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ABSTRACT 
 
 

THE PERCEPTION AND EVALUATION OF VISUAL BEAUTY 
 

Teresa K. Pegors 
 

Russell A. Epstein 
 

What are the perceptual and cognitive processes that underlie our 

experiences of beauty? In this dissertation, I describe a series of experiments where 

we used functional magnetic resonance imaging (fMRI) and behavioral methods to 

explore the mechanisms of perception, reward representation, and decision-making 

during evaluations of face and place beauty. In our first study, we used fMRI to ask 

whether evaluative signals in frontal cortex contain category-specific information or 

whether these signals are encoded as a “common currency” across reward types. By 

comparing neural activity correlated with subjective ratings of face and place beauty, 

we showed overlapping activity in dorsal ventromedial prefrontal cortex (vmPFC), 

consistence with the common currency hypothesis. At the same time, our results 

revealed category-specific patterns of activity in ventral vmPFC and in lateral 

orbitofrontal cortex (latOFC), suggesting at least a partial distinction in the frontal 

networks recruited during the processing of different types of rewards. In a follow-up 

study, we used fMRI to further examine face-responsive “patches” of activity in 

latOFC by measuring response in these patches while subjects evaluated but did 

explicitly rate face beauty. Our results demonstrated a similar pattern of response to 

that observed during explicit ratings, suggesting that reward-related activity in this 

region is not dependent on a decision-making task. Lastly, in a series of behavioral 

studies, we developed a novel experimental design to measure the influence of 

recent trial history on current judgments of face attractiveness. We found that 
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attractiveness judgments are simultaneously contrasted away from the 

attractiveness of the previous face but assimilated towards the previous numerical 

rating given. Our results also suggested that these influences are not specific to 

attractiveness judgments but may be linked to more general properties of perception 

and decision-making. Collectively, this work furthers our understanding of the neural 

mechanisms underlying evaluations of face and place beauty, and illuminates some 

of the specific contextual influences on these evaluations. 
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CHAPTER 1 – Introduction 
 

Questions about the nature of beauty have been around since the beginning 

of philosophy itself: What is it that makes a thing beautiful and why? Is beauty 

universal or cultural? What is the relationship between beauty and goodness, truth, 

and desire? While some questions are purely philosophical, researchers in psychology 

and neuroscience have sought to address empirical questions related to the cognitive 

and neural underpinnings of our experiences of beauty. Much progress has been 

made, but there is still tremendous work to be done in understanding how 

mechanisms such as perception, memory, and evaluation all work together to make 

up these “aesthetic” experiences (Chatterjee 2004; Conway and Rehding 2013).  

In this dissertation, I describe a series of experiments that used functional 

magnetic resonance imaging (fMRI) and behavioral methods to better understand 

how we perceive beauty, specifically the beauty of faces and places. We chose these 

categories of beauty for two main reasons: First, there is no research on the neural 

correlates of beautiful landscapes. We therefore wanted to establish the set of 

regions across the brain that specifically responded to this kind of place beauty. 

Second, while it is true that both faces and places are often given the label of 

“beautiful” or “attractive,” beautiful faces and beautiful places have very different 

visual properties and are associated with different kinds of motivation and reward. 

Comparing neural and behavioral responses between both of these categories, 

therefore, would allow us to observe which beauty-related processes were recruited 

across the two categories, and which processes were tied to the visual or reward 

properties of one particular category.  
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As background, the subsequent sections present an overview of the current 

research on face and place beauty. I describe what is known about the visual 

features and reward properties thought to be associated with both, and I also review 

what is known about face and place beauty in the brain. Following these sections, I 

then outline the specific research aims of this dissertation. 

Face beauty 

Visual features of attractive1 faces 

Research on face attractiveness is a relatively new field, because until 

recently, it was thought that the perceived attractiveness of a face was completely 

dependent on culture, upbringing, and individual idiosyncrasies. But studies in the 

last few decades have highlighted at least three facial characteristics that seem to be 

universally tied to attractiveness: averageness, symmetry, and sexual dimorphism 

(Thornhill and Gangestad 1999; Rhodes 2006). 

Average faces are defined as those that are close to the mathematical center 

of the space of all face features in a given population. In a first demonstration that 

average faces are judged to be attractive, Langlois and Roggman had subjects rate 

the attractiveness of individual faces and of composite faces that were created by 

averaging together a large number of individual faces (1990). Their result, that 

composites were rated as significantly more attractive than individual faces, was 

surprising, but follow-up studies where researchers using more advanced means of 

creating composites showed that these average faces were not rated as more 

attractive solely because composites had smoother skin textures (Rhodes and 

Tremewan 1996; O’Toole et al. 1999) or because they were more symmetrical 

(Rhodes, Sumich, and Byatt 1999; Valentine, Darling, and Donnelly 2004). One 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Throughout this dissertation, I use the words “attractiveness” and “beauty” interchangeably. 
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study also provided evidence that the that the averageness of a face is not based on 

a fixed norm, but instead, people seem to dynamically update what they consider 

“average” based on the recent set of faces observed in the world: even over the 

course of a few minutes of exposure to expanded or contracted faces, people will 

shift their judgments of what they considers attractive to match the average face in 

the current distribution (Rhodes et al. 2003). 

The left-right symmetry of a face, independent of averageness, has also been 

shown to robustly correlate with facial attractiveness, both for naturally symmetric 

faces (Grammer and Thornhill 1994), and in comparisons of normal faces to faces in 

which the left and right halves were mirror reflections. (Rhodes et al. 1998; Perrett 

et al. 1999). Additionally, one study used monozygotic twins (genetically but not 

developmentally identical) to show that the level of perceived difference in facial 

symmetry between the twins was correlated with the level of perceived 

attractiveness. The twin who had the more symmetrical face was judged to have the 

more attractive face (Mealey, Bridgestock, and Townsend 1999). 

While averageness and symmetry are attractive traits for both male and 

female faces, researchers have also shown some evidence that dimorphic features 

(secondary sex characteristics) correlate with facial attractiveness. The degree of 

femininity in female faces (e.g. higher and wider eyes, small nose, and small chin) is 

positively correlated with attractiveness ratings given by males, and this was true 

regardless of whether researchers directly quantified feminine features for each face 

or simply asked subjects to rate the femininity of each face (Cunningham 1986; 

Cunningham et al. 1995; O’Toole et al. 1998; Perrett, Lee, and Penton-Voak 1998; 

Rhodes, Hickford, and Jeffery 2000). The relationship between masculinity in male 

faces and attractiveness is more complex. A number of studies have suggested that 
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the degree of masculinity in a male face is actually negatively correlated with 

attractiveness (Perrett, Lee, and Penton-Voak 1998; Rhodes, Hickford, and Jeffery 

2000; Little and Hancock 2002). On the other hand, one insightful study revealed 

that masculinity is preferred in females who were in the high-risk (for ovulation) 

phase of their menstrual cycle, whereas at all other times, females preferred more 

feminized male faces (Johnston et al. 2001).  

Reward value of attractive faces 

The previous section outlined a number of facial features associated with 

attractiveness across cultures, but why do humans have a preference at all for one 

type of face over another? What are the true or perceived rewards associated with 

attractive faces?  

One line of inquiry has used an evolutionary framework to ask whether face 

attractiveness functions to signal reproductive fitness. For example, facial 

attractiveness may reflect genetic stability, typical development, and lack of sickness 

or parasites. Evidence, though, for a direct link between attractiveness and health is 

weak: one of the most robust studies of this question looked at health records and 

attractiveness across individuals’ lifespans, but they found no relationship between 

health and attractiveness for either females or males (Kalick and Zebrowitz 1998). 

Only by examining those individuals below the median in attractiveness, was there 

found a moderate relationship between attractiveness and health (Zebrowitz and 

Rhodes 2004). The authors hypothesized that facial attractiveness functions to signal 

low fitness, but it is not helpful in identifying high fitness. Other evidence suggests 

that the degree of masculine features in male faces does have a low correlation with 

health and reproductive fitness (Soler et al. 2003; Rhodes et al. 2003; Rhodes, 
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Simmons, and Peters 2005). Conversely, feminine features of female faces do not 

seem to be correlated with a variety of health measures (Rhodes et al. 2003).  

Many researchers concede that actual reproductive fitness may no longer be 

strongly associated with attractiveness due to overriding factors such as modern 

medicine and nutrition (Thornhill and Gangestad 1999; Rhodes 2006). Nevertheless, 

it is very well known that people perceive attractive individuals to have a whole host 

of positive traits such as health, intelligence, sexual responsiveness, and sociability 

(for reviews, see Eagly et al. 1991; Feingold 1992; Langlois et al. 2000). Zebrowitz 

formalized this idea into what she calls the “anomalous face overgeneralization 

hypothesis,” in which humans have adapted to recognize facial features that signal 

low fitness, but these responses are also applied to normal individuals whose “faces 

resemble those who are unfit” (Zebrowitz and Montepare 2008). By way of contrast, 

then, attractive people are perceived to have more positive traits than unattractive 

people (Griffin and Langlois 2006). 

 Another line of inquiry has looked into whether preferences for attractive 

faces are by-products of more general information processing mechanisms.  For 

example, it has been argued that symmetry aids recognition (Enquist and Arak 

1994; Johnstone 1994), and might therefore be a generally positive trait (Rhodes 

2006). Also, quite a number of studies have shown that average or “prototypical” 

items are preferred over non-prototypes, demonstrating similar effects for average 

fish, watches, cars, musical compositions, and voices (Smith and Melara 1990; Repp 

1997; Halberstadt and Rhodes 2000, 2003; Bruckert et al. 2010). This phenomenon 

may reflect a preference for familiarity or a more general preference for efficient 

information processing, or processing “fluency” (Reber, Scharz, and Winkielman 

2004).  
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Neural correlates of face attractiveness 

Face perception as a whole has been a topic of great interest to cognitive 

neuroscientists, and much research has gone into understanding the “face-

processing” network (Haxby, Hoffman, and Gobbini 2002; Haxby and Gobbini 2011; 

Collins and Olson 2014). Many studies have also directly tested for the neural 

correlates of facial attractiveness, showing both visual and reward-related regions to 

positively track this trait.  

A number of studies showed that response in fusiform cortex correlated with 

subjects’ individual attractiveness judgments (Kranz and Ishai 2006; Cloutier 2008; 

Winston et al. 2007). Additionally, at least two studies have shown that activity in 

visual cortex persists even when subjects are making orthogonal judgments to 

attractiveness: Chatterjee et al. tested visual cortex response to facial attractiveness 

while subjects made either attractiveness judgments or identity judgments, and 

showed a positive response to attractiveness in an extended region of visual cortex, 

including the fusiform face area (FFA) and lateral occipital cortex (LOC) (2009).  

Winston et al. also showed similar positive response in occipito-temporal and 

fusiform cortex, during both attractiveness and gender judgments (2007). It remains 

unclear from these studies whether these effects in visual cortex are driven by 

certain visual features or whether these effects are driven by attention or saliency 

signals. 

A meta-analysis of the neural correlates of attractiveness and trustworthiness 

showed that the most commonly recruited regions are the ventromedial prefrontal 

cortex (vmPFC), nucleus accumbens (NAcc) and anterior cingulate cortex (ACC) 

(Mende-Siedlecki, Said, and Todorov 2012). Individual studies of face attractiveness 

have also consistently reported attractiveness responses in these regions (e.g. 
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O’Doherty 2003; Cloutier et al. 2008; Kranz and Ishai 2006; Kim et al. 2007). NAcc 

and vmPFC are interconnected with each other (Ongur and Price 2000) and are 

considered be part of a larger valuation circuit (Kable and Glimcher 2009). Kim et al. 

showed that the NAcc was activated earlier than vmPFC for preferred vs. 

nonpreferred faces, but this differential activity for preferred faces in NAcc only 

occurred for novel faces (2007). The authors suggest that, based on these results, 

the NAcc is responsible for forming an automatic, initial affective evaluation of faces, 

whereas the vmPFC represents information related to the subjects’ preference 

decision. 

Place Beauty 

Visual features of beautiful places 

Places span a much wider range of visual characteristics than faces, and can 

easily be subdivided into visually distinct categories such as indoor/outdoor and 

urban/natural. In the following sections, we emphasize landscapes in particular, 

which we define as places without obvious manmade influence or built structures.  

Landscapes as a whole are considered more beautiful than urban 

environments (Kaplan, Kaplan, and Wendt 1972; Ulrich 1984; Purcell and Lamp 

1994). This preference is largely tied to the “naturalness” of an environment, the 

degree to which a place has natural vs. manmade/built elements. For example, in a 

review of vegetation in urban environments, Smardon concludes that across studies, 

urban vegetation has been clearly shown to have both functional and aesthetic value 

(1988). Additionally, White et al. showed that water elements combined with 

greenery are considered more beautiful than images with only greenery or only 

water, and that “built” environments without either are least preferable (2010).  
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Other research on broad landscape characteristics is sparser. There is some 

evidence that the subjective complexity of landscapes correlates with beauty ratings 

(Han 2009), but the relationship between beauty and most landscape qualities such 

as subjective familiarity, “coherence”, “mystery”, and spaciousness seems to depend 

on the type of landscape (Herzog 1985). For instance, Herzog showed that the 

spaciousness of mountains, canyons, and deserts is positively correlated with beauty 

(1981), but varied between waterscapes (e.g. seasides, lakes, swamps) (1985).  

Reward value of beautiful places 

 Evolutionary theorists suggest that place preferences may be due to a natural 

affinity for the environment or “biome” in which humans evolved, though there is 

disagreement about whether this may have been the savannah, forest, or 

grasslands/woodlands (Han 2007). Appleton’s prospect/refuge theory is based on the 

savannah hypothesis of human evolution, and argues that humans have adapted to 

be attracted to environments that have broad, open vistas, access to refuge (e.g. 

trees) and resources (water and vegetation) (1975). Balling and Falk showed a 

preference for savannahs in young American children but no preference for 

savannahs in American adults (1982). In a more recent study, the same authors 

tested environmental preferences in Nigerian children from the age of 12-18. Like 

the American children, Nigerian children also rated savannah images as significantly 

more preferable than the images of forests and deserts (Falk and Balling 2009). The 

authors use both of these studies to suggest that children across cultures have an in-

born instinct for savannahs which is then overshadowed by experience and cultural 

norms over the course of development. 

Another line of inquiry into place preference has focused on the information-

theoretical aspects of beautiful landscapes. A number of studies have shown that 
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natural scenes in particular have fractal-like, or scale-invariant, properties 

(Hagerhall, Purcell, Taylor 2004; Redies, Hasentstein, and Denzler 2007; Graham 

and Field 2007). These fractal properties found in natural scenes are surprisingly 

similar to the statistical properties found in visual artwork (Taylor and Micolich 1999; 

Redies, Hasenstein, and Denzler 2007; Graham and Field 2007). This has led to 

some speculation that these visual statistical properties themselves are factors that 

contribute to aesthetic preferences (Hagerhall et al. 2004; Redies 2007), and that 

such preferences may occur due to the fact that scale-invariance of the input leads 

to efficient encoding within the visual system (e.g. Simoncelli and Olshausen 2001). 

The most explored theory of place preference has been to show that exposure 

to natural landscapes leads to quantifiable physical and mental health benefits 

(Ulrich 1984; Kaplan 1995; Kweon et al. 2007; Berman, Jonides, and Kaplan 2012; 

White et al. 2013). Ulrich compared hospital patients with window views looking out 

onto trees had window views looking out at a brick wall. Those who had views of 

trees were discharged from the hospital faster and requested less pain medication 

that patients who had views onto a brick wall (1984). A large-scale study using data 

from household and health surveys showed a positive relationship between green 

space and well-being, and a negative relationship between green space and mental 

distress, after controlling for other possible factors (White et al. 2013). The ideas 

that natural environments are beneficial to our health and well-being are generally 

described in evolutionary terms (e.g. Wilson 1984), but these effects may also be 

due a cultural phenomenon in which a large portion of the population associates 

urban/suburban settings with work, stress, and normal life, whereas natural settings 

become associated with rest and “getting away.”  
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Place beauty in the brain 

Place images recruit a separate core set of regions in the brain than those for 

face images (Epstein and Kanwisher 1998). While this general “place-processing” 

network is well studied, unlike the plethora of studies on face beauty, only two 

studies have explored the neural correlates of place beauty in the brain, and these 

both focused on built/indoor settings rather than landscapes.  

Kirk et al. had experts (architects) and non-experts give aesthetic ratings in 

the scanner to a range of buildings and faces (2009). While the behavioral ratings of 

the images between experts and non-experts were not significantly different, there 

was greater beauty response in anterior cingulate cortex (ACC) and ventromedial 

prefrontal cortex (vmPFC) in the experts. Interestingly, there were no regions that 

responded similarly to beauty across groups in a conjunction analysis. In a study to 

determine the impact of interior contours on preference and neural response, 

Vartanian et al. scanned subjects while they judged the beauty of room interiors 

(2013). The authors showed that visual cortex, specifically the middle occipital 

gyrus, co-varied with place beauty, but there was no significant response to place 

beauty in ACC or vmPFC (though ACC did response to place pleasantness).    

Across the two studies, regions were found that were similar to those 

associated with face beauty: the ACC and vmPFC in frontal cortex as well as regions 

of visual cortex. While this is suggestive of neural similarities between face and place 

beauty processing, the lack of overlap between the two place studies warrants 

further exploration and comparative study. 

Research Aims 

The work described in this dissertation had two overarching goals: first, to 

explore in more detail the neural and behavioral processes related to face and place 
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beauty, and second, to use our results to inform more general questions related to 

perception, reward processing, and decision-making. By using the basic task of 

evaluating face and place beauty across a variety of designs and methodologies, we 

attempted to address both of these goals within each of our studies.  

In chapter 2, I describe an fMRI experiment in which we compared neural 

response to face and place beauty in perceptual and reward-related regions of the 

brain. A number of studies have suggested that the ventromedial prefrontal cortex 

(vmPFC) encodes a wide range of subjective values (e.g. money, food, trinkets) into 

a common value signal or “common currency.” Because it is thought that this signal 

is used to allow for choice comparisons between different kinds of goods, we tested 

whether such a signal exists even in the case of values that are not typically 

compared: face and place beauty. Our results supported the common currency 

hypothesis by showing overlapping response in vmPFC to face and place beauty. At 

the same time, we also found evidence for category-specific encoding of beauty in 

both reward and visual regions of the brain. These results extended our 

understanding of value representation in the reward system, and also gave us insight 

into the similarities and differences in how face and place beauty is represented in 

the brain. 

In chapter 3, I describe another fMRI experiment that explored the task 

conditions under which face-related signals exist in lateral orbitofrontal cortex 

(latOFC). In a previous study (chapter 2), we showed that a region of activity in right 

latOFC responded to faces but not places, and a separate region in right latOFC 

responded to face beauty but not place beauty. By scanning subjects while they 

passively viewed face and place images, we tested whether these signals persisted 

even when people were only passively evaluating beauty without making explicit 
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ratings. Our results showed that both these regions showed the same response 

profile as when subjects made explicit ratings. In contrast, ventromedial prefrontal 

cortex (vmPFC), which had responded to face beauty during explicit judgments, did 

not respond during passive evaluation, suggesting a functional distinction between 

value-related processes in latOFC and vmPFC. 

In chapter 4, I describe a series of behavioral studies in which we tested how 

context affects judgments of face attractiveness. While previous research has shown 

that ratings of attractiveness are affected by previous trial history, there is 

contradictory evidence over whether this affect is “contrastive” or “assimilative” in 

nature. We created a novel behavioral design that allowed us to independently 

measure the influence of the previous image and the previous rating on current 

attractiveness judgments. We demonstrated the existence of simultaneous and 

opposing influences of the previous stimulus and the previous rating on judgments of 

attractiveness, though these influences were restricted within visual category (place 

trials did not influence face trials). We also provide evidence that these influences 

are not specific to attractiveness judgments, but may be a general property of 

sequential judgments. 
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CHAPTER 2 - Common and unique representations in prefrontal cortex 
for face and place attractiveness 
	
  

 
Pegors TK; Kable JW; Chatterjee A; Epstein RA. under review 

 
 

Abstract 

Although previous neuroimaging research has identified overlapping correlates of 

subjective value across different reward types in the ventromedial prefrontal cortex 

(vmPFC), it is not clear whether this “common currency” evaluative signal extends to 

the aesthetic domain. To examine this issue, we scanned human subjects with fMRI 

while they made attractiveness judgments of faces and places, two stimulus 

categories that are associated with different underlying rewards, have very different 

visual properties, and are rarely compared to each other. We found overlapping 

signals for face and place attractiveness in the vmPFC, consistent with the idea that 

this region codes a signal for value that applies across disparate reward types and 

across both economic and aesthetic judgments. However, we also identified a 

subregion of vmPFC within which activity patterns for face and place attractiveness 

were distinguishable, suggesting that some category-specific attractiveness 

information is retained in this region.  Finally, we observed two separate functional 

regions in lateral orbitofrontal cortex (latOFC), one region that exhibited a category-

unique response to face attractiveness and another region that responded strongly to 

faces but was insensitive to their value. Our results suggest that vmPFC supports a 

common mechanism for reward evaluation while also retaining a degree of category-

specific information, whereas latOFC may be involved in basic reward processing that 

is specific to only some stimulus categories. 
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Introduction 

Aesthetic evaluations, such as judging beauty and attractiveness, play an 

important role in our lives, affecting (for example) whom we choose to marry and 

where we would prefer to live. We can perform aesthetic evaluations on a wide 

variety of stimuli – a face can be beautiful or ugly, as can a house, room, or 

landscape. This suggests the possibility that a common evaluative signal might 

underlie different aesthetic judgments, analogous to the common signal that is 

believed to underlie different kinds of economic judgments. However, a 

counterargument is the fact that aesthetic judgments are rarely made across 

stimulus category (“Is this face more beautiful than this landscape?”). This makes 

them different from economic judgments, which usually involve comparison across 

disparate categories of goods, and suggests that a “common currency” for value 

might not be useful—or calculated—in the aesthetic domain. 

Here we test whether human prefrontal cortex computes a common currency 

for value that is used for aesthetic judgments. Previous studies have shown that 

fMRI response in ventromedial prefrontal cortex (vmPFC) during economic decision-

making corresponds to the “utility” or “subjective value” of a stimulus (Bartra, 

McGuire, and Kable 2013).  This response exhibits some degree of domain-

generality, insofar as it can be elicited by both money and consumer goods (Chib et 

al. 2009; Kim et al. 2011; Levy et al. 2011).  However, the few studies that have 

attempted to compare non-economic (e.g. social) to monetary rewards have 

produced contradictory findings, sometimes showing overlapping activity in vmPFC 

and sometimes revealing non-overlapping activity or no activity at all in this region 

(Smith et al. 2010; Lin et al. 2012, Sescousse et al. 2010, Izuma et al. 2008). It 
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remains unclear whether a common evaluative signal exists that could apply to 

judgments very far removed from economic exchange such as aesthetic judgments.   

To examine this issue, we scanned subjects with functional magnetic 

resonance imaging (fMRI) while they made attractiveness judgments of faces and 

places. Our aim was to identify a common neural signal of value that operates across 

these two very different non-economic stimulus classes. By using faces and places as 

stimuli, we intended to give our two categories the “best advantage” in terms of 

possible neural differences. Beautiful faces and beautiful places are associated with 

distinct reward outcomes: beautiful faces offer the promise of reproductive success 

and social advancement (see Rhodes 2006 for a review), whereas beautiful 

landscapes offer the promise of prospect/refuge, physical resources, and rest 

(Appleton 1975; White et al. 2010; Berman & Kaplan 2008). Faces and places also 

differ substantially in their visual properties, to the extent that they are processed by 

distinct regions of visual cortex (Kanwisher et al. 1997; Epstein and Kanwisher 

1999).  Face and place attractiveness are not typically assigned monetary values 

(although it is not impossible to assign monetary value to something without a 

market value - see Smith et al. 2010, Mitchell and Carson 1989).  Therefore, a 

common response for face and place attractiveness is unlikely in the absence of a 

common currency-type, domain-general evaluative neural signal. 

Previous work has shown that activity in vmPFC correlates with face 

attractiveness (O’Doherty et al. 2003; Ishai 2007; Cloutier et al. 2008), though this 

is not always the case (Chatterjee et al. 2009). A single study on the neural 

correlates of indoor place attractiveness showed no activity in vmPFC that correlated 

with parametric beauty ratings (Vartanian et al. 2013). Consequently, the question 

of whether face and place attractiveness are represented in the same or different 
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brain regions remains open. To anticipate, our results suggest that there are both 

category-general and category-specific representations of attractiveness in vmPFC, 

and a signal specific to face attractiveness in lateral orbitofrontal cortex (latOFC). 

 

Methods 

Subjects 

34 healthy, right-handed volunteers with normal or corrected-to-normal 

vision were recruited to participate in the fMRI study.  All subjects gave written 

informed consent according to procedures approved by the University of 

Pennsylvania institutional review board. One subject was excluded due to an 

incidental finding, two subjects were excluded due to technical issues with their 

anatomical images, and three subjects were excluded due to excessive motion in the 

scanner.  This left us with 28 subjects whose functional data were analyzed (14 

females, mean age 22.5). 

fMRI Acquisition 

 Scans were performed at the Hospital of the University of Pennsylvania on a 

3T Siemens Trio scanner equipped with a Siemens body coil and a 32-channel head 

coil.  High resolution T1-weighted anatomical images were acquired using a 3D 

MPRAGE pulse sequence (TR = 1620 ms, TE = 3 ms, TI = 950 ms, voxel size = 

0.9766 x 0.9766 x 1 mm, matrix size = 192 x 256 x 160). T2*-weighted images 

sensitive to blood oxygenation level-dependent (BOLD) contrasts were acquired 

using a gradient-echo echo-planar pulse sequence (TR = 3000 ms, TE = 30 ms, 

voxel size = 3x3x3mm, matrix size = 64 x 64, 46 axial slices).  The slices were tilted 

-30 degrees from the AC-PC plane to reduce signal dropout (Deichmann et al. 2003).   
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Stimuli 

Stimuli were digitized 400x400 pixel color photographs of 144 places and 144 

faces chosen to span a wide range of attractiveness. The places were natural 

environments with no man-made elements, spanning scene types such as swamps, 

mountain ranges, beaches, fields, and forests.  The face set had equal numbers of 

males and females, and all faces were Caucasian, upright and forward-facing, with 

neutral to pleasant expressions, selected from the Glasgow Unfamiliar Face Database 

(http://homepages.abdn.ac.uk/m.burton/pages/gfmt/Glasgow%20Face%20Recogniti

on%20Group.html), Radboud Database (Langner et al. 2010), the Center for Vital 

Longevity Face Database (Minear & Park 2004), CVL Face Database (Peter Peer, 

http://www.lrv.fri.uni-lj.si/facedb.html), Diana Theater Face Database (courtesy of 

Dr. Robert Schultz at the Center for Autism Research), and online searches. Face 

images were extracted from their original background, blurred slightly along the 

edges, cropped so that hair did not extend below the chin, and resized to span a 

height of 400 pixels. They were then placed on an abstract colored background 

created by phase-scrambling a single place image.  This ensured that they 

subtended the same visual angle as the places while retaining a similar background 

color. A unique scrambling of the background image was used for each face (code 

used from: http://visionscience.com/pipermail/visionlist/2007/002181.html).   

These 288 stimuli were chosen from a larger set of 573 face and place images based 

on pilot testing intended to ensure that they covered a wide range of attractiveness, 

thus maximizing our ability to see neural activity related to this variability. In these 

pilot tests, 10 subjects made Likert-scale ratings (1-8) of the visual attractiveness of 

each place and face. Images were blocked by category (face/place) and subjects 

used the keyboard to make ratings at their own pace, with instructions to spread 
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their judgments across the whole 1-8 range. Each subjects’ ratings were then z-

scored across all images and these z-scores were averaged across subjects for each 

image. The images were then divided into “low”, “average”, and “high” 

attractiveness bins according to whether they had a z-score below -0.5 (low), 

between -0.5 and 0.5 (average), or above 0.5 (high).  Images were then chosen in 

equal numbers from these three attractiveness bins to make the final stimulus set. 

Design and Procedure  

The fMRI experiment consisted of six 4 min 57 sec scan runs, each of which 

was divided into two 36-s face blocks, two 36-s place blocks, and two 36-s fixation 

(or “rest”) blocks in which subjects passively fixated on a central crosshair (Figure 

2.1).  Between each block was an additional 9 seconds of passive fixation.  18 

seconds of fixation were added at the beginning and end of each run to allow the T2* 

signal to reach a steady state and to model the final HRF, respectively.  During each 

face and place block, subjects used a button box to give “low”, ”average”, or “high” 

attractiveness ratings to 12 faces or places, each presented for 1 s followed by a 2 s 

interstimulus interval (ISI) during which only a crosshair was on the screen. Subjects 

made their ratings any time within the 3-second trial; button assignment was 

counterbalanced across subjects. Blocks were ordered such that no block type 

repeated twice in a row (including fixation blocks), and the block orders were 

counterbalanced across runs.   

To acclimate subjects to the distribution of attractiveness in the stimulus set, 

they were asked to rate prior to the scan the attractiveness of 24 faces and 24 

places not used in the main experiment on a 1-8 scale. These 48 images were 

chosen to span the entire range of attractiveness found in the main stimulus set. In 

addition, immediately after the scan session, subjects were presented with the 
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images from the main experiment again in a random order and asked to rate them 

on the same 1-8 scale. These post-scan ratings were used in the subsequent fMRI 

analysis because they provided a finer-grained measure of face and place 

attractiveness than the high/average/low ratings made in the scanner. 

Experiment trials within blocks were ordered such that the place and face 

attractiveness regressors used in the subsequent analyses would have maximal 

power to detect variability in fMRI response. Although these regressors were 

ultimately based on the attractiveness judgments made by the subjects in the 

scanner, which could not be known in advance, we were able to obtain a rough 

estimate of their shape by using the high/average/low attractiveness ratings 

provided by the pilot subjects. We generated 10,000 random orders of face and 

place stimuli that fit our experimental design, convolved the corresponding 

attractiveness ratings with a canonical hemodynamic response function (HRF), and 

determined the power by calculating the ratio of variance before and after 

convolution.  A “best” sequence of attractiveness levels was chosen (the one with the 

highest power), and images corresponding to these bins were drawn randomly from 

the stimulus set to create a unique stimulus sequence for each subject.  

fMRI Data Analysis 

Pre-processing and data analysis for individual subjects was performed using 

the FMRIB Software Library (FSL v.4.1.6) (Jenkinson et al. 2012; Woolrich et al. 

2009; Smith et al. 2004).  Functional images were corrected for differences in slice 

time acquisition and then de-obliqued to correct for the 30 degree tilt slice 

acquisition.  For each run, the first six volumes were removed to account for the 

fMRI signal not yet reaching steady-state, and data were then motion corrected by 

spatially realigning each image with the central image in the run, registered to the 
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subject-specific T1-weighted image using 6 degrees of freedom rigid-body 

transformations, and high-pass filtered to remove temporal frequencies below 

0.0074 Hertz.  

General linear modeling was used to estimate neural activity correlated with 

subject-specific ratings of face and place attractiveness. Each subjects’ post-scan 1-8 

ratings were used to create parametric regressors for face and place attractiveness 

which extended across all six experimental scans.  The model also included 

regressors corresponding to face and place in-scan reaction times (RTs), as our 

behavioral data revealed that reaction time was significantly negatively correlated 

with place attractiveness (but not face attractiveness). We did not include quadratic 

regressors for face and place attractiveness, in contrast to previous studies (e.g. 

Winston et al. 2007), because these quadratic regressors were strongly negatively 

correlated with RT. Finally, categorical regressors were added for face trials, place 

trials, and instruction screens, and nuisance regressors were added to account for 

between-scan variability and outliers (outliers calculated with the Gabrieli Lab’s 

Artifact Detection Tools: http://www.nitrc.org/projects/artifact_detect/).  All 

regressors, except scan indicators, were convolved with a canonical HRF.    

We used this model to perform two sets of analyses. The first was a set of 

targeted analyses focusing on regions in the frontal lobe that have been previously 

implicated in the processing of information about stimulus value. The second was a 

whole-brain random effects analysis intended to find areas responding to face and 

place attractiveness without any a priori hypotheses about where these areas would 

be. For the targeted frontal lobe analyses, unsmoothed parameter estimates from 

the contrasts of interest were registered to the cortical surface using surface 

templates derived from each subject’s T1-weighted anatomical image using 
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Freesurfer’s segementation function (recon-all). The data were then averaged across 

subjects by spherically registering these subject-specific surfaces to the group brain 

(an average of the subject-specific surfaces, where vertex coordinates are calculated 

as the average tailarach coordinates of that vertex across subjects).  During this 

registration process the data was smoothed on the group-average surface at 3mm 

FWHM.  Using the unfolded cortical surface for inter-subject registration in this 

manner reduces the variability when averaging across volumetric data associated 

with regions containing highly variable cortical folding patterns, which was especially 

important in this case because orbitofrontal cortex is known to have a high degree of 

anatomical variability between subjects (Chiavaras & Petrides 2000; Chiavaras et al. 

2001).  Random-effects analyses were then performed on the contrasts of interest to 

identify regions within vmPFC and latOFC that responded to face and place 

attractiveness.  Output was cluster-corrected for small-volumes in vmPFC and latOFC 

and Bonferroni corrected to account for observations across 2 hemispheres (clusters 

defined at p<0.05 uncorrected and then permutation corrected to p<0.05 using 

Freesurfer’s simulation function to estimate the distribution of maximum cluster sizes 

under the null hypothesis).  The medial surface a priori small volume was defined 

using a functional mask for vmPFC (Bartra, McGuire, & Kable 2013) which we 

translated into surface space.  As there is some evidence of category-specific signals 

in latOFC (e.g. Sescousse et al. 2010), we also used this area as an a priori small 

volume, defined by using the ventral surface of the “lateralorbitofrontal” ROI from 

Freesurfer’s APARC library (taken from the Desikan-Killiany atlas).  

We performed a leave-one-subject-out iterative cross-validation analysis 

(Kriegeskorte et al. 2009, supplementary discussion) on the significant clusters 

resulting from the targeted frontal lobe analysis to test whether activity within any 
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clusters responding to face attractiveness or place attractiveness responded 

differentially to face versus place attractiveness. On each iteration, data from a 

single subject was held out as the test set. Clusters within vmPFC and latOFC 

responding to face or place attractiveness were then defined based on a group 

analysis of the n-1 remaining subjects, using the procedures described above. The 

response in these clusters in the nth subject was then analyzed, and the procedure 

repeated. This method gave us an estimate of the response in each cluster to face 

and place attractiveness, using independent data sets to define the boundary of the 

cluster and the strength of the effect.  

For the whole-brain analyses, pre-processed data were smoothed with a 5mm 

FWHM kernel and parameter estimates for regressors of interest were obtained for 

each voxel for each subject. These were normalized to standard volumetric MNI152 

space using linear 12 degree of freedom transformations, resampled to 2x2x2 mm 

voxels in this standard space, and submitted to group level random effects analyses 

for contrasts of interest. The true Type 1 error rate for each contrast was calculated 

from FSL’s randomise function using Monte-Carlo simulations that permuted the 

signs of wholebrain data from individual subjects (10,000 relabelings; method based 

on Freedman & Lane 1983).  The resulting reported voxels are significant at p<0.05 

corrected for multiple comparisons across the whole brain.  

We also performed a follow-up analysis which examined response in 

functional ROIs in visual cortex. Because we did not conduct independent localizer 

scans for all subjects, these ROIs were defined by using a set of 40 subjects’ localizer 

contrast files (19 which came from our current study).  These group-defined 

“parcels” were created using an algorithmic method which is fully described in Julian 

et al. (2012) (We diverged from the Julian et al. description in that we chose a more 
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liberal threshold of p<0.001 for the Face>Objects contrast maps.)  Parcels were 

defined using the contrasts Faces>Objects (fusiform face area, FFA), 

Scenes>Objects (parahippocampal place area, PPA), Objects>Scrambled Objects 

(posterior lateral occipital cortex, LOC) Scrambled Objects > Objects (early visual 

cortex, EVC). For the ROI analysis, we then translated individual subject contrast 

maps for face and place attractiveness into standard space and extracted parameter 

estimates for each subject within these group-defined ROIs.   

Our univariate analyses revealed clusters of activity in vmPFC that responded 

similarly to both face and place attractiveness. To test whether patterns of response 

rather than overall mean response within these clusters might reflect category-

specific attractiveness information, we performed a pattern classification analysis. 

Using well-established methods (Haxby et al., 2001), we split the data into 

independent halves (each consisting of 3 of the 6 scan runs), identified activity 

patterns for face and place attractiveness in each half, and then compared these 

patterns across halves to establish their reliability and distinguishability. Activity 

patterns in each half were calculated based on the same general linear model 

described above, except that the regressors spanned 3 scans instead of 6. The 

resulting unsmoothed maps were then registered to the group-defined surface-

space, which allowed us to perform the classification analysis within the same 

independently defined, leave-one-subject-out vmPFC clusters that were used in our 

univariate analysis.  Parameter estimates (beta values) were extracted for each 

subject’s 4 independently defined vmPFC clusters, and classification was run 

iteratively over all possible split halves of the data (10 ways in which 6 scans can be 

split into two groups of 3). Classification was considered successful if the average 

Pearson correlation between the face attractiveness patterns (or place attractiveness 
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patterns) in opposite halves of the data (within-category comparison) was greater 

than the correlation between face and place attractiveness patterns in opposite 

halves of the data (cross-category comparison) (Haxby et al. 2001). Raw correlation 

difference scores on which classification accuracy was based (e.g. face to face – face 

to place) were also calculated.  Both the accuracy and correlation difference scores 

were then compared to chance (50%) and zero, respectively, to determine if 

category-specific information was present in any of the vmPFC clusters. 

Results 

Behavioral Results 

Within-scan ratings of face and place attractiveness were strongly correlated 

with post-scan ratings (Pearson’s r averaged across subjects for faces = 0.74, 

t(27)=45.04, p<0.0001 and for places = 0.71, t(27)=35.17, p<0.0001; p-values 

reflect repeated-measures t-tests on correlation scores), and there was no significant 

difference between categories regarding the degree of correlation between these 

within-scan and post-scan ratings (repeated-measures t-test on the difference 

between correlation scores: t(27)=-1.4, p=0.17). Post-scan ratings for face and 

place attractiveness showed extremely high levels of consistency across subjects 

(Cronbach’s alpha for faces: 0.958; places: 0.956). The within- and between-

subjects consistency of attractiveness ratings confirms the validity of using the finer-

scale post-scan ratings to analyze the fMRI response.  

Subject-specific means of face and place attractiveness ratings were not 

significantly different, although there was a trend for places to have higher mean 

ratings than faces (t(27)=1.94, p=0.06). Figure 2.2a displays histograms of post-

scan face and place attractiveness ratings. Post-scan ratings for places were 

significantly negatively correlated with in-scan response times (Pearson’s r averaged 
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across subjects = -0.24, repeated-measures t-test on correlation scores: t(27)=-

9.07, p<0.0001). In contrast, there was no significant correlation between post-scan 

face ratings and in-scan response times (r=-0.01, t(27)=-0.27, p=0.79).  By plotting 

response time as a function of attractiveness, visual inspection revealed that rather 

than a linear function, RT exhibited an inverted-U shaped relationship with both face 

and place attractiveness, peaking in the center range of attractiveness (Figure 2.2b).  

RTs for face judgments were highly symmetrical around the mean, and therefore 

were not correlated with face attractiveness ratings, whereas RTs for place 

judgments had an elongated linear slope for the upper half of the attractiveness 

scale.  For each item, we also calculated the mean RT and the standard deviation of 

rating judgments across subjects. These measures were moderately correlated for 

both face and place stimuli (Pearson’s r for face stimuli: 0.43, and place stimuli: 

0.57).  In other words, RTs were slower when there was greater disagreement 

among subjects about the rating of an image, suggesting that RT may in part reflect 

the degree to which a subject is uncertain about their rating. 

Activity for face and place attractiveness in frontal cortex 

We then turned to the primary question of interest: whether there was 

overlap between regions responding to face and place attractiveness in the frontal 

lobes. To answer this, we looked for effects of place and face attractiveness within 

frontal regions known a priori to exhibit subjective value signals: ventromedial 

prefrontal cortex (vmPFC) and lateral orbitofrontal cortex (latOFC). We conducted 

the analyses in surface-space to better account for the large variability in cortical 

folding patterns along the ventral surface of frontal cortex.  We focused on two (non-

overlapping) regions.   
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Our vmPFC ROI was functionally-defined based on Barta and colleagues’ 

meta-analysis of subjective value responses in the brain (Bartra, McGuire, & Kable 

2013).  Within this ROI, we observed clusters that responded linearly to face 

attractiveness at p<0.05 (corrected for small volumes) in both hemispheres 

(“LvmPFC-face” and “RvmPFC-face”; see Table 2.1 and Figure 2.3) and clusters that 

responded linearly to place attractiveness in both hemispheres (“LvmPFC-place” and 

“RvmPFC-place”). Visual inspection makes clear that there is a great degree of 

overlap between the face and place clusters in each hemisphere. The face 

attractiveness clusters were found in similar locations to activity correlated with face 

attractiveness in previous studies (e.g. O’Doherty et al. 2003, Ishai et al. 2007; 

Cloutier et al. 2008) (Figure 2.3). 

To assess whether any of these clusters responded selectively to 

attractiveness for a single stimulus category, we performed a cross-validation 

analysis in which we iteratively defined the clusters on n-1 subjects and then 

extracted parameter estimates for the “left-out” subject. This provides a stringent 

test of whether a cluster responded to both kinds of attractiveness: although each 

cluster was defined based on its response to either face or place attractiveness, it 

was tested for its response to the other category in an independent data set. 

Repeated-measures t-tests comparing face to place attractiveness revealed that all 

vmPFC clusters showed a significant response to both face and place attractiveness 

(LvmPFC-place response to face att. t(27)=2.11, p=0.04, response to place att. 

t(27)=4.09, p=0.0004; LvmPFC-face response to face att. t(27)=4.19, p=0.0003, 

response to place att. t(27)=3.70, p=0.001; RvmPFC-place response to face att. 

t(27)=3.36, p=0.002, response to place att. t(27)=3.60, p=0.001; RvmPFC-face 

response to face att. t(27)= 4.17, p=0.0003, response to place att. t(27)=2.18, 
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p=0.04; statistics obtained by t-tests comparing extracted mean parameter 

estimates against zero). Importantly, all clusters were equally sensitive to both face 

and place attractiveness regardless of how they were initially defined (Face 

attractiveness > place attractiveness: LvmPFC-face t(27)=0.09, p=0.93, RvmPFC-

face t(27)=1.04, p=0.30, LvmPFC-place t(27)=-1.39, p=0.18, RvmPFC-place 

t(27)=-0.34, p=0.73, all n.s., see Figure 2.3; all statistics were obtained by 

repeated-measures t-tests comparing extracted mean parameter estimates across 

categories.)  These results suggest that vmPFC responds similarly to variation in 

attractiveness for these two categories; that is, clusters in vmPFC sensitive to face 

attractiveness are also sensitive to place attractiveness, and vice-versa.  Note that 

this is the case even though the overall response in these regions was greater to 

faces than to places (Faces > places in LvmPFC-face t(27)=3.51, p=0.002, RvmPFC-

face t(27)=4.52, p=0.0001; LvmPFC-place t(27)=4.44, p=0.0001, RvmPFC-place 

t(27)=3.18, p=0.004). 

Our second region of interest was the lateral orbital-frontal cortex (latOFC).  

This region has been implicated in subjective value representation of distinct 

categories of reward (e.g. Sescousse et al. 2010), though value-based response is 

observed here less frequently than in vmPFC. Our analysis revealed a cluster in the 

right hemisphere whose response correlated with face attractiveness (p<0.05 

cluster-wise permutation corrected for small-volumes, see Table 2.1 and Figure 2.3). 

We again used the cross-validation analysis to determine whether the attractiveness 

response in this cluster was category-specific.  A repeated-measures t-test found 

significantly higher response for face attractiveness compared to place attractiveness 

(t(25)=2.64, p=0.01).  Indeed, place attractiveness response in the cluster was not 
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significantly different from zero (t-test, t(25)=-0.46, p=0.65). Of note, the overall 

response to faces and places did not differ in this region (t(25)=0.08, p=0.94). 

Distributed category-specific encoding in vmPFC 

Our univariate analyses revealed that clusters in vmPFC that have significant 

mean response to one category of attractiveness also have a significant mean 

response to the other category, and that the strength of these responses are not 

significantly different from each other. While these results are in line with the 

“common currency” hypothesis for evaluative signals in vmPFC, it remains possible 

that these brain regions contain separate but intermixed valuation mechanisms for 

faces and places, which were not discriminable when responses were averaged over 

all voxel in the cluster. We tested for this possibility within each vmPFC cluster by 

measuring vertex-wise activation patterns for face and place attractiveness in 

separate halves of the data and examining whether we could classify face vs. place 

attractiveness across the split. Classification accuracy for the right hemisphere 

cluster defined by place attractiveness (RvmPFC-place) was above chance (accuracy 

= 58%, t(27)=2.63, p=0.014; see Figure 2.4). Accuracy in this cluster was similar 

for both categories, though within-place accuracy was just above the threshold for 

significance (face-face vs. face-place = 58%, t(27)=2.5, p=0.02; place-place vs. 

face-place = 58%, t(27)=2.0, p=0.055).  RvmPFC-face also showed a trend toward 

significant classification (accuracy = 55.8%, t(27)=1.9, p=0.068) though neither 

individual category was significant on its own (face-face vs. face-place = 55.9%, 

t(27)=1.66, p=0.11; face-face vs. face-place = 55.7%, t(27)=1.55, p=0.13). Given 

the fact that RvmPFC-face overlaps to a large degree with RvmPFC-place (see Figure 

2.3) but it also extends further anterior, these results suggest that the locus of 

category-specific information is centered within the RvmPFC-place.  Accuracy was 
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not significant for LvmPFC-place (accuracy = 50.3%, t(27)=0.1, p=0.92) or LvmPFC-

face (accuracy = 46.1%, t(27)=-1.33, p=0.20). We also examined the raw 

correlation scores themselves (upon which the accuracy measures were made) by 

calculating the difference scores between within- and cross-category Pearson 

correlations. These difference scores were significantly different from zero only within 

the same RvmPFC-place cluster that showed significant place vs. face attractiveness 

classification (face/face – face/place difference score=0.08, t(27)=2.08, p=0.05; 

place/place – face/place difference score=0.08, t(27)=2.25, p=0.03).  

Whole brain analysis 

We next looked for regions whose response correlated with face 

attractiveness and place attractiveness outside of our a priori regions in frontal 

cortex.  We observed bilateral response in fusiform gyrus that was positively 

correlated with face attractiveness, as well as a response in right intraparietal sulcus 

(See Table 2.2).  In contrast, no attractiveness-related activity for places survived 

wholebrain corrections, though we observed sub-threshold activity in posterior 

cingulate, ventral striatum, vmPFC, and in the region of parahippocampus 

gyrus/collateral sulcus/hippocampus (p<0.001 uncorrected). In a direct contrast of 

face attractiveness vs. place attractiveness, no voxels survived wholebrain 

corrections. 

To explore whether the areas that responded to face and place attractiveness 

overlapped with face- and place-selective visual regions that have been previously 

identified in occipitotemporal cortex, we conducted an ROI analysis using 

independently defined ROIs for fusiform face area (FFA), parahippocampal place area 

(PPA), a posterior object-selective region (LOC), and early visual cortex (EVC).  

Somewhat surprisingly, face attractiveness was positively correlated with activity in 
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all higher level regions (right FFA: t(27)=2.9, p=0.007, left FFA: t(27)=2.2, 

p=0.037; right PPA: t(27)=3.8, p=0.0008, left PPA: t(27)=2.5, p=0.017; right LOC: 

t(27)=3.37, p=0.002, left LOC: t(27)=3.05, p=0.005) while place attractiveness 

only showed positively correlated activity within right LOC (t(27)=2.1, p=0.04). 

Correlations between place attractiveness and fMRI response were nonsignificant for 

right FFA (t(27)=0.8, p=0.41), left FFA (t(27)=0.7, p=0.46), right PPA (t(27)=0.35, 

p=0.73), and left PPA (t(27)=0.00, p=0.997).  Neither face nor place attractiveness 

was significantly correlated with activity in EVC.  Figure 2.5 shows the location of the 

functional ROIs and activity related to face and place attractiveness in visual regions. 

Finally, for completeness, we compared categorical differences in activity 

between face and place trials (irrespective of attractiveness).  We observed 

significantly greater response during place compared to face trials in regions 

previously reported to respond preferentially to places and scenes (bilateral PPA, 

RSC, OPA/TOS). Conversely, we observed significantly greater response during face 

compared to place trials in visual regions previously reported to respond 

preferentially to faces (bilateral FFA, OFA), and also in posterior cingulate, bilateral 

amygdala, vmPFC, and, surprisingly, a region of right latOFC. (Table 2.2 reports the 

MNI coordinates of all significant clusters for this comparison.)  Because we had also 

observed activation in right latOFC for face attractiveness, we sought to determine 

whether the right latOFC region defined by our face > place contrast also responded 

to face attractiveness.  We defined this region as an ROI, thresholded at t>3.5 on 

the group map, and extracted the betas values from each subjects’ response to face 

attractiveness.  Unexpectedly, this region’s response was not significantly correlated 

with face attractiveness (t(27) t=0.75 p=0.46).  Figure 2.6 shows an overlay of both 

the face > place map and the face attractiveness map, demonstrating that the face 
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> place peak response is located on the posterior orbital gyrus, whereas peak 

activity for face attractiveness is more medially located within the sulcus. 

Discussion 

 Attractive faces and attractive places promise very different rewards to a 

person, and comparisons are not often made between these rewards. Despite this, 

our results demonstrate that the vmPFC exhibits both category-general and 

category-specific responses to attractiveness. Clusters sensitive to face 

attractiveness in vmPFC were also sensitive to place attractiveness; however, a 

multivertex pattern analysis found that place and face attractiveness were 

distinguishable in one of these clusters located in the posterior and ventral portion in 

the right hemisphere. These results suggest that some parts of vmPFC might encode 

category-general reward signals even when the stimuli are not exchangeable goods, 

while other parts might retain information about category-specific rewards. In right 

lateral orbitofrontal cortex (latOFC) we observed two distinct face-specific regions: 

one sensitive to the categorical difference between faces and places but insensitive 

to face attractiveness, and one sensitive to face (but not place) attractiveness but 

insensitive to categorical differences. As we found only face attractiveness and not 

place attractiveness signals in latOFC, this region may be more involved in basic 

reward processing that is specific to some but not all stimulus categories. 

Common response to face and place attractiveness in vmPFC 

In vmPFC, we identified clusters that were sensitive to face attractiveness and 

clusters that were sensitive to place attractiveness, and these face and place clusters 

were highly overlapping. Further analysis revealed a common response to face and 

place attractiveness: clusters in vmPFC identified based on their response to face 

attractiveness responded equally strongly to place attractiveness, while clusters 
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identified based on their response to place attractiveness responded equally strongly 

to face attractiveness. 

These findings are consistent with a recent meta-analysis that demonstrated 

a region of vmPFC that encodes a common evaluative signal in studies where two or 

more categories were directly compared (Levy and Glimcher 2012). Although most of 

the studies in the meta-analysis involved economic and consumer goods, a few 

compared various social rewards to monetary rewards.  Smith et al. (2010) showed 

overlapping activity in vmPFC for face attractiveness and monetary value when 

subjects passively viewed intermixed images of faces and money. Lin et al. (2012) 

showed overlapping activity in vmPFC between monetary value and another type of 

social reward, pictures of smiling or angry people (paired with audio of emotionally 

matched words). Our results extend these findings by showing that even in the case 

where both judgments are entirely outside the economic domain, in the realm of 

aesthetics, an overlapping evaluative signal exists in vmPFC.  

Indeed, previous findings in the neuroaesthetics literature have suggested 

that vmPFC is generally involved in aesthetic evaluations (Ishizu and Zeki 2013; 

Brown et al. 2011). For example, Ishizu and Zeki (2011) found overlapping response 

in vmPFC for beautiful paintings and music, demonstrating that a common evaluative 

mechanism in vmPFC is recruited by stimuli of different modalities (visual, auditory). 

However, it is possible that their subjects evaluated all of the items within the same 

conceptual/reward framework of “artwork” because the items were presented as 

such.  

Our current results demonstrate an important extension to the results of 

Ishizu and Zeki, because we found a common signal across reward categories even 

in an independent ROI test of response to both categories. Furthermore, they did not 
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explore the possibility of separable distributed responses to visual and auditory 

artwork, whereas our pattern analysis revealed distinct face and place attractiveness 

patterns in at least one region that showed equal mean response between 

categories. 

Category-specific attractiveness coding in vmPFC 

Our pattern classification analysis revealed that a subregion in right vmPFC 

(RvmPFC-place) contains separable distributed response patterns to face and place 

attractiveness, even while showing similar mean response. In contrast, the other 

three vmPFC clusters, which also showed significant mean response to both place 

and face attractiveness did not display evidence of category-specific encoding, 

suggesting that category information in vmPFC may be restricted to a posterior and 

ventral subregion (see Figure 2.3) (though null results in the other clusters cannot 

be used to ultimately reject the category-specificity hypothesis in those clusters).  

Our classification results provides an intriguing parallel with results from a 

recent study by McNamee, Rangel, and O’Doherty (2013) who also used pattern 

classification to demonstrate category-specific encoding for food and trinket value in 

ventral vmPFC. They also demonstrated that dorsal regions of vmPFC showed both 

mean and distributed response patterns indicative of category-general encoding, a 

result that is not inconsistent with our observation of overlapping mean activity for 

face and place attractiveness in vmPFC, even in clusters where we did not observe 

category-specific patterns of response. The main difference between our results and 

those of McNamee et al. is that the region where we observed category decoding 

was, in fact, defined by significant univariate response to both categories; in 

contrast, McNamee et al. showed a ventral to dorsal gradient of multivariate to 

univariate signal strength, suggesting that the two types of signals were to some 
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degree spatially separable. Nevertheless, our results provide independent support for 

the claim that vmPFC contains category-specific as well as category-general reward 

information. Moreover, we show that these components exist for non-economic 

rewards.  

Face-specific activity in right latOFC 

We observed two separate regions in right latOFC that contained face-specific 

responses, one that exhibited a categorical preference for faces over places and one 

whose response scaled with face but not place attractiveness.   

The previous literature on face attractiveness has not shown consistent 

results in latOFC. Two studies have found activity that positively correlated with face 

attractiveness in latOFC (left latOFC: Winston et. al 2007; right latOFC: Tsukiura & 

Cabeza 2011). In contrast, in a passive viewing task, Liang, Zebrowitz, & Zhang 

(2010) showed activity negatively correlated with face attractiveness in bilateral 

latOFC, though this study included disfigured faces, possibly causing an 

emotional/saliency signal to override a positive attractiveness response. O’Doherty et 

al. (2003) reported activity negatively correlated with attractiveness in right latOFC, 

but in their study, subjects were making gender judgments rather than 

attractiveness judgments. When combined with these previous results, the current 

data suggest that positive latOFC activity for face attractiveness may only arise when 

subjects are explicitly evaluating face attractiveness. 

There is very little evidence in the literature for a categorical response to 

faces in latOFC, though one study by Rajimehr, Young, & Tootell showed a very 

similar region of right latOFC that showed greater activation for faces than places 

(2009). Interestingly, they also used surface-based group registration, as we did in 
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the current study, which reduces the noise from high inter-subject anatomical 

variability.  

No human neuroimaging study to our knowledge has shown a disjunction 

between regions exhibiting face-specific categorical response and regions exhibiting 

face-specific attractiveness response in latOFC. Our finding of this functional 

dissociation provides an important link to findings from the macaque, where multiple 

kinds of face-specific responses have been observed in orbitofrontal cortex (O 

Scalaidhe et al. 1997; Rolls et al. 2006; Tsao et al. 2008; Watson & Platt 2012).  

Using fMRI, Tsao et al. showed that, in macaque OFC, a patch on the orbital surface 

(lateral orbital sulcus) responded more strongly to faces with emotional expressions 

than to neutral faces, whereas a more lateral face-specific patch (inferior convexity) 

showed a categorical face response that did not vary with facial emotions. These 

anatomical locations are congruent with our own results: the categorical face patch 

was located on the posterior/lateral gyrus, and the face attractiveness patch was 

found in the lateral orbital sulcus.  While these similarities are suggestive of possible 

functional homologues, more research is needed to test the robustness and clarify 

the roles of these regions in humans, especially since the emotion-patch in 

macaques responded to both positive and negative faces, whereas we were only able 

to test for linear responses to positive faces. 

It is notable that we did not observe place-specific activity in latOFC.  Places, 

unlike faces, may not act as a “basic” reward category in the same way as faces and 

food.  The calculation of place beauty might instead be highly reliant on a dynamic 

process of integrating “component parts,” such as spatial envelope or 

contrast/lighting, which may be associated with rewards only over time.  Barron et 

al. have shown evidence that online construction of novel reward categories happens 
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in vmPFC and hippocampus (2013).  In line with this theory, place attractiveness 

was found in our data to correlate with activity in vmPFC and at sub-threshold levels 

in the hippocampal region. 

Visual region differences 

Consistent with previous findings (Chatterjee et al. 2009), we observed 

activity correlated with face attractiveness across a large area of visual cortex, 

including face-responsive (FFA) and object-responsive (LOC) regions. Importantly, 

this activity was not simply due to time-on-task, as RTs instead showed non-linear 

patterns of response to attractiveness. Chatterjee et al. theorized that response to 

face attractiveness in the FFA reflects processing of face beauty per se, while 

response in LOC reflects processing of visual aesthetics regardless of the category. 

They hypothesized that place beauty might activate place-specific mechanisms in the 

PPA in addition to general visual aesthetic mechanisms in LOC. While we did observe 

activity in right LOC correlating with place attractiveness, consistent with this 

prediction, we did not observe attractiveness-related activity in PPA for places. 

Rather, we observed an unexpected response to face attractiveness in this region.  

Why might there be a weaker signal in visual cortex for place attractiveness? 

As discussed above, it may the case that faces signify more immediate/basic 

rewards, and attractive faces may therefore recruit visual cortex as a part of an 

automatic approach response, whereas places would not. It could also be the case 

that we saw less activity for place attractiveness because the places spanned a 

greater variety of environment types (e.g. forests, beaches, deserts, fields) than did 

faces (males, females). For example, a recent study using a narrower range of place 

stimuli (indoor built environments) showed that place beauty was correlated with 

activity in the middle occipital gyrus, although there was no correlated activity within 
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the ventral visual cortices (Vartanian et al. 2013). One study has reported greater 

activity in PPA for preferred scenes versus non-preferred scenes (Yue, Vessel, & 

Biederman 2007), but it is important to note that this study markedly differs from 

our own in both task and stimuli, in that subjects were asked to make ratings based 

on the content of the scenes, many of which were not places but images containing 

highly salient foreground objects, people, and animals. While we did observe 

response to place attractiveness in the parahippocampal/hippocampal region anterior 

to the PPA, this did not survive the stringent threshold for significance in the whole-

brain analysis. Taken as a whole with these previous findings, our data suggest that 

there are regions in visual cortex that respond reliably to face attractiveness, but 

response to place attractiveness may depend on the nuances of the judgment task or 

the stimulus set.  

Conclusions 

Our data demonstrate a bridge between aesthetic and economic neural 

signals, in that a functionally similar evaluative mechanism in vmPFC is recruited for 

these disparate types of judgments. We expect that further research will continue to 

illuminate our understanding of this mechanism as well as the unique neural 

representations underlying specific reward categories.  
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Figure 2.1 
 
Places and faces were presented to subjects in blocks of 12 images.  Two 36s 
fixation blocks were also included in each scan run.  Each face appeared for 1 second 
with a 2 second ISI.  Subjects made coarse attractiveness ratings for each image in 
the scanner (“low”, “medium”, “high” attractiveness), and then rated the images 
again outside of the scanner using a Likert scale, 1-8.  The post-rated images were 
presented to subjects in one randomized block of faces and one randomized block of 
places (order counterbalanced across subjects).   
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Figure 2.2 
 
(A) Average of subject-specific histograms of post-scan attractiveness ratings. Error 
bars measure the standard error across subjects. (B) Response time plotted as a 
function of average attractiveness.  Both face and place attractiveness exhibit an 
inverted-U shaped function, with the longest response times for mid-range images. 
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Table 2.1 
 
Summary table of significant clusters of response for face or place attractiveness 
within the vmPFC and latOFC regions of interest (contrast shown in italics). 
Coordinates of peak values within the clusters are reported in MNI305 space. 
Cluster-wise p-values are permutation corrected for multiple comparisons within the 
vmPFC or latOFC and additionally Bonferonni corrected to account for observations 
across 2 hemispheres.   

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

   mm2 x y z cluster-wise p 
face attractiveness            

 
           

 vmPFC L  267.97 -11.1 49 -22 0.016 
   vmPFC R 407.91 8.4 36.1 -26.5 0.000 
   latOFC R 131.09 33.9 41.1 -21.2 0.044 

 
      

place attractiveness       

 
      

vmPFC L 588.35 -6.1 42.3 -13.1 0.002 
vmPFC R 145.59 8.9 36.6 -23.5 0.032 
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Figure 2.3 
 
Cross-subject validation results for univariate cluster-corrected group analysis. 
Clusters responding to face attractiveness (blue) and place attractiveness (green) 
are shown on the cortical surface. Bar graphs show mean parameter estimates for 
face and place attractiveness within these clusters. These parameter values were 
extracted using a leave-one-subject-out cross-validation procedure so that data used 
to define the clusters were independent of data used to estimate the size of the 
effects and response patterns. The black outlines on the medial surface indicate 
boundaries of vmPFC while black outlines on the orbital (i.e. ventral) surface indicate 
boundaries of latOFC. All vmPFC clusters show significant response to both face and 
place attractiveness. The face attractiveness cluster in right latOFC only responds to 
face attractiveness.  
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Figure 2.4 
 
Multivertex pattern analysis of responses to face and place attractiveness in vmPFC. 
Bar graphs show classification accuracy when comparing response patterns across 
independent halves of the data. Accuracy (orange bars) was determined by 
comparing pattern similarity for attractiveness within a category to pattern similarity 
for attractiveness across categories. The breakdown by category (face-face vs. face-
place and place-place vs. face-place) is also shown (blue and green bars). Only one 
cluster (RvmPFC-place) shows greater classification accuracy for same vs. different 
attractiveness categories, though RvmPFC-face also shows a trend towards 
significance.   
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cla
ss

ific
at

ion
 a

cu
rra

cy

face-face
 vs. 

face-place

place-place 
vs. 

face-place

within- vs. 
cross-

category

n.s.n.s.n.s. p = 0.055

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cla
ss

ific
at

ion
 a

cc
ur

ac
y **

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cla
ss

ific
at

ion
 a

cc
ur

ac
y n.s.n.s.n.s.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cla
ss

ific
at

ion
 a

cc
ur

ac
y n.s. n.s.p = 0.068

LvmPFC-place

LvmPFC-face

RvmPFC-place

face-face
 vs. 

face-place

place-place 
vs. 

face-place

face-face
 vs. 

face-place

place-place 
vs. 

face-place

face-face
 vs. 

face-place

place-place 
vs. 

face-place

RvmPFC-face

within- vs. 
cross-

category

within- vs. 
cross-

category

within- vs. 
cross-

category



	
  

	
   43 

Table 2.2 
 
Coordinates, voxel count, and peak t-values for significant clusters of voxels.  
Wholebrain maps for each contrast were thresholded at p< 0.05, permutation 
corrected for multiple comparisons.  Coordinates are reported in MNI152 space. 

 
 

  
voxel count X Y Z Max t 

face > place 
                    

fusiform gyrus R 1135 42 -74 -12 11.03 
fusiform face area (FFA) R * 42 -52 -18 9.8 
occipital face area (OFA) R * 42 -74 -12 11.03 
cingulate sulcus medial 960 2 52 18 9.43 
amygdala L 921 -20 -8 -16 11.03 
 R 710 20 -8 -14 11.7 
anterior cingulate gyrus medial 603 2 28 -12 7.63 
posterior cingulate gyrus medial 404 4 -52 20 8.62 
inferior occipital gyrus L 341 -42 -82 -16 9.62 
inferior frontal sulcus R 251 48 8 20 7.06 
middle temporal gyrus R 127 58 -4 -26 7.46 
cerebellum L 67 -32 -82 -38 6.36 
superior frontal gyrus R 66 20 38 50 6.7 
supramarginal gyrus L 51 -58 -64 26 5.98 
 R 37 56 -60 24 7.19 
fusiform gyrus (FFA) L 46 -40 -50 -24 6.93 
posterior orbital gyrus 

 
27 38 32 -16 6.04 

       
place > face       
       
temporal-occipital cortex L 4415 -26 -50 -10 21.4 
 R 4372 28 -48 -12 15.3 
parahippocampal gyrus/collateral sulcus (PPA) L * -26 -50 -10 21.37 
 R * 28 -48 -12 15.26 
retrosplenial complex (RSC) L * -14 -56 10 10.01 
 R * 14 -52 8 10.35 
middle occipital gyrus (occipital place area) L * -34 -84 18 11.89 
 R * 34 -86 18 12.06 
lingual gyrus R 142 8 -98 -6 7.52 
cingulate sulcus R 81 4 -44 50 8.19 
 L 66 -10 -36 44 6.55 
cerebellum L 25 -14 -46 -52 6.67 
 R 17 16 -46 -52 6.3 
       
face attractiveness       
       
intraparietal sulcus (posterior) R 15 30 -80 24 6.38 

fusiform gyrus L 9 -42 -54 -16 6.09 
 R 4 22 -54 -14 5.8 
intraparietal sulcus (anterior) R 4 30 -72 24 5.83 
       
*peaks are part of a larger cluster       
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Figure 2.5 
 
Wholebrain maps for face (blue) and place (green) attractiveness displayed at p<. 
0005, uncorrected. The FFA is outlined in light blue, and the PPA is outlined in light 
green. Note that at this more liberal threshold, vmPFC and ventral striatal activity is 
visible for place attractiveness, though these regions did not survive volumetric 
wholebrain corrections. 
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Figure 2.6 
 
Relationship between face category effect and face attractiveness effect in PFC. The 
face > place effect (dark blue) was thresholded at t>4.0, whereas the face 
attractiveness effect (light blue) was thresholded at t>2.0. Both contrasts were 
binarized, and the overlapping activity is displayed in pale blue. Peak response for 
the categorical effect is located lateral to peak response for face attractiveness in 
right OFC (circled).   
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Chapter 3 – Face-responsive activity in lateral orbitofrontal cortex 
	
  
 
Pegors, TK; Kable, JW; Epstein, RA. in preparation 
 
 

Abstract 

Perceiving and evaluating faces is an important part of making sense of our social 

world. While much has been discovered about the face-processing network in the 

brain, less is known about face-selective information in lateral orbitofrontal cortex 

(latOFC). A recent study out of our lab revealed two anatomically and functionally 

distinct face-selective “patches” in right latOFC that were active while subjects rated 

face attractiveness: a lateral region that showed an overall greater response for 

faces than places and a more central region that showed correlated response to face 

attractiveness.  In the current study, we tested whether these patches showed a 

similar response during passive evaluations of face attractiveness where subjects 

were not making explicit ratings. By using ROIs from our previous study, we found 

the same pattern of response in right latOFC during passive evaluation. Furthermore, 

we showed that the face attractiveness response is restricted to the central sulcal 

region of latOFC, whereas the main effect for faces is more distributed across latOFC. 

Conversely, activity in ventromedial prefrontal cortex (vmPFC) was not significantly 

correlated with face attractiveness during the passive task, even though it had 

shown a robust response to face attractiveness during explicit ratings of face 

attractiveness. In sum, our results suggest that the lateral orbitofrontal cortex 

contains functionally dissociable regions that may relate to separate aspects of 

reward-related processing, whereas the vmPFC may be primarily recruited during 

decision-making.  
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Introduction 

Faces are some of the most information-rich elements of our visual 

environment, providing cues to a person’s identity, gender and age, as well as 

playing a crucial role in social communication. It is not surprising, therefore, that a 

tremendous amount of research has gone into identifying regions across the brain 

that are implicated in processes related to face perception (for reviews, see Haxby 

and Boggini 2011; Collins and Olson 2014). Even still, there remain regions whose 

face-related functions have remained largely unexplored, despite growing evidence 

that they too may be crucially involved in face-selective processing.  

In particular, the right lateral orbitofrontal cortex (latOFC) is a reward-related 

region of the brain where at least two recent studies have observed face-selective 

activity when measuring neural responses to faces and places (Rajimehr, Yong, and 

Tootell 2009; Von Der Heide, Skipper, and Olson 2013). Face-selective response in 

this region is rarely reported in the literature, but it is important to note that these 

two studies took explicit steps to enhance detection in OFC, a region known to be 

prone to signal loss and dropout (Kringelbach and Rolls 2004; Deichmann et al. 

2003). Additionally, a fair amount of evidence for face-selective encoding in latOFC 

exists in the monkey literature, where face-selective neurons have been reported in 

macaque orbitofrontal cortex using both single-neuron and fMRI methods (O 

Scalaidhe, Wilson, and Goldman-Rakic 1997; Rolls et al. 2006; Tsao et al. 2008; 

Watson & Platt 2012). Interestingly, Tsao et al. showed that this face-selectivity 

activity appears to be divided into functionally distinct patches: a central region of 

latOFC showed a greater response to emotionally expressive faces when compared to 

neutral faces and a more lateral patch of latOFC showed a categorical response to 

faces over baseline (2008).  



	
  

	
   48 

 Our own lab recently conducted an fMRI study comparing the neural 

correlates of face and place attractiveness while using a number of techniques to 

enhance detection in the OFC (Pegors, Kable, Chatterjee, and Epstein, under 

review). Not only did we replicate the recent human findings for a categorical 

response to faces in right latOFC (Rajimehr et al. 2009; Von Der Heide et al. 2013), 

but we also showed evidence for a second, functionally distinct region, similar to that 

reported by Tsao et al. (2008): we observed a centrally-located region of right 

latOFC which responded to face attractiveness but which was topographically distinct 

from the region which showed a categorical response to faces.  

In the current study we sought to measure the robustness of these face 

“patches” under different task conditions. To do this, we first tested whether the face 

attractiveness patch in central latOFC was also active when subjects only passively 

evaluated face attractiveness. Secondly, we tested whether the face-category patch 

in lateral latOFC was active during the passive evaluation task and during a standard 

1-back matching task. Finally, we performed an anatomical analysis to determine 

whether these functional patches were aligned within specific orbital/sulcal 

boundaries. 

To anticipate, our results suggest that activity for face attractiveness and for 

the main effect of faces persists in latOFC across task types. We furthermore showed 

that face attractiveness activity appears limited to the orbital sulcus region, while a 

main effect for faces is more distributed across posterior and medial latOFC.  
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Methods 

Subjects 

34 healthy, right-handed volunteers with normal or corrected-to-normal 

vision were recruited to participate in the fMRI study.  All subjects gave written 

informed consent according to procedures approved by the University of 

Pennsylvania institutional review board.  One subject was excluded for excessive 

motion, and one subject was excluded for falling asleep, leaving us with 32 subjects 

whose functional data was analyzed (16 females, average age=21.6). 

fMRI Acquisition 

Scans were performed at the Hospital of the University of Pennsylvania on a 

3T Siemens Trio scanner equipped with a Siemens body coil and a 32-channel head 

coil. T1-weighted anatomical images were acquired using an MPRAGE iPAT2 pulse 

sequence (mode=GRAPPA, TR=1630ms, TE=3.11ms, TI=1100ms, voxel 

size=0.9x0.9x1.0mm, matrix size=350x263x350). T2*-weighted images sensitive to 

blood oxygenation level-dependent (BOLD) contrasts were acquired using a gradient-

echo echo-planar pulse sequence (TR=3000ms, TE=25ms, voxel 

size=2.5x2.5x2.5mm, matrix size=192x192, 49 axial slices). The slices were tilted -

30° from the anterior and posterior commissure plane to reduce signal dropout 

(Deichmann et al. 2003). The Siemens standard field-mapping scan for B0 correction 

was also acquired (voxel size=2.5x2.5x2.5mm). 

Stimuli  

Stimuli were digitized 400x400 pixel color photographs of 288 places and 288 

faces chosen to span a wide range of attractiveness. The places were natural 

environments with no man-made elements, spanning scene types such as swamps, 
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mountain ranges, beaches, fields, and forests.  The face set had equal numbers of 

males and females, and all faces were Caucasian, upright and forward-facing, with 

neutral to pleasant expressions, selected from the Glasgow Unfamiliar Face Database 

(http://homepages.abdn.ac.uk/m.burton/pages/gfmt/Glasgow%20Face%20Recogniti

on%20Group.html), Radboud Database (Langner et al. 2010), the Center for Vital 

Longevity Face Database (Minear & Park 2004), CVL Face Database (Peter Peer, 

http://www.lrv.fri.uni-lj.si/facedb.html), Diana Theater Face Database (courtesy of 

Dr. Robert Schultz at the Center for Autism Research), and online searches. Face 

images were extracted from their original background, blurred slightly along the 

edges, cropped so that hair did not extend below the chin, and resized to span a 

height of 400 pixels. They were then placed on an abstract colored background 

created by phase-scrambling a single place image.  This ensured that they 

subtended the same visual angle as the places while retaining a similar background 

color. A unique scrambling of the background image was used for each face (code 

used from: http://visionscience.com/pipermail/visionlist/2007/002181.html).   

Each fMRI subject was assigned a unique (though overlapping) set of 576 

face and place images chosen to span the full range of attractiveness scores, which 

were based on attractiveness ratings given to a larger set of 916 images by a set of 

28 independent raters.  These raters were instructed to span their ratings across the 

full 1-8 Likert scale, and they made ratings at their own pace. Faces and place 

images were presented in separate blocks, and block order was counterbalanced 

across subjects.  Ratings were z-scored across all images within each subject, and a 

mean attractiveness rating for each image was determined by averaged these z-

scores across subjects. The images were then divided into “low”, “average”, and 

“high” attractiveness bins according to whether they had a z-score below -0.5 (low), 
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between -0.5 and 0.5 (average), or above 0.5 (high).  Images were then chosen in 

equal numbers from these three attractiveness bins to create the final stimulus set. 

Design and Procedure 

The fMRI experiment consisted of six 7 minute 6 sec scan runs, each of which 

had one sequence of face trials and one sequence of places trials. Each sequence 

was constructed of 48 images interspersed with 16 null trials in a continuous 

carryover design (Aguirre 2007), which ensured that “low”, “average”, and “high” 

attractiveness images were presented in equal numbers and were preceded equally 

by each other type of trial. 2 “warmup” trials were also included at the beginning of 

each sequence as a way to allow the first trial of the counterbalanced sequence to 

have a preceding trial. Each image was presented for 1 sec with a 2 sec interstimulus 

interval (ISI) during which only the crosshair was on the screen. 

The order of the face and place sequences was counterbalanced across runs. 

Between the face and place sequences were 9 seconds of passive fixation, and 9 

seconds of fixation were added at the beginning and 12 seconds at the end of each 

run to allow the T2* signal to reach a steady state and to model the final HRF, 

respectively. Subjects were instructed to actively think about the attractiveness of 

each image, and they were given no other explicit task. To acclimate subjects to the 

distribution of attractiveness in the stimulus set, they were asked to view prior to the 

scan 16 faces and 16 places not used in the main experiment. 

fMRI Data Analysis 

Pre-processing and data analysis for individual subjects was performed using 

the FMRIB FEAT software libraries (Jenkinson et al. 2012; Woolrich et al. 2009; 

Smith et al. 2004).  For each run, the first three volumes were removed to account 

for the fMRI signal not yet reaching steady-state, and functional images were then 
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motion- and slice-time corrected.  The data was also high-pass filtered to remove 

temporal frequencies below 0.02 hertz (50 sec). 

General linear modeling was used to estimate neural activity correlated with 

subject-specific ratings of face and place attractiveness. Mean ratings from an 

independent set of subjects (described in the Stimulus section) were used to create 

parametric regressors for face and place attractiveness that extended across all six 

experimental scans.  The model also included quadratic (“U-shaped”) regressors for 

face and place attractiveness (e.g. Winston et al. 2007). Finally, categorical 

regressors were added for face trials, place trials, “warmup” trials, and nuisance 

regressors were included to account for between-scan variability and outliers 

(outliers calculated with the Gabrieli Lab’s Artifact Detection Tools: 

http://www.nitrc.org/projects/artifact_detect/).  All regressors, except those for 

nuisance spikes and scan indicators, were convolved with a canonical HRF.    

Unsmoothed parameter estimates from the first-level models were registered 

to the cortical surface using surface templates derived from each subject’s T1-

weighted anatomical image by Freesurfer’s segmentation function (recon-all).  These 

surface maps were then smoothed at 3mm FWHM and registered to the “fsaverage” 

brain (Freesurfer’s average brain, derived from 40 subjects). 

First, we tested for neural response to face attractiveness in frontal cortex 

while subjects passively evaluated the visual attractiveness of face and place images. 

Mean parameter estimates from the face attractiveness contrast were extracted from 

ROIs which were defined from the same contrast (face attractiveness) in a previous 

study where subjects explicitly rated the visual attractiveness of faces and places 

(Pegors, Kable, Chatterjee, & Epstein, under review). Specifically, ROIs were created 

from this independent dataset by thresholding the face attractiveness contrast at 



	
  

	
   53 

p<.05, uncorrected, and selecting contiguous regions on the orbital and medial 

surface of frontal cortex (see Figure 3.1).  

In a second analysis, we measured response to the main effect of faces > 

places, again by extracting mean parameter estimates from independently defined 

ROIs using the same contrast (faces > places) from a previous study where subjects 

explicitly rated the visual attractiveness of faces and places (Pegors, Kable, 

Chatterjee, & Epstein, under review) (see Figure 3.2). The ROIs were defined by 

thresholding the faces > places contrast at p<.001, uncorrected, in surface-space 

and selecting contiguous regions on the orbital and medial surface of frontal cortex 

(See Figure 2). Additionally, we also measured faces > place activity from an 

independent localizer task within the same functionally defined ROIs.  20 subjects 

from our previously cited study (Pegors, Kable, Chatterjee, & Epstein, under review) 

performed two runs of a standard localizer task (these runs were independent from 

the main experiment from which we acquired the functional ROIs).  During the 

localizer, each subject performed a 1-back matching task in which they pressed a 

key every time they noticed an image that repeated twice in a row.  Each of the two 

runs were 6 min 12 secs, and both runs contained 20 blocks of faces, places, 

objects, and scrambled objects. Each image was presented for 490 ms with a 490 ms 

interstimulus interval. Regressors signifying each of the four block types were 

concatenated across runs and convolved with a standard hemodynamic response 

function and input into a general linear model.  Unsmoothed parameter estimates 

were registered to subject-specific surface space, smoothed by 3mm FWHM, and 

then registered to the “fsaverage” brain. Mean parameter estimates were extract 

from the faces > places contrast for each ROI. 
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To determine the anatomical specificity of the face-responsive effects in 

orbitofrontal cortex during the passive task, we conducted an ROI analysis by 

extracting mean parameter estimates for the face attractiveness and faces > places 

contrast from two predefined anatomical ROIs in the Destriux atlas (Freesurfer’s 

aparc 2009 library). One ROI was defined as the combination of all gyri on the 

ventral/orbital surface (“G_orbital”), and the other was defined as the central sulcal 

region on the orbital surface (“S_orbital_H-shaped”) (see Figure 3.3). Here, our 

estimates were spatially unwarped during preprocessing by a standard B0 map (We 

did not include B0 correction in our other ROI analyses because spatial unwarping 

was not available for the data from which the functional ROIs were defined).  

 

Results 

Face attractiveness response in frontal cortex 

In our first analysis, we asked whether passive evaluation of face 

attractiveness (without explicit numerical ratings) evoked activity correlated with 

face attractiveness in lateral orbitofrontal cortex (latOFC) and/or ventromedial 

prefrontal cortex (vmPFC). In bilateral latOFC, there was a robust response in all 

three ROIs to face attractiveness (RlatOFC_att t(30)=3.25, p=0.003; LlatOFC_att-1 

t(30)=3.42, p=0.002; LlatOFC_att-2 t(30)=3.67, p=0.001) (see Figure 3.1). On the 

other hand, bilateral vmPFC did not show a significant response to face 

attractiveness (RvmPFC_att t(30)=1.08, p=0.29; LvmPFC_att t(30)=1.09, p=0.28). 

(All statistics were obtained by comparing mean parameter estimates against zero.)  

Mean response to faces > places in frontal cortex 

In our second analysis, we asked whether a mean response to faces > places 

was present in latOFC and/or vmPFC when subjects were not making explicit 
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judgments of attractiveness. For this analysis we had two datasets: our main dataset 

in which subjects passively evaluated image attractiveness and a functional localizer 

in which subjects performed a 1-back matched task on blocked images of faces, 

places, objects, and scrambled objects.  We again defined our ROIs from an 

experiment where subjects made explicit ratings of attractiveness, using the contrast 

of face trials > place trials.  

The pattern of response was very similar across both tasks (Figure 3.2). In 

the right latOFC, we observed activity for face attractiveness in both tasks 

(RlatOFC_face response during passive evaluation t(30)=6.29, p<0.0001, during 1-

back matching t(19)=4.56, p=0.0002). In bilateral vmPFC, there was a significant 

response to face > place in the ventral clusters (LvmPFC_face-1 response during 

passive evaluation t(30)=6.07, p<0.0001, during 1-back matching t(19)=4.45, 

p=0.0003; RvmPFC_face-1 response during passive evaluation t(30)=6.29, 

p<0.0001, during 1-back matching t(19)=4.56, p=0.0002).  In the more dorsal 

clusters there was no significant response during either task (LvmPFC_face-2 

response during passive evaluation t(30)=0.23, p=0.82, during 1-back matching 

t(19)=0.68, p=0.5; RvmPFC_face-2 response during passive evaluation t(30)=0.77, 

p=0.45, during 1-back matching t(19)=0.83, p=0.42).  

Anatomical specificity of face-related responses in latOFC 

Both of our analyses revealed that both face patches in latOFC, the lateral 

patch for faces > places and the central patch for face attractiveness, continued to 

show these responses across tasks. The next question we probed was the anatomical 

specificity of both of these effects. In our previous study where subjects made 

explicit ratings of attractiveness, we showed that activity correlated with face 

attractiveness was focused in the sulcal region of latOFC, whereas the main effect of 



	
  

	
   56 

face > place was focused in the posterior gyrus. It should be pointed out that in our 

previous study, we did not apply B0 unwarping to the data, meaning that the spatial 

specificity of the effects may have been affected by signal distortion. For the 

anatomical analysis in our current study, we were able to apply B0 correction to our 

functional data, with the goal of obtaining more precise spatial estimates. 

Furthermore, we used anatomically-defined gyral and sulcal regions of latOFC to 

extract parameter estimates (see Figure 3.3).  

Our results revealed significant bilateral response in both the orbital gyri and 

sulci for the main effect of faces > places (left orbital gyri: t(30)=6.0, p<0.0001; 

right orbital gyri: t(30)=4.4, p=0.0001; left orbital sulci: t(30)=3.66, p<0.0001; 

right orbital sulci: t(30)=3.17, p=0.003; See Figure 3.3). The face attractiveness 

response showed a significant bilateral response within the orbital sulcal ROI but not 

within the gyral ROI (left orbital gyri: t(30)=1.63, p=0.11; right orbital gyri: 

t(30)=1.05, p=0.3; left orbital sulci: t(30)=4.26, p=0.0002; right orbital sulci: 

t(30)=3.02, p=0.005).  

We also tested for a “saliency” effect of attractiveness (a “U-shaped” 

response). No significant activity was observed in any of the ROIs for this effect (left 

orbital gyri: t(30)=1.26, p=0.21; right orbital gyri: t(30)=1.51, p=0.14; left orbital 

sulci: t(30)=-0.89, p=0.38; right orbital sulci: t(30)=1.0, p=0.32). 

Discussion 

The face-processing network consists of a widely distributed collection of 

regions across the brain, but while the lateral orbitofrontal cortex (latOFC) has not 

typically been included in such descriptions, recent evidence from our own lab and 

others has suggested that face-related processing occurs in this region as well. In 

the current study, we explored the robustness of this face-related activity in latOFC. 
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Across multiple task paradigms, we observed a consistent main effect for faces > 

places in a lateral region of latOFC. We also demonstrated that the central sulcal 

region of latOFC responded to face attractiveness even during a passive evaluation 

task. These combined results suggest that the latOFC may play an active role in 

reward-related aspects of face-processing, and that these processes occur even in 

the absence of decision-making.  

Face attractiveness in latOFC and vmPFC 

We looked for frontal activity correlated with face attractiveness during a task 

where subjects only passively evaluated image attractiveness. In OFC, we found 

activity significantly correlated with attractiveness in the same regions where we had 

previously observed this activity during a task where subjects explicitly rated face 

attractiveness. In contrast, there was no attractiveness-related response in vmPFC 

during the passive task, even though vmPFC did show such a response during the 

explicit ratings task.  

Evidence that value-related signals are encoded in latOFC even outside of 

decision-making events comes from both the human and monkey literatures. Single-

cell recordings in macaque latOFC show attenuated response to gustatory and 

olfactory stimuli after satiation on the associated item, suggesting that those 

neurons encoded the relative value of the stimulus even during passive receipt of the 

reward (Rolls 1989; Critchley and Rolls 1996).  In humans also, two studies have 

shown attenuated response in latOFC after subjects passively tasted or smelled a 

stimulus associated with a satiated food item (O’Doherty et al 2000; Kringelbach et 

al. 2003).   

On the other hand, many studies looking for value-related response to face 

attractiveness do not observe consistent response in latOFC: some studies show 
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positively correlated activity in this region with attractiveness (Winston et al. 2007; 

Tsukiura and Cabeza 2011), some show negative correlated activity with 

attractiveness (Liang, Zebrowitz, and Zhang 2010; O’Doherty et al. 2003) and some 

show no correlated activity with attractiveness (Chatterjee et al. 2009). It may be 

the case that tastes and smells naturally evoke a stronger neural response with 

associated food rewards than the more subtle quality of face attractiveness evokes 

for associated rewards. In this light, methodological details may be crucial in 

detecting responses in latOFC to face attractiveness, a region which is already known 

to suffer from signal loss an dropout due to the nearby sinus cavity (Deichmann 

2003) and which has a great deal of sulcal variability between subjects (Chiavaras 

and Petrides 2000; Chiavaras et al. 2001). To boost detection power in latOFC, 

signal dropout can be reduced by tilting the image acquisition (Diechmann et al. 

2003), and signal distortion can be at least partially corrected by “unwarping” the 

data with acquired B0 field maps (Stenger 2006). Furthermore, to reduce 

misalignment due to inter-subject sulcal variability, group analyses can be performed 

in surface space, meaning, on “unfolded” cortical maps. This procedure allows 

individual maps to be aligned to a common space after being unfolded, removing 

more of the variance due to individual differences in cortical folds. The robustness of 

latOFC response to face attractiveness in our own two experiments may be due to 

the fact that we made use of a number of these methodological techniques.  

Our null result in vmPFC is unlikely to be due to less power to detect the 

effect than in our previous study, as our passive evaluation task had double the 

number of trials used in our previous explicit evaluation task. Furthermore, we 

continued to observe significant response in OFC during the passive task, suggesting 

that our passive task did not simply reduce the overall activity across the brain. A 
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more likely explanation for this dissociation in vmPFC across tasks is that the vmPFC 

may calculate value only in those cases where comparisons are being made. 

Plassman, O’Doherty, and Rangel showed vmPFC activity correlated with willingness 

to pay values in a bidding task, but they showed that this activity in vmPFC dropped 

out when subjects were forced to bid a particular amount (the subject had no choice) 

(2007). Noonan et al. showed that after vmPFC lesions, macaques retained reward-

value learning but had impaired performance when making decisions that involved 

reward comparisons (2010). While our own attractiveness ratings task did not have 

subjects make comparisons within individual trials, in other work we have shown that 

attractiveness ratings given to faces in sequence are made in comparison to ratings 

given in previous trials (Pegors, Mattar, Bryan, and Epstein, under review).  

Curiously, there are a number of fMRI studies in humans demonstrating vmPFC 

activity correlated with face attractiveness/preference when subjects are making 

orthogonal judgments to attractiveness (e.g. O’Doherty et al. 2003; Lebreton et al. 

2009). Why vmPFC would show correlated activity with item attractiveness during 

orthogonal judgments but not during passive evaluation of that attractiveness is 

unclear.  

Faces > places activity in latOFC and vmPFC 

In a basic contrast of face attractiveness trials > place attractiveness trials, 

we observed a significant positive response in latOFC and ventral vmPFC, replicating 

the effect we showed previously in these regions when subjects made explicit 

attractiveness ratings of face and place attractiveness. Moreover, we also observed 

this face selectivity during a standard localizer task in which subjects performed a 1-

back matching task.  
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Why might there be regions of OFC that shows a mean response to faces but 

are relatively insensitive to face attractiveness? It is likely that the posterior and 

medial regions are functionally distinct from each other, as there is evidence that 

medial and lateral OFC receive separate inputs and are part of separate networks of 

connections (Ongur and Price 2000). The more posterior response may reflect 

incoming high-level visual information before being combined with associated reward 

information. Projections from the anterior temporal lobe, known to contain face 

identity information (Tsao, Moeller, and Freiwald 2008; Von Der Heide, Skipper, and 

Olson 2008; Collins and Olson 2014), terminate in orbital frontal cortex by way of 

the uncinate fasciculus (Croxson et al. 2005). It also could be the case that this 

region reflects a separate type of reward, one that is not correlated with 

attractiveness but that might be associated with all face stimuli in general. The 

medial OFC / ventral vmPFC response that we observed in the region of gyrus rectus 

is actually very commonly observed in face contrasts, robust even in visual localizer 

scans (e.g. Julian et al. 2012). It has been suggested that this face-selective activity 

in medial OFC reflects the processing of emotion-related signals, such as social 

knowledge and self-awareness (Adolphs 2009; Haxby and Gobbini 2011).  

Only a dorsal region of vmPFC, in the general region of anterior cingulate 

cortex (ACC), did not show an explicit response during passive evaluation or 

matching even though it had done so during explicit attractiveness ratings. It could 

be the case that this bilateral region is similar to the vmPFC ROI that did not respond 

to face attractiveness during the passive task, though a majority of the vertices 

between these functional ROIs do not overlap. Even if this dorsal vmPFC / ACC 

region is functionally distinct from the face attractiveness ROI, ACC is also known to 

be recruited during explicit decision-making: activity here has been associated with 
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post-decisions variables during subjective value choices (e.g. choice outcomes) (Cai 

and Padoa-Schioppa 2012). The reason why we did not see activity here for the 

passive or matching task may therefore result from the fact that these tasks required 

no value-related decisions to be made. 

Face Specificity 

To what extent are these effects in latOFC specific to faces? In our previous 

study, we showed that the central patch in latOFC correlated with face attractiveness 

but not place attractiveness, suggesting at least some degree category selectivity in 

this area (Pegors, Kable, Chatterjee, and Epstein, under review). At the same time, 

many gustatory and olfactory studies have shown increased response in latOFC to 

pleasurable tastes or smells (See Gottfried and Zald 2005 and Small et al. 1999 for 

meta-analyses of olfactory and gustatory activity in human OFC), suggesting that 

latOFC may be sensitive to a range of basic/primary rewards. Within this more 

general region, though, one study using single-cell recordings in monkeys showed 

evidence that many neurons within latOFC distinguished between social and juice 

values, and that these populations were intermixed (Watson and Platt 2012). These 

results would predict that human fMRI data would show similar mean patterns of 

response for separate basic rewards in latOFC. Techniques such as fMRI adaptation 

and multi-voxel pattern analysis will likely be more suitable for further exploration of 

categorical specificity within this central latOFC patch. 

Conclusions 

Our data suggest that multiple patches of face-specific information in lateral 

orbitofrontal cortex respond regardless of subject task. Activity in these patches may 

play an integral role within the larger face-processing network, and we expect that 

methodological advancements and careful experimentation will further our 
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understanding of the ways in which these regions uniquely contribute to the 

perception and evaluation of face stimuli.  
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Figure 3.1  
 
Response correlated with face attractiveness during passive evaluation of 
attractiveness.  Functional ROIs (displayed in purple) were defined in an independent 
dataset, from regions positively correlated with face attractiveness while subjects 
made explicit ratings of attractiveness.  During passive evaluation, latOFC clusters 
show significant correlated response to face attractiveness, but there was no 
significant correlated response in vmPFC (see bar graph). 
 
 
 

	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

**

n.s.n.s.

*****

LvmPFC_att RvmPFC_att

LlatOFC_att-1

LlatOFC_att-2

RlatOFC_att

me
an

 p
ar

am
et

er
 e

sti
ma

te
s a

cro
ss

 su
bje

cts

0

0.5

1

1.5

2

2.5

3

LvmPFC_att RvmPFC_att RlatOFC_att LlatOFC_att-1 LlatOFC_att-2



	
  

	
   64 

	
  
Figure 3.2   
 
Activity for face > place in functional ROIs defined from the face > place contrast in 
a dataset where subjects performed an explicit attractiveness rating task (ROIs 
displayed in blue).  Face > place activity in orbital and medial clusters was measured 
during passive evaluation of attractiveness and during a 1-back matching task. In 
both cases, right latOFC showed a significant response, and ventral medial-frontal 
cortex also showed a significant response during both tasks.  However, there was no 
response in anterior cingulate, a region that showed face > place response during 
explicit ratings of face attractiveness.  
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Figure 3.3 
 
Face-responsive activity during passive evaluation of attractiveness. An ROI analysis 
was performed using anatomical ROIs (Freesurfer’s aparc 2009 atlas) that divided 
the orbital surface into the gyri and central sulcal region. While the main effect of 
faces > places show more widespread activity through the posterior orbital surface, 
activity correlated with face attractiveness was specifically located in the orbital 
sulcal region.  Contrast maps of face > place and face attractiveness are shown at 
p<.01, uncorrected. Un-inflated surfaces were used to visually accentuate the gyri 
and sulci. 
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CHAPTER FOUR - Simultaneous perceptual and response biases on 
sequential face attractiveness judgments 
	
  

 
Pegors, TK; Mattar, MG; Bryan, PB; Epstein, RA. in preparation 
 

 

Abstract 

Face attractiveness is a social characteristic that we often use to make first-pass 

judgments about the people around us. However, these judgments are highly 

influenced by our surrounding social world, and researchers still understand little 

about the cognitive mechanisms underlying these influences. In a series of 

experiments, we investigated the existence of two opposing influences on face 

attractiveness ratings that arise from our past experience of faces.  By implementing 

a unique sequential rating design, we showed simultaneous and opposing influences 

on attractiveness judgments which can be attributed to separate sources: First, we 

observed a response bias, in which attractiveness ratings shift towards a previously 

given rating, and a stimulus bias, in which attractiveness ratings shift away from the 

actual attractiveness of the previous face. Furthermore, we provide evidence that the 

contrastive stimulus bias is due to a perceptual “aftereffect,” by showing that this 

bias is limited to images with perceptual similarities and by localizing this effect to 

the fusiform face area and nearby visual cortical regions. Overall, our results suggest 

that even abstract judgments of face attractiveness are influenced by information 

from our evaluative and perceptual history and that these influences have 

measurable behavioral effects over the course of just a few seconds. 
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Introduction 

Human faces are rich sources of information that help us to navigate our 

social world. Face attractiveness, in particular, is a holistic visual trait that we often 

use to make first-pass assessments of people, as we associate this feature with 

romantic viability, sociability, and health (for reviews, see Rhodes 2006 and 

Zebrowitz & Montepare 2008). Interestingly, our judgments of the attractiveness of 

an individual face are not based solely on that face alone: they are highly influenced 

by other faces observed in the surrounding context. For example, a person is 

considered more attractive if seen with an unattractive stranger (Kernis & Wheeler 

1981), a very attractive partner or friend (the “radiation” effect: Strane & Watts 

1977; Kernis & Wheeler 1981), or by merely appearing within a larger group of 

people (the “cheerleader” effect: Walker & Vul 2014). Moreover, even faces viewed 

in isolation are still often judged to be more or less attractive based on faces that 

have been viewed in the recent past (Wedell, Parducci, & Geiselman 1987; Cogan, 

Parker, & Zellner 2013; Kondo, Takahashi, & Watanabe 2012). Surprisingly, the 

nature of this “sequential” attractiveness bias remains unclear, because the results in 

the literature up to this point have been, at first glance, contradictory. Whereas 

some studies report a contrastive effect (i.e. if the previous face was very attractive, 

the current face will be rated as less attractive than usual) (Wedell et al. 1987; 

Cogan et al. 2013), other studies report an assimilative effect (i.e. if the previous 

face was very attractive, the current face will be rated as more attractive than usual) 

(Kondo et al. 2012; Kondo, Takahashi, & Watanabe 2013).  The current study 

attempts to resolve this apparent contradiction. 
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Contrastive Sequential Biases 

One of the first studies to show the influence of recent visual history on 

current ratings of attractiveness had experimenter “confederates” interrupt 

undergraduate males who were watching Charlie’s Angels to ask them to rate the 

attractiveness of a girl in a photograph (who was described as a potential date). 

Males who were watching Charlie’s Angels, a show with 3 beautiful women as the 

main characters, rated the girl in the photograph as less attractive than did other 

males who were watching another TV show (Kenrick & Gutierres 1980). Follow-up 

studies in laboratory-controlled settings provided further evidence for this sequential 

contrast effect: faces tended to be rated as less attractive when a beautiful face had 

been previously viewed, and vice versa (Kenrick & Gutierres 1980; Wedell, Parducci, 

& Geiselman 1987; Cogan, Parker, & Zellner 2013).  

Interestingly, this sequential contrast bias occurs for other kinds of judgments 

as well, including both hedonic and non-hedonic judgments (Kamenetzy 1959; 

Shifferstein & Frijters 1992; Shifferstein & Kuiper 1997; Zellner et a. 2003; Parker et 

al. 2008). For example, a study originally conducted for military taste testing showed 

that foods were rated as tasting worse when sampled after a good quality food than 

when sampled after a poor quality food (Kamenetzy 1959). In another study, 

musical excerpts were given higher ratings if played after a low-rated excerpt than if 

played after a high-rated excerpt (Parker et al. 2008). Studies on magnitude 

estimates from the psychophysics literature have even demonstrated sequential 

contrast biases for estimates of loudness, light intensity, or size (e.g. Jesteadt, Luce, 

& Green 1977; Ward 1990; DeCarlo & Cross 1990). The fact that contrastive biasing 

occurs for such a variety of stimulus types raises the question of whether the same 
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mechanism that underlies other hedonic and psychophysical sequential biases might 

also be responsible for the sequential bias in face attractiveness judgments. 

One general mechanism that may tie together the face attractiveness 

sequential bias with other sequential biases comes from the perception literature, 

where the phenomenon of visual “aftereffects” has been used for over a century to 

describe contrastive sequential perception in motion, color, and shape (Wohlgemuth 

1911, McCollough 1965; Gibson 1933). These aftereffects are thought to occur as a 

result of our visual system constantly adapting to incoming stimulus information and 

influencing our perception of subsequent input. One striking example from the real 

world is that looking at an unmoving rock face after staring at a flowing waterfall 

makes it appear as if the rock face is flowing upward (Wohlgemuth 1911). 

Importantly, aftereffects have more recently been shown to occur even for complex 

facial features, such as identity, gender, ethnicity, and emotion (Leopold et al. 2001, 

Webster et al. 2004). In a demonstration of the gender aftereffect, Webster et al. 

first had subjects view a male or female face for 3 minutes and then judge the 

gender of a series of ambiguously gendered male/female morphs. Their results 

showed that if a subject adapts to a male face, they are more likely to judge an 

ambiguous face as female, and vice versa (Webster et al. 2004). No study has used 

this paradigm to directly test for aftereffects during face attractiveness judgments 

(though see Rhodes et al. 2003 for indirect evidence), but these results suggest that 

the attractiveness contrast effects seen in the social psychology literature may also 

be the result of a perceptual aftereffect.  

Assimilative Sequential Biases 

Instead of a contrastive bias, Kondo et al. have reported an assimilative bias 

for sequential face attractiveness judgments (2012). In this study, subjects made 
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sequential attractiveness judgments of faces using a 1-7 Likert scale. Their results 

showed a significant assimilative sequential bias: if the previous face was rated as 

very attractive, the current face would be rated as a little more attractive than usual, 

and vice versa. The authors attributed this bias to the previous response, not to the 

perception of the previous stimulus itself. Like the contrast effect, this response bias 

has been reported to occur for more than just attractiveness judgments of faces: this 

type of bias is broadly known in the decision-making literature as the “anchoring” 

effect. Tversky and Kahneman originally described this effect as one in which a 

person’s current decision will be biased towards a previously given value onto which 

they “anchor and adjust” (1974). Studies in psychophysics have also reported similar 

assimilative biases in magnitude judgments, though varying theories have been put 

forward as to the nature of such a bias (Ward & Lockhead 1971; Decarlo & Cross 

1990). If it is the case that face attractiveness judgments are influenced by a type of 

assimilative response bias as the Kondo results suggest, then the contrastive and 

assimilative results reported in the literature are not necessarily in conflict but may 

arise from two separate sources, the stimulus and the response.   

Simultaneous Stimulus and Response Biases 

No study on face judgments has attempted to observe whether sequential 

biases simultaneously arise from both the previous stimulus and response. The 

difficulty in asking such a question is that these two effects are extremely hard to 

separate because the perception of attractiveness is highly correlated with the actual 

judgment of attractiveness. While modeling solutions have been proposed in the 

psychophysics literature to determine the presence of biases arising from the 

previous stimulus and response (e.g. Jesteadt, Luce, & Green 1977; Ward & 

Lockhead 1971; DeCarlo & Cross 1990; Matthews & Stewart 2011), these solutions 
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are necessarily limited in their ability to accurately detect and estimate effects in the 

presence of multicollinearity (Neter, Wasserman, & Kutner 1989). A more effective 

method is to decorrelate these possible biases in the experimental design itself. 

Given that current designs of sequential attractiveness judgment tasks have 

highly correlated stimulus and response characteristics, we took two experimental 

approaches to “de-coupling” the potential biases attributable to the previous stimulus 

and response. In Experiments 1 and 2, we used a sequential rating design that 

alternated the task in such a way as to allow us to independently measure the 

effects of the previous stimulus and response on face attractiveness judgments. This 

design also allowed us to explore the generalizability of these effects across different 

judgment and stimulus types. In Experiment 3, we analyzed the neural activity of 

subjects making sequential face attractiveness judgments in the scanner. We 

hypothesized that the potential effects would be neuroanatomically “de-coupled,” 

and that the anatomical loci of these effects might provide further insight into their 

nature. 

To anticipate, our results show that opposing biases due to both the previous 

stimulus and response are indeed simultaneously present during sequential face 

attractiveness judgments, and we additionally showed that these effects are not 

unique to attractiveness judgments. Furthermore, we observed activity correlated 

with a contrastive sequential attractiveness bias (but not assimilative sequential 

bias) in visual cortex, providing additional evidence for the perceptual nature of the 

contrastive bias and its resemblance to perceptual aftereffects. 

Experiment 1 

The goal of our first study was to test whether face attractiveness judgments 

made in sequence are biased by the attractiveness of the preceding face, the 
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response to the preceding face, or both. To answer this question, we asked subjects 

to make attractiveness judgments and hair darkness judgments of faces on 

alternating trials. Because all attractiveness trials were preceded by hair darkness 

trials (a quality which was not correlated with attractiveness in our stimulus set), this 

design allowed us to separately measure the effect of the attractiveness of the 

preceding stimulus and the response to the preceding stimulus on face attractiveness 

judgments. To determine the generality of the effects, we also investigated whether 

the preceding stimulus and/or response during attractiveness trials affected 

subsequent hair darkness judgments.  

Methods 

Stimuli 

242 female face images were selected to span a wide range of attractiveness 

and hair darkness. These came from the Glasgow Unfamiliar Face Database, 

Radboud Database (Langner et al. 2010), the Center for Vital Longevity Face 

Database (Minear & Park 2004), CVL Face Database (Peter Peer, 

http://www.lrv.fri.uni-lj.si/facedb.html), Diana Theater Face Database (courtesy of 

Dr. Robert Schultz at the Center for Autism Research), and online searches. Faces 

were all Caucasian, had a neutral to pleasant expression, and were forward-facing. 

They were cropped such that the hair did not extend well below the chin, resized to a 

height of 400 pixels, and placed on 400x400 pixel backgrounds consisting of phase-

scrambled variations of a single scene image (See Figure 4.1 for example stimuli). 

From this set of 242 images, 10 of these composed a practice set of trial images 

used across all subjects, and the experimental trial (212 images) and memory task 

foil images (10 images) were randomly drawn for each subject from the remaining 

232 images.  
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We acquired attractiveness ratings from 28 subjects not participating in our 

main experiments to calculate an attractiveness score for each face. Each rater made 

1-8 Likert scale ratings of 543 male and female faces (244 females). In a separate 

block, ratings were given to place images (see Experiment 2).Within each block, 

image order was randomized, and attractiveness ratings were averaged across raters 

for each item to determine its attractiveness score. In the current experiment, these 

female face attractiveness scores served as our stimulus values, which were 

considered to be independent of the stimulus history or the task.  

 

Subjects 

Our a priori sample size was set at 30, which was based on the number of 

subjects used in an earlier experiment that implemented a similar (but non-

alternating) design (Kondo et al. 2012).  32 total Penn undergraduates were 

recruited and given class credit for their participation. 2 subjects were excluded for 

not following instructions, leaving us with a total of 30 participants (21 female).  

Procedure 

Subjects made a total of 106 hair darkness judgments and 106 attractiveness 

judgments in an alternating fashion on a 1-8 Likert scale. Importantly, these 

judgments alternated such that all attractiveness judgments were preceded by hair 

darkness judgments, and vice versa. Faces were presented on the screen for 4 

seconds each, and between face presentations, a fixation cross appeared on the 

screen for a randomized interstimulus-interval length of 0-0.5 seconds. Faces were 

displayed in the center of the screen, and buttons indicating the numbers between 1 

and 8 were displayed at the bottom of the screen (see Figure 4.1). Subjects were 

instructed to place 8 fingers on the keyboard row of numerical keys, so that ratings 
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could be made easily and quickly. To make the task easier, the current judgment 

type (attractiveness or hair darkness rating) was cued on the screen by the color of 

an outline around the face and buttons, as well as by the button labels at the 

anchors of the scale. When the subject made a judgment, the corresponding outline 

of the button turned white to reinforce their selection. 

No face was repeated over the course of experiment. Faces were randomly ordered 

and randomly assigned to one of the two judgment types for each subject. The first 

judgment type that subjects made was counterbalanced between subjects. In an 

attempt to ensure that participants attended to the entire face (and did not just 

focus on the hair, for example) we asked participants to remember each face for a 

post-experiment memory test. 

To acclimate participants to the range of attractiveness in the experiment, 

participants were trained beforehand on the alternating task with 10 faces that were 

not used in the main experiment. Faces for the practice were chosen to span the 

range of attractiveness and hair darkness. Participants were instructed to spread 

their ratings during the main experiment across the full scale based on the range of 

faces they had seen during the practice.  

After the main experiment, subjects were shown a random subset of 20 

images from the experiment (10 from the hair darkness trials, 10 from the 

attractiveness trials), and 20 novel images. These images were randomly intermixed, 

and subjects used a mouse to click a "Y" button on the screen if they had previously 

seen the image and the "N" button if they had not. Subjects completed the memory 

task at their own pace. 

To acquire hair darkness ratings outside of the context of the alternating task, 

subjects rated, at their own pace, hair darkness on the full set of female faces (242 
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images). Subjects also made hair darkness ratings on a separate block of male faces 

(not used in our subsequent analyses). Faces were presented in a different 

randomized order for each subject. Whether subjects rated male faces or female 

faces first was counterbalanced across subjects. The resulting hair darkness ratings 

were compiled from 28 of the subjects (2 subjects’ ratings were not acquired due to 

technical errors) and averaged across subjects to create a mean hair darkness score 

for each face. 

Results and Discussion 

For all analyses, any trial was excluded in which the reaction time (RT) was 

less than or equal to 0.2 seconds, as a short RT might indicate an anticipation error 

or a rating attributable to the previous trial. There was no correlation between 

attractiveness ratings and RT (Pearson’s r = 0.01, t(29)=0.42 p=0.68), and an 

extremely small but trending negative correlation between hair darkness ratings and 

RT (Pearson’s r = -0.04, t(29)= -1.93 p=0.06), indicating that that hair darkness 

was rated slightly more quickly for faces with darker hair.  

Subjects performed above chance in the memory test for correctly identifying 

faces seen during attractiveness judgments (mean=7.1 out of 10, t(29)=5.69, 

p<0.001) and for correctly identifying novel faces (mean=14.6 out of 20, 

t(29)=6.76, p<0.001). On the other hand, subjects did not perform above chance for 

recognition of faces seen during hair darkness judgments (mean=5.23 out of 10, 

t(29)=0.68, p=0.5), suggesting that subjects paid less attention to faces during hair 

darkness judgments.  

In our first analysis, we used a time-series regression analysis to determine 

whether attractiveness ratings were significantly influenced by either the 

attractiveness of the previous face or the previous response. We created a separate 



	
  

	
   76 

model for each subject by regressing individual attractiveness ratings against the 

mean attractiveness of the previous face and that subject’s hair darkness response 

given to the previous face. We also included the mean attractiveness of the current 

face as a predictor, to account for attractiveness variance not due to sequential 

biasing. The model used is summarized by the following equation: 

         

Rt = β0 +β1St + β2Rt-1 + β3St-1 + ε       (1) 

 

where R is the response, S is the average attractiveness of the face (the stimulus 

value), t is the trial index and ε is the error term. (Note that Rt in this first model is a 

judgment of attractiveness and Rt-1 is a judgment of hair darkness.) The dependent 

variable and all predictors were standardized (z-scored) for each subject in order for 

the resulting beta estimates to be comparable across subjects. The mean Pearson’s r 

between the previous response Rt-1 (hair darkness judgment) and the previous 

stimulus value St-1 (attractiveness) was -0.135. We formally tested for 

multicollinearity by examining the variance inflation factor (VIF) of each of the 

independent variables. This number gives us an estimated severity of 

multicollinearity – the higher the number the more severe, with a lower bound of 1.  

Each of our independent variables had a very low VIF (St = 1.02, Rt-1 =1.04, St-1 

=1.04), suggesting that multicollinearity was not a concern. (A VIF of 1.02 means 

that the variance of the coefficient is 0.02% larger than it would be if that predictor 

were uncorrelated with all other predictors). 

Beta estimates of the previous stimulus and response predictors were 

extracted for each subject-specific regression model. Results from testing these 

betas against zero revealed that the response given during hair darkness trials had a 
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significant and positive effect on subsequent attractiveness ratings (β2: t(29)=2.73, 

p=0.011), whereas the attractiveness of the preceding stimulus had a significant but 

negative influence on current judgments of face attractiveness (β3: t(29)=-4.92, 

p<0.001). That is, the effect of the preceding response was assimilative, while the 

effect of the preceding stimulus was contrastive. 

The first result (β2) parallels the assimilative bias seen by Kondo et al. (2012; 

2013), but extends it by showing that this bias can be linked to the previous 

response rather than to the attractiveness of the previous face. Notably, this 

response bias occurs across judgment types: hair darkness ratings influenced 

attractiveness ratings. This cross-judgment influence echoes results from the 

decision-making literature, in which seemingly unrelated numerical values influence 

subsequent decisions (Tsversky & Kahneman 1974; Critcher & Gilovich 2008).  The 

second result (β3) parallels other study results that have shown a contrastive effect 

for sequential ratings of face attractiveness and other stimulus qualities (Wedell et 

al. 1987; Cogan et al. 2013; Parker et al. 2008). Moreover, our design directly links 

this contrastive effect to the attractiveness of the previously viewed face rather than 

the previous response, even though the subject was attending primarily to the hair 

rather than the face (as evidenced by the memory results, in which subjects did not 

remember significantly above chance the faces in the hair darkness trials).  

In our second regression analysis, we sought to determine whether hair 

darkness ratings also showed the same sensitivity to stimulus and response biases. 

We used the same model as for the attractiveness ratings, but now regressed hair 

darkness ratings on the hair darkness of the previous face and the attractiveness 

rating of the previous face (Pearson’s r between previous stimulus and response: -

0.11, VIF for St = 1.02, Rt-1 =1.04, St-1 =1.03). Here, we saw a similar pattern of 
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stimulus results in that there was a significant contrastive influence due to the 

previous stimulus (β3: t(29)=-5.5, p<0.001). That is, faces were judged as having 

darker hair if they were preceded by faces with lighter hair, and vice-versa. We also 

observed a marginal trend towards a assimilative influence from the previous 

response ((β2: t(29)=1.84, p=0.08). 

To get an estimate of the size of these effects in terms of raw ratings scores, 

we re-ran the regressions using non-z-scored regressors. For the attractiveness 

ratings model, the averaged beta weight across subjects was -0.08 for the stimulus 

effect (β3 range: -0.30 to 0.13) and 0.03 for the response effect (β2 range: -0.09 to 

0.19). This means that, for the stimulus effect, holding all other variables constant, a 

face that is 1 “rating unit” (on the Likert scale) more attractive than the mean will 

tend to be rated as 0.08 rating units less attractive than it would have been on 

average. For the response effect, on the other hand, a face that is 1 rating unit more 

attractive than the mean will tend to be rated as 0.03 rating units more attractive 

than it would have been on average. In this case, the overall effect on a rating score 

is contrastive, as the contrastive effect of the preceding stimulus is larger on average 

than the assimilative effect of the preceding response.  Given that these values 

estimate the shift that would occur with only a distance of 1 rating unit from the 

mean, and the fact that even greater variations of face attractiveness occur in the 

natural world, it is likely that the true effect of one face on another would be even 

larger, and possibly quite noticeable.  The hair darkness model showed effects on the 

same order of magnitude: the averaged beta weight across subjects was -0.05 for 

the stimulus effect (β3 range: -0.20 to 0.04) and 0.01 for the response effect (β2 

range: -0.08 to 0.08). 
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In summary, in study 1, we created an experimental design that effectively 

decorrelated possible biases due to the previous stimulus and the previous response. 

Our results from this design revealed that there are indeed significant biases on 

attractiveness judgments that occur simultaneously and in opposite directions. 

Furthermore, as would be predicted by a perceptual aftereffect account, the 

contrastive bias due to the previous stimulus does not appear to be unique to 

attractiveness judgments, as hair darkness ratings were biased in the same manner. 

Additionally, face attractiveness ratings were assimilated towards hair darkness 

ratings, suggesting that the response effect as well is not unique to attractiveness 

judgments (though the fact that we observed only a trend for the opposite case 

renders the interpretation of the effect less clear). 

Experiment 2 

In our second study, we explored the boundary conditions of the stimulus and 

response effects, by testing whether these effects could be obtained between items 

drawn from different stimulus categories (faces and places). In order to keep the 

previous stimulus and response decorrelated, subjects viewed face and place images 

on alternating trials and rated the attractiveness of each face and the “perceived 

temperature” of each place. If the contrastive stimulus bias observed in Experiment 

1 was due to processing of attractiveness per se, then we would expect judgments of 

face attractiveness to be affected by the attractiveness of the preceding place. On 

the other hand, if the contrastive bias were attributable to a high-level perceptual 

aftereffect, then a stimulus from a perceptually-dissimilar category should have no 

influence. This design also allowed us to examine whether the assimilative response 

effect operated across judgments made on different stimulus categories. Because we 

observed both significant and trending cross-task assimilation in our previous 
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experiment, we expected to observe cross-category response assimilation, 

regardless of the presence or absence of a stimulus bias. 

Methods 

Stimuli 

The same 242 female face images were used from experiment 1. Additionally, 

373 natural scene images were selected from online sources to span a range of 

scene types (e.g. forests, beaches, mountains). These were cropped to 400x400 

pixels to match the size of the face images. Place attractiveness ratings were 

acquired from the same 28 independent raters used to acquire face attractiveness 

ratings (see experiment 1). 7 face and 7 place images were used for all subjects as 

practice images, and the experimental trial images (106 female faces, 106 places) 

and memory task foil images (20 faces, 20 places) were randomly drawn for each 

subject from the remaining images. Each subject, therefore, saw a unique (though 

overlapping) set of images. 

 

Procedure 

To match the number of participants used in study 1, we again set our a priori 

N to 30. We ran a total of 31 Penn undergraduate participants, and excluded one 

participant due to a technical error, leaving us with 30 participants (18 females).  

Participants received course credit for their participation.  

During the experiment, face and place trials were alternated, with participants 

rating the temperature of the place images on a scale of 1-8, and the attractiveness 

of face images on a scale of 1-8. The design and procedure were similar to that used 

in experiment 1, with a few key changes. The place trials were cued with the word 

“temperature” above the image, and the words “cold” and “hot” at the scale anchors. 
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In a practice session, subjects completed the alternating task on 14 images (7 place, 

7 place) that were not shown in the main experiment and which were chosen to span 

the range of the attractiveness and temperature. After the practice, subjects were 

instructed to spread their ratings across the scale based on the images they had just 

seen. They were also instructed to remember all of the images for a post-experiment 

memory test. The memory test included 20 place and 20 face images seen during 

the main experiment, and 20 place and 20 face foils.  

Results and Discussion 

Any trial where the reaction time (RT) was less than or equal to 0.2 seconds 

was excluded. There was no correlation between RT and face attractiveness 

(Pearson’s r = 0.01, t(29)=0.45 p=0.66) nor between RT and place temperature 

(Pearson’s r = 0.01, t(29)=0.56 p=0.58).  

Subjects performed above chance in the memory test for correctly identifying 

images seen during the experiment (places: mean=14.9 out of 20, t(29)=29.45, 

p<0.001; faces: mean=14.93 out of 20, t(29)=32.66, p<0.001) and for correctly 

identifying novel images (mean=29.9, t(29)=45.93, p<0.001). There was no 

significant difference between the number of faces and places remembered (t(29)=-

0.06, p=0.95).  

To test whether face attractiveness judgments were influenced by either the 

attractiveness of the preceding place stimulus or the previous response, we 

regressed subject-specific face attractiveness ratings against the mean 

attractiveness of the preceding place and the subjects’ previous response to place 

temperature. There was a very low correlation between the temperature judgments 

and place attractiveness (Pearson’s r = -0.03, averaged across subjects), suggesting 

that our design successfully decoupled the potential effects from the previous 
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stimulus and response. We also included a predictor for the mean attractiveness of 

the face (see Equation 1). Our test for multicollinearity using the variance inflation 

factor (VIF) on each of the predictors showed low numbers similar to experiment 1, 

indicating that multicollinearity was not a concern (VIF for St = 1.02, Rt-1 =1.04, St-1 

=1.04). 

Our regression analysis did not reveal biases on face attractiveness ratings 

due to either the preceding place stimulus or the previous place temperature rating 

(beta weights across subjects in t-test against zero: previous temperature rating 

(β2): t(29)=1.47, p=0.15; previous place attractiveness (β3): t(29)=1.64, p=0.11). 

To show that the absence of effects was due to the change of stimulus category 

rather than to other factors, we ran another regression analysis modeling the 

previous 4 trials, rather than just the previous trial. This allowed us to look for any 

significant effects from previous face trials (trials which were 2-back and 4-back) on 

the current face trial. (It is important to note, of course, that the stimulus and 

response predictors for these trials were highly correlated, since they both measured 

attractiveness. While significant results are meaningful, the true strength of the 

effect cannot be characterized.) Using this model, we showed a significant 

assimilative influence of both the 2-back and 4-back face attractiveness responses 

on the participants’ current face attractiveness judgment (2-back rating: t(29)=3.67, 

p<0.001; 4-back rating: t(29)=2.8, p=0.009), and a significant contrastive influence 

due to both the 2-back and 4-back faces (2-back face attractiveness effect: t(29)=-

6.94, p<0.001; 4-back face attractiveness effect: t(29)=-4.0, p<0.001) (See Figure 

4.2).  

These results have a number of implications. First, because we saw significant 

biases arising from the 2- and 4-back trials, our lack of significant weighting on the 
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1-back place trials cannot be explained by a lack of power to find a sequential effect. 

Second, these results make clear that these sequential bias effects are modulated by 

factors other than time, as the strength of the influence is modulated in an 

alternating fashion by the trial type. Third, there seems to be a limit to the influence 

of a previous numerical response on the current response, as there was no effect of 

temperature judgments on subsequent attractiveness judgments. This contrasts with 

the results of Experiment 1, where hair darkness judgments did have an effect on 

attractiveness judgments. Fourth, no general hedonic or conceptual representation of 

attractiveness led to a contrastive bias across trials, providing additional evidence for 

the perceptual nature of the contrastive bias. In general, these results suggest that 

both the stimulus and response effects apply across stimuli drawn from the same 

category (faces preceded by faces), but not across stimuli drawn from different 

categories (faces preceded by places). 

Experiment 3 

In our previous two behavioral experiments, we used an alternating 

sequential design to reveal biases in sequential attractiveness judgments due to both 

the previous stimulus and the previous response. In this third study, we attempted 

to locate the source of these biases in the brain (Aguirre 2007; the analyses 

performed here were conducted on data reported in Pegors, Kable, Chatterjee, & 

Epstein, under review). If the influence of previous faces on face attractiveness 

judgments is perceptual in nature and part of a more general phenomenon of neural 

adaptation, we would expect to see neural activity correlated with this effect in visual 

cortex. Specifically, we predicted that this effect would arise within fusiform face 

area (FFA), a region of visual cortex defined by its preferential response to faces 
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(Kanwisher, McDermott, & Chun 1997). We had no preexisting hypothesis about 

where we might find neural activity correlated with an assimilative response effect. 

Methods 

Subjects 

34 healthy, right-handed volunteers with normal or corrected-to-normal 

vision were recruited to participate in the fMRI study.  All subjects gave written 

informed consent according to procedures approved by the University of 

Pennsylvania institutional review board. One subject was excluded due to an 

incidental finding, two subjects were excluded due to technical issues with their 

anatomical images, and three subjects were excluded due to excessive motion in the 

scanner.  This left us with 28 subjects whose functional data were analyzed (14 

females, mean age 22.5). 

 

fMRI acquisition 

Scans were performed at the Hospital of the University of Pennsylvania on a 

3T Siemens Trio scanner equipped with a Siemens body coil and a 32-channel head 

coil.  High resolution T1-weighted anatomical images were acquired using a 3D 

MPRAGE pulse sequence (TR = 1620 ms, TE = 3 ms, TI = 950 ms, voxel size = 

0.9766 x 0.9766 x 1 mm, matrix size = 192 x 256 x 160). T2*-weighted images 

sensitive to blood oxygenation level-dependent (BOLD) contrasts were acquired 

using a gradient-echo echo-planar pulse sequence (TR = 3000 ms, TE = 30 ms, 

voxel size = 3x3x3mm, matrix size = 64 x 64, 46 axial slices).  The slices were tilted 

-30 degrees from the AC-PC plane to reduce signal dropout (Deichmann et al. 2003).   
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Procedure 

Subjects in the scanner made “low”, “average”, and “high” attractiveness 

ratings on a total of 144 images of male and female faces (72 female). These face 

images were collected from the same sources as reported in experiment 1 and were 

cropped and edited in the same manner. Nearly all of the female faces were images 

from the set used in experiments 1 and 2.  Each face was presented for 1 second, 

with a 2 second interstimulus interval during which only a crosshair was on the 

screen. Face ratings were made in sequence blocks of 12 images each. These face 

blocks were interspersed with place attractiveness blocks, data which are not 

reported here. Blocks were ordered such that no block type repeated twice in a row 

(including fixation blocks), and the block orders were counterbalanced across runs. 

Between each block was an additional 9 seconds of passive fixation. 18 seconds of 

fixation were added at the beginning and end of each run to allow the T2* signal to 

reach a steady state and to model the final HRF, respectively.  In total, the 

experiment consisted of six 4 min 57 sec scan runs, each of which was divided into 

two 36-s face blocks, two 36-s place blocks, and two 36-s fixation (or “rest”) blocks 

in which subjects passively fixated on a central crosshair.  

Prior to the scan, subjects rated 24 additional faces and 24 additional places 

on a 1-8 Likert scale. These were meant to acclimate the subject to the full 

attractiveness range that they would encounter in the main experiment. Immediately 

after the scan session, subjects rated all of the images again from the main 

experiment in a randomized order on the same 1-8 scale. (Both before and after the 

scan, faces and places were rated in separate blocks.)  
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Data Analysis 

Pre-processing and data analysis for individual subjects was performed using 

the FMRIB Software Library (FSL v.4.1.6) (Jenkinson et al. 2012; Woolrich et al. 

2009; Smith et al. 2004).  Functional images were corrected for differences in slice 

time acquisition and spatially corrected for the 30 degree tilt slice acquisition.  For 

each run, the first six volumes were removed to account for the fMRI signal not yet 

reaching steady-state, and data were then motion corrected by spatially realigning 

each image with the central image in the run, registered to the subject-specific T1-

weighted image using 6 degrees of freedom rigid-body transformations, and high-

pass filtered to remove temporal frequencies below 0.0074 Hertz. Data were then 

smoothed with a 5mm FWHM kernel. 

We used two separate general linear models: one to look for activity 

correlated with a contrast effect due to the attractiveness of the previous face, the 

other to look for an assimilative effect due to the previous response. In the 

“stimulus” model, we constructed the predictor of interest to be the signed difference 

of the mean attractiveness of the current face minus the mean attractiveness of the 

preceding face (mean attractiveness scores were calculated from averaging across 

subjects the 1-8 Likert scale rating given each face in the post-scan phase of the 

experiment).  In the “response” model, the predictor of interest was the signed 

difference between the in-scan rating of attractiveness on the current trial and the 

in-scan rating of attractiveness on the preceding trial (“low”, “average”, and “high” 

ratings were re-coded as the numerical values 1-3). Also included in these models 

was a predictor for the current mean or in-scan attractiveness rating, respectively. 

Finally, we added predictors for in-scan reaction time, categorical predictors for face 

trials, place trials, and instruction screens, and nuisance regressors to account for 
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between-scan variability and outliers (outliers calculated with the Gabrieli Lab’s 

Artifact Detection Tools: http://www.nitrc.org/projects/artifact_detect/).  All 

predictors, except scan indicators, were mean-centered and convolved with a 

canonical HRF. Individual contrasts were registered to the standard MNI152 brain 

and then submitted to a random-effects group-level analysis. 

Using the “stimulus” model, we first conducted an ROI analysis based on our 

a priori prediction about the source of a contrastive bias. Because our hypothesis 

was that the attractiveness contrast effect is perceptual in nature, we predicted that 

our stimulus model would reveal activity correlated with this effect in FFA, based on 

a number of studies that have demonstrated neural adaptation to holistic face 

features in this region (Andrews & Ewbank, 2004; Eger Shyns, & Kleinschmidt, 2004; 

Eger et al., 2005; and Winston et al., 2004). Because we did not have localizer scans 

for all subjects, we defined the left and right FFA by using the intersection of the 

subject-specific faces > places contrast from the model (thresholded at t>3.5) with 

the FFA parcels that had been derived from a set of 40 subjects’ functional localizer 

contrast files for faces > places (Parcels were derived using the method described in 

Julian et al. 2012, the only difference is that we chose a more liberal threshold of 

p<0.001 for the contrast maps)(19 of these subjects came from our current study, 

during which we conducted independent localizer scans on these subjects). Subject-

specific parameter estimates were extracted and averaged across each ROI.  

We also conduct a wholebrain analyses on both the “stimulus” and “response” 

models to search for areas of activity correlated with sequential biases outside of our 

a priori defined regions. Contrasts from the previously described random-effects 

group-level analyses were corrected for multiple comparisons using FSL’s randomize 

function to perform Monte-Carlo simulations which permuted the signs of wholebrain 
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data from individual subjects (10,000 relabelings; method based on Freedman & 

Lane 1983). Significance at the wholebrain level, therefore, was calculated as 

p<0.05, corrected for multiple comparisons across the whole brain. 

Results and Discussion 

We used the “stimulus” model to first ask whether face-selective visual cortex 

showed activity consistent with a contrastive sequential effect on face attractiveness 

judgments. By extracting subject-specific beta estimates for the model predictor 

measuring the difference between the attractiveness of the previous and current 

face, we observed significant negative activity in left FFA (t(25)=-2.12, p=0.04), 

indicating that the FFA responded more strongly to faces when they were preceded 

by a less-attractive face, and less strongly to faces when they were preceded by a 

more-attractive face. We did not see a significant effect in the right FFA (t(27)=-

1.23, p=0.23). In a wholebrain analysis, no regions survived wholebrain corrections, 

but at an exploratory threshold of p<0.001, uncorrected, we observed bilateral 

clusters of activity just posterior and medial to FFA (right hemisphere: x=32, y=-70, 

z=-6; left hemisphere: x=57, y=28, z=34 and x=63, y=28, z=33, all coordinates 

reported in MNI space). We also overlaid this “stimulus bias” map with another map 

from our model showing positively correlated activity with face attractiveness (See 

Figure 4.3). (A similar analysis of face attractiveness using subject-specific ratings is 

reported in Pegors, Kable, Chatterjee, & Epstein, under review; face attractiveness 

response in visual cortex has also been reported by Chatterjee et al. 2009). It is 

clear from visual inspection that the major loci of the visual clusters for face 

attractiveness and sequential contrast are not centered in the same regions of visual 

cortex.  
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Together, these results provide further evidence for a perceptual explanation 

to the contrastive attractiveness bias, and they also open up further questions about 

the functional relationship between the seemingly distinct populations that respond 

directly to the attractiveness of the current stimulus and those populations that are 

subtly influenced by the previous stimulus attractiveness.  

A wholebrain analysis using our “response” model did not reveal any 

significant regions of activity after correction for multiple comparisons, or even at the 

more liberal threshold of p<0.001 uncorrected. It is very possible that our lack of 

results is due to the coarseness of the response model. Since subjects were only 

making “low” “average” and “high” ratings in the scanner, there was less of a range 

over which ratings were able to be modulated. Further studies using designs in which 

subjects make finer-grained ratings in the scanner might be better suited to 

determine the source of the response bias. 

 

General Discussion 

To navigate the social world, it is important to be able to evaluate face 

attractiveness, but these judgments are always made in relation to a larger social 

and environmental context. In this paper, we provide evidence for the source of at 

least two contextual influences on face attractiveness judgments. First, we show that 

a face viewed previously, even if just for a few seconds, will create a perceptual 

contrast with the next face, and cause, for example, a face to appear slightly less 

attractive if we have just seen an extremely beautiful face. Second, we also show 

that this contrast effect on attractiveness ratings is attenuated if we have rated a 

previous face, because we are biased to give a rating that is more similar to the 

rating we have just given. Furthermore, our results provide evidence that the 
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contrast and stimulus effects are not unique to face attractiveness judgments but 

rather indicative of more general perceptual and decision-making mechanisms.  

Sequential Contrast Bias 

In both of our behavioral studies, we observed that the attractiveness of 

previous faces negatively predicted subsequent attractiveness ratings. This effect 

parallels attractiveness contrast effects seen previously in the social psychology 

literature (Kenrick & Gutierres 1980; Wedell, Parducci, & Geiselman 1987; Cogan, 

Parker, & Zellner 2013). We also observed a strong contrast effect for hair darkness 

in our first study; that is, faces were judged to have darker hair when preceded by 

faces with lighter hair, and vice versa.  The fact that we showed contrastive biases 

for two separate perceptual characteristics (attractiveness and hair darkness), that 

we did not show a contrastive bias across different perceptual categories, and that 

we observed activity correlated with the contrastive bias in visual cortex, suggests 

that this bias may be due to a general perceptual “aftereffect” phenomenon that is 

driven by neural adaptation in visual cortex. Neural adaptation has been seen for 

face characteristics like gender (Podrebarac et al. 2013), identity and expression 

(Winston et al. 2004), but this is the first time that neural adaptation has been 

observed for face attractiveness. Because the main loci of the effect was seen 

outside of FFA, it is possible that, rather than revealing a population that adapts to 

perceptual attractiveness per se, this contrast effect arises due to adaptation for 

lower-level visual features of faces that may correlate with attractiveness, such as 

skin smoothness or shape. This interpretation would also be extremely interesting, 

as it would suggest that a behavioral bias on attractiveness ratings is due to a 

relatively elemental perceptual bias. On the other hand, the fact that our fMRI design 

intermixed male and female faces likely decreased the holistic perceptual similarity 
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between images; a design which uses only male or female faces might increase 

adaptation in FFA. Regardless, the implications of our results are far-reaching: every 

exposure to a face, even briefly (whether on TV, within our group of friends, etc.), 

serves to dynamically change our basic perception (and therefore, evaluation) of face 

attractiveness. 

By using the word ‘bias’, we do not mean to imply that this contrast effect is a 

maladaptive mechanism. Specifically, neural adaptation has been proposed to 

improve coding efficiency (Clifford et al., 2007; Wainwright, 1999; Wark et al., 2007) 

by shifting the neural tuning in a way to prevent response saturation and improve 

discriminability around previously observed stimuli. In other words, our neural 

system is constantly adapting to incoming input so that we can best process and 

discriminate the stimuli in our current environment. In fact, neural adaptation seems 

to be a ubiquitous mechanism in the brain. For example, recent work in reward 

processing has shown that many of the neurons in macaque frontal cortex constantly 

adjust their firing rates according to the range of reward (e.g. amounts of juice) 

available, even on a trial-by-trial basis (Padoa-Schioppa 2009, Kennerley et al. 

2011).  

Sequential Assimilation Bias 

Both of our behavioral studies also reveal that previous ratings given to faces 

positively predict current attractiveness ratings.  These results replicate the 

assimilative effect on face attractiveness seen by Kondo et al. (2012, 2013), but we 

extend their findings by linking the effect directly to the previous rating.  It may be 

the case, then, that Kondo et al. observed an overall assimilative effect due to the 

fact that their brief image presentations created a weaker stimulus bias relative to 

the response bias.  
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In the psychophysics literature, one interpretation of the assimilative 

relationship between past and current judgments is that it is a reflection of the 

previous judgment acting a reference point for comparison. Decarlo and Cross 

provide evidence for this “relative judgment” model by showing that the assimilation 

effect on loudness estimates was decreased when subjects were instructed to make 

their judgments relative to a single reference loudness, presumably meaning that 

subjects shifted their reference away from the previous trial (1990). 

Our results showing no assimilative effect of responses to place temperature 

on face attractiveness ratings differ from the “anchor and adjust” account in the 

decision-making literature, in which previous values can be completely unrelated to 

the current judgment yet still have an assimilative influence (Tversky and Kahneman 

1974). On the other hand, we did show cross-task assimilation within the same 

stimulus category, suggesting some level of generality to the effect. Future studies 

should address, therefore, exactly the set of conditions under which this bias is 

present. 

Relevance to Sequential Tasks 

Our results reveal at least two bias-inducing mechanisms that reinforce 

researchers’ motivation to randomize trial order for each subject when acquiring 

mean estimates of stimuli. Since randomization is already common practice, our 

results in no way invalidate the many studies that use sequential rating designs.  

Rather, having an awareness of these potential biases may help researchers when 

considering other appropriate experimental designs and analyses, by taking into 

account the fact that both previous subject responses and stimulus presentations 

may affect behavior in a measurable way on subsequent trials.  
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Conclusion 

To what extent does our environment and past experience influence the way 

we evaluate people around us?  Our data suggest that our evaluations are constantly 

shifting and adapting to our world, even within the course of seconds. Rather than 

these phenomena being specific to the social or hedonic realm, we instead provide 

evidence that they are subserved by more general mechanisms, provided a possible 

link between these attractiveness biases and a wide range of biases described in 

social psychology, psychophysics, and judgment and decision-making literature.  
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Figure 4.1 

“Alternating” experimental design.  Subjects rated either the attractiveness or hair 
darkness of each female face on a Likert scale of 1-8. 
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Figure 4.2 
 
Regression results for face/place alternating design. Face attractiveness ratings were 
regressed against the previous rating and the previous response of the four 
preceding trials.  Because of the alternating design, trials 1-back and 3-back were 
always place trials in which subjects judged “place temperature”, and trials 2-back 
and 4-back were always face trials in which subjects judged attractiveness.  Neither 
the response to place temperature nor the underlying attractiveness of places 
significantly predicted current face attractiveness ratings, but face trials even 4 trials 
back showed predictive power related both to the subjects’ response and the mean 
attractiveness of the face. 
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Figure 4.3 
 
Wholebrain image displaying correlated activity with the sequential contrast effect 
(yellow), face attractiveness (red), and the overlap between the two contrasts 
(orange). The FFA ROI is outlined in light blue. Beta maps were thresholded at p<.02 
uncorrected to show activity that did not reach significance at the wholebrain level 
after corrections for multiple comparisons. While there is some activity correlated 
with the contrast effect in FFA, it is clear that the locus of the effect is more posterior 
and medial. Activity correlated with face attractiveness is somewhat overlapping with 
the contrast effect, but large regions are also unique to one or the other effect. 
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CHAPTER 5 – Future Directions 
 
 

In this dissertation, I have described research in which we explored the 

neural and behavioral underpinnings of how we perceive and evaluate visual beauty. 

Our results accomplished both major goals of this work, to advance understanding of 

the processes underlying face and place beauty, and to address broader questions 

related to perception, reward processing, and decision-making. These results also 

opened up many further questions for exploration. Below, I will outline a number of 

questions that arose from the studies described in each of the three chapters, and I 

will then discuss one of these questions in greater detail, outlining potential 

experimental designs and hypotheses. 

Questions for further exploration 

 In chapter 2, we compared activity in the brain while subjects rated face and 

place attractiveness. We found overlapping activity in a region of ventromedial 

prefrontal cortex (vmPFC), but we also showed that only faces elicited responses in 

lateral orbitofrontal cortex (latOFC) and in visual cortex. Why did places also not 

elicit responses in these regions? Might it be the case that latOFC only responds to 

stimuli associated with more primary rewards? Were the faces simply more 

rewarding than the places? In visual cortex, all higher-level visual regions responded 

to face attractiveness but only one region (lateral occipital cortex) showed a slight 

response to place attractiveness. Do these differences reflect the fact that face 

attractiveness is more closely associated with a common set of visual features, and 

that these visual features in turn are modulating the response? Our landscape 

images spanned a much wider feature range, and so place attractiveness may have 

been less correlated with any particular set of features across the images. On the 
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other hand, these differences may be driven by top-down attentional affects. Does 

face attractiveness modulate attention in a way that place attractiveness does not? 

In chapter 3, we showed two distinct regions of activity in latOFC even when 

subjects were not making explicit ratings of face attractiveness: a region that 

showed a bulk response to faces (when compared to places), and a region that was 

correlated with face attractiveness. Other kinds of gustatory and olfactory stimuli 

have been shown to elicit response in latOFC. Do these rewards also elicit these two 

distinct types of responses – one that exhibits a bulk response to the category of 

reward and one that tracks the specific value of the reward? What are the separate 

functions of these regions in relation to the larger reward and/or emotion network? 

During the passive evaluation task, we also observed that vmPFC no longer showed 

a correlated response with face attractiveness. Is this because vmPFC only 

represents value in choice-making contexts? Or is vmPFC encoding value in a way 

that is non-linearly related to explicit attractiveness ratings? 

In chapter 4, we used a novel experimental design to show that sequential 

face attractiveness judgments contrast away from the previous stimulus but 

assimilate towards the previous response. Interestingly, even un-related ratings 

modulated subsequent judgments (e.g. attractiveness judgments were assimilated 

towards previous hair darkness ratings). At the same time, ratings given to places 

did not influence face judgments. Does the strength of this assimilative effect vary 

continuously based on similarity to the current judgment? Also, is the contrast effect 

truly due to perceptual aftereffects from the previous face (i.e. the next face actually 

looks slightly different), or is this effect better explained by some type of cognitive 

rescaling, in which the mapping between face features and the ratings scale subtly 

shifts from trial to trial?  
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The perceptual versus cognitive nature of the sequential contrast effect  

In chapter 4, we demonstrated that sequential attractiveness judgments are 

susceptible to influences from the previous trials. Judgments are assimilated towards 

the previous response and contrasted away from the previous stimulus. We 

interpreted the stimulus contrast effect to be caused by perceptual aftereffects, a 

phenomenon in the literature that has been shown to influence even high-level 

stimuli such as faces (Webster et al. 2004). Another interpretation of the contrast 

effect is that this effect is not perceptual but cognitive: the subject may not perceive 

the next face differently, but rather, the subject may be subtly re-mapping facial 

features to the ratings scale on a trial-by-trial basis. This cognitive interpretation 

would also suggest that the reason place attractiveness does not influence face 

attractiveness is that the subject uses separate scales for places and faces. 

Therefore, viewing a place will not invoke remapping of the subjects’ face scale. 

Two possible experiments may begin to tease apart whether the contrast 

effect is due to perceptual adaptation or cognitive remapping. Both experimental 

designs would use the base alternating design in which face attractiveness and hair 

darkness judgments would alternate after every trial, but an additional condition 

manipulation would be pseudo-randomized within the trials. This would allow us to 

independently measure the strength of the contrast and assimilation effect between 

two conditions. 

In a first experiment, the alternating design would introduce the condition of 

short vs. long face exposures. While all trials lengths will be held constant, the 

presentation time of the face will either be short (e.g. 500 ms) or long (e.g. 4 s). 

Previous research has shown that face adaptation effects strength logarithmically 
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with the length of the adaption period and decay exponentially over the test duration 

(Leopold et al. 2005; Rhodes et al. 2007). These facts would suggest that, if the 

contrast effect is perceptual in nature, short face presentation times in our design 

would weaken the contrast effect in comparison to the long presentation times, since 

the adaptation period is shorter and the test duration (length between the face 

exposure and next face) is longer.  

Would the cognitive remapping account predict a different the strength of the 

contrast effect for short and long exposures? Face attractiveness judgments with 

exposures of only 100 ms are highly correlated with attractiveness judgments 

without time constraint (Willis and Todorov 2006). These data suggest that face 

features that drive attractiveness ratings are perceived within a very short period of 

time, and so in our own design, the length of exposure should not influence the 

contrast effect in the case of cognitive remapping. One could argue, though, that 

short-exposure faces may still correlate less well than long-exposure faces with the 

average ratings that we use to model attractiveness for hair darkness trials. If this 

were true, the contrast effect would be weaker for the short duration trials, not 

because of a weaker perceptual aftereffect but because we had less precise 

predictors. We could pre-empt this concern by acquiring two independent sets of 

attractiveness ratings to match the short and long exposure times during the 

experiment itself.  

In a second experiment, rather than varying the exposure time, we would 

pseudo-randomize the facing-angle of the face stimuli (e.g. looking 45 degrees to 

the left and 45 degrees to the right). Benton, Jennings, and Chatting varied face 

viewpoint angle across two face identities to show that identity adaptation decreased 

as the angle between the adapting face and the test face increased (2006). These 
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results would lead to the prediction that, if the contrast effect is perceptual in nature, 

trials preceded by different-viewpoint trials would have a smaller contrast effects if 

preceded by same-viewpoint trials. Alternatively, if the contrast effect is due to 

cognitive remapping, it is unlikely that the contrast effect would be affected by 

changes in facing-direction, as the major face features would still be visible in either 

condition. 	
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