not detect a relationship between a clone’s 

selection coefficient and the number of new mutations in the sequenced clones. However, 

note that, for the clones with increased or decreased mutation rates, it is unknown at what 

generation these changes actually took place. Hence we cannot assume that there will be 

a strong positive correlation between mutation rate (at 900 generations) and the number 
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of mutations (at 900 generations). Furthermore, note that the subset of evolved sequenced 

clones were deliberately selected to represent a variety of mutation rates, and thus these 

data may not be representative of the whole set of 155 evolved clones.  

 

Detected new mutations 

The original mutS- mutator allele was retained in all of the evolved sequenced clones. 

Therefore, the changes in mutation rate must have occurred through mutations in other 

loci. This raises the question of what mutations are causing these changes in mutation 

rate. What follows is a brief catalog of the most promising candidates for mutation rate 

modifiers among the mutations that were uncovered after sequencing the genomes of 20 

of the evolved clones. 

 

miaA, a tRNA modification gene, can confer mutator status when mutated (Connolly and 

Winkler 1989; Michaels, Cruz, and Miller 1990). The wild-type version of miaA codes 

for tRNA ∆2-isopentenylpyrophosphate (IPP) transferase. Mutations in miaA may have a 

variety of effects, including decreasing the stability of anticodon interactions (Vacher et 

al. 1984). The miaA locus is located near the mutL locus, near 95 min (Michaels, Cruz, 

and Miller 1990). Experimental evidence suggests that miaA and mutL form a complex 

operon with a weak internal promoter (Connolly and Winkler 1989) that serves diverse 

cellular functions (Tsui et al. 1996). Hence, it is important to keep in mind the particular 

characteristics of the mutS and mutL mutator alleles used in this dissertation work despite 

the similar change in mutation rate (~100-fold) caused by the two ancestral alleles, mutL 

and mutS; had the miaA mutant allele landed on the mutL background instead, we cannot 
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be sure that the associated phenotype (if any indeed exists) would have been the same. A 

non-conservative mutation in miaA (E151G) was found in PS3888 (Ara-3, clone 4), 

which had one of the highest elevations in mutation rate among all 155 evolved clones. 

Among the list of candidate (anti)mutator loci, miaA was the only one mutated in 

PS3888. 

 

recC is a gene that normally codes for the alpha subunit of the recBC enzyme (Umeno et 

al. 1983), which is a 5'-3' helicase that binds to double-stranded DNA breaks to prepare 

them for repair. Multiple nonsynonymous mutations in recC were found in several clones 

from the Ara-3 population, albeit at different residues across different mutation rates: 

N354S (clone 1 with an unchanged mutation rate), D646E (clone 5 and clone 10, both 

with lowered mutation rates), and D324G (clone 7, with an elevated mutation rate). A 

nonsynonymous (and non-conservative) recC mutation was also found in the Ara-13 

population in clone 5 (L286P), which had a strongly lowered mutation rate. Interestingly, 

Sanger sequencing showed that this recC mutation was absent in the other Ara-13 clones 

(including the clone with a more moderately lowered mutation rate). 

 

The gene topA codes for DNA toposisomerase I, which inhibits hypernegative 

supercoiling of DNA (Tan et al. 2015). Multiple nonsynonymous topA mutations were 

found in the sequenced clones; similar to recC, these mutations were located at different 

residues across a variety of mutation rates. In the Ara-3 population, sequencing 

uncovered the topA mutations T110A (in clone 7 with an elevated mutation rate), I106T 

(in clone 1 with an unchanged mutation rate), and A367V (in clones 6 and 8 with an 
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unchanged mutation rate). In clone 5 (strongly lowered mutation rate) from the Ara-13 

population, a topA mutation was found (T613A); Sanger sequencing showed that the 

mutation was absent in the other four clones of this population, as was the case for the 

recC mutation discussed in the preceding paragraph. 

 

A few genes, characterized in the previous literature as potential mutation rate modifiers, 

possessed non-conservative mutations at different loci across different clones with 

different mutation rates. These genes include recC and topA. In each individual case, it is 

possible that these mutations are not the causative alleles for the changes in mutation rate; 

however, it is also possible that these represent cases of phenotypic heterogeneity, where 

different phenotypes are caused by different mutations in the same gene. 

 

After examining the WGS data, we must remain open to the possibility that some of the 

mutation rate changes were caused by more than one mutation rate modifier (even within 

the same population) and/or that some of these mutation rate modifiers have not been 

well-characterized in the existing literature. For example, in the Ara+4 population, there 

are no mutations in any known mutator loci (from the candidate list) in common between 

the two sequenced clones. In a population with polymorphism for mutation rate, such as 

Ara-3, clones of similar mutation rate classification (higher, lower, unchanged) do not 

share any non-conservative mutations in known mutation-rate-affecting loci with each 

other (refer to Table 1). It should be noted that many of the elevated mutation rates were 

not profound changes from the ancestral single-mutator mutation rate (refer to Figure 4). 

In the existing literature, most of the well-characterized mutator loci have strong effects 
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on mutation rate: as a point of comparison, before 40,000 generations of evolution, six of 

Lenski’s 12 LTEE populations had acquired mutations in known mutator loci mutS, 

mutT, or mutL (Sniegowski et al. 1997; Barrick et al. 2009; Wielgoss et al. 2013). Thus, it 

is possible that many of the elevated mutation rates observed in these evolved clones may 

be caused by less well-characterized mutator alleles, each allele of minor strength by 

itself (Philip Gerrish, personal communication). One advantage to studying as many as 30 

evolving populations is that the experiment serves as a “detector array” for changes in 

mutation rate and maximizes the possibility of identifying subtle, lesser-known mutation 

rate modifiers. Previous simulations have suggested that mutators of moderate strength 

(~100-fold) are the most likely to hitchhike (Tenaillon et al. 1999); however, that work 

was performed with wild-type starting populations in mind, and therefore its applicability 

to mutator starting populations is subject to debate.  

 

Implications and Applications of Research 

This study is a ‘snapshot’ of 30 asexual populations at a critical time in their evolutionary 

trajectory. Sufficient time has passed that the populations have likely undergone 

extensive adaptation to their new environment – as noted previously, in Lenski’s LTEE, 

the fitness of the Ara-1 population relative to ancestor was 1.23 at 900 generations 

(Lenski and Travisano 1994). At the same time, it is unlikely that the potential for 

acquiring beneficial mutations has yet been exhausted (Wielgoss et al. 2013). 

 

In certain aforementioned clones, we observed a possible discrepancy between the 

mutation rate at 900 generations and the number of genomic mutations accumulated at 
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the point of 900 generations. This is not a biological contradiction: it could be explained 

by the possibility of a mutator strain acquiring a recent antimutator allele. Whatever the 

ultimate explanation, this finding will hopefully be relevant to other researchers who 

measure mutation rates, be it in an experimental evolution laboratory or in a clinical 

setting. More specifically: despite the contrast between the long history of the laborious 

fluctuation assay versus the technological advances and popularity of sequencing, WGS 

cannot fully replace the role of fluctuation assays in measuring mutation rate, because 

WGS cannot measure the current mutation rate of an individual. The mutation rate leaves 

its imprints on the genome -- but even though the mutation rate can change genotypes, 

the mutation rate itself can still be seen as a phenotype, and the fluctuation test is a 

phenotypic assay. There is a relative paucity of literature on the statistics of fluctuation 

assays; it remains to be seen whether future additions to this literature will be able to 

improve the sensitivity of fluctuation analysis. 

 

Advances in the study of mutation rate evolution may have biomedical applications. 

Long-term evolution experiments offer an opportunity to consider the emergence of 

antibiotic resistance, which has been a pervasive medical problem since at least the 1950s 

with the arrival of penicillin resistance, and it continues to escalate in intensity to crisis-

level proportions in recent decades (Ventola 2015). The evolution of antibiotic resistance 

is not caused solely by lethal selection occurring at high doses of antibiotics; recent 

studies have begun to appreciate the fact that extremely low, sublethal doses of 

antibiotics can also select for antibiotic resistance (Baquero et al. 1997; Hughes and 

Andersson 2012). It has been suggested that sublethal selection is likely to enrich for 
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mutators that will have increased probabilities of becoming multidrug-resistant and 

therefore surviving future encounters with lethal selection (Sandegren 2014). This 

scenario may be relevant to situations such as unintentional human consumption of trace 

amounts of antibiotics in food originating from livestock ingesting antibiotic-treated feed 

or exposure to runoff from animal facilities (Sandegren 2014). 

 

Studies of asexual mutator replicators are also relevant to other areas of biomedicine. 

Within the human immune system, somatic hypermutation of immune cells aids 

adaptation in dealing with invading pathogens, by diversifying the V (variable) region of 

antibodies (Li et al. 2004). It has been observed that mice with genetic defects in 

mismatch repair have a lower rate of somatic hypermutation (Martin and Scharff 2002). 

If we view human tumor cells as asexual replicators, investigations of soft selection in 

asexual bacteria may also be relevant to the evolution of cancer: nutrient competition in 

the tumor microenvironment can propel the progression of cancer (Chang et al. 2015). 

The parallel between cancer research and the work described here is strengthened by the 

observation that cancer cells may be associated with mutator phenotypes, particularly 

those caused by defective mismatch repair – a system that has many homologous features 

between human and bacteria (Karran 1995). 

 

Considering that early life might have lacked the same DNA repair and recombination 

mechanisms present in many modern life forms (Bernstein, Byers, and Michod 1980), 

high mutation rates may have been prevalent in early life. The environmental context of 

early Earth should be taken into account: the ‘hot-start hypothesis’ suggests that life on 
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Earth began in a hot environment, and then was forced to adapt to decreased temperatures 

as the planet cooled (Nguyen et al. 2017); experimental evolution results suggest that 

high mutation rates are more advantageous in a continually changing environment, as 

they speed the acquisition of beneficial mutations (Wielgoss et al. 2013). Additionally, 

increased mutation rates may be associated with species diversification in organisms as 

varied as plants (Duchene and Bromham 2013; Bromham et al. 2014), birds (Lanfear et 

al. 2010), and bacteria (Sawabe et al. 2009); they have also been associated with 

diversification in viruses (Ribeiro et al. 2012). At least in the case of the Vibrio 

splendidus bacterial clade, there is evidence that mutation had a stronger role than 

recombination in driving the diversification of species millions of years ago (Sawabe et 

al. 2009). 

 
Future Directions 

Confirmation of the presumed direct fitness effects of the new antimutator alleles could 

be acquired through allelic replacement assays, where a suspected (anti)mutator mutation 

would be moved to an ancestral single-mutator background from generation 0; its 

mutation rate and fitness would then be measured relative to the un-manipulated ancestor. 

If the mutator hitchhiking hypothesis were correct for a given candidate mutator 

mutation, then the fluctuation tests would reveal that the suspected mutator mutation 

increases the mutation rate, and the fitness competitions would reveal that the mutation 

does not increase the fitness directly (relative to the ancestor at generation zero). If the 

pleiotropic direct fitness benefit hypothesis were correct for a given candidate 

antimutator mutation, then we would expect that the allele causes the mutation rate to 
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decrease, yet it directly increases the fitness of its bearer (relative to the ancestor at 

generation zero). In our laboratory, a preliminary step has been taken toward this goal 

with the deletion mutation found in the DNA repair gene radA. This mutation was 

uncovered in one clone of the population Ara+5, which had a mutation rate one order of 

magnitude lower than the other four isolated Ara+5 clones (which had mutation rates 

unchanged relative to ancestor). This clone was a prime candidate for sequencing because 

we wanted to determine its potential antimutator alleles. In light of the correlation 

between a lowered mutation rate and the presence of the radA and nrdE (ribonucleoside-

diphosphate reductase 2 subunit alpha) mutations in the Ara+5 population, allele 

replacement assays of these two mutations are a potential avenue for detecting new 

antimutator alleles. 

 
Further explorations of these populations could involve locating the time that the 

mutation rate modifiers arose, and observe their frequencies change over time; this 

investigation would entail whole-population genome sequencing across timepoints 

revived from frozen stock. This observation could even be continued into the future 

trajectory of these populations, by continuing to propagate the populations and 

sequencing them at regular timepoints. In this manner, one could observe mutation rate 

modifiers rising to fixation – or, alternately, being purged from the population, or 

possibly even remaining polymorphic within the population. As mentioned earlier in this 

chapter, the pervasive mutation rate polymorphism in these populations at 900 

generations raises the question of whether the polymorphism is stable or transient. Also, 

although our existing research on the populations at 900 generations suggests an absence 
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of any relationship between relative fitness and mutation rate, whether this lack of 

relationship is temporally dependent or not could be examined in populations at earlier 

and later generations. 

 

The gene mutS is but one component in the mismatch repair pathway; it may be worth 

considering whether similar outcomes would have been achieved if the mutator ancestral 

strain had instead been defective in a gene with a different molecular function in the 

pathway (mutL, mutH). Also, the possibility that a mutator’s specific mutation rate (low, 

moderate, high) might affect the likelihood of adaptation has been explored in theoretical 

work (Tenaillon et al. 1999), and is recently being explored in a laboratory setting 

(Sprouffske et al. 2017, unpublished submitted work). Based on the aforementioned 

existing literature, it seems plausible that a much higher starting mutation rate would 

have led to limited adaptation in our experiment, because there may be a mutation rate 

where the advantage of higher rates of beneficial mutations is overshadowed by the 

disadvantage of higher rates of deleterious mutations (Sprouffske et al. 2017, unpublished 

submitted work) – but it may be worth investigating whether this hypothesis stands up to 

empirical testing. 
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Chapter IV: Conclusions and Future Directions 

 
Overview 

This dissertation offers evidence – at least in the context of asexual populations – that 

challenges the tacit but common supposition of mutation rates as stable and fixed. From a 

population’s genesis to adaptation to extinction, perhaps it is the case that mutation rate 

instability is more widespread than previously assumed. In this chapter, I compare the 

outcomes of the hard selection and soft selection experiments. I discuss how the findings 

fit into the theme of chronic upward instability of the mutation rate, which was a prime 

theoretical motivator for the initiation of my empirical investigations. Yet I also discuss 

how these findings add a layer of nuance to that theme of chronic upward instability, in 

that “downward instability” may be as intriguing a field of study as “upward instability”. 

I discuss the challenges behind measuring mutation rates with fluctuation assays, which 

was a method critical to both of my investigations. I explore the implications of these 

results in the settings of biomedicine, evolutionary thought, and astrobiology. I also 

suggest some directions for future investigations that may follow naturally from the 

findings described in this dissertation. 

  

Many an introductory biology lecture has begun with a statement similar or even 

identical to the following: ‘mutations are random, and selection acts upon them’. This 

statement, though not incorrect, raises another question: does the type of selection affect 

the fate of those mutations? The work described in this dissertation (in conjunction with 

the pre-existing literature) may suggest ‘yes’. Furthermore, the type of selection may be 
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able to change the rate at which the mutations emerge – without changing the content or 

quality of those mutations. In the work described in Chapters II (lethal selection 

experiment) and III (soft selection experiment), the mutation rates of the mutator 

ancestors were similar, but these ancestral mutation rates became destabilized over the 

course of adaptation, and the patterns of mutation rate evolution of the evolved clones 

were notably different across the two experiments. 

 

Comparison of the populations studied under hard and soft selection 

In the lethal antibiotic regime described in chapter II, the population was confronted with 

selective agents that were fatal to all individuals except the ones that bore particular 

beneficial mutations (namely, mutations conferring resistance to certain antibiotics). By 

the end of the antibiotic regime, all survivors had adapted to multiple new environmental 

variables (as represented by the different antibiotics); the fact that a high mutation rate 

confers a selective advantage in a rapidly changing environment is supported by 

preexisting experimental literature (de Visser 2002). The strong increase in mutation rates 

(caused by apparent fixation of an additional mutator allele) was a logical outcome in the 

survivors of the series of three different lethal antibiotics. 

 

In the soft selection environment described in chapter III, an individual’s acquisition of 

beneficial mutations could obviously confer a competitive advantage over other members 

of the same population. However, in the soft selection environment, an individual’s 

survival was less dependent on the rapid acquisition on specific beneficial mutations (e.g. 

antibiotic resistance mutations as in the hard selection experiments). This may have 
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allowed for the spread of antimutator alleles conferring pleiotropic direct fitness 

advantages. Even if an antimutator allele can confer a direct fitness advantage, it is less 

likely that antimutator alleles would have survived in a lethal environment, because of the 

risk that their pleiotropic direct advantage may have been outweighed by the reduced 

probability of acquiring specific beneficial mutations; it is known that higher mutation 

rates tend to be favored under hard selection (Mao et al. 1997). Although the soft 

selection experiments were longer-term (~900 generations) than the hard selection 

experiments, it is unlikely that enough time passed for the deleterious mutational load to 

accumulate to the point where there was a selective advantage to decreasing the mutation 

rate, as has been described in other experimental evolution literature (Wielgoss et al. 

2013). In the soft selection populations, extensive polymorphism was detected, with 

possible fixation of a mutation rate modifier in two populations: an antimutator in Ara+3 

and a mutator in Ara+4. 

 

Despite the different patterns of mutation rate evolution observed in the two experiments, 

there are some parallels. In all sequenced genomes of evolved clones (20 from the soft 

selection and two from the hard selection populations), we did not see any reversion of 

the ancestral mutator allele. In other words, in the soft selection clones, the original mutS- 

allele was retained (except for one clone with an unchanged mutation rate that had a 

synonymous mutation in the mutS- gene, but located outside of the mutator locus); in the 

hard selection clones, the original mutL- allele was retained. The subsequent changes in 

mutation rate appear to have been caused by mutations in loci outside the ancestral 

mutator locus. Our results do not preclude the possibility of back mutations in other 
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hypothetical mutator populations. The possibility of back mutations occurring in mutator 

populations has been explored in some existing theoretical literature, where it is posited 

as being the only option (besides recombination and compensatory mutations) that can 

stall the progressive fitness loss in a population that is caused by Muller's ratchet 

(Söderberg and Berg 2011).  

 

Discussion 

Chronic upward instability of the mutation rate  

The experiments described in this dissertation were motivated by theoretical models that 

explored the possibility of repeated mutator hitchhiking in an asexual population, 

resulting in extremely high mutation rates (André and Godelle 2006; Gerrish et al. 2007). 

In light of the obvious fact that deleterious mutations are more common than beneficial 

mutations, it has been proposed that a population can be driven to extinction by a 

deleterious mutational load accumulated by an intolerably high mutation rate (Eigen 

2002; Gerrish et al. 2013). Although this extinction outcome has not been described in E. 

coli, there is experimental evidence suggesting that viral populations can be rendered 

inviable via an extremely high mutation rate (Crotty et al. 2002). RNA viruses have some 

of the highest known mutation rates (Belshaw et al. 2007) and because of this, they are 

thought to exist on the brink of inviability – indeed, an increase in mutation rate less than 

one order of magnitude may send an RNA virus population into extinction (Crotty et al. 

2001). Studies in yeast have provided evidence that there is a mutation rate in diploid 

Saccharomyces cervisiae after which the population can succumb to replication error-
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induced extinction, and that a decline in fitness begins at mutation rates far below the 

lethal mutation rate (Herr et al. 2014). 

 

In the hard selection experiment described in Chapter II, a spontaneously originated 

mutator allele (mutT-) hitchhiked to fixation in a preexisting mutator (mutL-) population 

that underwent repeated rounds of lethal selection; this was observed across two 

independent experimental replicates. In the soft selection experiment described in 

Chapter III, further increases in mutation rates (including to possible fixation in one 

population) were observed in several of the 155 clones randomly sampled after 900 

generations of propagation; however, decreases in mutation rates were actually more 

common than increases in mutation rate. Although we did not see (and did not expect to 

see, in part due to the relatively brief length of time) extinction events in our experiments, 

our experiments do offer evidence for the general phenomenon of mutation rate 

instability in evolving asexual mutator populations. Yet it is interesting to note that this 

mutation rate instability can occur in a downward direction, in addition to upward, for the 

reasons discussed in Chapter III. 

 

Detection of polymorphism 

When performing fluctuation assays throughout this thesis, changes in mutation rate were 

calculated by checking for overlap between the confidence intervals (CIs) of evolved and 

ancestral strains that were set at a conservative 95%; in a methods paper on analyzing 

fluctuation assay data, the use of 84% CIs was suggested (Zheng 2015). With that in 

mind, it is possible that the amount of mutation rate polymorphism in these experiments 
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may exceed our estimates, possibly even despite the multiple testing problem mentioned 

in Chapter III. Additionally, even in a liberal interpretation of confidence in a fluctuation 

test, it is formally possible that a new mutation could boost the mutation rate by a modest 

amount (say, 70%) that is not detectable with current methods of mutation rate 

measurement, yet it nevertheless may change its bearer’s opportunities for adaptation, if 

the population is of sufficient size (Jiang et al. 2010). The existence of the phenomenon 

of stress-induced mutagenesis could hypothetically complicate measurements further, as 

its occurrence may be able to transiently affect mutation rate by merely a few-fold (or by 

as much as a thousand-fold or more) (Galhardo et al. 2007). 

 

The properties of specific mutation rate modifiers 

One potentially interesting area of investigation is confirming whether the suspected 

mutation rate modifiers do indeed have an effect on mutation rate, and also whether they 

have a direct (or indirect) effect on fitness. This can be explored through allele 

replacement assays, where a suspected mutation rate modifier is placed on the ancestral 

background; its mutation rate can then be measured via fluctuation assays, and its fitness 

can be measured relative to the ancestor via growth competition assays. Although most 

mutation rate modifiers described in the literature are assumed to have no direct effect on 

fitness (Raynes and Sniegowski 2014) (but see Torres-Barceló et al. 2013), this 

assumption should, in an ideal world, be tested for each suspected mutator. If a 

widespread mutator allele is shown to have a direct fitness benefit, then it is possible that 

this direct effect is more responsible for its rise to fixation than mutator hitchhiking. It 

should be noted that the mutT- mutator alleles detected in the hard selection experiments 
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are not expected to affect fitness directly (Wielgoss et al. 2013). Rather, they probably 

confer an indirect benefit in that they generate new beneficial mutations that confer 

antibiotic resistance and allow their bearers to survive in a rapidly changing and 

potentially lethal environment; in short, they most likely rose to fixation by mutator 

hitchhiking.  

 

Molecular characteristics of mutators 

What are the trends, if any, in the molecular characteristics of spontaneously arising 

mutator alleles? -- both in their origin (what loci they emerge in) and in the mutational 

spectra that they inflict upon the genome? Are there ‘hotspots’ in the genome where 

mutators are more likely to emerge? Working with numerous evolving populations 

affords us an opportunity to observe potential convergent or divergent evolution. We 

should not assume that the studies in this thesis will certainly display rampant convergent 

evolution; for example, although a long-term multi-patient clinical study showed that 17 

bacterial genes had multiple nonsynonymous mutations suggestive of parallel adaptive 

evolution, this pattern had been observed across 112 pathogenic bacterial isolates 

harvested from 14 patients over 16 years (Lieberman et al. 2011), which is a larger time 

scale and sample size than the work described in this thesis.  

 

Nevertheless, the work described in this thesis did show certain parallels to preexisting 

literature. Namely, in the hard selection experiment in Chapter II, we observed that the 

same mutation (a +1 C frameshift mutation in a repeat C region of mutT) arose to 

probable fixation in survivors of the antibiotic selection series across two independent 
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replicates. This same stretch of repeat DNA was mutated in a long-term evolution 

experiment under soft selection (Barrick et al. 2009). Additionally, previous experimental 

work in two populations with spontaneously arising mutators showed that the mutator 

mutations independently arose in the same repeat region of mutL (Shaver et al. 2003). In 

both prokaryotes and eukaryotes, DNA polymerase slippage during replication is more 

likely to occur in repeat regions (Viguera et al. 2001). Though the trend for higher 

mutability at repeat regions is well-supported (Levinson and Gutman 1987), it is 

controversial whether the presence of repeat regions can be considered “adaptive” in 

general (Shaver et al. 2003). Experimental studies have identified a high number of short 

close repeats in E. coli DNA repair and stress response genes, and it was suggested that 

these repeats may be able to produce a variety of phenotypes if there is slippage during 

the synthesis of genetic material (Rocha et al. 2002). However, it is uncertain whether the 

existence of these repeat regions is necessarily the result of selection for increased 

mutability at their respective loci (Shaver et al. 2003; but see Field et al. 1999 for more 

conclusive examples of adaptive hypermutability in repeat-heavy 'contingency loci', 

which are specific genomic regions in pathogenic microbes). 

 

Regardless of the degree to which this mutT- region has adaptive significance, it is 

interesting to consider whether the hard selection experiment would have yielded similar 

results had this genomic region been less hypermutable. This question could be answered 

by replacing the repeat C region with alternate codons. The codons in which the string of 

Cs resides are as follows: ACC CCC CAA (National Center for Biotechnology 

Information), which codes for threonine, proline, and glutamine, respectively. In this 
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hypothetical experiment, the Thr codon could be replaced with ACT, ACA, or ACG; the 

Pro codon could be replaced with CCT, CCA, or CCG – thus, there would be no more 

than 2 Cs adjacent in this region, but the MutT protein would remain the same. The hard 

selection experiment could then be repeated on this engineered strain. 

 

The size of a gene (and, by extension, the size of the ‘target’ for potential mutation) may 

be worth considering when attempting to gauge the likelihood of certain new mutators 

emerging -- although our own work cannot claim to offer immediate support to this 

connection, in light of the fact that the mutT gene is only 390 basepairs long (National 

Center for Biotechnology Information). The size of a mutator gene is not the same as the 

number of sites that could cause a mutator phenotype if mutated -- for potentially 

illustrative examples of mutations in mutator loci causing no apparent effect on the 

mutation rate, refer to Chapter III, where, in some evolved clones, several mutations were 

found in loci described in the existing literature as mutators, yet we were unable to detect 

significant changes in mutation rate relative to ancestor. Of course, probability of 

emergence does not equal probability of fixation: other factors, such as the potency of the 

mutator’s effect on mutation rate, may affect whether the mutator allele spreads in the 

population. For example, a strong mutator may give an individual under lethal selection 

an advantage in acquiring the beneficial mutations requisite for survival; however, there 

has been some theoretical work suggesting that intermediate-effect mutators may be more 

likely to hitchhike (Tenaillon et al. 1999).   
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Because both the hard selection experiment and the soft selection experiment began with 

preexisting mutator strains, it is interesting to consider to what degree the observed 

changes in mutation rate (as a result of the acquisition of additional mutation rate 

modifiers) are influenced by the specific identity of the original ancestral mutator allele 

(mutL- in Chapter II and mutS- in Chapter III). Though it was not our intent to address this 

question in this dissertation, this question is worth contemplating for future studies on 

repeated mutator hitchhiking events. Although phrases such as “double-mutator” are 

occasionally seen in the mutation rate evolution literature, including our own, it must be 

remembered that the number of mutation rate modifiers is a discrete variable, yet the 

mutation rate is a continuous variable. Thus, the knowledge that two mutator alleles exist 

in a given individual is not always immediately informative at the practical level; the 

mutation rates in such individuals may not necessarily be the sum of their individual 

single-mutator mutation rates, and they may even have their own unique mutational 

spectra that are not the sum of their single mutator allele. This has been noted in strains 

mutant for both mutT- and mutY-: each, in the absence of the other allele, is a mutator 

allele (Fowler et al. 2003). When an evolving mutT- mutator strain spontaneously 

acquired a mutY- mutation, the new mutation rate was lower than the mutation rate of the 

mutT- mutY+ strain, because the mutational spectrum of mutY- counteracts the mutational 

spectrum of mutT- (Wielgoss et al. 2013). However, if two hypothetical mutators arising 

on the same genome had similar spectra, it is worth considering the possibility that they 

could cause imbalances in the GC content of the genome. It has been proposed that the 

methyl-directed mismatch repair system serves to stymie gradual escalation of the GC 

content of the genome (Lee, Popodi, Tang, and Foster 2012). Since higher GC content is 
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correlated with the presence of higher environmental temperature (Smarda et al. 2014), 

the type of environment could perhaps, in some cases, affect the viability of a population 

with a very high mutation rate that has been evolving for many generations. 

 

As mentioned earlier (particularly in light of the genomic data from the soft selection 

experiment in Chapter III), the mere existence of a mutation in a mutator locus, even if it 

is a non-conservative mutation, does not automatically mean that the mutation rate will 

be affected. There are several possible reasons for this non-effect on a mutation rate 

despite a mutation in a mutator locus. Firstly, it is obvious that not all residues of a 

protein are equally important to the protein’s function. Thus, the location of a mutation in 

a mutator locus is important for understanding what effect (if any) it will have on the 

mutation rate. Secondly, if a new mutation affects a process downstream of the same 

pathway disrupted by the first mutator allele, the mutation rate may not necessarily 

change. Thirdly, it is possible that the new mutation does indeed affect the mutation rate, 

but that there was yet another new mutation in a different mutation rate modifier locus 

that counteracts the effects of the other new mutation. This raises the question of the 

pervasiveness of epistatic interactions in our experiments, as discussed in the next section 

of this chapter.  

 

The potential for epistasis 

It is interesting to contemplate the extent to which new mutations observed in our 

evolving mutator populations have epistatic interactions with other alleles in their 

respective genomes. This is of particular relevance in the hard selection experiment 
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(Chapter II): although mutT impairment is expected to increase the genomic mutation rate 

between 100- and 1000-fold in E. coli (Maki and Sekiguchi 1992), the mutation rates in 

the evolved mutL- mutT- genotypes in chapter II were estimated to be only about 10- to 

20-fold higher than that of our ancestral mutL- genotype. Preexisting experimental studies 

have shown that the A.G mispairing mutations caused by the mutT- mutator gene are not 

recognized by the mismatch repair system (even though the same system can sometimes 

recognize A.G mispairings from other sources) (Schaaper et al. 1989), and that the 

mutator effect of the double mutator mutT- mutL- genotype is approximately additive 

(Bridges 1996). This strengthens the case for epistasis caused by another unknown 

genetic locus in the survivors of our hard selection experiment, since the mutation rate of 

the evolved genotype (mutL- mutT-) was only about one order of magnitude higher than 

the mutL- ancestral mutation rate; the proteins coded by the two genes operate in different 

pathways, and there is no reason to believe that the lower-than-expected resultant 

mutation rate is due to redundancy between the two genes.  

 

To determine what may be partly suppressing the mutT- mutator effect in the hard 

selection strains, an allele replacement assay could be performed, where the mutT- 

mutation is placed on the ancestral mutL- background, along with one of the other 

mutations uncovered in the whole genome sequencing, which may be suspected as being 

a (conditional) antimutator. Drake’s 1993 statement on the improbability of strong 

antimutators may be worth revisiting in the context of mutator bacteria: this claim may be 

true for wild-type mutation rates, but there could be many genes that, when mutated, may 

act as antimutators in mutator strains. It is worth noting that in one experimental study of 
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bacteria with an ancestral mutT- mutator genotype, their mutation rates declined after 

2,300 generations of evolution, though they still remained higher than wild-type levels 

(Tröbner and Piechocki 1984). The authors showed that the mutT- allele itself had not 

changed (Tröbner and Piechocki 1984). Although this study took place in a chemostat, 

involved a different starting genotype than the mutL- starting genotype of our hard 

selection experiment, and was propagated for a longer number of generations, it is a 

precedent for the existence of dampened mutT- mutator phenotypes in evolving 

populations.  

 

Gaining new perspectives along the evolutionary timeline  

In an evolution experiment, it is important to understand how the observed slice of time 

fits in with the past and the future. Therefore, it would be illuminating to sequence the 

frozen timepoints across the course of the soft selection experiment and determine the 

changes in frequency of candidate mutation rate modifiers over time, especially the time 

of emergence. (At the present time, whole-genome population sequencing is underway 

for the 30 evolved soft selection populations to determine the current frequencies.) 

Furthermore, the timelines for both the hard selection experiment and the soft selection 

experiment could hypothetically be extended.  

 

In the soft selection experiment, this would be a simple matter of reviving the 30 

populations at the latest timepoints and continuing propagation for hundreds or even 

thousands more generations. Considering the degree of mutation rate polymorphism in 

many of the current populations, it would be interesting to see whether this mutation rate 
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polymorphism is stable over time. Another potential avenue of study would be to see if 

the populations containing clones with elevated mutation rates (described in Chapter III) 

underwent further mutator hitchhiking events, thereby giving more weight to theoretical 

predictions of the possibility of repeated mutator hitchhiking events in asexual adapting 

populations (Gerrish et al. 2007), and/or whether these mutation rates decline over time, 

either out of the need to reduce deleterious mutational load or because of pleiotropic 

direct fitness benefits conferred by new antimutator alleles. Extending the timeline of the 

hard selection experiment would require the challenging task of finding additional 

selective agents that are not cross-resistant to the three antibiotics used in our selection 

series; furthermore, they cannot be cross-resistant to nalidixic acid, the selective agent 

used in the fluctuation tests. If these agents are identified and the experiment extended, 

however, it would be interesting to see if there is a point in the selective ‘gauntlet’ after 

which the entire population became extinct (from accumulated deleterious mutations or 

from an inability to acquire the necessary resistance mutations), and/or whether 

additional mutator hitchhiking events would occur. It has been suggested that theoretical 

models of extinction via mutational degradation tend to depend on the context of species, 

environment, and timing (Gerrish et al. 2013); with that in mind, it is important to 

supplement these theoretical models with empirical studies. 
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APPENDIX 

 

 
 
 
Venn diagram summarizing the classifications of the new mutations uncovered in the 

two sequenced evolved clones (FRS13 and FRS16; refer to Figure 2a-b) since their 

divergence from the single-mutator ancestor. 
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The nucleotide sequence of the wild-type mutT gene. The gene contains a string of six 

cytosines at positions 182-187 (underlined). After three rounds of antibiotic selection, 

two clones with further increases in mutation rate were sequenced (FRS13 and FRS16, 

refer to Figure 2a-b and Figure S1); both clones possess a frameshift mutation (+C) 

within the 182-187 repeat region. 
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Table S1. 

 

Absolute mutation rate (MR) estimates from all fluctuation assays (Figure 2a-b). Refer to text for 

details on methodology and interpretation of results. Each yellow row designates the reference 

ancestor in that category that was used for the ancestral confidence intervals (CIs) in Figure 2a-b. 

(The reference ancestor was the ancestor with the largest difference between the 95% CIs when 

expressed as "-fold difference".) Red refers to increased MR; blue refers to decreased MR. 

 

Table S1a: Fosfomycin����rifampicin����streptomycin (FRS) exposure. (Refer to FRS in Figure 2a.) 

Strain 

description 

Lab 

strain # 

Fluctuation 

assay 

batch ID 

Mutation rate (MR) measurements w/ 95% 

CIs 

Notes 

Qualitative 

MR 

relative to 

ancestor 

Max 

likelihoo

d MR 

Lower 

95% CI 

Upper 

95% CI 

MUTATOR 

ANCESTOR 

PS2533 C N/A 6.74E-08 4.77E-

08 

9.51E-

08 

 

MUTATOR 

ANCESTOR 

PS2533 D N/A 6.42E-08 5.00E-

08 

8.24E-

08 

 

MUTATOR 

ANCESTOR 

PS2533 F N/A 9.64E-08 7.36E-

08 

1.26E-

07 

 

FRS SERIES 

1, clone 1 

PS4146 D HIGHER 7.18E-07 4.69E-

07 

1.10E-

06 

 

FRS SERIES 

1, clone 2 

PS4147 D HIGHER 5.29E-07 3.83E-

07 

7.30E-

07 

 

FRS SERIES 

1, clone 3 

PS4148 D HIGHER 6.57E-07 5.07E-

07 

8.50E-

07 

 

FRS SERIES 

1, clone 4 

PS4149 D HIGHER 4.17E-07 3.21E-

07 

5.42E-

07 

 

FRS SERIES 

1, clone 5 

PS4150 D HIGHER 4.19E-07 3.09E-

07 

5.69E-

07 

 

FRS SERIES 

1, clone 6 

PS4151 D HIGHER 3.83E-07 2.73E-

07 

5.35E-

07 

 

FRS SERIES 

1, clone 7 

PS4152 C HIGHER 5.08E-07 3.88E-

07 

6.65E-

07 

 

FRS SERIES 

1, clone 8 

PS4153 C HIGHER 6.19E-07 4.81E-

07 

7.96E-

07 

 

FRS SERIES 

1, clone 9 

PS4154 F HIGHER 7.07E-07 5.31E- 9.43E-  
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07 07 

FRS SERIES 

2, clone 1 

PS4735 D HIGHER 1.08E-06 9.07E-

07 

1.28E-

06 

From same 

selection series 

as PS4705-4709. 

 

MRs of PS4146-51 were measured in fluctuation assay batch K, whose ancestral MR values are 

not listed here because they were outliers compared to all other measurements of the 

ancestor's MR. (Even with the batch K ancestral MR values, however, the MRs of these six clones 

were still higher than ancestor, with non-overlapping CIs.)  

 

The MR of PS4735 was measured in fluctuation assay batch L, whose ancestral MR values are 

not listed here because a technical error occurred with the population (plain LB) plates of the 

ancestor, preventing the ancestral MR from being calculated. 

 

Hence, in Figure 2a and Table S1, the ancestral MR from fluctuation assay batch D was used for 

calculating -fold MR change from ancestor in the aforementioned strains. 
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Table S1b: Single fosfomycin (F) exposure. (Refer to F in Figure 2a.) 

Strain 

description 

Lab 

strain # 

Fluctuation 

assay batch 

ID 

Mutation rate (MR) measurements w/ 95% CIs Notes 

Qualitative 

MR relative 

to ancestor 

Max 

likelihood 

MR 

Lower 

95% CI 

Upper 

95% CI 

MUTATOR 

ANCESTOR 

PS2533 A N/A 7.23E-08 5.48E-

08 

9.53E-08  

MUTATOR 

ANCESTOR 

PS2533 E N/A 7.48E-08 5.62E-

08 

9.95E-08  

MUTATOR 

ANCESTOR 

PS2533 H N/A 2.87E-07 2.36E-

07 

3.49E-07  

MUTATOR 

ANCESTOR 

PS2533 I N/A 7.50E-08 5.71E-

08 

9.85E-08  

F SERIES 1, 

clone 1 

PS4678 A SAME 1.19E-07 8.80E-

08 

1.60E-07  

F SERIES 1, 

clone 2 

PS4679 A SAME 1.18E-07 8.77E-

08 

1.60E-07  

F SERIES 1, 

clone 3 

PS4680 A SAME 1.16E-07 8.01E-

08 

1.69E-07  

F SERIES 1, 

clone 4 

PS4681 E SAME 1.05E-07 7.06E-

08 

1.56E-07  

F SERIES 1, 

clone 5 

PS4682 E SAME 6.92E-08 4.72E-

08 

1.02E-07  

F SERIES 1, 

clone 8 

PS4685 H LOWER 1.51E-07 1.10E-

07 

2.06E-07  

F SERIES 1, 

clone 9 

PS4686 H LOWER 1.57E-07 1.13E-

07 

2.18E-07  

F SERIES 1, 

clone 10 

PS4687 I SAME 6.46E-08 4.77E-

08 

8.76E-08  
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Table S1c: Single rifampicin (R) exposure. (Refer to R in Figure 2a.) 

Strain 

description 

Lab 

strain # 

Fluctuation 

assay batch 

ID 

Mutation rate (MR) measurements w/ 95% 

CIs 

Notes 

Qualitative 

MR relative 

to ancestor 

Max 

likelihood 

MR 

Lower 

95% 

CI 

Upper 

95% CI 

MUTATOR 

ANCESTOR 

PS2533 E N/A 7.48E-08 5.62E

-08 

9.95E-

08 

 

MUTATOR 

ANCESTOR 

PS2533 F N/A 9.64E-08 7.36E

-08 

1.26E-

07 

 

R SERIES 1, 

clone 1 

PS4485 E HIGHER 2.85E-07 2.17E

-07 

3.73E-

07 

 

R SERIES 1, 

clone 3 

PS4487 E HIGHER 1.81E-07 1.32E

-07 

2.48E-

07 

 

R SERIES 1, 

clone 6 

PS4490 F SAME 6.93E-08 4.56E

-08 

1.05E-

07 

 

R SERIES 1, 

clone 7 

PS4491 F SAME 1.44E-07 1.06E

-07 

1.94E-

07 

 

R SERIES 1, 

clone 8 

PS4492 F SAME 1.21E-07 8.07E

-08 

1.82E-

07 
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Table S1d: Single streptomycin (S) exposure. (Refer to S in Figure 2a.)  

Strain 

description 

Lab 

strain # 

Fluctuation 

assay batch 

ID 

Mutation rate (MR) measurements w/ 95% 

CIs 

Notes 

Qualitative 

MR relative 

to ancestor 

Max 

likelihood 

MR 

Lower 

95% 

CI 

Upper 

95% CI 

MUTATOR 

ANCESTOR 

PS2533 D N/A 6.42E-08 5.00E

-08 

8.24E-

08 

 

MUTATOR 

ANCESTOR 

PS2533 G N/A 1.89E-07 1.49E

-07 

2.40E-

07 

 

S SERIES 1, 

clone 1 

PS4451 D SAME 1.05E-07 8.24E

-08 

1.34E-

07 

From same 

selection series 

as PS4533-

4542. 

S SERIES 1, 

clone 2 

PS4452 D SAME 4.68E-08 3.10E

-08 

7.06E-

08 

From same 

selection series 

as PS4533-

4542. 

S SERIES 1, 

clone 3 

PS4453 D SAME 6.31E-08 4.45E

-08 

8.95E-

08 

From same 

selection series 

as PS4533-

4542. 

S SERIES 1, 

clone 4 

PS4454 D SAME 4.53E-08 3.25E

-08 

6.31E-

08 

From same 

selection series 

as PS4533-

4542. 

S SERIES 1, 

clone 5 

PS4455 D SAME 3.53E-08 2.19E

-08 

5.71E-

08 

From same 

selection series 

as PS4533-

4542. 

S SERIES 1, 

clone 6 

PS4456 G SAME 1.50E-07 9.80E

-08 

2.31E-

07 

From same 

selection series 

as PS4533-

4542. 
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Table S1e: Fosfomycin����rifampicin (FR) exposure. (Refer to FR in Figure 2a.)  

Strain 

description 

Lab 

strain # 

Fluctuation 

assay batch 

ID 

Mutation rate (MR) measurements w/ 95% 

CIs 

Notes 

Qualitative 

MR relative 

to ancestor 

Max 

likelihood 

MR 

Lower 

95% 

CI 

Upper 

95% CI 

MUTATOR 

ANCESTOR 

PS2533 C N/A 6.74E-08 4.77E

-08 

9.51E-

08 

 

MUTATOR 

ANCESTOR 

PS2533 F N/A 9.64E-08 7.36E

-08 

1.26E-

07 

 

FR SERIES 

1, clone 6 

PS4705 C SAME 8.93E-08 6.74E

-08 

1.18E-

07 

From same 

selection series 

as PS4735. 

FR SERIES 

1, clone 7 

PS4706 F HIGHER 1.97E-07 1.49E

-07 

2.59E-

07 

From same 

selection series 

as PS4735. 

FR SERIES 

1, clone 8 

PS4707 F SAME 8.27E-08 5.85E

-08 

1.17E-

07 

From same 

selection series 

as PS4735. 

FR SERIES 

1, clone 9 

PS4708 F SAME 9.14E-08 6.61E

-08 

1.26E-

07 

From same 

selection series 

as PS4735. 

FR SERIES 

1, clone 10 

PS4709 F SAME 9.53E-08 6.68E

-08 

1.36E-

07 

From same 

selection series 

as PS4735. 
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Table S1f: Streptomycin����rifampicin����fosfomycin (SRF) exposure. (Refer to SRF in Figure 2a.) 

Strain 

description 

Lab 

strain # 

Fluctuation 

assay batch 

ID 

Mutation rate (MR) measurements w/ 95% 

CIs 

Notes 

Qualitative 

MR relative 

to ancestor 

Max 

likelihood 

MR 

Lower 

95% 

CI 

Upper 

95% CI 

MUTATOR 

ANCESTOR 

PS2533 J N/A 8.45E-08 6.25E

-08 

1.14E-07  

MUTATOR 

ANCESTOR 

PS2533 B N/A 7.34E-08 5.54E

-08 

9.72E-08  

MUTATOR 

ANCESTOR 

PS2533 F N/A 9.64E-08 7.36E

-08 

1.26E-07  

MUTATOR 

ANCESTOR 

PS2533 C N/A 6.74E-08 4.77E

-08 

9.51E-08  

SRF SERIES 

1, clone 1 

PS4530 J SAME 1.47E-07 1.11E

-07 

1.93E-07  

SRF SERIES 

1, clone 2 

PS4531 J SAME 5.22E-08 3.65E

-08 

7.47E-08  

SRF SERIES 

2, clone 1 

PS4533 B SAME 7.73E-08 5.29E

-08 

1.13E-07 From the 

same 

selection 

series as 

PS4451-

4456. 

SRF SERIES 

2, clone 2 

PS4534 B SAME 1.03E-07 6.84E

-08 

1.54E-07 From the 

same 

selection 

series as 

PS4451-

4456. 

SRF SERIES 

2, clone 3 

PS4535 B LOWER 2.15E-08 1.07E

-08 

4.33E-08 From the 

same 

selection 

series as 

PS4451-

4456. 

SRF SERIES 

2, clone 4 

PS4536 B SAME 7.55E-08 5.17E

-08 

1.10E-07 From the 

same 

selection 

series as 

PS4451-

4456. 
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SRF SERIES 

2, clone 5 

PS4537 B SAME 8.27E-08 6.11E

-08 

1.12E-07 From the 

same 

selection 

series as 

PS4451-

4456. 

SRF SERIES 

2, clone 6 

PS4538 B SAME 5.05E-08 3.11E

-08 

8.19E-08 From the 

same 

selection 

series as 

PS4451-

4456. 

SRF SERIES 

2, clone 7 

PS4539 F SAME 8.19E-08 5.77E

-08 

1.16E-07 From the 

same 

selection 

series as 

PS4451-

4456. 

SRF SERIES 

2, clone 9 

PS4541 B SAME 7.50E-08 5.49E

-08 

1.02E-07 From the 

same 

selection 

series as 

PS4451-

4456. 

SRF SERIES 

2, clone 10 

PS4542 C SAME 6.30E-08 4.48E

-08 

8.86E-08 From the 

same 

selection 

series as 

PS4451-

4456. 

 

Note for run J’s ancestor in the SRF table above: the run J ancestor's population replicate plate 

#5 was an outlier in terms of colony counts. Therefore, five replicates were used for calculating 

run J's ancestral mutation rate. 
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Table S1g: Transformed clones after fosfomycin����rifampicin����streptomycin (FRS) exposure. 

(Refer to Figure 2b.) 

Strain 

description 

Lab 

strain # 

Fluctuation 

assay batch 

ID 

Mutation rate (MR) measurements w/ 95% 

CIs 

Notes 

Qualitative 

MR relative 

to 

transformed 

ancestor 

Max 

likelihood 

MR 

Lower 

95% 

CI 

Upper 

95% CI 

MUTATOR 

ANCESTOR 

TRANSFORMED 

W/ EMPTY 

PLASMID 

PS4840 a N/A 1.75E-07 1.26E

-07 

2.43E-

07 

The 

mutator 

ancestor 

is PS2533. 

MUTATOR 

ANCESTOR 

TRANSFORMED 

W/ EMPTY 

PLASMID 

PS4840 b N/A 1.30E-07 8.44E

-08 

2.00E-

07 

The 

mutator 

ancestor 

is PS2533. 

MUTATOR 

ANCESTOR 

TRANSFORMED 

W/ EMPTY 

PLASMID 

PS4840 c N/A 1.36E-07 9.18E

-08 

2.02E-

07 

The 

mutator 

ancestor 

is PS2533. 

FRS13 

transformed 

w/ mutT+ 

plasmid 

PS4835 c SAME 6.74E-08 4.50E

-08 

1.01E-

07 

FRS13 is 

PS4148. 

FRS13 

transformed 

w/ empty 

plasmid 

PS4836 c HIGHER 5.03E-07 2.66E

-07 

9.49E-

07 

FRS13 is 

PS4148. 

FRS16 

transformed 

w/ mutT+ 

plasmid 

PS4837 b SAME 1.52E-07 9.75E

-08 

2.37E-

07 

FRS16 is 

PS4151. 

FRS16 

transformed 

w/ empty 

plasmid 

PS4838 b HIGHER 7.22E-07 6.01E

-07 

8.67E-

07 

FRS16 is 

PS4151. 

Mutator 

ancestor 

transformed 

w/ mutT+ 

plasmid  

PS4839 a SAME 2.36E-07 1.57E

-07 

3.57E-

07 

The 

mutator 

ancestor 

is PS2533. 
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Table S2a. 

Position Mutation Annotation Description 

111,230 (C)6→7 coding (187/390 nt) 

dGTP preferring nucleoside triphosphate 

pyrophosphohydrolase 

257,908 Δ776 bp   [crl] 

1,134,811 A→G N28S (AAC→AGC)  

flagellar component of cell distal portion of 

basal body rod 

1,785,924 T→G T397P (ACC→CCC)  phosphoenolpyruvate synthase 

2,661,746 A→C L129R (CTG→CGG)  

isc operon transcriptional repressor; suf 

operon transcriptional activator; oxidative 

stress  and iron starvation inducible; 

autorepressor 

3,201,898 T→G I3S (ATT→AGT)  

fused tRNA nucleotidyl 

transferase/2'3' cyclic 

phosphodiesterase/2'nucleotidase and 

phosphatase 

3,253,604 T→C D204G (GAT→GGT)  

LysR family putative transcriptional 

regulator 

3,336,866 A→C intergenic ( 63/+97) 

acid stress protein; putative BolA family 

transcriptional regulator/ABC transporter 

maintaining OM lipid asymmetry, 

cytoplasmic STAS component 

3,474,425 T→G K43T (AAA→ACA)  30S ribosomal subunit protein S12 

3,573,091 T→C T138A (ACG→GCG)  1,4 alpha glucan branching enzyme 

 

The computational pipeline breseq's predictions for the mutations that were found in both FRS13 and 

FRS16, but not in the single-mutator ancestor. 
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Table S2b. 

Position Mutation Annotation Description 

116,249 T→G D284A (GAT→GCT)  

T2SE secretion family protein; P loop 

ATPase superfamily protein 

421,880 A→C N299H (AAC→CAC)  proline specific permease 

653,362 T→G S376S (TCT→TCG)  

sensory histidine kinase in 

two component regulatory system 

with CitB 

1,195,544 T→C V141A (GTT→GCT)  

isocitrate dehydrogenase; e14 

prophage attachment site; tellurite 

reductase 

1,298,612 T→G F5L (TTT→TTG)  

UPF0056 family inner membrane 

protein 

1,482,839 T→G K8Q (AAA→CAA)  

NADH azoreductase, 

FMN dependent 

1,593,880 A→G pseudogene (246/1461 nt) pseudogene, AidA homolog 

2,057,676 (C)7→8 intergenic (+102/+351) UPF0082 family protein/tRNA Asn 

2,130,949 A→C F374L (TTT→TTG)  putative glycosyl transferase 

2,533,869 A→C T36P (ACT→CCT)  

phosphohistidinoprotein hexose 

phosphotransferase component of 

PTS system (Hpr) 

2,972,258 A→C E221A (GAA→GCA)  

putative NADP(H) dependent 

aldo keto reductase 

3,240,568 T→G F209V (TTC→GTC)  sodium:serine/threonine symporter 

3,455,411 T→G intergenic ( 13/ 167) 

general secretory pathway 

component, cryptic/general 

secretory pathway component, 

cryptic 

3,846,412 A→C V252V (GTT→GTG)  hexose phosphate transporter 

3,891,348 T→G A371A (GCT→GCG)  

tryptophan transporter of low 

affinity 

4,182,778 T→C S512P (TCT→CCT)  RNA polymerase, beta subunit 

4,374,740 A→C I306M (ATT→ATG)  

EF P Lys34 lysylation protein; weak 

lysine 2,3 aminomutase 

 

The computational pipeline breseq's predictions for the mutations that were found in FRS13, but not in 

FRS16 or the single-mutator ancestor. 
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Table S2c. 

Position Mutation Annotation Description 

647,883 A→C I51M (ATT→ATG)  

apo citrate lyase 

phosphoribosyl dephospho CoA 

transferase 

1,066,992 A→G Y34H (TAC→CAC)  uncharacterized protein 

1,175,903 T→C G159G (GGT→GGC)  

lipoprotein releasing system 

transmembrane protein 

1,256,370 T→G intergenic ( 418/+351) 

putative adhesin/catalase inhibitor 

protein; ATPase, K+ dependent, 

ribosome associated 

1,555,425 T→C D82G (GAC→GGC)  

malate dehydrogenase, decarboxylating, 

NAD requiring; malic enzyme 

1,605,296 T→C N82N (AAT→AAC)  autoinducer 2 binding protein 

1,660,739 A→C N62H (AAC→CAC)  

S  and N oxide reductase, A subunit, 

periplasmic 

1,970,661 A→C T108T (ACT→ACG)  methyl accepting protein IV 

1,975,465 A→G V264A (GTA→GCA)  

protein that enables flagellar motor 

rotation 

2,244,571 A→C D221A (GAT→GCT)  S formylglutathione hydrolase 

2,401,092 A→C L155R (CTG→CGG)  

NADH:ubiquinone oxidoreductase, chain 

F 

2,456,208 A→C intergenic ( 562/+119) 

putative fimbrial like adhesin 

protein/phosphohistidine phosphatase 

2,651,740 T→G E183A (GAA→GCA)  

bacterial alpha2 macroglobulin 

colonization factor ECAM; anti host 

protease defense factor; periplasmic 

inner membrane anchored lipoprotein 

2,817,916 T→G intergenic ( 56/+143) tRNA Arg/tRNA Arg 

2,818,145 T→C intergenic ( 10/+53)   

3,194,362 (G)6→7 coding (1499/1662 nt) 

PHB family membrane protein, function 

unknown 

3,560,424 A→C pseudogene (30/606 nt) 

pseudogene, DNA binding transcriptional 

repressor; regulator; Energy metabolism, 

carbon: Anaerobic respiration; repressor 

of the glp operon 

3,676,498 A→C I618S (ATT→AGT)  

putative inner membrane anchored 

periplasmic AsmA family protein 

3,850,366 A→C Y121D (TAT→GAT)  

response regulator in two component 

regulatory system wtih UhpB 

3,936,152 A→C N289H (AAT→CAT)  D ribose ABC transporter permease 

4,182,782 A→C Q513P (CAG→CCG)  RNA polymerase, beta subunit 
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4,272,989 T→G I295L (ATC→CTC)  

ATPase and DNA damage recognition 

protein of nucleotide excision repair 

excinuclease UvrABC 

 

The computational pipeline breseq's predictions for the mutations that were found in FRS16, but not in 

FRS13 or the single-mutator ancestor. 
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Table S3. 
 

 

 Media Total # 

cells at 

start of 

this stage 

# resistant 

cells at start 

of this stage 

Total # cells 

at end of 

this stage 

# resistant 

cells at end 

of this 

stage 

Total # cells 

transferred 

to next 

stage 

# resistant 

cells 

transferred to 

next stage 

Day 1: Flask of 

10 mL 

plain LB 

15 million 0 10 billion 1 1 thousand 1 

Days 

2-4: 

Flask of 

30 mL 

plain LB 

1 

thousand 

1 30 billion 30 million 100 million 100 thousand 

Days 

5-6: 

Nalidixic 

acid LB 

plate 

100 

million 

100 

thousand 

100 

thousand 

colonies 

100 

thousand 

colonies 

N/A N/A 

 

 

The high numbers of mutant colonies in the fluctuation assay are a true indication of high 

mutation rates. Table S3 illustrates a hypothetical scenario where a nalidixic acid-resistant cell is 

seeded into a fluctuation assay flask at the start of Day 2. If this scenario took place, the nalidixic 

acid (nal) plate would contain ~100,000 colonies, which would appear as an uncountable lawn 

to the human eye. In the actual fluctuation assays, no lawns were observed on any nal plates. 

Hence, it is likely that the nal-resistant cells arose during the incubation from Day 2 - Day 4, not 

beforehand. These calculations exclude the existence of cells that are expected to 

spontaneously acquire nal resistance after day 2. The calculations thus suggest that a single nal-

resistant mutant seeded into the culture by day 2 would be sufficient to cause a lawn to grow on 

nal, even in the absence of new nal-resistant mutants that normally appear on the nal plates of 

mutator fluctuation assays. The unlikeliness of the scenario illustrated in this table is 

compounded by the fact that even if a nal-resistant mutant cell emerged in the day 1 culture, 

the odds of it being transferred to the day 2 culture are low (0.00001%). 
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Table: Estimated fitnesses relative to ancestor (w) of 30 evolved populations after 900 

generations of propagation under soft selection 

 

w 

Soft selection 

population, rank-ordered 

by w value 

1.14 Ara+3 

1.15 Ara+13 

1.18 Ara+8 

1.19 Ara+7 

1.21 Ara+5 

1.21 Ara-7 

1.24 Ara-10 

1.24 Ara+6 

1.24 Ara+4 

1.25 Ara+1 

1.25 Ara+9 

1.25 Ara+2 

1.26 Ara+10 

1.26 Ara-9 

1.26 Ara-1 

1.26 Ara-8 

1.27 Ara-6 

1.30 Ara+15 

1.32 Ara-12 

1.32 Ara-5 

1.33 Ara-3 

1.34 Ara-11 

1.36 Ara+11 

1.36 Ara-13 

1.38 Ara+12 

1.39 Ara-2 

1.39 Ara-15 

1.39 Ara-4 

1.39 Ara-14 

1.41 Ara+14 
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Table: Estimated selection coefficients (s) of 155 evolved clones after 900 generations of soft 

selection 

 

Strain 

ID 

Population 

& clone 

number 

Mean 

selection 

coefficient 

(s) across 3 

replicates 

Standard 

deviation 

Replicate 

1 

Replicate 

2 

Replicate 

3 

PS3838 Ara-1, c1 0.31 0.02 0.29 0.31 0.32 

PS3878 Ara-1, c2 0.27 0.02 0.25 0.27 0.29 

PS3879 Ara-1, c3 0.23 0.02 0.21 0.22 0.25 

PS3880 Ara-1, c4 0.14 0.01 0.15 0.13 0.14 

PS3881 Ara-1, c5 0.23 0.04 0.27 0.2 0.22 

PS3839 Ara-2, c1 0.28 0.04 0.23 0.3 0.3 

PS3882 Ara-2, c2 0.25 0.03 0.23 0.28 0.24 

PS3883 Ara-2, c3 0.32 0.03 0.3 0.3 0.35 

PS3884 Ara-2, c4 0.23 0.03 0.21 0.27 0.21 

PS3885 Ara-2, c5 0.26 0.02 0.27 0.24 0.28 

PS3840 Ara-3, c1 0.32 0.04 0.29 0.37 0.3 

PS3886 Ara-3, c2 0.38 0.04 0.43 0.36 0.36 

PS3887 Ara-3, c3 0.29 0.04 0.33 0.27 0.27 

PS3888 Ara-3, c4 0.19 0.02 0.20 0.17 0.21 

PS3889 Ara-3, c5 0.32 0.02 0.33 0.31 0.31 

PS3841 Ara-4, c1 0.26 0.05 0.30 0.21 0.26 

PS3890 Ara-4, c2 0.25 0.00 0.25 0.25 0.25 

PS3891 Ara-4, c3 0.21 0.00 0.21 0.21 0.21 

PS3892 Ara-4, c4 0.26 0.02 0.26 0.24 0.28 

PS3893 Ara-4, c5 0.36 0.04 0.33 0.34 0.40 

PS3842 Ara-5, c1 0.18 0.03 0.20 0.18 0.15 

PS3894 Ara-5, c2 0.27 0.04 0.31 0.23 0.28 

PS3895 Ara-5, c3 0.26 0.04 0.24 0.30 0.23 

PS3896 Ara-5, c4 0.27 0.01 0.27 0.28 0.27 

PS3897 Ara-5, c5 0.30 0.05 0.35 0.29 0.25 

PS3843 Ara-6, c1 0.32 0.04 0.29 0.30 0.37 

PS3898 Ara-6, c2 0.24 0.01 0.23 0.25 0.25 

PS3899 Ara-6, c3 0.28 0.04 0.23 0.29 0.31 

PS3900 Ara-6, c4 0.21 0.03 0.24 0.19 0.21 

PS3901 Ara-6, c5 0.20 0.01 0.19 0.20 0.20 

PS3844 Ara-7, c1 0.31 0.06 0.38 0.27 0.28 
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PS3902 Ara-7, c2 0.12 0.02 0.14 0.10 0.12 

PS3903 Ara-7, c3 0.24 0.03 0.27 0.21 0.24 

PS3904 Ara-7, c4 0.29 0.03 0.27 0.32 0.29 

PS3905 Ara-7, c5 0.22 0.03 0.20 0.26 0.21 

PS3845 Ara-8, c1 0.24 0.02 0.22 0.26 0.24 

PS3906 Ara-8, c2 0.23 0.03 0.19 0.25 0.25 

PS3907 Ara-8, c3 0.41 0.06 0.47 0.41 0.36 

PS3908 Ara-8, c4 0.24 0.04 0.20 0.27 0.26 

PS3909 Ara-8, c5 0.32 0.02 0.31 0.34 0.31 

PS3846 Ara-9, c1 0.30 0.03 0.31 0.33 0.27 

PS3910 Ara-9, c2 0.27 0.00 0.27 0.27 0.27 

PS3911 Ara-9, c3 0.30 0.03 0.33 0.28 0.29 

PS3912 Ara-9, c4 0.20 0.03 0.17 0.22 0.20 

PS3913 Ara-9, c5 0.24 0.02 0.23 0.26 0.24 

PS3847 Ara-10, c1 0.29 0.04 0.27 0.27 0.34 

PS3914 Ara-10, c2 0.35 0.04 0.30 0.36 0.38 

PS3915 Ara-10, c3 0.27 0.02 0.25 0.29 0.28 

PS3916 Ara-10, c4 0.25 0.02 0.25 0.23 0.26 

PS3917 Ara-10, c5 0.31 0.03 0.29 0.29 0.35 

PS3848 Ara-11, c1 0.22 0.02 0.22 0.20 0.23 

PS3928 Ara-11, c2 0.35 0.02 0.34 0.37 0.35 

PS3929 Ara-11, c3 0.38 0.06 0.44 0.32 0.37 

PS3930 Ara-11, c4 0.41 0.05 0.44 0.44 0.36 

PS3931 Ara-11, c5 0.33 0.05 0.30 0.31 0.39 

PS3849 Ara-12, c1 0.15 0.01 0.14 0.15 0.15 

PS3932 Ara-12, c2 0.31 0.01 0.31 0.32 0.30 

PS3933 Ara-12, c3 0.32 0.02 0.31 0.31 0.34 

PS3934 Ara-12, c4 0.27 0.01 0.26 0.28 0.28 

PS3935 Ara-12, c5 0.25 0.03 0.23 0.24 0.29 

PS3850 Ara-13, c1 0.23 0.02 0.23 0.21 0.24 

PS3936 Ara-13, c2 0.24 0.02 0.24 0.22 0.26 

PS3937 Ara-13, c3 0.28 0.04 0.23 0.31 0.30 

PS3938 Ara-13, c4 0.20 0.03 0.22 0.22 0.16 

PS3939 Ara-13, c5 0.29 0.02 0.32 0.29 0.27 

PS3851 Ara-14, c1 0.22 0.02 0.20 0.22 0.24 

PS3940 Ara-14, c2 0.16 0.04 0.13 0.14 0.20 

PS3941 Ara-14, c3 0.24 0.02 0.25 0.25 0.21 

PS3942 Ara-14, c4 0.28 0.07 0.32 0.20 0.33 
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PS3943 Ara-14, c5 0.34 0.05 0.33 0.29 0.39 

PS3852 Ara-15, c1 0.17 0.02 0.19 0.18 0.15 

PS3944 Ara-15, c2 0.30 0.04 0.34 0.26 0.29 

PS3945 Ara-15, c3 0.29 0.04 0.28 0.26 0.33 

PS3946 Ara-15, c4 0.37 0.02 0.36 0.36 0.39 

PS3947 Ara-15, c5 0.31 0.01 0.32 0.31 0.30 

PS3853 Ara+1, c1 0.27 0.03 0.24 0.29 0.27 

PS3948 Ara+1, c2 0.23 0.03 0.23 0.21 0.26 

PS3949 Ara+1, c3 0.23 0.05 0.25 0.18 0.27 

PS3950 Ara+1, c4 0.20 0.04 0.15 0.23 0.21 

PS3951 Ara+1, c5 0.23 0.02 0.22 0.25 0.23 

PS3854 Ara+2, c1 0.25 0.01 0.25 0.26 0.25 

PS3952 Ara+2, c2 0.27 0.04 0.27 0.31 0.23 

PS3953 Ara+2, c3 0.20 0.03 0.16 0.22 0.22 

PS3954 Ara+2, c4 0.26 0.02 0.24 0.26 0.28 

PS3955 Ara+2, c5 0.18 0.03 0.18 0.16 0.21 

PS3855 Ara+3, c1 0.21 0.03 0.21 0.18 0.24 

PS3956 Ara+3, c2 0.22 0.04 0.27 0.20 0.20 

PS3957 Ara+3, c3 0.21 0.03 0.24 0.21 0.19 

PS3958 Ara+3, c4 0.24 0.03 0.27 0.22 0.22 

PS3959 Ara+3, c5 0.27 0.02 0.28 0.28 0.24 

PS3856 Ara+4, c1 0.21 0.02 0.20 0.21 0.23 

PS3960 Ara+4, c2 0.21 0.02 0.21 0.23 0.20 

PS3961 Ara+4, c3 0.22 0.02 0.21 0.24 0.22 

PS3962 Ara+4, c4 0.22 0.03 0.20 0.22 0.25 

PS3963 Ara+4, c5 0.26 0.02 0.27 0.26 0.24 

PS3857 Ara+5, c1 0.25 0.02 0.26 0.23 0.26 

PS3964 Ara+5, c2 0.26 0.03 0.29 0.25 0.23 

PS3965 Ara+5, c3 0.21 0.03 0.19 0.21 0.24 

PS3966 Ara+5, c4 0.22 0.02 0.23 0.22 0.20 

PS3967 Ara+5, c5 0.27 0.02 0.28 0.25 0.29 

PS3858 Ara+6, c1 0.23 0.03 0.23 0.26 0.20 

PS3978 Ara+6, c2 0.28 0.03 0.26 0.26 0.32 

PS3979 Ara+6, c3 0.27 0.03 0.26 0.25 0.30 

PS3980 Ara+6, c4 0.33 0.01 0.32 0.33 0.33 

PS3981 Ara+6, c5 0.26 0.03 0.24 0.26 0.29 

PS3859 Ara+7, c1 0.21 0.02 0.20 0.24 0.20 

PS3982 Ara+7, c2 0.27 0.02 0.29 0.25 0.26 
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PS3983 Ara+7, c3 0.19 0.02 0.18 0.21 0.17 

PS3984 Ara+7, c4 0.14 0.05 0.10 0.19 0.13 

PS3985 Ara+7, c5 0.18 0.03 0.16 0.22 0.16 

PS3860 Ara+8, c1 0.23 0.03 0.25 0.25 0.19 

PS3986 Ara+8, c2 0.23 0.04 0.20 0.22 0.27 

PS3987 Ara+8, c3 0.20 0.01 0.19 0.20 0.21 

PS3988 Ara+8, c4 0.17 0.02 0.17 0.15 0.19 

PS3989 Ara+8, c5 0.31 0.02 0.31 0.32 0.29 

PS3861 Ara+9, c1 0.20 0.04 0.24 0.17 0.20 

PS3990 Ara+9, c2 0.28 0.01 0.27 0.28 0.28 

PS3991 Ara+9, c3 0.19 0.01 0.19 0.19 0.20 

PS3992 Ara+9, c4 0.21 0.01 0.22 0.22 0.20 

PS3993 Ara+9, c5 0.20 0.03 0.20 0.23 0.17 

PS3862 Ara+10, c1 0.21 0.03 0.23 0.21 0.18 

PS3994 Ara+10, c2 0.19 0.02 0.17 0.20 0.21 

PS3995 Ara+10, c3 0.22 0.04 0.18 0.25 0.22 

PS3996 Ara+10, c4 0.26 0.02 0.25 0.28 0.25 

PS3997 Ara+10, c5 0.21 0.01 0.20 0.22 0.22 

PS3863 Ara+11, c1 0.17 0.03 0.19 0.14 0.17 

PS3998 Ara+11, c2 0.20 0.03 0.22 0.17 0.21 

PS3999 Ara+11, c3 0.21 0.04 0.24 0.21 0.17 

PS4000 Ara+11, c4 0.19 0.04 0.23 0.16 0.18 

PS4001 Ara+11, c5 0.09 0.04 0.06 0.08 0.13 

PS3864 Ara+12, c1 0.20 0.03 0.17 0.22 0.22 

PS4002 Ara+12, c2 0.18 0.01 0.19 0.19 0.17 

PS4003 Ara+12, c3 0.23 0.02 0.21 0.25 0.24 

PS4004 Ara+12, c4 0.18 0.02 0.18 0.17 0.20 

PS4005 Ara+12, c5 0.16 0.02 0.13 0.17 0.17 

PS3865 Ara+13, c1 0.20 0.01 0.19 0.19 0.21 

PS4006 Ara+13, c2 0.22 0.01 0.22 0.22 0.21 

PS4007 Ara+13, c3 0.16 0.04 0.15 0.13 0.20 

PS4008 Ara+13, c4 0.17 0.03 0.15 0.21 0.16 

PS4009 Ara+13, c5 0.26 0.02 0.25 0.29 0.25 

PS3866 Ara+14, c1 0.15 0.02 0.16 0.16 0.13 

PS4010 Ara+14, c2 0.30 0.02 0.29 0.32 0.28 

PS4011 Ara+14, c3 0.20 0.02 0.18 0.20 0.22 

PS4012 Ara+14, c4 0.18 0.02 0.18 0.16 0.19 

PS4013 Ara+14, c5 0.25 0.01 0.24 0.25 0.25 
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PS3867 Ara+15, c1 0.20 0.02 0.20 0.18 0.22 

PS4014 Ara+15, c2 0.26 0.02 0.27 0.24 0.26 

PS4015 Ara+15, c3 0.21 0.01 0.21 0.22 0.21 

PS4016 Ara+15, c4 0.23 0.02 0.22 0.25 0.23 

PS4017 Ara+15, c5 0.09 0.02 0.09 0.11 0.08 
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Table: Estimated mutation rates for 155 clones after 900 generations of soft selection, as 

measured by fluctuation assays 

 

 

Clone # 

Max 

likelihood: 

Lower 95% 

CI 

Upper 95% 

CI 

Ara-1 1 3.16E-08 2.12E-08 4.74E-08 

 

2 2.21E-08 1.51E-08 3.22E-08 

 

3 1.84E-08 1.24E-08 2.73E-08 

 

4 1.31E-08 8.27E-09 2.08E-08 

 

5 2.04E-08 1.37E-08 3.05E-08 

Ara-2 1 1.58E-08 9.55E-09 2.40E-08 

 

2 1.32E-08 7.07E-09 2.46E-08 

 

3 7.12E-09 4.01E-09 1.27E-08 

 

4 9.86E-09 5.62E-09 1.73E-08 

 

5 2.01E-08 1.26E-08 3.19E-08 

Ara-3 1 5.62E-08 3.39E-08 7.59E-08 

 

2 5.04E-08 3.70E-08 6.87E-08 

 

3 2.13E-08 1.39E-08 3.26E-08 

 

4 3.33E-07 2.60E-07 4.27E-07 

 

5 8.28E-10 1.17E-10 5.88E-09 

 

6 9.47E-09 5.07E-09 1.77E-08 

 

7 5.18E-08 3.69E-08 7.28E-08 

 

8 1.13E-08 6.52E-09 1.95E-08 

 

9 4.96E-08 3.32E-08 7.42E-08 

 

10 5.96E-10 8.40E-11 4.23E-09 

Ara-4 1 2.51E-09 1.20E-09 1.51E-08 

 

2 3.70E-08 2.40E-08 5.68E-08 

 

3 4.76E-08 3.44E-08 6.57E-08 

 

4 2.14E-08 1.39E-08 3.28E-08 

 

5 6.43E-09 3.13E-09 1.32E-08 

Ara-5 1 6.31E-08 3.76E-08 9.46E-08 

 

2 1.73E-08 1.15E-08 2.61E-08 

 

3 3.18E-08 2.28E-08 4.44E-08 

 

4 1.43E-08 8.05E-09 2.54E-08 

 

5 2.13E-08 1.38E-08 3.27E-08 

Ara-6 1 7.08E-09 2.99E-09 1.50E-08 

 

2 1.18E-08 6.65E-09 2.09E-08 

 

3 9.52E-09 5.39E-09 1.68E-08 

 

4 3.59E-08 2.30E-08 5.61E-08 

 

5 7.13E-09 3.44E-09 1.48E-08 
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Ara-7 1 5.01E-08 2.99E-08 6.69E-08 

 

2 2.99E-08 2.02E-08 4.41E-08 

 

3 3.62E-08 2.62E-08 5.00E-08 

 

4 1.92E-08 1.24E-08 2.96E-08 

 

5 1.44E-08 8.47E-09 2.46E-08 

Ara-8 1 1.58E-08 7.51E-09 2.67E-08 

 

2 2.40E-08 1.45E-08 3.97E-08 

 

3 2.11E-08 1.21E-08 3.69E-08 

 

4 4.44E-08 2.88E-08 6.84E-08 

 

5 3.21E-08 2.02E-08 5.08E-08 

Ara-9 1 6.31E-09 2.69E-09 1.51E-08 

 

2 1.93E-08 9.97E-09 3.73E-08 

 

3 3.51E-08 2.09E-08 5.87E-08 

 

4 1.78E-08 1.05E-08 3.02E-08 

 

5 UNKNOWN UNKNOWN UNKNOWN 

Ara-10 1 5.62E-08 3.80E-08 8.51E-08 

 

2 1.35E-08 7.65E-09 2.39E-08 

 

3 9.92E-09 5.53E-09 1.78E-08 

 

4 2.22E-08 1.46E-08 3.37E-08 

 

5 6.06E-08 4.51E-08 8.15E-08 

Ara-11 1 4.47E-09 1.91E-09 1.07E-08 

 

2 6.85E-08 5.09E-08 9.22E-08 

 

3 1.77E-08 1.04E-08 3.00E-08 

 

4 1.52E-09 2.14E-10 1.09E-08 

 

5 1.88E-08 1.21E-08 2.91E-08 

Ara-12 1 1.78E-08 8.43E-09 2.99E-08 

 

2 6.12E-08 4.47E-08 8.39E-08 

 

3 2.19E-08 1.28E-08 3.76E-08 

 

4 5.53E-08 3.58E-08 8.55E-08 

 

5 7.97E-09 3.60E-09 1.76E-08 

Ara-13 1 1.26E-07 7.51E-08 1.68E-07 

 

2 6.43E-09 2.76E-09 1.49E-08 

 

3 4.36E-08 2.95E-08 6.42E-08 

 

4 2.02E-08 9.94E-09 4.11E-08 

 

5       

Ara-14 1 1.12E-07 7.51E-08 1.68E-07 

 

2 1.44E-08 7.15E-09 2.89E-08 

 

3 8.68E-08 6.32E-08 1.19E-07 

 

4 2.44E-08 1.67E-08 3.56E-08 

 

5 6.67E-08 5.10E-08 8.72E-08 
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Ara-15 1 1.78E-08 1.06E-08 2.99E-08 

 

2 1.81E-09 6.53E-10 5.02E-09 

 

3 3.06E-08 2.00E-08 4.68E-08 

 

4 1.41E-08 8.88E-09 2.25E-08 

 

5 1.24E-08 7.60E-09 2.03E-08 

Ara+1 1 1.34E-08 7.33E-09 2.44E-08 

 

2 3.83E-08 2.45E-08 6.00E-08 

 

3 4.80E-08 3.35E-08 6.86E-08 

 

4 1.92E-08 1.24E-08 2.97E-08 

 

5 1.61E-08 9.78E-09 2.64E-08 

Ara+2 1 1.48E-09 2.94E-10 7.41E-09 

 

2 6.29E-08 3.97E-08 9.95E-08 

 

3 1.67E-08 1.08E-08 2.59E-08 

 

4 6.69E-10 9.43E-11 4.75E-09 

 

5 3.35E-08 2.23E-08 5.05E-08 

Ara+3 1 9.77E-10 3.12E-10 3.06E-09 

 

2 7.40E-10 1.04E-10 5.26E-09 

 

3 1.50E-09 3.14E-10 7.14E-09 

 

4 7.10E-10 1.00E-10 5.04E-09 

 

5 9.68E-10 2.03E-10 4.62E-09 

Ara+4 1 2.16E-07 1.62E-07 2.87E-07 

 

2 6.51E-08 4.57E-08 9.29E-08 

 

3 8.50E-08 6.31E-08 1.14E-07 

 

4 6.75E-08 4.63E-08 9.84E-08 

 

5 1.21E-07 9.48E-08 1.55E-07 

Ara+5 1 1.90E-08 1.06E-08 3.38E-08 

 

2 1.72E-09 4.25E-10 6.98E-09 

 

3 1.16E-08 5.57E-09 2.40E-08 

 

4 9.24E-09 4.21E-09 2.03E-08 

 

5 1.44E-08 7.47E-09 2.79E-08 

Ara+6 1 5.04E-08 3.12E-08 8.14E-08 

 

2 1.02E-08 5.63E-09 1.84E-08 

 

3 2.63E-08 1.47E-08 4.71E-08 

 

4 4.22E-08 2.56E-08 6.95E-08 

 

5 2.96E-08 1.83E-08 4.79E-08 

Ara+7 1 2.09E-08 1.28E-08 3.43E-08 

 

2 1.88E-08 1.02E-08 3.46E-08 

 

3 1.62E-08 8.33E-09 3.14E-08 

 

4 1.39E-08 7.42E-09 2.59E-08 

 

5 1.86E-08 1.13E-08 3.05E-08 
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Ara+8 1 1.78E-08 1.06E-08 2.67E-08 

 

2 3.16E-08 2.08E-08 4.81E-08 

 

3 4.37E-08 2.93E-08 6.51E-08 

 

4 1.55E-08 8.13E-09 2.95E-08 

 

5 2.44E-08 1.26E-08 4.72E-08 

Ara+9 1 1.78E-08 9.55E-09 3.02E-08 

 

2 1.70E-08 1.03E-08 2.80E-08 

 

3 2.17E-08 1.36E-08 3.47E-08 

 

4 3.10E-08 2.08E-08 4.62E-08 

 

5 2.95E-08 1.89E-08 4.61E-08 

Ara+10 1 1.41E-08 7.59E-09 2.40E-08 

 

2 3.13E-08 2.20E-08 4.44E-08 

 

3 5.52E-08 3.40E-08 8.95E-08 

 

4 2.58E-08 1.68E-08 3.97E-08 

 

5 1.97E-08 1.21E-08 3.19E-08 

Ara+11 1 1.00E-09 1.07E-09 4.27E-09 

 

2 1.29E-08 4.66E-09 3.59E-08 

 

3 1.21E-08 6.83E-09 2.16E-08 

 

4 7.17E-08 4.76E-08 1.08E-07 

 

5 2.34E-08 1.42E-08 3.86E-08 

Ara+12 1 8.91E-09 2.99E-09 2.12E-08 

 

2 5.07E-08 3.58E-08 7.17E-08 

 

3 7.72E-09 4.60E-09 1.29E-08 

 

4 2.73E-08 1.64E-08 4.56E-08 

 

5 2.14E-08 1.39E-08 3.30E-08 

Ara+13 1 2.00E-08 1.06E-08 2.99E-08 

 

2 1.33E-08 8.15E-09 2.16E-08 

 

3 4.41E-08 3.03E-08 6.41E-08 

 

4 1.35E-08 8.09E-09 2.26E-08 

 

5 2.81E-08 1.85E-08 4.27E-08 

Ara+14 1 1.26E-08 5.97E-09 2.12E-08 

 

2 3.09E-08 2.15E-08 4.45E-08 

 

3 2.74E-08 1.85E-08 4.06E-08 

 

4 2.10E-08 1.41E-08 3.14E-08 

 

5 3.31E-08 2.14E-08 5.12E-08 

Ara+15 1 1.26E-09 1.06E-09 4.74E-09 

 

2 1.75E-08 1.02E-08 2.99E-08 

 

3 1.20E-09 2.39E-10 6.03E-09 

 

4 9.95E-09 5.70E-09 1.74E-08 

 

5 2.76E-08 1.87E-08 4.08E-08 
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95% lower: 95% upper: 

 

The median Ara- ancestor used is: 

3.55E-

08 2.38E-08 5.32E-08 

 

The median Ara+ ancestor used is: 

2.36E-

08 1.72E-08 3.25E-08 
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List of candidate loci for whole-genome sequencing analysis (Chapter III) 

 

ada, ahpC-F, alkA-B, crfC, dam, dcm, diaA, dinB-G, dnaA-B-C-D-E-G-N-Q-X, dnaJ, dnaK, 

dnaT, dps, exo, fnr, fur, glyQ-S, gspB, gyrA, gyrB, hda, hns, holA, holB, holC, holD, holE, katE, 

katG, lexA, ligA, ligB, mfd, miaA, mukB, mukE, mukF, mutH-L-M-S-T-Y, ndh, nei, nfi, nfo, nrdA, 

nrdB, nrdD, nrdE, nrdF, nth, ogt, oxyR, phrB, pnp, polA-B, priA, priB, priC, prlC, ratA-C, recA-

B-C-D-F-G-J-N-O-R-T, recQ, rep, rpoS, ruvA-B-C, sbcB-C-D, sodB, ssb, topA, topB, tus, umuC-

D, ung, uvrA-B-C, uvrD, vsr, xthA, ycdX, yciV, ydaV 
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Table: Breseq output for PS3840 

54 
mutations Ancestor: PS174 

Ara-3, c1 

Mutations 

position Mutation Annotation Description 

12,325 A→G K55K (AAA→AAG)  molecular chaperone DnaK 

58,259 A→G G213G (GGT→GGC)  chaperone SurA 

122,549 A→G G155G (GGA→GGG)  protein AmpE 

149,268 T→C H77R (CAC→CGC)  aspartate 1-decarboxylase 

198,498 A→G T251A (ACA→GCA)  UDP pyrophosphate synthase 

198,588 C→T P24S (CCG→TCG)  phosphatidate cytidylyltransferase 

204,036 T→C V75A (GTA→GCA)  
UDP-3-O-(3-hydroxymyristoyl)glucosamine 
N-acyltransferase 

215,658 A→G E162E (GAA→GAG)  tRNA lysidine(34) synthetase TilS 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

518,532 G→T intergenic (-3/-314) 
ureidoglycolate dehydrogenase/acyl-CoA 
synthetase FdrA 

550,485 (G)7→8 intergenic (-123/+45) hypothetical protein/hypothetical protein 

688,067 (T)9→8 intergenic (+82/-121) 
PTS N-acetylglucosamine transporter 
subunit IIABC/glutamine--tRNA ligase 

739,553 C→T N19N (AAC→AAT)  2-oxoglutarate dehydrogenase subunit E1 

765,319 A→G L45P (CTG→CCG)  zinc transporter ZitB 

835,029 C→T Q25* (CAG→TAG)  
23S rRNA 
(adenine(1618)-N(6))-methyltransferase 

850,497 C→T A373T (GCC→ACC)  DUF1479 domain-containing protein 

996,741 G→A E1108E (GAG→GAA)  chromosome partition protein MukB 

1,062,292 (C)7→6 coding (603/1140 nt) 
O-antigen capsule outer membrane auxillary 
protein export channel 

1,112,148 (G)7→8 noncoding (73/88 nt) tRNA-Ser 

1,185,088 (G)5→6 intergenic (-122/+25) 
peptidoglycan-binding protein 
LysM/transcription-repair coupling factor 
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1,329,736 T→C I106T (ATC→ACC)  DNA topoisomerase 1 

1,348,131 C→T D116N (GAT→AAT)  hypothetical protein 

1,615,565 (A)6→5 coding (30/300 nt) transposase 

1,651,850 (C)6→7 coding (743/1035 nt) AI-2 transporter TqsA 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,073,972 G→A Q283* (CAG→TAG)  outer membrane assembly protein AsmA 

2,136,455 T→C E152E (GAA→GAG)  transcriptional regulator 

2,195,257 (C)9→8 coding (110/837 nt) S-formylglutathione hydrolase YeiG 

2,273,508 C→T P234S (CCG→TCG)  acetyl-CoA acetyltransferase 

2,623,106 G→A A39V (GCG→GTG)  pyridoxine 5'-phosphate synthase 

2,657,487 G→A intergenic (-68/-67) 

ribosomal large subunit pseudouridine 
synthase D/outer membrane protein 
assembly factor BamD 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,752,924 C→T R324R (CGC→CGT)  DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,855,987 T→C N354S (AAC→AGC)  exonuclease V subunit gamma 

3,095,115 A→G R68R (CGT→CGC)  YgiQ family radical SAM protein 

3,136,426 A→G R174R (CGT→CGC)  undecaprenyl-diphosphatase 

3,183,328 G→A R73H (CGC→CAC)  hypothetical protein 

3,338,605 A→G A145A (GCA→GCG)  tRNA dihydrouridine synthase DusB 

3,372,913 G→A V74V (GTC→GTT)  30S ribosomal protein S5 

3,598,150 G→A P177L (CCG→CTG)  cytochrome-c peroxidase 

3,607,791 A→G L18L (TTG→CTG)  hypothetical protein 

3,928,944 C→T A243V (GCG→GTG)  transcription termination factor Rho 

3,973,951 Δ1 bp coding (355/1023 nt) lysophospholipase L2 

4,057,563 A→G E42E (GAA→GAG)  hypothetical protein 

4,101,092 C→T E47K (GAA→AAA)  HslU--HslV peptidase ATPase subunit 
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4,435,818 A→G intergenic (+8/-6) 
sugar ABC transporter ATP-binding 
protein/sugar ABC transporter permease 

4,557,387 (G)5→6 intergenic (-105/+57) ATPase AAA/hypothetical protein 

4,616,454 A→G D309G (GAC→GGC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



119 

 

 

Table: Breseq output for PS3886 

43 
mutations Ara-3, c2 

Ancestor: PS174 

Mutations 

position Mutation Annotation Description 

58,259 A→G G213G (GGT→GGC)  chaperone SurA 

122,549 A→G G155G (GGA→GGG)  protein AmpE 

163,715 (C)6→7 coding (623/705 nt) sugar fermentation stimulation protein SfsA 

198,498 A→G T251A (ACA→GCA)  UDP pyrophosphate synthase 

198,588 C→T P24S (CCG→TCG)  phosphatidate cytidylyltransferase 

204,036 T→C V75A (GTA→GCA)  
UDP-3-O-(3-hydroxymyristoyl)glucosamine 
N-acyltransferase 

253,670 C→T D331N (GAC→AAC)  flagellar biosynthesis protein FlhA 

275,134 (G)6→5 coding (254/711 nt) hypothetical protein 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

708,695 A→G V146A (GTC→GCC)  K+-transporting ATPase subunit B 

750,844 C→T P662L (CCG→CTG)  mannosylglycerate hydrolase 

850,497 C→T A373T (GCC→ACC)  DUF1479 domain-containing protein 

996,741 G→A E1108E (GAG→GAA)  chromosome partition protein MukB 

1,134,240 C→T A306T (GCT→ACT)  N-methyl-L-tryptophan oxidase 

1,185,088 (G)5→6 intergenic (-122/+25) 
peptidoglycan-binding protein 
LysM/transcription-repair coupling factor 

1,348,131 C→T D116N (GAT→AAT)  hypothetical protein 

1,498,555 A→G T158A (ACT→GCT)  type IV secretion protein Rhs 

1,615,565 (A)6→5 coding (30/300 nt) transposase 

1,651,850 (C)6→7 coding (743/1035 nt) AI-2 transporter TqsA 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 
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1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,031,439 G→A N453N (AAC→AAT)  phosphomannomutase 

2,073,972 G→A Q283* (CAG→TAG)  outer membrane assembly protein AsmA 

2,195,257 (C)9→8 coding (110/837 nt) S-formylglutathione hydrolase YeiG 

2,273,508 C→T P234S (CCG→TCG)  acetyl-CoA acetyltransferase 

2,640,604 T→C V126A (GTA→GCA)  thiol disulfide reductase thioredoxin 

2,657,487 G→A intergenic (-68/-67) 

ribosomal large subunit pseudouridine 
synthase D/outer membrane protein 
assembly factor BamD 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,944,264 T→C intergenic (-103/+153) 

D-3-phosphoglycerate 
dehydrogenase/ribose-5-phosphate 
isomerase 

3,095,115 A→G R68R (CGT→CGC)  YgiQ family radical SAM protein 

3,183,328 G→A R73H (CGC→CAC)  hypothetical protein 

3,372,913 G→A V74V (GTC→GTT)  30S ribosomal protein S5 

3,924,321 C→T R615C (CGC→TGC)  ATP-dependent DNA helicase Rep 

3,928,944 C→T A243V (GCG→GTG)  transcription termination factor Rho 

4,101,092 C→T E47K (GAA→AAA)  HslU--HslV peptidase ATPase subunit 

4,435,818 A→G intergenic (+8/-6) 
sugar ABC transporter ATP-binding 
protein/sugar ABC transporter permease 

4,557,387 (G)5→6 intergenic (-105/+57) ATPase AAA/hypothetical protein 
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4,616,454 A→G D309G (GAC→GGC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS3887 

 
49 mutations 

  Ancestor: 

PS174 Ara-3, c3 

  

    
Mutations 

position Mutation Annotation Description 

122,549 A→G G155G (GGA→GGG)  protein AmpE 

198,498 A→G T251A (ACA→GCA)  UDP pyrophosphate synthase 

242,203 (G)8→7 intergenic (+194/-610) transposase/hypothetical protein 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

850,497 C→T A373T (GCC→ACC)  DUF1479 domain-containing protein 

949,624 T→C intergenic (-516/-29) 
thioredoxin reductase/leucine-responsive 
regulatory protein 

996,741 G→A E1108E (GAG→GAA)  chromosome partition protein MukB 

1,046,822 Δ1 bp coding (239/1191 nt) 
ribosomal RNA large subunit 
methyltransferase I 

1,185,088 (G)5→6 intergenic (-122/+25) 
peptidoglycan-binding protein 
LysM/transcription-repair coupling factor 

1,348,131 C→T D116N (GAT→AAT)  hypothetical protein 

1,349,565 (G)7→8 intergenic (-157/+211) enoyl-ACP reductase/hypothetical protein 

1,567,814 A→G G310G (GGT→GGC)  serine/threonine protein kinase 

1,615,565 (A)6→5 coding (30/300 nt) transposase 

1,651,850 (C)6→7 coding (743/1035 nt) AI-2 transporter TqsA 

1,735,768 C→T V75V (GTG→GTA)  transpeptidase 

1,829,717 G→T T201T (ACG→ACT)  
bifunctional 
pyrazinamidase/nicotinamidase 

1,860,456 T→C intergenic (-69/-34) 
LysR family transcriptional 
regulator/tartrate dehydrogenase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

1,977,320 G→A V122V (GTG→GTA)  5-hydroxyisourate hydrolase 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,073,972 G→A Q283* (CAG→TAG)  outer membrane assembly protein AsmA 

2,195,257 (C)9→8 coding (110/837 nt) S-formylglutathione hydrolase YeiG 
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2,247,103 (C)7→8 coding (525/618 nt) 
heme ABC exporter ATP-binding protein 
CcmA 

2,273,508 C→T P234S (CCG→TCG)  acetyl-CoA acetyltransferase 

2,406,553 (C)7→6 intergenic (+243/-123) 
long-chain fatty acid 
transporter/hypothetical protein 

2,654,923 G→A A220V (GCG→GTG)  chaperone protein ClpB 

2,657,487 G→A intergenic (-68/-67) 

ribosomal large subunit pseudouridine 
synthase D/outer membrane protein 
assembly factor BamD 

2,715,819 C→T R351H (CGC→CAC)  alanine--tRNA ligase 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  
phosphoadenosine phosphosulfate 
reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,887,059 (G)7→8 coding (999/2298 nt) 
xanthine dehydrogenase 
molybdenum-binding subunit XdhA 

3,061,132 C→T S256L (TCG→TTG)  8-amino-7-oxononanoate synthase 

3,095,115 A→G R68R (CGT→CGC)  YgiQ family radical SAM protein 

3,183,328 G→A R73H (CGC→CAC)  hypothetical protein 

3,215,347 (A)5→6 coding (54/435 nt) 
PTS N-acetylgalactosamine transporter 
subunit IIA 

3,372,913 G→A V74V (GTC→GTT)  30S ribosomal protein S5 

3,625,457 (C)7→8 coding (21/753 nt) cell division protein 

3,893,551 +G intergenic (+6/-50) 
low affinity potassium transport system 
protein kup/transposase 

3,928,944 C→T A243V (GCG→GTG)  transcription termination factor Rho 

3,993,750 C→T G18D (GGT→GAT)  
2-dehydro-3-deoxy-6-phosphogalactonate 
aldolase 

4,101,092 C→T E47K (GAA→AAA)  HslU--HslV peptidase ATPase subunit 

4,196,522 T→C *534Q (TAA→CAA)  malate synthase A 

4,221,003 C→T A62T (GCC→ACC)  D-xylose-proton symporter 

4,435,818 A→G intergenic (+8/-6) 
sugar ABC transporter ATP-binding 
protein/sugar ABC transporter permease 

4,557,387 (G)5→6 intergenic (-105/+57) ATPase AAA/hypothetical protein 
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4,616,454 A→G D309G (GAC→GGC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS3888 

 
63 mutations 

  Ancestor: 

PS174 Ara-3, c4 

  

    
Mutations 

position Mutation Annotation Description 

61,862 C→T R102W (CGG→TGG)  molecular chaperone DjlA 

116,733 T→C G162G (GGT→GGC)  guanosine monophosphate reductase 

122,549 A→G G155G (GGA→GGG)  protein AmpE 

198,498 A→G T251A (ACA→GCA)  UDP pyrophosphate synthase 

275,004 T→C R128R (AGA→AGG)  hypothetical protein 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

724,436 C→T P20L (CCG→CTG)  hypothetical protein 

850,497 C→T A373T (GCC→ACC)  DUF1479 domain-containing protein 

996,741 G→A E1108E (GAG→GAA)  chromosome partition protein MukB 

1,019,315 (G)7→8 coding (418/1071 nt) fimbrial-like adhesin protein 

1,021,251 (G)7→8 coding (214/711 nt) periplasmic pilin chaperone 

1,166,098 T→C intergenic (+125/-86) 
beta-ketoacyl-ACP reductase/acyl carrier 
protein 

1,185,088 (G)5→6 intergenic (-122/+25) 
peptidoglycan-binding protein 
LysM/transcription-repair coupling factor 

1,348,131 C→T D116N (GAT→AAT)  hypothetical protein 

1,369,915 G→A A444A (GCG→GCA)  sucrose phosphorylase 

1,615,565 (A)6→5 coding (30/300 nt) transposase 

1,651,850 (C)6→7 coding (743/1035 nt) AI-2 transporter TqsA 

1,729,731 +C coding (1367/2103 nt) oxidoreductase subunit 

1,776,766 T→C K84R (AAA→AGA)  50S ribosomal protein L20 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,073,972 G→A Q283* (CAG→TAG)  outer membrane assembly protein AsmA 

2,103,918 (CCAG)7→8 intergenic (-1227/-3) tail sheath protein/hypothetical protein 

2,160,564 G→A R90Q (CGA→CAA)  hypothetical protein 

2,162,254 A→G L653L (TTA→TTG)  hypothetical protein 

2,177,900 C→T E203E (GAG→GAA)  oxidoreductase 

2,195,257 (C)9→8 coding (110/837 nt) S-formylglutathione hydrolase YeiG 
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2,273,508 C→T P234S (CCG→TCG)  acetyl-CoA acetyltransferase 

2,349,304 T→C D310G (GAT→GGT)  transcriptional regulator 

2,416,132 Δ1 bp coding (272/1539 nt) multidrug resistance protein EmrY 

2,445,097 (C)7→8 coding (1243/1257 nt) ion channel protein 

2,595,028 A→G F120F (TTT→TTC)  
mutarotase superfamily protein, YphB 
family 

2,657,487 G→A intergenic (-68/-67) 

ribosomal large subunit pseudouridine 
synthase D/outer membrane protein 
assembly factor BamD 

2,716,283 G→C G196G (GGC→GGG)  alanine--tRNA ligase 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,887,059 (G)7→8 coding (999/2298 nt) 
xanthine dehydrogenase 
molybdenum-binding subunit XdhA 

2,899,326 T→C L223L (TTA→TTG)  
XdhC-CoxI family protein with 
NAD(P)-binding Rossman fold 

2,942,080 (C)5→6 coding (143/603 nt) 5-formyltetrahydrofolate cyclo-ligase 

3,036,213 G→A A241V (GCG→GTG)  type II secretion system protein GspE 

3,048,371 T→C intergenic (-200/+155) glycolate permease GlcA/malate synthase G 

3,086,643 G→A G79D (GGC→GAC)  cystathionine beta-lyase 

3,095,115 A→G R68R (CGT→CGC)  YgiQ family radical SAM protein 

3,183,328 G→A R73H (CGC→CAC)  hypothetical protein 

3,372,913 G→A V74V (GTC→GTT)  30S ribosomal protein S5 

3,501,010 G→A S588S (AGC→AGT)  glycogen debranching enzyme 

3,549,346 G→A G24D (GGT→GAT)  nickel-responsive regulator 

3,570,568 (T)8→7 intergenic (-159/-232) 
universal stress protein B/universal stress 
protein A 

3,648,282 T→C I172T (ATC→ACC)  
bifunctional glyoxylate/hydroxypyruvate 
reductase B 

3,928,944 C→T A243V (GCG→GTG)  transcription termination factor Rho 

4,101,092 C→T E47K (GAA→AAA)  HslU--HslV peptidase ATPase subunit 

4,155,151 T→C noncoding (69/85 nt) tRNA-Tyr 



127 

 

4,278,641 A→G R404R (CGT→CGC)  
multidrug resistance outer membrane 
protein MdtP 

4,335,416 A→G V641A (GTA→GCA)  lysine decarboxylase inducible 

4,377,858 A→G E151G (GAG→GGG)  

tRNA 
(adenosine(37)-N6)-dimethylallyltransferase 
MiaA 

4,435,818 A→G intergenic (+8/-6) 
sugar ABC transporter ATP-binding 
protein/sugar ABC transporter permease 

4,530,139 (G)7→6 coding (418/903 nt) fimbrial protein FimH 

4,557,387 (G)5→6 intergenic (-105/+57) ATPase AAA/hypothetical protein 

4,616,454 A→G D309G (GAC→GGC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS3889 

 
60 mutations 

  
Ancestor: PS174 Ara-3, c5 

 

    Mutations 

position Mutation Annotation Description 

205,940 A→G D180G (GAC→GGC)  
acyl-[acyl-carrier-protein]--UDP-N- 
acetylglucosamine O-acyltransferase 

242,203 (G)8→7 intergenic (+194/-610) transposase/hypothetical protein 

249,293 (A)5→4 coding (396/768 nt) class II glutamine amidotransferase 

352,377 (G)8→7 intergenic (-139/+47) transcriptional regulator/membrane protein 

473,893 T→C E471E (GAA→GAG)  hypothetical protein 

478,245 A→G N422S (AAC→AGC)  bifunctional UDP-sugar hydrolase/5'-nucleotidase 

557,763 C→T R139C (CGC→TGC)  hypothetical protein 

643,414 A→G V183A (GTT→GCT)  LysR family transcriptional regulator 

726,271 A→G M108V (ATG→GTG)  LamB/YcsF family protein 

754,540 T→C V206A (GTG→GCG)  cytochrome bd-I ubiquinol oxidase subunit 2 

777,364 T→C V61A (GTA→GCA)  molybdenum import ATP-binding protein ModC 

829,377 G→A A134A (GCG→GCA)  dehydrogenase 

866,524 C→T Q244* (CAA→TAA)  cyclic di-GMP phosphodiesterase 

867,078 T→C C428C (TGT→TGC)  cyclic di-GMP phosphodiesterase 

934,453 Δ1 bp coding (1275/1659 nt) 
OLD family ATP-dependent endonuclease; 
DUF2813 family protein 

935,831 T→C intergenic (-5/-110) 
hypothetical protein/MacA family efflux pump 
subunit 

1,116,531 A→G Y56H (TAT→CAT)  
curli production assembly/transport component 
CsgF 

1,146,686 C→T S87S (AGC→AGT)  flagellar basal body rod modification protein 

1,157,644 C→T A431A (GCG→GCA)  ribonuclease E 

1,167,318 A→G T271A (ACG→GCG)  beta-ketoacyl-[acyl-carrier-protein] synthase II 

1,245,579 C→T H90H (CAC→CAT)  hypothetical protein 

1,425,781 A→G V17A (GTA→GCA)  cold-shock protein 

1,434,043 C→T G136D (GGT→GAT)  lactate dehydrogenase 

1,567,864 C→T D294N (GAT→AAT)  serine/threonine protein kinase 

1,592,123 (T)8→7 coding (141/393 nt) TIGR00156 family protein 

1,733,850 G→A G296S (GGT→AGT)  pyruvate kinase I 

1,738,206 G→A R285C (CGC→TGC)  FeS cluster assembly protein SufD 
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1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,832,844 T→C E119E (GAA→GAG)  oxidoreductase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,116,047 (C)7→8 coding (351/1224 nt) protein SERAC1 

2,211,437 T→C T388A (ACT→GCT)  PTS fructose transporter subunit EIIBC 

2,547,178 G→A A415A (GCG→GCA)  exopolyphosphatase 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,768,317 T→C E179E (GAA→GAG)  adenylyl-sulfate kinase 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,789,067 (T)8→7 intergenic (-294/-25) oxidoreductase/hypothetical protein 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,834,573 T→C L196P (CTA→CCA)  transcriptional regulator 

2,855,110 A→T D646E (GAT→GAA)  exonuclease V subunit gamma 

2,877,995 +T coding (751/837 nt) 5-keto-4-deoxyuronate isomerase 

2,971,929 A→G intergenic (-127/-9) hypothetical protein/hypothetical protein 

3,110,964 T→C R14R (AGA→AGG)  phosphodiesterase 

3,313,750 (T)8→9 intergenic (+52/+4) membrane protein/hypothetical protein 

3,320,151 C→T intergenic (-232/+198) metalloprotease TldD/membrane protein 

3,343,219 A→T D99V (GAT→GTT)  
multidrug efflux RND transporter permease 
subunit 

3,541,662 C→T A254T (GCT→ACT)  arabinose efflux transporter 

3,736,409 T→C V296A (GTT→GCT)  ADP-heptose--LPS heptosyltransferase 

3,810,685 (A)9→8 intergenic (-27/+48) 
DNA-binding response regulator/acetolactate 
synthase isozyme 1 small subunit 

3,869,974 G→A G264G (GGC→GGT)  phosphate ABC transporter permease 

3,873,549 C→T M162I (ATG→ATA)  glutamine--fructose-6-phosphate aminotransferase 

3,899,393 C→T A98V (GCG→GTG)  ribokinase 

3,918,533 C→T S468S (AGC→AGT)  PLP-dependent threonine dehydratase 

4,114,480 Δ1 bp coding (539/2181 nt) catalase/peroxidase HPI 

4,389,947 A→G E164G (GAG→GGG)  hypothetical protein 

4,502,023 T→C T243A (ACG→GCG)  protein FecR 

4,615,902 G→A R125H (CGC→CAC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS4326 

 
41 mutations Ara-3, c6 

 
Ancestor: PS174 

  

    
Mutations 

position Mutation Annotation Description 

86,722 (T)5→6 intergenic (-210/-450) 
leu operon leader 
peptide/transcriptional regulator 

95,273 A→G T353A (ACC→GCC)  peptidoglycan synthase FtsI 

95,611 C→T R465R (CGC→CGT)  peptidoglycan synthase FtsI 

165,940 C→T P344S (CCG→TCG)  ATP-dependent helicase 

404,303 C→T P83L (CCG→CTG)  thiamine-monophosphate kinase 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

550,485 (G)7→6 intergenic (-123/+45) 
hypothetical protein/hypothetical 
protein 

1,004,229 T→C intergenic (-158/+447) 
phosphoporin protein 
E/asparagine--tRNA ligase 

1,027,997 T→C S315P (TCC→CCC)  
ABC transporter ATP-binding 
protein 

1,120,321 C→T intergenic (+27/-68) 
hypothetical protein/RNase III 
inhibitor 

1,167,186 C→T R227C (CGT→TGT)  
beta-ketoacyl-[acyl-carrier-protein] 
synthase II 

1,282,766 C→T A918V (GCC→GTC)  nitrate reductase subunit alpha 

1,330,510 C→T A364V (GCG→GTG)  DNA topoisomerase 1 

1,346,338 T→C Q315R (CAG→CGG)  exoribonuclease II 

1,424,981 (C)6→7 coding (300/591 nt) DNA invertase 

1,445,883 A→G D469G (GAC→GGC)  hypothetical protein 

1,452,077 T→C T39A (ACC→GCC)  azoreductase 

1,485,138 G→A A89A (GCG→GCA)  ABC transporter permease 

1,829,717 G→T T201T (ACG→ACT)  
bifunctional 
pyrazinamidase/nicotinamidase 

1,833,442 T→C D239G (GAC→GGC)  sugar kinase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,010,659 T→C T126A (ACG→GCG)  hypothetical protein 

2,306,975 (C)5→4 coding (953/1206 nt) L-rhamnonate dehydratase 

2,406,553 (C)7→8 intergenic (+243/-123) 
long-chain fatty acid 
transporter/hypothetical protein 

2,613,244 T→C H1006R (CAC→CGC)  
phosphoribosylformylglycinamidine 
synthase 

2,722,614 G→A V7I (GTC→ATC)  sorbitol 6-phosphate dehydrogenase 
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2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  
phosphoadenosine phosphosulfate 
reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,928,105 T→C intergenic (+59/+137) 
tRNA-modifying protein 
YgfZ/hemolysin III family protein 

3,000,408 G→A G282D (GGC→GAC)  hypothetical protein 

3,049,414 T→C E428E (GAA→GAG)  malate synthase G 

3,098,271 C→T P625P (CCG→CCA)  DNA topoisomerase IV subunit A 

3,258,862 G→A A148V (GCC→GTC)  phosphoglucosamine mutase 

3,707,155 C→T P61L (CCG→CTG)  
PTS mannitol transporter subunit 
IIABC 

3,944,484 (C)8→7 noncoding (79/87 nt) tRNA-Leu 

4,271,209 C→T R238R (CGC→CGT)  heme lyase NrfEFG subunit NrfE 

4,595,450 A→G noncoding (71/87 nt) tRNA-Leu 
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Table: Breseq output for PS4322 

 49 mutations Ancestor: PS174 

 

 

Ara-3, c7 

  

    
Mutations 

position Mutation Annotation Description 

122,549 A→G G155G (GGA→GGG)  protein AmpE 

198,498 A→G T251A (ACA→GCA)  UDP pyrophosphate synthase 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

640,131 (T)9→8 intergenic (+49/+6) 
cold-shock protein CspE/camphor 
resistance protein CrcB 

706,457 G→T A18D (GCC→GAC)  two-component sensor histidine kinase 

850,497 C→T A373T (GCC→ACC)  DUF1479 domain-containing protein 

899,485 A→G T180A (ACA→GCA)  baseplate assembly protein 

920,580 C→T intergenic (-139/+79) 
arginine ABC transporter ATP-binding 
protein ArtP/lipoprotein 

996,741 G→A E1108E (GAG→GAA)  chromosome partition protein MukB 

1,028,684 (A)7→8 coding (1630/1908 nt) ABC transporter ATP-binding protein 

1,133,042 (T)7→8 coding (4/576 nt) hypothetical protein 

1,185,088 (G)5→6 intergenic (-122/+25) 

peptidoglycan-binding protein 
LysM/transcription-repair coupling 
factor 

1,329,747 A→G T110A (ACC→GCC)  DNA topoisomerase 1 

1,348,131 C→T D116N (GAT→AAT)  hypothetical protein 

1,615,565 (A)6→5 coding (30/300 nt) transposase 

1,651,850 (C)6→7 coding (743/1035 nt) AI-2 transporter TqsA 

1,718,984 G→A R102H (CGT→CAT)  
cyclopropane-fatty-acyl-phospholipid 
synthase 

1,829,717 G→T T201T (ACG→ACT)  
bifunctional 
pyrazinamidase/nicotinamidase 

1,910,251 T→C G265G (GGT→GGC)  
phosphoribosylglycinamide 
formyltransferase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,073,972 G→A Q283* (CAG→TAG)  
outer membrane assembly protein 
AsmA 

2,195,257 (C)9→8 coding (110/837 nt) S-formylglutathione hydrolase YeiG 

2,240,779 G→A A97A (GCG→GCA)  DNA-binding response regulator 

2,273,508 C→T P234S (CCG→TCG)  acetyl-CoA acetyltransferase 
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2,657,487 G→A intergenic (-68/-67) 

ribosomal large subunit pseudouridine 
synthase D/outer membrane protein 
assembly factor BamD 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  
phosphoadenosine phosphosulfate 
reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,856,077 T→C D324G (GAC→GGC)  exonuclease V subunit gamma 

3,030,162 G→A D359D (GAC→GAT)  type II secretion system protein GspL 

3,095,115 A→G R68R (CGT→CGC)  YgiQ family radical SAM protein 

3,183,328 G→A R73H (CGC→CAC)  hypothetical protein 

3,212,761 T→C L307P (CTG→CCG)  tagatose-bisphosphate aldolase 

3,311,652 G→A P172S (CCG→TCG)  malate dehydrogenase 

3,372,913 G→A V74V (GTC→GTT)  30S ribosomal protein S5 

3,525,425 A→G W244R (TGG→CGG)  
branched-chain amino acid ABC 
transporter permease 

3,570,568 (T)8→7 intergenic (-159/-232) 
universal stress protein B/universal 
stress protein A 

3,729,365 A→G T167A (ACT→GCT)  hypothetical protein 

3,773,470 (G)6→7 coding (110/2319 nt) alpha-xylosidase 

3,928,944 C→T A243V (GCG→GTG)  transcription termination factor Rho 

4,101,092 C→T E47K (GAA→AAA)  HslU--HslV peptidase ATPase subunit 

4,435,818 A→G intergenic (+8/-6) 

sugar ABC transporter ATP-binding 
protein/sugar ABC transporter 
permease 

4,493,255 A→G Y128H (TAC→CAC)  transposase 

4,557,387 (G)5→6 intergenic (-105/+57) ATPase AAA/hypothetical protein 

4,572,277 G→A H202Y (CAT→TAT)  
4-hydroxyphenylacetate catabolism 
regulatory protein HpaA 

4,616,454 A→G D309G (GAC→GGC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS4323 

 42 

mutations Ancestor: PS174 

 

 

Ara-3, c8 

  

    
Mutations 

position Mutation Annotation Description 

242,203 (G)8→7 intergenic (+194/-610) transposase/hypothetical protein 

404,303 C→T P83L (CCG→CTG)  thiamine-monophosphate kinase 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

550,485 (G)7→6 intergenic (-123/+45) hypothetical protein/hypothetical protein 

1,004,229 T→C intergenic (-158/+447) 
phosphoporin protein E/asparagine--tRNA 
ligase 

1,167,186 C→T R227C (CGT→TGT)  
beta-ketoacyl-[acyl-carrier-protein] synthase 
II 

1,282,766 C→T A918V (GCC→GTC)  nitrate reductase subunit alpha 

1,330,510 C→T A364V (GCG→GTG)  DNA topoisomerase 1 

1,346,338 T→C Q315R (CAG→CGG)  exoribonuclease II 

1,377,490 A→G E413E (GAA→GAG)  glycosyl hydrolase family 65 

1,424,981 (C)6→7 coding (300/591 nt) DNA invertase 

1,445,883 A→G D469G (GAC→GGC)  hypothetical protein 

1,485,138 G→A A89A (GCG→GCA)  ABC transporter permease 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,833,442 T→C D239G (GAC→GGC)  sugar kinase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

1,981,661 G→A W4* (TGG→TGA)  DgsA anti-repressor MtfA 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,058,383 (T)5→6 coding (569/1224 nt) 
colanic acid biosynthesis glycosyltransferase 
WcaI 

2,112,692 (A)7→6 intergenic (+302/+14) 
Presumed portal vertex protein/exonuclease 
SbcC 

2,127,175 G→A A155V (GCG→GTG)  galactitol permease IIC component 

2,292,699 T→C Y379H (TAT→CAT)  
ribonucleoside-diphosphate reductase 1 
subunit alpha 

2,306,975 (C)5→4 coding (953/1206 nt) L-rhamnonate dehydratase 

2,362,744 T→C T9A (ACT→GCT)  NUDIX hydrolase 

2,406,553 (C)7→8 intergenic (+243/-123) 
long-chain fatty acid transporter/hypothetical 
protein 

2,602,856 (C)7→8 coding (589/3282 nt) hypothetical protein 

2,613,244 T→C H1006R (CAC→CGC)  phosphoribosylformylglycinamidine synthase 

2,722,614 G→A V7I (GTC→ATC)  sorbitol 6-phosphate dehydrogenase 
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2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

3,000,408 G→A G282D (GGC→GAC)  hypothetical protein 

3,049,414 T→C E428E (GAA→GAG)  malate synthase G 

3,098,271 C→T P625P (CCG→CCA)  DNA topoisomerase IV subunit A 

3,258,862 G→A A148V (GCC→GTC)  phosphoglucosamine mutase 

3,374,025 T→C A7A (GCA→GCG)  50S ribosomal protein L6 

4,271,209 C→T R238R (CGC→CGT)  heme lyase NrfEFG subunit NrfE 

4,271,998 Δ1 bp coding (1503/1608 nt) heme lyase NrfEFG subunit NrfE 

4,571,185 C→T G185G (GGG→GGA)  
4-hydroxyphenylacetate 3-monooxygenase, 
oxygenase component 

4,582,033 A→G N381S (AAC→AGC)  methyl-accepting chemotaxis protein 
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Table: Breseq output for PS4324 

 53 

mutations Ancestor: PS174 

 

 

Ara-3, c9 

  

    
Mutations 

position Mutation Annotation Description 

122,549 A→G G155G (GGA→GGG)  protein AmpE 

198,498 A→G T251A (ACA→GCA)  UDP pyrophosphate synthase 

286,155 C→T A540V (GCC→GTC)  intimin-like adhesin FdeC 

355,304 C→T R64C (CGT→TGT)  
taurine ABC transporter ATP-binding 
protein 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

512,677 T→C intergenic (+3/-54) cyclic amidohydrolase/purine permease 

649,583 A→T W407R (TGG→AGG)  penicillin-binding protein 2 

714,264 C→G Q101E (CAA→GAA)  hypothetical protein 

850,497 C→T A373T (GCC→ACC)  DUF1479 domain-containing protein 

996,741 G→A E1108E (GAG→GAA)  chromosome partition protein MukB 

1,185,088 (G)5→6 intergenic (-122/+25) 
peptidoglycan-binding protein 
LysM/transcription-repair coupling factor 

1,188,940 C→T G274D (GGC→GAC)  membrane protein 

1,348,131 C→T D116N (GAT→AAT)  hypothetical protein 

1,387,611 C→T Q105* (CAA→TAA)  dipeptide epimerase 

1,427,728 A→G Y258H (TAT→CAT)  porin 

1,592,123 (T)8→7 coding (141/393 nt) TIGR00156 family protein 

1,615,565 (A)6→5 coding (30/300 nt) transposase 

1,651,850 (C)6→7 coding (743/1035 nt) AI-2 transporter TqsA 

1,661,205 G→A D377N (GAT→AAT)  two-component sensor histidine kinase 

1,829,717 G→T T201T (ACG→ACT)  
bifunctional 
pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,073,972 G→A Q283* (CAG→TAG)  outer membrane assembly protein AsmA 

2,103,918 (CCAG)7→8 intergenic (-1227/-3) tail sheath protein/hypothetical protein 

2,112,704 T→C intergenic (+314/+2) 
Presumed portal vertex 
protein/exonuclease SbcC 

2,195,257 (C)9→8 coding (110/837 nt) S-formylglutathione hydrolase YeiG 

2,273,508 C→T P234S (CCG→TCG)  acetyl-CoA acetyltransferase 



137 

 

2,463,928 T→C R379R (CGT→CGC)  
phosphoenolpyruvate--protein 
phosphotransferase 

2,513,076 A→G L214L (TTA→TTG)  succinyl-diaminopimelate desuccinylase 

2,607,671 G→A V380M (GTG→ATG)  flavohemoprotein 

2,657,487 G→A intergenic (-68/-67) 

ribosomal large subunit pseudouridine 
synthase D/outer membrane protein 
assembly factor BamD 

2,684,948 A→G E96G (GAA→GGA)  hydroxyglutarate oxidase 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  
phosphoadenosine phosphosulfate 
reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

3,021,896 (T)9→8 coding (789/1140 nt) hypothetical protein 

3,095,115 A→G R68R (CGT→CGC)  YgiQ family radical SAM protein 

3,183,328 G→A R73H (CGC→CAC)  hypothetical protein 

3,193,869 T→C A528A (GCA→GCG)  PFL-like enzyme TdcE 

3,333,916 C→T R37C (CGC→TGC)  
acetyl-CoA carboxylase biotin 
carboxylase subunit 

3,372,913 G→A V74V (GTC→GTT)  30S ribosomal protein S5 

3,398,080 G→A G385G (GGC→GGT)  translation elongation factor EF-Tu 1 

3,625,457 (C)7→8 coding (21/753 nt) cell division protein 

3,839,098 C→T M461I (ATG→ATA)  DNA gyrase subunit B 

3,928,944 C→T A243V (GCG→GTG)  transcription termination factor Rho 

4,101,092 C→T E47K (GAA→AAA)  HslU--HslV peptidase ATPase subunit 

4,349,853 T→C R36R (CGT→CGC)  molecular chaperone GroEL 

4,435,818 A→G intergenic (+8/-6) 
sugar ABC transporter ATP-binding 
protein/sugar ABC transporter permease 

4,481,275 (G)6→7 intergenic (+107/+294) 
integrase/phosphoethanolamine 
transferase YjgX 

4,557,387 (G)5→6 intergenic (-105/+57) ATPase AAA/hypothetical protein 

4,616,454 A→G D309G (GAC→GGC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS4325 

 
58 mutations Ancestor: PS174 

 

 

Ara-3, c10 

 

    
Mutations 

position Mutation Annotation Description 

189,343 C→T R717H (CGC→CAC)  
bifunctional uridylyltransferase/uridylyl-removing 
protein 

198,147 A→G T134A (ACC→GCC)  UDP pyrophosphate synthase 

205,940 A→G D180G (GAC→GGC)  
acyl-[acyl-carrier-protein]--UDP-N- 
acetylglucosamine O-acyltransferase 

242,203 (G)8→7 intergenic (+194/-610) transposase/hypothetical protein 

249,293 (A)5→4 coding (396/768 nt) class II glutamine amidotransferase 

276,931 C→T A23A (GCG→GCA)  hypothetical protein 

452,782 T→C intergenic (-7/+539) 
Hha toxicity modulator TomB/multidrug efflux 
RND transporter permease subunit 

460,375 (A)6→7 coding (1773/3363 nt) hypothetical protein 

478,245 A→G N422S (AAC→AGC)  bifunctional UDP-sugar hydrolase/5'-nucleotidase 

754,540 T→C V206A (GTG→GCG)  cytochrome bd-I ubiquinol oxidase subunit 2 

777,364 T→C V61A (GTA→GCA)  molybdenum import ATP-binding protein ModC 

914,865 A→G H57R (CAT→CGT)  hypothetical protein 

924,347 A→G Y215H (TAT→CAT)  NAD(P)-dependent oxidoreductase 

935,831 T→C intergenic (-5/-110) 
hypothetical protein/MacA family efflux pump 
subunit 

961,087 A→G D194G (GAT→GGT)  dimethyl sulfoxide reductase subunit B 

1,053,954 G→A A39T (GCC→ACC)  hydrogenase-1 operon protein HyaF 

1,167,318 A→G T271A (ACG→GCG)  beta-ketoacyl-[acyl-carrier-protein] synthase II 

1,349,565 (G)7→6 intergenic (-157/+211) enoyl-ACP reductase/hypothetical protein 

1,368,412 (T)9→8 intergenic (+41/-172) 
thiosulfate sulfurtransferase PspE/sucrose 
phosphorylase 

1,393,316 A→G F326L (TTC→CTC)  low conductance mechanosensitive channel YnaI 

1,405,924 Δ1 bp coding (705/984 nt) zinc transporter ZntB 

1,457,175 C→T P204S (CCA→TCA)  hypothetical protein 

1,569,540 C→T G365R (GGA→AGA)  
outer membrane autotransporter barrel 
domain-containing protein 

1,637,143 G→A R627H (CGT→CAT)  dimethyl sulfoxide reductase subunit A 

1,638,277 T→C V167A (GTC→GCC)  dimethyl sulfoxide reductase subunit A 
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1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,276,886 G→A T1376I (ACC→ATC)  hypothetical protein 

2,486,605 G→A R337C (CGC→TGC)  ethanolamine utilization protein EutA 

2,537,246 C→T G111G (GGC→GGT)  beta-barrel assembly-enhancing protease 

2,716,428 C→T G148E (GGG→GAG)  alanine--tRNA ligase 

2,734,097 G→A R10C (CGC→TGC)  transcriptional regulator 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,758,213 T→A L340Q (CTG→CAG)  membrane protein 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,789,067 (T)8→7 intergenic (-294/-25) oxidoreductase/hypothetical protein 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,823,301 T→C pseudogene (94/450 nt) fuculose phosphate aldolase 

2,834,573 T→C L196P (CTA→CCA)  transcriptional regulator 

2,847,176 T→C E1149E (GAA→GAG)  exodeoxyribonuclease V subunit beta 

2,855,110 A→T D646E (GAT→GAA)  exonuclease V subunit gamma 

2,877,995 +T coding (751/837 nt) 5-keto-4-deoxyuronate isomerase 

2,902,480 G→A V223I (GTC→ATC)  putative selenate reductase subunit YgfK 

3,001,341 G→A G593D (GGC→GAC)  hypothetical protein 

3,137,030 C→T intergenic (-83/+8) 
undecaprenyl-diphosphatase/dihydroneopterin 
aldolase 

3,169,099 G→A R108H (CGC→CAC)  hypothetical protein 

3,488,740 G→A T156M (ACG→ATG)  transcriptional regulator 

3,559,034 T→C N398S (AAC→AGC)  ribosome-associated ATPase 

3,736,409 T→C V296A (GTT→GCT)  ADP-heptose--LPS heptosyltransferase 

3,737,707 T→C A40A (GCA→GCG)  ligase 

3,897,827 G→A A245T (GCA→ACA)  ribose ABC transporter permease 

4,138,146 (A)8→9 intergenic (+62/-205) 
argininosuccinate lyase/hydrogen 
peroxide-inducible genes activator 

4,353,770 A→G V200A (GTG→GCG)  EF-P beta-lysylation protein EpmB 

4,484,920 A→G V135A (GTG→GCG)  transposase 

4,546,084 A→G R227R (CGT→CGC)  2-hydroxyglutaryl-CoA dehydratase 
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Table: Breseq output for PS3895 

 65 mutations Ancestor: PS174 

 

 

Ara-5, c3 

  

    
Mutations 

position Mutation Annotation Description 

94,683 T→C L156P (CTG→CCG)  peptidoglycan synthase FtsI 

159,330 A→G G135G (GGT→GGC)  fimbrial protein 

354,824 A→G I229V (ATC→GTC)  
taurine ABC transporter 
substrate-binding protein 

357,742 T→C L298L (TTA→TTG)  delta-aminolevulinic acid dehydratase 

426,979 C→T P381L (CCG→CTG)  trigger factor 

450,038 A→G I216T (ATC→ACC)  hypothetical protein 

458,368 G→A A181T (GCC→ACC)  transcriptional regulator 

468,684 A→G S500G (AGC→GGC)  molecular chaperone HtpG 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

558,275 C→T A71V (GCA→GTA)  hypothetical protein 

588,320 C→T S12S (AGC→AGT)  hypothetical protein 

938,293 C→T P414L (CCC→CTC)  
macrolide ABC transporter 
permease/ATP-binding protein MacB 

939,433 A→G intergenic (-137/-186) 

cold-shock protein 
CspD/ATP-dependent Clp protease 
adaptor ClpS 

1,113,754 C→T P103S (CCG→TCG)  phosphatase 

1,160,518 C→T intergenic (+50/+62) 
ribosomal large subunit pseudouridine 
synthase C/m(7)GTP pyrophosphatase 

1,281,213 A→G K400K (AAA→AAG)  nitrate reductase subunit alpha 

1,350,323 G→A G227G (GGC→GGT)  
peptide transport system ATP-binding 
protein SapF 

1,395,345 A→G W150R (TGG→CGG)  universal stress protein E 

1,469,638 A→G G307G (GGT→GGC)  acetyltransferase 

1,562,056 T→C A64A (GCA→GCG)  fimbrial-like adhesin protein 

1,611,931 T→C S107S (TCA→TCG)  lysozyme 

1,730,390 C→T V236V (GTG→GTA)  oxidoreductase subunit 

1,829,717 G→T T201T (ACG→ACT)  
bifunctional 
pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

1,972,464 A→G L79S (TTG→TCG)  excinuclease ABC subunit C 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,068,716 T→C Y48C (TAC→TGC)  tyrosine kinase 
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2,074,105 +C coding (714/1854 nt) 
outer membrane assembly protein 
AsmA 

2,075,282 T→C H47R (CAC→CGC)  deoxycytidine triphosphate deaminase 

2,091,451 G→A L1027L (TTG→TTA)  multidrug resistance protein MdtB 

2,105,116 (A)8→7 intergenic (+77/+135) 
hypothetical protein/hypothetical 
protein 

2,143,706 G→A intergenic (-124/+99) transposase/hypothetical protein 

2,169,976 C→T D235N (GAT→AAT)  
ABC transporter substrate-binding 
protein 

2,195,257 (C)9→10 coding (110/837 nt) S-formylglutathione hydrolase YeiG 

2,209,306 T→C L83L (TTA→TTG)  pseudouridine-5'-phosphate glycosidase 

2,405,204 C→T P79S (CCG→TCG)  long-chain fatty acid transporter 

2,603,167 A→G V93A (GTC→GCC)  hypothetical protein 

2,674,546 T→C V486A (GTG→GCG)  DNA repair protein RecN 

2,748,760 T→C V216A (GTG→GCG)  
hydrogenase expression/formation 
protein HypE 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  
phosphoadenosine phosphosulfate 
reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

3,294,992 +T coding (560/1419 nt) glutamate synthase subunit beta 

3,377,568 C→T G74D (GGT→GAT)  30S ribosomal protein S3 

3,384,708 (C)6→5 coding (427/1953 nt) type II secretion system protein GspD 

3,482,859 T→C L392P (CTG→CCG)  transcriptional regulator MalT 

3,625,339 A→G S47P (TCA→CCA)  cell division protein 

3,711,693 G→A M112I (ATG→ATA)  hypothetical protein 

3,877,265 G→A N159N (AAC→AAT)  ATP synthase subunit beta 

3,931,945 A→G T5A (ACT→GCT)  
UDP-N-acetyl glucosamine 
2-epimerase 

3,999,040 G→A G115D (GGC→GAC)  ubiquinone biosynthesis protein UbiB 

4,106,206 A→G C30R (TGT→CGT)  primosomal protein N' 

4,165,678 A→G T240A (ACC→GCC)  
DNA-directed RNA polymerase 
subunit beta' 

4,272,039 (G)7→8 coding (1544/1608 nt) heme lyase NrfEFG subunit NrfE 

4,286,424 A→G G66G (GGT→GGC)  D-allose kinase 

4,322,943 A→G P287P (CCA→CCG)  melibiose/sodium symporter 

4,503,832 T→C *75Q (TAA→CAA)  transposase 
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4,519,211 A→G G87G (GGT→GGC)  porin 

4,560,609 C→T A139T (GCC→ACC)  SAM-dependent methyltransferase 

4,589,209 A→G M71T (ATG→ACG)  hypothetical protein 

4,615,999 G→A W157* (TGG→TGA)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 

4,620,854 A→G S637G (AGC→GGC)  murein transglycosylase 

4,625,831 A→G T326A (ACT→GCT)  two-component sensor histidine kinase 
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Table: Breseq output for PS3850 

 56 

mutations Ancestor: PS174 

 

 

Ara-13, c1 

  

    
Mutations 

position Mutation Annotation Description 

173,845 T→C D143D (GAT→GAC)  iron(3+)-hydroxamate-binding protein FhuD 

291,745 T→C I302M (ATA→ATG)  pyridine nucleotide-disulfide oxidoreductase 

442,701 C→T V588V (GTC→GTT)  
multidrug ABC transporter 
permease/ATP-binding protein 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

524,732 C→T V159V (GTG→GTA)  
5-(carboxyamino)imidazole ribonucleotide 
mutase 

705,093 A→G S473P (TCT→CCT)  two-component sensor histidine kinase 

718,637 A→G N214S (AAT→AGT)  hypothetical protein 

722,540 C→T G268R (GGG→AGG)  dipeptide permease D 

761,482 T→C noncoding (47/76 nt) tRNA-Lys 

794,720 (G)7→8 pseudogene (339/519 nt) carbohydrate kinase 

801,659 C→T M56I (ATG→ATA)  
adenosylmethionine--8-amino-7-oxononanoate 
aminotransferase BioA 

917,552 (C)6→7 intergenic (-270/+21) 

arginine/ornithine ABC transporter 
substrate-binding protein/arginine ABC 
transporter permease ArtM 

1,018,114 (A)8→7 coding (1808/2601 nt) outer membrane usher protein 

1,049,720 G→A G164D (GGC→GAC)  hydrogenase-1 small chain 

1,056,281 T→C L484P (CTG→CCG)  cytochrome bd-II ubiquinol oxidase subunit 1 

1,063,579 C→T A486A (GCG→GCA)  membrane protein 

1,380,846 T→C G177G (GGT→GGC)  outer membrane protein G 

1,601,691 (G)6→5 coding (305/591 nt) Rac prophage; site-specific recombinase 

1,768,598 T→C pseudogene (690/713 nt) cyclic di-GMP regulator CdgR 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

1,998,083 G→A Q278* (CAA→TAA)  transcriptional regulator 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,074,105 +C coding (714/1854 nt) outer membrane assembly protein AsmA 
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2,287,204 C→T V1222V (GTG→GTA)  adhesin 

2,340,717 C→T G106D (GGT→GAT)  NADH-quinone oxidoreductase subunit H 

2,363,628 T→C E150E (GAA→GAG)  glutathione S-transferase 

2,403,690 G→A N148N (AAC→AAT)  3-ketoacyl-CoA thiolase 

2,489,912 G→A S143S (AGC→AGT)  ethanolamine utilization protein EutG 

2,686,651 T→C G233G (GGT→GGC)  
NAD-dependent succinate-semialdehyde 
dehydrogenase 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,843,209 C→T D141N (GAC→AAC)  N-acetylmuramoyl-L-alanine amidase 

2,997,463 (A)9→8 coding (146/918 nt) hypothetical protein 

3,000,933 T→C L457P (CTC→CCC)  hypothetical protein 

3,056,915 T→C T55A (ACG→GCG)  DNA-binding protein 

3,064,385 C→T P254P (CCG→CCA)  hypothetical protein 

3,108,719 G→A R284C (CGT→TGT)  DNA topoisomerase IV subunit B 

3,115,964 G→A P206S (CCT→TCT)  dioxygenase 

3,128,670 G→A I306I (ATC→ATT)  
bifunctional heptose 7-phosphate 
kinase/heptose 1-phosphate adenyltransferase 

3,267,410 G→A S187L (TCA→TTA)  transporter 

3,323,094 T→C I352M (ATA→ATG)  membrane protein 

3,370,793 T→C T404A (ACC→GCC)  protein translocase subunit SecY 

3,420,937 A→G L155L (CTA→CTG)  transporter 

3,604,897 T→C V207A (GTG→GCG)  transporter 

3,635,421 (C)5→4 coding (828/1020 nt) peptide ABC transporter permease 

3,886,842 C→T intergenic (-26/+64) 
FMN-binding protein MioC/AsnC family 
transcriptional regulator 

3,895,270 
IS1 (–
) +9 bp coding (113-121/420 nt) D-ribose pyranase 

4,201,885 C→T A225A (GCG→GCA)  acetate operon repressor 

4,216,720 A→G E52G (GAG→GGG)  membrane protein 

4,380,869 C→T P226L (CCG→CTG)  protease modulator HflK 

4,500,121 A→G V530A (GTG→GCG)  fe(3+) dicitrate transporter fecA 

4,579,623 T→C N145D (AAC→GAC)  
2-hydroxyhepta-2,4-diene-1,7-dioate 
isomerase 
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Table: Breseq output for PS3939 

 
52 

mutations 

Ancestor: 

PS174 

  

 

Ara-13, 

c5 

  

    
Mutations 

position Mutation Annotation Description 

1,927 C→T P531L (CCG→CTG)  
bifunctional aspartate kinase/homoserine 
dehydrogenase I 

77,432 C→T A285T (GCA→ACA)  thiamine-binding periplasmic protein 

191,822 C→T G176D (GGC→GAC)  methionine aminopeptidase 

205,400 A→G intergenic (+2/-2) 

beta-hydroxyacyl-ACP 
dehydratase/acyl-[acyl-carrier-protein]--UDP-N- 
acetylglucosamine O-acyltransferase 

213,493 C→T P325S (CCG→TCG)  lysine decarboxylase constitutive 

267,508 A→G intergenic (+70/+57) tRNA-Thr/hypothetical protein 

273,276 (G)6→7 coding (103/615 nt) hypothetical protein 

440,596 C→T I49I (ATC→ATT)  transcriptional regulator 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

643,953 A→G S3S (AGT→AGC)  LysR family transcriptional regulator 

915,380 A→G E52E (GAA→GAG)  
23S rRNA (uracil(747)-C(5))-methyltransferase 
RlmC 

1,011,660 C→T G88G (GGG→GGA)  aliphatic sulfonate ABC transporter permease 

1,076,261 A→G N239S (AAC→AGC)  
trimethylamine N-oxide reductase I catalytic 
subunit 

1,241,884 C→T W113* (TGG→TAG)  K+/H+ antiporter NhaP2 

1,331,256 A→G T613A (ACC→GCC)  DNA topoisomerase 1 

1,434,271 A→G V60A (GTG→GCG)  lactate dehydrogenase 

1,584,236 A→T I56F (ATT→TTT)  sugar efflux transporter 

1,722,106 A→G intergenic (+9/+32) 
multidrug resistance protein MdtK/hypothetical 
protein 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,928,843 A→G R150R (CGT→CGC)  aspartate--tRNA ligase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 
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2,204,273 C→T A354T (GCG→ACG)  nucleoside permease 

2,280,238 A→G W259R (TGG→CGG)  hypothetical protein 

2,516,024 C→T V222I (GTC→ATC)  tRNA cytosine(34) acetyltransferase TmcA 

2,630,492 A→G F136L (TTT→CTT)  anti-sigma-E factor RseA 

2,636,776 A→G V13A (GTG→GCG)  transcriptional regulator 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,783,123 G→A G143D (GGC→GAC)  hypothetical protein 

2,794,824 A→G L62L (TTA→TTG)  TPM domain protein phosphatase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,856,191 A→G L286P (CTC→CCC)  exonuclease V subunit gamma 

2,978,755 T→C V23A (GTG→GCG)  hypothetical protein 

3,081,661 T→C V84V (GTA→GTG)  dienelactone hydrolase 

3,138,439 T→C Q212R (CAG→CGG)  transcriptional activator TtdR 

3,182,737 G→A A7A (GCG→GCA)  hypothetical protein 

3,191,276 (A)9→8 intergenic (-233/+43) transporter/L-serine dehydratase TdcG 

3,278,852 G→A E80K (GAA→AAA)  sugar ABC transporter substrate-binding protein 

3,532,876 A→G V186A (GTT→GCT)  cell division ATP-binding protein FtsE 

3,664,483 T→C V103A (GTC→GCC)  xylose ABC transporter permease 

3,665,197 T→C V341A (GTG→GCG)  xylose ABC transporter permease 

3,679,161 G→A G43G (GGG→GGA)  3-keto-L-gulonate-6-phosphate decarboxylase 

3,769,736 G→A A80T (GCC→ACC) AsmA family protein 

3,810,685 (A)9→8 intergenic (27/+48) 
DNA binding response regulator/acetolactate 
synthase isozyme 1 small subunit 

3,882,872 A→G intergenic (66/+551) ATP synthase I/16S rRNA methyltransferase 

4,085,443 G→A G48S (GGC→AGC) repressor CpxP 

4,163,165 T→C C770C (TGT→TGC) DNA directed RNA polymerase subunit beta 

4,455,350 G→A P108L (CCG→CTG) aspartate carbamoyltransferase catalytic subunit 

4,615,818 T→C I97T (ATT→ACT) 

trifunctional nicotinamide nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS3941 

 134 

mutations Ancestor: PS174 

 

 

Ara-14, c3 

 

    
Mutations 

position Mutation Annotation Description 

25,559 C→T G27G (GGC→GGT)  
bifunctional riboflavin kinase/FMN 
adenylyltransferase 

47,894 A→G Q171R (CAG→CGG)  protein FixB 

51,205 A→G T402A (ACG→GCG)  transporter 

101,830 G→A T208T (ACG→ACA)  lipid II flippase FtsW 

209,520 C→T A518V (GCG→GTG)  DNA polymerase III subunit alpha 

222,460 C→T G126S (GGC→AGC)  hypothetical protein 

339,821 C→T A41A (GCG→GCA)  lac repressor 

359,153 G→A intergenic (-518/-5) 

delta-aminolevulinic acid dehydratase/outer 
membrane autotransporter barrel 
domain-containing protein 

387,844 A→G intergenic (+237/-170) 

PAS domain-containing sensor histidine 
kinase/branched-chain amino acid transport 
system 2 carrier protein 

390,721 T→C V438A (GTG→GCG)  proline-specific permease ProY 

467,950 A→G H255R (CAC→CGC)  molecular chaperone HtpG 

478,245 A→G N422S (AAC→AGC)  
bifunctional UDP-sugar 
hydrolase/5'-nucleotidase 

479,796 A→G W118R (TGG→CGG)  TraB family protein 

501,669 IS1 (+) +8 bp intergenic (+602/+135) hypothetical protein/hypothetical protein 

502,189 T→C intergenic (-7/+109) 
hypothetical protein/tRNA 
2-selenouridine(34) synthase MnmH 

510,265 T→C L156P (CTA→CCA)  allantoin transporter 

560,206 T→C Y260C (TAC→TGC)  protease 7 

599,383 A→G D840G (GAC→GGC)  enterobactin synthase subunit F 

631,673 A→G V290A (GTG→GCG)  citrate lyase subunit beta 

757,637 A→G A138A (GCA→GCG)  
cell envelope integrity/translocation protein 
TolA 

794,883 A→G pseudogene (502/519 nt) carbohydrate kinase 

859,941 C→T S274S (AGC→AGT)  beta-aspartyl-peptidase 

876,641 T→C C139C (TGT→TGC)  multidrug transporter MdfA 

952,683 A→G Q801R (CAG→CGG)  DNA translocase FtsK 

1,022,518 G→A P220P (CCG→CCA)  dihydroorotate dehydrogenase 2 

1,029,530 A→G M147V (ATG→GTG)  paraquat-inducible protein A 
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1,142,649 C→T T80M (ACG→ATG)  lipid II flippase MurJ 

1,153,352 A→G K136E (AAA→GAA)  flagellar hook-associated protein 1 

1,166,588 T→C A27A (GCT→GCC)  
beta-ketoacyl-[acyl-carrier-protein] synthase 
II 

1,189,978 C→T intergenic (-218/-44) 
membrane protein/lipoprotein-releasing 
system protein LolC 

1,217,410 T→C intergenic (+253/-79) 
Blue light, low temperature and stress 
induced protein/hypothetical protein 

1,283,493 C→A T1160T (ACC→ACA)  nitrate reductase subunit alpha 

1,291,150 G→A intergenic (+101/-101) 
regulator of RpoS/UTP--glucose-1-phosphate 
uridylyltransferase 

1,334,901 A→G A233A (GCA→GCG)  aconitate hydratase 1 

1,339,870 C→T T314I (ACC→ATC)  LPS assembly protein B 

1,340,285 T→C intergenic (+186/-7) 
LPS assembly protein B/orotidine 
5'-phosphate decarboxylase 

1,368,412 (T)9→8 intergenic (+41/-172) 
thiosulfate sulfurtransferase PspE/sucrose 
phosphorylase 

1,404,781 A→G L62P (CTC→CCC)  diguanylate cyclase 

1,436,500 A→G H615R (CAC→CGC)  hypothetical protein 

1,493,094 T→C T28A (ACC→GCC)  TonB-dependent receptor 

1,507,870 C→T V45M (GTG→ATG)  hypothetical protein 

1,633,551 G→A R58Q (CGG→CAG)  spermidine N1-acetyltransferase 

1,702,708 T→C E40G (GAG→GGG)  oxidoreductase 

1,707,922 A→G T548A (ACC→GCC)  ATP-dependent helicase 

1,733,535 G→A A191T (GCT→ACT)  pyruvate kinase I 

1,763,253 G→A V376V (GTC→GTT)  phosphoenolpyruvate synthase 

1,818,400 T→C T78A (ACC→GCC)  hypothetical protein 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,844,962 T→C L233L (TTA→CTA)  PrkA family serine protein kinase 

1,863,040 C→T P420P (CCC→CCT)  BCCT family transporter 

1,922,608 G→A A207T (GCC→ACC)  zinc transporter 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,009,189 G→A intergenic (-24/-3) transposase/hypothetical protein 

2,074,620 G→A R67* (CGA→TGA)  outer membrane assembly protein AsmA 

2,075,220 C→T V68M (GTG→ATG)  deoxycytidine triphosphate deaminase 

2,075,522 G→A F211F (TTC→TTT)  uridine kinase 

2,104,468 T→C V183A (GTT→GCT)  hypothetical protein 

2,119,644 T→C E46G (GAG→GGG)  hypothetical protein 
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2,129,328 T→C Y160Y (TAT→TAC)  transposase 

2,175,936 T→C H58R (CAC→CGC)  D-alanyl-D-alanine endopeptidase 

2,182,679 C→T G141G (GGC→GGT)  CidB/LrgB family autolysis modulator 

2,194,090 T→C Y39C (TAC→TGC)  membrane protein 

2,226,430 T→C V355A (GTT→GCT)  ABC transporter permease 

2,284,778 T→C Y448C (TAC→TGC)  DNA gyrase subunit A 

2,304,907 T→A Q151L (CAG→CTG)  2-keto-3-deoxy-L-rhamnonate aldolase 

2,368,514 A→G C104C (TGT→TGC)  histidine ABC transporter permease 

2,405,357 G→A A130T (GCT→ACT)  long-chain fatty acid transporter 

2,432,062 T→C E153G (GAA→GGA)  glutamate--pyruvate aminotransferase AlaC 

2,450,360 T→C T117A (ACC→GCC)  hypothetical protein 

2,451,570 G→A L76L (TTG→TTA)  DUF1323 family DNA-binding protein 

2,476,777 G→A A455T (GCA→ACA)  
PTS N-acetylmuramic acid transporter 
subunits IIBC 

2,502,774 T→C T278A (ACG→GCG)  DUF1176 domain-containing protein 

2,516,979 T→C N196S (AAC→AGC)  hypothetical protein 

2,528,925 G→A A395T (GCA→ACA)  hydrogenase-4 component F 

2,545,562 G→A C567Y (TGT→TAT)  polyphosphate kinase 

2,616,302 (G)7→6 intergenic (-42/-216) 
phosphoribosylformylglycinamidine 
synthase/lytic transglycosylase F 

2,659,728 T→C L193L (TTG→CTG)  P-protein 

2,703,482 T→C G105G (GGT→GGC)  transporter 

2,749,220 A→T D8V (GAT→GTT)  
formate hydrogenlyase transcriptional 
activator 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,811,628 T→C S96G (AGT→GGT)  flavodoxin 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,825,488 G→A T228M (ACG→ATG)  sugar kinase 

2,850,647 T→C T953A (ACA→GCA)  protease 3 

2,860,897 C→T E720K (GAA→AAA)  
phosphoenolpyruvate--protein 
phosphotransferase PtsP 

2,869,251 T→C T462A (ACC→GCC)  

bifunctional 
2-acylglycerophosphoethanolamine 
acyltransferase/acyl-ACP synthetase 

2,958,441 A→G A334A (GCT→GCC)  D-erythrose-4-phosphate dehydrogenase 

3,005,198 A→G A25A (GCA→GCG)  hypothetical protein 

3,009,849 T→C F62L (TTT→CTT)  hypothetical protein 
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3,031,037 G→A P68S (CCC→TCC)  type II secretion system protein GspL 

3,036,978 G→A P673S (CCG→TCG)  type II secretion system protein GspD 

3,042,998 G→A V1002V (GTC→GTT)  hypothetical protein 

3,056,473 G→A T202I (ACC→ATC)  DNA-binding protein 

3,114,873 A→G Q94R (CAG→CGG)  ATP-Grasp family ATPase 

3,176,862 T→C N305S (AAC→AGC)  uronate isomerase 

3,221,647 G→A A31T (GCC→ACC)  galactosamine-6-phosphate isomerase 

3,224,694 G→A G216D (GGC→GAC)  membrane protein 

3,307,653 T→C G81G (GGA→GGG)  AFG1 family ATPase 

3,313,750 (T)8→9 intergenic (+52/+4) membrane protein/hypothetical protein 

3,337,818 C→T C286C (TGC→TGT)  ribosomal protein L11 methyltransferase 

3,376,646 G→A R7C (CGT→TGT)  50S ribosomal protein L29 

3,419,270 T→C E33E (GAA→GAG)  cell filamentation protein Fic 

3,452,520 T→C L323P (CTG→CCG)  
carboxypeptidase/penicillin-binding protein 
1A 

3,465,485 G→A intergenic (-217/-11) 
DNA-binding response regulator/transcription 
elongation factor GreB 

3,482,933 T→C W417R (TGG→CGG)  transcriptional regulator MalT 

3,489,144 A→G S21S (AGT→AGC)  transcriptional regulator 

3,492,559 G→A R126C (CGC→TGC)  hypothetical protein 

3,813,609 C→T intergenic (+36/-244) 
type I toxin-antitoxin system toxin 
TisB/multidrug resistance protein D 

3,903,378 T→C intergenic (-244/-235) transcriptional regulator/16S ribosomal RNA 

3,936,533 A→G Q89Q (CAA→CAG)  dTDP-fucosamine acetyltransferase 

3,955,702 G→A A63V (GCA→GTA)  iron donor protein CyaY 

4,011,576 C→T T20I (ACC→ATC)  potassium transporter 

4,052,456 G→A V191M (GTG→ATG)  ribokinase 

4,151,616 T→C intergenic (+83/-52) 

5S ribosomal 
RNA/UDP-N-acetylenolpyruvoylglucosamine 
reductase 

4,155,943 A→G Y130C (TAC→TGC)  translation elongation factor EF-Tu 2 

4,157,878 C→T F175F (TTC→TTT)  
transcription termination/antitermination 
protein NusG 

4,179,083 A→G intergenic (+10/-33) endonuclease V/hypothetical protein 

4,232,731 C→T R262C (CGT→TGT)  4-hydroxybenzoate octaprenyltransferase 

4,316,408 A→G V79A (GTA→GCA)  transcriptional regulator 
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4,343,459 A→G L102P (CTT→CCT)  protein-disulfide reductase DsbD 

4,367,482 (C)6→7 coding (44/3324 nt) 
miniconductance mechanosensitive channel 
MscM 

4,368,584 A→G intergenic (-69/+28) 

phosphatidylserine decarboxylase 
proenzyme/ribosome small subunit-dependent 
GTPase 

4,395,663 A→G D186G (GAC→GGC)  esterase 

4,401,864 C→T L4L (CTA→TTA)  L-ribulose-5-phosphate 4-epimerase 

4,419,857 C→T R568H (CGC→CAC)  3'-nucleotidase 

4,470,490 A→G D349G (GAC→GGC)  LPS export ABC transporter permease LptF 

4,475,811 (G)7→8 intergenic (-59/+4) 
fructuronate transporter/gluconate 
5-dehydrogenase 

4,537,683 (T)9→8 intergenic (-358/-124) hypothetical protein/hypothetical protein 

4,549,286 C→T A50T (GCC→ACC)  multidrug resistance protein MdtM 

4,610,370 G→A L77L (CTG→CTA)  purine-nucleoside phosphorylase 
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Table: Breseq output for PS3944 

 56 

mutations Ancestor: PS174 

 

 

Ara-15, 

c2 

  

    Mutations 

position Mutation Annotation Description 

205,940 A→G D180G (GAC→GGC)  
acyl-[acyl-carrier-protein]--UDP-N- 
acetylglucosamine O-acyltransferase 

410,633 T→C R221R (CGT→CGC)  tRNA 4-thiouridine(8) synthase ThiI 

478,245 A→G N422S (AAC→AGC)  bifunctional UDP-sugar hydrolase/5'-nucleotidase 

614,832 A→G intergenic (+135/-47) carbon starvation protein A/hypothetical protein 

725,450 C→T G141G (GGC→GGT)  allophanate hydrolase 

860,901 C→T A277V (GCG→GTG)  glutathione import ATP-binding protein GsiA 

860,974 (C)8→7 coding (903/1872 nt) glutathione import ATP-binding protein GsiA 

907,990 G→A A34T (GCC→ACC)  NADPH-dependent oxidoreductase 

914,926 (T)5→6 coding (231/489 nt) hypothetical protein 

959,996 A→G K649E (AAA→GAA)  dimethyl sulfoxide reductase subunit A 

1,048,242 G→A L90F (CTC→TTC)  BAX inhibitor protein 

1,112,099 (A)8→7 pseudogene (70/100 nt) hypothetical protein 

1,228,809 A→G T190T (ACA→ACG)  isomerase/hydrolase 

1,260,778 T→C Q50R (CAG→CGG)  sodium-independent anion transporter 

1,321,467 A→G E218E (GAA→GAG)  phosphatase 

1,339,302 C→T R125C (CGC→TGC)  LPS assembly protein B 

1,534,197 C→T R224H (CGC→CAC)  peptide ABC transporter permease 

1,621,688 G→A L20L (CTC→CTT)  hypothetical protein 

1,691,520 (T)9→8 intergenic (+55/-51) 
dipeptide and tripeptide permease A/glutathione 
S-transferase 

1,797,787 G→A S231S (AGC→AGT)  N,N'-diacetylchitobiose permease IIC component 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,895,820 T→C V329A (GTG→GCG)  hypothetical protein 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,007,567 (C)7→6 coding (372/408 nt) hypothetical protein 

2,159,146 A→G Q752Q (CAA→CAG)  hypothetical protein 

2,331,092 G→A intergenic (+655/-160) deubiquitinase/hypothetical protein 
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2,336,650 T→C intergenic (-85/+146) 
NADH-quinone oxidoreductase subunit 
M/NADH-quinone oxidoreductase subunit L 

2,418,947 G→A G46D (GGT→GAT)  
two-component system sensor histidine kinase 
EvgS 

2,543,881 T→C Y7H (TAC→CAC)  polyphosphate kinase 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,771,282 G→A intergenic (-92/-160) 
sulfate adenylyltransferase subunit 2/Zn-dependent 
exopeptidase M28 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

3,008,653 C→T pseudogene (510/644 nt) antitoxin of toxin-antitoxin stability system 

3,025,354 T→C pseudogene (55/696 nt) pyrophosphorylase 

3,153,677 T→C V456A (GTC→GCC)  putrescine aminotransferase 

3,224,741 A→G T232A (ACA→GCA)  membrane protein 

3,326,788 G→A A361V (GCG→GTG)  cell shape-determining protein MreC 

3,464,118 T→C V145V (GTA→GTG)  two-component sensor histidine kinase 

3,645,349 A→G Y484H (TAT→CAT)  biotin sulfoxide reductase 

3,762,825 T→C V690A (GTG→GCG)  

bifunctional (p)ppGpp synthetase II/ 
guanosine-3',5'-bis pyrophosphate 
3'-pyrophosphohydrolase 

3,788,128 T→C intergenic (+166/-113) transposase/autotransporter 

3,799,272 G→A S218S (AGC→AGT)  
methionine ABC transporter substrate-binding 
protein 

3,828,914 C→T E242K (GAA→AAA)  hypothetical protein 

3,837,541 G→A Q96* (CAA→TAA)  DUF937 domain-containing protein 

3,866,258 T→C D226G (GAT→GGT)  transcription antitermination protein BlgG 

3,890,185 C→T D424N (GAT→AAT)  ATPase RavA 

3,928,436 G→A A74T (GCC→ACC)  transcription termination factor Rho 

4,010,303 A→G D257G (GAC→GGC)  Xaa-Pro dipeptidase 

4,108,445 C→T E20K (GAA→AAA)  met repressor 

4,174,149 G→A A521V (GCC→GTC)  phosphomethylpyrimidine synthase ThiC 

4,227,058 T→C G52G (GGT→GGC)  maltoporin 

4,616,055 A→G Y176C (TAC→TGC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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4,616,260 Δ1 bp coding (732/1233 nt) 

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS3855 

 64 

mutations Ancestor: PS2717 

 

 

Ara+3, c1 

  

    
Mutations 

position Mutation Annotation Description 

40,939 C→T P360P (CCG→CCA)  ATP-dependent acyl-CoA ligase 

70,867 T→C D92G (GAC→GGC)  L-arabinose isomerase 

205,940 A→G D180G (GAC→GGC)  
acyl-[acyl-carrier-protein]--UDP-N- 
acetylglucosamine O-acyltransferase 

278,454 (C)5→6 coding (1061/2526 nt) hypothetical protein 

294,213 (G)7→8 intergenic (+483/-44) 

transcriptional regulator/cysteine-rich LutA 
family protein; electron transport chain YkgEFG 
component 

358,875 G→A intergenic (-240/-283) 

delta-aminolevulinic acid dehydratase/outer 
membrane autotransporter barrel 
domain-containing protein 

414,481 C→T G203D (GGC→GAC)  membrane protein 

440,899 C→T P150P (CCC→CCT)  transcriptional regulator 

442,945 A→G L81L (CTA→CTG)  multidrug ABC transporter ATP-binding protein 

568,795 C→T intergenic (-266/+5) 
type II secretion system protein E/hypothetical 
protein 

709,215 A→G V538A (GTT→GCT)  potassium-transporting ATPase A chain 

787,879 Δ12,090 bp   16 genes 

843,554 A→G V160V (GTA→GTG)  outer membrane protein X 

864,982 C→T R181C (CGC→TGC)  glutathione ABC transporter permease 

927,084 Δ1 bp coding (673/1719 nt) pyruvate dehydrogenase [ubiquinone] 

998,942 (G)6→7 coding (804/1848 nt) transpeptidase 

1,066,453 (A)7→6 intergenic (-30/+77) 
hypothetical protein/threonine-rich inner 
membrane protein GfcA 

1,259,789 T→C N380D (AAC→GAC)  sodium-independent anion transporter 

1,368,412 (T)9→8 intergenic (+41/-172) 
thiosulfate sulfurtransferase PspE/sucrose 
phosphorylase 

1,377,723 A→G N491S (AAC→AGC)  glycosyl hydrolase family 65 

1,418,812 (T)7→6 coding (151/1458 nt) potassium transporter TrkG 

1,503,957 G→A R1227R (CGG→CGA)  RHS element protein RhsA 
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1,551,024 A→T L183M (TTG→ATG)  hypothetical protein 

1,556,848 T→C intergenic (-373/+29) sulfatase/AraC family transcriptional regulator 

1,559,052 (C)6→7 coding (1386/2280 nt) hypothetical protein 

1,571,344 C→T A186A (GCC→GCT)  histidine kinase 

1,719,068 T→C M130T (ATG→ACG)  cyclopropane-fatty-acyl-phospholipid synthase 

1,813,663 G→A L121L (CTG→CTA)  ABC transporter substrate-binding protein 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,892,985 G→A P137S (CCG→TCG)  tail-specific protease 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,151,650 (A)8→7 coding (176/3633 nt) hypothetical protein 

2,195,257 (C)9→10 coding (110/837 nt) S-formylglutathione hydrolase YeiG 

2,197,332 T→C T226A (ACG→GCG)  colicin I receptor 

2,295,712 G→A R157C (CGC→TGC)  protein InaA 

2,491,130 G→A Q13* (CAA→TAA)  ethanolamine utilization protein EutJ 

2,578,128 C→T G503S (GGT→AGT)  molecular chaperone HscA 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,818,291 C→T G378G (GGC→GGT)  serine transporter 

2,823,412 A→G intergenic (-18/+115) 
fuculose phosphate aldolase/LacI family 
transcriptional regulator 

2,930,675 G→A G419S (GGC→AGC)  6-phospho-beta-glucosidase 

3,013,384 Δ1 bp intergenic (+48/-24) 

arabinose-5-phosphate isomerase/capsule 
polysaccharide export inner-membrane protein 
KpsE 

3,091,884 (C)6→7 coding (63/927 nt) DUF3828 domain-containing protein 

3,095,865 G→A T326I (ACC→ATC)  cell division protein FtsP 

3,206,732 G→A P369S (CCG→TCG)  galactarate transporter 

3,252,797 G→A P148P (CCC→CCT)  ribosome maturation factor 

3,254,001 A→G N44S (AAC→AGC)  argininosuccinate synthase 

3,464,440 G→A A38V (GCG→GTG)  two-component sensor histidine kinase 

3,470,427 G→A A452A (GCG→GCA)  ferrous iron transporter B 

3,560,737 C→T R185H (CGC→CAC)  membrane protein 
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3,875,773 T→C intergenic (-207/+146) 

bifunctional N-acetylglucosamine-1-phosphate 
uridyltransferase/glucosamine-1-phosphate 
acetyltransferase/ATP synthase epsilon chain 

4,041,902 C→T E218K (GAG→AAG)  porin 

4,161,472 C→T A206V (GCG→GTG)  DNA-directed RNA polymerase subunit beta 

4,179,767 (C)6→7 intergenic (+61/-126) 
hypothetical protein/DNA-binding protein 
HU-alpha 

4,291,009 C→T A269T (GCC→ACC)  RpiR family transcriptional regulator 

4,311,510 (C)5→4 coding (477/1092 nt) two-component sensor histidine kinase 

4,454,460 A→G Y89H (TAT→CAT)  aspartate carbamoyltransferase regulatory subunit 

4,541,538 A→G I19I (ATT→ATC)  
nucleoside recognition pore and gate family inner 
membrane transporter 

4,599,986 G→A D447N (GAT→AAT)  peptide chain release factor 3 

4,615,610 A→G T28A (ACC→GCC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS3956 

 46 

mutations Ancestor: PS2717 

 

 

Ara+3, c2 

  

    
Mutations 

position Mutation Annotation Description 

40,939 C→T P360P (CCG→CCA)  ATP-dependent acyl-CoA ligase 

70,867 T→C D92G (GAC→GGC)  L-arabinose isomerase 

205,940 A→G D180G (GAC→GGC)  
acyl-[acyl-carrier-protein]--UDP-N- 
acetylglucosamine O-acyltransferase 

271,979 C→T G31G (GGG→GGA)  xanthine dehydrogenase 

278,454 (C)5→6 coding (1061/2526 nt) hypothetical protein 

407,151 G→A G483G (GGC→GGT)  1-deoxy-D-xylulose-5-phosphate synthase 

444,528 T→C intergenic (+44/-137) 
multidrug ABC transporter ATP-binding 
protein/nitrogen regulatory protein P-II 2 

550,485 (G)7→6 intergenic (-123/+45) hypothetical protein/hypothetical protein 

568,795 C→T intergenic (-266/+5) 
type II secretion system protein E/hypothetical 
protein 

689,146 A→G D320G (GAC→GGC)  glutamine--tRNA ligase 

770,901 C→T S253N (AGC→AAC)  galactose-1-phosphate uridylyltransferase 

927,084 Δ1 bp coding (673/1719 nt) pyruvate dehydrogenase [ubiquinone] 

968,857 G→A D597D (GAC→GAT)  formate acetyltransferase 1 

1,201,601 A→G T130A (ACC→GCC)  peptidase T 

1,259,789 T→C N380D (AAC→GAC)  sodium-independent anion transporter 

1,551,024 A→T L183M (TTG→ATG)  hypothetical protein 

1,556,848 T→C intergenic (-373/+29) sulfatase/AraC family transcriptional regulator 

1,559,052 (C)6→7 coding (1386/2280 nt) hypothetical protein 

1,681,755 T→C L4P (CTT→CCT)  divisome-associated membrane protein Blr 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,842,180 G→A A229V (GCG→GTG)  aldo/keto reductase 

1,884,080 T→C V19A (GTA→GCA)  hypothetical protein 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,103,918 (CCAG)7→8 intergenic (-1227/-3) tail sheath protein/hypothetical protein 

2,295,712 G→A R157C (CGC→TGC)  protein InaA 



159 

 

2,590,693 G→A T321T (ACG→ACA)  
3-phenylpropionate/cinnamic acid dioxygenase 
subunit alpha 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,818,291 C→T G378G (GGC→GGT)  serine transporter 

2,965,839 C→T L516L (CTG→CTA)  transketolase 

3,095,865 G→A T326I (ACC→ATC)  cell division protein FtsP 

3,140,815 (C)6→7 intergenic (+22/-26) L+-tartrate dehydratase subunit beta/antiporter 

3,206,732 G→A P369S (CCG→TCG)  galactarate transporter 

3,252,797 G→A P148P (CCC→CCT)  ribosome maturation factor 

3,699,773 G→A R966Q (CGG→CAG)  RHS element protein RhsA 

3,875,773 T→C intergenic (-207/+146) 

bifunctional N-acetylglucosamine-1-phosphate 
uridyltransferase/glucosamine-1-phosphate 
acetyltransferase/ATP synthase epsilon chain 

4,041,902 C→T E218K (GAG→AAG)  porin 

4,100,651 C→T E194K (GAG→AAG)  HslU--HslV peptidase ATPase subunit 

4,179,767 (C)6→7 intergenic (+61/-126) 
hypothetical protein/DNA-binding protein 
HU-alpha 

4,482,386 T→C pseudogene (298/1115 nt) phosphoethanolamine transferase YjgX 

4,530,139 (G)7→8 coding (418/903 nt) fimbrial protein FimH 

4,541,538 A→G I19I (ATT→ATC)  
nucleoside recognition pore and gate family 
inner membrane transporter 

4,615,610 A→G T28A (ACC→GCC)  

trifunctional nicotinamide-nucleotide 
adenylyltransferase/ribosylnicotinamide 
kinase/transcriptional regulator NadR 
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Table: Breseq output for PS3856 

 45 

mutations Ancestor: PS2717 

 

 

Ara+4, c1 

  

    Mutations 

position Mutation Annotation Description 

70,867 T→C D92G (GAC→GGC)  L-arabinose isomerase 

71,498 A→G V452A (GTC→GCC)  ribulokinase 

255,260 A→G E214G (GAG→GGG)  hypothetical protein 

278,454 (C)5→6 coding (1061/2526 nt) hypothetical protein 

380,182 C→T M241I (ATG→ATA)  MFS transporter AraJ 

403,036 (C)6→7 intergenic (+56/-33) 

bifunctional 
diaminohydroxyphosphoribosylaminopyrimidine 
deaminase/5-amino-6-(5-phosphoribosylamino)uracil 
reductase/6,7-dimethyl-8-ribityllumazine synthase 

422,600 (G)7→6 intergenic (-287/+175) 
cytochrome ubiquinol oxidase subunit II/AmpG 
family muropeptide MFS transporter 

865,524 T→C pseudogene (72/199 nt) hypothetical protein 

879,507 C→T A129T (GCT→ACT)  hypothetical protein 

908,704 A→G T11A (ACG→GCG)  ribosomal protein S6--L-glutamate ligase 

913,058 C→T A73V (GCT→GTT)  putrescine ABC transporter permease 

934,155 A→G E326G (GAG→GGG)  
OLD family ATP-dependent endonuclease; 
DUF2813 family protein 

1,081,210 (T)8→7 coding (885/1260 nt) hypothetical protein 

1,551,024 A→T L183M (TTG→ATG)  hypothetical protein 

1,559,052 (C)6→7 coding (1386/2280 nt) hypothetical protein 

1,570,698 (C)7→8 intergenic (-66/-89) 
outer membrane autotransporter barrel 
domain-containing protein/histidine kinase 

1,733,175 G→A E71K (GAA→AAA)  pyruvate kinase I 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,073,879 G→A Q314* (CAG→TAG)  outer membrane assembly protein AsmA 

2,131,794 G→A S300S (AGC→AGT)  fructose-bisphosphate aldolase 

2,208,359 G→A A55V (GCA→GTA)  nucleoside permease 
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2,223,905 T→C A118A (GCT→GCC)  peptide ABC transporter substrate-binding protein 

2,269,616 T→C S351P (TCA→CCA)  acetoacetate metabolism regulatory protein AtoC 

2,295,712 G→A R157C (CGC→TGC)  protein InaA 

2,321,534 A→T D314E (GAT→GAA)  o-succinylbenzoate synthase 

2,329,538 (C)6→7 coding (310/1209 nt) deubiquitinase 

2,685,147 C→T G162G (GGC→GGT)  hydroxyglutarate oxidase 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,818,291 C→T G378G (GGC→GGT)  serine transporter 

2,913,467 C→T A198V (GCG→GTG)  guanine/hypoxanthine permease GhxQ 

2,955,940 T→C E352E (GAA→GAG)  class II fructose-bisphosphate aldolase 

3,039,519 T→C E155E (GAA→GAG)  type II secretion system protein GspC 

3,095,865 G→A T326I (ACC→ATC)  cell division protein FtsP 

3,360,899 (C)6→5 coding (567/1125 nt) protein smf 

3,511,594 A→G I222T (ATC→ACC)  oxidoreductase 

3,515,583 C→T A50V (GCC→GTC)  heat-shock protein 

3,762,048 A→G Y431C (TAC→TGC)  

bifunctional (p)ppGpp synthetase II/ 
guanosine-3',5'-bis pyrophosphate 
3'-pyrophosphohydrolase 

3,875,773 T→C intergenic (-207/+146) 

bifunctional N-acetylglucosamine-1-phosphate 
uridyltransferase/glucosamine-1-phosphate 
acetyltransferase/ATP synthase epsilon chain 

3,891,544 (G)7→10 intergenic (-90/-133) 
ATPase RavA/low affinity potassium transport 
system protein kup 

4,308,608 (G)6→7 coding (535/879 nt) hypothetical protein 
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Table: Breseq output for PS3960 

 48 

mutations Ancestor: PS2717 

 

 

Ara+4, c2 

  

    
Mutations 

position Mutation Annotation Description 

70,867 T→C D92G (GAC→GGC)  L-arabinose isomerase 

245,953 A→G V641A (GTG→GCG)  acyl-CoA dehydrogenase 

278,454 (C)5→6 coding (1061/2526 nt) hypothetical protein 

279,790 A→G I140T (ATT→ACT)  fimbrial chaperone EcpB 

292,747 C→T intergenic (-97/-129) 
pyridine nucleotide-disulfide 
oxidoreductase/transcriptional regulator 

403,036 (C)6→7 intergenic (+56/-33) 

bifunctional 
diaminohydroxyphosphoribosylaminopyrimidine 
deaminase / 
5-amino-6-(5-phosphoribosylamino)uracil 
reductase/6,7-dimethyl-8-ribityllumazine 
synthase 

492,355 A→G Q152R (CAG→CGG)  ABC transporter ATP-binding protein 

511,687 C→T G125G (GGC→GGT)  cyclic amidohydrolase 

837,880 (G)5→6 coding (226/2226 nt) 
moderate conductance mechanosensitive 
channel YbiO 

934,155 A→G E326G (GAG→GGG)  
OLD family ATP-dependent endonuclease; 
DUF2813 family protein 

1,016,506 (G)5→4 coding (200/2601 nt) outer membrane usher protein 

1,057,373 T→C S329S (AGT→AGC)  cytochrome bd-II ubiquinol oxidase subunit 2 

1,202,723 C→T A296A (GCG→GCA)  50S ribosomal protein L16 arginine hydroxylase 

1,551,024 A→T L183M (TTG→ATG)  hypothetical protein 

1,559,052 (C)6→7 coding (1386/2280 nt) hypothetical protein 

1,592,123 (T)8→7 coding (141/393 nt) TIGR00156 family protein 

1,696,666 A→G L44P (CTG→CCG)  anhydro-N-acetylmuramic acid kinase 

1,733,175 G→A E71K (GAA→AAA)  pyruvate kinase I 

1,778,398 G→A C480C (TGC→TGT)  threonine--tRNA ligase 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase / nicotinamidase 

1,928,421 T→C E291G (GAA→GGA)  aspartate--tRNA ligase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 
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2,007,567 (C)7→8 coding (372/408 nt) hypothetical protein 

2,073,879 G→A Q314* (CAG→TAG)  outer membrane assembly protein AsmA 

2,295,712 G→A R157C (CGC→TGC)  protein InaA 

2,447,323 G→A L19L (CTG→CTA)  nucleoside permease NupC 

2,643,534 T→C F697L (TTT→CTT)  protein lysine acetyltransferase 

2,674,488 G→A G467S (GGT→AGT)  DNA repair protein RecN 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,818,291 C→T G378G (GGC→GGT)  serine transporter 

2,913,467 C→T A198V (GCG→GTG)  guanine/hypoxanthine permease GhxQ 

2,955,940 T→C E352E (GAA→GAG)  class II fructose-bisphosphate aldolase 

2,968,295 C→A A211D (GCC→GAC)  metalloprotease LoiP 

3,095,865 G→A T326I (ACC→ATC)  cell division protein FtsP 

3,225,840 G→A R598H (CGT→CAT)  membrane protein 

3,360,899 (C)6→5 coding (567/1125 nt) protein smf 

3,762,048 A→G Y431C (TAC→TGC)  

bifunctional (p)ppGpp synthetase II / 
guanosine-3',5'-bis pyrophosphate 
3'-pyrophosphohydrolase 

3,875,773 T→C intergenic (-207/+146) 

bifunctional N-acetylglucosamine-1-phosphate 
uridyltransferase / glucosamine-1-phosphate 
acetyltransferase/ATP synthase epsilon chain 

3,891,544 (G)7→8 intergenic (-90/-133) 
ATPase RavA/low affinity potassium transport 
system protein kup 

4,308,608 (G)6→7 coding (535/879 nt) hypothetical protein 

4,316,831 (A)8→9 intergenic (-188/+137) transcriptional regulator/arginine decarboxylase 

4,454,981 A→G V231A (GTG→GCG)  aspartate carbamoyltransferase catalytic subunit 

4,456,467 Δ1 bp coding (20/396 nt) hypothetical protein 

4,481,674 A→G pseudogene (1010/1115 nt) phosphoethanolamine transferase YjgX 
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Table: Breseq output for PS3964 

 
59 mutations Ancestor: PS2717 

 

 

Ara+5, c2 

  

    
Mutations 

position Mutation Annotation Description 

8,196 T→C intergenic (-239/-40) sodium:alanine symporter/transaldolase 

70,867 T→C D92G (GAC→GGC)  L-arabinose isomerase 

96,814 A→G H282R (CAC→CGC)  
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2, 
6-diaminopimelate ligase 

114,959 G→A Q149* (CAG→TAG)  cell division protein ZapD 

242,168 C→T intergenic (+159/-645) transposase/hypothetical protein 

278,454 (C)5→6 coding (1061/2526 nt) hypothetical protein 

303,153 C→T R348C (CGC→TGC)  choline transporter 

362,281 A→G T44A (ACT→GCT)  transcriptional regulator 

447,657 C→T T71I (ACA→ATA)  lipoprotein 

500,339 (G)6→7 coding (224/711 nt) hypothetical protein 

629,166 A→G L132P (CTC→CCC)  
2-(5''-triphosphoribosyl)-3'-dephosphocoenzyme-A 
synthase 

1,160,626 A→G L180P (CTG→CCG)  m(7)GTP pyrophosphatase 

1,166,278 A→G D32G (GAC→GGC)  acyl carrier protein 

1,278,576 T→C F157S (TTC→TCC)  nitrate/nitrite transporter NarK 

1,342,003 G→A H239Y (CAC→TAC)  DeoR family transcriptional regulator 

1,383,134 G→A V217I (GTC→ATC)  hypothetical protein 

1,454,062 G→A A557A (GCG→GCA)  ATP-dependent helicase 

1,551,024 A→T L183M (TTG→ATG)  hypothetical protein 

1,559,052 (C)6→7 coding (1386/2280 nt) hypothetical protein 

1,654,391 T→C K236K (AAA→AAG)  NAD(P) transhydrogenase subunit alpha 

1,701,047 G→A C578Y (TGT→TAT)  fusaric acid resistance protein 

1,737,579 T→C N71S (AAC→AGC)  cysteine desulfurase 

1,751,877 T→C F275L (TTC→CTC)  quinate/shikimate dehydrogenase 

1,829,717 G→T T201T (ACG→ACT)  bifunctional pyrazinamidase/nicotinamidase 

1,873,224 G→A S29S (AGC→AGT)  hypothetical protein 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

1,937,938 (C)6→7 coding (99/747 nt) copper homeostasis protein CutC 

1,964,675 (A)5→4 intergenic (-553/-244) 
L-arabinose-binding periplasmic protein/non-heme 
ferritin 
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2,295,712 G→A R157C (CGC→TGC)  protein InaA 

2,384,364 T→C V278V (GTA→GTG)  3-oxoacyl-ACP synthase I 

2,405,937 G→A W323* (TGG→TAG)  long-chain fatty acid transporter 

2,478,993 G→A P85S (CCT→TCT)  membrane protein 

2,566,577 G→A A523V (GCG→GTG)  penicillin-binding protein 1C 

2,578,205 G→A A477V (GCC→GTC)  molecular chaperone HscA 

2,696,146 A→G Y16C (TAC→TGC)  
ribonucleotide-diphosphate reductase subunit 
alpha 

2,731,583 C→T A235T (GCG→ACG)  carbamoyltransferase HypF 

2,735,430 G→A A349A (GCG→GCA)  
PTS cellobiose/arbutin/salicin transporter subunit 
IIBC 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  phosphoadenosine phosphosulfate reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,818,291 C→T G378G (GGC→GGT)  serine transporter 

2,836,432 C→T R252H (CGT→CAT)  glycine cleavage system transcriptional activator 

2,950,951 A→G A133A (GCA→GCG)  propionyl-CoA--succinate CoA transferase 

3,095,865 G→A T326I (ACC→ATC)  cell division protein FtsP 

3,118,561 T→C G26G (GGA→GGG)  3,4-dihydroxy-2-butanone-4-phosphate synthase 

3,133,077 T→C E241E (GAA→GAG)  inorganic triphosphatase 

3,301,015 T→C T154A (ACA→GCA)  N-acetylneuraminate lyase 

3,336,303 T→C V269A (GTA→GCA)  sodium:pantothenate symporter 

3,426,297 G→A A189T (GCG→ACG)  siroheme synthase 

3,700,548 G→A G1224G (GGG→GGA)  RHS element protein RhsA 

3,875,773 T→C intergenic (-207/+146) 

bifunctional N-acetylglucosamine-1-phosphate 
uridyltransferase/glucosamine-1-phosphate 
acetyltransferase/ATP synthase epsilon chain 

3,893,551 +G intergenic (+6/-50) 
low affinity potassium transport system protein 
kup/transposase 

3,923,132 C→T D218D (GAC→GAT)  ATP-dependent DNA helicase Rep 

4,179,767 (C)6→7 intergenic (+61/-126) 
hypothetical protein/DNA-binding protein 
HU-alpha 

4,372,135 C→T D30N (GAT→AAT)  tRNA epoxyqueuosine(34) reductase QueG 

4,480,205 C→T V76V (GTC→GTT)  integrase 

4,614,357 (T)5→4 coding (232/1383 nt) DNA repair protein RadA 
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Table: Breseq output for 

PS3870 

  20 mutations 

   Ancestor: PS174 Ara- ancestral clone 

 

    Mutations 

position Mutation Annotation Description 

1,018,516 C→T A737V (GCC→GTC)  outer membrane usher protein 

1,380,772 T→C L153L (TTG→CTG)  outer membrane protein G 

1,808,815 T→C T145A (ACT→GCT)  acetylornithine aminotransferase 

1,829,717 G→T T201T (ACG→ACT)  
bifunctional 
pyrazinamidase/nicotinamidase 

1,914,652 T→C D80G (GAC→GGC)  glucose-6-phosphate dehydrogenase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

2,123,452 A→G T40A (ACC→GCC)  lipid kinase YegS 

2,690,612 (A)5→4 coding (186/663 nt) transcriptional regulator 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  
phosphoadenosine phosphosulfate 
reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,818,291 C→T G378G (GGC→GGT)  serine transporter 

3,156,827 T→C Y460H (TAC→CAC)  beta-galactosidase subunit alpha 

3,281,332 T→C Y461H (TAC→CAC)  RNA polymerase sigma-54 factor 

3,283,514 (C)6→7 intergenic (+41/-173) 
phosphocarrier protein NPr/hypothetical 
protein 

3,284,281 G→A E199K (GAG→AAG)  hypothetical protein 

3,567,142 T→C T320A (ACA→GCA)  membrane protein 

3,937,495 A→G T184A (ACG→GCG)  
dTDP-4-amino-4,6-dideoxygalactose 
aminotransferase 
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Table: Breseq output for PS3869 

 
21 mutations Ancestor: PS2717 

 

 

Ara+ ancestral clone 

 

    
Mutations 

position Mutation Annotation Description 

70,867 T→C D92G (GAC→GGC)  L-arabinose isomerase 

272,553 C→T G69S (GGC→AGC)  
aldehyde dehydrogenase iron-sulfur 
subunit 

278,454 (C)5→6 coding (1061/2526 nt) hypothetical protein 

1,111,966 (G)7→8 intergenic (-244/-64) transposase/hypothetical protein 

1,349,565 (G)7→8 intergenic (-157/+211) 
enoyl-ACP reductase/hypothetical 
protein 

1,559,052 (C)6→7 coding (1386/2280 nt) hypothetical protein 

1,829,717 G→T T201T (ACG→ACT)  
bifunctional 
pyrazinamidase/nicotinamidase 

1,930,637 T→G V158G (GTG→GGG)  hypothetical protein 

1,953,113 G→A P326S (CCG→TCG)  chemotaxis protein CheA 

2,285,026 A→G R365R (CGT→CGC)  DNA gyrase subunit A 

2,295,712 G→A R157C (CGC→TGC)  protein InaA 

2,752,473 +G coding (521/2562 nt) DNA mismatch repair protein MutS 

2,776,775 C→T P13P (CCG→CCA)  
phosphoadenosine phosphosulfate 
reductase 

2,801,595 G→A P329S (CCG→TCG)  GTP pyrophosphokinase 

2,807,931 (C)5→6 coding (384/1341 nt) glucarate dehydratase 

2,815,688 T→C V151A (GTG→GCG)  LOG family protein YgdH 

2,818,291 C→T G378G (GGC→GGT)  serine transporter 

2,840,684 C→T intergenic (-223/+16) 

tRNA threonylcarbamoyladenosine 
dehydratase/murein 
transglycosylase A 

3,095,865 G→A T326I (ACC→ATC)  cell division protein FtsP 

3,141,891 G→A A351T (GCC→ACC)  antiporter 

3,368,349 T→C T196A (ACC→GCC)  
DNA-directed RNA polymerase 
subunit alpha 
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