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ABSTRACT 

NEUROBIOLOGICAL MECHANISMS LINKING STRESS AND NICOTINE TO  

INCREASED ALCOHOL CONSUMPTION 

Alyse M. Thomas 

John Dani, Ph.D. 

 

Alcohol use is a leading cause of preventable disease, disability and death worldwide. 

Among other factors, exposure to stress or nicotine promotes drinking in humans, yet the 

neurobiological mechanisms mediating these interactions are unknown.  Decades of 

research indicate that alcohol, stress hormones and nicotine act within the mesolimbic 

dopamine system to promote behavioral reinforcement. Based off this literature, the 

central hypothesis guiding my dissertation was that exposure to stress or nicotine 

promoted drinking via adaptations within ventral tegmental area (VTA). 

The findings presented in the second chapter of my thesis describe a novel adaptation 

within the mesolimbic dopamine system contributing to increased alcohol self-

administration. Exposure to stress blunted subsequent dopamine responses to alcohol 

and increased alcohol consumption via VTA stress hormone receptors. These adaptations 

arose from excitatory GABA transmission onto VTA GABA neurons. Further investigation 

revealed that excitatory shifts in GABA transmission were associated with the 

downregulation of the chloride transporter KCC2. Pharmacological enhancement of KCC2 

function within the VTA prevented stress-induced drinking, identifying a novel mechanism 

of stress-induced alcohol consumption.  

The results in the third and fourth chapters reveal that similar adaptations within the VTA 

may also contribute to the co-use of nicotine and alcohol. As was observed after stress, 
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exposure to acute nicotine blunted dopamine responses to alcohol and increased alcohol 

self-administration. Blocking glucocorticoid receptors during nicotine normalized the 

dopamine signaling and drinking to control levels, indicating that nicotine recruits stress 

hormone receptors to influence subsequent responses to alcohol.  

The fourth chapter examines the effects of adolescent nicotine exposure on adult 

responses to alcohol, since early-life tobacco use confers a major risk for subsequent 

alcohol abuse. Animals treated with nicotine during adolescence show attenuated 

dopamine signaling and increased self-administration throughout adulthood. 

Pharmacological enhancement of KCC2 in adulthood prevented the elevated alcohol 

intake, highlighting a potential therapeutic role of this drug to reduce alcohol consumption 

long after the initial nicotine exposure. Taken together, this body of work suggests that 

exposure to stress or nicotine boosts drinking via anionic plasticity mechanisms within the 

VTA and implicates KCC2 activation as a potential therapeutic target in the treatment of 

excessive alcohol consumption.  
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CHAPTER 1 

STRESS, NICOTINE AND ALCOHOL USE: A GENERAL INTRODUCTION 

Alyse M. Thomas 

 

“Not all addictions are rooted in abuse or trauma, but I do believe they can 

all be traced to painful experience. A hurt is at the center of all addictive 

behaviors. It is present in the gambler, the Internet addict, the compulsive 

shopper and the workaholic. The wound may not be as deep and the ache 

not as excruciating, and it may even be entirely hidden—but it is there. As 

we’ll see, the effects of early stress or adverse experiences directly shape 

both the psychology and the neurobiology of addiction in the brain.”  

―Dr. Gabor Maté, In the Realm of Hungry Ghosts (2010) 

 

The Prevalence and Burden of Alcohol Consumption 

Alcohol consumption is common across many cultures worldwide, with 38 percent of the 

global adult population consuming an alcoholic beverage in the past year (WHO, 2014).  

Drinking is nearly twice as prevalent in the United States, with 71 percent of adults 

consuming alcohol in the past year (SAMHSA, 2015). Several societal factors contribute 

to the prevalence of alcohol use in the United States, including economic prosperity, 

widespread drug availability and general social acceptance (WHO, 2014). From annual 

celebrations to weekly sporting events, drinking defines many aspects of American 

culture. For example, 93 percent of popular American movies and 71 percent of regular 

TV programming portrayed alcohol consumption (Roberts, 1999; Christensen, 2000).  
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Recent studies examining social media reveal that 85 percent of Facebook profiles make 

reference to alcohol (Egan & Moreno, 2011).  Of 11 million drinking-related tweets 

recorded during a single month, 79 percent portray alcohol use in a positive light 

(Cavazos-Rehg et al., 2015).   

Despite its popularity, many people misuse alcohol and experience negative 

consequences. Among individuals aged 15-49, alcohol misuse is the leading cause of 

premature disability and death, taking the lives of 3.3 million people around the globe 

(WHO, 2014). Drinking excessively is a common form of alcohol misuse. Nearly a quarter 

of American adults report binge drinking within the last month, defined as having 4-5 drinks 

within a two-hour period (SAMHSA, 2015).  This level of intoxication is associated with 

compromised decision-making and impaired motor function, posing risk self and others. It 

follows that binge-drinking accounts for 75 percent of costs (186 billion dollars) related to 

alcohol misuse, including loss of productivity, motor vehicle accidents, criminal justice, and 

health care (Sacks et al., 2015).  

In addition to binge consumption, alcohol misuse can refer to excessive intake over longer 

timescales. Approximately 7 percent of the adult population reported heavy drinking over 

the past month, defined as 8-15 drinks per week (SAMHSA, 2015). The combination of 

binge and heavy drinking (i.e. risky drinking) predisposes an individual to alcohol-related 

harm and disease (NIAAA, 2010). While alcohol is entirely attributable for conditions like 

fetal alcohol syndrome, it is also a known risk factor for hundreds of other conditions such 

as liver cirrhosis, cardiovascular disease, sleep disorders, depression, cancer, and 

epilepsy (NIAAA, 2010; WHO, 2014). Worldwide, approximately 139 million disability-

adjusted life years are lost in the form premature death or living with an alcohol-associated 

disease (WHO 2014).    
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Another major risk associated with excessive alcohol consumption is the development of 

alcohol use disorders (AUDs), which are characterized by the compulsive desire to 

consume alcohol despite negative consequences (NIAAA, 2010).   Addicted individuals 

enter a persistent cycle of drug use, leading to the progressive development of drug 

tolerance, withdrawal, and dependence (Koob & Le Moal, 1997). Alcohol addiction 

ultimately imparts a diminished quality of life, including interpersonal strain, poor health, 

and a loss of productivity in the workplace (Donovan et al., 2005).  Reflecting the 

persistency of this struggle, AUDs encompass 25 percent of the alcohol-attributable 

disease burden compared to only 4 percent of alcohol-attributable deaths (WHO, 2014; 

Grant et al., 2015). Importantly, one-third of Americans develop an AUD during their 

lifetime, revealing a major national public health concern (Grant et al., 2015). The 

widespread prevalence and burden of excessive alcohol consumption has prompted 

broad research efforts towards identifying effective prevention and treatment strategies.     

Stress and Alcohol Consumption 

In an effort to mitigate the burden of alcohol on society, it is necessary to first identify the 

risk factors associated with alcohol misuse. Decades of research reveal complex 

interactions between environmental conditions and individual predisposition, with no 

single known cause of alcoholism. However, many prominent theories of addiction argue 

that exposure to stress can trigger pathological alcohol use (Conger, 1956; Cappell & 

Herman, 1972; Critchlow, 1986; Koob & Le Moal, 1997; Sinha, 2008).  

The corresponding epidemiological literature suggests a positive correlation exists 

between exposure to stress and alcohol use, but differences have been reported (Keyes 

et al., 2011).  Differences in the effect of prior stress on subsequent alcohol consumption 
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likely arise from the complexity of stress-alcohol interactions, as well as aspects of study 

design.  Variables to consider across studies include the type of stressor measured, type 

of questionnaire use, history of alcohol intake, size/diversity of the population under 

investigation, and the temporal structure of the study (cross-sectional vs. longitudinal).  In 

general terms, stress refers to any external stimuli perceived as threatening or harmful 

and often elicits a negative impact or outcome (Sinha, 2001; 2008). Stressful stimuli vary 

across dimensions of severity, chronicity, expectedness, and consequence to mental 

health (Keyes et al., 2011).  Examples of more commonly experienced, less-severe life 

stressors that negatively influence adult mental health include financial/legal crisis, 

workplace tension, and interpersonal conflict. Relevant to the experiments presented in 

this thesis, even common, acute stressors experienced in adulthood have been shown 

promote alcohol misuse (San Jose et al., 2000; Dawson et al., 2005).  

Comparison across populations, communities, and individuals provides further insight into 

the relationship between general life stressors and alcohol consumption. Larger-scale 

studies are critical to detect the prevalence of this interaction across the general 

population. Though few in number, results from these representative cohorts confirm a 

positive correlation between increasing number of stressors and heavy drinking over the 

past 6 months (San Jose et al., 2000) or 12 months (Dawson et al., 2005). The National 

Epidemiologic Survey on Alcohol and Related Conditions (NESARC) found that 

individuals who experienced six or more stressful events tripled their average daily alcohol 

intake when compared to a non-stressed cohort with similar drinking patterns (Dawson et 

al., 2005).  

Community samples of adults also report positive correlations between stressful life 

events and elevated alcohol consumption (Cole et al., 1990; King et al., 2003). Follow-up 
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diary studies with the same individuals reveal more specifically that negative work and 

non-work events predict same day increases in alcohol consumption (Carney et al., 2000).  

Not all communities are equally vulnerable, however. Longitudinal studies examining older 

adults did not correlate acute stressful life events with increased alcohol consumption 

(Skaff et al., 1999). This result could be explained by overall reductions in alcohol 

consumption amongst elderly populations (Skaff et al., 1999). Thus, variation in this 

relationship exists across different subpopulations.  

At the individual level, the vulnerability to stress-induced drinking can be influenced by 

age, sex, race, and personal coping strategies. For example, males report drinking more 

after stressful experiences than females (San Jose et al., 2000; Dawson et al., 2005) and 

demonstrate higher rates of AUDs (WHO, 2014). However, females still report alcohol 

misuse after stressful experiences (Kilpatrick et al., 1997). In addition to sex differences, 

stress associated with perceived discrimination correlates with more severe alcohol 

outcomes (McCabe et al., 2010; McLaughlin et al., 2010; Yoo et al., 2010). Across all 

social subgroups, individual coping strategies can promote pathological drug use. People 

who report drinking to cope with distress often develop solitary drinking practices (Smith 

et al., 1993) and engage in abusive drinking over social drinking (Abbey et al., 1993; Moos 

et al., 2010). Integration of this literature sheds light on the complex personal and 

environmental conditions that may render an individual vulnerable to stress-induced 

alcohol consumption and confirms the pervasive nature of this interaction. 

Tobacco and Alcohol Consumption 

Like stress, tobacco use is associated with increased alcohol consumption (Carmody et 

al., 1985; Batel et al., 1995; Barrett et al., 2006). Smoking cigarettes is highly addictive, 
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claiming more users that show clinical symptoms for drug dependence than any other 

drug (Anthony & Echeagaray-Wagner, 2000). Factors such as genetic vulnerability, drug 

availability, social demographics, and age at first exposure influence the propensity to 

use tobacco and alcohol (Schorling et al., 1994; Bobo & Husten, 2000; Weitzman & 

Chen, 2005; McKee et al., 2007). Despite this complexity, epidemiological studies 

consistently show a positive correlation between tobacco and alcohol use (Schorling et 

al., 1994; Bobo & Husten, 2000; Weitzman & Chen, 2005; McKee et al., 2007). Amongst 

adults that consume alcohol, 37 percent also smoke cigarettes (Bobo & Husten, 2000). 

Smokers consume nearly twice as much alcohol as nonsmokers, highlighting a 

significant dose-response relationship (Carmody et al., 1985).  

Tobacco users are also more likely to misuse alcohol and experience alcohol-related 

harm (DiFranza & Guerrera, 1990; Kozlowski & Ferrence, 1990; Grant et al., 2004; 

Larsson & Engel, 2004).  The combined use of these drugs generates overlapping risk 

for the development of diseases like cancer and AUDs (Miller & Gold, 1998). Over 83% 

of alcoholics smoke cigarettes and alcoholism is approximately 10 times more prevalent 

in smokers than in non-smokers (DiFranza & Guerrera, 1990).  In clinical terms, smoking 

is sufficiently predictive of alcoholism to warrant a screen for assessment of drinking 

patterns (Kozlowski & Ferrence, 1990). Thus, there are major health risks associated 

with the co-use of tobacco and alcohol. 

Accumulating evidence suggests that the comorbidity of tobacco and alcohol use may 

originate in adolescence (Cross et al., 2017). Tobacco is often the first drug used by young 

people (Fleming et al., 1989; Grant, 1998) and 84 percent of smokers have their first 

cigarette before the age of 18 (Yuan et al., 2015; Richter et al., 2017). Thus, adolescence 

represents a unique period of vulnerability for smoking habit initiation. Young smokers are 
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more likely to be heavier drinkers throughout adolescence and adulthood (Harrison & 

McKee, 2008).  Further, individuals that experiment with tobacco at any point are twice as 

likely to develop an alcohol use disorder compared to never smokers (Grucza & Bierut, 

2006).  For this reason, adolescent tobacco use is hypothesized to serve as a gateway 

drug, acting to promote excessive alcohol use later in life (Torabi et al., 1993; Parra-

Medina et al., 1995; Lai et al., 2000; Chen et al., 2002; Degenhardt et al., 2010; Kandel & 

Kandel, 2015; Cross et al., 2017). Gateway theories primarily function to identify life 

exposures preceding pathological drug use; however, the compelling epidemiology linking 

alcohol abuse with prior exposure to stress or tobacco has motivated laboratory research 

into the causal mechanisms underlying these interactions.  

Modeling Alcohol Consumption in Rodents 

Due to the correlative nature of epidemiological surveys, it is necessary to carry out causal 

experiments under controlled laboratory conditions.  The most rigorous animal model used 

to study the effect of stress or nicotine on alcohol intake is operant self-administration, 

where animals are required to press a lever in order to gain limited access to an alcohol 

drinking solution. This model of drug use possesses high face validity to the human 

condition and draws upon associative learning mechanisms inherent to operant 

conditioning (Panlilio & Goldberg, 2007). That is, drugs of abuse reinforce the behavior 

associated with their delivery by strengthening associative learning in the brain (Everitt & 

Robbins, 2005; Sanchis-Segura & Spanagel, 2006). Recording lever presses and the 

corresponding alcohol consumption thus provides a quantitative approach for studying the 

mechanisms of behavioral reinforcement.  
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The development of operant alcohol self-administration in rodents generally involves two 

phases of behavior: the acquisition phase and the maintenance phase (46 Lynch et al 

2010). The acquisition phase refers to the initial alcohol exposure period when the patterns 

and preference of alcohol intake are first established. In an effort to minimize aversive 

taste and stimulus properties, alcohol is gradually introduced (or faded) into a sweetened, 

non-caloric drinking solution like saccharin (Samson, 1986; Boyle et al., 1994). Animals 

quickly adjust their intake to the taste and sensory cues of the drinking solution. After this 

fading procedure is complete and intake levels stabilize, animals transition to the 

maintenance phase of self-administration. In addition to acquisition and maintenance, 

operant self-administration enables investigation into other drug-related behaviors, such 

as extinction and relapse (Le et al., 2000b; Funk et al., 2014).  

Effects of Stress on Alcohol Self-Administration 

For the purposes of in vivo research, stress refers to any stimulus that perturbs normal 

homeostasis (Selye, 1950) and promotes the secretion of stress hormones (Herman & 

Cullinan, 1997). Rodent models of stress-induced drinking show mixed behavioral results 

and likely reflect differences in experimental design, heterogeneous responses to stress, 

and limited mechanistic insight (Becker et al., 2011).  There are an array of acute and sub-

chronic stressors used in experimental research, including foot shock, restraint stress, 

forced swim test, social defeat, and social isolation. In addition, experience with alcohol 

consumption prior to stress exposure varies greatly across studies.  Differences are also 

noted between rodent strains, with Long-Evans rats more consistently showing stress-

induced drinking than Sprague-Dawley rats for a given stressor (Casey, 1960; Myers & 

Cicero, 1969; Mills et al., 1977; Mills & Bean, 1978; Brunell & Spear, 2005).   
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Within-subject variability at baseline and in response to stress could also contribute to 

equivocal behavioral results. For example, Long-Evans rats show wide variability in their 

basal saccharin preference during operant self-administration (Ostroumov et al., 2016). 

Since alcohol is often faded into a sweetened solution for operant self-administration 

studies, differences in basal saccharin preference could confound the readout of alcohol 

intake. In addition, efforts to minimize environmental stress in controls presents a constant 

challenge for animal research, yet it is critical to ensure homogenous, non-stressed rodent 

populations at the onset of these studies.  Finally, rodents can differ in their response to 

the same stressor (Pfau & Russo, 2015). For example, only a subset of rodents subjected 

to social defeat show susceptibility to subsequent social aversion and anxiety (Golden et 

al., 2011). Reflecting divergent stress responses in the context of alcohol consumption, 

recent studies confirm that isolating stress-sensitive populations more reliably leads to 

increases in subsequent alcohol consumption (Edwards et al., 2013).  

Explicitly addressing these experimental considerations and taking efforts to minimize 

within-subject variability for a given stressor paradigm is thus critical to the consistency 

and reproducibility of stress-alcohol studies. In addition to these experimental 

considerations, it remains unknown how stressful experiences alter neurobiological 

alcohol responses in drug-naïve rodents.   Given the prominent contribution of stress to 

the development of dependence, withdrawal, and relapse (Le et al., 2000b; Funk et al., 

2014), these stress-related neuroadaptations are of high interest to the alcohol field.  

Effects on Nicotine on Alcohol Self-administration 

In order to examine effects of tobacco on alcohol consumption, animals are either 

passively exposed or actively self-administer nicotine, the main psychoactive component 

in tobacco smoke. Passive administration offers enhanced precision with drug dosing 
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whereas active administration offers greater insight into individual preference (Matta et al., 

2007).  In rodent behavioral experiments, the reinforcing effects of nicotine exhibit an 

inverted U-shaped dose–response curve upon peripheral injection (Iyaniwura et al., 2001; 

Picciotto, 2003), reaching maximal brain concentrations approximately 15 min post-

injection (Turner, 1975). Due to rapid drug metabolism in rats (t1/2 = 45 min) compared to 

humans (t1/2 = 2 h), larger doses are often used in rodent models (Matta et al., 2007).   

Rodent models show that exposure to nicotine can increase subsequent alcohol self-

administration. Differences between studies include nicotine administration route, 

chronicity of exposure, age upon exposure, and the phase of drinking under consideration. 

Several studies have examined alcohol intake in response to proximal nicotine exposure 

(Dyr et al., 1999; Nadal & Samson, 1999; Le et al., 2000a; Sharpe & Samson, 2002; Le et 

al., 2003; Bito-Onon et al., 2011). In these studies, the nicotine was injected prior to daily 

alcohol self-administration sessions. Overall, the evidence indicates that nicotine 

treatment can increase alcohol self-administration. For example, three different groups 

have shown that moderate to high doses of nicotine (0.2–0.8 mg/kg) increase operant 

responding and alcohol intake in three different rat strains (Le et al., 2000a; Le et al., 2003; 

Bito-Onon et al., 2011; Leao et al., 2015).  

However, a few studies have also reported that repeated nicotine exposure decreases 

alcohol intake or has no effect on it (Nadal & Samson, 1999; Sharpe & Samson, 2002). If 

there were methodological differences between studies, it is not clear which one 

specifically contributed to these results. The studies employed comparable rat strains and 

nicotine doses, and the nicotine pretreatment was administered at a similar time (15–30 

min) prior to the alcohol self-administration session. One possibility is that increases in 

alcohol intake after nicotine pretreatment might require longer self-administration sessions 
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to observe the increased consumption (Ahmed & Koob, 1999; Le, 2002). Most studies that 

report increased alcohol intake used 60-min self-administration sessions, whereas the 

studies by Samson and colleagues used 30-min sessions. In addition, differences in the 

schedule of reinforcement (fixed-ratio vs. response requirement) could also factor into 

these results. In summary, under certain conditions, repeated daily nicotine pretreatment 

can increase alcohol self-administration, but more work is needed to understand the basis 

for some discrepancies in the literature. 

In contrast to adulthood, adolescent nicotine exposure has longer-lasting influences on 

subsequent alcohol self-administration (Kemppainen et al., 2009; Larraga et al., 2017). 

Adolescent rats exposed to nicotine or nicotine plus alcohol (but not alcohol alone) showed 

significantly higher alcohol intake as adults (Larraga et al., 2017). Continuous peri-

adolescent exposure, on the other hand, did not show similar elevations in consumption 

(Smith et al., 2002). In a separate study, animals treated with nicotine during adolescence 

showed sensitization to nicotine-induced drinking upon nicotine re-exposure as adults 

(Kemppainen et al., 2009). Behavioral studies examining nicotine-alcohol interactions thus 

provide evidence in favor of nicotine exposure, particularly during adolescence, 

influencing subsequent responses to alcohol. Though underlying mechanisms mediating 

this interaction have yet to be determined, altered alcohol self-administration likely arises 

from neural adaptations induced by nicotine or stress hormones. 
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Neurobiological Effects of Stress, Nicotine, and Alcohol 

Influence of Alcohol on Brain Function 

The behavioral responses to alcohol arise from its cellular and molecular actions in the 

brain. In pharmacological terms, alcohol (ethanol) is considered a “dirty drug” because it 

modulates a wide range of membrane receptors and other molecular targets in neurons, 

limiting our ability to link specific molecular targets to their corresponding behavioral 

effects (Harris, 1999). For example, mild to moderate levels of intoxication potentiate 

inhibitory (GABA) and inhibit excitatory (NMDA) synaptic transmission (Dopico & Lovinger, 

2009). Specifically, a concentration of 3-30 mM ethanol enhances GABAA receptor 

function while 5-50 mM is sufficient to inhibit NMDA receptor function. Importantly, this 

dose-response relationship varies further across different GABAA and NMDA receptor 

subunits expressed throughout the brain (Alfonso-Loeches & Guerri, 2011). Ethanol also 

enhances serotonin and nicotinic ligand-gated ion channels as well as non-ligand ion 

channels like L-type Ca2+, HCN, and GIRK (Luscher & Ungless, 2006).   

Despite many targets within the brain, behavioral pharmacological experiments reveal that 

GABAA and NMDA receptors contribute to the discriminative stimulus properties (i.e. the 

ability to report subjective effects of the drug) of ethanol  (Grant, 1999). Furthermore, 

nicotinic and serotonergic signaling can amplify ethanol’s stimulating effects (Kostowski & 

Bienkowski, 1999). Taken together, ethanol influences brain function and produces a state 

of behavioral intoxication that arises through the functional modulation of multiple ion 

channels and intracellular targets. Despite targets across the brain, evidence suggests 

that alcohol’s action within the mesolimbic dopamine system elicits its addictive properties. 
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Influence of Stress Hormones on Brain Function 

Stressful or arousing events activate the hypothalamic-pituitary-adrenal (HPA) axis to 

induce long-term adaptive changes in the brain and in behavior (Selye, 1950). Exposure 

to drugs of abuse activates these same brain stress pathways (Armario, 2010), hindering 

the ability to tease apart stress-mediated from drug-mediated adaptations under 

conditions of repeated drug exposure. The stress response is governed by neurons in the 

paraventricular nucleus (PVN) of the hypothalamus that release corticotropin-releasing 

factor (CRF) into the hypophyseal portal system. CRF then activates corticotrophs in the 

pituitary that release adrenocorticotropic hormone (ACTH) into the bloodstream. 

Peripheral ACTH stimulates the secretion of stress hormones, such as glucocorticoids, 

from the adrenal cortex (Tsigos & Chrousos, 2002), which modulate the function of nearly 

every cell in the brain and body.  

Glucocorticoid stress hormones influence neuronal activity via numerous genomic and 

non-genomic cellular cascades (Stahn & Buttgereit, 2008). Upon activation, genomic 

glucocorticoid receptors translocate to the nucleus, bind glucocorticoid response 

elements, and broadly modify gene transcription through transactivation or 

transrepression (Beato & Sanchez-Pacheco, 1996).  Though genomic effects initiate 

within minutes to hours, they can persist over timescales of hours to days. In contrast, 

non-genomic glucocorticoid effects initiate more quickly, within seconds to minutes, and 

modulate the function of numerous ionotropic receptors in the cell membrane as well as 

intracellular signaling cascades (Evanson et al., 2010).  

In addition to glucocorticoid signaling, stress hormones can serve as precursors for the 

production of neuroactive steroids, which exert rapid effects on neural transmission and 
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regulate neuroendocrine responses (Morrow et al., 2009). More specifically, progesterone 

and other structurally related molecules can act as potent allosteric modulators of nicotinic, 

GABAA, and NMDA receptors (Majewska et al., 1988; Wu et al., 1991; Ke & Lukas, 1996; 

Bullock et al., 1997). Therefore, stress hormones and neuroactive steroids may act in 

concert through multiple mechanisms to influence the responses to drugs of abuse.  

Adding further complexity to the issue, glucocorticoids can produce opposing effects in 

different brain regions (Koob & Le Moal, 2001). Within the PVN of the hypothalamus, for 

example, glucocorticoids act as a negative feedback signal to inhibit CRF release and 

HPA reactivity (Albeck et al., 1994). However, in extra-hypothalamic regions, such as the 

central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST), 

glucocorticoids deliver a positive feedback signal to potentiate CRF activity (Shepard et 

al., 2000). CRF activity in extra-hypothalamic regions, including the DA system, 

contributes to different aspects of drug abuse (Koob & Le Moal, 2001). These complex 

effects have challenged our ability to link specific stress-mediated adaptations with 

subsequent alcohol use. 

Influence of Nicotine on Brain Function 

Nicotine acts upon nicotinic acetylcholine receptors (nAChRs) within the brain. The 

nAChR is a pentameric ligand-gated ion channel formed by different combinations of 

subunits (α2-α10 and β2-β4) (Dani & Bertrand, 2007). Heteromeric αβ subunit 

combinations include α2–α6 and β2–β4. Homomeric subunit combinations of nAChRs 

include α7–α9 subunits, with α7 nAChRs widely distributed throughout the mammalian 

brain.  Ligand binding to different receptor subtypes produces a diverse range of 

neurophysiological effects due differing ligand affinity and desensitization dynamics. For 
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example, α7 nAChRs exhibit low ligand affinity but rapid desensitization whereas α4β2 

nAChRs exhibit high ligand affinity and slow desensitization (Wooltorton et al., 2003). 

Nicotinic receptors can also vary across cellular subtype and subcellular 

compartmentalization offering multiple opportunities to influence cellular and circuit activity 

(Laviolette & van der Kooy, 2004b). Like alcohol and stress hormones, nicotine targets 

receptors within the mesolimbic system to modulate reward-related behaviors. 

The Mesolimbic Dopamine System: A Locus for Interactions 

Overview of mesolimbic dopamine system 

The development of behavioral reinforcement and acquisition of operant self-

administration involves the dopamine (DA) system, suggesting a potential locus for 

interactions between alcohol, stress, and nicotine. (Piazza et al., 1993; Gonzales et al., 

2004). This circuitry is known to regulate mood, emotional responses, and incentive-based 

behavior (Grace et al., 2007; Schultz, 2007). In addition, dysregulation of this system is a 

hallmark of the drug-addicted state (Volkow et al., 1996; Volkow et al., 2007; Luscher & 

Malenka, 2011). Neurons in the ventral tegmental area (VTA) are the primary source of 

DA within the mesolimbic system. Those neurons project to many cortical and forebrain 

limbic structures, including the nucleus accumbens (NAc), ventral pallidum, amygdala, 

and the medial prefrontal cortex (mPFC) (See Figure 1.1). DA neurons represent an 

abundant cell type in the VTA, but the exact percentage of DA neurons varies between 

sub-regions (Swanson, 1982; Nair-Roberts et al., 2008; Yamaguchi et al., 2011).  

The VTA also contains glutamate neurons and GABA neurons that project to the forebrain 

and can form local synapses with other VTA neurons (Van Bockstaele & Pickel, 1995; 

Dobi et al., 2010; Yamaguchi et al., 2011). A fourth cell type synthesizes both DA and 
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glutamate, and there are potentially other mixed transmitter neurons in this area (Hnasko 

et al., 2010; Stuber et al., 2010). Numerous afferent inputs regulate the activity of DA and 

non-DA neurons within the VTA (see Figure 1.1). Major excitatory inputs arise from the 

laterodorsal and pendunculopontine tegmentum, the lateral hypothalamus, the bed 

nucleus of the stria terminalis, and the prefrontal cortex (Carr & Sesack, 2000; 

Omelchenko & Sesack, 2005; Massi et al., 2008; Watabe-Uchida et al., 2012). The major 

GABAergic inhibitory inputs to the VTA arise from the rostromedial tegmental nucleus, the 

ventral pallidum, the laterodorsal tegmentum, and the nucleus accumbens (NAc) (Geisler 

& Zahm, 2005; Jhou et al., 2009; Xia et al., 2011). The serotonergic (5-HT) neurons of the 

dorsal raphe nucleus constitute another important afferent projection, which transmits 

mainly excitatory signals to the VTA (Herve et al., 1987). Some inputs target specific 

subsets of VTA neurons. The excitatory inputs from the laterodorsal tegmentum, for 

example, mainly target VTA DA neurons that project to the nucleus accumbens 

(Omelchenko & Sesack, 2005), whereas the inhibitory inputs from the nucleus accumbens 

target primarily non-dopaminergic VTA neurons (Xia et al., 2011).  

VTA neuron properties 

DA neurons are the most well studied class of cells in the VTA. The classic DA neurons 

(found mainly in the lateral VTA and in the substantia nigra compacta) display various 

modes of firing activity in vivo, including tonic and phasic activation (Grace & Bunney, 

1984; Hyland et al., 2002). Tonic activity involves slow irregular patterns of single action 

potentials, whereas phasic activity involves short-latency bursts of action potentials 

(typically 2–4 action potentials, each separated by less than 80ms). 
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DA neurons in brain slices do not display normal burst activity (Grace & Onn, 1989), 

indicating that burst firing depends on afferent synaptic input, which is altered and 

disrupted in brain slices. The tonic firing frequency of DA neurons in freely moving animals 

is approximately 2–10 Hz. However, within a single burst of action potentials the average 

firing frequency increases to approximately 15–28 Hz (Hyland et al., 2002; Li et al., 2011). 

The transition from tonic to phasic firing activity is hypothesized to be a key mechanism 

for transmitting behaviorally relevant information related to addictive drug reinforcement 

(Grace et al., 2007). Other molecular substrates, such as DA transporters and DA auto-

receptors, further filter DA neuron activity and are modulated by drugs of abuse. Due to 

circuitry differences in these molecular substrates, phasic DA signals lead to greater 

extracellular DA levels in the ventral striatum compared to the dorsal striatum (Gonon, 

1988; Chergui et al., 1994; Zhang et al., 2009). 

In addition to DA neurons, VTA GABAergic and glutamatergic neurons provide input to 

the mesocorticolimbic target areas. A high firing frequency (typically above 20 Hz) and 

relatively short action potential duration characterize a well-studied subset of GABAergic 

neurons (Steffensen et al., 1998; Luo et al., 2008; Li et al., 2011). Recent studies indicate 

that VTA GABA neurons make selective synaptic connections with cholinergic 

interneurons in the NAc that influence local DA transmission and associative learning 

(Brown et al., 2012; van Zessen et al., 2012). Glutamatergic VTA neurons also innervate 

the NAc and other structures, and their properties and their regulation continue to be 

studied (Hnasko et al., 2010; Stuber et al., 2010; Yamaguchi et al., 2011).  
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Alcohol’s Action in the Dopamine System 

Alcohol self-administration coincides with an increase in DA levels in the NAc (Weiss et 

al., 1993; Melendez et al., 2002; Boileau et al., 2003) and this DA learning signal transfers 

to drug-associated cues over time (Doyon et al., 2005). Local infusion of DA receptor 

antagonists into the VTA and the NAc reduces subsequent operant responses for alcohol 

(Rassnick et al., 1992; Samson et al., 1993; Hodge et al., 1997), and neurotoxic lesions 

of the DA system decrease alcohol intake (Rassnick et al., 1993; Ikemoto et al., 1997). 

The lesions only appear to alter alcohol intake when applied prior to the acquisition of 

drinking behavior (i.e., prior to training), and not after self-administration behavior 

becomes established, suggesting that DA signaling is particularly critical during the 

acquisition and development of alcohol reinforcement. Many other addictive drugs share 

these dopamine-dependent features of alcohol self-administration. 

At concentrations achieved during intoxication (20–100 mM), alcohol moderately excites 

VTA DA neurons in brain slices, as well as in acutely dissociated DA neurons lacking 

synaptic inputs. This excitation reflects direct action of alcohol on DA neurons (Brodie & 

Appel, 1998; Okamoto et al., 2006).  For example, alcohol reduces the amplitude of the 

after-hyperpolarization phase of the action potential and modulates ionic conductances as 

well as metabotropic signals to increase DA neuron excitability (Brodie & Appel, 1998; 

Lewohl et al., 1999; Okamoto et al., 2006; Mulholland et al., 2011). In addition to these 

direct actions, the in vivo effects of alcohol on DA neurons arise from a complex interplay 

between alcohol and many neurotransmitter systems. 

Substantial evidence indicates a role of GABA signaling in alcohol self-administration 

(Boyle et al., 1993; Chester & Cunningham, 2002). Local blockade of GABAA receptors in 
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the VTA and the ventral pallidum and knockout of GABAA receptors in the NAc decreases 

alcohol self-administration (Nowak et al., 1998; June et al., 2003; Nie et al., 2011). At the 

molecular level, alcohol binds to specific amino acid residues on the GABAA receptor, 

which enhances ionic conductance and positively modulates GABAA receptor function 

(Harris, 1999; Glykys et al., 2007).  

Application of alcohol to VTA brain slices increases presynaptic GABA release onto DA 

neurons (Theile et al., 2008) and evidence suggests that in vivo alcohol exposure induces 

a long lasting (at least 24 h to 1 week) potentiation of GABA inhibition in the VTA (Melis 

et al., 2002). The precise mechanism by which alcohol enhances presynaptic GABA 

release is not understood, but could involve 5-HT transmission or stress signaling 

pathways (Nie et al., 2004; Theile et al., 2008). In vivo recordings from putative VTA GABA 

neurons indicate that GABAergic responses to alcohol can vary substantially between 

cells. Importantly, GABA cells can show transient inhibition and excitation during a single 

recording (Gallegos et al., 1999). The dose of alcohol and the timing between injections 

may thus contribute to differing GABAergic responses (Gallegos et al., 1999; Steffensen 

et al., 2009). 

Stress hormones and Alcohol in the Dopamine System 

Stressful or arousing experiences promote DA signaling within the mesolimbic system via 

direct and indirect mechanisms. Exposure to restraint stress, for example, produces a bi-

phasic increase in accumbal DA release, with levels peaking at the onset and termination 

of restraint (Imperato et al., 1991; Imperato et al., 1992; Enrico et al., 2013). This signal is 

thought to be mediated, in part, by glucocorticoid-dependent facilitation of glutamatergic 

input onto DA (Yuen et al., 2009; Krugers et al., 2010; Satoh & Shimeki, 2010). Stress 

hormones can also potentiate DA transmission at target regions by impairing its synaptic 
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clearance via non-genomic effectors (Graf et al., 2013). Further, neurosteroid metabolites 

indirectly modulate dopamine transmission and alcohol consumption via GABAA receptors 

within the VTA (Follesa et al., 2006; Tanchuck et al., 2013; Cook et al., 2014). These 

results indicate that the mesolimbic DA system is responsive to stressful experiences and 

is a primary target of stress hormone signaling.  

Extending these findings, several studies support the hypothesis that stress hormones 

contribute to the motivational properties of alcohol. Alcohol directly activates stress 

pathways to elicit glucocorticoid release (Ellis, 1966). Adrenalectomized rodents show 

reduced alcohol self-administration (Fahlke et al., 1994; Shoaib & Shippenberg, 1996), 

and local activation of glucocorticoid receptors in the ventral striatum has been shown to 

increase alcohol intake (Fahlke & Hansen, 1999). Further, the development of compulsive 

drinking and alcohol dependence involves the activation of glucocorticoid receptors within 

the DA system (Vendruscolo et al., 2012). Taken together, these findings suggest that 

exposure to stress could influence subsequent responses to alcohol via biological 

adaptations within the mesolimbic dopamine system. 

Nicotine and Alcohol within the Dopamine System 

Nicotine acts upon nAChRs within the ventral tegmental area to promote drug use 

(Corrigall et al., 1994). The most common nAChRs in the rodent VTA are the high affinity 

β2-containing subtype (often in combination with α4 and/or α6) and the lower affinity α7-

containing subtype (Jones & Yakel, 1997; Klink et al., 2001; Wooltorton et al., 2003). DA 

and GABA neurons, express the high affinity β2-containing nAChR (Klink et al., 2001; 

Mansvelder et al., 2002). In comparison, the α7-containing nAChR is located 

predominately on presynaptic glutamatergic inputs and to a lesser extent on VTA GABA 

neurons (Jones & Yakel, 1997; Klink et al., 2001). The low brain concentrations of nicotine 
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obtained from tobacco (~20–100 nM) activate the β2-containing nAChRs (Calabresi et al., 

1989; Pidoplichko et al., 1997; Picciotto et al., 1998). Within minutes of exposure, nicotine 

desensitizes the high affinity nAChRs (Pidoplichko et al., 1997; Wooltorton et al., 2003). 

This process leads to a decrease particularly in GABA inhibition of VTA DA neurons 

(Mansvelder et al., 2002; Pidoplichko et al., 2004). Due to differences in agonist affinity, 

these low concentrations of nicotine do not readily desensitize α7- containing nAChRs 

(Wooltorton et al., 2003; Pidoplichko et al., 2004). This distinction may allow α7-containing 

nAChRs to exert a prolonged excitatory effect over glutamatergic afferents onto DA 

neurons, favoring the induction of long-term synaptic potentiation (Mansvelder et al., 2002; 

Pidoplichko et al., 2004).  

It is important to note, however, that the β2-containing, and not the α7-containing, nAChRs 

are of greater importance during the initiation of nicotine self-administration (Picciotto et 

al., 1998; Brunzell et al., 2006). A single exposure is sufficient to induce long-term synaptic 

potentiation of glutamatergic afferents onto DA neurons, as indicated by an increase in 

the AMPA/NMDA receptor ratio and an increase in the probability of glutamate release 

(Saal et al., 2003; Gao et al., 2010; Mao et al., 2011). These synaptic changes contribute 

to learning processes associated with the reinforcement of drug-seeking behaviors.  

There is a direct interaction between alcohol and the nicotinic cholinergic system via the 

nAChRs. Low concentrations of alcohol increase the affinity of acetylcholine for neuronal 

nAChRs and potentiate the nicotinic currents produced by acetylcholine (Aistrup et al., 

1999; Narahashi et al., 1999). Heterologously expressed recombinant nAChRs that 

contain the α2 or α4 subunit are particularly sensitive to activation by alcohol (Cardoso et 

al., 1999; Borghese et al., 2003). Evidence indicates that alcohol potentiates receptor 

function by stabilizing the open state of the α4-containing nAChR (Zuo et al., 2004), but 
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prolonged exposure to alcohol may increase nAChR desensitization (Nagata et al., 1996). 

In contrast, alcohol seems to inhibit the nicotinic responses of some α7-containing 

nAChRs, but the results can vary depending on the expression system or the duration of 

the bath alcohol application (Covernton & Connolly, 1997; Cardoso et al., 1999). 

Interestingly, chronic exposure to alcohol was shown to upregulate high affinity nAChRs 

in the thalamus and hypothalamus (Yoshida et al., 1982), similar to chronic nicotine 

exposure. Whether alcohol induces similar nAChR upregulation within the DA system 

remains to be tested.  

In addition to any direct actions on nAChR function, alcohol may influence the DA system 

via activation of afferent cholinergic inputs. Alcohol self-administration elevates 

extracellular acetylcholine levels in the VTA (Larsson et al., 2005), and a single dose of 

alcohol activates cholinergic interneurons in the nucleus accumbens, as measured by Fos 

expression (Herring et al., 2004). Substantial evidence indicates an involvement of distinct 

nAChRs in alcohol-induced DA release and self-administration. Intra-VTA or systemic 

blockade of nAChRs antagonists with mecamylamine (a general nAChR antagonist) 

reduces alcohol consumption and alcohol-induced DA release in the NAc (Ericson et al., 

1998; Smith et al., 1999; Le et al., 2000a). Blocking α3β2-containing nAChRs (and/or β3* 

nAChRs) with α-conotoxin MII prevents alcohol-induced DA release and alcohol self-

administration ((Larsson et al., 2004; Jerlhag et al., 2006; Kuzmin et al., 2009). Further, 

using a novel nAChR ligand, one study has suggested that α4β2-containing nAChRs 

participate in self-administration of both nicotine and alcohol (Rezvani et al., 2010). 

Likewise, recent work using α4 nAChR knockout models demonstrates that alcohol-

induced DA responses and alcohol conditioned place preference require α4-containing 

nAChRs (Liu et al., 2013). Knockout studies also suggest a role for the α7- containing 
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nAChRs in alcohol consumption (Kamens et al., 2010). Interestingly, varenicline, an anti-

smoking agent and a partial agonist at several nAChR subtypes, effectively reduces 

alcohol consumption in rodents and in humans (Steensland et al., 2007; McKee et al., 

2009). Varenicline administration also appears to decrease DA release induced by alcohol 

(Ericson et al., 2009). Although the role of specific nAChR subtypes remains unclear, 

these findings suggest that nAChRs mediate many actions of alcohol. 

It is important to emphasize that these variables do not necessarily occur in isolation. 

Stress hormone signaling is likely to participate in nicotine-alcohol interactions since both 

drugs activate stress pathways to elicit glucocorticoid release (Ellis, 1966; Fu et al., 1997; 

Porcu et al., 2003). Stress hormones can also inhibit nAChRs and influence reward-

related responses to nicotine (Shoaib & Shippenberg, 1996; Caggiula et al., 1998). This 

is supported by the fact that stress causes a down regulation of the nAChR in the rat 

cerebral cortex and midbrain (Takita & Muramatsu, 1995). Therefore, there are multiple, 

overlapping pathways within the dopamine system through which stress and nicotine 

could modulate reward-related responses to alcohol.  

 

Summary 

Excessive alcohol use is a persistent phenomenon despite well-documented risks to 

individual health and general well-being. Epidemiological surveys indicate that exposure 

to stress or nicotine can predispose certain populations to develop risky drinking habits. 

Human and animal studies reveal a complex relationship between stress, nicotine, and 

alcohol consumption and their actions in the brain, highlighting the need for mechanistic 

investigation. A growing body of literature points to the mesolimbic dopamine system as 
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a locus for their interaction. The work presented in this thesis identifies a novel adaption 

within the dopamine system that promotes subsequent alcohol consumption after 

exposure to stress or nicotine.  
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Figure 1.1 Simplified schematic of the mesocorticolimbic reward circuitry. Primary 
dopaminergic (DA) targets of the ventral tegmental area (VTA) include the nucleus 
accumbens (NAc), ventral pallidum (VP), amygdala (AMYG), and medial prefrontal cortex 
(mPFC).  Inhibitory (GABA) inputs to the VTA include the rostral medial tegmental nucleus 
(RMTG), as well as feedback from the VP and NAc. Excitatory (GLU) inputs include the 
prefrontal cortex (PFC), lateral hypothalamus (LH), and basal nucleus of stria terminalis 
(BNST). Serotonergic (5-HT) projections from the dorsal raphe nuclei (DRN) as well as 
noradrenergic (NE) projections from the locus coereleus (LC) provide neuromodulatory 
input. Cholinergic (ACH) projections arise from the laterodorsal tegmentum and 
pendunculopontine tegmentum (LDT/PPT).  
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Abstract 

Stress is a well-known risk factor for subsequent alcohol abuse, but the neural 

mechanisms underlying interactions between stress and alcohol remain largely unknown. 

We demonstrate in rodents that pre-exposure to stress attenuates alcohol-induced 

dopamine responses and increases alcohol self-administration. The blunted dopamine 

signaling resulted from ethanol-induced excitation of GABA neurons in the ventral 

tegmental area. Excitation of GABA neurons was mediated by GABAA receptor activation 

and involved stress-induced functional downregulation of the K+, Cl− cotransporter, 

KCC2. Blocking stress hormone receptors, enhancing KCC2 function, or preventing 

excitatory GABA signaling by alternative methods all prevented the attenuated alcohol-

induced dopamine response and prevented the increased alcohol self-administration. 

These results demonstrate that stress alters the neural and behavioral responses to 

alcohol through a neuroendocrine signal that shifts inhibitory GABA transmission toward 

excitation. 
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Introduction 

Excessive alcohol use is among the leading causes of preventable death worldwide 

(WHO, 2014). While many variables contribute to the development of alcohol use disorder 

(AUD), exposure to stressful life events represents a significant risk factor (Keyes et al., 

2012). Stress increases alcohol consumption in alcohol-dependent and non-dependent 

populations (Ayer et al., 2011; Thomas et al., 2011; Tamers et al., 2014), and stress is 

thought to underlie a transition to pathological drug (Koob & Le Moal, 2005).  

Stress-induced changes in alcohol use likely arise from an interaction between the stress 

and reward systems of the brain (Uhart & Wand, 2009; Spanagel et al., 2014). At the 

cellular level, both stress hormones and ethanol influence the DA system by direct actions 

on DA neurons or indirectly via changes in excitatory and inhibitory synaptic inputs (Saal 

et al., 2003; Niehaus et al., 2010). Stress hormone signaling also may alter midbrain 

GABAA receptor signaling, but the molecular mechanism underlying this adaptation has 

not been identified and may arise from changes in GABA synthesis, in release, or in 

expression of specific GABAA receptor subunits (Maguire, 2014). Alternatively, acute 

stress exposure has been shown to induce a paradoxical shift toward excitatory GABAA 

receptor signaling within the HPA axis by altering the intracellular anion homeostasis 

(Hewitt et al., 2009; Sarkar et al., 2011). Given that the GABAA receptor is a target of 

ethanol, we postulated that alterations in GABAA receptor transmission could contribute 

to an interaction between stress and ethanol self-administration. 

To examine the interaction between stress and ethanol, we exposed drug-naive rats to 

stress and then measured their subsequent ethanol intake. Concomitant with increases in 

ethanol self-administration, we show that acute stress attenuates ethanol-induced DA 
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release at target regions. These glucocorticoid receptor-dependent effects on DA 

signaling were mediated by an increase in VTA GABAergic inhibition onto DA neurons. 

Stress induced the functional downregulation of KCC2 in VTA GABA neurons, shifting 

GABAA receptor signaling from inhibition towards excitation. Pharmacological activation 

of KCC2 restored the GABAergic circuitry and DA neuron signaling and prevented the 

escalation in ethanol self-administration induced by stress. These results indicate that a 

shift toward excitatory GABA signaling within the mesolimbic system is associated with 

increased drinking after exposure to stress. 
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Experimental Procedures 

Subjects  

Male Long-Evans rats (Harlan-Sprague) weighing 300-500 g were used for in vivo studies. 

All animals were handled at least 5 days prior to the onset of surgery/behavioral testing 

and were singly housed in a quiet, temperature- and humidity-controlled satellite facility 

under at 12-hour light/dark cycle. Rats had food and water available ad libitum in their 

home cage and were rewarded with sweetened cereal when handled. All procedures were 

carried out in compliance with guidelines specified by the Institutional Animal Care and 

Use Committee at University of Pennsylvania.  

Drugs and Experimental Design  

Unless otherwise noted, all drugs were obtained from Sigma Aldrich and were dissolved 

in sterile saline. CLP 290 was a generous gift from Drs. Y. De Koninck and A. Castonguay 

(Laval University, Quebec, Canada). CLP 290 is a carbamate prodrug of CLP257 (Gagnon 

et al., 2013). Driven by the findings of carboxylesterase expression in the brain (Yamada 

et al., 1994; Yamada et al., 1995; Holmes et al., 2009; Jones et al., 2013) and by the 

knowledge that carbamate bonds can be broken even in brain extracts (Fernandez et al., 

2000; Fernandez et al., 2003), we hypothesized that CLP290 would be effective even 

when applied locally in the VTA. Before injecting CLP290 into the VTA, we showed that 

incubation of VTA brain slices with CLP290 recovered the chloride homeostasis after 

stress.  

RU486 (40 mg/kg) was dissolved in DMSO and administered intraperitoneally (i.p.) 15 min 

before stress (Saal et al., 2003). All VTA microinfusions were administered at a flow rate 

of 0.5 µL/min for a duration of 2 min, except for microdialysis (0.5 µL/min for a duration of 
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1 min). The injector was removed after an additional 1-2 minutes to permit diffusion away 

from the injection site. For VTA microinfusion experiments, RU486 was first dissolved in 

DMSO (2 mg/ml) then diluted in ACSF to a final concentration of 2 µg/ml in 10% DMSO. 

Similarly, acetazolamide and CLP290 were first dissolved in DMSO (1 mM) then dissolved 

in ACSF to a final concentration of 40-50 uM in 5% DMSO. Intra-VTA microinfusions of 

acetazolamide or CLP290 occurred 15-30 min before microdialysis or ethanol self-

administration. Upon experiment completion, infusions sites were identified post mortem 

by the location of the injectors in the tissue. Infusions outside the VTA were used for 

comparison as a negative control. Chicago Sky Blue was infused into the VTA to estimate 

spatial diffusion of the drugs. 

Stressed animals were subjected to a 1 hour of immobilization in a clear cylindrical 

Broome-style restrainer. Immobilization potently activates the stress hormone systems 

(Pitman et al., 1988). Behavioral responses to prolonged immobilization include increased 

vocalization, dander release, defecation, and urination (DeTurck & Vogel, 1982). Animals 

that did not show defecation were excluded from the study. Restraint stress typically 

occurred between 5-8 P.M., towards to the beginning of the animals’ dark cycle and 15-

20 hours prior to ethanol exposure or testing. The 15-hour timeframe between the stress 

and the ethanol exposure was chosen to examine the long-term effects of acute stress on 

alcohol responses and to allow the animals to recover from any physical discomfort 

experienced during the restraint.  

Operant ethanol self-administration  

Standard operant chambers (Med Associates Inc., St. Albans, VT, USA) were used for the 

self-administration experiments. Illumination of interior chamber light and presentation of 
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lever accompanied the start of each session. Depression of the lever triggered 15 sec of 

access to a retractable drinking spout (a fixed ratio-1 reinforcement schedule). Three rats 

in the stress treatment group responded for ethanol on a single fixed ratio-4 schedule. 

Ethanol intake in these rats was not significantly different from other rats in the same 

group. Each drinking session lasted 60 min/day and occurred daily in most cases, with an 

occasional day off. Spout licks were recorded by a lickometer.  

Animals were initially water-restricted overnight and trained to lever press for a saccharin 

solution (0.125%, w/v). Once trained, the animals were no longer water restricted and their 

baseline saccharin intake was monitored for at least 3 days until intake was stable (less 

than 20% variation in the 2 days preceding ethanol exposure). Importantly, to reduce 

variability within and between groups, animals were excluded if their saccharin intake was 

below 5 ml or above 15 ml on average per session. If the animals underwent surgery, 

saccharin intake was re-established. The effects of stress on acquisition of ethanol self-

administration were then measured. Ethanol was introduced into the saccharin drinking 

solution in the following way: 2% ethanol on day 1 and 4% ethanol for all subsequent days 

(Fig 1). Consumption was monitored by measuring the volume of liquid in the drinking 

bottle before and after the session. Lever presses, lickometer responses, and body weight 

were also measured daily. To achieve consistent behavioral results with this protocol, it is 

imperative to maintain a quiet, stress-free environment for the animals. Importantly, noise 

in the animal facility should be kept to a minimum and the animals should be calm and at 

ease with their handlers.  

To assess whether the effect of stress was specific to ethanol and not related to the 

saccharin in the drinking solution, we included a separate control group that responded 

for saccharin alone (no ethanol) (n = 8). This saccharin control group did not consume 



34 

significantly more fluid after stress exposure compared to their pre-stress baseline: 10.7 

± 1.3 ml/session before stress, 11.6 ± 1.1 ml/session after stress (p > 0.05). Moreover, 

saccharin intake after stress was not statistically different from intake in the non-stressed 

ethanol control group over a comparable number of days. As an additional saccharin 

control experiment, we faded saccharin out of the ethanol solution over a period of 5 days. 

After fading out the saccharin completely, a difference in ethanol intake between control 

and stress groups was still present. Lastly, stress did not alter intake of a novel high-

palatable food (6.0 ± 0.5 g in control vs. 6.8 ± 0.8 g after stress, n = 4 rats/group, p > 0.05), 

suggesting that stress did not enhance novelty-related learning of a reward. For the 

analysis of blood-ethanol levels, blood samples were taken immediately following the 

completion of the 60-min self-administration session (within 10 min) and stored in a sealed 

vial. Blood samples were analyzed on the same day by gas chromatography-mass 

spectrometry (Atlantic Diagnostic Laboratories, Bensalem, PA). 

In vivo Microdialysis  

The active dialysis membrane (2.0 mm), was made of hollow cellulose fiber (inner 

diameter = 200 μm; molecular weight cutoff = 18,000; Spectrum Laboratories Inc., Rancho 

Dominguez, CA, USA). The inlet and outlet to the membrane was composed of fused-

silica tubing (inner diameter = 40 μm; Polymicro Technologies, Phoenix, AZ, USA). The 

microdialysis probes were perfused with artificial cerebral spinal fluid (ACSF in mM): 149.0 

NaCl, 2.8 KCl, 1.2-3.2 CaCl2, 1.2-2.4 MgCl2, and 0.25 ascorbic acid, 5.4 D-glucose. The 

perfusion flow rate was set to 2.0 μl/min. Each sample vial was manually changed and 

immediately stored at −80° C until analyzed.  



35 

Animals were habituated to tethering and microdialysis chambers one day prior to testing. 

Microdialysis probes were implanted into the NAc after habituation. Dialysis samples were 

collected every 5 min on the day of testing. Baseline DA samples were collected (15-30 

min), followed by a timed intravenous (i.v.) infusion of ethanol (1.5 g/kg, 20% in sterile 

saline, v/v) over the course of 5 minutes. The i.v. route was chosen to circumvent handling-

related disturbances in DA levels associated with i.p. injections (Dong et al., 2010). The 

dose of ethanol (1.5 g/kg) falls within the typical range tested in rodents (Gonzales et al., 

2004) and produces brain ethanol concentrations in rodents that humans can achieve 

(Howard et al., 2008). Following i.v. infusion of 1.5 g/kg ethanol, the estimated brain 

ethanol concentration peaks near 50 mM approximately 10 min after the infusion (Doyon 

et al., 2013a).  

Dopamine Analysis  

Dialysis samples were analyzed for DA content using high-performance liquid 

chromatography (HPLC) coupled to an electrochemical detector. The HPLC system 

included a pump (Model 582; Thermo Scientific, West Palm Beach, FL, USA), an 

autosampler (Model 542; Thermo Scientific), and an Acclaim 210-2.1 x 50 mm column (3-

μm particle size; Thermo Scientific). A coulometric cell (5014B; Thermo Scientific) was 

connected to a Coulochem II detector. The mobile phase comprised of citric acid (4.0 mM), 

sodium dodecyl sulfate (3.3 mM), sodium dihydrogen phosphate dehydrate (100.0 mM), 

and ethylenediaminetetraacetic acid (0.3 mM), acetonitrile (15%), and methanol (5%). The 

autosampler mixed 9.5 μl of the dialysate with ascorbate oxidase (EC 1.10.3.3; 162 

units/mg; Sigma-Aldrich Inc.) prior to injection. DA signals were acquired with 501 

chromatography software and Chromeleon Software (Thermo Scientific). Quantification of 
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dialysate DA concentration was carried out by comparing the peak area to external 

standards (0–5 nM).  

Surgical procedures  

Cannulation surgeries were performed for microdialysis and self-administration 

experiments as described previously (Doyon et al., 2013a). For microdialysis experiments, 

animals were implanted with a catheter in the jugular vein and a stainless steel guide 

cannula (21G, Plastics One) above the NAc (mm from Bregma: AP +2.1, ML -1.1, DV -

4.0). For microdialysis experiments involving intra-cranial infusions, animals were 

implanted with an additional 24 G guide cannula above the VTA (mm from Bregma: AP -

5.85, ML -0.8, DV -6.5) ipsilateral to the NAc cannula. For behavioral studies, animals 

were implanted with bilateral cannulae (30G, Plastics One) targeting the VTA (mm from 

Bregma: AP -5.8, ML ±0.8, DV -6.5). Recovery from surgery took approximately 3-5 days 

and was accompanied by daily handling and stable increases in body weight.  

Histology  

The rats were deeply anesthetized with a combination of Ketamine and Xylazine (0.1 

mL/100 g bodyweight). Saline was then perfused through the heart, followed by 10% 

formalin (v/v). The brains were removed and immersed in 10% formalin for at least 2 days. 

The brains were cut into 75-μm coronal sections on a vibratome (Leica Microsystems Inc., 

Buffalo Grove, IL, USA) and stained with cresyl violet to determine the anatomical 

placements of the microdialysis probes and microinfusion injectors.  
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Midbrain slices and electrophysiology  

Horizontal slices (230 μm) containing the VTA were cut on a vibratome (Leica 

Microsystems) from Long-Evans rats (21–30 days old) in ice-cold, oxygenated (95% 

O2/5% CO2) high-sucrose ACSF (in mM): 205.0 sucrose, 2.5 KCl, 21.4 NaHCO3, 1.2 

NaH2PO4, 0.5 CaCl2, 7.5 MgCl2, 11.1 dextrose. Immediately after cutting, slices were 

transferred to normal ACSF buffer (in mM): 120.0 NaCl, 3.3 KCl, 25.0 NaHCO3, 1.2 

NaH2PO4, 2.0 CaCl2, 1.0 MgCl2, and 10.0 dextrose, 20.0 sucrose. The slices were 

constantly oxygenated (95% O2/5% CO2) and maintained at 32°C in ACSF for 40 min, 

then at room temperature for at least 60 min.  

For incubation experiments, slices were bathed in corticosterone (1 μM), RU486 (10 μM) 

or CLP290 (10 μM) for an additional hour (Gagnon et al., 2013; Pitman et al., 1988; 

Yoshiya et al., 2013). To perform electrophysiological recordings, slices were transferred 

to a holding chamber and perfused with normal ACSF at a constant rate of 2-3 ml/min at 

32°C. Patch electrodes made of thin-walled borosilicate glass (1.12mm ID, 1.5 mm OD; 

WPI) had resistances of 1.0–2.0 MΩ when filled with the internal solution (in mM): 135.0 

KCl, 12.0 NaCl, 2.0 Mg-ATP, 0.5 EGTA, 10.0 HEPES, and 0.3 Tris-GTP, pH 7.2–7.3.  

DA neurons were identified in the lateral VTA by their morphology (> 20 μm soma size), 

low firing frequency (1–5 Hz), and the presence of a large Ih current, which together 

correlate (> 94%, 34 of 36) with tyrosine hydroxylase (TH)-positive cells (Chen et al., 2008; 

Zhang et al., 2010). In contrast, VTA GABA neurons were identified by the combination of 

factors including small somata size, high firing rate (> 7 Hz), and the lack of Ih current. 

Cells with these properties were consistently TH-negative (> 95%, 47 of 49) (Klink et al., 

2001; Korotkova et al., 2006; Margolis et al., 2006).  
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In whole-cell configuration, spontaneous inhibitory post-synaptic currents (sIPSCs) were 

recorded in voltage clamp mode while holding VTA DA neurons at −60 mV. To isolate 

sIPSCs, ionotropic glutamatergic synaptic transmission was inhibited by AP5 and DNQX 

in the perfused ACSF. Ethanol (50 mM) was added to the perfused ACSF to assess 

ethanol-induced alterations in sIPSCs. sIPSCs were blocked by picrotoxin. Synaptic 

GABAA input was isolated using DNQX, AP5 and CGP55845. The liquid junction potential 

between the bath and the pipette solutions was corrected before either recordings or data 

analysis.  

The firing rates VTA GABA neurons were recorded in cell-attached configuration in 

passive voltage-follower mode. For repetitive synaptic stimulation recordings in cell-

attached configuration, a bipolar tungsten stimulating electrode (World Precision 

Instruments, Inc) was placed 100–150 μm away from the recording electrode. Trains of 

constant-current pulses (20 Hz frequency, 1 s duration, 200 μA amplitude) were applied 

with an inter-stimulus interval of not less than 1 minute. At least 3 stimulation trains were 

conducted for each cell and the responses were averaged. Synaptic GABAA receptor 

stimulation was isolated using AMPA, NMDA and GABAB receptor antagonists (DNQX, 

20 μM; AP5, 50 μM, and CGP55845 1 μM respectively). Contributions of GABAergic 

synaptic inputs to ethanol (50 mM) induced alterations in firing rate were assessed with 

the GABAA-receptor antagonist, picrotoxin (50-100 μM). Some cells were also backfilled 

with neurobiotin for immuno-identification.  

Immunohistochemistry  

To validate the identification of VTA DA and VTA GABA neurons, neurobiotin backfills and 

TH double labeling were used. The recording pipette contained 0.3% neurobiotin (Vector 
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Laboratories). Slices were fixed with 10% neutral formalin phosphate buffer for 12–24 

hours, incubated in a blocking solution containing 3% normal goat serum solution and 

0.3% triton X-100 for 2 hours, and then incubated overnight with primary anti-TH (1:100; 

Millipore, #AB152) at 4 °C. The slices were then rinsed with PBS and treated with the 

secondary antibody Cy3- conjugated anti-rabbit IgG (1:200) and AMCA-conjugated 

streptavidin (1:1000; both from Jackson ImmunoResearch).  

To analyze KCC2 immunolabeling in the VTA, rats were perfused with PBS (Chemicon), 

followed by 4% paraformaldehyde (Boston BioProducts). Brains were post-fixed for 

additional 2 hours in 4% paraformaldehyde and then kept in 30% sucrose for 24-48 hours. 

VTA sections were cut at 25-30 µm and processed with antibodies against KCC2 (1:500, 

Millipore, #07-432) and TH (1:1000, Millipore, #MAB318) overnight at 4ºC. After washing 

in PBS, immunofluorescence reactions were visualized using secondary antibodies 

labeled with AlexaFluor 488 or AlexaFluor 594 (1:1000; Invitrogen) and confocal 

microscopy.  

Western Blots  

The VTA was harvested in horizontal brain slices from adult animals (VTA slices were 

prepared as described in Midbrain slices and electrophysiology section). Membrane 

fractions were prepared [Mem-PER Plus Membrane Protein Extraction Kit (Model 89842; 

Thermo Scientific, Rockford, IL). Samples (30 µg of protein) in 2.5% 2- mercaptoethanol 

were run through a 4-15% Precast Protein Gel (4561083; Bio-Rad). The sample was 

transferred to nitrocellulose membrane (Bio-Rad). Primary antibodies used were rabbit 

anti-KCC2 antibody at 1:400 (07-432; Millipore, Temecula, CA), rabbit anti-Phospho-

Ser940 KCC2 antibody (p1551-940; PhosphoSolutions, Aurora, CO) at 1:1000, and 
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mouse anti-GAPDH (glyceraldehyde 3-phosphate dehydrogenase) antibody (MAB374; 

Millipore) at 1:400. Secondary anti-bodies used were goat anti-rabbit IgG secondary 

antibody (T2191; Applied Biosystems, AB Foster City, CA) or goat anti-mouse IgG/IgM 

(T2192, Applied Biosystems). All antibobodies were diluted in SignalBoost solution 

(407207; EMD Millipore Corp., Billerica, MA).  

Membranes were developed using Tropix CDP-Star solution (T2218; Applied Biosystems) 

for 5 minutes, then scanned using the Protein Simple FluorChem R chemiluminescence 

detector, and analyzed using AlphaView SA software. The optical densities of KCC2- and 

Phospho-Ser940 KCC2-specific bands were measured and normalized to the GAPDH 

values.  

Statistical analysis  

Analysis of variance (ANOVA) with repeated measures (in SPSS for Windows) was used 

to analyze the dialysate and the % of basal DA concentrations, and the DA and GABA 

neuron firing rates. For analysis of action potential firing, the raw data (in Hz) were 

converted into a percentage of basal, and the last three bins (2-min each) before bath 

application of ethanol were used as the baseline. For analysis of repetitive synaptic 

stimulation, the last ten bins (0.5-s each) before the stimulus were used as the baseline. 

A two-tail t-test assuming equal variance was used to assess differences between the 

mean sIPSC frequency, the mean firing rates, as well as the mean ethanol intake levels. 

For western blot analysis, a paired t-test was used to compare protein levels from control 

and stress littermates that were run on the same gel. Significance for all analyses was 

determined by p < 0.05. 
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Results 

Stress increases ethanol self-administration via glucocorticoid receptors 

We first examined how a single episode of restraint stress alters subsequent ethanol 

intake measured during daily operant self-administration sessions (Figure 2.1A). Stable 

lever pressing for saccharin (0.125%, w/v) was first established followed by the 

introduction of ethanol (2%–4%) into the drinking solution (Doyon et al., 2013a). Animals 

were subjected to restraint stress (1 hr) approximately 15 hr prior to the first ethanol self-

administration session. The 15 hr separation between the stress and ethanol self-

administration was chosen to examine the lasting impact on neural circuits, not the 

immediate proximal influence of the stressor itself (Noori et al., 2014). 

Pre-exposure to stress caused a significant and long-lasting increase in ethanol self-

administration compared to the non-stressed control group (Figure 2.1A): group: F(1,21) 

= 19.32, p < 0.01. Blood-ethanol levels were measured in a subset of animals and were 

correlated with ethanol intake (Figure 2.1B). Stressed rats showed significantly higher 

blood-ethanol levels (120.8 ± 13.6 mg/dL, n = 5) than non-stressed rats (61.3 ± 4.3 mg/dL, 

n = 10, p < 0.01). Mean intake of ethanol over the first 7 days was 0.74 ± 0.03 g/kg for the 

control group (n = 19) and 0.95 ± 0.03 g/kg for the stressed group (n = 16, p < 0.01) (Figure 

2.1C, black and red bars). Elevated drinking after stress was also observed at higher 

ethanol concentrations (7%–10%) over a 3-week period Figure 2.2). Therefore, acute 

restraint stress induced robust changes in the acquisition and maintenance of ethanol-

drinking behavior. 
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Restraint stress is known to increase circulating glucocorticoid levels (Pitman et al., 1988). 

To determine whether the effect of stress on drinking was mediated by stress hormone 

signaling, a separate group of rats was pretreated with RU486 (a glucocorticoid receptor 

antagonist) prior to stress. Pretreatment with systemic RU486 prevented the stress from 

increasing subsequent ethanol self-administration (Figure 2.1C, dark blue bar; 0.67 ± 0.07 

g/kg). To determine whether stress hormone signaling acted locally within the DA system 

(Uhart & Wand, 2009; Spanagel et al., 2014), RU486 or vehicle was microinfused 

bilaterally into the VTA prior to stress exposure (Figure 2.3). Intra-VTA administration of 

RU486 prevented stress from increasing subsequent ethanol self-administration (Figure 

2.1C, light blue bar; 0.55 ± 0.05 g/kg), revealing that the effect of stress requires 

glucocorticoid receptor activation within the VTA. In non-stressed control rats, RU486 did 

not significantly influence ethanol intake when administered systemically or by local 

microinfusion (Figure 2.1C, gray bar on the right; 0.67 ± 0.04 g/kg), demonstrating a 

selective effect of RU486 on stress-induced drinking. Additional control experiments with 

saccharin and palatable food suggest that the effect of stress was specific to ethanol self-

administration. 

Stress Attenuates Ethanol-Induced DA Activity In Vivo via Glucocorticoid Receptors  

Because ethanol self-administration involves DA signaling in the nucleus accumbens 

(NAc) (Gonzales et al., 2004), we hypothesized that stress might also alter ethanol-

induced DA release in the NAc. To test this hypothesis, we first subjected rats to 1 hr 

restraint stress 15 hr prior to ethanol exposure. Then we collected microdialysis samples 

to measure ethanol-induced changes in the extracellular DA concentration (Figure 2.4A). 

We observed a sustained increase in DA levels in the control group (Figure 2.4B, black 

trace), but stressed animals showed a blunted DA response to ethanol (Figure 2.4B, red 
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trace): group × time: F(10,160) = 2.79, p < 0.01. No significant differences in baseline DA 

levels were detected between control and stress groups: 2.0 ± 0.2 nM in control versus 

2.1 ± 0.2 nM after stress. 

Next, we tested whether glucocorticoid receptor activation mediated the stress-induced 

decrease in ethanol-evoked DA release. Systemic pretreatment with RU486 prevented 

the inhibitory effect of stress on ethanol-induced DA release (Figure 2.4B, gray data). The 

distribution of the microdialysis probe placements within the NAc is shown in Figure 2.5. 

Stress Enhances GABA Release onto VTA DA neurons Ex Vivo 

Ethanol stimulates DA release in the NAc by increasing the firing rate of VTA DA neurons 

(Foddai et al., 2004). No adaptations in basal DA cell excitability or glutamatergic inputs 

were detected after stress (data not shown). However, blunted DA responses to ethanol 

in stressed animals were associated with increased GABAergic inhibition onto VTA DA 

cells (Figure 2.6). Whole-cell patch-clamp recordings of VTA DA neurons measured 

spontaneous inhibitory postsynaptic currents (sIPSC) in the presence of ethanol (Figure 

2.6A,B). In control animals, bath-applied ethanol produced a small increase in sIPSC 

frequency (116.1% ± 5.0%). In contrast, DA neurons from stressed animals showed 

significantly greater ethanol-induced potentiation of sIPSC frequency compared to the 

control response (171.5% ± 7.2%) (Figures 2.6C, black and red data; n = 8–10, p < 0.01). 

Systemic injection of RU486 prior to stress prevented the stress-mediated increase in 

sIPSC frequency observed after ethanol application (Figure 2.6C, gray bar): 110.6% ± 

4.5%, n = 8. 

To further demonstrate glucocorticoid actions within the VTA were mediating the effects 

of stress, brain slices from control rats were incubated in corticosterone (1 μM) for 1 hr 
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(Pitman et al., 1988). DA neurons from control animals treated with corticosterone showed 

a potentiation of ethanol-induced sIPSC frequency that was indistinguishable from 

stressed animals (Figure 2.6C, dark blue bar): 182.7% ± 10.7%, n = 8. Importantly, 

incubation with RU486 prevented this corticosterone-mediated increase in sIPSC 

frequency (Figure 2.6C, light blue bar): 114.5% ± 5.5%, n = 6. Increased frequency, but 

not amplitude, of sIPSCs suggests that the change caused by stress and corticosterone 

resides with the presynaptic neuron (i.e., the GABA neuron) not with the postsynaptic 

neuron (i.e., the DA neuron). 

Stress Promotes Excitatory GABA Input onto VTA GABA Neurons Ex Vivo 

Our results revealed that stress increased VTA GABA cell firing upon ethanol exposure 

via a GABAA-dependent mechanism (data not shown). To determine how stress 

influenced VTA GABA activity, we measured VTA GABA neuron firing rates in response 

to repetitive stimulation of synaptic GABAA receptor inputs with ionotropic glutamate 

receptors inhibited (Figure 2.7). Upon electrical stimulation (20 Hz for 1 s), GABA neurons 

from control animals showed decreased firing (Figure 2.7A-B, black data), indicative of 

GABAergic inhibition of the recorded GABA neuron. In marked contrast, slices from 

stressed animals showed increased GABA neuron firing after GABAA receptor stimulation 

(Figure 2.7A-B, red data): group × time: F(29,464) = 10.03, p < 0.01. This finding directly 

demonstrates excitation mediated by high-frequency stimulation of GABAA receptors. 

Importantly, this effect was blocked by picrotoxin (Figures 2.7C, top and 2.7D, Stress + 

picrotoxin), providing further confirmation that the observed excitation of VTA GABA 

neurons following stress was mediated by GABAA receptors. In control animals, similar 

GABAA receptor-mediated excitation was also observed following 1 hr incubation of brain 

slices in corticosterone (Figure 2.7D, blue bar, Cort), suggesting that prolonged exposure 
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to corticosteroids is sufficient to promote excitatory GABAA transmission onto VTA GABA 

neurons. 

It has been reported (Staley et al., 1995) that GABAA receptor-mediated excitation can be 

prevented by application of acetazolamide, an inhibitor of carbonic anhydrase. Based on 

these findings, we postulated that acetazolamide would prevent the transition from 

GABAA receptor-mediated inhibition to excitation of GABA neurons observed after stress. 

Bath application of acetazolamide (10 μM) did not change basal GABA neuron firing rate 

between control and stress groups, nor did it change control responses to repetitive 

stimulation. However, repetitive stimulation in the presence of acetazolamide blocked the 

increase in GABA neuron firing after stress (Figures 2.7C, bottom, and 2.7D, Stress + 

ACTZ). 

Acetazolamide Prevents Stress and Ethanol Interactions In Vivo 

Given that stress promoted excitatory GABA input onto VTA GABA neurons, we tested 

whether this phenomenon mediated the stress-induced alterations in alcohol responses. 

To determine if excitatory GABA transmission contributed to blunted ethanol-induced DA 

release in the NAc observed after stress, we infused acetazolamide into the VTA prior to 

the microdialysis experiments (Figure 2.8A). In contrast to intra-VTA infusion of vehicle, 

acetazolamide prevented the inhibitory effect of stress on ethanol-induced [DA] (Figure 

2.8B): group × time: F(10,120) = 2.96, p < 0.01. The effect of acetazolamide was 

indistinguishable from the non-stressed control group (Figure 2.8B, black dotted trace). 

Microinfusion of acetazolamide outside the VTA did not reverse the inhibitory effect of 

stress exposure (Figure 2.9A). In unstressed control animals, the microinfusion of 

acetazolamide in the VTA did not alter the DA response to ethanol (data not shown, n = 

6, p > 0.05). 
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To prevent stress from escalating ethanol intake, we bilaterally infused acetazolamide into 

the VTA prior to each ethanol self-administration session (Figure 2.8C). Intra-VTA infusion 

of acetazolamide significantly decreased the average daily ethanol intake in the stressed 

group (0.67 ± 0.06 g/kg) compared to the stressed group that received intra-VTA infusions 

of vehicle (0.92 ± 0.08 g/kg) (Figure 2.8D; n = 10–14, p < 0.05). These data were 

indistinguishable from the non-stressed control group (Figure 2.8D, dotted horizontal line). 

VTA infusions of acetazolamide did not alter ethanol consumption in control animals 

(Figure 2.9B). All microinfusion sites of acetazolamide in the VTA are shown in Figures 

2.9C-D. 

Stress and Glucocorticoids Dephosphorylate KCC2 at Serine 940 

Excitatory GABA transmission can arise from high intracellular chloride concentrations, 

which are mediated by decreases in Cl− extrusion capacity. Stress-induced reductions in 

Cl− extrusion capacity have been associated with dephosphorylation of the K+, Cl− 

cotransporter, KCC2, at serine 940 (S940) (Sarkar et al., 2011; Kahle et al., 2013). To 

examine stress-induced alterations in KCC2 protein expression and its phosphorylation in 

the VTA, we performed western blot analysis using an antibody against total KCC2 

protein, as well as a phospho-specific antibody against the KCC2 phosphorylation site 

S940 (Sarkar et al., 2011). Immunoblots revealed two prominent bands (∼140 and ∼270 

kDa) for both total and S940 KCC2 antibodies, indicating the presence of monomeric and 

dimeric structures of KCC2 protein (Figure 2.10A) (Hewitt et al., 2009). No significant 

differences in the expression of total KCC2 protein between control and stressed groups 

were observed (Figure 2.10B, red data) or in controls tissue incubated with corticosterone 

ex vivo (Figure 2.10C, blue data). In contrast, the ratio of phosphorylated-S940 KCC2 to 

total KCC2 protein after stress was significantly lower compared to control (Figures 
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2.10D): 78.3% ± 5.5% for monomer, 79.6% ± 4.7% for dimer. Incubating control tissue in 

corticosterone recapitulated this effect (Fig2.10E): 75.5% ± 7.6% for monomer, 78.6% ± 

9.4% for dimer. This finding confirms that glucocorticoid exposure influences KCC2 

phosphorylation state. Importantly, as also reported previously (Taylor et al., 2015), 

immunolabeling analysis in the VTA suggested that KCC2 protein was expressed 

exclusively on non-DA neurons (Figure 2.10F), which is consistent with the presence of 

another chloride extrusion mechanism in DA neurons (Gulacsi et al., 2003). Taken 

together, these results suggest that stress or corticosterone leads to dephosphorylation of 

KCC2 protein at S940, which decreases KCC2 function and alters anion homeostasis. 

Enhanced Cl− Extrusion Restores Anion Homeostasis in VTA GABA Neurons 

Based on our findings in Figure 2.10, we hypothesized that enhancement of Cl− extrusion 

would restore normal alcohol self-administration in stressed animals. To enhance Cl− 

extrusion specifically, we used CLP290, a recently developed pro-drug that activates 

KCC2 (Gagnon et al., 2013).  CLP290 or vehicle was bilaterally infused into the VTA prior 

to the first ethanol self-administration session and measured ethanol intake over 7 days 

(Figure 2.11). Intra-VTA infusion of CLP290 (Figure 2.12) significantly decreased the 

average daily ethanol intake in the stressed group back to control levels (0.79 ± 0.05 g/kg) 

compared to the stressed group that received intra-VTA infusions of vehicle (1.00 ± 0.08 

g/kg) (Figure 2.11; n = 12–13, p < 0.05). These data were indistinguishable from the non-

stressed control group (Figure 2.11, dotted horizontal line). VTA infusions of CLP290 did 

not alter ethanol consumption in control animals (0.84 ± 0.05 g/kg, data not shown). 
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Discussion 

While epidemiological studies consistently report associations between stress and ethanol 

consumption (Keyes et al., 2012), the underlying neuronal effects have not been well 

delineated. We found that alterations in GABAA receptor responses on GABAergic 

neurons of the VTA correlate with an increase in ethanol self-administration induced by 

temporally distant, acute stress. After stress, we detected enhanced VTA GABAergic 

inhibition of DA neurons and reduced mesolimbic DA release in response to ethanol. 

Blunted DA signaling was mediated by a transition toward excitatory GABAA receptor 

signaling in the VTA and was associated with decreased functional expression of KCC2. 

Stress-induced adaptations were prevented by acetazolamide (Staley et al., 1995) or by 

CLP290 (Gagnon et al., 2013). The effect of stress on GABA transmission was 

recapitulated in vitro by corticosterone exposure and was prevented by pharmacological 

blockade of glucocorticoid receptors (Cadepond et al., 1997). Most importantly, when 

acetazolamide, CLP290, or RU486 were locally infused in the VTA in vivo, stress no longer 

increased ethanol self-administration. 

The decreased DA response to ethanol was correlated to the stress event and to the 

excitatory GABA signaling. Although the DA response was not directly examined as a 

cause of the increased self-administration, others have reported that enhancing DA 

signaling exogenously attenuates voluntary drinking in rats (Bass et al., 2013). 

Furthermore, the correlation between decreased ethanol-induced DA release and 

increased self-administration has been previously reported in rodent studies (Brodie & 

Appel, 2000; Ramachandra et al., 2007; Doyon et al., 2013a). 
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The shift toward excitatory GABAA receptor signaling was correlated to the stress event 

and was required for the stress to cause increased ethanol self-administration (Figure 2.8). 

Although GABAA signaling normally mediates inhibitory synaptic transmission in the adult 

mammalian nervous system, it can shift toward excitation under certain pathological 

conditions, including epilepsy, neuropathic pain, and neuronal trauma (De Koninck, 2007). 

The shift arises from the decreased function of the chloride extrusion pump, KCC2 (Kaila 

et al., 2014). Upon strong GABAA receptor stimulation, diminished function of KCC2 leads 

to the accumulation of chloride ions inside the cell and subsequent loss of the chloride 

gradient. Activity-dependent loss of the hyperpolarizing chloride gradient unmasks an 

outward flux of bicarbonate ions through GABAA receptors, resulting in neuronal 

depolarization/excitation (Staley et al., 1995). Consistent with this model, we found that 

the GABAergic circuitry responds as expected in the basal condition. However, when 

GABAA receptors are highly engaged by strong stimulation (Figure 2.7) or by ethanol 

(Figures 2.8A), a compromised extrusion capacity leads to a collapse in the Cl− gradient, 

excitation of VTA GABAergic neurons, and blunted dopamine responses are detected. 

This shift toward excitatory GABA may occur elsewhere in the brain after stress, but the 

increased ethanol self-administration was prevented if this shift was blocked in the VTA. 

Although an excitatory shift in GABA transmission in the adult brain is usually associated 

with pathological conditions, similar transitions were found in the HPA axis following stress 

and in the VTA following chronic exposure to opiates (Laviolette et al., 2004; Hewitt et al., 

2009; Sarkar et al., 2011). When our results are taken with the accumulation of evidence 

in the literature, it suggests that the shift toward excitatory GABA signaling may be a more 

common phenomenon than is presently appreciated (Chung, 2012; Astorga et al., 2015). 
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Here we demonstrated that glucocorticoid receptor signaling within the VTA was 

necessary to increase ethanol self-administration after stress. Moreover, prolonged 

exposure to corticosterone in vitro (in midbrain slices) was sufficient to induce 

neuroadaptations associated with in vivo stress. These findings highlight the importance 

of glucocorticoid signaling within the VTA, but we do not rule out the participation of other 

stress signaling molecules or hormones, such as CRF, in mediating stress-induced 

adaptations (Ungless et al., 2003; Hwa et al., 2016). Furthermore, the effect of 

glucocorticoids on VTA GABA neurons may involve the activity of noradrenaline, 

glutamate, and glial cells (Coull et al., 2003; Hewitt et al., 2009; Lee et al., 2011; Taylor et 

al., 2015; 2016). 

Although animal studies generally support the hypothesis that stress increases ethanol 

consumption, some results have shown that stress decreases intake or has no effect 

(Becker et al., 2011). These differences arise from a combination of factors, including the 

type of stressor used, the duration or timing of the stressor, as well as the type of drinking 

paradigm employed (Noori et al., 2014). An important parameter in our experimental 

design is that the stress exposure was well-separated (15–20 hr) from the ethanol self-

administration, which allowed us to examine the lasting neural circuit consequences of the 

treatment not the proximal effect of stress itself. In our study, we kept the ethanol content 

of the drinking solutions relatively low during the acquisition phase, which likely resulted 

in less variability in self-administration. The rats experienced less of the aversive stimulus 

cues of ethanol while still achieving significant blood-ethanol levels. In addition, some 

animals show resilience to the effects of stress (Pfau & Russo, 2015), so it is essential to 

verify that there is a physiological response to the stressor and to exclude animals that do 

not show that response. 
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In summary, we showed that acute stress exposure decreases the sensitivity of the DA 

system to ethanol and increases subsequent ethanol self-administration. These effects 

required a shift toward excitatory GABAA signaling in the VTA and were associated with 

decreased chloride extrusion capacity in VTA GABA neurons. The temporally distant, 

acute, intense stress experience produced long-lasting neuroadaptations within the 

mesolimbic systems of the brain that were expressed upon exposure to ethanol. This 

overall process represents one mechanistic pathway linking life stress experiences to 

increased alcohol use. However, future work should determine whether similar 

mechanisms also contribute to the effects of stress during chronic alcohol use and relapse. 
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Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Stress increases ethanol self-administration. (A) Rats self-administered 
saccharin prior to fading ethanol into the drinking solution. Rats were subjected to a single 
restraint stress 15–20 hr before the first ethanol exposure (red arrow). Daily fluid intake 
was measured in control and stressed rats. Stressed rats showed greater ethanol intake 
compared to unstressed control rats. **Significantly different from the control group by 
ANOVA with repeated measures, p < 0.01, n = 16–19 rats/group. (B) Ethanol intake (g/kg) 
versus blood ethanol levels (mg/dL). Blood ethanol was measured immediately after the 
self-administration session in control (black) and stressed (red) animals. A regression 
analysis showed a significant and positive correlation between ethanol intake and blood 
ethanol levels, F(1,13) = 162.7, p < 0.01. (C) Mean daily ethanol intake over the first seven 
self-administration sessions. Stressed rats (red bar) consumed significantly more ethanol 
(g/kg) compared to control rats (black bar). Blockade of glucocorticoid receptors with 
RU486 systemically (dark blue, 40 mg/kg, i.p.) or locally in the VTA (light blue, 40 ng/1 
mL) prior to stress prevented increases in ethanol intake, n = 10, 14. RU486 administered 
systemically or intra-VTA to control animals did not alter ethanol intake, n = 9, gray bar. 
**Significantly different from all groups by t test, p < 0.01. 
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Figure 2.2 Stress increases ethanol self-administration via glucocorticoid receptor 
activation.  (A) Control and stressed animals self-administered 4% ethanol for 4-12 days, 
then concentrations were increased to 7% ethanol for 3 days, followed by 10% ethanol for 
7 days. (B) Mean daily intake for 4%, 7% and 10% ethanol are plotted. Significance of 
difference between control and stressed groups for each ethanol concentration was 
determined by t-test (*p < 0.05; **p < 0.05), n = 5-7 rats/group. 
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Figure 2.3 VTA microinfusion sites.  Following self-administration experiments, the 
microinfusion sites of RU486 were determined. The distribution of injection sites in the VTA was 
similar between control (gray circle) and stressed animals (light blue circle) and distributed across 
coronal sections 5.3-6.0 mm posterior from bregma. 
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Figure 2.4 Stress attenuates ethanol-induced accumbal DA release in vivo.  
(A) Animals were exposed to a 1 hr restraint stress and microdialysis experiments were 
conducted 15 hr later. (B) Time course of DA release in the NAc following in vivo ethanol  
administration in control rats (black), in stressed rats (red), and in rats injected with RU486 
(i.p.) prior to stress exposure (gray). Ethanol (1.5 g/kg) was injected i.v. during the 5 min 
period (shaded vertical gray bar). *Significantly different from the control group and from 
the RU486+Stress group by ANOVA with repeated measures, p < 0.05, n = 7–9 
rats/group. 
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Figure 2.5 Microdialysis probe locations in the nucleus accumbens. Following 
microdialysis experiments the anatomical placements of the microdialysis probes were 
determined as described in Supplemental Experimental Procedures section. The 
distribution of microdialysis probe locations in the NAc were similar between the cohort of 
(A) unstressed, (B) stressed and (C) RU486-pretreated stressed animals, indicating that 
regional differences in DA release do not account for observed differences in dopamine 
release. 
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Figure 2.6 Stress and corticosterone increase GABA release onto DA neurons ex 
vivo. (A) Spontaneous inhibitory postsynaptic currents (sIPSCs) onto VTA DA neurons 
were recorded using the whole-cell patch-clamp configuration. No significant differences 
were detected in the mean basal sIPSC frequency or amplitude between stressed and 
control groups before ethanol: frequency, 2.4 ± 0.6 Hz in control versus 2.3 ± 0.3 Hz after 
stress; amplitude, 26.2 ± 4.0 pA in control versus 30.8 ± 3.6 pA after stress, p > 0.05, n = 
8–10. (B) Representative recordings of sIPSCs before and after ethanol administration in 
the control (black) and stressed (red) groups. (C) Mean changes in the sIPSC frequency 
after ethanol application in VTA DA neurons. DA neurons from stressed animals (red) 
demonstrated a significantly increased ethanol-mediated sIPSC frequency compared to 
neurons from unstressed controls (black). Systemic inhibition of glucocorticoid receptors 
with RU486 (40 mg/kg) prior to stress prevented elevated sIPSC frequency (gray). 
Incubation of VTA slices from control animals with corticosterone increased ethanol-
mediated sIPSC frequency in DA neurons up to stress levels (dark blue). Co-incubation 
with RU486 prevented this increase (light blue). Incubation of brain slices with RU486 
and/or corticosterone did not alter basal parameters of sIPSCs (data not shown). Across 
all groups, ethanol application did not produce significant changes in the sIPSC 
amplitudes (data not shown, n = 6–10, p > 0.05). **Significantly different from control and 
RU486-treated groups by t test, 
p < 0.01, n = 6–10 cells/group. 
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Figure 2.7 Stress 
promotes GABA-
mediated excitation of GABA neurons ex vivo. 
(A) VTA GABA neurons were recorded in a cell-attached configuration before and after 
electrical stimulation of GABAA receptor inputs. Representative GABA neuron recording 
from a control animal demonstrated decreased firing rate in response to stimulation of 
GABAergic input (black). Similar stimulation enhanced the firing rate of VTA GABA 
neurons from stressed animals (red). For display, the traces were filtered and stimulus 
artifacts were removed. (B) Mean changes in VTA GABA neuron firing rate from control 
(black) and stressed (red) rat slices following repetitive stimulation of synaptic GABA 
inputs. **Significantly different from the control by ANOVA with repeated measures,       p 
< 0.01, n = 8–10 cells/group. (C) Representative VTA GABA neuron recording from a 
stressed rat demonstrated that in the presence of picrotoxin (top) or acetazolamide (ACTZ, 
bottom), repetitive stimulation of GABA inputs failed to increase the firing rate. (D) 
Normalized mean changes in the firing rates of VTA GABA neurons in response to 
stimulation for each treatment group. Values were averaged over 5 s immediately 
following termination of the stimulation. In controls, GABAA receptor-mediated increase in 
the firing rate was observed after slice incubation with corticosterone (blue). Significantly 
different from the control by t test (*p < 0.05), n = 8–10 cells/group or (**p < 0.01), n = 6–
8 cells/group. 
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Figure 2.8 Stress requires excitatory GABA shifts to attenuate ethanol-induced DA 
release and increase ethanol self-administration in vivo. (A) Stressed animals 
received intra-VTA infusion of ACTZ (1 mL at 50 mM) or vehicle prior to the onset of 
baseline sample collection. Subsequent ethanol-induced DA release in the NAc was 
measured. (B) In contrast to vehicle injection (red), ethanol-induced DA levels in the NAc 
following ACTZ infusion were not blunted (blue) and were similar to the control response 
from Figure 2B (dotted black line). **Significantly different from the VTA vehicle group by 
ANOVA with repeated measure, p < 0.01, n = 7 rats/ group. (C) Stressed animals received 
bilateral intra-VTA infusions of ACTZ (1 mL at 50 mM) or vehicle prior to the onset of each 
self-administration session. (D) ACTZ-infused stressed animals consumed significantly 
less ethanol (blue) compared to vehicle-infused stressed animals (red). Ethanol 
consumption in unstressed control rats from Figure 1C is shown for comparison (dotted 
horizontal line). *Significantly different from the VTA vehicle group by t test, p < 0.05, n = 
10–14 rats/group. 
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Figure 2.9 Microinfusions of acetazolamide into the VTA. (A) In stressed animals, 
mean changes in DA levels after exposure to ethanol were not significantly altered if 
acetazolamide (ACTZ) was infused outside and adjacent to the VTA (104.7% ± 2.6% 
stress + VTA vehicle vs. 100.5% ± 4.4% stress + non-VTA ACTZ, p > 0.05, n = 5-7). 
Changes in DA levels were averaged over 8 post ethanol samples for display. (B) In 
unstressed control animals, mean intake of ethanol over the first 7 days was not 
significantly altered by intra-VTA infusions of acetazolamide (ACTZ) (0.74 ± 0.03 g/kg 
control vs. 0.66 ± 0.08 g/kg control + ACTZ, p > 0.05, n = 6-19). (C) Unilateral VTA 
microinfusions of acetazolamide were administered ipsilateral to the microdialysis probe 
and were equally distributed along the anterior/posterior axis. (D) Bilateral VTA 
microinfusions of acetazolamide were similarly distributed along the anterior/posterior 
axis. 
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Figure 2.10 KCC2 expression is downregulated after stress and restricted to non-
DA neurons. (A) Western blot analysis was conducted for total KCC2 and 
phosphorylated- S940 KCC2 with GAPDH as a loading control. A representative western 
blot indicates no differences in total KCC2 expression after stress. However, stressed 
animals showed reduced expression of pS940 KCC2 relative to total KCC2 when 
compared to non-stressed controls. (B) Densiometric analysis revealed no significant 
differences in total KCC2 expression levels after stress (red bar graphs) or after 
corticosterone incubation (C) of control slices (blue bar graphs) (p > 0.05, n = 10-16 
rats/group). (D) Densiometric analysis revealed a significant reduction in the ratio of pS940 
KCC2 to total KCC2 protein in stressed animals compared to non-stress controls 
(horizontal dashed line). *Significantly different from the control by t test, p < 0.05, n = 10 
animals/group. (E) Densiometric analysis revealed a significant reduction in the ratio of 
pS940 KCC2 to total KCC2 protein in corticosterone-incubated slices from controls. 
*Significantly different from the control by t test, p < 0.05, n = 16 animals/group. (F) 
Immunolabeling analysis in the VTA revealed that tyrosine hydroxylase (TH) labeling of 
dopamine neuron (green) did not overlap with KCC2 labeling (red), suggesting an 
alternative chloride homeostasis mechanism exists in VTA DA neurons.  
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Figure 2.11 KCC2 Activation in the VTA prevents stress-induced alcohol 
consumption. CLP290 was infused bilaterally intra-VTA (40 mM at 0.5 mL/min). After 
CLP290 administration, stressed animals consumed significantly less ethanol (blue) 
compared to vehicle-injected stressed animals (red). Ethanol consumption in unstressed 
control rats is shown for comparison (dotted horizontal line). *Significantly different from 
the VTA vehicle group by t test, p < 0.05, n = 12–13 rats/group. 
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Figure 2.12 CLP290 Microinfusion Sites. Bilateral VTA microinfusions of acetazolamide 
were similarly distributed along the anterior/posterior axis. 
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Abstract 

Tobacco smoking is a well-known risk factor for subsequent alcohol abuse, but the neural 

events underlying this risk remain largely unknown. Alcohol and nicotine reinforcement 

involve common neural circuitry, including the mesolimbic dopamine system. We 

demonstrate in rodents that pre-exposure to nicotine increases alcohol self-administration 

and decreases alcohol-induced dopamine responses. Blocking stress hormone receptors 

prior to nicotine exposure prevented the decreased dopamine responses, and the 

increased alcohol self-administration. These results indicate that nicotine recruits 

neuroendocrine systems to influence neurotransmission and behavior associated with 

alcohol reinforcement. 
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Introduction 

Tobacco (nicotine) and alcohol are the two most abused and costly drugs to society. 

Epidemiological studies consistently find a positive correlation between nicotine and 

alcohol use, with alcoholism approximately 10 times more prevalent in smokers than in 

non-smokers (Weitzman et al., 2005; Barrett et al., 2006; Harrison & McKee, 2008). 

Several studies also show that nicotine exposure increases alcohol self-administration 

(Smith et al., 1999; Barrett et al., 2006); and smoking, particularly at an early age, is a 

significant risk factor for subsequent alcohol abuse (Sher et al., 1996; Grant, 1998). 

In addition to psychosocial and genetic factors (Bobo & Husten, 2000; Schlaepfer et al., 

2008), evidence suggests that the interactions between nicotine and alcohol arise from 

shared pharmacological actions (Larsson & Engel, 2004; Funk et al., 2006). These drugs 

activate common neural substrates, including the mesolimbic dopamine (DA) system (Di 

Chiara, 2000; Gonzales et al., 2004; De Biasi & Dani, 2011) and the hypothalamic-

pituitary-adrenal (HPA) axis associated with stress hormone signaling (Richardson et al., 

2008; Armario, 2010; Lutfy et al., 2012).  

To simplify this complex and multifaceted interaction between nicotine and alcohol, we 

studied how acute nicotine exposure in naïve animals alters subsequent responses to 

alcohol, including alcohol-induced DA signals and alcohol self-administration. We found 

that pretreatment with nicotine increased subsequent alcohol self-administration and 

decreased alcohol-induced dopamine signals in the ventral tegmental area (VTA) and the 

nucleus accumbens (NAc). The decreased dopamine responses to alcohol arose via an 

initial activation of stress hormone receptors in the ventral tegmental area. These results 
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identify the mesolimbic dopamine system as a locus for multiple neurophysiological 

interactions between nicotine, stress hormones, and alcohol. 
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Experimental Procedures 

Subjects 

Long-Evans rats (Harlan Sprague Inc., Indianapolis IN, USA) weighing between 300–500 

g were used. The rats were handled and weighed for at least 3 days and commonly more 

than a week prior to surgery and testing, and the rats were housed in a humidity and 

temperature-controlled (22°C) environment under a 12-hr light/dark cycle. The rats had 

food and water available ad libitum in the home cage. All procedures complied with 

guidelines specified by the Institutional Animal Care and Use Committee at Baylor College 

of Medicine. 

Surgical procedures 

For the microdialysis experiments, each animal was implanted with an intravenous 

catheter through the jugular vein and a stainless steel guide cannula (21 gauge) (Plastics 

One, Inc., Roanoke, VA, USA). The surgery occurred under isoflurane anesthesia (1.5–

2.5% in 100% O2, 1 L/min). The catheters were constructed with Silastic tubing (0.30 mm 

ID, 0.64 mm OD; Dow Corning, Midland, MI, USA) with one end modified with a 22-gauge 

cannula (Plastics One, Inc.). The microdialysis guide cannulae were positioned as follows 

(in mm relative to bregma): +2.1 anterior-posterior, +1.1 medial-lateral, −4.0 ventral to the 

skull surface (Paxinos, 2007). The experiments were conducted after a minimum recovery 

period of 3 days. 

Drugs and experimental design 

All drugs (Sigma-Aldrich Inc., St. Louis, MO, USA) were dissolved in sterile saline, except 

Mifepristone (RU486), which was dissolved in dimethyl sulfoxide (DMSO). Pretreatment 
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with nicotine tartrate (0.4 mg/kg, freebase, i.p.), or an equivalent volume of saline, 

occurred 3–40 hrs prior to the experiments. RU486 was administered 15 min prior to 

nicotine pretreatment at a dose of 40 mg/kg (Saal et al., 2003). We opted for this dose 

because of the limited capacity of RU486 to cross the blood brain barrier (Heikinheimo & 

Kekkonen, 1993). The intra-VTA concentration of RU486 was (10 ng/0.5 μl) and 0.5 μl of 

the solution was delivered by pump over 1 min (Segev et al., 2012). The microinfusion 

injector was left in place for 2 additional min and then removed. The infusion cannula was 

aimed at the following VTA coordinates (in mm relative to bregma): +5.7 anterior-posterior, 

+1.0 medial-lateral, −7.1 ventral to the skull surface (Paxinos, 2007). Following the 

experiments, Chicago Sky blue was injected into the VTA to determine the location of the 

microinfusion. 

Baseline samples were collected (15–30 min), followed by a timed intravenous (i.v.) drug 

infusion (i.e., ethanol or nicotine). The i.v. administration route circumvents handling-

related stress associated with a needle injection (Dong et al., 2010). For the i.v. ethanol 

experiments, the rats received 1.5 g/kg ethanol (20% in sterile saline, v/v, i.v.) over 5 min. 

Two hrs prior to the experiment, rats were administered a similar volume of vehicle (sterile 

saline) to habituate them to the stimulus effects of the infusion.  

In vivo microdialysis 

The active dialysis membrane (2.0 mm), was made of hollow cellulose fiber (inner 

diameter = 200 μm; molecular weight cutoff = 18,000; Spectrum Laboratories Inc., Rancho 

Dominguez, CA, USA). The inlet and outlet to the membrane was composed of fused-

silica tubing (inner diameter = 40 μm; Polymicro Technologies, Phoenix, AZ, USA). The 

microdialysis probes were perfused with artificial cerebral spinal fluid (ACSF): 149 mM 
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NaCl, 2.8 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, and 0.25 mM ascorbic acid, 5.4 mM D-

glucose. At least 14 hrs before the experiment, we lowered the probes into the brain 

through the guide cannula. The perfusion flow rate was set to 2.0 μl/min. Each sample vial 

was manually changed and immediately stored at −80° C until analyzed. 

Dopamine analysis 

The HPLC system included a pump (Model 582; Thermo Scientific, West Palm Beach, FL, 

USA), an autosampler (Model 542; Thermo Scientific), and a HR-3.2 × 80 mm column (3-

μm particle size; Thermo Scientific). A coulometric cell (5014B; Thermo Scientific) was 

connected to a Coulochem II detector. The mobile phase comprised of citric acid (4.0 mM), 

sodium dodecyl sulfate (3.3 mM), sodium dihydrogen phosphate dehydrate (100.0 mM), 

and ethylenediaminetetraacetic acid (0.3 mM), acetonitrile (15%), and methanol (5%). The 

autosampler mixed 9.5 μl of the dialysate with ascorbate oxidase (EC 1.10.3.3; 162 

units/mg; Sigma-Aldrich Inc.) prior to injection. DA signals were acquired with 501 

chromatography software and Chromeleon Software (Thermo Scientific). Quantification of 

dialysate DA concentration was carried out by comparing the peak area to external 

standards (0–2.5 nM). 

Operant ethanol self-administration 

Standard operant chambers (Med Associates Inc., St. Albans, VT, USA) were used for the 

self-administration experiments. Activation of an interior chamber light and presentation 

of a retractable lever accompanied the start of each session. Depression of the lever 

triggered the entry of a retractable drinking spout on the opposite side of the wall. Each 

lever press resulted in 15 sec of access to the drinking spout (a fixed ratio-1 reinforcement 

schedule). Each session lasted 45 min. The rats lived in the same quiet room in which 
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daily training sessions occurred, and the rats were typically trained one at a time to avoid 

any auditory distractions from activity in neighboring chambers. 

The rats were trained to lever press for saccharin reinforcement (0.125%, w/v). Consistent 

responses for saccharin occurred in ~4–8 days. Three hrs prior to their first ethanol 

exposure, the animals were injected with nicotine (0.4 mg/kg) or saline. The rats were 

exposed to ethanol by gradually adding ethanol (2–4 %, v/v) into their saccharin solution 

over a 4-day period (Doyon et al., 2005). Consumption was monitored by measuring the 

volume of liquid in the drinking bottle before and after the session. Body weights were 

measured each day. 

Histology 

The rats were overdosed with pentobarbital (120 mg/kg, i.v.). Saline was perfused through 

the heart, followed by 10% formalin (v/v). The brains were removed and immersed in 10% 

formalin for at least 2 days. The brains were cut into 75-μm coronal sections (Leica 

Microsystems Inc., Buffalo Grove, IL, USA) and stained with cresyl violet as indicated by 

the figures defining anatomical placements. 

Statistical analysis 

Analysis of variance (ANOVA) with repeated measures (in SPSS for Windows) was used 

to analyze the dialysate DA concentrations and the daily ethanol intake. A two-tail t-test 

assuming equal variance was used to assess differences between mean behavioral 

responses. Significance for all analyses was determined by p < 0.05. 
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Results 

Nicotine attenuates ethanol-induced DA release 

The initial administration of addictive drugs, such as nicotine and ethanol, increases basal 

DA levels in the nucleus accumbens (NAc) as measured by microdialysis (Di Chiara & 

Imperato, 1988). We found that simultaneous co-administration of nicotine and ethanol 

produces an additive increase in NAc DA release relative to the response of each drug 

alone (data not shown). To determine whether prior exposure to nicotine influences 

ethanol-induced DA release in the NAc, we injected rats with nicotine or saline 3 hrs prior 

to administering ethanol. Guided by nicotine’s metabolic half-life in rats of 45 min (Matta 

et al., 2007), we chose a 3-hr pretreatment period to decrease any carryover in the 

pharmacological effects of nicotine. 

Microdialysis samples were collected to follow the change in extracellular DA levels 

induced by ethanol administration (Fig. 3.1A-D). After pretreatment with saline or nicotine, 

there was no difference in the basal DA concentrations prior to ethanol exposure: 1.0 ± 

0.2 nM after nicotine pretreatment and 1.0 ± 0.1 nM after saline pretreatment. To avoid 

handling-related stress, ethanol was administered intravenously over a 5-min period (Fig. 

3.1A; shaded columns). Ethanol induced a sustained increase in DA release in the saline 

control group (Fig. 1A–C, black circles). Nicotine pretreatment (0.4 mg/kg, i.p., 3-40 hrs 

prior) significantly attenuated the ethanol-induced increase in DA release (Fig. 3.1A-C, red 

circles) (group x time: F(10,100) = 2.37, p < 0.05). The administered ethanol dose falls 

within the typical range tested in rodents (Gonzales et al., 2004) and produces brain 

ethanol concentrations in rodents that humans commonly achieve (Howard et al., 2008).  
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The distribution of the microdialysis probe placements within the NAc were similar 

between the cohort of animals pretreated with nicotine and those pretreated with saline 

(Fig. 3.1D), indicating that regional differences in DA release do not account for these 

results. 

Nicotine increases ethanol self-administration 

Given that the single nicotine pretreatment decreased ethanol-induced DA release, we 

determined whether that same nicotine pretreatment influenced ethanol self-

administration (Smith et al., 1999). To parallel the time course of our microdialysis 

experiments (see Fig. 3.1), we examined ethanol intake during the early acquisition of 

drinking behavior. Early acquisition was defined as the first four sessions of ethanol self-

administration (1 session/day for 45 min/session). Operant responses to saccharin 

(0.125%, w/v) were first established, followed by an introduction of ethanol (2–4%) into 

the drinking solutions over four days (Doyon et al., 2005). 

We pretreated the rats with either nicotine (0.4 mg/kg, i.p.) or saline 3 hrs prior to an initial 

ethanol exposure, as in the microdialysis experiments (see Fig. 3.1A). Ethanol intake 

across the first four self-administration sessions was significantly higher after nicotine 

pretreatment (0.97 g/kg, n = 20) compared to the saline pretreatment control (0.75 g/kg, n 

= 17) (p < 0.01) (Fig. 3.1E). Rats pretreated with nicotine also initiated significantly more 

operant responses (44 ± 2) than the saline pretreatment control (36 ± 2). 

To confirm that these effects were specific to ethanol and not related to the saccharin in 

the drinking solution, we included a separate control group that responded for saccharin 

alone (no ethanol) (n = 10). This group did not drink significantly more fluid following 
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nicotine pretreatment (15.6 ± 1.8 ml/session) across four drinking sessions than the 

ethanol control rats pretreated with saline (13.9 ± 0.8 ml/session) (p > 0.05). 

Interactions between nicotine and ethanol require stress hormones 

We hypothesized that nicotine administration altered the DA and GABA responses to 

alcohol through a neuroendocrine signal (Armario, 2010). Stress-related hormones, such 

as glucocorticoids, cause long-term homeostatic changes in neural function and influence 

DA and GABA transmission (Barrot et al., 2000; Joels & Baram, 2009; Butts et al., 2011). 

Nicotine activates the HPA axis to increase plasma levels of corticosterone (Lutfy et al., 

2012), the principle glucocorticoid in rodents, which we confirmed (Fig. 3.2). To determine 

whether glucocorticoid receptor activation during nicotine pretreatment contributes to 

subsequent alterations in ethanol-induced DA release, we systemically blocked 

glucocorticoid receptors with RU486 (Cadepond et al., 1997) prior to nicotine 

pretreatment. Pretreatment with RU486 (Fig. 3.3A, blue circles) prevented the inhibitory 

effect of nicotine on ethanol-induced DA release (group x time: F(10,240) = 4.75, p < 0.01). 

This increased DA response to ethanol following RU486 and nicotine pretreatment was 

not distinguishable from the control rats pretreated with saline alone or RU486 alone (Fig. 

3.3A, dashed trace). 

These results suggested that stress receptor activation within the VTA, following nicotine 

pretreatment, attenuated the subsequent DA response to ethanol. To test this hypothesis, 

we blocked glucocorticoid receptors locally in the VTA with RU486 prior to nicotine 

pretreatment. The control group that received a local intra-VTA microinfusion of vehicle 

followed by nicotine pretreatment showed a decreased DA response to ethanol 15 hrs 

later (Fig. 3.3B, red circles), consistent with our previous data (see Fig. 1). This inhibitory 
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effect of nicotine pretreatment was prevented by intra-VTA microinfusion of RU486 prior 

to nicotine pretreatment (Fig. 3.3B, blue circles) (group x time: F(10,140) = 2.43, p < 0.05). 

We should note that the intra-VTA RU486 did not completely reverse the effect of nicotine 

pretreatment. A post hoc comparison indicated a significant difference between the saline 

control (Fig. 3.3B, dashed line) and the group pretreated with intra-VTA RU486 + Nic 

(F(10,220) = 2.01, p < 0.05). The microinfusion sites were dispersed mainly in the more 

ventral VTA, including the anterior and posterior regions (Fig. 3.3C). There was no 

consistent relationship between the microinfusion site and the individual DA responses to 

ethanol in either group. As a negative control, microinfusion of RU486 outside and 

adjacent to the VTA did not reverse the inhibitory effect of nicotine pretreatment (n =3). 

To determine whether stress-related signals also contributed to increased ethanol 

consumption after nicotine pretreatment (as in Fig 3.1E), we pretreated rats with RU486 

prior to nicotine administration and then monitored early acquisition of ethanol self-

administration over the first 4 sessions. RU486 pretreatment prevented the increased 

ethanol self-administration induced by nicotine pretreatment (Fig. 3.3D). The mean 

ethanol intake for the group pretreated with RU486 and nicotine (0.74 ± 0.06 g/kg/session, 

n = 12) was significantly lower than the nicotine pretreatment alone (0.97 g/kg; n = 17) (p 

< 0.01) and nearly identical to the saline pretreatment control (Fig. 3.3D, dashed line). 

Thus, nicotine required the activation of stress hormone receptors to enhance subsequent 

ethanol self-administration. 
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Discussion 

Acute pretreatment with nicotine induced a long-lasting attenuation of ethanol-induced 

DA signals within the mesoaccumbens pathway. These nicotine-induced 

neuroadaptations required a stress hormone signal that acted significantly within the 

VTA. Concomitant with these physiological changes, we also show that increases in 

ethanol self-administration induced by nicotine were prevented by RU486, a 

glucocorticoid/progesterone receptor antagonist (Cadepond et al., 1997). 

In addition to other interactions with ethanol (Al-Rejaie & Dar, 2006; Lopez-Moreno et 

al., 2008), nicotine exposure influences subsequent ethanol consumption and abuse 

(Grant, 1998; Smith et al., 1999; Barrett et al., 2006). Although the development of drug 

abuse involves the mesolimbic DA system, there is little mechanistic data indicating how 

nicotine influences DA responses to ethanol. Our results suggest that nicotine acts 

through stress hormone signaling pathways in the VTA to decrease ethanol-induced DA 

signals. A blunted DA system has been associated with increased impulsivity (Reuter et 

al., 2005) and increased susceptibility to drug and alcohol (Volkow et al., 1996; Martinez 

et al., 2005). Previous studies have shown that higher ethanol preference in mice 

corresponds to lower DA neuron responses to ethanol (Brodie & Appel, 2000).  

We should note that RU486 is an antagonist for both the glucocorticoid and the 

progesterone receptor (Cadepond et al., 1997). Progesterone and its metabolites are 

produced in the brain and participate in stress responses (Wirth). Thus, progesterone 

and glucocorticoid receptors could contribute to interactions between nicotine and 

ethanol. These results complement previous studies showing a critical role for 
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glucocorticoids in alcohol reward and in the transition to compulsive alcohol drinking 

(Rotter et al.; Vendruscolo et al., 2012). 

Activation of nAChRs in the brain stem are known to contribute to the initial response of 

the HPA axis to nicotine (Armario, 2010). Blocking stress hormone receptors locally in 

the VTA prevented the long-term alterations in ethanol-induced DA release (Fig. 3.3B), 

and thus identified the VTA as a locus for mechanistic interactions between nicotine and 

ethanol. Interestingly, local VTA infusion of RU486 to antagonize stress receptors did not 

completely reverse the effects of nicotine pretreatment on ethanol-induced DA release 

compared to the saline control. This incomplete effect could arise from a partial diffusion 

of RU486 throughout the VTA, but it is also feasible that adaptations outside of the VTA 

to induce neuroadaptations that regulate DA signals. 

In summary, we provide evidence that nicotine pretreatment decreases ethanol-induced 

DA transmission and increased ethanol self-administration. These responses to nicotine 

pretreatment, required an initial stress hormone signal. These results support the 

hypothesis that drugs of abuse recruit neuroendocrine pathways to promote addictive 

behaviors (Koob & Kreek, 2007; Koob et al., 2014). Our data suggest a 

neurophysiological basis for the observation that nicotine use can increase the 

reinforcing properties of alcohol. 
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Figure 3.1 Nicotine pretreatment attenuates ethanol-induced DA release and 
increases ethanol self-administration. Rats were injected once with nicotine (0.4 
mg/kg) or saline, which occurred either (A) 3 hrs prior to in vivo ethanol administration, (B) 
15 hrs prior to in vivo ethanol administration, or (C) 40 hrs prior to in vivo ethanol 
administration. Changes in [DA] were measured in 5-min intervals using microdialysis with 
HPLC. Ethanol (1.5 g/kg) was infused i.v. over a 5-min period (shaded vertical bars). * 
Significantly different from the control by ANOVA with repeated measures (p < 0.05); ** p 
< 0.01; n = 6–16 rats/group. # Significantly different from the control by posthoc ANOVA 
with repeated measures. (D) Microdialysis probe placements in the NAc for all rats 
pretreated with saline (left) or nicotine (right) (Paxinos and Watson, 2007). (E) Nicotine 
increases acquisition of ethanol self-administration. Rats were pretreated once with either 
saline (black bar) or nicotine (0.4 mg/kg, i.p.; red bar) 3 hrs prior to an initial ethanol 
exposure. The mean ethanol intake was then measured over the first four self-
administration sessions (45 min/session). ** Significantly different from the control by t-
test (p < 0.01); n = 20, 17. Data presented as the mean ± SEM. 
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Figure 3.2. Administration of nicotine increases plasma corticosterone levels. Effect 
of nicotine pretreatment on plasma corticosterone levels with basal defined at   time = 0. 
** Significantly different from basal (p < 0.01; n = 8 rats). 
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Figure 3.3 Nicotine requires glucocorticoid signaling to alter ethanol-induced DA 
release and ethanol self-administration. (A) Rats were injected with RU486 (40 mg/kg) 
15 min prior to nicotine (0.4 mg/kg) or saline pretreatment. 15 hrs later, changes in 
extracellular [DA] in response to ethanol (shaded vertical bar) were measured. Control 
subjects that received RU486 alone were combined with the saline controls from Fig. 1B 
as these groups were not statistically different. n = 9–16 rats/group. (B) The effect of 
microinfusion of RU486 or vehicle into the VTA prior to nicotine pretreatment on the DA 
response to ethanol 15 hrs later. ** Significantly different from the nicotine pretreatment 
by ANOVA with repeated measures (p < 0.01), * p < 0.05, n = 8/group. (C) VTA 
microinfusion sites for all rats pretreated with RU486 (blue circle) or vehicle (red circle. 
PIF: parainterfascicular nucleus, PBP: parabrachial pigmented nucleus. (D) Systemic 
RU486 blocked the increase in ethanol self-administration induced by nicotine 
pretreatment, as shown in Fig. 1E. Ethanol intake in the saline pretreatment control is 
indicated by the dashed line. ** Significantly different from the nicotine pretreatment by t-
test (p < 0.01), n = 20, 12. Data presented as the mean ± SEM. 
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Abstract 

Adolescent smoking is a well-known risk factor for subsequent alcohol abuse, but the 

neurobiological mechanisms mediating this interaction remain largely unknown. The 

mesolimbic dopamine system is implicated in drug reinforcement and addiction, 

suggesting a potential locus for nicotine-alcohol interactions. We demonstrate in rodents 

that exposure to nicotine during adolescence increases alcohol self-administration in 

adulthood and attenuates alcohol-induced dopamine responses.  Blunted dopamine 

responses corresponded with increased inhibition onto DA neurons and altered anion 

homeostasis in VTA GABA neurons. Enhancing KCC2 function in adult animals prevented 

the increased alcohol self-administration, suggesting that long-lasting alterations in anion 

homeostasis persist within the VTA after adolescent nicotine exposure and promote 

ethanol self-administration. These results reveal a novel mechanism linking adolescent 

nicotine exposure to elevated alcohol consumption in adulthood. 

 

  



85 

Introduction 

Epidemiological studies consistently highlight positive correlations between smoking and 

excessive alcohol consumption (DiFranza & Guerrera, 1990; Schorling et al., 1994; 

Andersen, 2003; Weitzman et al., 2005; Harrison & McKee, 2008). Compared to non-

smokers, smokers drink nearly twice as much alcohol, are more likely to experience 

alcohol-related harm, and have significantly higher risk for developing alcohol use 

disorders (DiFranza & Guerrera, 1990; Kozlowski & Ferrence, 1990; Grant et al., 2004; 

Larsson & Engel, 2004). Accumulating evidence suggests that the comorbidity of tobacco 

and alcohol use in adulthood may originate in adolescence at the time of initial tobacco 

exposure (Cross et al., 2017).  Adolescent smokers are more likely to be heavier drinkers 

and individuals that experiment with tobacco are twice as likely to develop an alcohol use 

disorder compared to never smokers (Grucza & Bierut, 2006).  

Adolescence is considered to be a critical period of brain development (Chambers et al., 

2003), and exposure to nicotine during this timeframe produces long-lasting 

neurobehavioral effects (Spear, 2016). Rodent studies reveal that adolescent nicotine 

exposure increases subsequent self-administration of nicotine (Adriani et al., 2003; Adriani 

et al., 2006), alcohol (Larraga et al., 2017), and other drugs of abuse (McQuown et al., 

2007; Dao et al., 2011), suggesting that early nicotine exposure may indeed serve as a 

gateway for subsequent drug use (Torabi et al., 1993; Baler & Volkow, 2011).  Despite 

this compelling literature, the specific neuroadaptations induced by adolescent nicotine 

exposure to promote subsequent alcohol consumption remain unknown. 

Evidence suggests that the interactions between nicotine and alcohol arise from shared 

pharmacological actions (Larsson & Engel, 2004; Funk et al., 2006). These drugs activate 

common neural substrates, including the mesolimbic dopamine (DA) system ((Di Chiara, 
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2000; Gonzales et al., 2004; Dani & Harris, 2005; Doyon et al., 2013b). Since the 

dopamine system is known to regulate ethanol reinforcement (Gatto et al., 1994; Rodd-

Henricks et al., 2000; Grace et al., 2007) and sensitive to adolescent nicotine-induced 

neuroadaptations (Counotte et al., 2009; Doura et al., 2010; Ehlinger et al., 2016), this 

circuitry could mediate nicotine-ethanol interactions from adolescence to adulthood. Prior 

work from our group also suggests that acute nicotine may promote drinking via 

adaptations within the mesolimbic circuitry. Exposure to acute nicotine 3-15 hrs prior 

increased subsequent alcohol consumption, blunted dopamine responses to ethanol, and 

increased inhibition onto DA neurons within the ventral tegmental area (VTA) (Doyon et 

al., 2013a). Separately, we showed that elevated alcohol intake and increased inhibition 

of dopamine neurons arose via altered chloride homeostasis within the VTA (Ostroumov 

et al., 2016). Based off this work, we hypothesized that adolescent nicotine increased 

alcohol consumption in adulthood through similar neuroadaptations in the mesolimbic 

circuitry. 

This study sought to examine if adolescent nicotine altered mesolimbic responses to 

ethanol and to test the contribution of altered chloride homeostasis to this interaction. 

Animals treated with nicotine as adolescents, but not adults, showed persistent elevated 

alcohol consumption throughout adulthood. Further investigation revealed adolescent 

nicotine pretreatment reduced dopaminergic responses to ethanol in vivo, increased 

inhibition of dopamine neurons, and altered chloride homeostasis in VTA GABA neurons. 

Pharmacological enhancement of chloride transporter function within the VTA prevented 

elevated alcohol consumption in adolescent nicotine-treated animals. These results 

implicate anionic plasticity mechanisms within the VTA in long-term elevations in alcohol 
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consumption and reveal that intervention during adulthood can counter the effects of 

adolescent drug exposure. 
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Experimental Procedures 

Male Long-Evans rats (Harlan-Envigo) were singly housed in a quiet, temperature and 

humidity- controlled satellite facility under at 12 hr light/dark cycle. Rats had food and 

water available ad libitum in their home cage. All procedures were carried out in 

compliance with guidelines specified by the Institutional Animal Care and Use Committee 

at University of Pennsylvania.  

Drugs and Experimental Design  

All drugs (Sigma-Aldrich Inc., St. Louis, MO, USA) were dissolved in sterile saline unless 

otherwise specified. Animals were administered daily injections of saline or nicotine 

tartrate (0.4 mg/kg, freebase, i.p.) during adolescence (p28-p42) and subsequent 

responses to ethanol were assessed in adulthood (p70-p90) (Figure 1A). Comparable 

injections were carried out in adult animals (~p60-p74) and subsequent responses to 

ethanol were assessed 4 weeks post-nicotine exposure (Figure 2A).  Intra-VTA 

microinfusions of CLP290 occurred approximately 30 min prior to ethanol self-

administration. The intra-VTA concentration of CLP290 was (45 µM) and 1.0 μl of the 

solution was delivered by pump at a rate of 0.5 µL/min (Ostroumov et al., 2016). Animals 

were treated with CLP290 (45 µM) before the first day of ethanol self-administration. The 

microinfusion injector was left in place for 2 additional min and then removed. The infusion 

cannula was aimed at the following VTA coordinates (in mm relative to bregma): +5.7 

anterior-posterior, +1.0 medial-lateral, −7.1 ventral to the skull surface (Paxinos and 

Watson, 2007). A separate group of animals treated with 50 µM CLP290 prior to self-

administration over 3 non-consecutive days showed no significant differences in effect, so 

these animals were combined with the 45 µM CLP290 treatment group.  
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Operant Ethanol Self-Administration 

Standard operant chambers (Med Associates) were used for the self-administration 

experiments. Animals were initially water restricted overnight and trained to lever press 

for a saccharin solution (0.125%, w/v). Once trained, the animals were no longer water 

restricted and their baseline saccharin intake was monitored until intake appeared stable 

for 3 consecutive days. If the animals underwent surgery, saccharin intake levels were re-

established. The effects of nicotine or saline pretreatment on subsequent ethanol self-

administration were then measured. Ethanol was introduced into the saccharin drinking 

solution in the following way: 2% ethanol on day 1 and 4% ethanol for all subsequent days 

(Ostroumov et al., 2016), unless otherwise noted. We previously confirmed that this self-

administration protocol produces pharmacologically relevant blood alcohol levels 

(Ostroumov et al., 2016). For 8% ethanol studies, initial ethanol fading (2-8%) occurred 

over the first eight days (Doyon et al., 2005). Intake of 8% ethanol consumption was then 

monitored for seven days. A separate cohort of animals followed the same ethanol fading 

procedure (2-8%) and saccharin was faded out of the drinking solution over 6 additional 

days. Intake of 8% ethanol consumption was then monitored for seven days. 

In Vivo Microdialysis 

Microdialysis studies were carried out as previously reported (Doyon et al., 2013a; 

Ostroumov et al., 2016).  Briefly, animals were habituated to tethering and the 

microdialysis chambers 1 day prior to testing. Baseline DA samples were collected (15–

30 min), followed by a timed intravenous (i.v.) infusion of ethanol (1.5 g/kg, 20% in sterile 

saline, v/v) over 5 min. The i.v. route (using a cannula) was chosen to circumvent handling-

related disturbances in DA levels associated with i.p. injections (Dong et al., 2010). 
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Dialysis samples were analyzed for DA content using high-pressure liquid 

chromatography (HPLC) coupled to an electrochemical detector. 

In Vivo Electrophysiology 

Rats were anesthetized with isoflurane and implanted with a catheter in the jugular vein. 

Animals were positioned on a stereotaxic apparatus and burr holes were drilled to 

accommodate recording and ground electrodes. Rat body temperature was maintained 

throughout the experiment at 37°C using an isothermal pad. Glass electrodes backfilled 

with 0.5 M Na+-acetate and 2% Chicago Sky Blue (5–15 MU) were positioned in the lateral 

VTA (coordinates: 5.3–6.0 mm posterior from bregma, 0.8–1.4 lateral to midline and 7.5–

8.5 ventral to brain surface). Electrical signals were filtered at 0.3–5 kHz. DA neurons were 

identified in vivo using established electrophysiological and pharmacological criteria. After 

6–20 min of stable baseline recording, we infused 0.3 g/kg of ethanol i.v. every 3 min (for 

a final dose of 1.5 g/kg) and recorded single-unit activity. Drug-induced changes were 

calculated as a percent of baseline for each 3 min period. Following ethanol 

administration, quinpirole and eticlopride were infused (i.v., 0.25 mg/kg) to aid in the 

identification of VTA neurons. Chicago Sky Blue injections were used to identify the 

recording sites. 

Ex Vivo Electrophysiology 

Horizontal slices (230 mm) containing the VTA were cut (Leica Microsystems) from adult 

Long-Evans rats. Most cells were also backfilled with neurobiotin for immune identification. 

Spontaneous inhibitory postsynaptic currents were recorded in voltage-clamp mode in the 

whole-cell configuration. Synaptic GABAA inputs were isolated pharmacologically. The 

liquid junction potential between the bath and the pipette solutions was corrected. 
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Gramicidin perforated-patch recordings were applied to maintain the anionic gradient 

during reversal potential measurements.  

Statistical Analysis 

ANOVA with repeated-measures (in SPSS for Windows) was used to analyze the daily 

ethanol intake, dialysate DA concentrations, and DA firing rate. A two-tailed t-test 

assuming equal variance was used to assess differences between the mean sIPSC 

frequency and mean ethanol intake levels. Significance for all analyses was determined 

by p < 0.05. 
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Results 

Adolescent Nicotine Increases Ethanol Self-Administration  

We first examined how exposure to nicotine during adolescence influenced subsequent 

ethanol self-administration in adulthood. Animals were administered daily nicotine or 

saline injections throughout adolescence (p28-p42), and ethanol self-administration was 

measured in adulthood p70-p90) (Figure 1A). Operant responses to saccharin (0.125%, 

w/v) were first established, followed by the introduction of ethanol (2–4%) into the drinking 

solutions over the first seven days (Ostroumov et al., 2016).  Adolescent nicotine 

pretreatment significantly increased ethanol self-administration in adulthood compared to 

adolescent saline-treated controls (Figure 1B): group F(1,12) = 22.43, p<0.01).  Mean 

ethanol intake across the first 7 days was 1.10 ± 0.07 g/kg for the nicotine-pretreated 

group and 0.71 ± 0.05 g/kg for the saline pretreated group (Figure 1C; p < 0.01 n = 7 

animals/group). The average intake in the adolescent nicotine group (1.83 ± 0.11 g/kg) 

was also significantly elevated at higher ethanol concentrations compared to saline 

controls (1.30 ± 0.16 g/kg) (Figure 1D; p < 0.05; n = 9, 5 animals/group). Adolescent 

nicotine animals also drank significantly more ethanol compared to saline controls after 

complete removal of saccharin from the drinking solution (Figure 1E; p < 0.01, n=11, 9 

animals/group). Therefore, adolescent nicotine induced robust changes in acquisition and 

maintenance of ethanol-drinking behavior throughout adulthood. 

To examine the effect of adult nicotine exposure on subsequent ethanol consumption, 

adult animals were administered the same daily nicotine or saline injections over a two 

week period. Allowing a similar delay between nicotine and ethanol, self-administration 

was assessed in these animals approximately 30 days later (Figure 2A). Adult nicotine 

pretreatment failed to increase subsequent ethanol self-administration compared to adult 
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saline controls (Figure 2B): group F(1,9) = 0.01, p > 0.05.  The average intake in the adult 

nicotine group (0.69 ± 0.07 g/kg, red bar) was not statistically different from adult saline 

controls (0.68 ± 0.06 g/kg, black bar) or adolescent saline controls (0.71 ± 0.05 g/kg, dotted 

line) (Figure 2C; p > 0.05, n= 7, 4 animals/group). These results suggest adolescent, but 

not adult, nicotine exposure produces long-lasting elevations in subsequent ethanol self-

administration. 

Adolescent Nicotine Attenuates Ethanol-induced DA Activity In Vivo  

Given that ethanol self-administration involves DA signaling in the nucleus accumbens 

(NAc) (Gonzales et al., 2004), we hypothesized that adolescent nicotine might also alter 

ethanol-induced DA signaling. To test this hypothesis, we conducted accumbal 

microdialysis to measure DA responses in adult animals that were treated with either 

nicotine or saline during adolescence (Figure 3A).  A sustained increase in DA levels were 

observed in saline-treated controls upon ethanol administration (Figure 3B, black trace). 

Adolescent nicotine-treated animals, in comparison, showed a blunted DA response to 

ethanol (Figure 3B, red trace): group x time: F(7,98) = 2.23 , p < 0.05. No significant 

differences in baseline DA levels were detected between saline and nicotine groups: 1.01 

± 0.24 nM in saline-treated versus 1.13 ± 0.24 nM in nicotine-treated animals.   

Ethanol stimulates DA release in the NAc by increasing the firing rate of VTA DA neurons 

(Foddai et al., 2004). To determine whether adolescent nicotine exposure altered DA 

neuron firing rate in vivo, we conducted single-unit recordings of VTA DA neurons in 

anesthetized adult rats. DA neurons were recorded in the lateral VTA and were identified 

based on their electrophysiological and pharmacological properties. The spontaneous 

firing rate of VTA DA neurons was measured before and after intravenous infusion of 
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ethanol (0.6–1.5 g/kg) (Figure 3C). Ethanol administration induced an increase in the 

spontaneous firing rate of VTA DA neurons in saline-treated controls (123.7 ± 4.9 % of 

basal). In contrast, adolescent nicotine treated animals failed to demonstrate a significant 

firing-rate increase upon ethanol administration (97.4 ± 2.2 % of basal) (Figures 3D; n = 

7-17 rats/group, p < 0.01). Together with the microdialysis experiments, these data 

indicate that ethanol-induced DA signaling in adulthood was blunted in animals treated 

with nicotine during adolescence. 

Adolescent Nicotine Alters GABA transmission and Anion Homeostasis Ex Vivo 

Our previous results showed that nicotine pretreatment attenuated dopamine responses 

to ethanol via enhanced GABA release onto DA neurons (Doyon et al., 2013a).  To 

examine if adolescent exposure similarly altered GABAergic neurotransmission, slices 

were prepared from adult animals treated with nicotine or saline during adolescence 

(Figure 4A).    We performed whole-cell patch-clamp recordings of VTA DA neurons and 

measured spontaneous inhibitory postsynaptic currents (sIPSC) in the presence of 

ethanol (Figure 4B). In control animals, bath-applied ethanol produced a small increase in 

sIPSC frequency (114.3 ± 4.1 % of basal). In contrast, DA neurons from nicotine animals 

showed significantly greater ethanol-induced potentiation of sIPSC frequency compared 

to the control response (177.4 ± 5.6 % of basal) (Figures 4C-D, black and red data; n = 8-

13 cells/group, p < 0.01).  These results suggest adolescent nicotine exposure leads to 

greater inhibition of DA neurons upon ethanol exposure in adulthood. 

Increased GABA release onto DA neurons upon ethanol exposure was previously shown 

to arise from depolarizing shifts in the GABAA reversal potential (EGABA) in VTA GABA 

neurons (Ostroumov et al., 2016). EGABA is the membrane potential at which evoked IPSCs 
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change their direction from inward to outward. We hypothesized that adolescent nicotine 

produced depolarizing shifts in EGABA. To test this, we performed gramicidin perforated 

patch-clamp recordings in VTA GABA neurons to preserve the intracellular anion 

concentrations (Figure 4E), and we measured GABAA IPSCs at different membrane 

potentials (Figure 4F). VTA GABA neurons from adolescent nicotine-treated animals 

showed a significantly more depolarized EGABA value compared to saline-treated controls 

(Figures 4G): -66.1 ± 1.5 mV after nicotine (red data) versus -87.0 ± 3.9 mV in controls 

(black data), n = 6-7 cells/group, p < 0.01.  This result suggests that depolarizing shifts in 

EGABA give rise to altered responses to ethanol. 

Enhancing chloride extrusion in the VTA prevents elevated intake after adolescent nicotine 

exposure 

A depolarizing shift in EGABA reflects a higher intracellular chloride concentration, which in 

adult neurons is often mediated by a decrease in chloride extrusion capacity.  Given that 

adolescent nicotine altered anion homeostasis in VTA GABA neurons, we next determined 

whether this adaptation mediated increased self-administration after adolescent exposure 

to nicotine.  Depolarizing shifts in EGABA can be restored by enhancement of chloride 

extrusion with the KCC2 agonist CLP290.  Adolescent-treated animals received bilateral, 

intra-VTA infusions of CLP290 (45 µM) or vehicle prior to the first ethanol self-

administration session (Figure 5A). However, compared to adolescent nicotine animals 

that received intra-VTA infusion of vehicle, intra-VTA infusion of CLP290 significantly 

decreased ethanol consumption (Figure 5B): group F(2,31) = 19.66, p<0.01). Mean 

ethanol intake over seven days was also significantly lower than those animals that 

received infusions of CLP290 (0.79 ± 0.04 g/kg) compared to animals that received 

infusions of vehicle (1.06 ± 0.04 g/kg) (Figure 5C n= 9-11 animals/group).  VTA infusions 
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of CLP290 did not significantly alter ethanol consumption in adolescent saline animals 

(0.66 ± 0.04 g/kg, n=4, data not shown). 
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Discussion 

Though epidemiological studies consistently report associations between adolescent 

tobacco exposure and pathological drinking (DiFranza & Guerrera, 1990; McKee et al., 

2007), the neuronal adaptions promoting ethanol consumption after early nicotine 

exposure have not been well-delineated. In adult animals exposed to nicotine during 

adolescence, we found altered chloride homeostasis in GABAergic neurons of the VTA 

correlated with an increase in ethanol self-administration.  Adolescent nicotine 

pretreatment enhanced inhibition of DA neurons and attenuated mesolimbic DA 

responses to ethanol, both of which are known consequences of depolarizing shifts in 

GABAAR (Ostroumov et al., 2016). Most importantly, enhancing chloride transporter 

function within the VTA of adolescent nicotine-treated animals blocked the observed 

elevated ethanol intake during adulthood.    

Although GABAA signaling normally mediates inhibitory synaptic transmission in the adult 

mammalian nervous system, it can shift toward excitation under certain pathological 

conditions (De Koninck, 2007) and may be an important form of plasticity in adult animals 

(Chung, 2012; Astorga et al., 2015; Doyon et al., 2016). Depolarizing shifts in GABAAR 

signaling correlated with prior adolescent nicotine exposure (Figure4G) and were required 

subsequent increased ethanol consumption (Figure 5).   This form adaptation arises from 

compromised chloride extrusion and can be rescued using CLP290, an activator of the 

chloride transporter KCC2 (Gagnon et al., 2013; Kaila et al., 2014; Ostroumov et al., 2016). 

Shifts toward excitatory GABA may occur elsewhere in the brain, but the increased ethanol 

self-administration was prevented if this shift was blocked in the VTA of nicotine-treated 

animals (Figure 5). Thus, adolescent nicotine induces long-lasting, adaptions in anion 
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homeostasis within the VTA that may serve as a gateway for subsequent pathological 

drug use.  

Decreased DA responses to ethanol in adulthood correlated with prior adolescent nicotine 

exposure and altered chloride homeostasis (Figure 3). Although the DA response was not 

directly examined as a cause of the increased self-administration, decreases in drug 

reward sensitivity are often associated with compensatory increases in drug self-

administration under relatively low levels of response effort (Koob & Le Moal, 2001). 

Others have reported that enhancing DA signaling exogenously attenuates voluntary 

drinking in rats (Bass et al., 2013). Furthermore, the correlation between decreased 

ethanol-induced DA release and increased self-administration has been previously 

reported in rodent studies (Brodie & Appel, 2000; Ramachandra et al., 2007; Doyon et al., 

2013a). 

Comparable nicotine injections administered to adult animals failed to increase 

subsequent ethanol self-administration (Figure 2), suggesting that the long-lasting effects 

of nicotine on mesolimbic responses to alcohol are unique to the adolescent window of 

exposure. Other studies support the notion that nicotine exposure, particularly during 

adolescence, induces robust and long-lasting changes in VTA gene expression. (Doura 

et al., 2010). Future work should determine if expression of transporters known to regulate 

anion homeostasis are directly affected by adolescent exposure to nicotine.  

Adolescence is thought to be critical period of neural development and drug exposure 

during this time may induce persisting neural and behavioral alterations (Chambers et al., 

2003; Spear, 2016). Our study describes the adaptations that persist into adulthood 

following adolescent nicotine exposure. Further, we identified altered chloride 
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homeostasis as an important alteration that influences subsequent drinking in adulthood 

and highlights novel potential therapeutic intervention strategies. Future work should 

consider the involvement of chloride homeostasis in other phases of drug addiction and 

disorders of motivated behavior.  
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Figure 4.1 Adolescent nicotine increases ethanol self-administration. (A) Adolescent 
animals were administered daily injections of saline or nicotine from postnatal day (p) 28-
42. Adult ethanol self-administration was assessed four weeks later. (B) Adolescent 
nicotine-treated rats showed greater ethanol intake compared to adolescent saline-treated 
controls. **Significantly different from the control group by ANOVA with repeated 
measures, p < 0.01, n = 7-9 per group (C) Mean daily ethanol intake over the first seven 
self-administration sessions. **Significantly different by t test, p < 0.01. (D) After six days 
of ethanol fading, intake of 8% ethanol with saccharin was significantly elevated in 
adolescent nicotine-treated animals compared to saline-treated controls. The mean intake 
was measured over seven self-administration sessions.  *Significantly different by t test, 
p< 0.05, n = 5-8 animals per group. (E) After saccharin removal, intake of 8% ethanol was 
significantly elevated in adolescent nicotine treated animals compared to saline treated 
controls. The mean intake was measured over seven self-administration sessions.  
**Significantly different by t test, p< 0.05, n = 9-11 animals per group. 
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Figure 4.2 Adult nicotine does not influence subsequent ethanol self-
administration. (A) Adult animals were administered daily injections of saline or nicotine  
from postnatal day (p) 60-74. Adult ethanol self-administration was assessed four weeks 
later. (B) Average daily intake between animals treated with saline vs. nicotine during 
adulthood. Adult nicotine-treated animals did not drink significantly greater ethanol 
compared adolescent-saline treated controls, p > 0.05, n= 5, 7 per group (C) Mean daily 
ethanol intake over the first seven self-administration sessions. Ethanol consumption in 
adolescent saline control rats is shown for comparison (dotted horizontal line). Adult 
nicotine-treated animals (red bar) did not consume significantly more ethanol than saline-
treated controls (black bar),    p > 0.05, n = 5, 7 per group. 
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Figure 4.3 Adolescent nicotine attenuates dopamine responses to ethanol in vivo. 
(A) Animals were exposed to saline or nicotine throughout adolescence (p28-42) and in 
vivo dopamine responses to ethanol  experiments were measured in adulthood. (B) Time 
course of DA release in the NAc measured via microdialysis following ethanol 
administration in saline-treated controls (black) and nicotine-treated rats (red). Ethanol 
(1.5 g/kg) was injected i.v. during the 5 min period (shaded vertical gray bar). *Significantly 
different by ANOVA with repeated measures, p < 0.05, n = 7, 9 per group. (C) 
Representative recordings from putative DA neurons before and after ethanol 
administration (0.6–1.5 g/kg) in the saline-treated (black) and nicotine-treated (red) 
groups. No significant differences in the mean basal firing rate were detected. (C) In saline-
treated controls (black), ethanol increased the firing rate of putative DA neurons. In the 
nicotine-treated group (red), ethanol failed to increase the firing rate of putative DA 
neurons. **Significantly different from the control group by t test, p < 0.01, n = 7, 17 rats 
per group. 
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Figure 4.4 Adolescent nicotine alters GABA transmission and anion homeostasis 
ex vivo. (A) Animals were exposed to saline or nicotine throughout adolescence (p28-42) 
and in vitro electrophysiology  experiments were conducted in adulthood. (B) 
Spontaneous inhibitory postsynaptic currents (sIPSCs) onto VTA DA neurons were 
recorded using the whole-cell patch-clamp configuration. (C) Representative recordings 
of sIPSCs before and after ethanol administration in the saline-treated (black) and 
nicotine-treated (red) groups. (D) Mean changes in the sIPSC frequency after ethanol 
application in VTA DA neurons. DA neurons from nicotine-treated animals (red) 
demonstrated a significantly increased ethanol-mediated sIPSC frequency compared to 
neurons from saline-treated controls (black). **Significantly different from control and 
RU486-treated groups by t test, p < 0.01, n = 8,13 cells per group. (E) GABAergic input 
onto VTA GABA neurons was recorded using gramicidin perforated patches at different 
holding potentials to measure nicotine-induced alterations in anion homeostasis. GABAA 
IPSCs were evoked by electrical stimulation in the presence of DNQX, AP5, and 
CGP55845. (F) Representative IPSCs recordings from saline (black) and nicotine-treated 
(red) animals at the given holding potentials. The IPSCs reverse direction at the EGABA. 
For display, the traces were filtered and stimulus artifacts were removed. (G) VTA GABA 
neurons from nicotine-treated animals (red, **p < 0.01 by t test) demonstrated a 
significantly more positive EGABA value compared to neurons from saline-treated control 
animals (black square), n = 6, 7 cells/group. 
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Figure 4.5 Enhancing chloride extrusion in the VTA prevents elevated intake after 
adolescent nicotine exposure. (A) Vehicle or CLP290 was infused bilaterally intra-VTA 
(45 µM at 0.5 mL/min over 2 min) prior to the first ethanol self-administration session. (B) 
Average daily intake between adolescent nicotine animals treated with CLP290 or vehicle 
prior to self-administration. Adolescent nicotine animals that receive CLP290 rats showed 
reduced ethanol intake compared to adolescent nicotine animals that receive vehicle 
infusions and were indistinguishable from adolescent saline controls. **Significantly 
different by ANOVA with repeated measures, p < 0.01. (C) Mean daily ethanol intake over 
the first seven self-administration sessions. After CLP290 administration, adolescent 
nicotine animals consumed significantly less ethanol compared to the vehicle injected 
group (red). Ethanol consumption in adolescent saline vehicle-treated control rats is 
shown for comparison (dotted horizontal line). **Significantly different from the VTA 
vehicle group by t test, p < 0.01, n = 9–13 rats/group. 
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CHAPTER 5 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

Alyse M. Thomas 

 

Overview 

Alcohol is the oldest and most commonly used psychoactive substance in the world 

(McGovern, 2009; WHO, 2014). Like other drugs of abuse, alcohol’s reinforcing properties 

can promote pathological drinking patterns (NIAAA, 2010).  The risks of excessive alcohol 

use include alcohol-related injury, disease, and the development of alcohol use disorders 

(NIAAA, 2010; WHO, 2014).  

Epidemiological studies reveal that stressful conditions and tobacco use are associated 

with elevated alcohol consumption (Anthony & Echeagaray-Wagner, 2000; Keyes et al., 

2011), leading to the hypothesis that stress or nicotine promote pathological drug use via 

adaptions in the brain (Koob & Kreek, 2007; Spear, 2016). It is well established that 

alcohol, stress hormones, and nicotine act within the mesolimbic dopamine circuitry to 

promote behavioral reinforcement (Piazza et al., 1993; Corrigall et al., 1994; Gatto et al., 

1994; Rodd-Henricks et al., 2000), implicating this region as a locus for their interaction. 

Based on previous work implicating glucocorticoid and nicotinic receptors in ethanol 

reinforcement (Ericson et al., 1998; Fahlke & Hansen, 1999; Le et al., 2000a; Vendruscolo 

et al., 2012), we hypothesized that prior exposure to stress or nicotine promoted drinking 

via adaptations in the mesolimbic circuitry. 
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The findings presented in the second chapter of this thesis describe a novel mechanism 

by which stress hormones influence subsequent behavioral and biological responses to 

alcohol. Drug-naïve animals subjected to acute restraint stress subsequently showed 

elevated alcohol intake compared to non-stressed controls.  In vivo microdialysis 

experiments revealed that stress blunted subsequent accumbal dopamine responses to 

alcohol via excitatory GABA transmission in the ventral tegmental area. Importantly, this 

study identified compromised function of the potassium chloride co-transporter KCC2 as 

the molecular adaptation underlying excitatory GABA transmission. Moreover, we 

demonstrated that excitatory GABA transmission and functional KCC2 downregulation 

within the mesolimbic circuitry were causally related to the observed increases in alcohol 

self-administration.  

The third chapter demonstrated how stress hormone signaling within the ventral tegmental 

area may contribute to the co-use of addictive drugs like nicotine and alcohol. Exposure 

to acute nicotine blunted dopamine responses to alcohol and increased alcohol self-

administration. Importantly, my work revealed that stress hormones acting locally within 

the VTA mediated this nicotine-alcohol interaction. Blocking the activation of stress 

hormone receptors during nicotine exposure prevented blunted dopamine responses to 

alcohol and normalized drinking to control. These findings reveal that nicotine recruits 

stress hormone pathways to promote subsequent alcohol use. 

The fourth chapter described that adolescent exposure to nicotine produces long-lasting 

alterations in reward-related responses to alcohol, suggesting a biological mechanism 

through which nicotine could act as a gateway drug. Adolescent nicotine treated animals 

showed attenuated dopamine signaling and elevated alcohol self-administration 

throughout adulthood. These adaptations corresponded with depolarizing shifts in GABA 
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transmission and increased inhibition of dopamine neurons. Pharmacological 

enhancement of KCC2 restored drinking to control levels in adolescent nicotine-treated 

animals, suggesting that compromised chloride extrusion contributes to elevated alcohol 

self-administration after adolescent exposure to nicotine.  Taken together, this body of 

work describes a previously unknown mechanism within the mesolimbic circuitry that 

promotes alcohol consumption after exposure to nicotine or stress. 

KCC2 as a Novel Regulator of Mesolimbic Activity and Alcohol Consumption 

The results presented here identify KCC2 as a regulator of mesolimbic responses to 

alcohol at a synaptic, cellular, circuit, and behavioral level. KCC2 is a neuron-specific 

chloride (Cl-) extruder (Payne et al., 1996; Payne, 1997; Williams et al., 1999; Karadsheh 

& Delpire, 2001) found predominantly in non-dopamine neurons of the midbrain (Gulacsi 

et al., 2003; Taylor et al., 2016)  and is a critical determinant of GABAAR synaptic 

responses (Chamma et al., 2012; Kahle et al., 2013; Kaila et al., 2014). In mature neurons, 

internal [Cl-] is normally relatively low (~5 mM), which yields a hyperpolarized GABAA 

reversal potential (EGABA) relative to the resting membrane potential. Under these 

conditions, GABAA receptor activation results in an inward Cl- gradient, decreasing the 

probability of action potential generation. However, in the context of reduced KCC2 

function, even small elevations of internal [Cl-] can produce depolarizing shifts in 

GABAergic responses that increase the probability of action potential generation 

(Raimondo, 2017). In cases of severe KCC2 downregulation, or as seen during 

development, excitatory GABA transmission dominates (Ben-Ari, 2002).  

After exposure to stress or adolescent nicotine, we observed a depolarizing shift in 

GABAergic responses within VTA GABA neurons.  Illustrating the dominant influence of 
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compromised chloride extrusion on cell firing properties, computational models of CA1 

pyramidal neurons indicate that increasing internal [Cl-] by 2.5 mM generates a 40 percent 

increase in cellular firing rate (Saraga et al., 2008).   Accordingly, reduced KCC2 function 

and excitatory GABA transmission promoted VTA GABA neuron firing upon ethanol 

exposure to influence broader circuit function and behavior, as measured by in vivo 

microdialysis and operant self-administration. My results indicated that excitatory GABA 

transmission in the VTA blunts subsequent accumbal dopamine responses to ethanol and 

increases alcohol self-administration, given that blocking excitatory GABA responses with 

acetazolamide normalized dopamine signaling and intake levels.   

Using the KCC2 agonist, CLP290, we demonstrated that increasing Cl- extrusion 

selectively reduced alcohol intake in stress and adolescent nicotine-treated animals. 

Importantly, this is the first study demonstrate the efficacy of VTA infusions of CLP290 in 

regulating drug self-administration. This compound restores KCC2 function, thereby 

producing hyperpolarizing shifts in EGABA (Gagnon et al., 2013). Given that KCC2 is found 

strictly in the CNS and the extended bioavailability of the prodrug CLP290 (Gagnon et al., 

2013), it is reasonable to propose that this compound holds therapeutic potential.  Future 

experiments should explore if compromised KCC2 function and altered GABA 

transmission contribute to other addiction phenotypes such as withdrawal and relapse. 

Vulnerability to Nicotine during Adolescence 

Adolescence is recognized to be a critical period of cognitive development that confers 

risk for drug use and addiction (Chambers et al., 2003; Crews et al., 2007).     During this 

time, there is a developmental dissociation involving heightened reward processing in 

subcortical brain regions and diminished inhibitory control in frontal cortical areas 
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(Doremus-Fitzwater et al., 2010; Casey et al., 2011). Adolescents are more likely to initiate 

drug use than any other age group, with most smokers having their first cigarette before 

the age of 18 (Richter et al., 2017). This early exposure to tobacco is associated with a 

significant risk for subsequent drug use disorders throughout adulthood (Miller & Gold, 

1998; Chen et al., 2002; Riala et al., 2004).  

Our study examined how exposure to nicotine during adolescence influenced responses 

to alcohol in adulthood. We identified long-lasting adaptions in VTA GABA transmission 

that gave rise to elevated ethanol consumption in adulthood. These effects were unique 

to adolescent nicotine exposure, since similar injections of nicotine in adults failed to 

increase subsequent ethanol self-administration. Future work should consider how such 

long-lasting adaptations are unique to nicotine exposure during adolescence. A related 

study suggests that chronic nicotine primes responses to cocaine via epigenetic 

mechanisms. Nicotine enhanced subsequent cocaine-induced transcriptional responses 

of the FosB gene through inhibition of histone deacetylase (Levine et al., 2011). 

Interestingly, recent models of chronic pain have shown epigenetic suppression of 

KCC2 expression through histone modification (Lin et al., 2017). It would be of great 

interest to determine if adolescent exposure to nicotine acts through acetylation 

mechanisms to influence KCC2 expression and mesolimbic responses to alcohol.  

Ethanol Reinforcement and the Mesolimbic Dopamine System 

We showed that prior exposure to stress or nicotine promoted subsequent ethanol self-

administration and blunted dopamine responses to ethanol.  Accumbal dopamine 

signaling is thought to mediate the positive reinforcing effects of ethanol (Berke & Hyman, 

2000; Grace, 2000; Weiss & Porrino, 2002; Gonzales et al., 2004; Stuber et al., 2012). 
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While it is generally accepted that inhibiting dopamine neurons interrupts learning and 

activating dopamine neurons promotes learning (Chambers et al., 2003; Steinberg et al., 

2013), the consequences of intermediate dopamine signaling on behavioral reinforcement 

have not directly been tested. Our data suggests that blunted dopamine responses elicits 

compensatory increases in reward-seeking behaviors.  Other groups have reported similar 

correlations between blunted dopamine responses and elevated drinking in rodents 

(Brodie & Appel, 2000; Ramachandra et al., 2007). Human neuroimaging studies also 

report that attenuated mesolimbic activity predicts problematic drug use and addiction 

(Volkow et al., 1997; Melis et al., 2005; Buchel et al., 2017). Thus, dampened dopamine 

responses may promote drug use. To test this hypothesis, endogenous dopamine 

responses should first be characterized during operant self-administration, followed by 

direct manipulation of dopamine signaling using pharmacological or optogenetic 

approaches. Based off our results and others, we predict that reductions in dopamine 

signaling would increase ethanol intake. Alternatively, in animals previously exposed to 

stress or nicotine, exogenously enhancing dopamine should reduce overall consumption.  

Since dopamine signaling was not causally linked to drinking in our studies, it is possible 

that VTA GABA transmission promotes drinking via dopaminergic as well as non-

dopaminergic reward signaling pathways.  Blocking GABAA receptors in the VTA was 

previously shown to reduce ethanol intake in rats (Nowak et al., 1998), suggesting their 

involvement in ethanol reinforcement.  Further, non-dopaminergic pathways including the 

brainstem tegmental pedunculopontine nucleus have been previously reported in the 

context of opiate and ethanol reward (Bechara & van der Kooy, 1989; Laviolette & van der 

Kooy, 2001; Laviolette et al., 2004; Laviolette & van der Kooy, 2004a; Ting et al., 2013a; 

Ting et al., 2013b), and are associated with depolarizing shifts in VTA GABAA receptors 
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(Laviolette et al., 2004). Selective manipulation of VTA GABA projections in the TPP (and 

other VTA GABA projection sites) during ethanol self-administration would help 

demonstrate an independent role for VTA GABA transmission in ethanol reward. The 

overarching goal of such experiments is to develop a circuit map of reward pathways 

underlying ethanol reinforcement.     

Our studies measured ethanol-induced accumbal dopamine release using microdialysis, 

a technique that permits detection of dopamine levels over long timescales (i.e. minutes) 

(Di Chiara & Imperato, 1988; Floresco et al., 2003). Though this approach provides a 

useful readout of ethanol-induced dopamine signaling, conducting cyclic voltammetry 

experiments would permit examination of sub-second changes in dopamine firing patterns 

(Floresco et al., 2003; Robinson et al., 2009; Howard et al., 2011).  Dopamine neurons 

can exhibit either single-spike or burst-firing patterns (Grace & Bunney, 1984; Samson et 

al., 1993; Weiss et al., 1993; Myers & Robinson, 1999; Kaczmarek & Kiefer, 2000; 

Czachowski et al., 2001; Hyland et al., 2002; Samson & Chappell, 2003). Salient or 

rewarding stimuli trigger burst firing (Hyland et al., 2002) and this signal thought to mediate 

reward-prediction learning (Schultz, 1998; 2007). Acting through multiple brain targets, 

alcohol influences dopamine firing and release over a broad timescale (Mereu et al., 1984; 

Imperato & Di Chiara, 1986; Yoshimoto et al., 1992; Weiss et al., 1993; Yim et al., 2000; 

Foddai et al., 2004; Howard et al., 2009; Robinson et al., 2009; Carrillo & Gonzales, 2011). 

The data we obtained with microdialysis provide a clear demonstration of differences in 

dopamine signaling in stressed or nicotine-treated animals compared to controls, yet these 

results can mask adaptations phasic dopamine release within the accumbens (Robinson 

et al., 2009). Thus, the application of voltammetric techniques would greatly aid the 
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interpretation of our results and provide a clearer picture of how dopamine responses to 

ethanol are altered after exposure to stress or nicotine.   

Glucocorticoid receptor influence over KCC2 

The observed downregulation of KCC2 was dependent on glucocorticoid receptor (GR) 

activation and persisted 15 hours after acute restraint stress. Similar effects were 

observed after 1-hour corticosterone incubation ex vivo. GR activation is typically 

associated with transcription-dependent signaling mechanisms, and GR activity could 

directly influence ion transport function via genomic action (Pondugula et al., 2013). 

However, the specific intracellular signaling cascades linking VTA GR activation to altered 

chloride homeostasis remain unknown.    It is increasingly appreciated that glucocorticoids 

act via both genomic and non-genomic signaling cascades (Joels & Baram, 2009; 

McEwen, 2012).  It is hypothesized that these cascades work in concert across time: fast 

non-genomic modulation occurring over a timescale of seconds to minutes, followed by 

slower genomic modulation occurring over subsequent minutes to hours (Haller et al., 

2008; Teng et al., 2013). Thus, adaptations in KCC2 expression following GR activation 

could occur through a number of signaling pathways. 

The literature surrounding activity-dependent changes in KCC2 also suggests that 

downregulation could occur via a number of mechanisms. Activity-dependent regulation 

of KCC2 expression has been observed in response to long-term potentiation (Wang et 

al., 2006), repetitive pairing of pre- and post-synaptic activities (Woodin et al., 2003), 

repetitive post-synaptic spiking (Fiumelli et al., 2005), and NMDAR activation (Kitamura et 

al., 2008).  In one study, increased cellular activity was shown to reduce KCC2 expression 

via endogenous BDNF–TrkB signaling (Rivera et al., 2004) implicating BDNF as one 

possible mediator of interactions between stress hormones and KCC2.  
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Although initially characterized by its neurotrophic role in neuronal survival and 

differentiation, it is now widely accepted that BDNF acts as a neuromodulator to influence 

activity-dependent synaptic plasticity (Kuczewski et al., 2009) and is implicated the 

development of drug addiction (McGough et al., 2004; Nestler, 2005). Given that (i) 

stressful experiences are known to recruit BDNF signaling within the VTA (Berton et al., 

2006; Krishnan et al., 2007; Fanous et al., 2010; Walsh et al., 2014) and that (ii) BDNF is 

a known modulator of KCC2 function (Rivera et al., 2002; Rivera et al., 2004; Wake et al., 

2007), it follows that stress hormones could regulate chloride homeostasis through BDNF 

signaling in the VTA. Future studies should therefore examine the recruitment of BDNF 

signaling cascades in the functional regulation of KCC2. 

Multiple transcription factors, kinases, and phosphatases are known to regulate KCC2 

expression (Medina et al., 2014). We observed functional KCC2 downregulation via 

reduced phosphorylation at serine 940 (S940). Phosphorylation at S940 by protein kinase 

C (PKC) contributes to membrane stabilization whereas dephosphorylation by protein 

phosphatase 1 (PP1) contributes to membrane destabilization and endocytosis (Lee et 

al., 2011). Recent studies have described the PKC-dependent regulation of KCC2 during 

physiologically relevant processes: (i) activity-dependent attenuation of KCC2 function 

(Fiumelli et al., 2005), (ii) tonic activation of the KCC2 by group I metabotropic glutamate 

receptors (mGluR1s) (Banke & Gegelashvili, 2008), and (iii) activation of the KCC2 via 

serotonin 2A receptors (Bos et al., 2013). However, these studies failed to demonstrate 

the direct involvement of PKC over other intermediate signaling molecules. In contrast, 

NMDA receptor activation produced rapid, direct PP1-dependent dephosphorylation of 

KCC2 at S940 (Lee et al., 2011).  In order to confirm involvement of PKC in our study, 

VTA slices could be incubated in corticosterone and OKA (PP1 inhibitor) prior to western 
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blot analysis of KCC2 S940 phosphorylation levels. This approach represents an 

important next step towards a more comprehensive understanding of KCC2 regulation 

within the VTA after exposure to stress hormones.  

Concluding Remarks  

Stress and drugs of abuse create a permissive environment for cellular plasticity and 

behavioral adaptation. The work presented here sheds light on a novel mechanism by 

which stress hormones and nicotine can influence mesolimbic responses to promote 

alcohol consumption. Though we temporally separated stress and nicotine exposures 

from subsequent ethanol self-administration to permit mechanistic investigation, 

substantial evidence indicates that alcohol and nicotine are used together, and can 

independently recruit stress hormone signaling within the mesolimbic dopamine system. 

Upon each drug exposure, the distinct phases of intoxication and withdrawal serve as 

separate activators of the HPA axis and downstream corticosterone release (Ellis, 1966; 

Tabakoff et al., 1978; Rivier et al., 1984).  

Given this recruitment, it should be no surprise that glucocorticoids play a role in the 

development of addictive phenotypes, including compulsive drinking (Vendruscolo et al., 

2012), cognitive deficits (Jacquot et al., 2008), drug-craving (Fox et al., 2007; Sinha et al., 

2009), and the reinstatement of drug-seeking behaviors (Simms et al., 2012). Based off 

this literature and others, the GR antagonist mifepristone is currently being tested in 

humans for the treatment of alcohol dependence and withdrawal (Vendruscolo et al., 

2015; Donoghue et al., 2016). In addition to improved addiction treatment strategies, it is 

imperative to bolster research efforts to determine the cause of pathological behaviors in 

the first place. With that effort in mind, we characterized changes in mesolimbic 

adaptations after exposure to stress or nicotine and identified KCC2 as a novel molecular 
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adaptation contributing to elevated alcohol consumption. Looking forward, the overarching 

goal of our work is to illuminate how environmental exposure influences brain function to 

promote certain behaviors, and then apply this knowledge in the treatment of mental 

health disorders.    
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APPENDIX 

Accumbal Cannulation and Jugular Catheterization Surgery Protocol    

Surgery setup 

1. Turn on germinator one hour before and autoclave tools 

2. Check anesthesia/O2 levels 

3. Xylocaine 

4. Ketoprofen 

5. Sodium chloride 

6. Iodine with non-sterile qtips dipped 

7. Sterile qtips 

8. Diapers 

9. Drape 

10. Paper towels with dry qtip 

11. Thermometer with heating pad 

12. Ear bars in EtOH then allow to air dry 

13. Nair 

14. Cauterizer 

15. EtOH spray bottle 

16. Surgical tools 

17. Drill bit 

18. 5-0 suture thread 

19. Catheter tube (**run with ethanol then fill with saline/heparin in 1mL syringe and 

spray entire thing with ethanol) 

20. Giant screw, catheter cap, cannula, 3 small screws in Ethanol 

 

Animal Prep 

1. Weigh animal 

2. Isoflurane Anesthesia to 4 to put animal down then turn to 2-2.5 

3. Once down move to heating blanket (Do not turn on yet)  

4. Place tube around mouth 

5. Put gel on eyes 

6. Apply nair 

a. Remove hair using qtips and wipes 

b. Apply iodine 

Surgery: Part 1 Vertical cut and catheter implantation 

1. Cut vertical line down to skull with the scalpel 

2. Place qtip over cut and then lay down a wipe as you turn animal over 
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3. Turn heating blanket on but be sure it is only warming upper portion of animals 

body 

4. Apply nair to pulse  

a. Remove hair with qtips and wipes 

b. Add iodine 

5. Pull skin in center of pulse 

a. Pull skin up and cut a small bit of skin off 

b. Using two teethed forceps, tear away outer tough tissue and then inner 

fatty tissue until you reach a blood vessel that is closely associated to 

muscle. 

c. Using the forceps to grab a piece of muscle, pull away the tissue from the 

vein. Do this until you are able to pinch the forceps under the vessel. Do 

not hesitate to use force or pull away more tissue. (The main concern is 

that we do not damage the vein) 

d. Once the vein is out on the forceps, put saline on the scoopula and place 

it under the vein 

6. Cut partially with scissors 

a. Insert end of catheter tube into the hole 

b. Once this is done, suck up blood to ensure you are inside the vein and 

then inject a small amount of saline  (yellow tipped catheter) 

7. With suture thread do 2 horizontal knots (3-4 per knot), leaving tails. Then do 2 

diagonal knots (3-4/knot)  

a. Inject saline each time 

8. Dry off and add cement 

a. Wait until it takes form and then push off the scoopula and back into skin 

b. Inject saline 

9. Carefully turn animal over and use clamp scissors to enter back of vertical cut 

and stay close to skin as you directly move toward catheter line 

a. Place cannula cap up into the clamp and pull back through the scalp just 

until the tube disappears from the chest. 

10. Turn animal back over and suture  

a. Inject .1 mL antibiotics and finish several knots until skin is taught 

b. Add iodine 

11.  Set up stereotaxic apparatus 

a. Place front teeth in slot and secure nose bar 

b. Set up ear bars so that each side is approximately 7-8 and  is flat in line 

with edges 

c. Feel head to be sure it is stable and secure 

d. Tape down drape 

e. Apply iodine 

12. Scrape skill until lambda and bregma are visible 

a. Scrape to the outer lip 
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b. Scratch skull surface 

c. Cauterize bleeding spots 

d. Clamp down inner layer  

e. Inject epinephrine superficially 

13. Check anesthesia 

14. Drill 3 holes in 3 zones of brain (UL,LL,LR) leaving room for cannula wire to wrap 

around small screw and the big screw 

15. Use tweezers to hold circular shaft of screw as you turn it and add pressure 

a. Screw in until it no longer wobbles 

16. Define bregma coordinates 

a. Make sure anterior to posterior is flat 

b. Draw line to connect posterior lambda with anterior suture 

c. Once you have bregma location write down coordinates 

i. Front/back (A/P)=    19.0 +  1.4 =  20.4  

ii. Left/right (M/L) =       18.0 + 1.1  =  19.1 

iii. Up/down (D/C) =      24.5 -  4.0  =  20.5 

17. Draw circle around correct nucleus accumbens location and then a middle point 

and drill using larger drill bit 

a. once hole is drilled, make sure cannula can enter without touching bone 

because it will bend 

i. Slowly go down to coordinate (2 units at a time) 

ii. Use qtip torn off to prevent bleeding and leave it until bleeding 

stops 

18. Add ointment to skin where cement will go over near catheter cannula 

19. Tape the catheter cannula up in preferred orientation and glue down the big 

screw 

a. Again ensure skull is dry and clean 

20. Add cement to secure the screw and the probes and remove the qtip 

a. Minimize sutures by filling all gaps with cement 

b. Pull skin out as glue takes form 

c. Once dry undo clamps and pull skin up 

21. Inject gentamicin antibiotic: 2 drops front and back 

22. Suture 

a. Add iodine 

b. Flush more saline then wait and take off tube and place cap on 

23. Inject timentin intravenously 

24. Turn down isoflurane to 1.5 and allow animal to wake up, monitor until awake 

25. Inject ketoprofen 

26. Return animal to home 

27. Clean tools 
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Microdialysis Probe Protocol  

1) Start with a clean surface and replace desk covering if necessary 
2) Cut fused-silica: 

a)  Two 35 cm pieces for the inlet and outlet (Polymicro technologies: ID~40, OD~100) 
b) Use scoring or glass surface to ensure precision cuts 

i) Use a new razor blade to make cross-sectional cuts in the silica.  Around a glass 
bottle, hold silica down firmly with your thumb and index finger so that there is no 
slack in the section you are interested in cutting.  Score silica by gently moving 
across it in a left to right motion.   

c) Verify that silica has been cut flush at the ends using a microscope. Jagged or crushed 
ends may lead to fluid blockage within the probe.    

d) Place any shards of broken silica in the sharps container for disposal 
 

3) Prepare connector: 
a) Supplies -  

i) Two-pronged solid state connectors (use recycled ones first) 
(1) Inspect connectors for overall quality (no loose pieces). 
(2) Clearance through one prong must be open for silica passage 

ii) 8 mm guide cannula 
iii) Glass beaker 
iv) Mounting putty on clear box 
v) 6 mm pieces of medium tygon tubing (Norton performance plastics ID~0.020 

OD~0.060) 
4) Assemble connectors:  

a) Slip a 6 mm piece of medium tygon tubing over the OPEN silver prong of the connector 
(before inserting fused-silica). 

b) Screw guide cannula into connector so that it fits snug.  Be mindful of an under-torqued 
guide cannula as this will result in inaccurate probe placement in vivo.     

c) Mount the connector-guide cannula unit onto clear box using mounting putty to secure 
it from moving. 

d) Thread the two 35 mm pieces of fused silica through the connector and guide cannula 
unit. 

e) Check quality of silica through microscope and cut again if necessary. 
5) Calibrate microscope using a 2 mm calibrating slide 

a) 42 r.u. = 2 mm and 84 r.u. = 4 mm; reticular units are fixed within the eyepiece of the 
scope. 

6) Align silica 
a) Mount threaded connectors under the scope so that the end of the guide cannula is at 

the zero point of the reticular scale.  
b) Adjust the inlet so that it extends 4 mm (or 84 r.u.) past the end of the cannula.    
c) Adjust the outlet so that it extends 2 mm (or 42 r.u.) past the end of the cannula.  

Advice: adjusting one piece of silica tends to move the other piece simultaneously.  To 
avoid this twist the silica as you are adjusting it. 

7) Once silica are positioned precisely, pipette a small amount of superglue into the medium 
tygon tubing in which the silica are surrounded in order to permanently fixate the silica at 
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their respective positions.  Caution: do not pipette excess superglue into the tygon tubing.  
This may result in glue reaching the prong of the connector and clogging it, thereby making 
future reuse impossible. 

8) Sheath the exposed silica (this includes two junctions and Tygon covering)  
a) Supplies -  

i) Two sample vials 

ii) Two ≈12 cm of medium Tygon tubing 

iii) One ≈15 cm piece of large Tygon tubing 
iv) Blue-handled wire cutting pliers  

b) Assembly of first juncture -  
i) Take two sample vials and cut 3 mm off the tip and 1 cm off the rim of each with 

pliers.  Advice: after cutting the tip make sure that a piece of large Tygon tubing is 
able to fit snug through it.  This will make the gluing process easier.   

ii) Cut one 15 cm piece of large Tygon tubing. 
iii) Thread both silica (inlet and outlet) through a shortened sample vial (rim end first) 

until it reaches the silver prongs of the connector.  This will serve as the first 
junction.   

iv) Thread both silica (inlet and outlet) through the 15 cm piece of large Tygon tubing, 
pushing the tubing 3-4 mm through the cut end of the already inserted sample vial.     

9) Mount probes vertically for gluing. 
a) Fix juncture to silica and tubing using clear DEVCON 5-min epoxy.  A needle or toothpick 

is useful for entombing the sample vial with epoxy. 
b) Caution: (1) connector must be able to turn in order to function, so it cannot be covered 

with epoxy at its base.  Do not fix connector too close to the juncture.  (2) 5-min epoxy 
solidifies fairly quickly so only mix small amounts at one time. (3) Ideally the entire 
juncture should be filled with glue.    

c) Allow juncture to dry for 15 min. 
10) Assembly of second juncture – 

a) Cut two pieces of medium Tygon tubing, the lengths of which should be cut so that they 
are shorter than the exposed silica (inlet beginning and outlet end).  

b) Thread both silica (inlet and outlet) through a shortened sample vial (tip end first) until 
it reaches the large Tygon tubing.  Push the tubing 3-4 mm through the sample vial as 
mentioned before.  This will serve as the second junction.   

c) Thread each silica through its pre-measured piece of Tygon tubing until the tubing 
reaches the second junction. 

d) Mount probes vertically but upside down from before. 
e) Fix juncture to silica and tubing using clear DEVCON 5-min epoxy.  Again, a needle or 

toothpick is useful for entombing the sample vial with epoxy. 
f) Once you have entombed the juncture about half way, push down the two pieces of 

Tygon tubing into the juncture and continue filling with glue until the entire juncture has 
been filled with glue  

 
11) Construct inlets: 

a) Gather metal pieces from small parts drawer (an 8 mm 30G and a 5 mm 22G). 
b) Verify that silica fits through the thin long metal tube and that this tube fits through the 

shorter fatter metal tube.  
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c) Score the outside surface of the thin long metal tube with a metal file; this facilitates its 
adhesion to the short tube. 

d) Mount the two metal tubes on putty as they would appear in final form.  
e) Load a P20 (pipette tip) with superglue, and viewing through a microscope, glue the two 

metal pieces together.  Superglue should be sucked up between the pieces by capillary 
action.  

f) Repeat 2-3 times on each end to completely fill, making sure that glue is not bulging 
outward 

g) Allow to dry in oven for 24 hr 
12) Attach inlet to probe 

a) Thread previously constructed inlets (see step 4) through exposed silica inlet.  Advice: be 
sure to leave at least a few cm of exposed silica beyond the metal inlet.  Silica must be 
cut to fit later. 

b) Apply DEVCON 5-min epoxy around the end of the metal inlet to be connected. 
c) With one set of hemostats grip the metal inlet and with your hands grip the medium 

Tygon tubing in which the metal inlet will enter.   
d) Push together so that metal inlet is inserted partially into tubing.  Caution: do not force 

the metal inlet into the tubing.  This could bend the silica beyond its limits, causing it to 
break.  This is an easy way to ruin a probe and make your life miserable.    

e) Allow 15 min to dry. 
f) Under a microscope, pipette a small amount of superglue to the very end of the metal 

inlet.  Glue should only be applied between the exposed silica and the thin metal tube of 
the inlet.  Caution: do not apply superglue beyond the tip of the thin metal tube.  
Superglue-covered silica does not cut in a flush manner.   

g) Allow to dry for 15 min 
h) Cut the extending silica piece very carefully so that it extends approximately 2 mm past 

the thin metal inlet.  Use the same technique for cutting silica as in step 2.  Advice: it is 
important that these cuts are clean.  So give yourself some room for error if you happen 
to be forced to re-do the cut. 

i) Slide a 1-3 cm piece of medium tygon tubing over the trimmed silica and metal inlet. 
13) Cover outlet for later use 

a) Cut the very tip off of a pipette tip with wire cutting pliers and fit it into a sample tube. 
b) Thread the exposed outlet silica through the pipette tip so that it touches, but is not 

mashed against, the bottom of the sample tube.   
c) Wrap the bottom of the pipette tip with tape to secure it from moving.  The attached 

sample tube will serve as a collection point during dialysis. 
14) Fix membrane   

a) Remove guide cannula from connector. 
b) Use tweezers with plastic tips to pick up sealed membranes (see step 3).  Advice: pick up 

membranes close to their middle.  If you pick up a membrane close to its end you may 
risk permanently closing it or compromising its ability to house the silica.   

c) Carefully slide each piece of silica (inlet end first and outlet second) into the membrane. 
i) Advice: use a second set of tweezers to hold the silica on the opposite side of the 

membrane to prevent it from moving or bowing while you are working.  
ii) Advice: use a microscope to do this. 
iii) Advice: moisten membrane and tweezers with water to expand membrane     
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15) Under the scope, adjust the membrane so that it is 4-5 r.u. from the glue that seals the tip of 
the membrane. 

16) Under the scope, use a needle or toothpick to coat the silica and part of the membrane with 
DEVCON 2-ton epoxy.  Coat of glue should be applied to the silica approximately 1 cm from 
the connector and up to, but NO FURTHER than, the outlet silica (the shorter piece of silica) 
within the membrane. 
a) Caution: coat of epoxy should completely surround the silica and membrane, but should 

only be thinly applied.  Any bulging epoxy that is not removed may interfere with probe 
entry into the guide cannula in vivo.    

17) Seal membranes: Spectra/Por (#132 28) 
a) Place a roll of scotch tape on a glass slide as a base for the membranes to rest upon. 
b) Use special scissors and tweezers with plastic tips when handling membranes so as not 

to damage them.  
c) Membrane should extend 3-4 mm past tape end. 
d) Use DEVCON 2-ton white epoxy to seal ends. 
e) Viewing through a scope, use a needle to plug membrane opening with epoxy. 
f) Dab the opening of membrane with a small amount of epoxy and pull back.  Caution: 

epoxy is easily taken up by the membrane via capillary action.  Plug should only be 4-5 
r.u. in thickness from the tip of the membrane.  

g) Allow epoxy to dry 24 hrs in sealed container to prevent contamination. 
18) Store finished probes in a sealed container and if possible away from people 
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Microdialysis Protocol 
Day 1 

1. Print microdialysis sheets 
2. Mark down ID of all instruments 
3. Put springe around ejection valve and tubing from swivel 
4. Spray 70% EtOH on frame and connect sprayed probe to swivel 
5. Get pump syringe and wash 2x with HPLC water test after making acsf 
6. Fill with HPLC water, no bubbles 

a. Set flow to 2 ul/min and diameter to 4.61 
7. Make acsf (add glucose and aa each day!) and filter 
8. Check flow rate after 30 minutes  

a. 9.7 ul and up ok 
9. Use 7ml acsf  (wash 2x then fill tube with acsf) 
10. Get bedding 
11. Inject animals with saline to habituate 
12. Implant probe   

a. Bring pump/frame, Diaper, anesthesia tube, iv tube filled with saline, kim 
wipe 

b. Cut tape so that you have 3 narrow 3 thicker pieces 
c. Weigh animal 
d. Put down using 4 percent anesthesia 
e. Infuse .4ml saline, use rest to clean out the canulla 
f. First put the spring on and screw down  being sure that nothing touches 

the probe 
g. Then holding top of the probe attachment to the spring, do ½  turn every 

30 seconds 
h. When it feels tight release connection and do one final turn 
i. Tape at all joints so that animal cannot split tube/spring  
j. Take note of when anesthesia turned off and when animal turns up 

13. Turn flow rate down 
14. TURN OFF OXYGEN 
15. Injection 15 hours prior to start of experiment 

a. .4 mg/kg so for a 400 kg animal inject .4 mL 
 

Day 2 
1. Refill tube with ascf being careful to leave no bubbles in the line 
2. Turn flow rate up and allow 2 hrs to equilibrate in brain 
3. Check flow rate after 30 minutes 
4. Habituation injection of saline asap (us EtOH mg/kg sheet to determine injection 

amount and weight then refill and reconnect line with ethanol solution) 
5. Prepare dry ice and baggie and tubes to collect samples 
6. Upon completion of ethanol infusion, remove tubing and recap cannula 
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Mobile Phase Recipe 

Materials: 
2L graduated cyclinder 
500 mL graduated cylinder 
Citric acid 
Monosodium phosphate  
EDTA 
Sodium dodecyl phosphate 
Acetonitrile  
Methanol 
 

1. Wash graduated cylinder 3x tap water 3x deionized water and 1x hplc water 

2. In 1600 mL HPLC water measure the following: 

1.68 g citric acid (mw 210.15) 

27.6 g NaH2PO4 (mw 137.99) 

0.1461 g EDTA (mw 292.2) 

1.903 g CH3(CH2)11OSO3Na (mw 288.18) 

3. Adjust buffer pH to 5.8 using NaOH (4g NaOH in 10 mL H20) adding ~ 4 mL to 

bring pH from 3.6-5.8 

4. Add 350 mL acetonitrile to the final bottle using marked graduated cylinder 

5. Add 120 mL methanol  

6. Set up vacuum. Put stir bar in final bottle. Pour liquid. Turn gas on. Stir and 

degass for 10-15 minutes by placing wet paper towels between lid and plastic 

filter cup.  
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