
ADDRESSING TASKS THROUGH ROBOT ADAPTATION

Tarik Tosun

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2018

Mark Yim, Supervisor of Dissertation
Professor of Mechanical Engineering and Applied Mechanics

Kevin Turner, Graduate Group Chairperson
Professor of Mechanical Engineering and Applied Mechanics

Dissertation Committee

Mark Yim, Professor of Mechanical Engineering and Applied Mechanics
Cynthia Sung, Professor of Mechanical Engineering and Applied Mechanics
Daniel Koditschek, Professor of Electrical and Systems Engineering
Hadas Kress-Gazit, Professor of Mechanical and Aerospace Engineering, Cornell University

ADDRESSING TASKS THROUGH ROBOT ADAPTATION

c© All Rights Reserved

2018

Tarik Daniel Tosun

To my family, Güray Tosun, Rebecca Tosun, and Leyla Tosun

iii

ABSTRACT

ADDRESSING TASKS THROUGH ROBOT ADAPTATION

Tarik Tosun

Mark Yim

Developing flexible, broadly capable systems is essential for robots to move out of facto-

ries and into our daily lives, functioning as responsive agents that can handle whatever the

world throws at them. This dissertation focuses on two kinds of robot adaptation. Modular

self-reconfigurable robots (MSRR) adapt to the requirements of their task and environments

by transforming themselves. By rearranging the connective structure of their component

robot modules, these systems can assume different morphologies: for example, a cluster

of modules might configure themselves into a car to maneuver on flat ground, a snake to

climb stairs, or an arm to pick and place objects. Conversely, environment augmentation

is a strategy in which the robot transforms its environment to meet its own needs, adding

physical structures that allow it to overcome obstacles.

In both areas, the presented work includes elements of hardware design, algorithms,

and integrated systems, with the common goal of establishing these methods of adaptation

as viable strategies to address tasks. The research takes a systems-level view of robotics,

placing particular emphasis on experimental validation in hardware.

iv

Contents

Abstract iv

Contents v

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Reconfiguration . 2
1.3 Environment Augmentation . 4

2 Overview of Related Work 6
2.1 Modular Self-Reconfigurable Robots (MSRR) 6

2.1.1 MSRR Hardware Systems . 6
2.1.2 Algorithms and Control . 6
2.1.3 Tasks and Autonomy . 7

2.2 Environment Augmentation . 8

I Reconfiguration 9

3 The SMORES-EP Modular Robot 10
3.1 Mechanical Design . 10
3.2 Electrical Design . 10
3.3 Software and Networking . 11

4 The EP-Face Connector 14
4.1 Related Work . 14

4.1.1 Electro-Permanent Magnets . 14
4.1.2 Modular Robot Connector Systems . 15

4.2 Connector Design . 15
4.2.1 Physical Design . 15
4.2.2 Manufacturing . 16
4.2.3 Electrical Design . 17

v

4.2.4 Integration with the SMORES-EP Module 19
4.3 Experimental Results . 20

4.3.1 EP Magnet Characterization . 20
4.3.2 EP-Face Characterization . 20

4.4 Discussion . 22
4.4.1 Advantages . 22
4.4.2 Disadvantages . 27

4.5 Conclusions and Future . 27

5 PaintPots 29
5.1 Introduction . 29
5.2 Related Work . 30

5.2.1 Potentiometers . 30
5.2.2 Ubiquitous Electronics . 31

5.3 Background: Potentiometer characterization 31
5.3.1 Conformity (Accuracy) . 31
5.3.2 Resolution . 31
5.3.3 Hysteresis . 32
5.3.4 Lifetime . 33

5.4 Design and Manufacturing . 33
5.4.1 Design Overview . 33
5.4.2 PaintPots used in SMORES-EP . 33
5.4.3 Cost . 36

5.5 Calibration . 36
5.5.1 Ground-Truth Data: AprilTags . 36
5.5.2 Model fitting . 37

5.6 Performance . 37
5.6.1 Accuracy . 37
5.6.2 Resolution . 38
5.6.3 Hysteresis . 38
5.6.4 Lifetime . 38
5.6.5 Comparison to Commercial Potentiometers 41

5.7 Two-Dimensional PaintPots . 41
5.8 Conclusion . 43

6 Design Embedding 46
6.1 Introduction . 46
6.2 Related Work . 46
6.3 Preliminaries . 47
6.4 Topological Embedding . 48

6.4.1 Definitions and Statement of Main Result 48
6.4.2 Outline of Algorithm . 49
6.4.3 Formal Analysis . 51
6.4.4 2-pass Approach . 52

6.5 Kinematic Admissibility . 54
6.5.1 Extending Definitions . 54

vi

6.5.2 Kinematic Admissibility . 55
6.5.3 Checking Kinematic Admissibility . 57

6.6 Experiments . 57
6.7 Applications . 58
6.8 Conclusion and Future Work . 60

7 Accomplishing High-Level Tasks with Modular Robots 61
7.1 An End-to-End System for Accomplishing Tasks with Modular Robots 61

7.1.1 System Overview . 62
7.1.2 Contributions . 63

7.2 Related Work . 64
7.3 Background . 65

7.3.1 Modular Robot Systems . 65
7.3.2 Controller Synthesis . 65

7.4 System . 66
7.4.1 Modular Robot Hardware - SMORES-EP Robot 66
7.4.2 Design and Simulation Tool: VSPARC 67
7.4.3 Design Library . 68
7.4.4 Reactive Controller Synthesis and Execution with the Library 71

7.5 Experimental Results . 73
7.5.1 Simulated Task Scenarios . 73
7.5.2 Hardware Experiments . 75

7.6 Discussion and Future Work . 79
7.6.1 Simulator-to-hardware translation . 79
7.6.2 Library Creation: Lessons Learned . 81
7.6.3 Composing Library Elements to Complete Missions 81

7.7 Conclusion . 82

8 Autonomy 83
8.1 Introduction . 83
8.2 Results . 84
8.3 Discussion . 88

8.3.1 Challenges and Limitations . 89
8.4 Methods and Materials . 90

8.4.1 Hardware - Sensor Module . 90
8.4.2 Perception and Planning for Information 91
8.4.3 High-Level Planning and Library . 92
8.4.4 Reconfiguration . 93

8.5 Additional Commentary on Related Work . 95

II Environment Augmentation 97

9 Environment Augmentation 98
9.1 Introduction . 98
9.2 Related Work . 99

vii

9.3 Approach . 100
9.3.1 Environment Characterization . 100
9.3.2 Hardware: Augmentation Modules . 102
9.3.3 High-Level Planner . 103

9.4 System Integration . 105
9.5 Experiment Results . 106

9.5.1 Experiment I . 106
9.5.2 Experiment II . 107

9.6 Discussion . 107
9.6.1 Conclusion . 108

10 Optimal Structure Synthesis 109
10.1 Related Work . 109
10.2 Problem Formulation . 110

10.2.1 Preliminaries . 110
10.2.2 Structures . 111
10.2.3 Conflicts . 112
10.2.4 Problem Statement . 113
10.2.5 Approach Summary . 113

10.3 Waterfall Algorithm - Generating All Useful Structures 113
10.3.1 Algorithm . 115
10.3.2 Proofs and Analysis . 115

10.4 BB-MST Algorithm – Solving for the Minimum Spanning Tree of Structures . 116
10.4.1 NP-Hardness of struct-MST . 116
10.4.2 Algorithm . 118
10.4.3 Proof . 120
10.4.4 Runtime . 120

10.5 Results . 121
10.5.1 Examples and Experiments . 121
10.5.2 Runtime Performance . 123

10.6 Discussion and Future Work . 124
10.7 Conclusion . 125

11 Conclusion and Future Work 126
11.1 Limitations . 126

11.1.1 Reconfiguration . 126
11.1.2 Environment Augmentation . 127

11.2 Future Work . 127

Bibliography 129

viii

List of Tables

1 Comparison of Connectors . 28
2 Error metrics for PaintPots . 37
3 Track lifetimes . 40

4 Examples of property names . 68
5 Matrix of designs and properties. Length and mass units are module-lengths

and module-masses. 70
6 High-level Action Definitions for Scenario 1 74
7 High-level Action Definitions for Scenario 2 75

8 Reasons for demonstration failure. 90
9 A library of robot behaviors . 93

10 Outcomes for Experiments 1 and 2 . 108

11 Runtime Performance . 124

ix

List of Figures

1 SMORES-EP module (left) and exploded CAD view (right) 11
2 Electronic Architecture . 12

3 Left: Internal view of magnets in EP-Face. Right: Internal view of EP-face
with circuit board and slipring. 17

4 EP-face on a SMORES-EP module. 17
5 Left: EP magnets, before and after winding. Right: Technical drawing of EP

magnet, dimensions in millimeters. 18
6 Gluing fixture (left) and winding machine (right) 18
7 Misaligned EP magnet. The left pole (circled in red) makes contact on its

edge rather than its face, reducing contact surface area and flux transmission. 18
8 Circuit for Driving EP Magnets. 19
9 (Left) Shear and (Right) Angular Offset test setups 22
10 Plot of Holding Force vs. Gap at Firing. Exponential fit: y = 18.63 exp(−7.019x)+

12.08 exp(−0.1697x) . 23
11 Histogram of Holding Forces Under Normal Load. Mean=88.4N, Std=13.9N. 23
12 Face Break Force vs. Supply Voltage. Cubic fit: y = 0.313x3 − 14.3x2 +

215x− 981 . 24
13 Force vs. displacement in shear. Peak force of 31.8N at displacement of

3.1mm. Note while static friction failure appears to occur at a displacement
of 1mm, this large displacement is due to deformation (slop) of the module,
not movement of the magnets. 24

14 Normal Holding Force vs. Angular Offset. Linear fit: y = −3.194x+ 90.7 . . 25
15 Slide-by docking is made possible by the thin profile of the EP-Face. 25
16 Ledge exploration. (Left) Seven-module snake lifts its head to the top of a 3-

module high ledge. (Center) Head module detaches, and explores the surface.
(Right) Head module autonomously reattaches, and snake descends. 25

17 SMORES-EP module moving a 1kg metal block while lifting another module
in the air. 26

18 Potentiometer schematic showing the three parts (track, terminals, and wiper)
as well as position and voltage labels. 30

19 A bead of conductive paint applied beneath the screw head forms a good
electrical connection with the track. 33

20 SMORES-EP module with labeled joints. The module is the size of an 80mm
cube. 34

x

21 Top Left: Wheel PaintPot installed in chassis. Top Right: Drawing of wheel
PaintPot with dimensions in mm. Bottom: Circuit board used with wheel
PaintPots showing Harwin S1791-42 wipers mounted at a 50◦ angle. 35

22 Top: Tilt PaintPot installed on chassis with cylindrical curvature (28.5mm
radius). Bottom: Drawing of tilt PaintPot track (laid flat) with dimensions
in mm. 36

23 Top: Plot of mean absolute RGV with increasing window size. Red line
indicates resolution limit, |RGV |(w) = 1. Right: Bottom of RGV computed
on the same dataset with different window sizes. We can see that the data
becomes smoother with increasing window size. 39

24 Testing setup used to evaluate RGV and hysteresis. 40
25 Plots of cost vs. conformity and cost vs. lifetime for commercial poten-

tiometers with features similar to the wheel PaintPot (360◦ sensing range
and continuous rotation). PaintPot marked with red square. 42

26 Left: Spherical PaintPot that senses position on the top hemisphere. Right:
Flat-sheet PaintPot capable of sensing the X-Y position of the wiper. 43

27 Top: Top-down view of voltage gradients on the sphere PaintPot. Bottom:
Voltage gradients on sheet PaintPot. 44

28 Topological conditions for embedding. 49
29 The three cases of message construction. 53
30 Def. 4, 1 (nodes). In fig. (c), a position and orientation have been found in

which each child joint of b is aligned with a corresponding child joint of b′. . . 55
31 Def. 4, 2 (paths). For path πab = (a′, c′, b′) to embed edge (a, b), there must

be angles [Θ(πab)]
∗ for which BrB′/B = [BrB′/B]∗ and BRB′ = [BRB

′
]∗ 56

32 2-pass against naive embedding on random trees. x-axis is benchmark size as
a function of the nodes in the subdesign and the superdesign. Timeout is 2
hours. 57

33 Grasper (left) and a walker (right) designs for the SMORES robot [17]. 58
34 Walker design on top and grasper design on bottom. Red arrows show the

discovered embedding. 59
35 SuperBot subdesign [81] embeds in SMORES superdesign. 60

36 Six configurations from the design library . 62
37 System flowchart . 63
38 VSPARC user interface . 67
39 The same behavior file can be used by both the simulator and the physical

robot. 68
40 Controller synthesis and execution . 73
41 Environments for Scenarios 1 (top) and 2 (bottom) in the simulator. 76
42 Map of the hardware demo . 76
43 Simulated Demo . 79
44 Moving the Waste Bin . 80
45 Cleaning the Table . 80

46 System Overview Flowchart . 84

xi

47 Sensor Module with labelled components. UP board and battery are inside
the body. 85

48 Environments and Tasks for Demonstrations 87
49 Demonstrations 1, 2, and 3 . 88
50 Environment Characterization . 92
51 Module movement during reconfiguration. Left: initial configuration (“Car”).

Middle: module movement, using AprilTags for localization. Right: final
configuration (“Proboscis”). 94

52 A task specification with the synthesized controller. 95

53 Left: Example template used to characterize a “ledge” feature. Right: Ex-
ample template overlayed on elevation map (top view) to evaluate candidate
feature pose. 101

54 Characterization of an environment with a “ledge” feature. Red indicates
a detected feature, pink indicates the start of the feature, demonstrating
orientation. 102

55 Wedge and Block Augmentation Modules . 103
56 Bridge and Ramp . 104
57 An example of synthesized robot controller . 104
58 System Overview Flowchart . 105
59 Snapshots throughout Experiment I. From left to right, top to bottom: i)

Experiment start ii) Opening first drawer iii) Picking up ramp iv) Placing
ramp next to open drawer. v) Reconfiguring and climbing ramp vi) Opening
second drawer . 106

60 Snapshots throughout Experiment II. From left to right, top to bottom: i)
Experiment start ii) Assembling bridge iii) Transporting bridge iv) Placing
bridge over gap. v) Reconfigure and cross bridge. vi) Arrive at the target zone.107

61 Example environment and structure. Top: Example table-and-chair environ-
ment (left), and corresponding height field world (right), with labeled regions.
Bottom: Example structure X-Y view (left) and û-Z view (right). 114

62 Optimal solutions in simulated environments. 122
63 Real-world environments, and algorithm solutions generated from 3D map

data taken with a Kinect sensor. 123
64 Log-histogram of solution times for 1118 random environments. In addition

to the data shown, 17 environments timed out after 10 minutes. 124

xii

Chapter 1

Introduction

Developing flexible, broadly capable systems is essential for robots to move out of factories
and into our daily lives, functioning as responsive agents that can handle whatever the
world throws at them. This dissertation focuses on two kinds of robot adaptation. Modular
self-reconfigurable robots (MSRR) adapt to the requirements of their task and environments
by transforming themselves. By rearranging the connective structure of their component
robot modules, these systems can assume different morphologies: for example, a cluster
of modules might configure themselves into a car to maneuver on flat ground, a snake to
climb stairs, or an arm to pick and place objects. Conversely, environment augmentation
is a strategy in which the robot transforms its environment to meet its own needs, adding
physical structures that allow it to overcome obstacles.

In both areas, the presented work includes elements of hardware design, algorithms,
and integrated systems, with the common goal of establishing these methods of adaptation
as viable strategies to address tasks. The research takes a systems-level view of robotics,
placing particular emphasis on experimental validation in hardware.

1.1 Motivation
Robots have been deployed in factory automation roles for decades. Modern robotics re-
search strives to deploy robots “in the wild”: outside of factories and labs, and in our wider
world. This has proven to be extremely challenging. Robots in industrial automation roles
move swiftly, precisely, and reliably by relying on tightly controlled environments: the bolt
they need to screw into a hole on one part will be screwed in to the exact same place on
the next part, allowing the robot to complete this repetitive task faster than a human coun-
terpart. But this reliance on stiffness and precision makes these systems brittle to small
changes: if the position of the bolt hole is changed by one centimeter, it can result in failure
of the entire task, and even damage to the robot.

Operation in the wild requires robots to respond to a huge degree of variability in the
environments, objects, and scenarios the robot could encounter; where a factory robot might
complete a task the same way hundreds or thousands of times, a robot in the wild might
never complete a task exactly the same way twice. Furthermore, a high-level task (like
exploring a disaster zone to find survivors) might require several disparate capabilities, like
climbing stairs and manipulating objects.

Designing robots that adapt to this level of variability is challenging. Some modern

1

systems take inspiration from humans and animals: bipedal and quadrupedal robots have
multiple articulated kinematic chains with large dextrous workspaces, allowing them to
complete a wide range of tasks. However, introducing so many degrees of freedom makes
control difficult, requiring each task to be solved in a complicated way. For example, to pick
up and move an object, a humanoid must balance on two legs while using a high degree
of freedom arm to manipulate the object. In contrast, a robot purpose-built for a single
task can often accomplish it with far fewer DOF, lower-fidelity sensing, and less complicated
control algorithms.

While the full set of capabilities required by a robot is very broad, few tasks require all
those capabilities simultaneously. The success of industrial robots provides evidence that
specialization to a single task can provide advantages in terms reduced complexity and in-
creased reliability. Modular reconfigurable robots operate on the principle of specialization-
on-demand: the ability to physically transform lets them to take on a morphology tailored
to the needs of each new task they encounter. This stands in contrast to other modern sys-
tems with bipedal or quadrupedal morphologies. These systems can complete a wide range
of tasks, but often need to solve individual tasks in a complicated way: for example, while
manipulating an object with its arm, a humanoid must also work to balance on two legs. In
contrast, a modular reconfigurable robot could transform between morphologies specialized
to manipulation (an arm) and mobility (a car or walking robot) to address individual tasks
requiring those capabilities.

Likewise, industrial robots serve as a testament to the power of structured environments:
with perfect knowledge of the environment and a good match between the capabilities of the
robot and the task at hand, robots are efficient and effective. As roboticists, we typically
view the conditions of the environment as problem constraints, and strive to create systems
that act within those constraints. Rather than accommodating the inconvenient conditions
robots often encounter in the wild, environment-augmenting robots actively build favorable
structure on unstructured environments, making the world around them a little more like a
robot-friendly factory floor.

This dissertation presents hardware systems, algorithms, and planning frameworks that
lay the foundation for reconfiguration and environment augmentation to be employed as
strategies to address tasks. In hardware experiments, we show how these strategies enable
the SMORES-EP robot to autonomously complete several tasks in office-like environments.
By providing foundational tools and evidence of effectiveness, this dissertation strives to
pave the way for self-reconfigurable and environment-augmenting robots to be deployed in
real-world applications.

1.2 Reconfiguration
Modular self-reconfigurable robot (MSRR) systems are composed of repeated robot ele-
ments (called modules) that connect together to form larger robotic structures, and can
self-reconfigure, changing the connective arrangement of their own modules to form different
structures with different capabilities. Since the field was in its nascence, researchers have
presented a vision that promised flexible, reactive systems capable of operating in unknown
environments. Modular self-reconfigurable robots would be able to enter unknown environ-
ments, assess their surroundings, and self-reconfigure to take on a form suitable to the task
and environment at hand [105]. Today, this vision remains a major motivator for work in

2

the field [107].
Continued research in MSRR has resulted in substantial advancement. Existing re-

search has demonstrated MSRR self-reconfiguring, assuming interesting morphologies, and
exhibiting various forms of locomotion, as well as methods for programming, controlling, and
simulating modular robots [12, 22, 26, 39, 52, 60, 62, 72, 76–78, 102, 105, 108]. However,
achieving autonomous operation of a self-reconfigurable robot in unknown environments re-
quires a system with the ability to explore, gather information about the environment, con-
sider the requirements of a high-level task, select configurations whose capabilities match the
requirements of task and environment, transform, and perform actions (like manipulating
objects) to complete tasks. Existing systems provide partial sets of these capabilities. Dur-
ing my Ph.D, I have developed hardware, algorithms, and integrated systems that enable
MSRR to meet this longstanding goal of reactive, task-driven reconfiguration.

My early work in hardware design culminated in the SMORES-EP modular robot, the
core hardware platform for my research. In the process of designing SMORES-EP, I have
developed novel connector and position encoder technologies, covered in Chapters 4 and 5.
The EP-Face [92] is a an array of electro-permanent (EP) magnets that provides a strong
(90N) connection between SMORES-EP modules. EP magnets combine the advantages of
permanent magnets and electromagnets - the magnetic force between two modules can be
switched on (attractive) and off (no force) by applying a very short pulse of current. The
magnets will then maintain either state indefinitely without consuming energy. PaintPots
[93] are low-cost, highly customizable potentiometers for position encoding. Applying off-
the-shelf carbon-embedded spray paint to plastic surfaces creates position sensors in a variety
of shapes and sizes. A calibration process yields accuracy and precision comparable to
commercial sensors.

My work in algorithms focuses on the relationships between robot morphologies and
robot capabilities. Reconfigurability introduces a theoretical challenge that traditional
robots do not face: to address a task, we first need to select an appropriate morphology
for the robot to assume. Taking some of the first steps to solve this problem, Chapter 6
presents my algorithmic work in modular robot design embedding, which formally defines
conditions under which structurally different modular robot configurations can be consid-
ered functionally equivalent. Robots are represented as labelled graphs, and embeddability
is defined in terms of conditions on robot topology and kinematics. Along with my col-
laborators, we have developed a algorithm that can automatically detect embeddability of
modular robot designs in polynomial time using dynamic programming [52].

In collaboration with researchers specializing in high-level control, I have developed sys-
tems that enable modular robots to address complex, multi-part tasks. Chapter 7 presents a
system enabling users to solve complex tasks using modular robot hardware. Our approach
is library-driven: rather than attempting to generate new designs from scratch, users spec-
ify task requirements and a design tool retrieves designs satisfying the requirements from a
library of existing useful designs. User-specified task requirements are synthesized into prov-
ably correct state machine controllers using behaviors and configurations from the library.
A seamless pipeline from high-level task specification down to hardware configurations and
behaviors results in an end-to-end system for accomplishing tasks with modular robots.

Finally, Chapter 8 presents a novel integrated system incorporating modular robot hard-
ware, perception tools, and high-level planning, which allows modular robots to complete

3

complex high-level tasks autonomously. The system automatically selects appropriate be-
haviors to meet the requirements of the task and constraints of the perceived environment.
Whenever the task and environment require a particular capability, the robot autonomously
self-reconfigures to a configuration that has that capability. By providing a clear example
of how a modular robot system can be designed to leverage reactive reconfigurability in un-
known environments, this system begins to lay the groundwork for reconfigurable systems
to address tasks in the real world.

1.3 Environment Augmentation
Robotics research typically aims to create reactive systems, capable of sensing, thinking, and
acting in response to the constraints of their environment. But what if we could create robots
that were proactive, actively altering their environments to enhance their ability to move,
manipulate, and sense? Could we make robots that overcome the challenging “unstructured”
environments of the real world by reshaping them to be more predictable and convenient?

Augmenting the environment to accomplish tasks is a familiar human experience: to
reach an object on a high shelf, we place a ladder near the shelf and climb it, and at a larger
scale, we construct bridges across wide rivers to make them passable. I believe environment
augmentation can provide even greater benefit for robots than it does for humans. Robots
can be specifically designed for tasks like construction (imagine a robot with nail guns for
arms, and an onboard silo of building material), and are physically (and emotionally) capable
of permanently integrating themselves with their environment if needed.

Developing robots that augment their environments involves research challenges in de-
sign and planning. In both areas, there are parallels with modular robots. From a design
perspective, modular robots are well-suited to environment augmentation: modular systems
are designed for connection, making it natural to think about modules manipulating passive
pieces about the same size as themselves, or even attaching themselves to their environment.
The physical benefits of environment augmentation also complement a weakness of modular
robots, which often struggle with obstacles much large than a module. From the perspective
of task planning, environment augmentation is similar to reconfiguration: in both cases,
the robot can take an action (reconfiguration or augmentation) that fundamentally changes
the its future capabilities with respect to its environment and task. Chapter 9, introduces
passive block and wedge building blocks that SMORES-EP can use to build ramps and
bridges. Expanding on our existing frameworks, we present a library-based system allow-
ing SMORES-EP to autonomously deploy structures to complete high-level tasks in office
environments

Existing work in collective construction robotics and provides algorithms to generate
assembly plans for arbitrary shapes in 2D and 3D [83, 100]. In most of this work, construction
of a prescribed structure is the primary objective. An environment-augmenting robot needs
another layer of planning to reason about its own capabilities and the constraints of the
environment to decide what structures should be built. Consider a scenario where a small
robot must move through an environment filled with objects much larger than itself. This
task presents a challenging planning problem: given an environment, a robot, and supply
of building blocks, can we find a set of structures that could be added to the environment
to make it fully accessible to the robot? Furthermore, since structure-building is a time-
consuming process, can we find such a set of structures which uses a minimum number of

4

building blocks? We refer to this as the optimal structure synthesis problem.
Chapter 10 presents a mathematical formalism for optimal synthesis of structures made

of discrete building blocks, as well as a complete, optimal algorithm that will find a min-
cost set of structures to make any input environment traversable, if such a set exists. This
work is a theoretical complement to the system presented in Chapter 9, providing a general
framework to optimally augment arbitrary environments, rather than relying on a discrete
library of structures.

5

Chapter 2

Overview of Related Work

This chapter provides an overview of the literature related to modular self-reconfigurable
robots and environment augmentation. A more detailed discussion of the related work
pertinent to each chapters of the dissertation is included within each individual chapter.

2.1 Modular Self-Reconfigurable Robots (MSRR)
2.1.1 MSRR Hardware Systems
Modular self-reconfigurable robot systems distinguish themselves from traditional robots
through their ability to reconfigure, changing the connected structure of their component
modules to assume different shapes. Systems are typically categorized according to the
geometric arrangement of their modules, and their modes of reconfiguration [107]. Lattice
architecture systems have modules that are connect in a dense lattice or grid pattern, Mod-
ules typically have limited movement ability, instead relying on their ability to connect to
and interact with neighboring modules to move within the lattice. Some lattice architecture
systems have no autonomous movement ability, relying on external, sometimes stochastic
forces to move modules into a desired shape. Chain architecture systems have modules that
connect in a chain or tree topology. Individual modules usually include revolute or pris-
matic joints, allowing clusters of modules to form traditional kinematic trees that operate
in a manner similar to traditional robots. Mobile architecture systems have modules that
are individually mobile, and can reconfigure by breaking off individual modules and having
them individually move to another location on the cluster. Some modular systems fall under
more than one of these categories, and are referred to as hybrid systems. SMORES-EP is a
hybrid system with the capabilities of all three categories, being able to operate as a lattice
or tree, and also perform mobile reconfiguration. A comprehensive review of major modular
reconfigurable hardware systems is available in [107].

Making and breaking connections between modules is one of the most essential physical
capabilties of MSRR systems, and connector design is a major area of research in the field.
Chapter 4 provides an overview of the wide variety of existing connectors found in the
literature.

2.1.2 Algorithms and Control
A great deal of work has been done to develop behaviors for MSRR. Many efforts focus on
distributed control strategies, taking advantage of the distributed nature of MSRR hardware

6

[99]. Distributed strategies include central pattern generators [85] and hormone-based con-
trol [80]. Genetic algorithms have been used to automatically generate both modular robot
designs and behaviors [36]. Historically, gait tables have been a commonly used format in
which open-loop kinematic behaviors can be easily encoded [105]. Phased automata have
also been presented as a way to easily create scalable gaits for large numbers of modular
robots [109].

Efforts have also been made to generate behaviors by automatically identifying the “role”
a module should play based on its place in a connected structure [86]. Functionality is
propagated downward: based on a high-level goal (like “walk”) and a connected structure
of modules, functional sub-structures (like legs and a spine) are automatically identified,
and modules are directed to execute appropriate roles in a distributed fashion. This work
provides some heuristic automatic matching of structure to function, and has only been
demonstrated for locomotion gaits.

In addition to automatically generating behaviors for MSRR, work has also been done
to automatically generate MSRR configurations from functional specifications [11, 66, 104].
Chapter 6 presents a more extensive overview of this work. Planning and control for recon-
figuration are major topics of interest within the field of MSRR [62, 72, 77, 108]. More detail
on existing strategies for reconfiguration control and planning can be found in Chapter 8.

2.1.3 Tasks and Autonomy
Most prior efforts to generate functional behaviors for MSRR systems have focused primar-
ily on establishing the low-level capabilities that distinguish these systems from traditional
robots, notably reconfiguration, a wide variety of gaits for movement, basic object manipu-
lation, and other low-level tasks. However, the advantage of a reconfigurable system lies in
its ability to select appropriate configurations and capabilities for a high-level task, and even
reconfigure multiple times to complete a complex, multi-step task requiring a wide range of
abilities. While there has been a great deal of research in high-level planning for traditional
robots [6, 7, 42, 46, 75, 103], the application of these methods to MSRR has been limited
[10]. Chapter 7 presents a high-level planning framework for MSRR, as well as an overview
of other strategies for addressing tasks with MSRR from the literature.

The true value of MSRR systems is acheived when they are able to operate autonomously.
Autonomous operation requires a system with the ability to explore, gather information
about the environment, consider the requirements of a high-level task, select configurations
whose capabilities match the requirements of task and environment, transform, and per-
form actions (like manipulating objects) to complete tasks. Existing systems provide partial
sets of these capabilities. Many systems have demonstrated limited autonomy, relying on
beacons for mapping [20, 29] and human input for high-level decision making [21, 59]. Oth-
ers have demonstrated swarm self-assembly to address basic tasks like hill-climbing and
gap-crossing [31, 70]. While these existing systems all represent advancements, none have
demonstrated fully autonomous, reactive self-reconfiguration to address high-level tasks.
Chapter 8 presents the first system allowing modular robots to autonomously complete
complex tasks by reconfiguring in response to their perceived environment, and provides a
more detailed overview of related systems.

7

2.2 Environment Augmentation
The fields of collective construction robotics and modular robotics offer examples of sys-
tems that build and traverse structures made of robotic or passive elements [74, 76, 90],
and assembly planning algorithms to build arbitrary shapes under a variety of conditions
[83, 100]. This existing work provides excellent contributions regarding the generality and
completeness of these methods: some algorithms are provably capable of generating assem-
bly plans for arbitrary volumetric shapes in 3D, and hardware systems have demonstrated
the capability to construct a wide variety of structures. Other work in manipulation plan-
ning allows robots to carry out multi-step procedures to assemble furniture [45] or rearrange
clutter surrounding a primary manipulation task [19].

Less work is available regarding ways that robots could deploy structures as a means of
completing an extrinsic task, the way a person might use a stepstool to reach a high object.
Napp et al present an distributed algorithm for adaptive ramp building with amorphous
materials [63]. Using only local information, the algorithm allows one or more robots to
deposit amorphous material (like foam) on their environment to make a goal point accessible.
In recent work, a similar algorithm allows a team of robots to collectively build with sandbags
to reach a goal location [79].

Petersen et al. present Termes [74], a termite-inspired collective construction robot sys-
tem that creates structures using blocks co-designed with a legged robot. Similarly, Chap-
ter 9 presents augmentation modules that are designed to be easily carried and traversed by
SMORES-EP. Werfel et al. present algorithms for environmentally-adaptive construction
that can build around obstacles in the environment [100]. A team of robots senses obstacles
and builds around them, modifying the goal structure if needed to leave room for immovable
obstacles. An algorithm to build enclosures around preexisting environment features is also
presented. As with Termes, the goal is the structure itself; while the robots do respond to
the environment, the structure is not built in response to an extrinsic high-level task.

For a more detailed overview of work related to environment augmentation, see Chap-
ters 9 and 10.

8

Part I

Reconfiguration

9

Chapter 3

The SMORES-EP Modular Robot

The SMORES-EP modular reconfigurable robot is the core hardware system used in my
work. This chapter provides an overview of its major mechanical, electrical, and software
systems.

3.1 Mechanical Design
SMORES-EP has an 80mm cube-like form factor, intended to allow packing into a cubic
lattice. The basic kinematic design consists of two side wheels and a gear-differential mech-
anism that creates pan and tilt motion. This design was taken directly from its predecessor,
the SMORES robot, and allows “emulation” of many past modular robot systems, in the
sense that groups of SMORES modules can be arranged in ways that replicate the kinemat-
ics of groups of other modular robots [17]. The four degrees of freedom of the modules are
shown in Figure 1. The right and left wheels are driven directly by Pololu Micromo motors
with 298:1 gearboxes, allowing them to spin at a maximum of 90 degrees per second. The
pan and tilt degrees of freedom are coupled, with two Pololu Micromo motors with 1000:1
gearboxes driving three gears in a differential configuration. This allows both degrees of
freedom to be operated simultaneously with little mutual interference, and allows both mo-
tors to drive the tilt joint, which is frequently used to lift loads. The tilt joint can support
a torque of 0.7 N-m, meaning a single module can lift 4 SMORES-EP modules held out in
cantilever (horizontally against gravity).

The design of a SMORES-EP module is itself somewhat modular, which makes it easier
to testing and maintain the the fleet of 25 modules. The four faces (left, right, top, and
bottom) are held together by eight screws, as shown in the exploded view in Figure 1. The
left, right, and top faces are nearly identical, each consisting of an inner chassis, a set of
gears, and an external face with an array of electro-permanent magnets. The bottom face
holds an EP-magnet array and the four motors. The space in the center of the cube is
occupied by a layered bank of circuit boards, wiring, and the battery.

3.2 Electrical Design
Each module responds to user commands via WiFi, and individually control four motors
and four EP magnet arrays. Electrical design and wiring was challenging, because these
subsystems are distributed across five separate bodies that need to rotate relative one another
for the module to function. Each module has 12 circuit boards and five microcontrollers

10

Left

Right

Pan

Tilt

Figure 1: SMORES-EP module (left) and exploded CAD view (right)

distributed across the different moving bodies of the module. Figure 2 shows a schematic
representation of the electronic architecture.

The EP magnets in the top, left, and right faces need to rotate continuously relative
the center of the module, and are connected to the central motherboard via slip rings. The
bottom face rotates through a range of 180 degrees relative the center body, and is connected
to the central electronics by a ribbon cable.

With limited space available in the center of the module, the driving circuitry for each
face’s magnets is located on the corresponding face board. Each face board also includes
an ATMega168a microcontroller, which communicates with the more powerful STMf303
microcontroller on the motherboard via i2c. The ATMega is also responsible for reading
voltages from the PaintPot encoders in each face, discussed in Chapter 5.

3.3 Software and Networking
Computation for SMORES-EP is distributed across three physically separate computing
units: the faces, where ATMega168a microcontrollers are programmed in C, the module
motherboard, where an STM32f303 microcontroller is programmed in C++, and the con-
trolling computer, where behaviors for one or more modules are programmed in Python.
This section provides a brief overview of the software and networking architecture, starting
at the high level and working downward.

A cluster of modules may be controlled by any computer capable of running Python. The
SMORES-EP control library provides the user with a SmoresModule object, with functions
to send movement and magnet commands to a single module, as well as querying the modules
status and encoder values. When the object is created, it opens a port to communicate with
the specified module via wifi. Each module has a unique static IP addressed determined by
its ID number. The Python library also provides a SmoresCluster object, which can create
and communicate to multiple modules simultaneously. The base module control libraries
depend only on the standard Python libraries; care was taken during development to avoid
external dependencies (such as ROS), to maximize code portability.

Cluster-level networking is provided by a typical 2.4Ghz 802.11 wireless router. The TI
cc3000 WiFi chip on each module can send and receive UDP packets with very little latency;
for the purposes of the robot, wireless communication is effectively instantaneous.

The motherboard microcontroller (STM32f303) is responsible for receiving and and re-

11

Figure 2: Electronic Architecture

12

sponding to WiFi commands, performing feedback control for the four degrees of freedom,
and communicating with the face boards via i2c. Firmware is written in C++, and the
control runs at a rate of 20Hz.

The four faceboard microcontrollers (ATMega168a) are i2c slaves responsible only for
dispatching commands received from the motherboard (the i2c master). The firmware,
written in C, was designed to be as minimal as possible, because reprogramming these
microcontrollers requires disassembling the module. The faceboards are responsible for
firing the EP magnets to connect or disconnect from other modules, and for reading and
returning the wiper voltage of the PaintPots encoders [93] in their face to the motherboard.

13

Chapter 4

The EP-Face Connector

This chapter presents the design and analysis of the EP-Face connector, a core component of
the SMORES-EP robot. This chapter excerpts heavily from [92]. Credit is due to co-authors
Jay Davey and Chao Liu, who contributed significantly to this work.

The EP-Face connector uses an array of four electro-permanent magnets mounted in a
planar face to create a high-strength (88.4N) connection between modules. The connector
is fast (connecting/disconnecting in 80 milliseconds), compact (low-profile, solid-state com-
ponents), robust (large area-of-acceptance, self-aligning, genderless, rotationally symmetric,
capable of docking from any approach direction), and energy efficient (requiring only 2.5
joules to switch states). This chapter presents the connector design, characterizes it through
experiments, and compares its performance with existing connector designs. In Section 4.1,
we provide an overview of existing modular robot connectors. In Section 4.2.1, we present
the connector design, as well as the manufacturing processes and fixtures used to construct
hundreds of EP magnets. In Section 4.3, we characterize the connector through experiments.
In Section 4.4, we discuss our results and compare the connector with other systems. Finally,
in Section 4.5, we discuss possible future extensions, and conclude.

4.1 Related Work
4.1.1 Electro-Permanent Magnets
An electro-permanent magnet consist of two permanent magnet rods with an electromagnet
coil wrapped around them. Both rod magnets have the same remnant magnetization, but one
has relatively low coercivity (polarization can be changed through exposure to a magnetic
field) while the other has high coercivity (a much larger magnetic field is required to change
polarization). A short pulse of current through the coil sets the polarization of the low-
coercivity magnet, allowing magnetic force to be turned on or off (on when both are polarized
the same way, off when opposite). Once set, polarization is maintained until another pulse
is applied. The reader is referred to [44] for more information.

EP magnets have been used as connectors in lattice-type modular robots and pro-
grammable matter systems [28, 32, 43]. The Pebbles and Lily robots operate in a 2d lat-
tice, and are primarily concerned with cluster self-assembly or self-dissassembly rather than
strength. Their magnetic connectors withstand in-plane forces of 3.18N and 1.28N , respec-
tively. Each Pebble is 10mm long and weighs, 4.0g; each Lily is 35 mm long and weighs 26g
[28, 32].

14

The EP-Face is component of SMORES-EP, a hybrid chain-lattice type modular robot,
intended to form articulated chains that serve as bodies and legs as well as three dimensional
lattices. SMORES-EP is much larger and heavier than the above systems, with a character-
istic length of 80mm and a mass of 500g/module. As such, it has very different connector
requirements. The EP-Face connector is expected to withstand forces on the order of tens
of Newtons under normal, shear, and bending loading.

4.1.2 Modular Robot Connector Systems
A wide variety of connectors for hybrid modular robots can be found in the literature. Other
systems that use magnets include MTRAN II [61] and the Telecubes system [87]. Telecubes
and MTRAN II both exert connector forces of about 25N per magnet, about the same as
the EP-Face (28.3N). Both use permanent magnets for latching, and disconnect them using
shape-memory alloy (SMA) actuators. The disadvantages of SMA are its slow response time
(it can take minutes to cool after heating), and notorious energy inefficiency. The EP-Face
is able to switch the state of its EP magnets in 80 milliseconds with little energy (2.5J).

The MICHE robot [27] is a predecessor to the Pebbles, and uses mechanically switchable
permanent magnet connectors that exert about 20N of force. The connectors control the
flow of magnetic field by changing the relative orientation of two circular permanent magnets
using a small gearmotor. The connector uses a small amount of energy, but requires room
for the motor, has moving parts, and takes 1.3 seconds to switch states.

Structural hook-type connectors are popular for hybrid self-reconfigurable robots. Exam-
ples include the ATRON and MTRAN III robots [47, 69]. The advantage of these connectors
is high strength: ATRON can theoretically support up to 800N before material failure. Com-
pared to magnets, they sacrifice versatility and often require large amount of space. The
majority of volume within each module of the ATRON was consumed by the connection
mechanism [69]. They also tend to be mechanically complex, with many moving parts that
can break or wear over time. The EP-Face connector is solid-state, requiring only a pulse
of current to connect or disconnect.

The SINGO connector, developed for the Superbot robot, is more versatile [84]. It
is hermaphroditic, and capable of disconnection even when one module is unresponsive,
allowing for self-repair. However, it is mechanically complex, and sacrifices some strength
for versatility.

The most natural point of comparison is its predecessor, the original SMORES robot
connector [17], with four permanent magnets on a flat face and a mechanical key that enables
latching and unlatching. The EP-Face is able to dock in a wider range of conditions than
the original SMORES face. It is also stronger in normal loading than the SMORES face
(85N compared to 60N), but weaker in shear (35N compared to (theoretically) 3.6kN).

A more detailed comparison of the EP-Face connector to existing connectors can be
found in Section 4.4.

4.2 Connector Design
4.2.1 Physical Design
The connector is shown in Figures 3 and 4. It consists of an array of 4 EP magnets arranged
in a ring, with south poles counterclockwise of north. The ring arrangement of the magnets
makes the connector hermaphroditic, and able to connect in four possible configurations.

15

The magnets are held in place by glue, and externally protrude a distance of 0.5mm beyond
the planar surface of the 3d-printed face. This way, the protruding magnets surfaces are the
point of contact when connecting faces are brought together, minimizing the possibility of
a detrimental air-gap between any pair of magnets.

Internally, leads from the magnets are soldered to a circuit board mounted above the
magnets, which includes a microcontroller and driving circuitry, discussed in more detail
in the following section. Measuring from the magnet face to the top of the circuit board,
the total height of the EP-face connector is 16.6mm. Measuring to the top of the slip ring
canister, the total height is 19.6mm.

Figure 5 shows the EP magnets. Each magnet consists of two cylinder magnets (AlNiCo
5 and NdBFe, both 4.76mm in diameter and 9.53mm long) and two identical pole pieces
machined from ASTM 1018 Low-Carbon Steel. Mechanical constraints of the SMORES-EP
module require that the magnet array fit within a 42mm diameter circular region. Machining
the pole pieces into semicircles maximizes the allowable size of the EP magnets (if rectangular
pole pieces were used, the corners would collide). The pole piece has a lip that sits on a
corresponding ledge in the face, allowing the foot to protrude out of face by the prescribed
amount and serving to transmit force on the magnet to the plastic face. Glue is used to
hold the magnets in place in the face, but is not load-bearing.

The surface area of the pole pieces is critical to the strength of the magnetic force.
Magnetic force per area is proportional to flux density squared. Therefore, decreasing pole
area increases holding force, but only up to the saturation density of low-carbon steel (1.5T).
Based on the diameter and average magnetic flux density of the permanent magnet cylinders
(1.38T for both NdBFe and AlNiCo), the minimum contact area of the steel pole piece was
found to be 32.7mm2. The actual semicircular contact surfaces of the poles have an area of
33mm2. Based on these values, the theoretical maximum holding force is 46N per magnet
or 184N per EP-face.

The solenoid coil was designed to generate sufficient magnetic field intensity for the
AlNiCo magnet to reach saturation. Using the method described by Knaian [44], this was
found to be 200 turns of AWG 40 wire.

4.2.2 Manufacturing
To date, we have built 25 SMORES-EP modules, 120 EP-Faces and 480 EP-magnets. The
primary manufacturing challenge was ensuring that all pole pieces in an EP-face were aligned
into a perfectly flat plane. Misaligned pole pieces have less contact surface area with mated
magnets, which can significantly reduce connection strength.

Pole pieces were machined from 0.25x0.5in 1018 Low-Carbon Steel rod stock. Edges
were deburred manually and smoothed in a vibratory tumbler overnight. Smoothing was
important because sharp pole edges can scrape off wire enamel during the winding process,
causing shorts within a magnet.

EP magnets were mechanically assembled using high-viscosity cyanoacrylate glue in a
custom 3d-printed fixture shown in Figure 6. Pole pieces and magnet cylinders are vertically
clamped, fully constraining motion except for travel along the rails. This gluing process was
the most error-prone part of manufacturing, mostly due to glue residue buildup in the fixture.
Misaligned magnets (Fig. 7) were bathed in solvent and recycled.

Magnets were wound in a purpose-built machine constructed from Lego Mindstorms
(Figure 6). Wound magnets were verified by checking resistance (nominally 2.08 Ohms,

16

Figure 3: Left: Internal view of magnets in EP-Face. Right: Internal view of EP-face with circuit
board and slipring.

Figure 4: EP-face on a SMORES-EP module.

with lower resistance indicating an internal short), and testing strength (must lift a 2kg
steel block when activated manually using a power supply at 11V).

To construct the EP-face, four magnets are inserted into their slots in 3d-printed face.
The face is placed on a perfectly flat steel block, and all magnets are activated, forcing them
to align to the steel surface as closely as possible. The face is lifted, and if it supports a
suspended 5kg load, it is considered up-to-spec. The magnets are fixed in place with glue,
and remain attached to the steel surface until the glue cures.

4.2.3 Electrical Design

Driving Circuitry

The four EP magnets in an EP-face are driven by an array of five half-H bridges (Fairchild
FDS8958B), capable of sourcing the 6 amps required to activate and deactivate the EP
magnets. As shown in Figure 8, one side of each magnet is connected to a dedicated half-H
bridge, while the other side is connected to a common half-H bridge shared between all the

17

Figure 5: Left: EP magnets, before and after winding. Right: Technical drawing of EP magnet,
dimensions in millimeters.

Figure 6: Gluing fixture (left) and winding machine (right)

Figure 7: Misaligned EP magnet. The left pole (circled in red) makes contact on its edge rather
than its face, reducing contact surface area and flux transmission.

18

EPM

1

EPM

2

EPM

3

EPM

4

+12V +12V +12V+12V +12V

Half-

Bridge

4

Half-

Bridge

3

Half-

Bridge

2

Half-

Bridge

1

Common

Half-

Bridge

Figure 8: Circuit for Driving EP Magnets.

magnets. This circuit allows bi-directional drive of each magnet, as long as only one magnet
is fired at a time. Similar driving circuits are used in [28] and [32].

The array of half-H bridges is controlled by an ATMega 168a microcontroller with 16kb
of flash memory, 512kb EEPROM, and 1Kb internal SRAM running at 8Mhz. To activate or
deactivate a magnet, three pulses of length 3ms are applied at intervals of 3ms. The magnets
are fired at battery voltage (between 11.1V and 12.6V depending on charge). A voltage
regulator and capacitor could have been used to provide more consistent firing voltage. The
authors chose to omit these components due to tight space requirements, but recommend
that others consider them in their own designs.

Inductive Communication

Connected EP-faces can exchange data through the magnetic coupling of connected EP-
magnets: when a coil is pulsed, the generated magnetic field also flows through the core
of the connected coil, and the changing field generates a voltage across that coil. Through
this channel, EP-faces are capable of UART serial communication. Similar capabilities have
been demonstrated in [28] and [32].

4.2.4 Integration with the SMORES-EP Module
The EP-face and driving circuitry form a compact self-contained unit with no moving parts
(Figure 3). The microcontroller associated with each driver array is configured as an I2C
peripheral, and receives commands from the main microcontroller on the module mother-
board.

The electrical interface between each EP-face and the rest of the module consists of
five lines: High power (battery voltage), logic power (+3.3v), I2C clock, I2C data, and
ground. Because the mechanical design of SMORES-EP requires the top and side faces to
rotate continuously, these three faces are connected to the central electronics via slip rings
(Senring SNM012U-06) mounted in the middle of the face.

The bottom face of SMORES-EP does not rotate continuously, so it does not need a slip
ring. Instead, the circuit board is located in the center of the module, and connected to the
bottom face magnets through a ribbon cable.

19

4.3 Experimental Results
4.3.1 EP Magnet Characterization

Holding Force in Normal Loading

The holding force of a pair of EP magnets was characterized using a materials testing
machine (MTS) to generate stress/strain plots. In each trial, both magnets were activated
by manually pulsing current from a power supply set to 12V. Four pairs of magnets were
tested, with five trials per pair. The maximum holding force was 39N, and the average was
28.3N with a standard deviation of 5.2N.

Normal force as function of air gap at firing

The holding strength of an EP magnet is significantly higher when pulsed in contact with
another magnet (or ferromagnetic object) than when pulsed in free air. This is because
the air forms a magnetic circuit with higher total reluctance, reducing the peak field in the
circuit and therefore also reducing the magnetization of the AlNiCo magnet. As mentioned
in Section 4.2.2, misaligned pole pieces result in a similar effect.

In this experiment, we characterize the holding force of the magnets as a function of
air gap at firing. One pair of magnets was tested. At the beginning of each trial, both
magnets were manually deactivated using a power supply. Paper shims were used to create
well-controlled effective “air gap” between magnets1. Both magnets were fired three times
with the paper spacer in place. The paper was slid out from between the magnets and
measured, the magnets were placed in contact, and a loading test was performed.

Figure 10 plots holding force against gap at firing. Force decreases rapidly with increasing
gap distance, and the dropoff is sharp for small gaps. At a gap distance of 0.25mm, holding
force is reduced to half of the value with magnets in contact.

4.3.2 EP-Face Characterization

Normal Loading

In this experiment we characterize the holding force of an EP-face. In each trial, faces were
aligned and placed in contact, and then magnets were fired three times. Nine pairs of faces
were tested. Each pair of faces was rotated through all four possible connection orientations,
and five trials were performed for each orientation. By using a large sample size, we capture
the variability in holding strength, which is functionally important because the capability
of a cluster is limited by the strength of its weakest connector (if one connection breaks, the
cluster cannot perform as intended).

The maximum holding force was 115N, and the average was 88.4N with a standard devia-
tion of 13.9N. Figure 11 shows a histogram of holding forces for this experiment. We believe
the large variability in holding force is due to the fact that each face-to-face connection
consists of four magnet-to-magnet connections, and when loaded in the normal direction,
failure of the single weakest magnet-to-magnet connection will cause the entire face-to-face
connection to fail. We hypothesize that many of the low-force failures are due to poor con-
tact between a single mated pair of magnets on connected faces, creating a “weakest link”
that lowers performance. This is supported by the data: the average standard deviation for

1We assume the magnetic permeabilities of paper and air are the same. The magnetic permeabilities of
nearly all non-ferrous substances (such as paper and air) are very close to µ0, the permeability of vacuum.

20

a given orientation (pairing of magnets)2 is 6.13N, while the average standard deviation of
all trials for a given face pairing3 is 10.4N.

Effect of Battery Voltage

Magnetization of the AlNiCo magnet depends on the strength of the field created by the coil
during pulsing. Since the magnets are fired at battery voltage, changes in battery voltage
during operation of a module affects the strength of the magnets. Holding force under
normal loading was tested at firing voltages ranging from 9 to 16 volts, using a power supply
capable of sourcing sufficient current.

Figure 12 shows the results of these tests. We see a clear trend of increasing holding
force with increasing supply voltage, with the curve leveling off around 14V, indicating that
the AlNiCo magnetization has saturated. In normal operation, a SMORES-EP module has
battery voltage between 12.6V and 11V.

Shear

Holding force under shear loading was tested by connecting two modules side-by-side and
pulling one upward (fixture shown in Figure 9). Eight pairs of faces were tested, with five
trials performed for each pairing. Different orientations of the pairings were not tested.

The maximum holding force in shear was 41N, and the average was 28.4N with a standard
deviation of 6.39N. Figure 13 shows force versus displacement during one of the trials. Two
distinct regimes are visible. First, there is a smooth rapid rise in force, due to static friction
between the pole pieces. After static friction is overcome (26.52N), force continues to increase
as the magnets are pulled away from each other, until failure occurs at 31.8N.

Bending (Characteristic Strength)

Bending strength was tested by connecting two modules side-by-side and pulling upward on
a lever mounted on the side of one module. One pair of modules was tested at a battery
voltage of 12.6V , with five trials done at each of four lever lengths. The average failure
moment at the connected face was 1.8Nm. Since the SMORES-EP module mass is 0.454kg
and module length is 81mm from magnet to magnet, this is an equivalent load to supporting
3.1 modules in cantilever. This number is used as a figure of merit for modular robots, called
characteristic strength [23]. In practice, due to variability of connection strength and inertial
moments when moving, the functional limit for cantilever structures is two modules in most
applications.

Torsion

Torsional strength was tested in a manner similar to bending, except that the modules were
mounted so that pulling up on the lever twisted one face relative the other. The average
failure moment about the center of the connected faces was 0.83Nm.

Normal and Parallel Offset Area-of-Acceptance

To test the connection tolerance to offsets in the direction normal and parallel to the con-
nected faces, two modules were positioned offset from one another with bottom faces sitting
flat on a table (with magnets turned off), and the magnets were turned on. This process

2Standard deviation of the 5 trials per orientation, averaged over 36 total orientations (4 orientations×9
pairings). In a given orientation, the same pairs of magnets are mated in each trial.

3Standard deviation of the 20 trials (5 trials×4 orientations) per face pairing, averaged over 9 face pairings.

21

Figure 9: (Left) Shear and (Right) Angular Offset test setups

was repeated with decreasing gap distance until force at magnet activation was sufficient to
draw the modules together (demonstrated in the accompanying video).

Magnetic forces can draw two modules together through a gap of 4mm (normal to the
faces), and 7mm parallel to the face. The coefficient of friction between the modules and
table was experimentally determined to be 0.15.

Rotational Area-of-Acceptance

To test the rotational area of acceptance of the faces, we tested the normal direction breakage
strength when the two faces were misaligned. The jig shown in Figure 9 rigidly fixes both
the position and orientation of the modules to the clamps of the MTS machine, allowing the
connecting faces to be held at a controlled angular offset relative one another.

In each trial, the magnets were first deactivated three times to eliminate any residual
magnetization from past trials. The faces were then placed in contact, with a measured
angular offset. The magnets were fired three times, and normal load was applied until
failure. One pair of faces was tested at three offset angles, with five trials at each offset angle.
Figure 14 plots normal holding force against angular offset. Normal force decreases linearly
with angular offset, retaining about 10% of the zero-offset value by 25 degrees. Assuming
bending strength scales with normal strength, the EP-face can still support one module in
cantilever at an offset of 25 degrees (bending failure is 1.8Nm, and one cantilevered module
is 0.19Nm).

Time and Energy

When an EP-Face is turned on (magnetized) or off (demagnetized), each magnet takes 20ms
to fire (9ms of current pulses, 11ms of wait time). To change the state of an entire face, this
requires 80ms. Assuming a nominal 12V battery voltage and 2.08Ω resistance, the peak
power consumption is 69.23W , and the total switching energy is 2.5J per face.

4.4 Discussion
4.4.1 Advantages
The EP-Face has a number of desirable qualities. Connection and disconnection are nearly
instantaneous, requiring only 160ms for a connect-disconnect cycle. Most other connectors
require time on the order of seconds or minutes (Table 1). The energy required is also small,

22

Gap distance (mm)
-0.5 0 0.5 1 1.5 2 2.5 3 3.5

H
o

ld
in

g
 F

o
rc

e
 (

N
)

0

5

10

15

20

25

30

35
Holding Force vs. Firing Gap

Data

Exponential fit

Averages and Standard Deviations

Figure 10: Plot of Holding Force vs. Gap at Firing. Exponential fit: y = 18.63 exp(−7.019x) +
12.08 exp(−0.1697x)

Force (N)
40 50 60 70 80 90 100 110 120

C
o

u
n

t

0

5

10

15

20
Histogram of Normal Holding Force

Figure 11: Histogram of Holding Forces Under Normal Load. Mean=88.4N, Std=13.9N.

23

Supply Voltage (V)
8 9 10 11 12 13 14 15 16 17

B
re

a
k
 V

o
lt
a

g
e

 (
N

)

20

30

40

50

60

70

80

90

100
Break force vs. voltage

Averages and Standard Deviations
3rd Order Fit

Figure 12: Face Break Force vs. Supply Voltage. Cubic fit: y = 0.313x3 − 14.3x2 + 215x− 981

Displacement (mm)
0 1 2 3 4 5 6 7 8 9 10

F
o
rc

e
 (

N
)

5

10

15

20

25

30

35
Force vs. Displacement for Face in Shear

Magnetic
Failure

Frictional
Failure

Figure 13: Force vs. displacement in shear. Peak force of 31.8N at displacement of 3.1mm. Note
while static friction failure appears to occur at a displacement of 1mm, this large displacement is
due to deformation (slop) of the module, not movement of the magnets.

24

Angular Offset (Degrees)
0 5 10 15 20 25 30

H
o
ld

in
g
 F

o
rc

e
 (

N
)

0

20

40

60

80

100
Normal Holding Force vs. Angular Offset

Data
Linear Fit

Figure 14: Normal Holding Force vs. Angular Offset.
Linear fit: y = −3.194x+ 90.7

Figure 15: Slide-by docking is made possible by the thin profile of the EP-Face.

Figure 16: Ledge exploration. (Left) Seven-module snake lifts its head to the top of a 3-module high
ledge. (Center) Head module detaches, and explores the surface. (Right) Head module autonomously
reattaches, and snake descends.

25

Figure 17: SMORES-EP module moving a 1kg metal block while lifting another module in the air.

2.5J per state-change, as compared to 3.75J for the SINGO connector [84]. The time and
energy costs of EP-Face connection are vanishingly small in comparison with movement
actions SMORES-EP can perform.

The forces supported by EP-faces are comparable to other magnetic connectors (Table 1),
and sufficient to perform tasks such as ledge climbing (Fig. 16). Under normal loading, it
supports the weight of 17 modules. Additionally, since the connection is magnetic, SMORES-
EP modules have demonstrated the ability to manipulate ferrous objects as heavy as 1kg
(Figure 17).

The connector is low-profile, with the magnets protruding only 0.5mm from the face.
The interior thickness is also small (magnets are 10.2mm tall, and total thickness including
slip ring is 20mm). Many existing connectors are thicker, sometimes comprising a significant
fraction of the total module volume (ATRON, SMORES [17, 69]).

Latching and unlatching actions require no moving parts, and impose no constraints on
module movement. Many other connectors are mechanically complex, with moving parts
that can break or wear over time (ATRON, SMORES, SINGO, MTRANvIII [17, 47, 69, 84]).
Additionally, while mechanical latches are usually stronger than magnetic connections, over-
loading can result in plastic deformation or fracture, permanently damaging the connector.
In this sense, magnetic connections are more robust to overloading, allowing for the possi-
bility of re-connecting after being overloaded.

Connectors with interlocking external features often require a specific angle of approach
to connect. For example, the SINGO (SuperBot) and PolyBot connectors would not be
capable of the kind of slide-by docking demonstrated by SMORES-EP in Figure 15, because
their protruding features would collide [84, 106]. Similarly, the original SMORES connector
cannot reliably perform slide-by docking because the permanent magnets get stuck in a local
minimum configuration before the faces are actually mated. Because the EP-Face magnets
lie in a single plane and can be switched off, there is no dependence on approach angle for
docking; whe two faces can be brought into contact, they can connect.

EP-Faces do not need to be perfectly aligned to connect successfully; the connector has a
forgiving area of acceptance. As presented in the previous section, latching forces can draw
two two modules together through a gap of 4mm (normal to the faces), and 7mm parallel
to the face. Even if the faces are held with an angular misalignment of 25 degrees, the

26

connection is strong enough to support the weight of one module. This can be compared to
the tolerances of SINGO (max 6mm normal, 5mm parallel, or 5.7 degrees) and MTRANIII
(max 2mm normal, 5mm parallel, or 10 degrees). The EP-Face is hermaphroditic and
rotationally symmetric, with a pair of faces able to connect in four different orientations (0,
90, 180, and 270 degrees relative one another).

4.4.2 Disadvantages
With no mechanical features on the connection plane, shear loading is supported by static
friction and magnetic restoring forces. Connector strength is significantly weaker under
shear and torsional loading than normal loading.

The magnetic connection is also somewhat compliant, especially in shear and torsion.
In the force vs. displacement plot for shear (Figure 13), we see a displacement of three
millimeters before the maximum force is reached.

Connection strength is significantly affected by air gap when the magnets are fired, as
demonstrated in the experiments. Fortunately, in some circumstances this is mitigated by
the self-aligning properties and low cost of connection: once the magnets establish a weak
connection, they can be fired again to strengthen the connection.

Because of this air gap sensitivity, the system needs to run in relatively clean environ-
ments. Outdoor environments with dirt and other debris that may be collected or stick to
the magnet faces may reduce connection strength.

Some systems (such as SINGO [84]) are able to disconnect even if one module is unre-
sponsive, facilitating removal of the broken module from the cluster. The EP-Face cannot
do this: if one module becomes unresponsive with its magnets switched on, they will exert
a holding force even if a connected module switches its magnets off.

4.5 Conclusions and Future
We introduced and characterized the EP-Face, an EP magnet-based connector for the
SMORES-EP robot. We discussed its advantages relative to existing connectors, most no-
tably its compactness, very fast connection speed (80ms) and wide area of acceptance. We
also demonstrated how the EP-Face allows the SMORES-EP module to reconfigure and
interact with its environment.

Overall, we think the advantages of the EP-Face make it a good option for modular
robots the size of SMORES-EP. The main avenue of future work will be exploring ways to
increase the shear and torsional strength of the connector. It may be possible to increase
strength by adding a friction-enhancing surface finish to the faces. Another option is the
addition of surface features that interlock to resist shear and torsion. Unidirectional features
(alternating ridges and valleys in one dimension) could increase strength while still allowing
slide-by docking.

27

Connector E
P

fa
ce

S
M
O
R
E
S

S
IN

G
O

A
T
R
O
N

M
T
R
A
N

3

M
T
R
A
N

2

P
ol
yB

ot
2

Type EP
Mag

Mag
/Mech

Mech Mech Mech Mag/
SMA

Mech/
SMA

Thickness
(mm)

16.6 50 24∗ 50∗ 20∗ 20∗ 9.5

Gender H H H G G G H
Orientations 4 2 4 1 4 2 4
Connection
Cycle Time

160ms 2.3s 50s 4s 5s 30s 30s

Char.
Strength

3.1 3 3.7 2.58 - 2.59 6.14

Connection
Energy
(Joules)

2.5 < 5∗ 3.75 < 5∗ < 5∗ 200∗ >
100∗

Citation - [17] [84] [69] [47] [61] [106]
Notes: H/G= Hermaphroditic/Gendered, *=approx,

Green=Best, Red=Worst, Characteristic strength values from [101].
SINGO thickness includes estimated 10mm for motor.

Table 1: Comparison of Connectors

28

Chapter 5

PaintPots

This chapter presents the PaintPot manufacturing process, a method for creating low-cost,
low-profile, highly customizable potentiometers for position sensing in robotic applications.
This chapter excerpts heavily from the author’s work in [93]. Credit is due to co-authors
Daniel Edgar, Chao Liu, and Thulani Tsabedze, who contributed significantly to this work.

The PaintPot process uses widely accessible materials, requires no special expertise,
and creates custom potentiometers in a variety of shapes and sizes, including curved sur-
faces. PaintPots offer accuracy and precision performance comparable with commercial
(non-customizable) options through a calibration process that trades small computation
for cost. We present manufacturing and calibration processes, as well as experiments that
validate the accuracy, precision, and lifetime performance of PaintPots, comparable to com-
mercial sensors. We also provide a case-study application in the SMORES-EP modular
robot, and show how the PaintPot process can be used to create resistive surfaces capable
of sensing position in 2D on planes and spheres.

5.1 Introduction
Nearly all robots with articulated joints require position sensing to precisely control their
motions. Most commercial position sensors are available in a limited set of form factors,
which constrain their positioning relative to the joint they are measuring. This can be a
serious design challenge, especially in highly space-constrained applications like modular
robots.

The PaintPots process is a novel method to create low-cost, low-profile, highly customiz-
able potentiometers for position sensing. PaintPots can be made using widely accessible
materials (spray paint and plastic sheet) and tools (laser cutter, or scissors), cost about
$1 USD to make in small batches, and require no special expertise to manufacture. They
are highly customizable in terms of shape, size, and surface curvature, and can be directly
integrated with existing plastic surfaces on parts. Once calibrated, they provide accuracy
and precision performance comparable to off-the-shelf commercial potentiometers of similar
cost.

PaintPots open robot design to a broader audience, enabling designers to tightly integrate
custom position sensors into their robots, even if they would not normally have the expertise
or funding to do so. Recent research into low-cost and printable robotics provides ample
motivation for such sensors [55, 58]. Beyond the realm of low-cost robotics, PaintPots offer

29

Wiper (3)Terminal (2) Terminal (2)
x1 = 0 x2 = Lx

Vw V2V1

Track (1)

Figure 18: Potentiometer schematic showing the three parts (track, terminals, and wiper) as well as
position and voltage labels.

sensing performance and customizability that makes them competitive with commercial
potentiometers. As a case study, we present two PaintPots designs used in the SMORES-
EP modular robot. Finally, we demonstrate how PaintPots enable 2D position sensing on
arbitrary surfaces, including a plane and a sphere.

5.2 Related Work
5.2.1 Potentiometers
Potentiometers are three-terminal devices that can vary the resistance to a moving contact.
The typical geometry is either a circular (rotary pot) or straight (slide pot). All potentiome-
ters have the three basic components shown in Figure 18: (1) a resistive track, (2) fixed
electrical terminals at the track ends, and (3) an electrical contact (wiper) that moves along
the track surface. Most modern tracks are a continuous semiconductive surface made of
graphite, ceramic-metal composites (cermets), conductive plastics, or conductive polymer
pastes. PaintPots use an inexpensive carbon-embedded polymer spray paint for the track
surface.

For position sensing applications such as robotic joint sensors, potentiometers are almost
always configured as voltage dividers where each of the terminals are connected to a known
voltage and the wiper voltage can be changed by moving between the two terminals.

Industrial processes are available that allow custom potentiometers to be created. Some
electronics manufacturers offer inkjet-printed thick-films that can be deposited on printed
circuit boards and other surfaces to form the tracks for custom potentiometer position
sensors [4]. The primary distinguishing factors of the PaintPot method as compared to these
processes are cost and time: these are industrial processes that often require thousands of
dollars in up-front engineering fees, produce sensors that cost tens of dollars each, and have
turnaround times of a week or more. Our method can be used by anyone, produces sensors
that cost on the order of $1 USD per unit, and allows rapid iteration (limited only by the
drying time of the paint).

30

5.2.2 Ubiquitous Electronics
Recent work on ubiquitous computing and robotics technologies often leverages rapid pro-
totyping technologies to to allow electronics to be integrated into everyday objects at low
cost. Miyashita et al. [57] introduce self-folding printable resistors, capacitors, and inductors
made of cut sheets of aluminum-coated polyester film (mylar). An accordion-like variable
resistor is presented, whose resistance changes as the folded layers are compressed and ex-
panded. Kawahara et al. introduce Instant Inkjet Circuits [41], a technique for accurately
printing low-resistances traces on sheet materials using silver nanoparticle ink deposited us-
ing a standard inkjet printer. This method has been used to explore designs for capacitive
touch-sensitive sheets, which can be adapted to custom shapes by cutting with scissors [67].
Unlike PaintPots, a primary design concern for these silver-ink printed circuits is attaining
sufficiently low trace resistances (< 1Ω), as the printed conductors are intended for use as
wires. In the case of PaintPots, relatively high resistances (on the order of kΩ) are desirable,
since the potentiometers are intended to be used as voltage dividers.

5.3 Background: Potentiometer characterization
5.3.1 Conformity (Accuracy)
The relationship between wiper position x and wiper voltage Vw (referring to Figure 18) is
used to measure position. Let the function Vw = f(x) be the potentiometer model. The
degree to which f(x) matches reality is referred to as conformity. Mathematically, absolute
conformity is defined as the percent maximum deviation of the measured wiper voltage from
the model over a defined travel range [98]:

|Vw(x)− f(x)|
|Vw(x2)− Vw(x1)| ≤ Cabs∀x ∈ [x1, x2]

Conformity measures accuracy: neglecting noise, it bounds the error relative to ground
truth. Commonly, commercial potentiometers intended for position sensing are modeled as
linear, that is: f(x) =

(
V2−V1
x2−x1

)
(x− x1) +V1 In this case, the term linearity is used in place

of conformity.

5.3.2 Resolution
Resolution refers to the ability to register small changes in the value being measured. In
practice, potentiometer resolution is often limited by the bit depth of the analog-to-digital
converter used to read Vw. To compare PaintPot performance to off-the-shelf potentiometers,
we are interested in measuring the intrinsic resolution of the device itself, independent of the
analog-to-digital converter. Since potentiometers are analog devices, some manufacturers
incorrectly list intrinsic resolution as infinite. In fact, the intrinsic resolution is determined
by the mechanical noise properties of the strip material.

The resolution limit of a measurement system is wres if there is an equal probability that
the indicated value of any measurement whose actual value differs from a reference by less
than wres will be the same as as the indicated value of the reference [3]. Novotechnik Inc.
introduce the concept of Relative Gradient Variation (RGV), which can be used to determine
the resolution limit wres of a potentiometer [2]. RGV provides a measure of local deviations
in resistance caused by material fluctuations at small length scales (typically micrometers).

31

Consider a one-dimensional straight-line potentiometer configured as a voltage divider, as
shown in Fig 18. Let V be the wiper voltage, and x be the wiper position as it travels
from x1 = 0 to x2 = L. As the wiper is moved, the gradient at position x can be defined
g = dV

dx (x). The mean gradient over a region [x1, x2] can be defined ḡ = V (x2)−V (x1)
x2−x1 . RGV

at x ∈ [x1, x2] with window size w is defined:

RGV (x,w) =
1
w (V (x+ w/2)− V (x− w/2))− ḡ

ḡ

RGV compares the local gradient in the window x ± w/2 to the mean gradient of the
sensor. Intuitively, RGV measures how much the behavior of the sensor in a small region
(the local gradient in x±w/2) deviates from the nominal model (the mean gradient ḡ). Local
deviations in gradient are due to fluctuations in the material properties of the potentiometer
track at the microscale. As window size increases, we should expect RGV to decrease, since
these small fluctuations will tend to cancel each other out (by the central limit theorem),
and when w = x2− x1, RGV (x,w) = 0 by definition. Conversely, as w decreases, RGV will
increase.

Using RGV, we can compute the resolution limit wres of a potentiometer. If for some
sufficiently small w, RGV (x,w) = 1, this means the local variation in gradient is comparable
to the mean gradient, so we know that in the region x±w/2, a change in the output signal of
the potentiometer is just as likely to represent a fluctuation in local material properties as an
actual movement of the wiper. Thus, w = wres is the resolution limit of the potentiometer
[2].

Assume we have collected a dataset V = {V0, V1, . . . VN} which is a digitally sampled
representation of V (x) at points X = {x0, x1, . . . xn}. Selecting a window size w, we may
compute the mean absolute RGV for the sample:

|RGV |(w) =
1

N

N∑
i=0

|RGV (xi, w)|

The resolution limit wres is the window size for which |RGV |(wres) = 1.
Potentiometer performance is sometimes characterized in terms of “smoothness,” a met-

ric which is qualitatively similar to resolution [98]. The standard procedure to measure
smoothness applies a band-pass filter to the output signal of the potentiometer, and mea-
sures the maximum spike size produced when moving the wiper at a fixed speed over a set
travel range. If the filter parameters and travel speed are standardized, smoothness mea-
surements can be used to compare the performance of different potentiometers, but do not
quantitatively measure resolution.

5.3.3 Hysteresis
Potentiometers can exhibit hysteresis due to friction between the wiper and track and compli-
ance in the wiper. When the sensor approaches the same position from different directions,
the actual position of the wiper on the strip (and therefore the output voltage) will be
slightly different.

32

Figure 19: A bead of conductive paint applied beneath the screw head forms a good electrical
connection with the track.

5.3.4 Lifetime
While there is no strict standard for potentiometer lifetime testing [2], accelerated lifetime
testing typically involves repeatedly moving the potentiometer wiper through its full range
until failure, and is reported in number of cycles.

5.4 Design and Manufacturing
5.4.1 Design Overview
Referring to Figure 18, the distinguishing feature of a PaintPot is the resistive track surface,
which is made of conductive spray paint. We use MG Chemicals Total Ground conductive
paint [56], which is an off-the-shelf carbon-embedded spray paint easily applied by hand.
Any non-conductive material can serve as track substrate. The paint adheres well to most
plastics, making it possible to paint tracks directly onto existing parts by masking off a region
with tape. Acrylonitrile butadiene styrene (ABS) plastic works particularly well, because
the paint chemically etches the surface to form a durable resistive coating [56]. ABS sheet
can also be cut to precise shapes in a laser cutter, allowing custom tracks to be precisely
cut in a wide range of shapes and sizes.

Connecting electrical terminals to the painted surface can be difficult, because wires
cannot be soldered and crimp connections would likely crack the painted surface. Good
electrical terminals can be created by mounting zinc-coated screws at the ends of the resistive
strip. As shown in Figure 19, conductive paint is applied beneath the screw heads before
fully screwing them in. Leaded solder adheres to zinc-coated screws, allowing wires to be
easily attached and detached.

The wiper can be chosen depending on the application. Wipers with high contact pres-
sure should be avoided, as they may scratch the paint. Larger contact surface area also
reduces contact resistance, improving signal quality. The Harwin S1791-42 EMI Shield
Finger Contact serves as a good wiper for our PaintPots [33]. The wiper is a 4mm high
gold-plated tin spring contact with a 1.45x2.05mm contact area, and a contact force of 1N
(mounted at a 3mm working height).

5.4.2 PaintPots used in SMORES-EP
Our decision to use PaintPots in SMORES-EP was driven by the tight space constraints
inside the module. Absolute position sensing was necessary on all DoF. Optical track en-

33

Left

Right

Pan

Tilt

Figure 20: SMORES-EP module with labeled joints. The module is the size of an 80mm cube.

coders were considered for the side wheels, but not enough space was available to fit multiple
gray code tracks to measure tilt position. PaintPots proved to be a versatile, robust, and
accurate solution.

Wheel PaintPots

The wheel PaintPots, shown in Figure 21, have a circular track and two wiper contacts.
They allow continuous rotation and provide position information over the full 360o range
of the left, right, and pan joints. The annular geometry allows the slip ring to fit through
the center. Tabs on the track extend into the center of the circle to provide space for the
terminal contacts. The V-shaped gap provides enough space for the wipers to pass from one
side of the track to the other without contacting both simultaneously (which would cause a
short circuit).

The two wipers (Harwin S1791-42 [33]) are mounted on a PCB above the track, as shown
in Figure 21. Using two wipers at a 50-degree angle to one another ensures that at least
one wiper contacts the track even if one is in the gap, providing 360◦ of position sensing.
To decide which wiper to use at a given time, we apply a simple rule. Angles are measured
in the range −π < θ ≤ π, and since the two wipers are centered about the gap when θ = π,
we use one wiper if θprev < 0 and the other wiper if θprev ≥ 0.

The track substrate is 0.79mm thick ABS sheet. To facilitate easy mounting, a layer of
double-sided adhesive is applied to the back of the ABS sheet before cutting. Tracks are
cut in batches in a laser cutter. After cutting, each track is gently sanded, removing plastic
debris from laser ablation and providing an even rough surface ideal for paint adhesion, and
then wiped with water to remove dust.

Tracks are hand-painted using spray cans of Total Ground conductive paint. Three coats
of paint are applied, with five minutes of drying time between coats, following the painting
guidelines in the datasheet [56]. Strips are allowed to dry for 24 hours before use, to ensure
maximum durability. The total thickness of the sensor is 4.1mm, including the adhesive
layer, ABS sheet, paint, and wipers.

Strips are mounted in a mated groove in a 3D-printed chassis as shown in Figure 21.
The chassis has a raised triangular feature that mates with the gap in the strip, so that the
wipers remains at the same level as they pass through the gap region. Zinc-coated screws
(m1.6 x 6mm) are used for electrical terminals, as described in Section 5.4.1. The measured

34

1.250 THRU

R
19

.7
28

R1
3.

25
0 R2.250

3.
12

2

70°

0.500

4

Figure 21: Top Left: Wheel PaintPot installed in chassis. Top Right: Drawing of wheel PaintPot
with dimensions in mm. Bottom: Circuit board used with wheel PaintPots showing Harwin S1791-42
wipers mounted at a 50◦ angle.

terminal-to-terminal resistance of wheel PaintPots is between 2kΩ and 20kΩ, depending on
the thickness of the paint. Before use, a coat of petroleum-based grease is applied to the
track surface.

Tilt PaintPots

The tilt PaintPots, shown in Figure 22, have resistive tracks with cylindrical curvature about
their axis of rotation. A single wiper (Harwin S1791-42 [33]) contacts the track and measures
position through the full 180◦ of motion of the tilt joint.

The track geometry of the tilt PaintPot makes very efficient use of space inside the
SMORES-EP module. To our knowledge, no off-the-shelf potentiometers replicate this un-
usual non-planar shape. Some off-the-shelf slide pots can bend into curves [5], but come in
predefined widths and lengths, making them difficult to mount in the module.

Tilt PaintPots have the same ABS/adhesive substrate as wheel PaintPots, and similar
screw contacts. They are mounted to the 3D printed chassis before painting, allowing them
to be painted in their final curved shape. This is preferable to painting flat and then bending:
bending the paint after it has dried causes cracks to form, increases the resistance (three
orders of magnitude) and causes a non-smooth variation of voltage along the length of the
track. The terminal-to-terminal resistances of our tilt PaintPots fall between 3kΩ and 10kΩ.

35

4

R1.990

86.600

1.990

 1

90

Figure 22: Top: Tilt PaintPot installed on chassis with cylindrical curvature (28.5mm radius).
Bottom: Drawing of tilt PaintPot track (laid flat) with dimensions in mm.

5.4.3 Cost
PaintPots are inexpensive. The most expensive components in the SMORES-EP wheel and
tilt PaintPots are the Harwin S1791-42 wipers, available from Digikey.com for $0.35 USD in
quantities of 100. MG Chemicals Total Ground spray paint can be purchased from Ama-
zon.com for $16 USD, and 0.79mm ABS sheet can be purchased from McMaster.com for
$3.70 USD per square foot. Based on these prices, materials for our wheel PaintPots cost
$1.05 USD, and tilt PaintPots cost $0.70 USD (including material wasted during manufac-
turing). After quality control testing (described in Section 5.6), we yield about 75% of our
wheel PaintPots and 90% of our tilt PaintPots, making the effective materials costs $1.40
USD and $0.78 USD, respectively.

5.5 Calibration
As discussed in Section 5.2, potentiometers are typically modeled as linear. Close adherence
to the linear model is achieved by ensuring that resistivity is constant along the track, which
involves ensuring uniform geometry, thickness, and material properties of the track. This
requires careful quality control, which is expensive.

As an alternative, a calibration process can be used to achieve good performance. Our
PaintPots are manufactured using a low-cost process (hand spray painting) without signif-
icant process control, and are somewhat nonlinear. By relying on a calibration process, we
effectively trade manufacturing cost for additional computation, and achieve performance
comparable to off-the-shelf potentiometers of greater cost.

5.5.1 Ground-Truth Data: AprilTags
AprilTags are an open-source, inexpensive, marker-based motion capture system, requiring
only a camera, paper tags, and open-source software [68]. Unlike many position measure-
ment devices (like shaft encoders), they do not require mechanical fixturing: tracking two
rigid bodies (PaintPot track and wiper) only requires attaching paper tags to each body.
Mechanical fixturing is particularly difficult for SMORES-EP modules, which have five in-
dependently moving rigid bodies.

During calibration, a PaintPot is moved through its entire range of motion (360◦ for
wheel, 180◦ for tilt) in both directions, while voltage and ground-truth angle data are

36

Table 2: Error metrics for PaintPots

Tilt PaintPot Wheel PaintPot
RMS 1.96◦ ± 0.10◦ 2.92◦ ± 1.39◦

Median −0.10◦ ± 0.28◦ 0.06◦ ± 0.29◦

Max 4.83◦ ± 2.25◦ 7.70◦ ± 3.56◦

Conformity 2.68%± 1.25% 2.14%◦ ± 1.0%

recorded. The data rate is limited by the speed of the AprilTag software, which runs at
about 12hz. Calibration takes about 50 seconds, during which about 600 datapoints are
gathered.

5.5.2 Model fitting
While the voltage data from our PaintPots is often nonlinear, it does tend to be smooth and
monotonic. As a result, the first order (linear) model typically used to model potentiome-
ters is insufficient, but a significantly more complex model is not necessary to capture the
variance. We found that a third-order polynomial (Xw = a3V

3
w +a2V

2
w +a1Vw+a0) provides

a suitable model. In addition to good prediction performance (discussed in Section 5.6.1),
third-order polynomials can be accurately and quickly computed with the floating-point unit
on the SMORES-EP microcontroller (STM32f303).

While third-order polynomials provided good performance for our applications, alterna-
tive models (such as piecewise linear interpolation) could also be explored.

5.6 Performance
5.6.1 Accuracy

Given an N -sample dataset consisting of estimated angles Θ̂ =
{
θ̂1, θ̂2, . . . , θ̂N

}
and ground

truth angles Θ = {θ1, θ2, . . . , θN}, define the error to be E =
{
ei = θi − θ̂i ∀ i ∈ [1, N]

}
.

We compute three error metrics for each dataset. Root-mean-squared (RMS) error is a

measure of average error magnitude over the entire dataset, computed: ERMS =
√∑N

i=1 e
2
i .

Median error Emed is the median of all ei. Maximum error Emax is the maximum error
magnitude after applying a median filter (with window size 3) to remove electrical noise,
Emax = maxi |medfilt(ei)|.

These error metrics are listed in Table 2 for a population of 11 wheel PaintPots and 16 tilt
PaintPots. Conformity values are computed by dividing the maximum error by the angular
travel range for each PaintPot (360◦ for the wheel, 180◦ for tilt). The conformity values
for tilt and wheel PaintPots are 2.68% and 2.14% respectively, making them competitive
with off-the-shelf potentiometers of similar cost. Section 5.6.5 provides a comparison with
commercial potentiometers.

To guarantee consistent performance, every PaintPot used in SMORES-EP is evaluated
during calibration. Any PaintPot with ERMS ≥ 6.5◦, Emed ≥ 2◦, or Emax ≥ 20◦ is con-
sidered out-of-spec, and is discarded (Estimated to be 25% of wheel tracks and 10% of tilt
tracks).

37

5.6.2 Resolution
The resolution limit of our potentiometers was obtained using the experimental setup shown
in Figure 24. It consists of an 80mm long slide PaintPot with the wiper mounted on a linear
stage whose position is controlled by a servo-driven micrometer. The PaintPot is configured
as a voltage divider, with terminal voltages of 0V and 12V.

Four datasets were gathered with the servo turning at a constant rate of 0.066 revolutions
per second, corresponding to a wiper travel rate of 41.91µm per second. Data was gathered
for approximately 5 seconds, for a total travel distance of about 200µm. All four datasets
traverse the same region of the strip. Voltage was sampled with an oscilloscope range of 40mV
at a rate of 0.004s, corresponding to a travel distance of 0.168µm per sample. |RGV |(w)
was computed for each dataset using window sizes ranging from 30 samples (5.03µm) to
the length of the entire dataset in increments of 1 sample (Figure 23). Results from all
four datasets agree closely. Averaging over all datasets, we compute wres = 8.63µm, with
a standard deviation of 0.216µm (3%). For reference, some high-precision potentiometers
from Novotechnik have wres = 1.5 to 3.5µm [65].

The small resolution limit of PaintPots means that the properties of the wiper and track
will not be the limiting factor in precision for many applications. In SMORES-EP, the
limiting factor is the ADC bit depth (10 bits, or 84µm for the 86.6mm long tilt PaintPot).
To reach the material resolution limit, 14 bits of ADC depth would be required.

5.6.3 Hysteresis
PaintPot hysteresis was measured using the same experimental setup for RGV shown in
Figure 24. To test hysteresis, the wiper was set to an initial position using the micrometer.
The oscilloscope ground bias voltage was then adjusted to bring the measured wiper voltage
as close as possible to zero, allowing the voltage scaling to be set as small as possible.

The wiper was then moved to the right 6.3mm, moved back to the zero point, and allowed
to sit for two seconds before voltage was recorded. The procedure was then repeated, moving
the wiper to the left instead of the right. The entire procedure was repeated 10 times. Five
such experiments were conducted at five different initial positions on the strip. The hysteresis
voltage is: Vh = 1

2 |VL − VR| where VL and VR are the voltages after moving left and right
during a trial.

The average hysteresis voltage over 30 total trials was 0.49mV with a standard deviation
of 0.34mV (70%). Converting to an equivalent distance (by multiplying by the average slope
∆V
∆X), we find a hysteresis distance of 10.1µm, with a standard deviation of 7.1µm. Like the
resolution limit, the small hysteresis of this wiper and track is unlikely to be the limiting
factor in overall precision for many applications.

5.6.4 Lifetime
While PaintPots are not intended to be long-life sensors for industrial purposes, adequately
long lifetime is required for even low-cost applications. Wheel PaintPot lifetimes were eval-
uated by fixing a DC gear motor to the outside of a SMORES-EP face, spinning at 167
RPM. Every hour (after 10,020 revolutions), data is collected and evaluated according to
the criteria presented in Section 5.5 to determine if the PaintPot still meets our minimum
standards for use.

Table 3 shows lifetime tests from seven wheel PaintPots. Tracks from group A have
three layers of paint, and were hand painted in small batches (1× 4 grid of tracks), allowing

38

window size (microns)
10 20 30 40 50 60 70 80 90

M
e
a
n
 a

b
s
o
lu

te
 R

G
V

10
-1

10
0

RGV vs Length Scale
M

e
a
n

 A
b
s
o
lu

te
 R

G
V

Window Size (microns)

40 60 80 100 120 140 160 180 200 220 240

R
G
V

-5

0

5
window size: 5.0292 microns

100 150 200 250

R
G
V

-1

-0.5

0

0.5

1
window size: 77.1144 microns

Microns

170 180 190 200 210 220 230 240 250

R
G
V

-1

-0.5

0

0.5

1
window size: 149.1996 microns

R
G

V
R

G
V

R
G

V

Microns

Window Size: 77.1144 microns

Window Size: 149.1996 microns

Window Size: 5.0292 microns

Figure 23: Top: Plot of mean absolute RGV with increasing window size. Red line indicates
resolution limit, |RGV |(w) = 1. Right: Bottom of RGV computed on the same dataset with
different window sizes. We can see that the data becomes smoother with increasing window size.

39

Figure 24: Testing setup used to evaluate RGV and hysteresis.

Table 3: Track lifetimes

Cycles (x1000) Group Failure mode
1 380 A Wear through
2 190 A Wear through
3 60 B Local Pitting
4 50 B Local Pitting
5 40 B Local Pitting
6 20 C Local Chipping
7 10 C Local Chipping

40

the painter to carefully control the thickness of each layer of paint. Tracks in group B were
painted in large batches (4×9 grid), making it more difficult to control paint quality. When
tracks from group B failed, it was due to visible pitting in the top layer of paint. When
the wiper hits these pits, the signal becomes noisy, and falls outside the acceptable bounds
for maximum error. Tracks from group A were much more durable, lasting hundreds of
thousands of cycles, and typically exhibiting an even wear pattern over the track.

In light of these results and our experience with the painting process, we hypothesize
that group B had regions of thick paint that are not well bonded to the ABS surface, creating
“soft spots” that wear away more easily. This hypothesis is further supported by the results
from group C, which were painted with five coats of paint rather than three. Both tracks
from group C failed when paint chipped off the track after a relatively small number of
cycles. Based on these experiments, we recommend using a maximum of three coats of
paint, and taking care to apply paint evenly.

Lubrication can also contribute to the longevity of PaintPots. Without lubrication, wheel
PaintPots can fail at under 10,000 cycles. Silicone-based dielectric grease and petroleum jelly
lubricants were found to be equally effective. Tracks tested in Table 3 were lubricated with
petroleum jelly.

5.6.5 Comparison to Commercial Potentiometers
PaintPots can be tailored to the needs of an application at a cost of around $1 USD, while
achieving performance of more expensive potentiometers with similar features. Figure 25
plots cost versus linearity for 20 potentiometer position sensors with features similar to
our wheel PaintPot (continuous rotation and 360o sensing range). The wheel PaintPot (red
square) offers good conformity at a lower cost than the majority of available potentiometers.
Its disadvantage is a shorter lifetime, which in many robotics applications is not a major
concern. In the case of SMORES-EP, none of these other potentiometers had a form factor
that could meet the other design requirements (such as a through-hole large enough for the
slip ring in the middle of the face).

When considering cost and conformity, it is important to note that PaintPots rely on
a calibration function, which requires additional computation. The calibration process pre-
sented here could be used with other potentiometers to increase performance, but in essence
demonstrates the computation for cost trade-off.

5.7 Two-Dimensional PaintPots
The customizability of PaintPots enables many interesting sensing modalities. A spherical
PaintPot is created by painting a plastic sphere (Figure 26), and can be used to sense the
position of a wiper on its top half. The sensor has four terminals as shown in Figure 27.
Position sensing is done in two alternating steps. In step 1, terminals A0 and A+ are held at
ground and 3.3V respectively, while B0 and B+ are left floating. This creates a voltage field
that varies linearly with arc length from A0. By reading the voltage, the wiper is localized
to a circle on the surface. In step 2, B0 and B+ are held at ground and 3.3V while A0 and
A+ are left floating, localizing the wiper to a different circle. The position of the wiper is
the intersection of the two circles within the top hemisphere. If a third pair of electrodes
were used, the wiper could be localized on the entire sphere.

A flat-sheet PaintPot (Figure 26) uses a similar method to determine the X-Y position of
the wiper. Four contacts positioned at the corners of the sheet are alternately activated and

41

Figure 25: Plots of cost vs. conformity and cost vs. lifetime for commercial potentiometers with
features similar to the wheel PaintPot (360◦ sensing range and continuous rotation). PaintPot
marked with red square.

42

Figure 26: Left: Spherical PaintPot that senses position on the top hemisphere. Right: Flat-sheet
PaintPot capable of sensing the X-Y position of the wiper.

deactivated in a similar way to the sphere (Figure 27). Each sensing step localizes the wiper
to a horizontal or vertical line. For a simple cartesian mapping from voltage to position,
ideally two full sides of the rectangle would be held at known voltages. However, wiring the
entire side would create short-circuits at the corners. Instead, two points along each side
are used, which creates nearly-even voltage field lines in the middle of the sheet.

The 2D sheet PaintPot can be used as a touchpad to capture writing, as demonstrated
in the accompanying video. The surfaces are durable enough that the stylus (a multimeter
probe) does not scratch them under normal writing pressure. The sphere and sheet PaintPot
each cost about $1 USD to make. The performance of these 2D PaintPots could be improved
through calibration. Similarly to the procedure employed for the 1D PaintPots, the sheet or
sphere could be calibrated by measuring voltages at known coordinates on the surface, and
fitting a parametric function for each coordinate as a function of the two measured voltages.

5.8 Conclusion
We presented a method to create custom potentiometers for position sensing at low cost.
The manufacturing process uses widely accessible materials, requires no special expertise,
and can create potentiometers in a variety of shapes and sizes, including curved surfaces.
This enables designers to integrate custom sensors into their designs, even if they would not
normally have the expertise or funding to do so.

Our calibration process is low-cost and adaptable. Once calibrated, PaintPots offer
accuracy and precision on par with commercial potentiometers of comparable cost. We
believe this makes them a competitive alternative to off-the-shelf potentiometers, even in
high-performance applications.

PaintPots are not without disadvantages. The tracks have shorter lifetimes than com-
mercial potentiometers. Wiper alignment is important: if a wiper contacts the track on its
corner or edge, the pressure concentration can scratch the painted surface. Calibration allows
good accuracy at low cost, but requires time during manufacturing, and more complex soft-
ware. Time must also be spent identifying tracks that are up-to-spec for high-performance
applications.

43

Figure 27: Top: Top-down view of voltage gradients on the sphere PaintPot. Bottom: Voltage
gradients on sheet PaintPot.

44

In the future, well-established automated painting processes could greatly improve Paint-
Pot consistency over hand-painting. While hard metal wipers proved the best choice for the
SMORES-EP PaintPots (because of their low profile and low hysteresis), other types of
wipers might be optimal for other applications. In particular, softer brush-type wipers
might afford longer lifetimes.

45

Chapter 6

Design Embedding

This chapter formalizes the concept of modular robot design embedding, and presents an
algorithm to automatically detect embedding. Embedding formalizes a notion of structural
similarity between robot designs, which has implications for functional similarity. This chap-
ter excerpts heavily from the author’s work in [52]. Credit is due to Yannis Mantzouratos
and Prof. Sanjeev Khanna, who contributed significantly to the work presented here.

6.1 Introduction
One of the most interesting aspects of modular reconfigurable robots is the ability to trans-
form into different shapes to adapt to needed tasks. Techniques to automatically determine
which shapes and configurations can accomplish a task would make these systems more
powerful. Most tasks are compositions of many sub-tasks: for example, an assembly task
could be composed of many pick-and-place operations.

We refer to the automated, generative design of a modular robot from a task specification
as design synthesis. In a generative system, it would be useful to build systems hierarchi-
cally, building subgroups of modules that achieve subtasks. As a first step towards design
synthesis, we consider the following problem: can we efficiently determine if a subgroup
of modules configured for a kinematic task can be realized in a larger group of modules
configured for another kinematic task? For example, given a subgroup of modules that can
function as a planar arm, is there a set of modules in a larger configuration that could serve
the same function? We call this problem the design embedding problem.

In this chapter, we provide a formal definition for design embedding via topological and
kinematic conditions, and a poly-time algorithm using dynamic programming and matching
to efficiently detect when one design can be embedded in another design. The algorithm
is intended to be run offline on a central computer. Information about embeddability can
then be used to make decisions about the designs. For example, Section 6.7 discusses how
kinematic behaviors can be translated from one design to another design that embeds it.

6.2 Related Work
Related approaches with modular robots in the past have included narrower optimization
of specific kinematic linkages for manipulation problems [11], [104] as well as a selection
approach, choosing the most appropriate configuration for a task from a given set of con-
figurations [66]. In these cases, the robot would sense the environment for features and

46

select the most appropriate configuration from among a small set to reach a goal in a lo-
comotion task. Behaviors have also been automatically generated by identifying functional
substructures (e.g. knees) in modular robot designs [8].

A more general approach would look at configurations on a finer-grain scale. Since the
system is already modular, analyzing the capabilities of assemblages by varying modules
is natural. However, the number of possible arrangements of modules grows exponentially
with the number of available modules, which makes the selection approach intractable. For
very simple tasks such as locomotion in a line, fine-grain generative approaches have been
achieved using evolutionary approaches [35].

Design synthesis has been studied in the context of automated machine design [24],
[97]. However, in the most general sense this requires an understanding of the space of
all tasks, and the relationships between module composition and their interaction with the
environment, which is very broad.

In this work, we use graph representations of modular robots. Existing work in graph
representations of modular robots includes recognizing if two full configurations are the
same [71], identifying graph automorphisms [53], and recognizing identical substructures for
efficient reconfiguration [38]. Our work distinguishes itself by including task implications on
configurations, defining conditions to replicate the capabilities of a design by replicating its
structure. To our knowledge, it is the first representation that captures the full kinematic
structure of a modular robot design; in fact it can represent any acyclic kinematic structure
composed of revolute joints.

6.3 Preliminaries
This section provides the basic graph-theoretical concepts and definitions that are used
throughout the paper; a more elaborate exposition can be found at [18].

Let G (V,E) denote an undirected graph, where V is a set of nodes, and E ⊆ V × V is
a set of undirected edges. Given a subset V ′ ⊆ V of the vertices, the subgraph induced by
V ′ is given by (V ′, {(u, v) ∈ E | u, v ∈ V ′}).

A simple path v1 vk = (v1, v2, . . . , vk) in G is a sequence of distinct nodes in V such
that for consecutive nodes vi, vj in the path, (vi, vj) ∈ E. The length of a path is just the
number of edges it contains and the distance between two nodes u, v ∈ V in G, denoted by
δG(u, v), is the minimum length of a path from u to v. By convention, δG(u, u) = 0 and
δG(u, v) =∞ when such a path does not exist.

G is called a tree if each pair of nodes is connected by exactly one simple path. When a
tree is rooted at a node τ ∈ V , ancestors and descendants of u ∈ V are defined as follows.
Any v ∈ V such that δG(τ, v) < δG(τ, u) and path v u does not involve τ is called an
ancestor of u with respect to τ . Similarly, any v ∈ V such that δG(τ, v) > δG(τ, u) and
path v u does not involve τ is called a descendant of u with respect to τ . We denote
the set of descendants of a node u with respect to τ as desc (u, τ) ⊆ V . We will write
G[u ↓ τ] to denote the subtree of G that is rooted at u and contains exactly desc (u, τ), i.e.,
G[{u} ∪ desc (u, τ)].

We denote immediate descendants by N (u, τ) = {v ∈ desc (u, τ) | δG(u, v) = 1} and call
them the children of u with respect to τ ; a node can have multiple children. An immediate
ancestor is denoted by P(u, τ) = {v ∈ V \ desc (u, τ) | δG(u, v) = 1} and is called the parent
of u with respect to τ . Each node has one parent, except τ which has none. We can naturally

47

extend the above to child and parent edges, which will be denoted by N e(u, τ) and Pe(u, τ)
respectively.

Finally, a rigid body is a set of points capable of rotation and translation in Euclidean
space. Each rigid body is defined by a body frame and origin. Reference frames are denoted
with an uppercase calligraphic letter (e.g. W), and vectors in boldface (e.g. v). The position
of point p relative point o in frame W will be written Wrp/o ∈ R3. The orientation of frame
B relative frame W will be written WRB ∈ SO(3).

6.4 Topological Embedding
6.4.1 Definitions and Statement of Main Result
We now formally introduce the graph representation of modular robotic designs that we
will use throughout our discussion of topology, and present the notion of topological design
embedding.

Definition 1. (Unit Block). A unit block B = 〈φ〉 is an elementary rigid body capable of
implementing a prespecified set of built-in functionalities φ ∈ F .

Built-in functionality is independent of topology; e.g., consider a block equipped with
sensors, a processor unit or a battery. We define a partial order on unit blocks on a functional
basis: B1 � B2 if and only if φ1 ⊆ φ2.

Definition 2. (Modular Robot Design). Given a set of unit blocks B, a robot design D =
〈G(V,E), β〉 defined on B is a labelled, undirected graph G, where nodes of G correspond to
unit blocks through β : V 7→ B, and edges between two nodes u and v represent a revolute
joint connecting β(u) to β(v).

In Section 6.5.2, we will extend the definition of unit blocks to represent rigid bodies,
and map edges to revolute joints that provide movement. For now, we postpone discussion
of kinematics until the topological algorithm is explained completely.

Definition 3. (Design Embedding). Given two designs D1 = 〈G1(V1, E1), β1〉 and D2 =
〈G2(V2, E2), β2〉 defined on a set of unit blocks B, and an injective mapping f : V1 7→ V2, we
say that D1 embeds in D2 with respect to f , and write D1 vf D2, if and only if:

1. Functionality subsumption: ∀u ∈ V1, we have β1(u) � β2 (f(u)).

2. Connectivity preservation: ∀(u, v) ∈ E1, there exists a simple path πuv = f(u) f(v)
in G2.

3. Path disjointness: for any pair of edges with distinct endpoints (u1, v1), (u2, v2) ∈ E1,
the corresponding paths πu1v1 and πu2v2 in G2 are vertex-disjoint. In addition, for any
(u, v1), (u, v2) ∈ E1, πuv1 and πuv2 share only f(u).

In general, we refer to D1 as the subdesign and D2 as the superdesign. Where there is
no chance of confusion, we omit f and write D1 v D2.

Fig. 28 offers the intuition behind the definition. Condition (1) requires every vertex
in the subdesign to map to a vertex of equal or superior functionality in the superdesign.
Condition (2) preserves the connectivity of the subdesign once it is embedded: nodes which

48

(a) Condition 1: every node at the top maps to
a node of superior functionality at the bottom. (b) Condition 2: all edges at the top map to

distinct simple paths at the bottom.

(c) Condition 3: D1 v D2, but D1 6v D3, since the path disjointness condition is violated (red).

Figure 28: Topological conditions for embedding.

were able to interact through the joints can still do it, albeit maybe through longer paths.
Finally, condition (3) ensures that degrees of freedom which are independent in the subdesign
remain independent in the superdesign.

From a topological perspective, embeddability is equivalent to whether the subdesign is
a topological minor of the superdesign; see [30] and references therein.

We are now ready to state our main result.

Theorem 1. Given two designs D1 = 〈G1(V1, E1), β1〉 and D2 = 〈G2(V2, E2), β2〉 defined
over a set of unit blocks B, where G1 and G2 are trees of maximum degree d, there exists a
deterministic algorithm that decides whether D1 v D2 in time O(|V1| · |V2| · d2.5).

Note that d is the maximum number of edges incident on any node. For most real robot
applications, d ≤ 5.

6.4.2 Outline of Algorithm
We now present a dynamic programming algorithm that decides whether D1 v D2 and if so,
produces a mapping f : V1 7→ V . We focus on obtaining a yes or no answer rather than the
mapping itself; it can be reconstructed the regular dynamic programming way, by keeping
track of the option we selected at each step in a separate array and backtracking; see [13]
for details.

We will maintain a |V1| × |V2| truth table T , where T [v1, v2] is true under a specified

49

rooting τ1 ∈ V1, τ2 ∈ V2 if and only if D1[v1 ↓ τ1] v D2[v2 ↓ τ2]. At the end of the algorithm,
T [τ1, τ2] answers whether D1 v D2 under τ1 and τ2; if the answer is negative, we repeat the
process for a new rooting until we either get a positive answer or we exhaust all possible
rootings, in which case we conclude that D1 6v D2.

Initially, all entries are false. We subsequently proceed bottom-up, starting from the
leaves of D1 and moving gradually towards τ1. As the base case, we consider a leaf v1 ∈
V1 and check whether it embeds in the leaves of D2, setting the appropriate entries of T
accordingly:

T [v1, v2] = true ⇐⇒ β1(v1) � β2(v2),

for all leaves v2 ∈ V2. Intuitively, this corresponds to checking whether a unary design
consisting of v1 is embedded in another unary design that contains only v2, in which case
the only relevant embedding condition to check is functionality subsumption.

Subsequently, we move towards τ2 by examining the parents of the leaves of D2; for such
a parent p2 ∈ V2, we set T [v1, p2] to true if β1(v1) � β2(p2), or

∃v2 ∈ N (p2, τ2) such that T [v1, v2] = true.

The intuition is that either v1 is subsumed by p2, or it is subsumed by one of p2’s children.
We continue likewise until we complete the v1-th row of T and then repeat for another leaf
of V1. At the end, we know exactly which nodes of D2 can host the leaves of D1.

We are now ready to move up one level in D1 as well. Let p1 ∈ V1 denote a parent of a
leaf from the previous step. Starting from nodes that are at the same height in D2 as p1 is
in D1, we set T [p1, p2] to true in the following two cases.

The first one, which corresponds to p1 embedding directly in p2, is triggered if β1(p1) �
β2(p2) and in addition, there exists an assignment M ⊆ N (p1, τ1)×N (p2, τ2) of children of
p1 to children of p2 such that

|M | = |N (p1, τ1)|, and
T [v1, v2] = true ∀(v1, v2) ∈M.

(6.1)

Essentially, these conditions make sure that every child of p1 embeds in a unique child of p2.
The second case captures that while p1 might not directly embed in p2 in the way

described above, it may still embed in one of p2’s children, i.e.,

∃v2 ∈ N (p2, τ2) such that T [p1, v2] = true. (6.2)

Notice that since we are proceeding bottom-up, T [p1, v2] is filled before T [p1, p2], and there-
fore our computations are always well defined.

After the p1-th row of T is calculated, we repeat for all nodes at the same height, and
then move upwards exactly the same way until we hit τ1. Essentially, we fill our table by
performing a reverse pre-order traversal on G1, where at each step of the traversal we process
the nodes of G2 in reverse pre-order as well. Notice that it is not necessary to process all
the leaves first, which we did in our exposition for simplicity, as long as we process a node
only after having dealt with all of its descendants.

It only remains to show how to compute M ⊆ N (p1, τ1)×N (p2, τ2) from equation (6.1):
we construct a bipartite graph with N (p1, τ1) on the left side, N (p2, τ2) on the right, and

50

an edge (v1, v2) if and only if

v1 ∈ N (p1, τ1), v2 ∈ N (p2, τ2) and T [v1, v2] = true.

Intuitively, v1 is connected to v2 if and only if subdesign D1[v1 ↓ τ1] embeds in D2[v2 ↓ τ2].
We subsequently compute a maximum cardinality matching [34]. At this point it is also
possible to incorporate arbitrary user input that explicitly disallows embedding of particular
nodes.

6.4.3 Formal Analysis
Lemma 1. (Algorithm Soundness). Given designs D1 and D2, if the algorithm accepts then
D1 v D2.

Proof. Suppose that the algorithm accepts and let τ1 and τ2 reflect the roots of G1 and G2

at the time the positive answer was computed, and f : V1 7→ V2 be the suggested mapping.
Relabel nodes of both graphs to reflect reverse pre-order, and let V1 = {u1, u2, . . . , τ1} and
V2 = {v1, v2, . . . , τ2}. We will use strong induction on ui, i = 1, . . . , |V1|.

For the base case, let T [u1, vj] be true. Since u1 is a leaf, D1[u1 ↓ τ1] contains only u1 and
the only relevant criterion from definition 3 is functionality subsumption. By construction,
T [u1, vj] is true if and only if the functionality of β1(u1) is subsumed by either β2(vj) or one
of its children, and therefore, D1[u1 ↓ τ1] v D2[vj ↓ τ2], for any j = 1, . . . , |V2|.

Now assume that for i ≤ k, if T [ui, vj] is true then D1[ui ↓ τ1] v D2[vj ↓ τ2], for all
j. We are going to show that the same holds for uk+1 too. Indeed, fix an arbitrary vj and
suppose that T [uk+1, vj] = true. If uk+1 is a leaf, we are done by the argumentation above,
so assume otherwise. Recall that there are two cases which could have forced the entry to
be true.

If the first case triggered the truth assignment, then it must be that β1(uk+1) � β2(vj)
and there exists a matching M between N (uk+1, τ1) and N (vj , τ2) such that (6.1) holds.
Obviously the functionality subsumption criterion of embedding holds. By hypothesis and
the fact that M covers all the children of uk+1, connectivity is maintained - the subdesigns
rooted at the children of uk+1 embed in children of vj , and since f(uk+1) = vj , every edge
(uk+1, u

′) ∈ E1 corresponds to a path utilizing (vj , v
′) ∈ E2, where (u′, v′) ∈ M . Finally,

path disjointness is also maintained. By hypothesis, we only need to care about paths of the
form πuk+1,u′ = f(uk+1) f(u′), where u′ ∈ N (uk+1, τ1). Since f(u′) maps to a distinct
child of vj by definition of matching (say f(u′) = v′), and f(uk+1) = vj , it follows that each
πuk+1,u′ starts with a distinct edge of the form (f(uk+1), f(u′)) = (vj , v

′) ∈ E2. Paths cannot
share any vertex later, since that would imply a cycle in G2, contradicting its tree structure.
Consequently, all criteria of embedding are satisfied, and D1[uk+1 ↓ τ1] v D2[vj ↓ τ2].

The second case follows by the same argumentation and a similar (nested) inductive
argument on vj .

Lemma 2. (Algorithm Completeness). Given designs D1 and D2, if D1 v D2 then the
algorithm accepts.

Proof. Suppose that D1 vf D2 for f : V1 7→ V2. Let τ1 be an arbitrary node in V1,
τ2 = f(τ1) ∈ V2 and consider running the algorithm with τ1 and τ2 as the roots. As before,
relabel the nodes of both graphs to reflect reverse pre-order; we sketch an inductive argument
on V1.

51

As a base case, notice that D1[u1 ↓ τ1], which consists only of u1, embeds into some
D2[vj ↓ τ2] as a direct result of the functionality subsumption criterion, where f(u1) = vj .
Therefore, T [u1, vj] is trivially true.

For the inductive step, consider uk+1 and let f(uk+1) = vj . By the functionality sub-
sumption criterion, β1(uk+1) � β2(vj). We only need to show that there exists a matching
M satisfying (6.1) and we are done – equation (6.2) takes care of propagating the result
upwards. By the connectivity preservance and path disjointness criteria, it must be the
case that for every u′ ∈ N (uk+1, τ1), there exists a unique, vertex-disjoint path πuk+1,u′ in
G. While f(u′) might not be in N (vj , τ2), vertex disjointness implies that each of πuk+1,u′

passes through a unique, distinct child of vj . By hypothesis then, the respective entries of
T are true, and the suggested matching will satisfy (6.1).

Lemma 3. (Algorithm Runtime). The algorithm presented above runs in time O(|V1|·|V2|2 ·
d2.5).

Proof. For each rooting τ1 ∈ V1 and τ2 ∈ V2, we fill a table of size |V1| × |V2|. Each entry
might require solving a matching instance on a bipartite graph of O(d) nodes, which takes
time O(d2.5) [34]. As a result, the algorithm requires time O(|V1| · |V2| ·d2.5) to check a fixed
rooting. Now note that based on the proof of lemma 2, we can fix τ1 and iterate over V2 for
the choice of τ2 instead of trying all rootings. The claim follows.

6.4.4 2-pass Approach
We now improve the runtime by a factor of |V2| to obtain the claim of Theorem 1. As is, the
algorithm needs to try O(|V2|) rootings to decide embeddability. Since the root τ1 ∈ V1 is
fixed, let Tv be the table computed when D2 is rooted at v ∈ V2. We show here that only two
passes suffice to compute a table T ∗ such that T ∗ [τ1, v] = true iff Tv [τ1, v] = true, ∀v ∈ V2.
It is then not hard to see that D1 v D2 iff at least one entry of the τ1-th row of T ∗ is true.

During the first pass, we root D2 arbitrarily at τ2 ∈ V2 and compute Tτ2 as before.
The second pass involves top-down message passing. In particular, we iterate through V2 in
pre-order, starting from τ2, and each node p2 ∈ V2 forwards to every child v2 ∈ N (p2, τ2) a
message µ(p2, v2) that is equal to

{v1 ∈ V1 | D1[v1 ↓ τ1] v (D2[p2 ↓ p2] \D2[v2 ↓ p2])} .

Intuitively, µ(p2, v2) contains all nodes of V1 that can successfully embed in p2 without using
the subtree hanging from v2. Given Tτ2 and the respective message from the parent of p2,
say p′2 ∈ V2, we compute µ(p2, v2) by iterating over V1 in arbitrary order and including
v1 ∈ V1 if any of the following holds (fig. 29):

1. Tτ2 [v1, v
′
2] = true for a node v′2 ∈ N (p2, τ2)\{v2}, i.e., v1 embeds in a child of p2 other

than v2.

2. v1 ∈ µ(p′2, p2), i.e., v1 embeds in p′2 even if none of its children are allowed to embed
in D2[p2 ↓ p′2].

3. β(v1) � β(p2) and there exists an assignmentM ⊆ N (v1, τ1)×[(N (p2, τ2) \ {v2}) ∪ {p′2}]
that satisfies equation (6.1) with Tτ2 as the truth table, and in addition, if (v′1, p

′
2) ∈M ,

52

p02

p2 . . .

v2. . .

v1. . .

⌧1

(a) v1 embeds in a child of p2

other than v2.

p02

p2 . . .

v2. . .

v1. . .

⌧1

(b) v1 embeds in p02 even if
D2[p2 # p02] is removed.

p2

v2 p02

. . .

. . .v1. . .

⌧1

. . .

(c) v1 is subsumed by p2 and every child of v1 embeds either
in a child of p2 other than v2, or in p02 without reusing any
parts of the subtree D2[p2 # p02]. When this happens, it is
equivalent to re-rooting the tree at p2.

Fig. 2: The three cases of message construction.

needs to try O(|V2|) rootings to decide embeddability.
Since the root ⌧1 2 V1 is fixed, let Tv be the table
computed when D2 is rooted at v 2 V2. We show here
that only two passes suffice to compute a table T ⇤ such
that T ⇤ [⌧1, v] = true iff Tv [⌧1, v] = true, 8v 2 V2. It is
then not hard to see that D1 v D2 iff at least one entry
of the ⌧1-th row of T ⇤ is true.

During the first pass, we root D2 arbitrarily at ⌧2 2 V2

and compute T⌧2 as before. The second pass involves top-
down message passing. In particular, we iterate through
V2 in pre-order, starting from ⌧2, and each node p2 2
V2 forwards to every child v2 2 N (p2, ⌧2) a message
µ(p2, v2) that is equal to

{v1 2 V1 | D1[v1 # ⌧1] v (D2[p2 # p2] \ D2[v2 # p2])} .

Intuitively, µ(p2, v2) contains all nodes of V1 that can
successfully embed in p2 without using the subtree
hanging from v2. Given T⌧2 and the respective message
from the parent of p2, say p02 2 V2, we compute µ(p2, v2)
by iterating over V1 in arbitrary order and including
v1 2 V1 if any of the following holds (fig. 2):

1) T⌧2 [v1, v
0
2] = true for a node v02 2 N (p2, ⌧2)\{v2},

i.e., v1 embeds in a child of p2 other than v2.
2) v1 2 µ(p02, p2), i.e., v1 embeds in p02 even if none

of its children are allowed to embed in D2[p2 # p02].
3) �(v1) � �(p2) and there exists an assignment

M ✓ N (v1, ⌧1) ⇥ [(N (p2, ⌧2) \ {v2}) [{p02}] that
satisfies equation (1) with T⌧2 as the truth table, and
in addition, if (v01, p

0
2) 2 M , then v01 2 µ(p02, p2).

This means that v1 is subsumed by p2 and every
child of v1 embeds either in a child of p2 other
than v2, or in the parent of p2 without reusing any
parts of the subtree D2[p2 # p02].

Lemma 4. (Message Correctness). The process de-
scribed above computes µ(p2, v2) correctly.

Proof. Let µ(p2, v2) denote the message as com-
puted by the algorithm and define µ⇤(p2, v2) to be
{v1 2 V1 | D1[v1 # ⌧1] v (D2[p2 # p2] \ D2[v2 # p2])}.

To show that µ(p2, v2) ✓ µ⇤(p2, v2), suppose that
v1 2 µ(p2, v2) and consider what forced this decision:

1) There exists a child v02 6= v2 such that T⌧2 [v1, v
0
2] =

true. Then, by correctness of the original algorithm,
D1[v1 # ⌧1] v D2[v

0
2 # ⌧2]. However, D2[v

0
2 # ⌧2]

is a subset of D2[p2 # p2], since v02 is still in
N (p2, p2), and it does not have any nodes in com-
mon with D2[v2 # p2], otherwise we would have a
cycle. It then follows that v1 2 µ⇤(p2, v2).

2) If v1 2 µ(p02, p2), then by a simple inductive
argument we obtain that v1 2 µ⇤(p02, p2), and since
D2[p

0
2 # p02] \ D2[p2 # p02] is just one branch of

D2[p2 # p2] that does not have anything to do with
any other children of p2, the claim follows.

3) This condition is straightforward, since v2, and
therefore the subdesign hanging from it, are com-
pletely excluded from the matching process.

Opposite direction is similar and we only sketch it.
Assume v1 2 µ⇤(p2, v2) and consider where v1 embeds:

1) In a child v02 of p2 other than v2; but then D2[v
0
2 #

p2] = D2[v
0
2 # ⌧2].

2) In the parent of p2, say p02, without involving
p2. Then, it must be that v1 2 µ⇤(p02, p2) and
inductively we get µ⇤(p02, p2) = µ(p02, p2).

3) In p2 and v2 is not included in the relevant matching.
All our conditions then follow.

Similarly, once µ(p2, v2) is passed to v2, we set
T ⇤[v1, v2] to true for each v1 2 V1 that satisfies any
of the following conditions:

1) T⌧2 [v1, v2] = true.
2) v1 2 µ(p2, v2).
3) �(v1) � �(v2) and there exists an assignment

M ✓ N (v1, ⌧1) ⇥ (N (v2, ⌧2) [{p2}) that satisfies
equation (1) with T⌧2 as the truth table, and in
addition, if (v01, p2) 2M , then v01 2 µ(p2, v2).

A case analysis identical to that of lemma 4 should per-
suade us that T ⇤ is built as claimed, and this concludes
our algorithm and the proof of theorem 1.

V. KINEMATIC ADMISSIBILITY

We now extend our notion of embedding to capture
kinematic functionality. As mentioned previously, nodes
will represent rigid bodies, and edges will represent
revolute joints.

(a) v1 embeds in a child of p2 other than v2.

p02

p2 . . .

v2. . .

v1. . .

⌧1

(a) v1 embeds in a child of p2

other than v2.

p02

p2 . . .

v2. . .

v1. . .

⌧1

(b) v1 embeds in p02 even if
D2[p2 # p02] is removed.

p2

v2 p02

. . .

. . .v1. . .

⌧1

. . .

(c) v1 is subsumed by p2 and every child of v1 embeds either
in a child of p2 other than v2, or in p02 without reusing any
parts of the subtree D2[p2 # p02]. When this happens, it is
equivalent to re-rooting the tree at p2.

Fig. 2: The three cases of message construction.

needs to try O(|V2|) rootings to decide embeddability.
Since the root ⌧1 2 V1 is fixed, let Tv be the table
computed when D2 is rooted at v 2 V2. We show here
that only two passes suffice to compute a table T ⇤ such
that T ⇤ [⌧1, v] = true iff Tv [⌧1, v] = true, 8v 2 V2. It is
then not hard to see that D1 v D2 iff at least one entry
of the ⌧1-th row of T ⇤ is true.

During the first pass, we root D2 arbitrarily at ⌧2 2 V2

and compute T⌧2 as before. The second pass involves top-
down message passing. In particular, we iterate through
V2 in pre-order, starting from ⌧2, and each node p2 2
V2 forwards to every child v2 2 N (p2, ⌧2) a message
µ(p2, v2) that is equal to

{v1 2 V1 | D1[v1 # ⌧1] v (D2[p2 # p2] \ D2[v2 # p2])} .

Intuitively, µ(p2, v2) contains all nodes of V1 that can
successfully embed in p2 without using the subtree
hanging from v2. Given T⌧2 and the respective message
from the parent of p2, say p02 2 V2, we compute µ(p2, v2)
by iterating over V1 in arbitrary order and including
v1 2 V1 if any of the following holds (fig. 2):

1) T⌧2 [v1, v
0
2] = true for a node v02 2 N (p2, ⌧2)\{v2},

i.e., v1 embeds in a child of p2 other than v2.
2) v1 2 µ(p02, p2), i.e., v1 embeds in p02 even if none

of its children are allowed to embed in D2[p2 # p02].
3) �(v1) � �(p2) and there exists an assignment

M ✓ N (v1, ⌧1) ⇥ [(N (p2, ⌧2) \ {v2}) [{p02}] that
satisfies equation (1) with T⌧2 as the truth table, and
in addition, if (v01, p

0
2) 2 M , then v01 2 µ(p02, p2).

This means that v1 is subsumed by p2 and every
child of v1 embeds either in a child of p2 other
than v2, or in the parent of p2 without reusing any
parts of the subtree D2[p2 # p02].

Lemma 4. (Message Correctness). The process de-
scribed above computes µ(p2, v2) correctly.

Proof. Let µ(p2, v2) denote the message as com-
puted by the algorithm and define µ⇤(p2, v2) to be
{v1 2 V1 | D1[v1 # ⌧1] v (D2[p2 # p2] \ D2[v2 # p2])}.

To show that µ(p2, v2) ✓ µ⇤(p2, v2), suppose that
v1 2 µ(p2, v2) and consider what forced this decision:

1) There exists a child v02 6= v2 such that T⌧2 [v1, v
0
2] =

true. Then, by correctness of the original algorithm,
D1[v1 # ⌧1] v D2[v

0
2 # ⌧2]. However, D2[v

0
2 # ⌧2]

is a subset of D2[p2 # p2], since v02 is still in
N (p2, p2), and it does not have any nodes in com-
mon with D2[v2 # p2], otherwise we would have a
cycle. It then follows that v1 2 µ⇤(p2, v2).

2) If v1 2 µ(p02, p2), then by a simple inductive
argument we obtain that v1 2 µ⇤(p02, p2), and since
D2[p

0
2 # p02] \ D2[p2 # p02] is just one branch of

D2[p2 # p2] that does not have anything to do with
any other children of p2, the claim follows.

3) This condition is straightforward, since v2, and
therefore the subdesign hanging from it, are com-
pletely excluded from the matching process.

Opposite direction is similar and we only sketch it.
Assume v1 2 µ⇤(p2, v2) and consider where v1 embeds:

1) In a child v02 of p2 other than v2; but then D2[v
0
2 #

p2] = D2[v
0
2 # ⌧2].

2) In the parent of p2, say p02, without involving
p2. Then, it must be that v1 2 µ⇤(p02, p2) and
inductively we get µ⇤(p02, p2) = µ(p02, p2).

3) In p2 and v2 is not included in the relevant matching.
All our conditions then follow.

Similarly, once µ(p2, v2) is passed to v2, we set
T ⇤[v1, v2] to true for each v1 2 V1 that satisfies any
of the following conditions:

1) T⌧2 [v1, v2] = true.
2) v1 2 µ(p2, v2).
3) �(v1) � �(v2) and there exists an assignment

M ✓ N (v1, ⌧1) ⇥ (N (v2, ⌧2) [{p2}) that satisfies
equation (1) with T⌧2 as the truth table, and in
addition, if (v01, p2) 2M , then v01 2 µ(p2, v2).

A case analysis identical to that of lemma 4 should per-
suade us that T ⇤ is built as claimed, and this concludes
our algorithm and the proof of theorem 1.

V. KINEMATIC ADMISSIBILITY

We now extend our notion of embedding to capture
kinematic functionality. As mentioned previously, nodes
will represent rigid bodies, and edges will represent
revolute joints.

(b) v1 embeds in p′2 even if D2[p2 ↓ p′2] is
removed.

p02

p2 . . .

v2. . .

v1. . .

⌧1

(a) v1 embeds in a child of p2

other than v2.

p02

p2 . . .

v2. . .

v1. . .

⌧1

(b) v1 embeds in p02 even if
D2[p2 # p02] is removed.

p2

v2 p02

. . .

. . .v1. . .

⌧1

. . .

(c) v1 is subsumed by p2 and every child of v1 embeds either
in a child of p2 other than v2, or in p02 without reusing any
parts of the subtree D2[p2 # p02]. When this happens, it is
equivalent to re-rooting the tree at p2.

Fig. 2: The three cases of message construction.

needs to try O(|V2|) rootings to decide embeddability.
Since the root ⌧1 2 V1 is fixed, let Tv be the table
computed when D2 is rooted at v 2 V2. We show here
that only two passes suffice to compute a table T ⇤ such
that T ⇤ [⌧1, v] = true iff Tv [⌧1, v] = true, 8v 2 V2. It is
then not hard to see that D1 v D2 iff at least one entry
of the ⌧1-th row of T ⇤ is true.

During the first pass, we root D2 arbitrarily at ⌧2 2 V2

and compute T⌧2 as before. The second pass involves top-
down message passing. In particular, we iterate through
V2 in pre-order, starting from ⌧2, and each node p2 2
V2 forwards to every child v2 2 N (p2, ⌧2) a message
µ(p2, v2) that is equal to

{v1 2 V1 | D1[v1 # ⌧1] v (D2[p2 # p2] \ D2[v2 # p2])} .

Intuitively, µ(p2, v2) contains all nodes of V1 that can
successfully embed in p2 without using the subtree
hanging from v2. Given T⌧2 and the respective message
from the parent of p2, say p02 2 V2, we compute µ(p2, v2)
by iterating over V1 in arbitrary order and including
v1 2 V1 if any of the following holds (fig. 2):

1) T⌧2 [v1, v
0
2] = true for a node v02 2 N (p2, ⌧2)\{v2},

i.e., v1 embeds in a child of p2 other than v2.
2) v1 2 µ(p02, p2), i.e., v1 embeds in p02 even if none

of its children are allowed to embed in D2[p2 # p02].
3) �(v1) � �(p2) and there exists an assignment

M ✓ N (v1, ⌧1) ⇥ [(N (p2, ⌧2) \ {v2}) [{p02}] that
satisfies equation (1) with T⌧2 as the truth table, and
in addition, if (v01, p

0
2) 2 M , then v01 2 µ(p02, p2).

This means that v1 is subsumed by p2 and every
child of v1 embeds either in a child of p2 other
than v2, or in the parent of p2 without reusing any
parts of the subtree D2[p2 # p02].

Lemma 4. (Message Correctness). The process de-
scribed above computes µ(p2, v2) correctly.

Proof. Let µ(p2, v2) denote the message as com-
puted by the algorithm and define µ⇤(p2, v2) to be
{v1 2 V1 | D1[v1 # ⌧1] v (D2[p2 # p2] \ D2[v2 # p2])}.

To show that µ(p2, v2) ✓ µ⇤(p2, v2), suppose that
v1 2 µ(p2, v2) and consider what forced this decision:

1) There exists a child v02 6= v2 such that T⌧2 [v1, v
0
2] =

true. Then, by correctness of the original algorithm,
D1[v1 # ⌧1] v D2[v

0
2 # ⌧2]. However, D2[v

0
2 # ⌧2]

is a subset of D2[p2 # p2], since v02 is still in
N (p2, p2), and it does not have any nodes in com-
mon with D2[v2 # p2], otherwise we would have a
cycle. It then follows that v1 2 µ⇤(p2, v2).

2) If v1 2 µ(p02, p2), then by a simple inductive
argument we obtain that v1 2 µ⇤(p02, p2), and since
D2[p

0
2 # p02] \ D2[p2 # p02] is just one branch of

D2[p2 # p2] that does not have anything to do with
any other children of p2, the claim follows.

3) This condition is straightforward, since v2, and
therefore the subdesign hanging from it, are com-
pletely excluded from the matching process.

Opposite direction is similar and we only sketch it.
Assume v1 2 µ⇤(p2, v2) and consider where v1 embeds:

1) In a child v02 of p2 other than v2; but then D2[v
0
2 #

p2] = D2[v
0
2 # ⌧2].

2) In the parent of p2, say p02, without involving
p2. Then, it must be that v1 2 µ⇤(p02, p2) and
inductively we get µ⇤(p02, p2) = µ(p02, p2).

3) In p2 and v2 is not included in the relevant matching.
All our conditions then follow.

Similarly, once µ(p2, v2) is passed to v2, we set
T ⇤[v1, v2] to true for each v1 2 V1 that satisfies any
of the following conditions:

1) T⌧2 [v1, v2] = true.
2) v1 2 µ(p2, v2).
3) �(v1) � �(v2) and there exists an assignment

M ✓ N (v1, ⌧1) ⇥ (N (v2, ⌧2) [{p2}) that satisfies
equation (1) with T⌧2 as the truth table, and in
addition, if (v01, p2) 2M , then v01 2 µ(p2, v2).

A case analysis identical to that of lemma 4 should per-
suade us that T ⇤ is built as claimed, and this concludes
our algorithm and the proof of theorem 1.

V. KINEMATIC ADMISSIBILITY

We now extend our notion of embedding to capture
kinematic functionality. As mentioned previously, nodes
will represent rigid bodies, and edges will represent
revolute joints.

(c) v1 is subsumed by p2 and every child of v1 embeds either in a child of p2 other than v2, or in
p′2 without reusing any parts of the subtree D2[p2 ↓ p′2]. When this happens, it is equivalent to
re-rooting the tree at p2.

Figure 29: The three cases of message construction.

then v′1 ∈ µ(p′2, p2). This means that v1 is subsumed by p2 and every child of v1 em-
beds either in a child of p2 other than v2, or in the parent of p2 without reusing any
parts of the subtree D2[p2 ↓ p′2].

Lemma 4. (Message Correctness). The process described above computes µ(p2, v2) cor-
rectly.

Proof. Let µ(p2, v2) denote the message as computed by the algorithm and define µ∗(p2, v2)
to be {v1 ∈ V1 | D1[v1 ↓ τ1] v (D2[p2 ↓ p2] \D2[v2 ↓ p2])}.

To show that µ(p2, v2) ⊆ µ∗(p2, v2), suppose that v1 ∈ µ(p2, v2) and consider what forced
this decision:

1. There exists a child v′2 6= v2 such that Tτ2 [v1, v
′
2] = true. Then, by correctness of the

original algorithm, D1[v1 ↓ τ1] v D2[v′2 ↓ τ2]. However, D2[v′2 ↓ τ2] is a subset of
D2[p2 ↓ p2], since v′2 is still in N (p2, p2), and it does not have any nodes in common
with D2[v2 ↓ p2], otherwise we would have a cycle. It then follows that v1 ∈ µ∗(p2, v2).

2. If v1 ∈ µ(p′2, p2), then by a simple inductive argument we obtain that v1 ∈ µ∗(p′2, p2),
and since D2[p′2 ↓ p′2] \D2[p2 ↓ p′2] is just one branch of D2[p2 ↓ p2] that does not have
anything to do with any other children of p2, the claim follows.

3. This condition is straightforward, since v2, and therefore the subdesign hanging from
it, are completely excluded from the matching process.

53

Opposite direction is similar and we only sketch it. Assume v1 ∈ µ∗(p2, v2) and consider
where v1 embeds:

1. In a child v′2 of p2 other than v2; but then D2[v′2 ↓ p2] = D2[v′2 ↓ τ2].

2. In the parent of p2, say p′2, without involving p2. Then, it must be that v1 ∈ µ∗(p′2, p2)
and inductively we get µ∗(p′2, p2) = µ(p′2, p2).

3. In p2 and v2 is not included in the relevant matching.

All our conditions then follow.

Similarly, once µ(p2, v2) is passed to v2, we set T ∗[v1, v2] to true for each v1 ∈ V1 that
satisfies any of the following conditions:

1. Tτ2 [v1, v2] = true.

2. v1 ∈ µ(p2, v2).

3. β(v1) � β(v2) and there exists an assignment M ⊆ N (v1, τ1)× (N (v2, τ2) ∪ {p2}) that
satisfies equation (6.1) with Tτ2 as the truth table, and in addition, if (v′1, p2) ∈ M ,
then v′1 ∈ µ(p2, v2).

A case analysis identical to that of lemma 4 should persuade us that T ∗ is built as claimed,
and this concludes our algorithm and the proof of theorem 1.

6.5 Kinematic Admissibility
We now extend our notion of embedding to capture kinematic functionality. As mentioned
previously, nodes will represent rigid bodies, and edges will represent revolute joints.

6.5.1 Extending Definitions
We extend the definition of a unit block to represent a rigid body. A unit block B =
〈oB,B, α, φ〉 is a rigid body with origin oB, reference frame B, attachment points α, and
built-in functionalities φ. We refer to oB simply as B when the meaning is not ambiguous,
and adopt the convention that nodes are named with lowercase letters, whereas the rigid
bodies they represent are named with the same uppercase letter (e.g. node b will represent
unit block B, with body frame B).

The attachment points α = {Brα1/B,
B rα2/B, . . .} are the set of points where B is con-

nected to other unit blocks by revolute joints. As each attachment point is attached to a
single revolute joint, we sometimes refer to attachment points by the corresponding joint,
e.g. if joints J and K attach to B at α1 and α2, we write α = {BrJ/B,B rK/B, . . .}.

Next, we associate with each edge a revolute joint through γ : E 7→ J, similar to β for
nodes. A revolute joint J = 〈ArJ/A, BrJ/B,Aû, Bû, θ,ARB0 〉 connects a pair of unit blocks
(A and B) and permits rotation about an axis. J has attachment points ArJ/A and BrJ/B,
rotation axis specified by unit vectors Aû and Bû, joint angle θ, and reference orientation
ARB0 . The joint-angle θ of J specifies the amount of rotation about Aû, relative to the
reference orientation ARB0 = ARB(θ = 0). Given a fixed reference orientation, we can find
ARB as a function of θ: ARB (θ) = exp(θ[Aû]×)ARB0 . Here, [Aû]× is the cross-product
matrix of Aû.

54

b

(a) Node b ∈ V1

b'

(b) Node b′ ∈ V2

b
b'

=

=

=

(c) [BrB′/B]∗ and [BRB
′
]∗

Figure 30: Def. 4, 1 (nodes). In fig. (c), a position and orientation have been found in which each
child joint of b is aligned with a corresponding child joint of b′.

6.5.2 Kinematic Admissibility
When we say the embedding D1 vf D2 is kinematically admissible, we mean that D1 exactly
replicates every kinematic DoF present in D2. Intuitively, to verify kinematic admissibility,
we must find a configuration (set of joint angles) for D2 such that for each joint in D1, the
corresponding joint in D2 exactly matches its position and axis. If we lock the position
of all joints γ(E2 \ fe(E1)) (those which do not correspond to joints in D1) while in this
configuration, we get a kinematic structure identical to D1. We present a local form of this
global requirement by augmenting two of the conditions of Definition 3:

Definition 4 (Kinematic Admissibility). Given f such that D1 vf D2, f is kinematically
admissible if it satisfies the following two conditions.

(1) (Nodes) Let b′ ∈ V2 embed b ∈ V1. There must exist a position [BrB′/B]∗ and orienta-
tion [BRB

′
]∗ such that for every Ji ∈ γ(N e(b)) there is a unique J ′i ∈ γ(N e(b′)) such

that:

BrJi/B =
[
BRB

′
]∗ B′rJ ′i/B′ +

[BrB′/B]∗ (6.3)

BûJi =
[
BRB

′
]∗ B′ûJ ′i (6.4)

(2) (Paths) Let path πab = a′ b′ in G2 embed edge (a, b) ∈ E1. Let (a′, c′) ∈ N e(a′)
be the first edge of πab. Let K ′ = γ((a′, c′)) and K = γ((a, b)) be aligned; that is, let
BrK′/B = BrK/B and BûK′ =B ûK . Let Θ(πab) be the set of angles of all joints on πab.
There must exist joint angles [Θ(πab)]

∗ such that:

BrB′/B ([Θ(πab)]
∗) =

[BrB′/B]∗ (6.5)
BRB

′
([Θ(πab)]

∗) =
[
BRB

′
]∗

(6.6)

See Fig. 30 and 31 for an illustration. The condition on nodes ensures that whenever
some b′ embeds b, there is a special position [BrB′/B]∗ and orientation [BRB

′
]∗ for b′ in which

some of its child edges match with all child edges of b. The condition on paths ensures

55

a
b

f

(a) Nodes a and b in V1

a' c'

b'

(b) Nodes a′, c′, and b′ in V2

b
a' c' b'

(c) Configuration Θ∗(πab) under which condition 2 is satisfied.

Figure 31: Def. 4, 2 (paths). For path πab = (a′, c′, b′) to embed edge (a, b), there must be angles
[Θ(πab)]

∗ for which BrB′/B = [BrB′/B]∗ and BRB
′

= [BRB
′
]∗

56

(20, 55) (40, 55) (40, 90) (70, 130) (120, 200) (200, 950) (300, 2K) (500, 2K) (1K, 4K)

T
im

e
 (

s
)

0

100

200

300

400

500

600

700

800

900

1000

Timeout

2-pass
Naive

Figure 32: 2-pass against naive embedding on random trees. x-axis is benchmark size as a function
of the nodes in the subdesign and the superdesign. Timeout is 2 hours.

that there is a configuration for the path connecting f(a) to f(b) which actually allows b′

to assume this special position and orientation.

6.5.3 Checking Kinematic Admissibility
To check (1) for a modular robot system with known links and joints, we pre-compute
solutions

[BrB′/B]∗ and [BRB
′
]∗ for each pair of nodes in the system by brute-force. When

running the algorithm, they can be quickly found by table-lookup. (2) is checked through
inverse kinematics (IK); when an edge maps to a path, we impose the additional restriction
that an IK solution for this path must be found which allows its terminating node to reach
[BrB′/B]∗ and [B

′
RB]∗. IK takes time exponential in the number of joints on the path πab,

so in practice it is the costliest operation in our algorithm.

6.6 Experiments
The algorithms were implemented in Python on top of graph-tool [73]. All experiments
were run on a single core of an Intel i7 at 2.4GHz; reported times are the average over ten
repetitions.

The first experiment is a topology benchmark: designs are random trees of max degree
5, and each node is assigned one of two functionalities uniformly at random. Since the
naive approach is much simpler to implement, is it worthy to adopt 2-pass from a practical
viewpoint? Fig. 32 shows that naive quickly becomes infeasible, with 2-pass outperforming
it and scaling really well with input size. Even large instances, where designs contain
thousands of nodes, are solved in almost 15 minutes.

In another experiment, not plotted due to space limits, subdesigns are complete binary
trees where each node is assigned one of two functionalities uniformly at random. Superde-
signs are complete binary trees of twice the depth, with nodes at even depth assigned one

57

Figure 33: Grasper (left) and a walker (right) designs for the SMORES robot [17].

functionality and nodes at odd depth assigned the other one. There, 2-pass mapped a
complex 127 node subdesign to a 16K node superdesign in less than 27 minutes.

Profiling the algorithm, almost 67% of the time is spent in the first pass, and 54% is con-
sumed in generating and solving small matchings. Kinematics are definitely the bottleneck;
almost ten minutes are required for designs of 200 and 500 nodes, as compared to less than
30 seconds for topology. For smaller designs with 25 and 80 nodes, kinematic embedding is
detected in < 5 seconds.

6.7 Applications
We turn to practical applications of embedding, and discuss how we can perform automatic
control translation from the subdesign to the superdesign once a kinematically admissible
embedding has been computed.

As a first example, consider the grasper and walker robots pictured in figure 33. Both
designs are built out of SMORES modules [17]. Each SMORES module has four DoF: three
continuously rotating faces called turntables and one central hinge with a 180o range of
motion. When two SMORES modules connect, the connected faces become rigidly attached;
rather than representing such a connection with an edge, we fuse the faces into a single node
which is then considered a member of both modules. Figure 34 shows the underlying designs
and the embedding found by our algorithm in under one second.

We are now able to map behaviors from the grasper to the walker. Kinematic behaviors
for a modular robot design can be specified by gait tables containing a time-series of joint-
angles [105]. Given a gait table for the grasper that produces a desired behavior (like
wrapping the arms around an object to immobilize it), we can use the mapping from our
algorithm to translate the gait table and achieve the same desired behavior with the walker.

More importantly, the same idea can be extended accross different modular robot sys-
tems. As an illustration, our algorithm detects that a SuperBot design [81] embeds in a
SMORES design 35, and in general, it can be shown that a SuperBot module always em-
beds in a design of two SMORES modules. Detecting such embeddings automatically and
using them to translate behaviors between platforms could save time for researchers who
would otherwise try to re-create behaviors manually, especially when working on complex
designs where embeddability is not as straightforward.

58

Figure 34: Walker design on top and grasper design on bottom. Red arrows show the discovered
embedding.

59

Figure 35: SuperBot subdesign [81] embeds in SMORES superdesign.

6.8 Conclusion and Future Work
We developed and implemented a poly-time algorithm to decide if a given modular robot
design can be embedded into another design. The algorithm processes real-life designs
in a matter of seconds and scales well with input size. We also formalized the notion of
embedding, based on graph representations of modular robots, and highlighted automatic
control translation as an application.

In the near future, we will look into handling designs with a small number of cycles
and decreasing the runtime of kinematic checking. In the longer term, we will move from
detecting embeddability to design synthesis. We believe that our embedding approach is
a useful starting point for this line of research, and have obtained promising preliminary
results.

60

Chapter 7

Accomplishing High-Level Tasks with
Modular Robots

The advantage of modular self-reconfigurable robot systems is their flexibility, but this ad-
vantage can only be realized if appropriate configurations (shapes) and behaviors (controlling
programs) can be selected for a given task. In this chapter, we present an integrated system
for addressing high-level tasks with modular robots, and demonstrate that it is capable of
accomplishing challenging, multi-part tasks in hardware experiments. The system consists
of four tightly integrated components: (1) A high-level mission planner, (2) A large design
library spanning a wide set of functionality, (3) A design and simulation tool for populating
the library with new configurations and behaviors, and (4) modular robot hardware. This
chapter excerpts heavily from the author’s work in [39] and [40]. Credit is due to collabo-
rators Gangyuan Jing and Prof. Hadas Kress-Gazit at Cornell University, who contributed
significantly to the work presented here.

7.1 An End-to-End System for Accomplishing Tasks with Mod-
ular Robots

The strength of MSRR systems lies in their flexibility. In principal, self-reconfiguration
will allow modular robots to transform into designs specifically tailored to the needs of
each new task they encounter, allowing them to elegantly address a wide variety of tasks by
reconfiguring into a wide variety of simple solutions. However, this strategy poses an obvious
challenge: given a task, is it possible to select an appropriate configuration (robot shape)
and behavior (controlling program) to address it? This has been a longstanding problem in
the field, and remains a significant barrier to the use of modular robots to solve real-world
problems [107].

We present an end-to-end system capable of selecting appropriate modular robot configu-
rations and behaviors to solve complex high-level tasks. Our system is library-driven: rather
than attempting to generate new designs from scratch, users specify task requirements and
a high-level controller retrieves designs satisfying the requirements from a library of existing
designs. In addition to library management, the system integrates tools for low-level design
creation, high-level mission planning, and physical modular robot hardware.

We leverage ideas from recent work on automatic controller synthesis with correctness
guarantees from high-level task specification [6, 7, 42, 46, 75, 103]. These methods have

61

Figure 36: Six configurations from the design library

proven effective for addressing high-level tasks with traditional robots, allowing users to
specify task requirements at a high level using formal languages and then automatically
synthesizing low-level robot controllers with performance guarantees. Applying these meth-
ods in the context of modular robotics introduces an additional layer of complexity due to
the fact that the morphology of the robot is not fixed.

Through hardware experiments, we demonstrate that our system is capable of addressing
challenging multi-part tasks. This chapter presents the details of the system, discusses its
strengths and weaknesses, and discusses challenges and opportunities related to applying a
similar system in a real-world setting.

7.1.1 System Overview
Here, we provide a brief overview of the entire system. Figure 37 provides a visual companion
to this section.

The system is built around a design library that spans a wide range of useful functionality.
Library entries are configurations and behaviors for the SMORES-EP modular robot, which
are designed in a physics-based simulator and design tool called VSPARC which we created
for this purpose. Users build, program, and test modular robot designs through a graphical
user interface, and can save their designs to a web server, allowing them to be shared with
others. Any configuration or behavior created in the simulator can be directly ported to the
hardware modular robot system, SMORES-EP.

Our system allows users to solve high-level tasks with modular robots. Tasks are specified
in a mission planning tool using Structured English [25], a high-level language. Users do
not specify which configurations and behaviors should be used to complete the task, but
rather describe the required functionality. For example, the user might request that the robot
perform a drive action in a tunnel environment labeled with the property max_height = 3.

To develop a solution to the task, the high-level mission planner fulfills each of the
specified functionality by automatically selecting robot configurations and behaviors from

62

Figure 37: System flowchart

the design library, generating a controller in the form of a finite-state automaton. In the
above example, the system could select any configuration that is capable of executing a drive
behavior while maintaining a maximum height of 3 modules or less. In a sense, the high-level
planner treats the entire modular robot system as a single robot with a set of capabilities
defined by the library. The mission planner can then execute the controller to complete the
task, directly commanding hardware SMORES-EP robots based on environment information
from sensors.

7.1.2 Contributions
We present an integrated system capable of addressing high-level tasks with modular robots.
The tasks it addresses are reactive: they require decision-making about what action to
perform based on the sensed environment; complex : they include multiple sub-tasks with
potentially very different requirements; and high-level : the task specification encodes the
desired outcomes, and the system intelligently synthesizes a solution that results in those
outcomes using the available configurations and behaviors from the library.

This system is one of the first to address these kinds of tasks with modular self-reconfigurable
robots, which introduce an additional layer of complexity because they can assume many
configurations. This represents a significant contribution to the field, because such systems
will be necessary for modular robots to operate in realistic task scenarios. By providing
this framework and demonstrating its success in the lab, we hope to lay the foundation for
future modular robot systems to address tasks in the real world.

The system includes four tightly integrated components: (1) A high-level mission plan-
ner, (2) A large design library spanning a wide set of functionality, (3) A design and simula-
tion tool for populating the library with new configurations and behaviors, and (4) modular
robot hardware. Several of the subcomponents represent research contributions. Our novel
design tool (VSPARC) represents a novel contribution, as does our library of 52 configura-
tions and 97 behaviors. We also introduce a minor theoretical contribution by checking the
feasibility of robot behaviors prior to controller synthesis.

63

7.2 Related Work
Much of the existing research in MSRR systems has focused on establishing the the funda-
mental capabilities that differentiate these systems from traditional robots. Notably, MSRR
systems have demonstrated the ability to form a wide variety of physical morphologies capa-
ble of diverse modes of locomotion, suitable to a range of different terrains [105]. The ability
to autonomously reconfigure has been demonstrated [108], and a number of reconfiguration
planning algorithms have been developed [88].

Similarly, a great deal of work has been done to develop behaviors for MSRR. Many
efforts focus on distributed control strategies, taking advantage of the distributed nature
of MSRR hardware [99]. Distributed strategies include central pattern generators [85] and
hormone-based control [80]. Genetic algorithms have been used to automatically generate
both modular robot designs and behaviors [36].

It is clear that MSRR systems have demonstrated the ability to accomplish low-level
tasks such as reconfiguration, locomotion, and manipulation. However, to truly live up
to their promise of flexibility in real-world applications, systems must be developed that
leverage these low-level capabilities to address complex, high-level, multi-part tasks.

While there is a robust body of research into addressing high-level tasks with traditional
robots, little work has been done in this area with modular robots. High-level control
of modular robots poses a unique challenge, because solving tasks involves selecting not
only appropriate behaviors, but also appropriate configurations. This makes it all the more
important to develop automated systems that can synthesize task-appropriate modular robot
configurations and behaviors from high-level specifications.

In [10], Castro et al. introduce a high-level control framework for the CKBot modular
robot. This framework lays the theoretical foundations for our high-level mission planner,
one of the four major components of our system. We expand the framework into a larger sys-
tem capable of addressing significantly more sophisticated tasks. In addition to the mission
planner, we provide design and simulation tools for creating and testing modular robot con-
figurations and behaviors, and a large library (52 designs, 97 behaviors, 19 properties) with
designs capable of addressing a wide range of tasks. We expand the theoretical formalism
introduced by Castro to include both behavior and environment properties, increasing the
expressiveness of task specification, and introduce a performance improvement by ground-
ing abstract action specifications in concrete configurations and behaviors prior to automata
synthesis.

Tosun et al. [95] introduce a system that allows users to rapidly synthesize modular robot
designs and behaviors by composition. The system includes a physics-based simulator and a
hierarchically organized library of configurations and associated behaviors. The goal of this
work is to aid in the selection of modular robot configurations and behaviors appropriate to
complex tasks, but it takes a very different approach than our automated system, instead
providing tools for users to manually create new designs by combining library entries using
series and parallel composition operations.

Outside the realm of modular robotics, systems have been developed that can synthesize
rapidly manufacturable robot designs from high-level user specifications [55],[54], [82]. This
work is similar to ours in the sense that high-level specifications from the user are interpreted
to synthesize robot designs and behaviors from elements in a design library. The goal of
these systems is to allow novice users to rapidly design and build functioning robots at

64

low cost, using fabrication techniques such as 3D printing [55],[54] and origami folding [82].
Consequently, the scope of the tasks they address is very different from ours. In these
systems, library entries are electromechanical components such as motors, motor drivers,
and microcontrollers, and a high level task might be “Create a robot that can walk and
turn.” In contrast, library entries in our system are whole robots with associated behaviors,
and we address complex, multi-part tasks such as “Climb on top of the table, and move any
debris you find into the trash bin.”

7.3 Background
In this section, we formalize modular robot systems and provide background on controller
synthesis techniques.

7.3.1 Modular Robot Systems
Definition 5 (Module). A module is the fundamental unit of a modular robot system. Each
module is a small robot that can receive and respond to commands, move, and connect to
other modules. In this work, we consider only homogeneous modular robot systems, meaning
that all modules in the system are identical.

We define a module as m = (J,A). J = {J1, . . . , Jd} is the set of joints of the module
with d degrees of freedom. A = {A1, . . . , Ak} is the set of attachment points where the
module can connect to other similar modules. Each attachment point can only connect to
one other module at a time. We denote the attachment point Ai of module m as m.Ai.

Definition 6 (Configuration). A configuration is a connected set of modules that acts
together as a single robot. The smallest configuration is a single module. A configuration is
denoted as C = (M,E), where M = {m1, . . . ,mq} is the set of connected modules that form
the configuration and E is the set of connections between modules, represented as pairs of
attachment points. (mi.Aa1 ,mj .Aa2) ∈ E, where mi,mj ∈ M , and mi 6= mj . cannot have
two disconnected sets of modules that move independently).

Definition 7 (Joint Command). Joint commands are used to control the joints of the mod-
ules. A command to a joint Ji is defined as uJi = (α, V, t), where α ∈ {Position, Velocity}
is the type of command, V ∈ R is the value of the command, and t ∈ R is the time duration
of the command. For example, uJi = (Position, π2 , 2) commands joint Ji to hold the angle
θ = π

2 rad for 2 seconds. Similarly, uJi = (Velocity, π, 3) will drive joint Ji with angular
velocity of θ̇ = π rad

sec for 3 seconds. We assume there are low-level controllers (e.g. PID
controllers) that can drive the corresponding joint to satisfy the command uJi .

Definition 8 (Behavior). For a configuration C, we define a behavior BC = {b1, . . . , bn} as
a sequence of behavior states. Each behavior state is defined as bi = (U, T), where U is the
set of joint commands for all joints of all modules in the configuration. The time duration
T of each behavior state is equal to longest duration of its joint commands U , ensuring
that behavior execution will move on to the next state only once all joint commands in the
current behavior state have completed.

7.3.2 Controller Synthesis
In this work, we utilize existing work on controller synthesis [25, 46] to generate high-level
controllers for modular robot systems. The process of controller synthesis consists of three

65

main steps: (1) representing the robot and the environment using a discrete abstraction,
(2) expressing desired robot tasks with a formal specification language, (3) searching for
a control strategy that satisfies the given task specification, or determining that such a
strategy does not exist.

Robot and Environment Abstraction: To represent the continuous environment state
and robot actions as discrete models, we abstract the environment events and robot ca-
pabilities into sets of boolean variables. The value of each variable represents the sensed
environment state or the current robot actions. For example, the environment variable Cup
is True if and only if the robot is currently sensing a cup with its camera. Similarly, the
robot variable Push is True if and only if the robot currently performing a pushing action.

Robot Task Specification: A wide range of robot tasks can be defined using a for-
mal language called Linear Temporal Logic (LTL). In [25], authors introduce a tool called
LTLMoP that allows users who are unfamiliar with LTL to specify robot tasks in a formal
language called Structured English, which is closer to natural language. LTLMoP then au-
tomatically translates Structured English specifications into LTL formulas. The following is
an example of a robot task specification written in the Structured English:

• visit Classroom

• if the robot senses Student then do Greet

• do Pickup if and only if the robot senses Trash

In these examples, Classroom,Greet, Pickup are robot action variables and Student,
Trash are environment variables.

Controller Synthesis and Execution: Authors of [46] introduce a framework to au-
tomatically generate a high-level robot controller to satisfy a task specification, or decide
such controller does not exist. The synthesized controller is a finite-state automaton, and
specifies robot actions that satisfy the task. Each state in the controller is labeled with
robot variables, and each transition is labeled with environment variables.

To accomplish a tasks, the synthesized controller is implemented continuously by map-
ping each robot variable to a low-level robot controller, and mapping each environment
variable to a robot sensing function. With these mappings, the robot is able to detect the
environment and perform desired actions to satisfy the task specification.

7.4 System
7.4.1 Modular Robot Hardware - SMORES-EP Robot
Our system is built around the SMORES-EP modular robot, but could be extended to
other modular robot hardware systems. Because individual modules have no way of sensing
their environment, localization is provided by AprilTag markers [68] mounted to modules
and objects of interest, tracked by an overhead camera. The AprilTag tracker, high-level
planner, and module control software run with a control loop time of about 4Hz on a laptop
a 2.4GHz processor and 4GB of RAM.

66

Figure 38: VSPARC user interface

7.4.2 Design and Simulation Tool: VSPARC
VSPARC, which stands forVerification, Simulation, Programming AndRobotConstruction,
is our interactive design tool that allows users to design configurations and behaviors for
SMORES-EP robots, and simulate them with a real-time physics engine. As shown in Fig-
ure 38, the graphical user interface, powered by the Unity3D Engine [1], allows users with
little background in robotics to design and test different robot configurations and behaviors.
The ability to control each joint of each module grants more experienced users the possibility
to create complex designs.

VSPARC provides physical modeling of SMORES-EP, taking into consideration factors
such as the connector and actuator force limits. This allows users to test and verify behaviors
before running them with physical modules and receive early warning if, for example, their
behavior would likely cause the connection between two modules to break.

VSPARC is available for free online at www.vsparc.org, and enables users to save and
share their designs to a central server, allowing a large number of users to contribute to our
design library. VSPARC’s main features are listed below:

• Design configurations with unlimited number of modules and visualize the design in a
3D environment.

• Command positions or velocities for each joint of all modules.

• Design behaviors for any configuration by creating a sequence of joint commands.

• Simulate the performance of any behavior in a physics engine.

67

www.vsparc.org

Figure 39: The same behavior file can be used by both the simulator and the physical robot.

• Create and share designs online. Test and improve other users’ designs.

As shown in Figure 39, behaviors designed in VSPARC can be exported as XML files and
then run on SMORES-EP modules, providing seamless translation of behaviors from the
simulator to physical robots.

7.4.3 Design Library
In this section, we introduce a library-driven framework to organize configurations and
behaviors created in VSPARC. We introduce the notion of properties, which specify the
functionality and constraints of behaviors, and the robot design library, which can be searched
to find configurations and behaviors with desired properties.

Definition 9 (Property). Properties provide high-level descriptions of the intended effects
of a behavior, as well as the environment in which the behavior is appropriate. We define
a property as p = (pn,Ω), where pn is the name of the property (i.e. a description title,
in English) and Ω is the set of values of the property. For example, a behavior with the
property p = (Action, {Move, Push}) can perform both Move and Push actions. Properties
are also used to describe the environmental conditions required for the behavior to run as
expected. For example, the property p = (ObjectWeight, [2, 5]) indicates that the behavior
can appropriately interact with an object if its weight is between 2 and 5 module-weights. In
this case, the property is a quantitative description of the environment. We say a property
p1 = (pn1 ,Ω1) satisfies a property p2 = (pn2 ,Ω2) if and only if pn1 = pn2 and Ω1 ⊆ Ω2.

Properties connect tasks with behaviors that are appropriate to address them. In Sec-
tion 7.4.4, we discuss how correct behaviors for a task can be automatically selected based on
requirements over property values. Table 4 lists some examples of environment and behavior
properties that might be used for common robot tasks.

68

Table 4: Examples of property names
Properties for Properties for
Robot Behavior Environment

Speed Box_Mass
Width Stair_Height
Height Ground_Roughness
Action Tunnel_Height

Definition 10 (Robot Design Library). The design library is a collection of modular robot
configurations and behaviors labeled with environment and robot behavior properties. The
library L consists of a set of library entries, L = {l1, l2, . . . }. Each library entry is defined
as l = (C,BC , Pe, Pr), where C is the configuration and BC is a behavior associated with
C. Pe and Pr are sets of properties that describe the environment conditions and robot
behavior functionality, respectively.

As an example, the library entry:

l = (C = snake, BC = climb, Pe, Pr)

where : Pe = {(Ledge_Height, [2, 3])}
and : Pr = {(Action, [Climb]), (Speed, [1])}

represents a snake shape configuration with a climb behavior that can climb a ledge with
a height of two to three module-lengths, with the speed of 1 module-length per second.
Moreover, we say a library entry l satisfies a property p if there exist a property p′ ∈ Pe∪Pr
such that p′ satisfies p.

To populate the library with different configurations and behaviors designs, we made our
design tool available online at www.vsparc.org and distributed the tool to undergraduate
and graduate student volunteers, hosting three hackathons in which participants created
designs for various robot tasks. Currently, the library includes 52 configurations and 97
behaviors contributed by 20 volunteers. Since the full library is too large to list here, we
provide a representative sampling of configurations, behaviors, and properties in Table 5.
The unit for length is the side length of a single SMORES-EP module. The unit for mass
is the mass of a single SMORES-EP module.

Environmentally Adaptive Parametric Behaviors

As explained in Section 7.3, standard behaviors are defined as a series of joint angles
or joint velocities for the modular robot cluster. These are discrete, open-loop actions
can be sequenced by the high-level mission planner to complete tasks. Here, we present
environmentally-adaptive parametric behaviors (EAP behaviors) which provide additional
functionality, allowing low-level behaviors to directly respond to sensed conditions in so-
phisticated ways. These behaviors are parametric because they take input arguments, called
parameters, which allow them to produce a continuous range of motions. They are environ-
mentally adaptive because their parameters are intelligently assigned as a function of the
state of the robot and environment.

Definition 11 (Environmentally Adaptive Parametric Behavior). We define an Environmentally-
Adaptive Parametric Behavior as BEAP

C = ({b1, b2, . . . , bn},p, f), where {b1, b2, . . . , bn} is

69

www.vsparc.org

Configuration Name Single module Rolling Loop DoubleDriver Stair Climber
Number of modules 1 8 7 4

Locomotion
Max robot height 1 2.5 1.5 2
Max robot width 1 1 3 1
Max robot length 1 5 3 3.5
Terrain - Smooth X X X X
Terrain - Rough X X
Terrain - Sloped X X X

Driving - Straight X X X X
Driving - Di↵erential drive X X

Driving - Holonomic
Ledge ascent - Max height 0.25 0.75

Ledge ascent - # modules lifted all all
Ledge descent - Max height 1 1.5

Ledge descent - # modules lowered all all

Manipulation
Attachment - Push X X X X

Attachment - Magnetic X X X
Attachment - Carry

Workspace size
X : [� inf, inf]
Y : [� inf, inf]

Z : [0, 1]

X : [� inf, inf]
Y : [0, 1]

Z : [0, 2.5]

X : [� inf, inf]
Y : [� inf, inf]

Z : [0, 1.5]

X : [� inf, inf]
Y : [� inf, inf]

Z : [0, 2]
Payload mass 1 2 4 2

Configuration Name Swerve Lifter backhoe snake7
Number of modules 9 9 7

Locomotion
Max robot height 2 4 4
Max robot width 4 4 1
Max robot length 3 7 7
Terrain - Smooth X X
Terrain - Rough
Terrain - Sloped X

Driving - Straight X X
Driving - Di↵erential drive X

Driving - Holonomic
Ledge ascent - Max height 3

Ledge ascent - # modules lifted 4
Ledge descent - Max height 3

Ledge descent - # modules lowered all

Manipulation
Attachment - Push X X X

Attachment - Magnetic X X
Attachment - Carry X

Workspace size
X : [� inf, inf]

Y : [0, 1]
Z : [0, 2]

X : [� inf, inf]
Y : [�3, 3]
Z : [0, 4]

X : [�3, 3]
Y : [�3, 3]
Z : [0, 4]

Payload mass 3 1 1

Table 5: Matrix of designs and properties. Length and mass units are module-lengths and module-
masses.

70

a sequence of behavior states, p ∈ Rm is a vector of parameters, and f : Rn → p is the
controller function.

Like standard behaviors, EAP behaviors consist of a sequence of behavior states {b1, b2, . . . , bn}.
However, some of the joint commands of these states are parametric: instead of encoding
fixed joint angles or velocities, they introduce a variable (called a parameter of the behavior)
that can be assigned their value whenever the behavior is called. Additionally, we associate
with each EAP behavior a controller function f : Rn → p, which takes as input information
about the robot and environment and produces as output the parameters of the behav-
ior. This function is a feedback controller which lets the behavior adapt to environment
conditions.

EAP behaviors expand the capabilities of our system. For example, consider a single
SMORES-EP module, which can drive on smooth terrain using its two wheels. Using VS-
PARC, we can create a parametric Drive behavior that commands it to turn its wheels,
assigning the wheel velocities to two parameters, e.g. p = {Vleft, Vright}. Using Python, we
can now write a controller function for path following, taking as input the current location
of the module and producing as output appropriate parameter values (wheel velocities) to
drive the module along the path. In Section 7.5.2, we demonstrate how a similar Drive
behavior and a path planner are used to direct a module to explore different regions on a
tabletop.

As another example, consider the Backhoe configuration in Table 5. Using VSPARC,
we can create a behavior that assigns parameters to the angles of all pan and tilt joints of
the arm, providing access to the 7-DOF forward kinematics of the robot. For the controller
function, we can write code that takes the position of an object as input and solves an
inverse kinematics problem, providing output joint angles that cause the arm to touch an
object.

As the above examples imply, EAP behaviors have a two-step design process. First, a
parametric behavior is created using VSPARC, which we have extended to allow users to
assign any joint value to a parameter rather than a fixed value. This process is no more
difficult than creating a non-parametric behavior. Next, a controller function is written,
to provide the mapping from sensor data to parameter values. Controller functions can
be quite sophisticated (examples include motion planners and feedback controllers) and are
typically written in Python by an expert user. However, if existing controller functions are
available, novice users can re-use them to produce new EAP behaviors. For example, the
path-following controller developed for a single module could be re-used by a novice user
to create a similar behavior for the DoubleDriver configuration (Table 5), which is also
capable of differential drive.

7.4.4 Reactive Controller Synthesis and Execution with the Library
In this section, we describe how our high-level mission planner synthesizes and executes
controllers capable of accomplishing tasks using configurations and behaviors from the design
library. This process has three parts: (1) matching library entries with boolean variables, (2)
generating additional LTL constraints imposed by mapping, and (3) executing the controller.
This framework is illustrated in Figure 40, and described in the following subsections.

71

Matching library entries with boolean variables

In our high-level mission planner, users specify tasks using robot and environment variables
that abstract robot actions and environmental conditions, as discussed in Section 7.3.2.
They label each variable with behavior and environment properties, to encode the desired
functionality and constraints. Our system searches the design library for a set of library
entries that satisfy the properties, and maps them to the corresponding boolean variable.
Consider an example robot task specification:

if the robot senses Cup then do Push.

The robot variable Push might be described with:

P = { {(Cup_Mass, [1, 3])},
{(Action, [Drive]), (Speed, [1])} }

indicating that robot needs to be able to drive with speed of 1 with a cup that weights 1 to
3 module-weights. With this specification, we can search through the robot design library
to find a set of library entries Ly = {l1, . . . , lk} that satisfies all properties in the set P .

Generating additional LTL formulas imposed by matching

During the matching process, additional necessary LTL constraints are automatically created
among the robot variables. Consider a set of robot boolean variables Y used in a task
specification. We define a mapping relation λ : Y → 2L that maps each variable y ∈ Y to a
set of library entries Ly that satisfies the user specified set of properties P for y. We say a
library entry l can implement a variable y if l ∈ λ(y). For any y ∈ Y, if λ(y) = ∅, we need
to make sure variable y is never True, because no library entry can implement y. For any
y, y′ ∈ Y, if λ(y) ∩ λ(y′) = ∅, we need to make sure variable y and y′ can never be True
at the same time, because there does not exist a library entry that can implement both y
and y′. To encode the mutual exclusion between robot variables into the task specification,
we specify them in the form of LTL formulas that are used together with the original task
specification to generate robot controllers during synthesis.

Controller Execution

The synthesized finite-state automaton can be used to control simulated or the physical
robots. If synthesis fails, possibly due to lack of library entries that implement some robot
variables, LTLMoP will notify the user, who can then design suitable configurations and
behaviors with VSPARC.

A synthesized controller is executed by running behaviors based on the value of each
robot action variable. If a variable maps to a non-parametric behavior, the behavior is simply
executed when the variable becomes True. A behavior is stopped when the corresponding
variable becomes False.

To execute an environmentally-adaptive parametric behavior, the values of all parametric
joint commands are decided during execution by calling the controller function each time
the behavior is executed. For example, if the robot variable Explore matches with the EAP
Drive behavior of the Single Module configuration, the behavior will be executed whenever
Explore is True. A path planner function computes values of parameters in Drive in order

72

Figure 40: Controller synthesis and execution

to control the robot as a two-wheel differential-drive car.
If two consecutive behaviors must be satisfied by two different configurations, reconfig-

uration is required. To reduce overall mission time, when multiple behaviors match with a
robot boolean variable, we avoid unnecessary reconfiguration by biasing towards the behav-
ior that requires no reconfiguration.

7.5 Experimental Results
We validate the capabilities of our system through experiments in simulation and hardware,
illustrated in Figures 43, 44, and 45, as well as the attached video. Faced with various task
requirements, the system responds by synthesizing appropriate solutions. The simulation
experiments demonstrate how the high-level mission planner can automatically synthesize
and execute solutions to tasks using configurations and behaviors from the library. The
hardware experiments validate that the system is capable of accomplishing complex physical
tasks, such as carrying objects and climbing ledges.

7.5.1 Simulated Task Scenarios
We present two simulated task scenarios. A straightforward task is matched with a simple
solution that uses one configuration, while a more complex task is addressed by reconfiguring
between three different configurations, to leverage their wide-ranging capabilities.

Scenario 1

In Scenario 1, our system must solve a multi-part task in the environment shown at the top
of Figure 41. The environment includes a button, a lightweight block, a gap in the ground,
and a ramp, all in a straight line. Pressing the button causes the block to drop to the

73

Action Definition Properties
pushButton: type = Manipulation_Push

height = 1.5

pushBox: type = Manipulation_Push
payload = 2
distance_x = 3

climb: type = Locomotion
drive = Straight
terrain = Sloped

Table 6: High-level Action Definitions for Scenario 1

ground, where it can be pushed into the gap, forming a bridge between the flat region and
ramp. When the task begins, the robot is initially positioned in front of the button. The
objective is to reach a goal area at the top of the ramp. The high-level action definitions for
this task are provided in Table 6.

After searching the library, the high-level mission planner discovers that the rollingLoop
configuration has behaviors that satisfy the requirements of all three actions needed for this
task (See Table 5). To complete the task, the mission planner synthesizes a controller that
commands the loop to press the button, push the block into the gap, and ascend the ramp,
as shown in Figure 41.

In response to this straightforward task, our system produces a simple solution. As
discussed in Section 7.4.4, the system attempts to minimize reconfiguration when completing
a task, and so will opt to solve the entire task with a single configuration whenever possible.

Scenario 2

Like Scenario 1, Scenario 2 requires the robot to move from a starting position to a goal
position. However, several small changes have been made to the environment that makes
the task more difficult. The button has been moved to the side of the map, and floats
at a height of 4 module-lengths above the ground. The box is twice as heavy, weighing 4
module-weights rather than 2. The ramp has been replaced with stairs with a step height
of 0.75 module-lengths. Table 7 provides the high-level action definitions for this scenario.

These changes make it impossible for the rollingLoop to complete the task - it can’t
reach the button, it’s not strong enough to push the block, and it can’t ascend steps more
than 0.25 module-lengths high. Instead, the high-level planner compiles a more complicated
controller that uses behaviors from three different configurations in the library, shown in
Figure 41. To push the button, the planner selects the backhoe, because it is the only
configuration with a large enough vertical workspace. To push the block into the gap, the
robot reconfigures into the doubleDriver, which is capable of driving, turning, and pushing
objects as heavy as 5 module-weights. To climb the stairs, the robot reconfigures into the
stairClimber, which can easily ascend 0.75 module-length steps.

This scenario demonstrates how our system leverages the flexibility of modular robots.
This challenging task requires the diverse capabilities provided by all three configurations,
and could not be accomplished by any one of them alone. Note that for the purposes of this
work we do not provide strategies to autonomously perform self-reconfiguration. Instead,

74

Action Definition Properties
pushButton: type = Manipulation_Push

height = 4

pushBox: type = Manipulation_Push
payload = 4
distance_x = 3

climb: type = Locomotion
drive = Straight
ledge height = 0.75

Table 7: High-level Action Definitions for Scenario 2

we assume that the robot can self-reconfigure between any two configurations as long as the
initial configuration has an equal or greater number of modules than the final configuration.
This does not fundamentally limit the power of our system: techniques for autonomous self-
reconfiguration with SMORES-EP have been recently developed, and are being published
in parallel.

7.5.2 Hardware Experiments
Our hardware experiments demonstrate that our system can accomplish a complex physical
task using physical SMORES-EP robot modules. The robot is required to clean the top of
a table, operating in the environment shown in Figure 42. To do so, the robot must first
move a waste bin from its initial location (labelled “Pickup”) to a target location next to the
table (labelled “Dropoff”). Then, the robot must climb to the top of the table and explore
the surface. Whenever it encounters an object, it must react appropriately: if it is garbage,
it should push it off the table and into the waste bin, and if not, it should notify a human
to remove it.

This experiment showcases the seamless translation of behaviors from the VSPARC
simulator to hardware, and the ability to use the LTLMoP high-level planner to create
mission plans that can be directly executed by the modules. AprilTags tracked by an
overhead camera provide information about the position of modules and objects in the
environment, serving as sensory feedback for the high-level planner.

This experiment also demonstrates how the design library is continually expanded as
users develop designs to address new tasks. While the library encompasses a wide range of
functionality, it is by no means complete: when a high-level specification was first created
for this experiment, the mission planner reported that it could not be satisfied using exist-
ing elements in the library. Consequently, two new configurations (the swerveLifter and
snake7 configurations) were created, and low-level behaviors were iteratively developed to
fulfill the needs of each component of the task. Once these configurations and behaviors
were made available in the library, the high-level planner was able to successfully synthesize
and execute controllers to accomplish the tasks.

Moving the Waste Bin

The robot begins its task in region Start1, and must move the waste bin from Pickup to
Dropoff, a distance of 10 module lengths. Once the waste bin is in place beside the table,

75

Figure 41: Environments for Scenarios 1 (top) and 2 (bottom) in the simulator.

Figure 42: Map of the hardware demo

76

the robot must travel to the edge of the table (Start2), where it can begin the next phase
of the task (exploring the tabletop).

The waste bin is a box supported by four legs, making it impossible for any design less
than two module-heights tall to push it. This constraint rules out most car-like configurations
in the library. The 10-module distance over which the bin must be transported imposes
a workspace requirement that rules out all stationary manipulators. Consequently, the
swerveLifter configurations was designed to meet all the criteria. The swerveLifter uses
four SMORES-EP modules as powered caster wheels, allowing omnidirectional movement
(sometimes called swerve drive). It can also raise and lower, enabling it to lift and carry
objects by driving underneath them.

The high-level description of this phase of the task is shown in Specification 1, and
Figure 44 shows how the robot completes it. The task is reactive: the robot waits until it
senses the waste bin before beginning the pickup action (Line 3 of Specification 1). Once
the waste bin appears (i.e. the AprilTag marking it comes the camera view), the robot
lowers itself, drives beneath the waste bin, and carries it to the Dropoff region. It then
moves back out from beneath the waste bin, and executes a series of omnidirectional driving
behaviors to travel to the edge of the table.

Specification 1 Moving the Wastebin

1. carry is set on pickup and reset on false
2. dropped is set on drop and reset on false
3. do pickup if and only if you were sensing wasteBin

and you are not activating carry
4. do goToTable if and only if you are activating dropped
5. do drop if and only if you were activating carry

and you are not activating dropped

Table Exploration

With the waste bin in place, the robot begins the second phase of the task: cleaning the top
of the table. The robot needs to climb to the tabletop, explore, and react to what it finds.
The snake7 configuration was designed to be capable to do this. As shown in Table 5, the
snake7 configuration can use its climbup and climbdown behaviors to ascend and descend
ledges up to 3 module-heights tall. However, it is unable to lift its entire body up to the
tabletop, and even if it could, it would be too large to effectively explore. Instead, the robot
reconfigures, detaching the front module of the snake to act as a module1 configuration that
can use its EAP behavior differentialDrive to explore the tabletop, and its spin, and
push behaviors to clean.

Specification 2 provides the high-level task description, and Figure 45 shows the robot
completing the task. The robot begins in the snake7 configuration, positioned at the edge
of the table in the ground region. An AprilTag is fixed to the front module of the snake,
allowing the mission planner to determine its location at all times. Sensing that it is in the
ground region, the snake7 executes climbup (line 8 of Specification 2). After climbing,
the mission planner senses that the head of the snake has reached the dock region at the
edge of the tabletop, and executes the undock behavior to detach the head module from

77

the snake (line 6), allowing it to operate on its own as a module1.
The module then uses differentialDrive to visit two regions of interest on the tabletop

(loc1 and loc2). differentialDrive is an EAP behavior that allows the robot to explore
its environment in a continuous fashion. The driving behavior and its parameters are the
same as the driving behavior presented as an example in Section 7.4.3: two parameters
specify the left and right wheel velocities. The controller function is a potential field path
planner that maps the robot’s current position (sensed via AprilTag) to a desired linear and
angular velocity, which are converted to wheel velocities.

When it reaches loc1, the robot senses a coffee mug (marked with an AprilTag), and
responds by executing a spin behavior to notify a nearby human that it should be removed
(line 1). When it reaches loc2, it senses a piece of trash, and it correctly responds by
performing a push to move it off the table and into the waste bin. Having fully explored
the table, the module returns to the dock point and re-attaches to the body of the snake
(line 5). The snake then executes climbdown to descend back to the floor, completing its
mission.

Specification 2 Cleaning the Tabletop

1. if you are sensing mug then do spin
2. if you are sensing trash then do push
3. loc1visited is set on loc1 and reset on false
4. loc2visited is set on loc2 and reset on false
5. do docking if and only if you were in dock and you

are activating (loc1visited and loc2visited)
6. do undock if and only if you were in dock and you

are not activating (loc1visited or loc2visited)
7. do climbdown if and only if you were in dock and

you activated (loc1visited and loc2visited)
8. do climbup if and only if you were in ground and

you are not activating (loc1visited or loc2visited)
9. infinitely often do docking

Challenges

In general, the hardware experiment was successful, with the high-level planner successfully
executing library behaviors to complete this task. While running the experiment, several
notable challenges were encountered. During the first phase (moving the waste bin), achiev-
ing accurate steering with the swerveLifter proved difficult. The swerveLifter steers by
aligning four caster wheels in the same direction, a process that is sensitive to encoder cal-
ibration errors across modules. Recently, more sophisticated calibration procedures for the
SMORES-EP encoders have been developed, and encoder performance has been improved
[93].

During the second phase of the experiment (exploring the tabletop), careful initial posi-
tioning was required for the open-loop climbUp behavior to succeed - in several trials, the
snake was started too close to the ledge, causing it to collide with the corner of the table
and break. This problem could be alleviated by developing an EAP behavior allowing the
robot to autonomously drive to the appropriate distance before beginning to climb.

78

rollingLoop.backward rollingLoop.forward rollingLoop.forward

backhoe.pressButton doubleDriver.turnAndDrive stairClimber.climb

Figure 43: Simulated Demo

In both phases of the experiment, limited magnetic connector strength between modules
presented a significant challenge. The swerveLifter configuration had to be constructed
with a passive cube in its center in order to perform its raising and lowering behaviors
without breaking. During descent from the table, bending forces experienced at the center
of the snake7 configuration would sometimes cause connections between modules to break.

The limited strength of the magnetic connectors can be viewed as a trade-off for ease of
reconfiguration. Connection and disconnection between the head and body of the snake takes
very little time, and the forgiving area-of-acceptance of the connector [92] makes it possible
to dock the head of the snake to the body even though the exact position of the body is
not known (only the head module had an AprilTag). Autonomous docking succeeded about
25% of the time. This performance could be improved by applying more recently developed
techniques for autonomous self-reconfiguration with SMORES-EP.

7.6 Discussion and Future Work
7.6.1 Simulator-to-hardware translation
Translation of behaviors from VSPARC to the hardware was largely successful, and the
ability to prototype designs and behaviors in a simulator resulted in significant time savings
over prototyping in hardware. Disparities between performance in the simulator and hard-
ware tended to arise from real-world phenomena the simulator did not model accurately.
For example, variability in magnetic connector strength (which differs from module to mod-
ule [92]) sometimes resulted in connections breaking unexpectedly, and encoder calibration

79

swerveLifter.goUnder swerveLifter.carry swerveLifter.dropOffswerveLifter.driveUp

Figure 44: Moving the Waste Bin

snake7.climb module.spin module.push snake7.descend

Figure 45: Cleaning the Table

80

errors could cause behaviors requiring very precise position control to perform poorly.
Incorporation of on-board sensing will allow our system to operate autonomously in

unknown environments. At the time of writing, a “brain module” has been developed that
allows SMORES-EP clusters to carry an RGB-D camera and computer unit.In the future,
VSPARC could be expanded to include simulated sensing capabilities, making it easier to
develop closed-loop EAP behaviors.

7.6.2 Library Creation: Lessons Learned
Early on in the development of this system, we intended to populate our design library
through crowdsourcing, using a system such as Amazon Mechanical Turk where a large num-
ber of online users could create configurations and behaviors using VSPARC. We quickly
realized that this strategy would not produce high-quality designs: developing sophisticated
designs and behaviors in the simulator requires skill and experience. Holding hackathons
with undergraduate engineers proved to be a much more effective strategy, because partic-
ipants would become significantly more adept at creating designs and behaviors through
hours of practice. Newcomers would typically spend about an hour creating a useful behav-
ior, where well-practiced users would spend about twenty minutes.

Interestingly, users spent significantly more time creating behaviors than configurations.
Most users required only a few minutes to build a new configuration and conceive of the
fundamental motions they wanted it to perform. The majority of the design time was spent
coding joint trajectories to achieve the desired motion while maintaining balance and avoid-
ing connector strength overload. In the future, we hope to incorporate motion planning tools
within VSPARC that will allow novice users to specify desired motions without explicitly
coding joint angles. Evolutionary techniques will also be explored to generate behaviors
automatically.

An existing algorithm for modular robot design embedding detection could also be used
to automatically generate behaviors for new configurations [52]. This algorithm can auto-
matically detect when one a subset of the joints of one configuration can be used to replicate
the kinematics of another (a condition known as embedding), and generates a mapping that
can be used to transfer behaviors originally developed for one configuration to any other
configuration that embeds it. This could also allow behaviors developed for SMORES-EP
to be ported to other modular robot systems, or vice-versa.

7.6.3 Composing Library Elements to Complete Missions
Environment and behavior properties provide an expressive way for the user to specify
the requirements of a task. However, the fact that a behavior is labeled with a specific
property does not guarantee it will perform as intended in all circumstances. Adapting
behaviors to environments different from the one in which they were designed can cause
them to fail, as evidenced by the problems in establishing proper initial robot position
for the climbUp behavior in the table cleaning scenario. Development of more closed-loop
parametric behaviors will help address this issue.

Methods for automatically analyzing tasks and environments are actively being re-
searched [89]. Determining optimal sets of environment factors and integrating methods
for automatic task analysis and would be an interesting avenue for future work.

It’s worth noting that some behaviors are much more tolerant to varying environments
than others. In our hardware experiments with the stairClimber configuration, we found

81

that a single open-loop gait was able to climb steps of several varying sizes with no problems.
Establishing confidence bounds on behavior success as a function of environment parameters
and including this information in the library is future work.

7.7 Conclusion
We presented a system for addressing high-level tasks with modular self-reconfigurable
robots. We demonstrated how our physics-based simulator allows SMORES-EP configu-
rations and behaviors to be easily created and stored in the design library, and how our a
framework for labeling each entry in the library with descriptive properties allows them to
be organized by functionality. Integration with a high-level mission planner allowed users
to provide high-level task specifications, which were used to synthesize reactive controllers
that use configurations and behaviors from the library. The capabilities of our system are
validated through experiments in simulation and with physical modular robots. We also
expanded the system by introducing environmentally-adaptive parametric behaviors, which
allowed sophisticated motion planners and feedback controllers to be used within our frame-
work.

82

Chapter 8

Autonomy

The theoretical ability of modular robots to reconfigure in response to complex tasks in a
priori unknown environments has frequently been cited as an advantage, but never demon-
strated. Today, this vision remains a major motivator for work in the field.

This chapter presents the first modular robot system capable of autonomously complet-
ing high-level tasks by reactively reconfiguring to meet the needs of a perceived, a priori
unknown environment. The system integrates perception, high-level planning, and modular
hardware, and is validated in three hardware demonstrations. Based on a high-level task
specification, a modular robot autonomously explores an unknown environment, decides
when and how to reconfigure, and manipulates objects to complete its task. The system
architecture balances distributed mechanical elements with centralized perception, planning,
and control. By providing a clear example of how a modular robot system can be designed
to leverage reactive reconfigurability in unknown environments, we have begun to lay the
groundwork for MSRR systems to address tasks in the real world.

This chapter excerpts heavily from the author’s work in [16]. Much credit is due to
co-authors Jonathan Daudelin, Gangyuan Jing, Mark Campbell, and Hadas Kress-Gazit,
all from Cornell University, who contributed significantly to this work.

8.1 Introduction
Since the field of modular robotics was in its nascence, researchers have presented a vision of
flexible, reactive systems operating in unknown environments. Modular self-reconfigurable
robots would be able to enter unknown environments, assess their surroundings, and self-
reconfigure to take on a form suitable to the task and environment at hand [105]. Today,
this vision remains a major motivator for work in the field [107].

Continued research in MSRR has resulted in substantial advancement. Existing research
has demonstrated MSRR self-reconfiguring, assuming interesting morphologies, and exhibit-
ing various forms of locomotion, as well as methods for programming, controlling, and simu-
lating modular robots [12, 22, 26, 39, 52, 60, 62, 72, 76–78, 102, 105, 108]. However, achieving
autonomous operation of a self-reconfigurable robot in unknown environments requires the
ability to explore, gather information about the environment, consider the requirements of a
high-level task, select configurations whose capabilities match the requirements of task and
environment, transform, and perform actions (like manipulating objects) to complete tasks.
Existing systems provide partial sets of these capabilities. Many systems have demonstrated

83

limited autonomy, relying on beacons for mapping [20, 29] and human input for high-level
decision making [21, 59]. Others have demonstrated swarm self-assembly to address basic
tasks like hill-climbing and gap-crossing [31, 70]. While these existing systems all repre-
sent advancements, none have demonstrated fully autonomous, reactive self-reconfiguration
to address high-level tasks. A more detailed overview of existing systems can be found in
Section 8.5.

This chapter presents a novel system allowing modular robots to complete complex
high-level tasks autonomously. The system automatically selects appropriate behaviors to
meet the requirements of the task and constraints of the perceived environment. When-
ever the task and environment require a particular capability, the robot autonomously self-
reconfigures to a configuration that has that capability. The success of this system is a
product of our choice of system architecture, which balances distributed and centralized
elements. Distributed, homogeneous robot modules provide flexibility, reconfiguring be-
tween morphologies to access a range of functionality. Centralized sensing, perception, and
high-level mission planning components provide autonomy and decision-making capabili-
ties. Tight integration between the distributed low-level and centralized high-level elements
allows us to leverage advantages of distributed and centralized architectures.

The system is validated in three hardware demonstrations, showing that, based on a
high-level task specification, the robot autonomously explores an unknown environment,
decides if, when, and how to reconfigure, and manipulates objects to complete its task.
By providing a clear example of how a modular robot system can be designed to leverage
reactive reconfigurability in unknown environments, we have begun to lay the groundwork
for reconfigurable systems to address tasks in the real world.

Figure 46: System Overview Flowchart

8.2 Results
We demonstrate an autonomous, perception-informed, modular robot system that reactively
adapts to unknown environments via reconfiguration in order to perform complex tasks. The
system hardware consists of a set of robot modules (that can move independently and
dock with each other to form larger morphologies), and a sensor module that contains
multiple cameras and a small computer for collecting and processing data from the environ-
ment. Software components consist of a high-level planner to direct robot actions and
reconfiguration, and perception algorithms to perform mapping, navigation, and classi-

84

Figure 47: Sensor Module with labelled components. UP board and battery are inside the body.

fication of the environment. Our implementation is built around the SMORES-EP modular
robot [92], but could be adapted to work with other modular robots.

Our system is the first to demonstrate high-level decision-making in conjunction with
reconfiguration in an autonomous setting. In three hardware demonstrations, the robot
explores an a priori unknown environment, and acts autonomously to complete a complex
task. Tasks are specified at a high level: users do not explicitly specify which configurations
and behaviors the robot should use; rather, tasks are specified in terms of behavior properties,
which describe desired effects and outcomes [40]. During task execution, the high-level plan-
ner gathers information about the environment and reactively selects appropriate behaviors
from a design library, fulfilling the requirements of the task while respecting the constraints
of the environment. Different configurations of the robot have different capabilities (sets of
behaviors). Whenever the high-level planner recognizes that task and environment require a
behavior the current robot configuration cannot execute, it directs the robot to reconfigure
to a different configuration that can execute the behavior.

Figure 48 shows the environments used for each demonstration, and Figure 49 shows
snapshots during each of the demonstrations. A video of all three demonstrations is available
as part of the supplementary material.

In Demonstration I, the robot must find, retrieve, and deliver all pink- and green-colored
metal garbage to a designated drop-off zone for recycling, which is marked with a blue square
on the wall. The demonstration environment contains two objects to be retrieved: a green
soda can in an unobstructed area, and a pink spool of wire in a narrow gap between two
trash cans. Various obstacles are placed in the environment to restrict navigation. When
performing the task, the robot first explores using the “Car” configuration. Once it locates
the pink object, it recognizes the surrounding environment as a “tunnel” type, and the high-

85

level planner reactively directs the robot to reconfigure to the “Proboscis” configuration,
which is then used to reach in between the trash cans and pull the object out in the open.
The robot then reconfigures to the “Car,” retrieves the object, and delivers it to the drop-
off zone which the system had previously seen and marked during exploration. Figure 48b
shows the resulting 3D map created from SLAM during the demonstration.

For Demonstrations II and III, the high-level task specification is the following: start
with an object, explore until finding a delivery location, and deliver the object there. Each
demonstration uses a different environment. For Demonstration II, the robot must place a
circuit board in a mailbox (marked with pink-colored tape) at the top of a set of stairs with
other obstacles in the environment. For Demonstration III, the robot must place a postage
stamp high up on the box that is sitting in the open.

For Demonstration II, the robot begins exploring in the “Scorpion” configuration. Shortly,
the robot observes and recognizes the mailbox, and characterizes the surrounding environ-
ment as “stairs.” Based on this characterization, the high-level planner directs the robot to
use the “Snake” configuration to traverse the stairs. Using the 3D map and characterization
of the environment surrounding the mail bin, the robot navigates to a point directly in front
of the stairs, faces the bin, and reconfigures to the “Snake” configuration. The robot then
executes the stair climbing gait to reach the mail bin, and drops the circuit successfully. It
then descends the stairs and reconfigures back to the “Scorpion” configuration to end the
mission.

For Demonstration III, the robot begins in the “Car” configuration, and cannot see the
package from its starting location. After a short period of exploration, the robot identifies
the pink square marking the package. The pink square is unobstructed, but is approximately
25cm above the ground; the system correctly characterizes this as the “high”-type environ-
ment, and recognizes that reconfiguration will be needed to reach up and place the stamp on
the target. The robot navigates to a position directly in front of the package, reconfigures
to the “Proboscis” configuration, and executes the “highReach” behavior to place the stamp
on the target, completing its task.

It should be noted that all experiments were run using the same software architecture,
same SMORES-EP modules, and system described in this chapter. The library of behav-
iors was extended with new entries for Demonstrations II and III to expand the system
abilities for the new challenges presented in the new environments. Minor adjustments to
motor speeds, SLAM parameters, and the low-level reconfiguration controller. In addition,
Demonstrations II and III used a newer, improved 3D sensor, and therefore a different sensor
driver was used.

86

(a) Diagram of Demonstration I environment

(b) Volumetric map of environment 1 built by vi-
sual SLAM

Environment Setup Task Description

Demonstration I: Explore environ-
ment to find all pink or green objects
and blue dropoff zone. Deliver all ob-
jects to dropoff zone.

Demonstration II: Explore envi-
ronment to find mailbox, then deliver
a circuit to the box.

Demonstration III: Explore envi-
ronment to find package, then place
a stamp on the package.

(c) Environments and tasks for hardware demonstrations

Figure 48: Environments and Tasks for Demonstrations
87

1. Environment and robot starting
location

2. Exploring while searching for
objects

3. Reconfiguring to retrieve pink
object

4. Retrieving pink object 5. Depositing object in drop-off
zone

6. Retrieving green object

(a) Phases of Demonstration I.

1. Reconfiguring to climb stairs 2. Successful circuit delivery

1. Reconfiguring to place stamp 2. Successful stamp placement

(b) Demonstrations II and III.

Figure 49: Demonstrations 1, 2, and 3

8.3 Discussion
Modular self-reconfigurable robots are by their nature mechanically distributed, and as a
result lend themselves naturally to distributed planning, sensing, and control. Most past
systems have used entirely distributed frameworks [20, 59, 62, 70, 77, 108]. Our system is
designed differently. It is distributed at the low level (hardware), but centralized at the high
level (planning and perception), leveraging the advantages of both design paradigms.

The three scenarios in the demonstrations showcase a range of different ways SMORES-

88

EP can interact with environments and objects: movement over flat ground, fitting into
tight spaces, reaching up high, climbing over rough terrain, and manipulating objects. This
broad range of functionality is only accessible to SMORES-EP by reconfiguring between
different morphologies.

The high-level planner, environment characterization tools, and library work together
to allow tasks to be represented in a flexible and reactive manner. For example, at the
high level, Demonstrations II and III are the same task: deliver an object at a point of
interest. However, after characterizing the different environments (“High” in II, “Stairs” in
III), the system automatically determines that different configurations and behaviors are
required to complete each task: the Proboscis to reach up high, and the Snake to climb the
stairs. Similarly, in Demonstration I there is no high-level distinction between the green
and pink objects - the robot is simply asked to retrieve all objects it finds. The sensed
environment once again dictates the choice of behavior: the simple problem (object in the
open) is solved in a simple way (with the Car configuration), and the more difficult problem
(object in tunnel) is solved in a more sophisticated way (by reconfiguring into the Proboscis).
Achieving this level of sophistication in control and decision-making through a distributed
architecture would have been significantly more difficult.

Centralized sensing and control during reconfiguration, provided by AprilTags and a
centralized path planner, allowed our implementation to transform between configurations
more rapidly than previous distributed systems. Each reconfiguration action (a module
disconnecting, moving, and reattaching) takes about one minute. In contrast, past systems
that utilized distributed sensing and control required 5-15 minutes for single reconfiguration
actions [62, 77, 108], which would prohibit their use in the complex tasks and environments
that our system demonstrated.

8.3.1 Challenges and Limitations
Through the hardware demonstrations performed with our system, we observed several
challenges and opportunities for future improvement with autonomous perception-informed
modular systems. All SMORES-EP body modules are identical, and therefore interchange-
able for the purposes of reconfiguration. However, the sensor module has a significantly
different shape than a SMORES-EP body module, which introduces heterogeneity in a way
that complicates motion planning and reconfiguration planning. Configurations and behav-
iors must be designed to provide the sensor module with an adequate view, and to support
its weight and elongated shape. Centralizing sensing also limits reconfiguration: modules
can only drive independently in the vicinity of the sensor module, preventing the robot from
operating as multiple disparate clusters.

Our high-level planner assumes all underlying components are reliable and robust, so
failure of a low-level component can cause the high-level planner to behave unexpectedly,
and result in failure of the entire task. Table 8 shows the causes of failure for 24 attempts
of Demonstration II (placing the stamp on the package). Nearly all failures are due to an
error in one of the low-level components the system relies upon, with 42% of failure due to
hardware errors and 38% due to failures in low-level software (object recognition, navigation,
environment characterization). This kind of cascading failure is a weakness of centralized,
hierarchical systems: distributed systems are often designed so that failure of a single unit
can be compensated for by other units, and does not result in global failure.

This lack of robustness represents a challenge, but steps can be taken to address it. Un-

89

surprisingly, open-loop behaviors (like stair-climbing and reaching up to place the stamp)
were vulnerable to small hardware errors and less robust against variations in the environ-
ment. For example, if the height of stairs in the actual environment is higher than the
property value of the library entry, the stair-climbing behavior is likely to fail. Closing the
loop using sensing made exploration and reconfiguration significantly less vulnerable to er-
ror. Future systems could be made more robust by introducing more feedback from low-level
components to high-level decisions making processes, and by incorporating existing high-
level failure-recovery frameworks [51]. Distributed repair strategies could also be explored,
to replace malfunctioning modules with nearby working ones on the fly [91].

To implement our perception characterization component, we assumed a simplified set
of environment types and implemented a simple characterization function to distinguish
between them. This function does not generalize very well to completely unstructured
environments and also is not very scalable. Thus, to expand the system to work well for
more realistic environments and to distinguish between a large number of environment types,
a more general characterization function should be implemented.

This chapter presents the first modular robot system to autonomously complete high-
level tasks by reactively reconfiguring in response to its perceived environment and task
requirements. In addition, putting the entire system to the test in hardware demonstrations
revealed several opportunities for future improvement in such systems.

Reason of failure Number of times Percentage
Hardware Issues 10 41.7%
Navigation Failure 3 12.5%

Perception-Related Errors 6 25%
Network Issues 1 4.2%
Human Error 4 16.7%

Table 8: Reasons for demonstration failure.

8.4 Methods and Materials
The following sections discuss the role of each component within the general system archi-
tecture. Inter-process communication between the many software components in our imple-
mentation is provided by the Robot Operating System (ROS)1. Figure 46 gives a flowchart
of the entire system. For more details of the implementation used in the demonstrations see
the Supplementary Materials.

8.4.1 Hardware - Sensor Module
SMORES-EP modules have no sensors that allow them to gather information about their
environment. To enable autonomous operation, we introduce a sensor module, designed to
work with SMORES-EP as shown in Figure 47. The body of the sensor module is a 90mm
× 70mm × 70mm box with thin steel plates on its front and back that allow SMORES-EP
modules to connect to it. Computation is provided by an UP computing board with an Intel
Atom 1.92 GHz processor, 4 GB memory, and a 64 GB hard drive. A USB WiFi adapter

1http://www.ros.org

90

provides network connectivity. A front-facing Orbecc Astra Mini camera provides RGB-
D data, enabling the robot to explore and map its environment and recognize objects of
interest. A thin stem extends 40cm above the body, supporting a downward-facing webcam.
This camera provides a view of a 0.75m × 0.5m area in front of the sensor module, and
is used to track AprilTag [68] fiducials for reconfiguration. A 7.4V, 2200mAh LiPo battery
provides about one hour of running time.

A single sensor module carried by the cluster of SMORES-EP modules provides cen-
tralized sensing and computation. Centralizing sensing and computation has the advantage
of facilitating control, task-related decision making, and rapid reconfiguration, but has the
disadvantage of introducing physical heterogeneity, making it more difficult to design con-
figurations and behaviors. The shape of the sensor module can be altered by attaching
lightweight cubes, which provide passive structure to which modules can connect. Cubes
have the same 80mm form factor as SMORES-EP modules, with magnets on all faces for
attachment.

8.4.2 Perception and Planning for Information
Completing tasks in unknown environments requires the robot to explore and gain informa-
tion about its surroundings, and use that information to inform actions and reconfiguration.
Our system architecture includes active perception components to perform SLAM, choose
waypoints for exploration, and recognize objects and regions of interest. It is also includes a
framework to characterize the environment in terms of robot capabilities, allowing the high-
level planner to reactively reconfigure the robot to adapt to different environment types.
Implementations of these tools should be selected to fit the MSRR system being used and
types of environments expected to be encountered.

Environment characterization is done using a discrete classifier (using the 3D occupancy
grid of the environment as input) to distinguish between a discrete set of environment types
corresponding to the library of robot configurations and gaits. To implement our system
for a particular MSRR, the classification function must be defined by the user to classify
the desired types of environments. For our proof-of-concept hardware demonstrations, we
assumed a simplified set of possible environment types around objects of interest. We
assumed the object of interest must be in one of four environment types shown in Figure
50e: “tunnel" (the object is in a narrow corridor), “stairs" (the object is at the top of low
stairs), “high" (the object is on a wall above the ground), and “free" (the object is on the
ground with no obstacles around). Our implemented function performs characterization as
follows: When the system recognizes an object in the environment, the characterization
function evaluates the 3D information in the object’s surroundings. It creates an occupancy
grid around the object location, and denotes all grid cells within a robot-radius of obstacles
as unreachable (illustrated in Figure 50f). The algorithm then selects the closest reachable
point to the object within 20o of the robot’s line of sight to the object. If the distance from
this point to the object is greater than a threshold value and the object is on the ground, the
function characterizes the environment as a “tunnel”. If above the ground, it function the
environment as a “stairs” environment. If the closest reachable point is under the threshold
value, the system assigns a “free” or “high” environment characterization, depending on the
height of the colored object.

Based on the environment characterization and target location, the function also returns
a waypoint for the robot to position itself to perform its task (or to reconfigure, if necessary).

91

(a) “free’’ envi-
ronment

(b) “tunnel”
environment

(c) “high” en-
vironment (d) “stairs” en-

vironment

(e) Environment characterization types.

(f) An example of a tunnel environment
characterization. Yellow grid cells are occu-
pied, light blue cells are unreachable resulting
from bloating obstacles.

Figure 50: Environment Characterization

In Demonstration II, the environment characterization algorithm directs the robot to drive
to a waypoint at the base of the stairs, which is the best place for the robot to reconfigure
and begin climbing the stairs.

Our implementation for other components of the perception architecture use previous
work and open-source algorithms. The RGB-D SLAM software package RTAB-MAP[48]
provides mapping and robot pose. The system incrementally builds a 3D map of the envi-
ronment and stores the map in an efficient octree-based volumetric map using Octomap[37].
The Next Best View algorithm by Daudelin et. al.[15] enables the system to explore un-
known environments by using the current volumetric map of the environment to estimate
the next reachable sensor viewpoint that will observe the largest volume of undiscovered
portions of objects (the Next Best View). In the example object delivery task, the sys-
tem begins the task by iteratively navigating to these Next Best View waypoints to explore
objects in the environment until discovering the dropoff zone.

To identify objects of interest in the task (such as the dropoff zone), we implemented
our system using color detection and tracking. The system recognizes colored objects using
CMVision2, and tracks them in 3D3 using depth information from the onboard RGB-D
sensor. Although we implement object recognition by color, more sophisticated methods
could be used instead, under the same system architecture.

8.4.3 High-Level Planning and Library
The system employs the high-level planning framework introduced in Chapter 7, allowing
the robot to automatically select appropriate configurations and behaviors to satisfy task
requirements specified by the user. As before, the full set of capabilities of the robot is
encoded in a design library of configurations and behaviors, which are labeled with properties

2CMVision: http://www.cs.cmu.edu/∼jbruce/cmvision/
3Lucas Coelho Figueiredo: https://github.com/lucascoelho91/ballFollower

92

describing their capabilities. Table 9 lists ten library entries for the four configurations are
used in this work. Compared to the library presented in Chapter 7, the library used in
this work is much smaller. Autonomous operation introduces a higher bar for robustness:
since the high-level planner is free to choose any configuration or behavior from the library,
all entries need to operate predictably and without errors under any conditions in which
the high-level planner might select them. Consequently, using a small library of rigorously
tested entries proved to be the most effective strategy for this work. For example, when
climbing the stairs, noise in localization could sometimes cause the perceived position of
the robot to deviate from reality by several centimeters, so the stair-climbing behavior was
designed to be tolerant to this uncertainty in initial conditions

As before, the high-level planner selects configuration and behaviors to acheive the speci-
fied goals of the task while obeying the constraints of the current environment. In Chapter 7,
these environment properties were “sensed” based on the proximity of fiducial markers on
the robot and objects. As described in the previous section, we now extract environment
properties directly from 3D sensor information. While the environment characterization sys-
tem is limited to differentiating between environments with only four properties, the system
is still able to complete fairly complex tasks.

Configuration Behavior Environment
properties Types

Car
pickUp “free”
drop “free”
drive “free”

Proboscis
pickUp “tunnel” or “free”
drop “tunnel” or “free”

highReach “high”
Scorpion drive “free”

Snake
climbUp “stairs”

climbDown “stairs”
drop “stairs” or “free”

Table 9: A library of robot behaviors

8.4.4 Reconfiguration
When the high-level planner decides to use a new configuration during a task, the robot
must reconfigure. We have implemented tools for mobile reconfiguration with SMORES-
EP, taking advantage of the fact that individual modules can drive on flat surfaces.

Determining the relative positions of modules during mobile self-reconfiguration is an
important challenge. In this work, the localization method is centralized, using a camera
carried by the robot to track AprilTag fiducials mounted to individual modules. As discussed
in Section 8.4.1, the camera provides a view of a 0.75m×0.5m area on the ground in front of
the sensor module. Within this area, the localization system provides pose for any module
equipped with an AprilTag marker to perform reconfiguration.

Given an initial configuration and a goal configuration, the reconfiguration controller
commands a set of modules to disconnect, move and reconnect in order to form the new

93

topology of the goal configuration. Figure 51 shows reconfiguration from the “Car” to the
“Proboscis” during Demonstration 1. The robot first takes actions to establish the conditions
needed for reconfiguration by confirming that the reconfiguration zone is a flat surface free of
obstacles (other than the modules themselves). The robot then sets its joint angles so that all
modules that need to detach have both of their wheels on the ground, ready to drive. Then
the robot performs operations to change the topology of the cluster by detaching a module
from the cluster, driving, and re-attaching at its new location in the goal configuration, as
shown in Figure 51. Currently, reconfiguration plans from one configuration to another are
created manually and stored in the library. However the framework can work with existing
assembly planning algorithms ([83, 100]) to generate reconfiguration plans automatically.
Because the reconfiguration zone is free of obstacles, the controller compute collision-free
paths offline and store them as part of the reconfiguration plan. Once all module movement
operations have completed and the goal topology is formed, the robot sets its joints to
appropriate angles for the goal configuration to continue performing desired behaviors.

We developed several techniques to ensure reliable connection and disconnection dur-
ing reconfiguration. When a module disconnects from the cluster, the electro-permanent
magnets on the connected faces are turned off. To guarantee a clean break of the magnetic
connection, the disconnecting module bends its tilt joint up and down, mechanically sepa-
rating itself from the cluster. During docking, accurate alignment is crucial to the strength
of the magnetic connection [92]. For this reason, rather than driving directly to its final
docking location, a module instead drives to a pre-docking waypoint directly in front of
its docking location. At the waypoint, the module spins in place slowly until its heading
is aligned with the dock point, and then drives in straight to attach. To guarantee a good
connection, the module intentionally overdrives its dock point, pushing itself into the cluster
while firing its magnets.

Figure 51: Module movement during reconfiguration. Left: initial configuration (“Car”). Middle:
module movement, using AprilTags for localization. Right: final configuration (“Proboscis”).

94

(a) Specification for dropping an object in the mailbox.

(b) The synthesized controller. A proposition with “!” has a value of False, and True otherwise.

Figure 52: A task specification with the synthesized controller.

8.5 Additional Commentary on Related Work
Here we provide a more detailed overview of prior work in MSRR systems. These systems
provide partial sets of the capabilities of our system.

The Millibot system demonstrated mapping when operating as a swarm. Certain mem-
bers of the swarm are designated as “beacons,” and have known locations. The autonomy
of the Millibot swarm is limited: a human operator makes all high-level decisions, and is
responsible for navigation using a GUI [29].

The Swarm-Bots system has been applied in exploration [20] and collective manipulation
[59] scenarios. Like the Millibots, some members of the swarm act as “beacons” that are
assumed to have known location during exploration. In a collective manipulation task,
Swarm-Bots have limited autonomy, with a human operator specifying the location of the
manipulation target and the global sequence of manipulation actions.

In [70], Swarm-Bots demonstrate swarm self-assembly to climb a hill. Robots exhibit
phototaxis, with the goal of moving toward a light source. When robots detect the pres-
ence of a hill (using tilt sensors), they aggregate to form a random connected structure to
collectively surmount the hill. A similar strategy is employed to cross holes in the ground.
In each case, the swarm of robots is loaded with a single self-assembly controller specific
to an a priori known obstacle type (hill or hole). The robots do not self-reconfigure be-
tween specific morphologies, but rather self-assemble, beginning as a disconnected swarm
and coming together to form a random connected structure. In our work, a modular robot
completes high-level tasks by autonomously self-reconfiguring between specific morphologies

95

with different capabilities. Our system differentiates between several types of environments
using RGB-D data, and may choose to use different morphologies to solve a given high-level
task in different environments.

The swarmanoid project (successor to the swarm-bots), uses a heterogeneous swarm of
ground and flying robots (called “hand-”, “foot-”, and “eye-” bots) to perform exploration
and object retrieval tasks [21]. Robotic elements of the swarmanoid system connect and dis-
connect to complete the task, but the decision to take this action is not made autonomously
by the robot in response to sensed environment conditions. While the location of the object
to be retrieved is unknown, the method for retrieval is known and constant.

Self-reconfiguration has been demonstrated with several other modular robot systems.
CKbot, Conro, and MTRAN have all demonstrated the ability to join disconnected clusters
of modules together [62, 77, 108]. In order to align, Conro uses infra-red sensors on the
docking faces of the modules, while CKBot and MTRAN use a separate sensor module on
each cluster. In all cases, individual clusters locate and servo towards each other until they
are close enough to dock. These experiments do not include any planning or sequencing of
multiple reconfiguration actions in order to create a goal structure appropriate for a task.
Additionally, modules are not individually mobile, and mobile clusters of modules are limited
to slow crawling gaits. Consequently, reconfiguration is very time consuming, with a single
connection requiring 5-15 minutes.

Other work has focused on reconfiguration planning. Paulos et al. present a system
in which self-reconfigurable modular boats self-assemble into prescribed floating structures,
such as a bridge [72]. Individual boat modules are able to move about the pool, allowing
for rapid reconfiguration. In these experiments, the environment is known and external
localization is provided by an overhead AprilTag system.

Our system goes beyond existing work by using self-reconfiguration capabilities of an
MSRR system to take autonomy a step further. The system uses perception of the environ-
ment to inform the choice of robot configuration, allowing the robot to adapt its abilities to
surmount challenges arising from a priori unknown features in the environment. Through
hardware demonstrations, we show that autonomous self-reconfiguration allows our system
to adapt to the environment to complete complex tasks.

96

Part II

Environment Augmentation

97

Chapter 9

Environment Augmentation

In this chapter and the one that follows, we consider how robots can augment their envi-
ronments to gain advantage, adding physical structures to problematic unstructured envi-
ronments to establish conditions under which they can more easily move and accomplish
tasks. We expand the physical capabilities of SMORES-EP by introducing building blocks
that let it construct bridges and ramps. Building on our prior work in Chapter 7 address-
ing tasks with modular robots, we show how structure-building can incorporated into our
high-level decision-making framework in a natural way: rather than reconfiguring the body
of the robot to match the properties of the environment, we reconfigure the environment
(by building structures) to make its properties match the capabilities of the robot. Like-
wise, we leverage perception tools and environment characterization tools similar to those
presented in Chapter 8 to autonomously identify build structures in response to the sensed
environment.

This chapter heavily excerpts the author’s work in [94], which is again a collaboration
with Gangyuan Jing, Jonathan Daudelin, Prof. Hadas Kress-Gazit, and Prof. Mark Camp-
bell from Cornell University.

9.1 Introduction
Employing structures to accomplish tasks is a ubiquitous part of the human experience:
to reach an object on a high shelf, we place a ladder near the shelf and climb it, and at
a larger scale, we construct bridges across wide rivers to make them passable. The fields
of collective construction robotics and modular robotics offer examples of systems that can
construct and traverse structures out of robotic or passive elements [63, 74, 76, 90], and
assembly planning algorithms that allow arbitrary structures to be built under a variety of
conditions [83, 100]. This existing body of work provides excellent contributions regarding
the generality and completeness of these methods: some algorithms are provably capable of
generating assembly plans for arbitrary volumetric structures in 3D, and hardware systems
have demonstrated the capability to construct a wide variety of structures.

Less work is available regarding ways that robots could deploy structures as a means of
completing an extrinsic task, the way a person might use a ladder to reach a high object. This
chapter presents hardware, perception, and high-level planning tools that allow structure-
building to be deployed by a modular robot to address high-level tasks.

We introduce novel passive block and wedge modules that SMORES-EP can use to form

98

ramps and bridges in its environment. Building structures allows the robot to surmount large
obstacles that would otherwise be very difficult or impossible to traverse, and therefore
expands the set of tasks the robot can perform. This addresses a common weakness of
modular robot systems, which often struggle with obstacles much larger than a module.

We expand on the framework for high-level tasks presented in Chapter 7. In this work,
the high-level planner not only decides when to reconfigure the robot, but also when to
augment the environment by assembling a passive structure. To inform these decisions,
we introduce a novel environment characterization algorithm that identifies candidate fea-
tures where structures can be deployed to advantage. Together, these tools comprise a
novel framework to automatically identify when, where, and how the robot can augment its
environment with a passive structure to gain advantage in completing a high-level task.

We integrate our tools into the system for perception-driven autonomy presented in
Chapter 8, and validate them in two hardware experiments. Based on a high-level specifi-
cation, a modular robot reactively identifies inaccessible regions and autonomously deploys
ramps and bridges to complete locomotion and manipulation tasks in realistic office envi-
ronments.

9.2 Related Work
Our work complements the well-established field of collective robotic construction, which
focuses on autonomous robot systems for building activity. While we use a modular robot
to create and place structures in the environment, our primary concern is not assembly
planning or construction of the structure itself, but rather its appropriate placement in the
environment to facilitate completion of an extrinsic high-level task.

Petersen et al. present Termes [74], a termite-inspired collective construction robot
system that creates structures using blocks co-designed with a legged robot. Similarly,
our augmentation modules are designed to be easily carried and traversed by SMORES-
EP. Where the TERMES project focused on collective construction of a goal structure, we
are less concerned with efficient building of the structure itself and more concerned with
the application and placement of the structure in the larger environment as a means of
facilitating a task unrelated to the structure itself.

Werfel et al. present algorithms for environmentally-adaptive construction that can
build around obstacles in the environment [100]. A team of robots senses obstacles and
builds around them, modifying the goal structure if needed to leave room for immovable
obstacles. An algorithm to build enclosures around preexisting environment features is also
presented. As with Termes, the goal is the structure itself; while the robots do respond to
the environment, the structure is not built in response to an extrinsic high-level task.

Napp et al. present hardware and algorithms for building amorphous ramps in unstruc-
tured environments by depositing foam with a tracked mobile robot [63, 64]. Amorphous
ramps are built in response to the environment to allow a small mobile robot to surmount
large, irregularly shaped obstacles. Our work is similar in spirit, but places an emphasis on
autonomy and high-level locomotion and manipulation tasks rather than construction.

Our work extends the SMORES-EP hardware system by introducing passive pieces that
are manipulated and traversed by the modules. Terada and Murata [90], present a lattice-
style modular system with two parts, structure modules and an assembler robot. Like many
lattice-style modular systems, the assembler robot can only move on the structure modules,

99

and not in an unstructured environment. Other lattice-style modular robot systems create
structures out of the robots themselves. M-blocks [76] form 3D structures out of robot
cubes which rotate over the structure. Paulos et al. present rectangular boat robots that
self-assemble into floating structures, like a bridge [72].

Magnenat et al [50] present a system in which a mobile robot manipulates specially
designed cubes to build functional structures. The robot explores an unknown environment,
performing 2D SLAM and visually recognizing blocks and gaps in the ground. Blocks
are pushed into gaps to create bridges to previously inaccessible areas. In a “real but
contrived experimental design” [50], a robot is tasked with building a three-block tower,
and autonomously uses two blocks to build a bridge to a region with three blocks, retrieving
them to complete its task. Where the Magnenat system is limited to manipulating blocks
in a specifically designed environment, our work presents hardware, perception, and high-
level planning tools that are more general, providing the ability to complete high-level tasks
involving locomotion and manipulation in realistic human environments.

9.3 Approach
9.3.1 Environment Characterization
To successfully navigate its environment, a mobile robot must identify traversable areas.
One simple method for wheeled robots is to select flat areas large enough for the robot
to fit. However, MSRR systems can reconfigure to traverse a larger variety of terrains.
The augmentation abilities we introduce extend MSRR navigation even further; the robot
can build structures to traverse otherwise-impossible terrains. For autonomous operation,
we need an algorithm to locate and label features in the environment that can be aug-
mented. We present a probabilistic, template-based environment characterization algorithm
that identifies augmentable features from a 2.5D elevation map of the robot’s environment.

The characterization algorithm searches for a desired feature Fn using a template con-
sisting of a grid of likelihood functions li(h) for 1 ≤ i ≤ M where M is the number of
grid cells in the template, and h is a height value. The size of grid cells in the template
is variable and need not correspond to the resolution of the map. In addition, features of
different size can be searched for by changing the cell size of the template to change the
scale. Figure 53 shows an example of a template used to characterize a “ledge” feature,
consisting of Gaussian and logistic likelihood functions. Any closed-form likelihood function
may be used for each grid cell, enabling templates to accommodate noisy data and variabil-
ity in possible geometric shapes of the same feature. To determine if the feature exists at a
candidate pose X in the map, a grid of height values is taken from the map corresponding
to the template grid centered and oriented at the candidate pose, as illustrated in Figure 53.
Then, the probability that each grid cell ci belongs to the feature is evaluated using the
cell’s likelihood function from the template.

P (ci ∈ Fn) = li(hi) (9.1)

The likelihood of the feature existing at that location is calculated by finding the total
probability that all grid cells belong to the feature. Making the approximate simplifying
assumption that grid cells are independent, this probability is equivalent to taking the
product over the feature likelihoods of all grid cells in the template:

100

Figure 53: Left: Example template used to characterize a “ledge” feature. Right: Example template
overlayed on elevation map (top view) to evaluate candidate feature pose.

P (X ∈ Fn) =
∏

i=1:M

li(hi) (9.2)

The feature is determined to exist if the total probability is higher than a user-defined
threshold, or P (X ∈ Fn) > αM , where α represents the minimum average probability of each
grid cell forming part of the feature. In our experiments we use α = 0.95. This formulation
normalizes the threshold with respect to the number of grid cells in the template.

To characterize an environment, the algorithm takes as inputs an elevation map of the
environment and a list of feature templates. Before searching for features, the algorithm
preprocesses the elevation map by segmenting it into flat, unobstructed regions that are
traversable without augmentation. It then grids the map and exhaustively evaluates each
candidate feature pose from the grid, using a grid of orientations for each 2D location.
In addition to evaluation with the template, candidate poses are only valid if the ends of
the feature connect two traversable regions from the preprocessing step, thereby having
potential to extend the robot’s reachable space. Once the search is complete, the algorithm
returns a list of features found in the map, including their locations, orientations, and the
two regions they link in the environment. Figure 54 shows an example of a characterized
map. Each long red cell represents a detected “ledge” feature, with a corresponding small
pink cell demonstrating the orientation of the feature (and the bottom of the ledge). Note
that, in this example, several features are chosen close to each other. Since all connect the
same regions, any one is valid and equivalent to be selected for augmentation.

The algorithm scales linearly with the number of grid cells in the 2D environment map,
and linearly with the number of features being searched for. Characterization of the envi-
ronment shown in Figure 54 took approximately 3 seconds to run on a laptop with an Intel
Core i7 processor.

101

Figure 54: Characterization of an environment with a “ledge” feature. Red indicates a detected
feature, pink indicates the start of the feature, demonstrating orientation.

9.3.2 Hardware: Augmentation Modules
Our system is built around the SMORES-EP modular robot. Large obstacles, like tall ledges
or wide gaps in the ground, are often problematic for modular robot systems. One might
expect that a modular system could scale, addressing a large-length-scale task by using many
modules to form a large robot. In reality, modular robots don’t scale easily: adding more
modules makes the robot bigger, but not stronger. The torque required to lift a long chain of
modules grows quadratically with the number of modules, quickly overloading the maximum
torque of the first module in the chain. Consequently, large systems become cumbersome,
unable to move their own bodies. Simulated work in reconfiguration and motion planning has
demonstrated algorithms that handle hundreds of modules, but in practice, fixed actuator
strength has typically limited these robots to configurations with fewer than 40 modules.

We address this issue by extending the SMORES-EP hardware system with passive ele-
ments called environment augmentation modules. We use the wedge and block augmentation
modules shown in Figure 55. Like the construction blocks used by Termes [74], wedge and
block modules are designed to work synergistically with SMORES-EP, providing features
that use the best modes of locomotion (driving), manipulation (magnetic attachment), and
sensing (AprilTags) available to SMORES-EP.

Blocks are the same size as a module (80mm cube), and wedges are half the size of a
block (an equilateral right triangle with two 80mm sides). Both are made of lightweight
laser-cut medium-density fiberboard (blocks are 162g, wedges are 142g) and equipped with
a steel attachment point for magnetic grasping. Neodymium magnets on the back faces of
wedges, and the front and back faces of blocks, form a strong connection in the horizontal
direction. Interlocking features on the top and bottom faces of the blocks, and the bottom
faces of the wedges, allow them to be stacked vertically. Wedges provide a 45-degree incline
with a high-friction rubber surface, allowing a configuration of 3 or more modules to drive
up them. Side walls on both the wedges and blocks ensure that SMORES-EP modules
stay aligned to the structure and cannot fall off while driving over it. The side walls of
wedges are tapered to provide a funneling effect as modules drive onto them, making them
more tolerant to misalignment. Each wedge and ramp has unique AprilTag fiducials on its

102

Figure 55: Wedge and Block Augmentation Modules

faces, allowing easy identification and localization during construction and placement in the
environment.

Wedges and blocks allow a SMORES-EP cluster to autonomously construct bridges or
ramps that allow it to reach higher heights and cross wider gaps than it could with robot
modules alone (Figure 56). Provided enough time, space, and augmentation modules are
available, there is no limit to the height of a ramp that can be built. Bridges have a maximum
length of 480mm (longer bridges cannot support a load of three SMORES-EP modules in
the center).

9.3.3 High-Level Planner
For task-related decision-making, we extend the high-level planning framework introduced
in Chapter 7. As before, users do not explicitly specify configurations and behaviors for each
task, but rather define goals and constraints for the robot. The high-level planner chooses
robot configurations and behaviors from the design library based on the task specifications,
and executes them to satisfy the tasks.

Consider the example controller shown in Figure 57. The robot tasks are to look for a
pink drawer, open the drawer, and then climb on top of it. Each state is labeled with a
desired robot action, and each transition is labeled with perceived environment information;
for example, the “climb drawer” action is specified to be any behavior from the library with
properties climb in a ledge environment. In our previous framework, the high-level planner
could choose to reconfigure the robot whenever needed to satisfy the required properties of
the current action and environment.

In this work, the high-level planner can choose not only to change the abilities of the robot
(reconfiguration), but also the properties of the environment (environment augmentation).
We expand the library of robot designs with feature templates for recognizing augmentable
environments (Section 9.3.1). Associated with each template is a controller for manipulating
augmentation modules to build the desired structure. Assembly plans are currently created

103

Figure 56: Bridge and Ramp

Figure 57: An example of synthesized robot controller

104

Figure 58: System Overview Flowchart

manually, but could be automatically generated [83, 100].
For the example in Figure 57, if no behavior in the library satisfies the “climb drawer”

action, the high-level planner will query the environment characterization subsystem (Sec-
tion 9.3.1) for possible environment augmentations. The high-level planner passes a set
of feature templates to the environment characterization subsystem. Once the environ-
ment characterization subsystem recognizes the augmentable environment, it provides the
high-level planner a list of matched environment features, and two lists of regions R1 =
{r1

0, r
1
1, . . . }, R2 = {r2

0, r
2
1, . . . } that the features connect.

The high-level planner uses the features to find a list of augmentation plans A =
{a0, a1, . . . } from the library. An augmentation plan ai consists of i) a set augmentation
modules used for structure construction, ii) the position and orientation of the structure, and
iii) the construction controller for the robot. To choose the best augmentation plan from the
list A, the high-level planner considers the available augmentation modules in the current
environment, current robot configuration, and distance from the structure to the robot goal
position. The high-level planner then commands the robot to construct the structure based
on the best augmentation plan. After the robot constructs the structure for augmentation
ai, the high-level planner considers regions r1

i and r2
i to be connected and traversable by the

robot.

9.4 System Integration
We integrate our environment augmentation tools into the system for autonomy introduced
in Chapter 8, as shown in Figure 58. The high-level planner automatically converts user
defined task specifications to controllers from a robot design library. It executes the con-
troller by reacting to the sensed environment, running appropriate behaviors from the design
library to control a set of hardware robot modules. Active perception components perform
simultaneous localization and mapping (SLAM), and characterize the environment in terms
of robot capabilities. Whenever required, the reconfiguration subsystem controls the robot
to change configurations.

The system used the Robot Operating System (ROS)1 for a software framework, net-
working, and navigation. SLAM was performed using RTAB-MAP[48], and color detection

1http://www.ros.org

105

Figure 59: Snapshots throughout Experiment I. From left to right, top to bottom: i) Experiment
start ii) Opening first drawer iii) Picking up ramp iv) Placing ramp next to open drawer. v)
Reconfiguring and climbing ramp vi) Opening second drawer

was done using CMVision2.
As SMORES-EP modules have no sensors that allow them to gather information about

their environment, we again utilize the sensor module introduced in Chapter 8 to allow
autonomous operation (See Figure 47).

9.5 Experiment Results
Our system can generalize to arbitrary environment augmentations and high-level tasks. We
validate our system in two hardware experiments that require the same system to perform
tasks requiring very different environment augmentations for successful completion. In both
experiments, the robot autonomously perceives and characterizes each environment, and
synthesizes reactive controllers to accomplish the task based on the environment. Videos of
the full experiments are available online at https://youtu.be/NKj-xulsxco.

9.5.1 Experiment I
For the first experiment, the robot is tasked with inspecting two metal desk drawers in an
office. If it cannot open both drawers, it should indicate recognition of the situation by self-
disassembling (breaking apart into pieces). Although the robot can pull the bottom drawer
by attaching to it with its magnetic connectors, it is unable to reach and open the second
drawer from the ground. Thus, it can only open the second drawer if it can first open the
bottom drawer and then climb on top of the things inside it.

Figure 59 shows snapshots throughout the robot’s autonomous performance of Exper-
iment I. After recognizing and opening the first drawer, the robot characterizes the envi-
ronment with the opened drawer and identifies the side of the drawer as a “ledge” feature.
The high-level planner recognizes that the ledge is too high for the current configuration to
climb, and furthermore that there is no other configuration in the library to which the robot
can transform that could climb the ledge, leaving environment augmentation as the only
strategy that can complete the task. Observing a ramp structure in the environment, the

2CMVision: http://www.cs.cmu.edu/∼jbruce/cmvision/

106

https://youtu.be/NKj-xulsxco

Figure 60: Snapshots throughout Experiment II. From left to right, top to bottom: i) Experiment
start ii) Assembling bridge iii) Transporting bridge iv) Placing bridge over gap. v) Reconfigure and
cross bridge. vi) Arrive at the target zone.

high-level planner commands the robot to acquire the ramp, place it at the “ledge” feature
detected by the characterization algorithm, climb the drawer, and complete the mission.

In a second version of the same experiment, the first drawer is empty. When the robot
characterizes the environment containing the drawer, it identifies no “ledge” features, since
the drawer no longer matches the requirements of the feature. As a result, it recognizes
that environment augmentation is not possible, and the mission cannot be completed. To
indicate this, it self-disassembles.

9.5.2 Experiment II
The environment for Experiment II consists of two tables separated by a 16 cm gap. The
robot begins the experiment on the left table with two wedges and one block. To complete
its mission, the robot must cross the gap to reach a pink destination zone on the right table.

Figure 60 shows snapshots throughout Experiment II. This time, characterization of the
environment identifies that the pink goal zone is in a separate region from the robot, and
also identifies several “gap” features separating the two regions. Recognizing that the gap
is too wide for any configuration in the design library to cross unassisted, the high-level
planner concludes it must build a bridge across the gap to complete its mission. It begins
searching for materials, and quickly identifies the three available augmentation modules,
which it autonomously assembles into a bridge. It then places the bridge across the gap and
crosses to complete its mission.

9.6 Discussion
Block and wedge modules demonstrably expand the physical capabilities of SMORES-EP,
allowing the system to climb to a high ledge and cross a wide gap to complete tasks that
would have been very difficult with the SMORES-EP modules alone. Perception tools
accurately characterize augmentable features in the environment. High-level reasoning tools
identify when environment augmentation is necessary to complete a high-level task, and
reactively sequence locomotion, manipulation, construction, and reconfiguration actions to
accomplish the mission. The presented work represents the first time that modular robots

107

Outcome Exp 1 Exp 2
Success 2 (25.0%) 3 (37.5%)

Perception-Related Failure 2 (25.0%) 2 (25.0%)
Navigation Failure 1 (12.5%) 0 (0.0%)
Hardware Failure 3 (37.5%) 2 (25.0%)

Setup Error 0 (0.0%) 1 (12.5%)

Table 10: Outcomes for Experiments 1 and 2

have successfully augmented their environment by deploying passive structures to perform
high-level tasks.

As with our previous work with autonomous modular robots in Chapter 8, robustness
proved challenging. Out of 8 test runs of Experiment I, the robot successfully completed the
entire task once. Table 10 shows the outcomes of 8 runs of each experiment. The largest
source of error was due to hardware failures such as slight encoder miscalibration or wireless
communication failure. Creating more robust hardware for modular robots is challenging
due to the constrained size of each module, and the higher probability of failure from higher
numbers of components in the system.

Perception-related errors were another frequent cause of failure. These were due in
part to mis-detections by the characterization algorithm, or because the accuracy in finding
location and orientation of features was not high enough for the margin of error of the robot
when placing structures. Finally, navigation failures occurred throughout development and
experiments due to cumulative SLAM errors as the robot navigates the environment. We
found that it was important to minimize in-place rotation of the robot, and to avoid areas
without many features for visual odometry to use.

9.6.1 Conclusion
To conclude, this chapter presents tools that allow a modular robot to autonomously deploy
passive structures as a means to complete high-level tasks involving locomotion, manipula-
tion, and reconfiguration. This work expands the physical capabilities of the SMORES-EP
modular robot, and extends our existing frameworks for addressing high-level tasks with
modular robots by allowing both the robot morphology and the environment to be altered
if doing so allows the task to be completed. We validate our system in two hardware exper-
iments that demonstrate how the hardware, perception tools, and high-level planner work
together to complete high-level tasks through environment augmentation.

108

Chapter 10

Optimal Structure Synthesis

The previous chapter demonstrates how SMORES-EP can augment its environment to ac-
complish high-level tasks. The system relied on a human-made library with a limited number
of structures: deploying a “height-2 ramp” structure required a library entry devoted to
that particular structure, along with a “height-2 ledge” classifier to identify where it could
be used.

A more general approach would attempt to synthesize traversable structures directly
from model of the robot’s movement capabilities and a representation of the environment.
Consider a scenario where a small robot (like SMORES-EP) must move through an environ-
ment filled with objects much larger than itself. The robot is unable to cross over the objects
or traverse large gaps. As a result, entire portions of the environment may be inaccessible.
This task presents a planning problem: Given an environment, a robot, and a supply of
building blocks, can we find a set of structures that could be added to the environment to
make it fully accessible to the robot (i.e. there exists a navigable path between any pair
of points)? Furthermore, since structure-building is a time-consuming process, can we find
such a set of structures which uses a minimum number of building blocks? We refer to this
as the optimal structure synthesis problem.

This chapter presents a mathematical formalism for optimal synthesis of structures made
of discrete building blocks and shows that the problem is NP-Hard. We present a complete,
optimal algorithm that will find a minimum-cost set of structures to make any input envi-
ronment traversable, if such a set exists. The algorithm solves practical problems efficiently
using a branch-and-bound strategy, typically exploring a tiny fraction of the exponentially-
large solution space before finding the optimal solution. In our experiments, we show that
the algorithm finds optimal solutions in about one minute for 3D maps of real indoor en-
vironments, and demonstrate that the structures selected by the algorithm do indeed allow
the robot to traverse the environments.

This chapter excerpts heavily from the author’s work in [96]. Credit is due to co-authors
Prof. Cynthia Sung (Penn) and Colin McCloskey (Yale), who contributed significantly to
this work.

10.1 Related Work
The fields of collective construction robotics and modular robotics offer examples of systems
that build and traverse structures. Petersen et al. present Termes [74], a termite-inspired

109

collective construction robot system that creates structures using blocks co-designed with
a legged robot. Werfel et al. present algorithms for environmentally-adaptive construction:
a team of robots senses obstacles and builds around them, modifying the goal structure
if needed to leave room for immovable obstacles [100]. Terada and Murata [90] present a
lattice-style modular system with two parts, structure modules and an assembler robot. Like
many lattice-style modular systems, the assembler robot can only move on the structure
modules, and not in an unstructured environment. M-blocks [76] form structures out of
robot cubes which rotate over the structure, and can reconfigure between arbitrary 3D
shapes, except those containing certain inadmissible sub-configurations [88]. Other related
work in manipulation planning allows robots to carry out multi-step procedures to assemble
furniture [45] or rearrange clutter surrounding a primary manipulation task [19].

There is also some work showing that robots can deploy structures to enhance their
ability to move through an environment. Napp et al present a distributed algorithm for
adaptive ramp building with amorphous materials [63]. Using local information, the algo-
rithm controls one or more robots to deposit amorphous material (like foam or sandbags)
on their environment to make a goal point accessible [79]. Our work addresses a similar,
complementary problem: assuming a known map of the entire environment, we generate a
globally optimal set of structures making every point accessible.

10.2 Problem Formulation
10.2.1 Preliminaries
We consider the problem of a ground robot traversing an environment E , which is a dis-
cretized height map E : Z2 → R+. The robot moves over the surface of E , and its goal is
to be able to access every location on the map. The environment can be represented as a
grid graph G(V,E), where V is a set of nodes corresponding to each of the grid cells, and
edges E ⊆ V × V connect neighboring cells. The robot’s movement are treated as discrete
transitions along edges.

The robot is subject to certain physical limitations, which determine its ability to actually
traverse this graph. We model the robot’s ability to move using traversability criteria, which
we define for both nodes and edges.

The first criterion is on edges, or transitions between nodes. A ground robot is typically
not able to traverse a sharp rise or dropoff (or “cliff ”). We therefore identify single edges
across which the difference in height is above a threshold ∆Zcliff to be non-traversable.

Definition 12 (Non-Traversable Edge). An edge e = (vi, vj) is non-traversable if |E(vi) −
E(vj)| > ∆Zcliff . We refer to these edges as cliffs.

The second criterion is on the slope of the environment. In some cases, a ground robot
will not be able to traverse ground that is too steep. We find these “steep” areas by identifying
nodes at which the average gradient (within a window of radius d about the node) is higher
than a threshold Ksteep. To prevent cliffs from influencing the apparent steepness of nearby
nodes (due to the windowed average), we remove the contribution of cliffs from the gradient

110

before identifying steep nodes. Let:

cliffs(E(v)) =

{
|∇E(~v)| if |∇E(v)| > ∆Zcliff

0 otherwise
(10.1)

steep(E(v)) = ma
d

(|∇E(v)| − cliffs(E(v)) (10.2)

where ma
d

denotes a windowed-moving-average with window-size d. In our implementation,
d = 8 cm.

Definition 13 (Non-Traversable Node). A node v ∈ V is non-traversable if steep(E(v)) >
Ksteep.

For SMORES-EP, ∆Zcliff = 4 cm and Ksteep = 1.
We define the traversable environment to be GT , the subgraph of G containing only

traversable nodes and edges. If GT is connected, then the robot is able to reach every
traversable grid cell. However, it is possible that GT is not connected. In this case, the
environment is split into regions, which are the connected components of GT .

Definition 14 (Region). A region ri ∈ R is a connected component in GT (V,E). By
definition, a path exists between any two nodes in a single region, and no path exists
between any two nodes in different regions.

Figure 61 shows an example. On the left is an environment with a table and chair, and
on the right is the corresponding height map E . Different colors on this map correspond to
different regions.

10.2.2 Structures
We seek to add structures to the environment which will allow the robot to move between
regions. Structures are composed of building blocks, which the robot is able to carry, place,
and drive over. In this work, the goal is to select the shapes, positions, and orientations of
structures that could be added to the environment to make it globally traversable. We do
not attempt to determine what actions the robot could take to actually build the structure
- to do so, we could use an existing algorithm for robotic assembly planning (See Section
10.1).

A structure is a line of columns of stacked building blocks. We consider structures
made of building blocks similar to the block and wedge shown in Figure 55. In general we
assume building blocks have a square footprint with side length LB; for our building blocks,
LB = 8cm. Importantly, we assume the robot can only move over the structure along a
straight line - this is a physical constraint imposed by the building blocks, which have side
walls. We identify building blocks with type labels t ∈ {block, wedgef , wedgeb}, with “f” and
“b” denoting the two possible orientations (forward and backward) of wedges with respect
to the structure. For each type, we define a surface function s : [0, LB]→ R+ describing its
shape: block : s(x) = LB, wedgef : s(x) = x, and wedgeb : s(x) = LB − x.

Viewed from above, the footprint of a structure in the xy plane is a linear array of n
contiguous squares which we call structure cells (Figure 61); sitting atop each structure cell
is a column of stacked blocks which comprise the structure. Structures are not locked to the
grid - rather, the build point b defines the position of the first structure cell in the plane,

111

and the orientation vector û defines the line along which all cells lie, and the direction along
which the robot may move.

Definition 15 (Structure). A structure T = 〈b, û, C〉 has build point b ∈ R2, orientation
vector û ∈ R2 : |û| = 1, and cells C = {c1 . . . cn}. Each cell ci = 〈λi, hi, ti〉 , i ∈ {1 . . . n}
has corners λi ∈ R4×2, column height hi ∈ Z+, and surface block type ti.

The height and surface block type of a structure cell respectively specify the number of
blocks stacked on that cell and the type of building block at the top of the stack, which
determines the shape of the structure surface over which the robot will drive. To fully define
a structure, it is sufficient to provide b, û, and lists of cell heights {h1, h2 . . . , hn} and surface
block types {t1, t2 . . . , tn}; assuming LB is known, cell corners λ can be computed from b
and û. The cost of a structure is the number of blocks it contains, cost(T) =

∑
i=1...n hi.

For a structure to be considered valid, the environment surface between each struc-
ture cell must be suitable to support the column of blocks that sit on top of it in a sta-
ble way. For our structures, we define buildability in terms of the flatness of the under-
lying environment surface. Letting E(ci) = median(E(v)) ∀ v ∈ ci, cell ci is buildable iff
E(v)− E(ci) < αLB ∀ v ∈ ci. In our implementation, α = 0.4.

For a structure to be useful, it must be both buildable and traversable. Since each block
is individually traversable, we determine traversability of a structure by evaluating the cliff
condition at the boundaries between neighboring cells ci and ci+1:

Zi = E(ci) + hi ∗ LB + si(LB) (10.3)
Zi+1 = E(ci+1) + hi+1 ∗ LB + si+1(0) (10.4)

|Zi+1 − Zi| < ∆Zcliff (10.5)

The boundary is traversable if Equation 10.5 is satisfied.
In addition to moving between blocks on the structure, the robot must also be able to

transition from the structure to the surrounding ground surface at both ends. To capture
these transitions, we require the first and last cell of traversable structures to have zero
height (i.e. to simply be the environment surface), and exempt them from the buildability
condition. Additionally, when moving to the first or last structure cell involves crossing a
region boundary (e.g. moving from the structure to the top of a cliff), the region boundary
must be flat, and its surface normal must align with the structure orientation û, so that
structure presses flat up against the cliff (Figure 61).

Definition 16 (Valid Structure). A structure T is valid if: ∀ ci, ci+1 ∈ C, (ci, ci+1) is
traversable, and ∀ci ∈ {c2 . . . cn−1}, ci is buildable.

10.2.3 Conflicts
Introducing a valid structure allows the robot to move between its the endpoint cells, so
if those cells are in different regions, the structure creates a path them. Our goal, then,
is to synthesize a set of structures T = {T1, T2 . . . , Tk} on a world graph with regions R
such that there is a path between every pair of regions. Of course, because structures
occupy physical space in the environment, even if a structure is valid in isolation, it may
generate conflicts when combined with others. There are two kinds of conflicts that can

112

exist between structures and regions. A pair of structures conflict if they collide. A set of
structures conflicts with a region if they divide the region into disconnected pieces.

Definition 17 (Structure-Structure Conflict). A pair of structures conflict if any of their
cells intersect.

Definition 18 (Region-Structure Conflict). Consider region rc and set of structures Tc =
{T1, T2 . . . , Tk}. Let Vrc be the set of nodes in region rc. Let VTc be the set of nodes
in the cells of Tc. Let Grc be the subgraph of G(V,E) induced by Vrc \ VTc . There is a
region-structure conflict between rc and Tc if Grc is disconnected.

Structure-structure conflicts result from collisions between structures and represent a
situation that is physically impossible, so a set T which contains a structure-structure con-
flicts is considered invalid. Region-structure conflicts occur when a set of structures Tc cut
through a region rc in such a way that it is no longer fully connected. Consequently, rc
needs to be treated as multiple regions when Tc are present.

10.2.4 Problem Statement
Consider an input environment E , represented as grid-graph G(V,E), with regions R. Our
objective is to find a min-cost, conflict-free set of valid structures which make the entire
environment traversable. More precisely, let GR(R, T) be a graph in which nodes represent
regions and edges represent valid structures connecting regions. We seek a set of struc-
tures T ∗ = {T1, T2 . . . , Tk} such that GR(R, T ∗) is fully connected and conflict-free, and
cost(T ∗) =

∑
Ti∈T ∗ cost(Ti) is minimized.

10.2.5 Approach Summary
Our approach consists of two major steps: (1) generating the set T of all potentially-useful
structures, and (2) forming graph GR(R, T), and identifying a subset of edges T ∗ ⊆ T which
form a conflict-free minimum-spanning tree.

10.3 Waterfall Algorithm - Generating All Useful Structures
A valid structure may be placed at any position and orientation in the environment, but
we observe that it is only useful if it connects two different regions, so we ought to look for
structures that bridge the boundaries between regions. Regions are bounded by sloped areas
(where nodes are removed) and sharp cliffs (where edges are removed), but because sloped
areas violate the conditions for buildability, we consider only cliffs as candidate locations
for useful, valid structures. We define the set of build points B = {b1,b2 . . . ,bn} to be the
coordinates of the cliff edges. At each build point, we attempt to synthesize a structure
connecting the top of the cliff to another region.

For the robot to move from the cliff surface onto the structure, the structure’s orientation
û should be nearly perpendicular to the cliff surface (Definition 16). In our implementation,
the cliff surface normal at b is estimated by selecting all nodes with a radius of LB of b and
training a linear classifier (specifically an SVM) using node coordinates as features and node
regions as labels; the resulting classification plane provides a suitable estimate of the surface
normal. The error rate of the classifier provides a measure of surface flatness: if more than
10% of training points are incorrectly classified, the boundary is considered non-flat and the
build point is rejected.

113

Figure 61: Example environment and structure. Top: Example table-and-chair environment (left),
and corresponding height field world (right), with labeled regions. Bottom: Example structure X-Y
view (left) and û-Z view (right).

114

10.3.1 Algorithm
Given build point b and orientation û, we synthesize valid structures by solving the con-
straint satisfaction problem imposed by the conditions for structure validity (Definition 16).
Using parameters LB = 8cm and ∆Zcliff = 4cm = LB/2 for our robot and building blocks,
the constraint imposed by Equations 10.3-10.5 imposes upper and lower bounds on the cell
heights hi (measured in number of blocks) as a function of the bounds on its neighbors:

hmax(i)j =

⌊
hmax(j) +

E(cj)− E(ci)

LB
+ 1.5

⌋
(10.6)

hmin(i)j =

⌈
hmin(j) +

E(cj)− E(ci)

LB
− 1.5

⌉
(10.7)

The brackets dxe and bxc denote the ceiling and floor functions, which round x up or down
to the nearest integer (respectively). The above equations enforce the constraints imposed
on ci by cj , where j = i± 1.

The Waterfall algorithm (Algorithm 1) solves for structures by propagating these
bounds outwards from b. It begins by placing the first structure cell at the top of the cliff,
assigning it height h = 0. It then marches cells into the lower region, outwards from b in
the direction of û (Fig. 61). For each new cell, it calculates hmin and hmax, propagating the
constraints forward. If it encounters a cell that is unbuildable, or for which hmax < 0, it
returns False (no structure can be built here). If it finds a cell for which hmin < 0, it records
this cell as the endpoint of the structure, and assigns it height h = 0.

The algorithm then marches back to b, assigning cell heights. At each cell ci, it checks
the hmin constraint in the backwards direction (imposed on i by i+ 1), and assigns hi to be
the maximum of the lower-bounds from enforcing the constraint in both directions.

The algorithm performs a final pass to assign terminators. At each cell i, it considers the
difference in height Z between its neighbors i+ 1 and i− 1. If magnitude of the difference
is less than LB/2, the terminator is a block (flat); otherwise, the terminator is a wedge
oriented so that its slope matches the sign of ∆Z.

10.3.2 Proofs and Analysis

Optimality

Waterfall finds the cheapest valid structure (if it exists) that can be built at b which will
connect the region at the top of the cliff to another region. Valid structures must begin and
end with zero-height cells (i.e. at the environment surface). In its first pass, Waterfall
finds the closest cell to b at which a valid structure could terminate, and selects this cell
as the end of the structure. At each cell between the terminators, Waterfall computes
the lower bound on structure height imposed by propagating the traversability constraints
forward from the start cell and backwards from the end cell, and selects the minimum
structure height satisfying both constraints.

Completeness

For the purposes of minimal structure construction, we need not consider any structures
that could be built at b other than the one produced by Waterfall.

To show this, consider if it were not the case. Say a longer structure TL (connecting b

115

to a different region) is required as part of the minimum spanning tree of structures. This
structure would cut through multiple regions. Based on the buildability conditions, at each
point on a region boundary that this structure crosses through there is another potential
build point, with its own potential minimal structure identified by the Waterfall algorithm
in the û direction. All of these minimal structures must cost less than TL, and their footprints
are fully contained within the footprint of TL. Call the set of these structures TL.

Now consider if TL were removed from the minimum spanning tree. The environment
would then be separated into two separate components. At least one of the minimal struc-
tures in TL must bridge these components. If this structure is added back to the minimum
spanning tree, then the environment is again fully traversable, and the new set of structures
costs less than the original. So the original spanning tree of structures was not minimal. We
therefore only need to search through the set of structures discovered through Waterfall.

Runtime and Generalization

In general, the structure synthesis problem can be formulated as an integer linear program
(ILP) – the variables (cell heights) are integer valued, while the constraints (traversability)
and objective (number of blocks used) are linear. Well-established algorithms can solve
general ILP problems, however ILP is known to be NP-Complete. For the particular case of
our building blocks, we are able to solve this ILP efficiently using the Waterfall algorithm,
which synthesizes structures with N cells in O(N) time. For other kinds of building blocks,
the Waterfall algorithm could be modified, or a general ILP solver could be used.

10.4 BB-MST Algorithm – Solving for the Minimum Span-
ning Tree of Structures

Given the set of structures T generated by running Waterfall at every build point, form
graph GR(R, T) with a nodes representing regions and edges representing structures con-
necting regions, and assign edges weights equal to the cost of their structures. We seek
M∗R,T , a conflict-free min-cost spanning tree of GR(r, T). When we say that M∗R,T is con-
flict free, we mean that (1) it may contain no structure-structure conflicts, and (2) if it
contains any region-structure conflicts, M∗R,T must span the split regions.We refer to this
problem as struct-MST.

10.4.1 NP-Hardness of struct-MST
Kruskal’s algorithm computes minimum-spanning trees of graphs in O(|E| log |V |) time.
However, structure-structure and region-structure conflicts (Section 10.2.3) impose con-
straints that make struct-MST a much more difficult problem to solve efficiently. Structure-
structure conflicts create pairwise negative disjunctive constraints between edges in GR, that
is, pairs of edges that cannot both be present in the solution. These constraints may be
represented in terms of a conflict graph with vertices corresponding to edges in the original
graph, and edges corresponding to constraints. It has been shown that deciding the exis-
tence of a spanning tree (as well as finding the min-cost spanning tree) of a graph is strongly
NP-hard under negative disjunctive constraints, unless the conflict graph has a maximum
path length less than two [14]. In general this is not the case for struct-MST (because any
structure could conflict with multiple others), making struct-MST at least NP-hard.

116

Algorithm 1 Waterfall Algorithm
Require: build point b and direction û

hn, hx, h, and t are lists that resize automatically.
1: function Waterfall(b, û)
2: end←∞ , hx[0]← 0 , hn[0]← 0
3: for i← 1; i <∞; i← i+ 1 do . Pass 1: Endpoint
4: if ¬buildable(i) then return False
5: end if
6: hn[i] ← hmin(i)i−1

7: hx[i] ← hmax(i)i−1

8: if hx[i] < 0 then return False
9: end if

10: if hn[i] < 0 then
11: end← i , hx[i]← 0 , hn[i]← 0
12: break
13: end if
14: end for
15: h[0]← 0 , h[end]← 0 . Pass 2: Heights
16: for i← end− 1; i > 0; i← i− 1 do
17: hn[i]← max(hmin(i)i+1, hn[i])
18: h[i] ← hn[i]
19: end for
20: t[0]← none ; t[end]← none . Pass 3: Terminators
21: for i← 1; i < end; i← i+ 1 do
22: ∆Z ← E(ci−1)− E(ci+1) + LB(h[i− 1])− h[i+ 1])
23: if |∆Z| ≤ 0.5 ∗ LB then t[i]← block
24: else if ∆Z < 0 then t[i]← wedgef
25: else if ∆Z > 0 then t[i]← wedgeb
26: end if
27: end for
28: return 〈h, t〉
29: end function

117

10.4.2 Algorithm
We present BB-MST, a branch-and-bound algorithm to solve struct-MST. Branch-and-
bound is one of the most general algorithmic techniques for solving combinatorial opti-
mization problems, and has in particular been employed as a practical technique to solve a
number of NP-hard problems [49]. The method solves cost-minimization problems through
an intelligently structured search of the space of all feasible solutions: it repeatedly parti-
tions (“branches”) the solution space into subsets and computes a lower bound on the cost
of the solutions within each subset. After each branching step, the lower-bound cost of each
subset is compared to the cost of the best-yet feasible solution, and those with cost bounds
exceeding the best-yet solution are ignored. Employing branch-and-bound does not change
the worst-case runtime of an NP-hard problem, and for struct-MST the worst-case runtime
remains exponential in the number of potential conflicts. However, branch-and-bound can
lead to a significant speedup of the average runtime, allowing many practical problems to
be solved efficiently.

Algorithm 2 provides pseudocode for BB-MST. Each time BB-MST is called, it uses
Kruskal’s algorithm to solve for MR,T , the MST of the regions and structures passed in as
arguments, and compares it to the best-yet solution M∗. Regardless of whether MR,T is a
valid solution, if cost(MR,T) ≥ cost(M∗), BB-MST returns M∗, terminating search of the
branch. If MR,T is conflict-free and cost(MR,T) < cost(M∗), M∗ is updated and MR,T is
returned.

If MR,T includes a conflict, BB-MST recursively branches, solving two or more child
problems in which some of the conflicting edges or nodes have been removed, and returns
the cheapest of the child solutions. Structure-structure and region-structure conflicts are
handled as follows:

Structure-Structure Conflicts

If there is conflicting pair of structures {T1, T2} inMR,T , form two child problems, removing
one conflicting structure from each: M1 = BB-MST(R, T \T1) and M2 = BB-MST(R, T \
T2). Return the cheaper of the two solutions.

Region-Structure Conflicts

Region-structure conflicts are somewhat more complex. Let T (MR,T) be the set of edges
of MR,T . ∀(T, r) ∈ T (MR,T) × R, check whether T has more than one structure cell
containing a boundary node of r; if so, T might split r. Let rc be one such region, and
Tc = {T1, T2 . . . , Tk} be the set of structures meeting this condition. Let VTc be the set of
nodes in the grid-graph G(V,E) occupied by Tc, Vrc be the set of nodes in rc, and Grc be the
subgraph of G(V,E) induced by Vrc \ VTc . Compute Rrc , the set of connected components
of Grc : if Rrc has more than one element, rc has been split and is in conflict with Tc.

We handle this by forming k + 1 branches, where k is the number of structures in Tc.
In each of the first k branches, we remove one conflicting structure: Mi = BB-MST(R, T \
Ti) ∀ Ti ∈ Tc. In the final branch, we keep all conflicting structures, but split the re-
gion rc into multiple sub-regions: Letting Rsplit = (R \ rc) ∪ Rrc , we have Msplit =
BB-MST(Rsplit, T). We return the cheapest of all solutions {M1,M2, . . . ,Mk,Msplit}.

118

Algorithm 2 BB-MST Algorithm
Require: Regions R and candidate structures T

1: Initialize M∗ ← ∅
2: function BB-MST(R, T)
3: Form GR(R, T)
4: if GR is not a connected graph then return ∅
5: end if
6: MR,T ← kruskal(GR)
7: if cost(MR,T) ≥ cost(M∗) then return M∗

8: end if
9: if cost(MR,T) < cost(M∗) and MR,T is valid then

10: M∗ ← MR,T
11: return MR,T
12: end if
13: if MR,T has a structure conflict {T1, T2} then
14: return branchEdges({T1, T2}, R, T)
15: else if M has a region conflict {rc, Tc} then
16: Medges ← branchEdges(Tc, R, T)
17: Msplit ← branchRegion(rc, Tc, R, T)
18: return the cheaper of Medges, Msplit

19: end if
20: end function

21: function branchEdges(Tc, R, T)
22: M ← ∅
23: for all T ∈ Tc do
24: MT ← BB-MST(R, T \ T)
25: if cost(MT) < cost(M) then M ←MT

26: end if
27: end for
28: return M
29: end function

30: function branchRegion(rc, Tc, R, T)
31: Rrc ← split_into_subregions(rc, Tc)
32: Rsplit ← (R \ rc) ∪Rrc
33: for all T ∈ T do
34: if T connected to rC then
35: Reassign T to connect to appropriate r ∈ Rsplit
36: end if
37: end for
38: return BB-MST(Rsplit, T)
39: end function

119

10.4.3 Proof
Lemma 5 (Child Bounding). Let MR,T (returned by Kruskal’s algorithm, Algorithm 2
line 6) contain one or more conflicts. cost(MR,T) is a lower bound on the cost of the
solution to any child problem formed by branching on a conflict in MR,T .

Proof. Whenever BB-MST branches, it either eliminates one structure, or it splits one
region into multiple regions. Consider the case where structure T has been eliminated. It
is clear that cost(MR,T) ≤ cost(MR,T \T): MR,T \T is optimal with respect to T \ T , so
making T available could only decrease cost. Consider the case where region rc ∈ R has been
split into two sub-regions r1, r2, resulting in a new set of regions Rsplit = (R \ rc)∪ {r1, r2}.
MRsplit,T is the MST which spans Rsplit. Form a new graphM identical to MRsplit,T except
that nodes r1, r2 have been merged together to form node rc. We may remove one edge from
this graph to form a tree, which we will denote M ′. By construction, cost(MRsplit,T) =
cost(M) ≥ cost(M ′). M ′ spans the same set of nodes as MR,T , but MR,T is the MST, so
cost(MR,T) ≤ cost(M ′) ≤ cost(MRsplit,T).

We prove by induction that each recursive call of BB-MST(R, T) returns either M∗R,T
or M∗ (the best-yet solution), whichever is cheaper.

Base Case

There are three conditions under which BB-MST returns without branching. (1) Null: GR
is disconnected, so no spanning tree can be found and BB-MST returns ∅. (2) Shortcut:
cost(MR,T) ≥ cost(M∗), so BB-MST returnsM∗; by Lemma 5, this branch cannot contain
a solution cheaper than the current best-yet solution M∗, so we stop exploring it. (3)
Success: cost(MR,T) < cost(M∗) and MR,T is conflict-free, so we set M∗ ← MR,T and
return MR,T . In this case, it is clear that MR,T = M∗R,T since Kruskal’s algorithm produces
a min-cost spanning tree, which is explicitly verified as conflict-free.

Induction Step

When MR,T has a conflict, BB-MST forms two or more child branches and returns the
cheapest solution among them. Assuming recursive calls of BB-MST(R, T) return M∗R,T
for the set of regions and structures passed down to them, we prove that the optimal solution
to the parent problem must be the cheapest of its children.

Let MR,T contain structure-structure conflict set {T1, T2}. Since {T1, T2} cannot be
in the solution, we know M∗R,T must be a subset of either T \ T1 or T \ T2, since P(T \
T1)
⋃P(T \ T2) is the set of all subsets of T that do not contain {T1, T2}. Therefore, M∗R,T

must be the cheaper of M∗R,T \T1 and M∗R,T \T2 .
By similar reasoning, let MR,T contain a region-structure conflict set {rc, Tc}. We know

that either M∗R,T = M∗R,T \Tc for some Tc ∈ Tc, or M∗R,T = M∗Rsplit,T , since in each of
these cases a single member of the conflict set has been removed. BB-MST returns the
cheapest of these options by comparing Medges and Msplit, returned by branchEdges and
branchRegion.

10.4.4 Runtime
BB-MST resolves conflicts by recursively exploring each possible conflict-free subset of the
conflict set, so in the worst case it will explore an exponential number of branches before

120

finding a solution. This is to be expected: struct-MST is NP-Hard, and BB-MST solves
the problem exactly.

In practice, BB-MST typically prunes many branches and explores a tiny fraction of this
space. Additionally, once a feasible solution is found, BB-MST has an anytime property:
it can be terminated at any time and return the best-yet feasible solution. To identify that
no conflict-free spanning solutions exists, the algorithm must explore each branch until GR
becomes disconnected, which can be very time-consuming.

It is worth noting that relaxing the optimality requirement of struct-MST would not
improve the worst-case runtime, because deciding the existence of a (non-minimal) spanning
tree of structures is also NP-hard.

10.5 Results
10.5.1 Examples and Experiments
Our Python implementation can solve for optimal sets of structures for the SMORES-EP
robot and building blocks given a height-field representation of an environment. The imple-
mentation accepts CAD models and 3D maps of real environments as inputs, and we show
that it can solve for optimal sets of structures in real-world indoor environments.

CAD Example – Table-and-Chair

Figure 62 shows optimal solutions for two configurations of the table-and-chair CAD example
environment from Figure 61. In Example (A) -“Chair Pulled Out”, the optimal solution uses
one large ramp from the floor to the chair seat, and two smaller structures connecting the
seat to the tabletop and tabletop to chair top. Notice the position the structure connecting
the tabletop to the chair top: the structure crosses over the chair seat, and has been placed
at the far left edge of the chair seat to avoid creating a region-structure conflict (which would
have required a fourth structure). In Example B, the chair has been pushed in further, and
there is no longer enough space to place structures on the chair seat. The algorithm is forced
to select a more expensive solution using three large ramps from the floor.

Real-World Experiments

Figure 63 shows solutions generated from two indoor environments. The video accompa-
nying this work1 shows the SMORES-EP robot moving through these environments using
structures placed in the locations selected by the algorithm.

To solve for structures in these environments, 3D occupancy grid maps were created with
the Octomap library [37] using point cloud data collected with a Microsoft Kinect RGB-D
sensor. A similar RGB-D sensor can be carried by SMORES-EP to autonomously map its
environment [16]. Occupancy grids were converted to height fields (2D grayscale images),
which were smoothed (median filter, window of 3 pixels) and segmented (K-means, K=150)
to reduce noise before running the algorithm to generate structures. Real environments
often contain regions that are too small for the robot to occupy them, even if it could access
them (for example, the arms and back of the chair in Figure 63). To account for this, we
test whether each region can fit an inscribed 8cm square (the size of one SMORES-EP robot
module) anywhere within it, and remove small regions from the set of regions R before
running the algorithm.

1https://youtu.be/B9WM557NP44

121

https://youtu.be/B9WM557NP44

(A) Chair Pulled Out

Height Field 3D Rendering
(B) Chair Pushed In (C) Random checkerboard

Figure 62: Optimal solutions in simulated environments.

122

(D) Table, Chair, and Box

(E) Stairs

Figure 63: Real-world environments, and algorithm solutions generated from 3D map data taken
with a Kinect sensor.

In Figure 63, Environment (D) consists of a round table, a stack of magazines, an office
chair, and a storage container. The algorithm determines that adding one 4-block high
ramp structure and three single wedges to this environment will allow the robot to reach
every surface large enough to support it. Environment (E) is a staircase. The algorithm
determines that six 2-block high ramps can be introduced to make it globally traversable by
the robot. The location of each ramp on a given step is effectively random, because solutions
that use the same set of structures in different locations have equal cost.

10.5.2 Runtime Performance
Table 11 shows metrics for the example environments from Figs 62 and 63. The algorithm
generates thousands of structures and solves problems with 4-9 regions in minutes. In many
cases, the number of potential conflicts (which determines the worst-case runtime) is in the
tens of thousands, but the algorithm explores a tiny fraction of them (less than thirty).
The Conflict Pair Fraction (CPF) for each problem is the percentage of pairs of structures
which conflict, and provides a measure of problem difficulty. In all examples, a significant
fraction of the total time required to reach a solution is spent preprocessing the world (e.g.
generating the initial grid graph and identifying cliffs edges and steep areas).

Runtime performance was profiled by generating and solving random environments sim-
ilar to environment (C) (Fig 62). Each environment is a 3× 3 checkerboard with 6LB wide
squares with randomly selected heights between zero and 3LB (in one-pixel increments).
Trials were terminated after a timeout of 10 minutes. Of 1118 total trials, 981 found a so-
lution (conflict-free MST), and 137 found that no solution exists. 834 solutions were found
in one try, and 16 no-solutions were found in one try. 17 trials timed out, of which 11 found

123

Figure 64: Log-histogram of solution times for 1118 random environments. In addition to the data
shown, 17 environments timed out after 10 minutes.

Environment (A) (B) (C) (D) (E)
Size (square, px) 151 151 72 240 115
Structures 634 148 474 3302 1275
Regions 4 4 9 5 6
Branches Explored 33 1 13 1 1
Potential Conflicts 16196 476 12974 33908 18206
CPF 14.0% 16.3% 7.6% 3.3% 4.7%
Structure Time (s) 9.834 2.25 3.188 61.824 9.507
BB-MST Time (s) 6.642 0.024 9.588 0.552 0.14
Total Time (s) 20.604 6.329 13.828 86.848 15.708
Blocks used 17 46 40 13 15

Table 11: Runtime Performance

no solution and 6 found a feasible solution. On average, each problem generated 363.2
structures with 10184.6 conflicts, and CPF of 7.83%.

10.6 Discussion and Future Work
This chapter presents an algorithm to find min-cost spanning sets of structures allowing a
robot to reach every surface of an environment. Finding optimal (as opposed to feasible)
solutions to these problems is important - building larger structures takes more time, and
in real scenarios the number of available building blocks is always limited. For example, the
solution in environment (A) requires 17 blocks, whereas solution (B) (which is also a feasible
solution for (A)) requires 46.

Given a build point and direction vector, Waterfall generates an optimal structure in
linear time, allowing thousands of candidate structures to be generated in under a minute.
Given a set of candidate structures, BB-MST will always eventually find a conflict-free solu-
tion to a struct-MST problem, if one exists. Because struct-MST is NP-Hard, any algorithm
that solves it will have exponential worst-case complexity, and for some problems (especially
when no solution exists) BB-MST will run for an impractically long time before returning.
However, in typical problems, BB-MST explores the solution space efficiently and returns
optimal solutions in a few seconds. In many realistic problems, the number of potential

124

conflicts is relatively small compared to the number of potentially useful combinations of
structures. For example, the (D) and (E) have low CPF values, and in both cases the first
MST generated had no conflicts.

Some tasks might require a robot to access only a subset of the regions in an environment
(as opposed to every region). The framework introduced in this chapter could be extended in
a straightforward way to solve for min-cost paths of structures (connecting a pair of regions)
by calling Dijkstra’s algorithm in place of Kruskal’s algorithm in BB-MST. With slight
modification, the framework could also solve for approximately-optimal Steiner trees of
structures, to make a selected subset of regions accessible. Solving for min-cost Steiner trees
in graphs is NP-hard, but poly-time algorithms can solve the problem approximately [9].
Calling such an algorithm in place of Kruskal’s algorithm would allow BB-MST to compute
Steiner trees, as long as the approximation factor is taken into account when comparing
solution costs in the shortcut-return case.

Future work includes taking robot path planning into account when selecting structure
locations. For example, in the stairs environment in Figure 63, placing the ramps in a line
would allow the robot to move more efficiently through the environment. Optimization of
structure positions could be performed as a separate post-processing step after the algorithm
selects structures, or information about structure position could be directly incorporated into
the cost function for evaluating solutions.

The presented method assumes that structures may only be placed to sharp cliff features
in the environment. This assumption is fairly realistic for the building blocks we consider,
which work best when placed against nearly-vertical surfaces in indoor environments. How-
ever, this assumption also serves to simplify the geometric search problem by limiting the
search for candidate structures to points on the region perimeters (a one-dimensional space).
Future work that aims to extend our method to other building blocks may need to develop
more general ways to delimit the space of possible solutions.

10.7 Conclusion
This chapter presents an complete, optimal algorithm to generate sets of structures that
could be added to an environment to make it globally accessible to a robot. In experiments
using real and simulated environments, we demonstrated that the algorithm can synthesize
optimal sets of structures with practical speed in realistic settings. This opens up the
possibility for a structure-building robot to enter a new environment and quickly determine
what structures should be built to enable free movement, enabling tasks that would otherwise
be very difficult or impossible for the robot.

125

Chapter 11

Conclusion and Future Work

This dissertation presented hardware, algorithms, and integrated systems that allow robots
to employ reconfiguration and environment augmentation as viable strategies to address
tasks. In the realm of self-reconfiguration, we demonstrated for the first time that recon-
figuration can be successfully and autonomously deployed to complete tasks in unknown
environments. In the real of environment augmentation, we demonstrated that robots en-
hance their capabilities with respect to a challenging environment and task by building
structures. The problems addressed in this thesis are far from solved. To conclude, this
chapter highlights some of the limitations of the work, and presents a vision for future
research in reconfiguration and environment augmentation.

11.1 Limitations
11.1.1 Reconfiguration
Our library-based framework is a pragmatic way of representing the capabilities of a modular
robot: rather than attempting to map out the full space of configurations and behaviors for
a set of modules, our library contains only configurations and behaviors that we know to
be useful, because they were hand-made by a human designer for a specific purpose. That
purpose is encoded with property labels, also provided by a human. This framework has
the capacity to capture a huge (arguably unlimited) range of functionality, insofar as it
can contain just about anything a person is willing and able to design. The strength of
the library is that it can contain just about anything; but the downside is that we have
sidestepped the question of what it should contain. Long-term deployment in a realistic
setting (e.g. a person’s home) clearly requires a lot of different capabilities, and our ad-hoc
hand-crafted design process is unlikely to scale up. One school of thought would be to take
a “big data” approach, employing machine learning to generate a huge number of library
entries, eventually generating enough to cover the full space of desired capabilities. Another
approach would proceed from first priniciples, attempting to generate a minimal set (or
“basis set”) of designs that spans the space of required capabilities with as little redundancy
as possible.

Describing robot capabilities in a principled way is very hard to do, even with respect
to a specific task or environment. Our framework encodes capabilities with labels that
fundamentally serve to communicate intent between the library designer and end user. When
the designer labels a behavior with the attribute “climb”, they are counting on the end user

126

to understand what “climb” means. A very interesting avenue for future work could lie in
establishing unifying rules or laws about how properties are assigned, so that every property
label has a well-defined physical meaning. It would also be useful to expand environment
and behavior property labels to encode information about probability of success - a stair-
climbing behavior might succeed with high probability on stairs with short steps, but fail
often on stairs with tall steps.

11.1.2 Environment Augmentation
The work in this thesis serves as an initial demonstration that structure building can provide
benefit to a robot in completing tasks. Viewed through the lens of real-world utility, the
system we presented has some clear practical limitations. Our building blocks well work on
flat, smooth surfaces, more or less limiting their use to indoor environments. Blocks can
only be connected in straight lines, so structures need to be built serially - multiple robots
can’t add blocks to a structure at the same time. Most SMORES-EP configurations can
only carry one or two building blocks at a time, so transporting a large quantity of blocks
into a new environment is time consuming.

In spite of these limitations, the success of our demonstrations with SMORES-EP serves
as evidence that environment augmentation can provide real benefit to robots, and provides
ample motivation to design future systems to take the concept further. The SMORES-EP
building blocks were designed long after the SMORES-EP modules - they were a “retrofit”
that brought a new feature to a robot that was never designed to build structures. In the
future, environment-augmenting robots could be co-designed with the structures they build
- imagine, for example, a mobile manipulator with an integrated silo of building materials,
and a nail gun integrated into its arm for assembly.

11.2 Future Work
Reconfigurable Robots Many modular robot systems are designed with configurability
as their primary goal: the systems are homogeneous (all modules are identical), and designed
to connect in as many geometric configurations as possible [107]. This design philosophy
implicitly assumes that all configurations are equally important. My experience deploying
SMORES-EP in large-scale experiments involving complex tasks runs counter to this as-
sumption: some capabilities of a reconfigurable system are decidedly more important than
others. For example, the ability to drive precisely and predictably proved essential for nearly
every task we attempted with SMORES-EP, whereas the ability to climb stairs was needed
for only a few tasks.

Future work in reconfigurable systems could close the loop from these task-oriented
experiments down to hardware design. Rather than emphasizing geometric and topological
generality, we should strive to maximizing task coverage. Practically speaking, I believe
this will mean embracing heterogeneity, building systems that include a small number of
different module designs, each optimized for different purposes. In particular, to address the
scaling issues discussed in the previous section, we should consider building systems with
modules with different physical sizes: large modules for heavy lifting, and small modules for
fine-grained motions.

This idea can be taken further. “Hemi-modular” robots could combine a set of recon-
figurable modules with a traditional, non-reconfigurable robot. For example, imagine a
warehouse picking robot with a traditional, large manipulator arm, but with a wrist and

127

gripper made of modular robots that can disconnect and operate independently as mobile
robots. This team of modules could fetch a box on a warehouse shelf and drive it back to
the arm, and then reconfigure back into a wrist, allowing the arm to lift the box.

Environment Augmentation In my work with SMORES-EP, I have explored only one
kind of environment augmentation - building structures that enhance the robot’s ability
to move. I believe future work in environment augmentation could go beyond locomo-
tion, enhancing a robot’s manipulation and perception capabilities as well. For example,
to manipulate a challenging object, a robot might permanently attach a handle to it. The
approach is particularly interesting for multi-robot teams, where the modified environment
can be leveraged repeatedly. A team of robots might create a ladder by repeatedly attach
handles to a wall, making it possible to traverse this obstacle and reach a previously inacces-
sible region. In a heterogeneous team, one robot might use sophisticated sensing to identify
objects and regions in its environment, and then place visible labels on them, allowing a
team of other robots with basic cameras to easily perceive and navigate the area. Some
modifications blur the line between robot and environment: four mobile robots equipped
with strong adhesive connectors might attach themselves to four legs of a table, transforming
a piece of the environment into a mobile base.

To employ environment augmentation as a strategy to accomplish tasks, we need to
develop theory about when and how robots should alter their environments. My work in
Chapters 9 and 10 begin to tackle these questions, but there are ample opporutnities to
go further. Future research could focus on developing metrics and theory that evaluate
the relative costs and benefits of environment augmentation in the context of a task and
environment. This is a challenging interdisciplinary problem. Evaluating the benefits of
altering the environment requires an understanding of the relationship between the robot,
its environment, and its task. Will attaching a handle to an object allow the robot to carry
it? Do the benefits of building a structure justify the time, energy, and materials required?
These questions open up interesting research problems in mechanics, computational design,
and perception. If the robot is sharing its environment with humans, evaluating the costs
of augmentation requires knowledge in human factors and human-robot interaction: if the
robot is attaching things to walls and furniture, how will the human inhabitants of the space
respond to these alterations?

In the long term, this research has the potential influence the ways in which robots enter
our daily lives. Much as the rise of automobiles heralded the construction of highways across
the world, the rise of ubiquitous robots in our society will require widespread support infras-
tructure that enables robots to behave safely and effectively. Environment augmentation can
be viewed as robots installing their own infrastructure in the environment. Fundamentally,
this research explores the relationship between robot, infrastructure, and environment, and
seeks to determine what kinds of infrastructure have the smallest cost and the largest benefit
to robots. I believe the things we can learn from research in environment augmentation will
enable us to most effectively design linfrastructure for a world filled with robots.

128

Bibliography

[1] Unity3d. http://unity3d.com/. Accessed: 2015-04-35.

[2] Potentiometers. www.novotechnik.de/en/products/sensor-technologies/
potentiometers. Accessed: 8/1/16.

[3] Measurement Systems Analysis. Chrysler Corp., 2010.

[4] Sensoink Technical Specifications, 2016. www.sensoink.com.

[5] Membrane Potentiometer, 2016. www.spectrasymbol.com.

[6] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.J. Pappas. Sym-
bolic planning and control of robot motion [grand challenges of robotics]. Robotics
Automation Magazine, IEEE, 14(1):61–70, March 2007.

[7] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi. Sampling-based motion planning
with temporal goals. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 2689–2696. IEEE, 2010.

[8] Stéphane Bonardi, Massimo Vespignani, Rico Moeckel, Jesse Van den Kieboom, Soha
Pouya, Alexander Sproewitz, and Auke Ijspeert. Automatic generation of reduced cpg
control networks for locomotion of arbitrary modular robot structures. In Proceedings
of Robotics: Science and Systems, 2014.

[9] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An improved
lp-based approximation for steiner tree. In ACM Symposium on Theory of Computing,
pages 583–592. ACM, 2010.

[10] Sebastian Castro, Sarah Koehler, and Hadas Kress-Gazit. High-level control of mod-
ular robots. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pages 3120–3125. IEEE, 2011.

[11] I-Ming Chen and Joel W Burdick. Determining task optimal modular robot assembly
configurations. In Robotics and Automation, 1995. Proceedings., 1995 IEEE Interna-
tional Conference on, volume 1, pages 132–137. IEEE, 1995.

[12] Gregory S Chirikjian. Kinematics of a metamorphic robotic system. In Robotics and
Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 449–
455. IEEE, 1994.

129

http://unity3d.com/
www.novotechnik.de/en/products/sensor-technologies/potentiometers
www.novotechnik.de/en/products/sensor-technologies/potentiometers
www.sensoink.com
www.spectrasymbol.com

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Intro. to Algorithms, chapter 15,
pages 394–395. MIT Press, 3rd edition, 2009.

[14] Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and Gerhard J Woeginger.
Paths, trees and matchings under disjunctive constraints. Discrete Applied Mathe-
matics, 159(16):1726–1735, 2011.

[15] J. Daudelin and M. Campbell. An adaptable, probabilistic, next-best view algorithm
for reconstruction of unknown 3-d objects. IEEE Robotics and Automation Letters, 2
(3):1540–1547, July 2017. ISSN 2377-3766. doi: 10.1109/LRA.2017.2660769.

[16] Jonathan Daudelin∗, Gangyuan Jing∗, Tarik Tosun∗, Mark Yim, Hadas Kress-Gazit,
and Mark Campbell. An integrated system for perception-driven autonomy with mod-
ular robots. In Preparation. URL https://arxiv.org/abs/1709.05435.

[17] Jay Davey, Ngai Kwok, and Mark Yim. Emulating self-reconfigurable robots-design
of the smores system. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 4464–4469. IEEE, 2012.

[18] R. Diestel. Graph Theory, chapter 1. Springer, 4th edition, 2010.

[19] Mehmet R Dogar and Siddhartha S Srinivasa. A planning framework for non-prehensile
manipulation under clutter and uncertainty. Autonomous Robots, 33(3):217–236, 2012.

[20] Marco Dorigo, Elio Tuci, Roderich Groß, Vito Trianni, Thomas Halva Labella, Shervin
Nouyan, Christos Ampatzis, Jean-Louis Deneubourg, Gianluca Baldassarre, Stefano
Nolfi, Francesco Mondada, Dario Floreano, and Luca Maria Gambardella. The
SWARM-BOTS Project. LNCS, 3342:31–44, 2005.

[21] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Ste-
fano Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Brambilla,
Arne Brutschy, Daniel Burnier, Alexandre Campo, Anders Lyhne Christensen, Antal
Decugniere, Gianni Di Caro, Frederick Ducatelle, Eliseo Ferrante, Alexander Förster,
Javier Martinez Gonzales, Jerome Guzzi, Valentin Longchamp, Stephane Magnenat,
Nithin Mathews, Marco Montes De Oca, Rehan O’Grady, Carlo Pinciroli, Giovanni
Pini, Philippe Rétornaz, James Roberts, Valerio Sperati, Timothy Stirling, Alessandro
Stranieri, Thomas Stützle, Vito Trianni, Elio Tuci, Ali Emre Turgut, and Florian Vaus-
sard. Swarmanoid: A novel concept for the study of heterogeneous robotic swarms.
IEEE Robotics and Automation Magazine, 20(4):60–71, 2013.

[22] Ayan Dutta, Prithviraj Dasgupta, and Carl Nelson. Distributed configuration forma-
tion with modular robots using (sub) graph isomorphism-based approach. Autonomous
Robots, pages 1–21, 2018.

[23] Nick Eckenstein and Mark Yim. Modular advantage and kinematic decoupling in
gravity compensated robotic systems. Journal of Mechanisms and Robotics, 5(4):
041013, 2013.

130

https://arxiv.org/abs/1709.05435

[24] Susan Finger, James Rinderle, et al. A transformational approach to mechanical de-
sign using a bond graph grammar. [Carnegie Mellon University], Engineering Design
Research Center, 1990.

[25] C. Finucane, Gangyuan Jing, and H. Kress-Gazit. Ltlmop: Experimenting with lan-
guage, temporal logic and robot control. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 1988–1993, Oct 2010.

[26] Toshio Fukuda and Yoshio Kawauchi. Cellular robotic system (cebot) as one of the
realization of self-organizing intelligent universal manipulator. In ICRA, pages 662–
667. IEEE, 1990.

[27] Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche: Modular shape
formation by self-disassembly. The International Journal of Robotics Research, 27
(3-4):345–372, 2008.

[28] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter modules
for programmable matter through self-disassembly. In ICRA, pages 2485–2492. IEEE,
2010.

[29] Robert Grabowski, Luis E. Navarro-Serment, Christiaan J J Paredis, and Pradeep K.
Khosla. Heterogeneous teams of modular robots for mapping and exploration. Au-
tonomous Robots, 8(3):293–308, 2000.

[30] Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding
topological subgraphs is fixed-parameter tractable. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pages 479–488. ACM, 2011.

[31] Roderich Groß, Michael Bonani, Francesco Mondada, and Marco Dorigo. Autonomous
self-assembly in swarm-bots. IEEE transactions on robotics, 22(6):1115–1130, 2006.

[32] Bahar Haghighat, Emmanuel Droz, and Alcherio Martinoli. Lily: A miniature floating
robotic platform for programmable stochastic self-assembly. In ICRA, pages 1941–
1948. IEEE, 2015.

[33] Harwin Inc. S1791-42R Customer Information Sheet, 2016.

[34] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2(4):225–231, 1973.

[35] Gregory S Hornby, Hod Lipson, and Jordan B Pollack. Evolution of generative design
systems for modular physical robots. In ICRA, volume 4, pages 4146–4151. IEEE,
2001.

[36] Gregory S Hornby, Hod Lipson, and Jordan B Pollack. Generative representations for
the automated design of modular physical robots. IEEE transactions on Robotics and
Automation, 19(4):703–719, 2003.

[37] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3d mapping framework based on octrees.
Autonomous Robots, 34(3):189–206, 2013.

131

[38] Feili Hou and Wei-Min Shen. Graph-based optimal reconfiguration planning for self-
reconfigurable robots. Robotics and Autonomous Systems, 62(7):1047–1059, 2014.

[39] Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas Kress-Gazit. An end-to-end
system for accomplishing tasks with modular robots. In Robotics: Science and Systems,
2016.

[40] Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas Kress-Gazit. Accomplishing
high-level tasks with modular robots. Autonomous Robots, pages 1–18, 2017.

[41] Yoshihiro Kawahara et al. Instant inkjet circuits: lab-based inkjet printing to support
rapid prototyping of ubicomp devices. In ACM conference on Pervasive and Ubiquitous
computing, pages 363–372. ACM, 2013.

[42] M. Kloetzer and C. Belta. A fully automated framework for control of linear systems
from temporal logic specifications. Automatic Control, IEEE Transactions on, 53(1):
287–297, Feb 2008.

[43] Ara N Knaian et al. The milli-motein: A self-folding chain of programmable matter
with a one centimeter module pitch. In IROS, pages 1447–1453. IEEE, 2012.

[44] Ara Nerses Knaian. Electropermanent magnetic connectors and actuators: devices
and their application in programmable matter. PhD thesis, Massachusetts Institute of
Technology, 2010.

[45] Ross A Knepper, Todd Layton, John Romanishin, and Daniela Rus. Ikeabot: An
autonomous multi-robot coordinated furniture assembly system. In Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pages 855–862. IEEE,
2013.

[46] Hadas Kress-Gazit, Gerogios E. Fainekos, and George J. Pappas. Temporal logic
based reactive mission and motion planning. IEEE Transactions on Robotics, 25(6):
1370–1381, 2009.

[47] Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Shigeru Kokaji, Takashi Hasuo,
and Satoshi Murata. Distributed self-reconfiguration of m-tran iii modular robotic
system. The International Journal of Robotics Research, 27(3-4):373–386, 2008.

[48] M. Labbe and F. Michaud. Online Global Loop Closure Detection for Large-Scale
Multi-Session Graph-Based SLAM. In IROS, pages 2661–2666, Sept 2014.

[49] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Opera-
tions research, 14(4):699–719, 1966.

[50] Stéphane Magnenat, Roland Philippsen, and Francesco Mondada. Autonomous con-
struction using scarce resources in unknown environments. Autonomous Robots, 33
(4):467–485, 2012.

[51] Spyros Maniatopoulos, Philipp Schillinger, Vitchyr Pong, David C Conner, and Hadas
Kress-Gazit. Reactive high-level behavior synthesis for an atlas humanoid robot.

132

In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
4192–4199. IEEE, May 2016. doi: 10.1109/ICRA.2016.7487613.

[52] Yannis Mantzouratos, Tarik Tosun, Sanjeev Khanna, and Mark Yim. On embed-
dability of modular robot designs. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pages 1911–1918. IEEE, 2015.

[53] B. McKay. Nauty user’s guide (v2.4). Computer Science Dept., Australian Nat. Univ.,
2007.

[54] AM Mehta, Nicola Bezzo, B An, P Gebhard, Vijay Kumar, Insup Lee, and Daniela
Rus. A design environment for the rapid specification and fabrication of printable
robots. In 14th International Symposium on Experimental Robotics (ISERâĂŹ14),
Marrakech/Essaouira, Morocco, June, pages 15–18, 2014.

[55] Ankur M Mehta, Joseph DelPreto, Benjamin Shaya, and Daniela Rus. Cogeneration
of mechanical, electrical, and software designs for printable robots from structural
specifications. In Intelligent Robots and Systems (IROS 2014), pages 2892–2897. IEEE,
2014.

[56] Total Ground Carbon Conductive Coating 838 Technical Data Sheet. MG Chemicals,
January 2013. Ver. 1.04.

[57] Shuhei Miyashita, Laura Meeker, Maurice Go, Yoshihiro Kawahara, Daniela Rus,
et al. Self-folding printable elastic electric devices: Resistor, capacitor, and inductor.
In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages
1446–1453. IEEE, 2014.

[58] Shuhei Miyashita et al. An untethered miniature origami robot that self-folds, walks,
swims, and degrades. In ICRA. IEEE, 2015.

[59] Francesco Mondada, Luca Maria Gambardella, Dario Floreano, Stefano Nolfi,
Jean Louis Deneubourg, and Marco Dorigo. The cooperation of swarm-bots: Physical
interactions in collective robotics. IEEE Robotics and Automation Magazine, 12(2):
21–28, 2005.

[60] Satoshi Murata, Haruhisa Kurokawa, and Shigeru Kokaji. Self-assembling machine.
In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference
on, pages 441–448. IEEE, 1994.

[61] Satoshi Murata, Eiichi Yoshida, Akiya Kamimura, Haruhisa Kurokawa, Kohji Tomita,
and Shigeru Kokaji. M-tran: Self-reconfigurable modular robotic system. IEEE/ASME
transactions on mechatronics, 7(4):431–441, 2002.

[62] Satoshi Murata, Kiyoharu Kakomura, and Haruhisa Kurokawa. Docking experiments
of a modular robot by visual feedback. IEEE International Conference on Intelligent
Robots and Systems, pages 625–630, 2006.

[63] Nils Napp and Radhika Nagpal. Distributed amorphous ramp construction in unstruc-
tured environments. Robotica, 32(2):279–290, 2014.

133

[64] Nils Napp and Radhika Nagpal. Robotic construction of arbitrary shapes with amor-
phous materials. In Robotics and Automation (ICRA), 2014 IEEE International Con-
ference on, pages 438–444. IEEE, 2014.

[65] Series PRS Resistance Elements. Novotechnik Siedle Group, 2016. http://www.
novotechnik.com/pdfs/PRS_e.pdf.

[66] Rehan O’Grady, Roderich Groß, Francesco Mondada, Michael Bonani, and Marco
Dorigo. Self-assembly on demand in a group of physical autonomous mobile robots
navigating rough terrain. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3630
LNAI(September):272–281, 2005.

[67] Simon Olberding, Nan-Wei Gong, John Tiab, Joseph A Paradiso, and Jürgen Steimle.
A cuttable multi-touch sensor. In Proceedings of the 26th annual ACM symposium on
User interface software and technology, pages 245–254. ACM, 2013.

[68] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages 3400–3407.
IEEE, 2011.

[69] Esben Hallundbæk Østergaard, Kristian Kassow, Richard Beck, and Henrik Hautop
Lund. Design of the atron lattice-based self-reconfigurable robot. Autonomous Robots,
21(2):165–183, 2006.

[70] Rehan OâĂŹGrady, Roderich Groß, Anders Lyhne Christensen, and Marco Dorigo.
Self-assembly strategies in a group of autonomous mobile robots. Autonomous Robots,
28(4):439–455, 2010.

[71] Michael Park, Sachin Chitta, Alex Teichman, and Mark Yim. Automatic configura-
tion recognition methods in modular robots. The International Journal of Robotics
Research, 27(3-4):403–421, 2008.

[72] James Paulos, Nick Eckenstein, Tarik Tosun, Jungwon Seo, Jay Davey, Jonathan
Greco, Vijay Kumar, and Mark Yim. Automated Self-Assembly of Large Maritime
Structures by a Team of Robotic Boats. IEEE Transactions on Automation Science
and Engineering, pages 1–11, 2015.

[73] T. Peixoto. The graph-tool python library. http://graph-tool.skewed.de/, 2014.

[74] Kirstin Petersen, Radhika Nagpal, and Justin Werfel. Termes: An autonomous robotic
system for three-dimensional collective construction. Proc. Robotics: Science & Sys-
tems VII, 2011.

[75] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M. Murray, and Sanjit A.
Seshia. Reactive synthesis from signal temporal logic specifications. In Proceedings
of the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC ’15, pages 239–248, New York, NY, USA, 2015.

134

http://www.novotechnik.com/pdfs/PRS_e.pdf
http://www.novotechnik.com/pdfs/PRS_e.pdf
http://graph-tool.skewed.de/

[76] John W Romanishin, Kyle Gilpin, Sebastian Claici, and Daniela Rus. 3d m-blocks:
Self-reconfiguring robots capable of locomotion via pivoting in three dimensions. In
Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages
1925–1932. IEEE, 2015.

[77] M. Rubenstein, K. Payne, P. Will, and Wei-Min Shen Wei-Min Shen. Docking among
independent and autonomous CONRO self-reconfigurable robots. IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, 3:2877–
2882, 2004.

[78] Graham G Ryland and Harry H Cheng. Design of imobot, an intelligent reconfigurable
mobile robot with novel locomotion. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 60–65. IEEE, 2010.

[79] Maira Saboia, Vivek Thangavelu, Walker Gosrich, and Nils Napp. Autonomous adap-
tive modification of unstructured environments. In Robotics: Science and Systems,
2018.

[80] Behnam Salemi, Wei-Min Shen, and Peter Will. Hormone-controlled metamorphic
robots. In ICRA, volume 4, pages 4194–4199. IEEE, 2001.

[81] Behnam Salemi, Mark Moll, and WM Shen. Superbot: A deployable, multi-functional,
and modular self-reconfigurable robotic system. In IROS, pages 3636–3641. IEEE,
2006.

[82] Adriana Schulz, Cynthia Sung, Andrew Spielberg, Wei Zhao, Yu Cheng, Ankur Mehta,
Eitan Grinspun, Daniela Rus, and Wojciech Matusik. Interactive robogami: data-
driven design for 3d print and fold robots with ground locomotion. In SIGGRAPH
2015: Studio, page 1. ACM, 2015.

[83] Jungwon Seo, Mark Yim, and Vijay Kumar. Assembly planning for planar structures
of a brick wall pattern with rectangular modular robots. 2013 IEEE International
Conference on Automation Science and Engineering (CASE), pages 1016–1021, aug
2013.

[84] Wei-Min Shen, Robert Kovac, and Michael Rubenstein. Singo: a single-end-operative
and genderless connector for self-reconfiguration, self-assembly and self-healing. In
ICRA, pages 4253–4258. IEEE, 2009.

[85] Alexander Sproewitz, Rico Moeckel, Jérôme Maye, and Auke Jan Ijspeert. Learning
to move in modular robots using central pattern generators and online optimization.
The International Journal of Robotics Research, 27(3-4):423–443, 2008.

[86] Kasper Stoy, Wei-Min Shen, and Peter M Will. Using role-based control to pro-
duce locomotion in chain-type self-reconfigurable robots. IEEE/ASME transactions
on mechatronics, 7(4):410–417, 2002.

[87] John W Suh, Samuel B Homans, and Mark Yim. Telecubes: Mechanical design of a
module for self-reconfigurable robotics. In ICRA, volume 4, pages 4095–4101. IEEE,
2002.

135

[88] Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration
planning for pivoting cube modular robots. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 1933–1940. IEEE, 2015.

[89] Jaeyong Sung, Seok Hyun Jin, Ian Lenz, and Ashutosh Saxena. Robobarista: Learn-
ing to manipulate novel objects via deep multimodal embedding. arXiv preprint
arXiv:1601.02705, 2016.

[90] Yuzuru Terada and Satoshi Murata. Automatic assembly system for a large-scale
modular structure-hardware design of module and assembler robot. In Intelligent
Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, volume 3, pages 2349–2355. IEEE, 2004.

[91] Kohji Tomita, Satoshi Murata, Haruhisa Kurokawa, Eiichi Yoshida, and Shigeru
Kokaji. Self-assembly and self-repair method for a distributed mechanical system.
IEEE Transactions on Robotics and Automation, 15(6):1035–1045, 1999.

[92] Tarik Tosun, Jay Davey, Chao Liu, and Mark Yim. Design and characterization of
the ep-face connector. pages 45–51, 2016. ISSN 21530866. doi: 10.1109/IROS.2016.
7759033.

[93] Tarik Tosun, Daniel Edgar, Chao Liu, Thulani Tsabedze, and Mark Yim. Paintpots:
Low cost, accurate, highly customizable potentiometers for position sensing. pages
1212–1218, 2017.

[94] Tarik Tosun*, Jonathan Daudelin*, Gangyuan* Jing, Hadas Kress-Gazit, Mark Camp-
bell, and Mark Yim. Perception-informed autonomous environment augmentation with
modular robots. In ICRA, 2018. URL https://arxiv.org/abs/1710.01840.

[95] Tarik Tosun, Gangyuan Jing, Hadas Kress-Gazit, and Mark Yim. Computer-aided
compositional design and verification for modular robots. In International Symposium
on Robotics Research, pages 237–252. Springer, 2018.

[96] Tarik Tosun, Cynthia Sung, Colin McCloskey, and Mark Yim. Optimal structure
synthesis for environment augmenting robots. In Preparation, 2019.

[97] K. Ulrich and W. Seering. Synthesis of schematic descriptions in mechanical design.
Res. in Eng. Design, pages 3–18, 1989.

[98] Industry Standard Wirewound and Nonwirewound Precision Potentiometers. Variable
Electronic Components Institute, 1988. Rev. A.

[99] Jennifer E Walter, Elizabeth M Tsai, and Nancy M Amato. Choosing good paths for
fast distributed reconfiguration of hexagonal metamorphic robots. In ICRA, 2002.

[100] Justin Werfel, Donald Ingber, and Radhika Nagpal. Collective construction of
environmentally-adaptive structures. IEEE International Conference on Intelligent
Robots and Systems, pages 2345–2352, 2007.

[101] Paul Joseph White. Miniaturization methods for modular robotics: External actuation
and dielectric elastomer actuation. PhD thesis, University of Pennsylvania, 2011.

136

https://arxiv.org/abs/1710.01840

[102] Kevin C Wolfe, Matthew S Moses, Michael DM Kutzer, and Gregory S Chirikjian. M
3 express: a low-cost independently-mobile reconfigurable modular robot. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages 2704–2710.
IEEE, 2012.

[103] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding horizon
control for temporal logic specifications. In Proceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’10, pages 101–110,
New York, NY, USA, 2010.

[104] Guilin Yang and I-Ming Chen. Task-based optimization of modular robot configu-
rations: minimized DoF approach. Mechanism and machine theory, 35(4):517–540,
2000.

[105] M Yim. Locomotion with a unit-modular reconfigurable robot. PhD thesis, Stanford
University, 1994.

[106] Mark Yim, David G Duff, and Kimon D Roufas. Polybot: a modular reconfigurable
robot. In International Conference on Robotics and Automation, volume 1, pages
514–520. IEEE, 2000.

[107] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory S Chirikjian. Modular self-reconfigurable robot systems [grand
challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

[108] Mark Yim, Babak Shirmohammadi, Jimmy Sastra, Michael Park, Michael Dugan, and
Camillo J Taylor. Towards robotic self-reassembly after explosion. In International
Conference on Intelligent Robots and Systems, 2007, pages 2767–2772. IEEE, 2007.

[109] Ying Zhang, Mark Yim, Craig Eldershaw, Dave Duff, and Kimon Roufas. Phase
automata: a programming model of locomotion gaits for scalable chain-type modular
robots. In IROS, volume 3, pages 2442–2447. IEEE, 2003.

137

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Reconfiguration
	Environment Augmentation

	Overview of Related Work
	Modular Self-Reconfigurable Robots (MSRR)
	MSRR Hardware Systems
	Algorithms and Control
	Tasks and Autonomy

	Environment Augmentation

	I Reconfiguration
	 The SMORES-EP Modular Robot
	Mechanical Design
	Electrical Design
	Software and Networking

	The EP-Face Connector
	Related Work
	Electro-Permanent Magnets
	Modular Robot Connector Systems

	Connector Design
	Physical Design
	Manufacturing
	Electrical Design
	Integration with the SMORES-EP Module

	Experimental Results
	EP Magnet Characterization
	EP-Face Characterization

	Discussion
	Advantages
	Disadvantages

	Conclusions and Future

	PaintPots
	Introduction
	Related Work
	Potentiometers
	Ubiquitous Electronics

	Background: Potentiometer characterization
	Conformity (Accuracy)
	Resolution
	Hysteresis
	Lifetime

	Design and Manufacturing
	Design Overview
	PaintPots used in SMORES-EP
	Cost

	Calibration
	Ground-Truth Data: AprilTags
	Model fitting

	Performance
	Accuracy
	Resolution
	Hysteresis
	Lifetime
	Comparison to Commercial Potentiometers

	Two-Dimensional PaintPots
	Conclusion

	Design Embedding
	Introduction
	Related Work
	Preliminaries
	Topological Embedding
	Definitions and Statement of Main Result
	Outline of Algorithm
	Formal Analysis
	2-pass Approach

	Kinematic Admissibility
	Extending Definitions
	Kinematic Admissibility
	Checking Kinematic Admissibility

	Experiments
	Applications
	Conclusion and Future Work

	Accomplishing High-Level Tasks with Modular Robots
	An End-to-End System for Accomplishing Tasks with Modular Robots
	System Overview
	Contributions

	Related Work
	Background
	Modular Robot Systems
	Controller Synthesis

	System
	Modular Robot Hardware - SMORES-EP Robot
	Design and Simulation Tool: VSPARC
	Design Library
	Reactive Controller Synthesis and Execution with the Library

	Experimental Results
	Simulated Task Scenarios
	Hardware Experiments

	Discussion and Future Work
	Simulator-to-hardware translation
	Library Creation: Lessons Learned
	Composing Library Elements to Complete Missions

	Conclusion

	Autonomy
	Introduction
	Results
	Discussion
	Challenges and Limitations

	Methods and Materials
	Hardware - Sensor Module
	Perception and Planning for Information
	High-Level Planning and Library
	Reconfiguration

	Additional Commentary on Related Work

	II Environment Augmentation
	Environment Augmentation
	Introduction
	Related Work
	Approach
	Environment Characterization
	Hardware: Augmentation Modules
	High-Level Planner

	System Integration
	Experiment Results
	Experiment I
	Experiment II

	Discussion
	Conclusion

	Optimal Structure Synthesis
	Related Work
	Problem Formulation
	Preliminaries
	Structures
	Conflicts
	Problem Statement
	Approach Summary

	Waterfall Algorithm - Generating All Useful Structures
	Algorithm
	Proofs and Analysis

	BB-MST Algorithm – Solving for the Minimum Spanning Tree of Structures
	NP-Hardness of struct-MST
	Algorithm
	Proof
	Runtime

	Results
	Examples and Experiments
	Runtime Performance

	Discussion and Future Work
	Conclusion

	Conclusion and Future Work
	Limitations
	Reconfiguration
	Environment Augmentation

	Future Work

	Bibliography

