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ABSTRACT 

 

MEASURING PREFERENCES FOR UNCERTAINTY 

 

Robert Mislavsky 

Uri Simonsohn 

 

Understanding decision making under uncertainty is crucial for researchers in the social 

sciences, policymakers, and anyone trying to make sense of another’s (or their own) 

choices. In this dissertation, my coauthors and I make three contributions to 

understanding preferences for uncertainty regarding (a) how preferences are measured, 

(b) how these preferences may (or may not) manifest in a consequential real-world 

context, and (c) how different types of advice influence opinions about uncertain events. 

In Chapter 1, we examine methods that researchers use to study preferences for 

uncertainty. We find that the presence of uncertainty is often confounded with the 

presence of “weird” transaction features, dramatically overstating the presence of 

uncertainty aversion in these experiments. In Chapter 2, we show that extreme 

uncertainty does not exist in the context of corporate experimentation, despite speculation 

by pundits and researchers. In fact, people judge experiments similarly to how they 

would judge simple gambles, with the experiment being judged near the “expected value” 

of the policies it implements. In Chapter 3, we find that the format in which uncertainty is 

presented impacts how people combine forecasts from multiple sources. Numeric 

probability forecasts are averaged, while verbal forecasts are combined additively, with 

people making more extreme judgments as they see additional forecasts.  
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INTRODUCTION 

 

 Understanding decision making under uncertainty is crucial for researchers in the 

social sciences, policymakers, and anyone trying to make sense of another’s (or their 

own) choices. In this dissertation, my coauthors and I make three contributions to 

understanding preferences for uncertainty. First, we examine how preferences for 

uncertainty are typically measured, finding that many common methods may overstate 

the presence of uncertainty aversion in experiments. Second, we test preferences for 

uncertainty in a consequential real-world context, corporate experimentation, where a 

company’s employees and customers are randomly assigned to different outcomes.  

Finally, we show that when presented with multiple forecasts for uncertain events, people 

combine these forecasts differently depending on whether they are provided numerically 

or verbally, resulting in potentially drastic differences in internal judgments of an event’s 

uncertainty. Taken together, our findings have consequences for researchers, 

organizational decision makers and policymakers, and individuals, which we discuss 

throughout. 

 In the first chapter of my dissertation, “When Risk is Weird: Unexplained 

Transaction Features Lower Valuations,” we examine a potential cause of a major 

behavioral anomaly in risk preference, the uncertainty effect (Gneezy, List, & Wu, 2006). 

Although prior research on the uncertainty effect finds the introduction of risk causes 

substantial violations of the internality axiom, where participants value a gamble less 

than its worst outcome, we find that this is likely caused by the presence of what we call 
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“weird” transaction features. In typical risk preference studies, valuations of risky 

gambles are typically compared to valuations of certain outcomes. However, risky 

gambles often include additional features, such as purchasing a lottery ticket or flipping a 

coin, whereas the certain outcomes do not. We propose that an aversion to weird features, 

rather than uncertainty itself, drives the extreme risk aversion found in paradigms such as 

the uncertainty effect. As a result, we believe that these studies typically overstate the 

presence of risk aversion. In an incentivized experiment under high stakes, participants 

are essentially risk neutral when comparing gambles with “weird” transaction features to 

certain outcomes that have the same transaction features.  

 In the second chapter, “Critical Condition: People Only Object to Corporate 

Experiments If They Object to a Condition,” we investigate preferences for uncertainty in 

a consequential real-world context—corporate experimentation. Although 

experimentation is one of the most effective tools for determining the impact of a given 

policy, which could allow organizations to test whether certain policies are beneficial 

before rolling them out more broadly, there is a widespread perception that people dislike 

corporate experimentation as a general rule (e.g., M. N. Meyer, 2015; M. N. Meyer & 

Chabris, 2015). If such “experiment aversion” exists, it could severely hamper the ability 

of researchers to learn about the world and test theories in real-world settings. However, 

in 5 studies, we show that a general experiment aversion does not exist. Rather, people 

dislike experiments only when they dislike a specific policy that the experiment 

implements. Further, people evaluate experiments with an objectionable policy more 

favorably than the policy itself.  



3 
 

 

 

 In the final chapter, “60% + 60% = 60%, but Likely + Likely = Very Likely,” we 

find differences in how people combine probability forecasts from multiple advisors 

depending on whether those forecasts are given numerically or verbal. Specifically, we 

find that, consistent with prior research (e.g., Budescu & Yu 2006, 2007), participants 

average numeric probability forecasts. For example, if two weather forecasters predict 

that there is a “60% chance” and a “70% chance,” respectively, that it will rain, 

participants’ own predictions typically lie between 60% and 70%. However, participants 

combine verbal forecasts more additively. That is, if the forecasters say rain is “probable” 

and “likely,” participants tend to make predictions that are more extreme than each 

forecaster individually (e.g., “very likely”).  
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CHAPTER 1. 

 

WHEN RISK IS WEIRD: 

UNEXPLAINED TRANSACTION FEATURES LOWER VALUATIONS 

 

Robert Mislavsky 

Uri Simonsohn 

 

ABSTRACT 

 

We define transactions as weird when they include unexplained features, that is, features 

not implicitly, explicitly, or self-evidently justified, and propose that people are averse to 

weird transactions. In six experiments, we show that risky options used in previous 

research paradigms often attained uncertainty via adding an unexplained transaction 

feature (e.g., purchasing a coin flip or lottery), and behavior that appears to reflect risk 

aversion could instead reflect an aversion to weird transactions. Specifically, willingness 

to pay drops just as much when adding risk to a transaction as when adding unexplained 

features. Holding transaction features constant, adding additional risk does not further 

reduce willingness to pay. We interpret our work as generalizing ambiguity aversion to 

riskless choice. 
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The amount people are willing to pay for a given item is influenced by the context 

in which the purchase takes place (Ariely, Loewenstein, & Prelec, 2006; Jung, Perfecto, 

& Nelson, 2016; Lichtenstein & Slovic, 2006). Transactions, the necessary steps to 

acquire the item, are a part of every purchase context. 

In this paper, we identify a transaction attribute which negatively influences 

willingness to pay: the extent to which it contains features that lack an explanation. These 

explanations may be (i) implicit, based directly on consumers’ past experiences with 

similar transactions, (ii) explicit, explained by the seller, or (iii) self-evident, based on 

reasonable inferences from context.  For brevity, we refer to transactions that include 

unexplained features as “weird.” When using the term weird, we refer exclusively to such 

a definition—the presence of unexplained features. 

To illustrate how the presence of unexplained features may manifest itself in a 

transaction and how the three aforementioned types of explanations might mitigate their 

impact on willingness to pay, consider a restaurant that sells lunches by placing them in 

boxes and then asks people to pay for the right to open the box and take the lunch from 

the box. Placing the lunch in a box and asking to pay to open it could constitute an 

unexplained transaction feature and may make customers uncomfortable or suspicious 

(e.g., is the lunch in the box because the restaurant doesn’t want you to see what it really 

looks like?).  An explanation could easily mitigate any such consequences. An implicit 

explanation would be if the “box” was simply a vending machine; customers could draw 

on their prior experience and the transaction feature is no longer unexplained. 

Alternatively, the restaurant could provide an explicit explanation “These are our new 
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self-service boxes, which we’ve introduced to help you get your food more easily.” The 

transaction feature is again no longer unexplained thus no longer expected to reduce 

valuations.  

Note that unexplained is not the same as novel. A completely novel transaction 

feature could come with an explanation. For example, imagine a restaurant that requires 

customers to draw on a piece of glass with their finger in order to get their lunch. That is 

an unusual transaction feature. But if the glass is an iPad screen, and the drawing is the 

customer’s signature, customers facing this transaction feature for the very first time 

would easily generate a self-evident explanation for why the transaction feature is there. It 

would not be expected to lower valuations. 

We conjecture that the presence of unexplained features lowers willingness to pay 

because they trigger reactions akin to ambiguity aversion (Ellsberg, 1961; Frisch & 

Baron, 1988; Keren & Gerritsen, 1999) in general and comparative ignorance in 

particular (Chow & Sarin, 2001; Fox & Tversky, 1995; Fox & Weber, 2002). Relevant 

but unknown information may make consumers less confident in the decision to make the 

purchase (Chow & Sarin, 2001; Fox & Tversky, 1995; Fox & Weber, 2002) or perhaps 

make them feel the seller has more information that she may use to her advantage (Frisch 

& Baron, 1988, p. 153; Keren & Gerritsen, 1999). The presence of unexplained features 

creates an imbalance between seller and buyer in terms of what relevant information they 

have for the transaction. Weirdness aversion, the aversion to transactions with 

unexplained features, may then constitute the generalization of ambiguity aversion to 

situations that lack (explicit) uncertainty. 
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We demonstrate the practical relevance of an aversion to unexplained transaction 

features by focusing on a research paradigm where researchers unintentionally 

manipulated the presence of unexplained transaction features and obtained a result, often 

referred to as the “uncertainty effect” (Gneezy et al., 2006). We find that the uncertainty 

effect may instead be caused by weirdness, or the presence of unexplained transaction 

features. 

Gneezy et al. (2006) documented that people were willing to pay less for a risky 

prospect than for its worst possible outcome. For instance, people were willing to pay an 

average of $26.10 for a $50 Barnes and Noble gift card but only $16.12 for a gamble 

where participants were guaranteed to win either a $50 or $100 gift card, each with a 

50% probability. This general finding has been replicated by many independent research 

teams (e.g., Andreoni & Sprenger, 2011; Newman & Mochon, 2012; Simonsohn, 2009; 

Yitong Wang, Feng, & Keller, 2013; Yang, Vosgerau, & Loewenstein, 2013).1 

These uncertainty effect studies pit valuations of a risky option against valuations 

of a riskless one. The risky option requires a mechanism that introduces risk, while the 

riskless option does not. For example, researchers have generated risky prospects by 

asking participants to buy coin flips, lottery tickets, unlabeled envelopes, and gift cards of 

unknown value and have compared participants’ valuations of these transactions to that 

of buying a gift card outright. There is no explicit nor implicit justification to sell gift 

                                                           
1 Keren and Willemsen (2009) report results where the uncertainty effect is not observed when comparing 

average valuations. Gideon Keren shared the raw data from that article with us. We analyzed it as in 

Simonsohn (2009), comparing the entire distributions of responses and found that a substantial share of 

participants do show the effect. Rydval et al. (2009) provide the only failure to replicate the uncertainty 

effect that we are aware of. Their favored explanation is that participants in other experiments 

misunderstood the task and/or payoffs. Yang et al. (2013) find that the uncertainty effect is only observed 

for willingness to pay and not for willingness to accept measures. 
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cards of unknown value or to utilize a coin flip to determine their value. Therefore, while 

these mechanisms do generate risk, they also introduce unexplained features to the 

transaction.  

Uncertainty effect studies, therefore, have included a risky transaction with 

unexplained features and a not risky one without unexplained features, perfectly 

confounding risk with weirdness. In this paper, we report studies that manipulate the 

presence of unexplained features independently of risk. Our results are consistent with an 

aversion to unexplained features accounting for somewhere between the preponderance 

and the totality of the uncertainty effect. After presenting our empirical results, we 

discuss how unexplained features could be present in other paradigms used to study 

consumer behavior.  

 

TRANSPARENT REPORTING 

Studies 1-5 were run on Amazon’s Mechanical Turk (MTurk) and were 

administered through Qualtrics. Study 6 was incentive compatible and run in a behavioral 

lab. For all studies we decided sample size before collecting any data. MTurk participants 

were not allowed to participate in more than one study. We included attention checks for 

Studies 5A and 5B. Studies 5A, 5B, and 6 were preregistered. For all studies we report all 

data exclusions (if any), all manipulations, and all measures. Data, analysis code, 

preregistrations, and survey materials are available at http://osf.io/x8cqm.  

 

  

http://osf.io/x8cqm
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STUDIES 1-3: WEIRD, BUT NOT RISKY  

 Our first three studies are similar, so we present them together. In all three we 

modified the traditional uncertainty effect paradigm to disentangle the effect of risk from 

the effect of unexplained features on valuations. For a more fluent reading experience, we 

refer to transaction that include unexplained features as “weird” and to the presence of 

such features as “weirdness.” The uncertainty effect paradigm pits the valuation of a 

riskless prospect (e.g., buying a $50 Target gift card) against that of a risky one (e.g., 

flipping a coin to determine if the gift card is for Target or for Walmart). This paradigm 

confounds risk and weirdness because the manipulation that introduces risk also 

introduces unexplained features to the transaction (e.g., flipping a coin). To examine the 

importance of this confound, we created a third type of transaction, one that was weird 

but not risky. Specifically, this was a transaction that includes the same unexplained 

features present in the risky transactions (e.g., buying a token redeemable for a gift card) 

but with a certain outcome (e.g., the value of the gift card is known).   

 

Method 

 Design. In Study 1 (N = 603; 29.6% female), we randomly assigned participants 

to one of three conditions asking them indicate their maximum WTP for a transaction.  

The first two were analogous to traditional uncertainty effect studies: 
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Condition 1. Neither weird nor risky:2 
We want to know how much you would be willing to pay for two different 

items, a $50 Walmart   gift card and a $50 Target gift card.  

 

If you could buy only the $50 Walmart gift card, what is the most 

you would pay for it? 

 

If you could buy only the $50 Target gift card, what is the most you 

would pay for it? 

 
Condition 2. Weird and risky: 
Imagine that you are standing in front of a table that has a locked 

box on it. The box has two gift cards inside: a $50 Walmart and a 

$50 Target gift card. 

 

You can pay to open the box and choose a gift card, which will be 

yours to keep. The gift cards do not have the names of the stores 

printed on them, so you will not know which gift card is which.  

 

What is the most you would be willing to pay to open the box? 

 

Uncertainty effect studies compare the valuation of similar pairs of transactions. Any 

difference in WTP can therefore be caused by the risk difference (having a known vs. 

unknown outcome) or by the weirdness difference (buying outright vs. paying to open a 

box). We addressed this confound by adding a weird but not risky condition. Participants 

read the same scenario as those in the weird and risky condition, except the gift cards were 

labeled, so participants knew which card they were getting before choosing. Specifically, 

it read (differences between Conditions 2 and 3 underlined here but not in original 

materials): 

Condition 3. Weird but not risky:   
Imagine that you are standing in front of a table that has a locked 

box on it. The box has two gift cards inside: a $50 Walmart and a 

$50 Target gift card.  

 

                                                           
2 In Study 1, some participants valued Walmart/Target gift cards and others valued Amazon/Barnes & 

Noble gift cards. Because subsequent studies only included the former, we report results for the latter in 

footnote 3. We also collected data on self-reported average expenditures in other purchases to use as 

covariates to increase power, but they were uncorrelated with the dependent variable and therefore not 

useful. We did not collect these in subsequent studies. See Supplement 2 for covariate results.  
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You can pay to open the box and choose a gift card, which will be 

yours to keep. The gift cards have the names of the stores printed 

on them, so you will know which gift card is which.  

 

What is the most you would be willing to pay to open the box? 

 

 After running this study, we identified a potential confound. The weird 

transactions (paying to take one of two gift cards from a box) had two possible outcomes, 

while the not weird transaction had only one. We believed this difference, rather than 

weirdness, could explain any observed differences (e.g., because people are averse to 

explicitly rejecting an outcome). In Study 2 (N = 308; 35.5% female) we reran the two 

weird conditions and added a new weird condition that had only one possible outcome. 

Across the three conditions, then, participants paid to open a box and take a card from it. 

The conditions differed on whether the box contained one labeled gift card (new 

condition), two labeled gift cards, or two unlabeled gift cards. We did not rerun the 

neither risky nor weird condition. 

In Study 3 (N = 403; 36.8% female) we reran all four conditions from Studies 1 

and 2 with a different operationalization of risk and weirdness: purchasing a token at an 

event and redeeming it for a gift card. The four conditions were: 

1. Neither weird nor risky 
What is the highest amount you would be willing to pay for a $50 

[Walmart/Target] gift card? 

(Target and Walmart counterbalanced within-subjects) 

 

2. Weird but not risky, one option 
Imagine that you are at an event where there are tokens for sale. 

These tokens can be redeemed at a cashier for a $50 

[Walmart/Target] gift card. What is the highest amount you would 

be willing to pay for one of these tokens? 

(Target and Walmart counterbalanced within-subjects) 
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3. Weird but not risky, two options 
Imagine that you are at an event where there are tokens for sale. 

These tokens can be redeemed at a cashier for your choice of 

either a $50 Walmart gift card or a $50 Target gift card. What 

is the highest amount you would be willing to pay for one of 

these tokens? 

 

4. Weird and risky 
 Imagine that you are at an event where there are tokens for 
sale. These tokens can be redeemed at a cashier for either a $50 

Walmart gift card or a $50 Target gift card. The cashier will 

flip the token, and if it lands on heads, you will receive the 

Walmart gift card. If it lands on tails, you will receive the 

Target gift card. What is the highest amount you would be willing 

to pay for one of these tokens? 

 

Results 

 Figure 1 depicts results for Studies 1-3. We identify four main takeaways: 

1. In Studies 1 and 3, we replicate the original uncertainty effect (Study 2 does 

not allow testing it). Participants valued the weird and risky prospects (M = 

$25.80), less than their least-valued neither weird nor risky gift card (M = 

$39.37). The risky option was valued significantly less than its worst outcome 

in both studies, ts > 6.58, ps < .001. 

2. Holding weirdness constant, there is no apparent uncertainty effect. 

Comparing the two weird conditions, risky gift cards (M = $25.60 across all 

studies) were not valued significantly less than the riskless gift cards (M = 

$28.39 across all studies), whether they had one or two options (Study 1:  

t(199) = 1.92, p = .057; Study 3: ts < 1.64, ps > .10). Based on point-estimates 

of the means, the effect of weirdness is two-thirds (Study 1) to three-quarters 

(Study 3) as large as the uncertainty effect is when weirdness is not accounted 
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for.3 We believe some of this residual effect we are attributing to uncertainty 

is also attributable to weirdness, because it seems likely that, in these 

scenarios, uncertainty makes the weird scenarios weirder by adding an 

additional unexplained feature, flipping a token to determine the value of a 

gift card. We could not estimate this for Study 2, because it did not include a 

not weird condition. 

3. Contrary to our initial expectations, these results are not driven by the number 

of potential options. Valuations for the weird but not risky transactions are 

similar when they involve one or two possible outcomes, ts < .71, ps > .47. 

4. Study 3 rules out a potential confound for Studies 1 and 2. In the box 

scenarios, participants may have believed that they had to make two 

payments, one to open the box and another to purchase the gift card. Because 

very few participants paid $0 in the weird scenarios (as would be expected if 

this were the case; see Supplement 2), we believe this is unlikely, although a 

reviewer also raised the possibility that participants may have averaged the 

two payments when reporting their WTP. We obtain very similar results in the 

token scenario, where this ambiguity is not present, which appears to rule this 

possibility out. 

 

  

                                                           
3 For the Barnes & Noble and Amazon gift cards in Study 1, the means are $35.91 (neither weird nor risky), 

$27.77 (weird but not risky), and $22.30 (weird and risky). The total uncertainty effect amounts to $13.61, 

with weirdness accounting for nearly 60% of the effect. 
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Figure 1. Average valuations (Studies 1-3) as a function of risk and weirdness 

 

 
 
Notes: Hypothetical valuations for $50 gift cards. Risk involves whether it is for Target or Walmart, 

operationalized via opening a box and selecting one of two unlabeled envelopes (Studies 1 & 2), or 

purchasing a token exchangeable for one of the two gift cards, determined by flipping the token (Study 3). 

Weird but riskless involves labeled envelopes (Studies 1 & 2), or participants choosing what to redeem the 

token for (Study 3). Transactions with one outcome (bottom row) involve box with 1 gift card (Study 2) or 

token with predetermined value (Study 3). Error bars represent 95% confidence intervals. 

 

STUDY 4: BIGGER DIFFERENCES IN OUTCOMES 

In the first three experiments, the risky prospects involved gift cards with the 

same face value ($50) for different stores (e.g., Target vs. Walmart). This design, 

originally used by Newman and Mochon (2012), allowed us to create weird but not risky 

conditions where participants could meaningfully choose between gift cards, whereas 

choosing between a $50 card and a $100 card is not a meaningful choice. However, 

minimizing outcome variance may have inflated the importance of the unexplained 

features. In other words, we may have found risk did not matter much because we created 

situations without much risk. In this experiment, we created risky prospects with greater 

outcome variance. 
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Method 

Sample. We recruited 604 participants (39.4% female), each paid $0.25. 

Design. Participants were randomly assigned to one of eight conditions in a 

between-subjects design. Two not weird conditions were similar to those in Studies 1 and 

3: participants provided their WTP for either a $50 Target gift card or a $100 Target gift 

card bought outright. The remaining six conditions involved weird transactions and 

conformed to a 2 (transaction: box vs. token) x 3 (value: $50 vs. $100 vs. risky) design. 

Participants read either the box or token scenarios from the prior studies, where the 

outcomes were either a $50 Target gift card for sure, a $100 Target gift card for sure, or a 

Target gift card that was worth either $50 or $100, each with 50% probability. We did not 

include a condition where participants could choose either a $50 or $100 gift card 

because we assumed all participants would choose $100. We decided before data 

collection began to obtain 120 observations from the not weird conditions and 60 from 

each weird condition (since we had two versions of weirdness, 60*2=120). 

Results 

 Beginning with the token conditions, the uncertainty effect was again replicated 

when not accounting for transaction weirdness. Participants valued the risky token $6.27 

less than they did its worst possible outcome purchased outright (M = $37.23 and M = 

$43.50, respectively), t(179) = 2.70, p = .008.  Comparing the weird conditions, people 
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paid $5.59 more for the risky prospect (token exchangeable for $50 gift card: M = 

$31.64; risky token: M = $37.23), t(118) = 1.57, p = .12.4  

 The uncertainty effect was also replicated in the box conditions ($50 Target gift 

card bought outright: M = $43.50; risky box: M = $25.23), t(180) = 9.13, p < .001. The 

difference between the risky prospect and its least valued outcome was much smaller 

when comparing the two weird conditions ($50 gift card in box: M = $29.44; risky box 

with $50 or $100 gift card: M = $25.23), t(120) = 1.40, p = .16. The total uncertainty 

effect is about $18 ($43.50-$25.23). The effect of weirdness alone is about $14. As 

argued above, the residual $4 effect could be the result of weirdness if choosing among 

unlabeled cards seems less justified than taking a labeled card out of a box.  

There was also a sizable main effect of weirdness for individual valuations of the 

$50 and $100 gift cards. Buying a $50 or $100 gift card outright was valued at $43.50 

and $86.49, respectively, whereas a $50 or $100 gift card in a box was valued at $29.44 

and $51.47, respectively, and a token exchangeable for a $50 or $100 gift card was 

valued at $31.64 and $65.93, respectively, ts > 5.38, ps < .001. We report all pairwise 

comparisons in Supplement 4. In sum, we obtain results similar to those of Studies 1-3 

using risky prospects with greater outcome variance. The data are consistent with 

unexplained features accounting for somewhere between the preponderance and the 

totality of the uncertainty effect.   

                                                           
4 Analyzing the data as in Simonsohn (2009), the lower bound of people paying less for the uncertain item 

is 3.3% in the token conditions and 19.7% in the box conditions, neither of which is significantly greater 

than 0 (ps > .09). See Supplement 4. 
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STUDIES 5A AND 5B: EVALUATING WEIRDNESS OF PRIOR UNCERTAINTY 

EFFECT STUDIES 

 In Study 5 we more directly test if prior uncertainty effect studies have 

unintentionally manipulated weirdness by asking participants to evaluate the weirdness of 

the underlying transactions in those studies.  

One may measure weirdness on absolute or relative scales, although each has its 

limitations. Absolute scales (e.g., “How weird is this transaction?”) are ambiguous about 

what a transaction is being compared to, or equivalently, what the values in the scale 

represent. Relative scales, on the other hand, (e.g., “Which transaction is weirder?”), may 

create demand effects or change participants’ definitions of weirdness where they think 

the weirdest transaction is the one that is least like the others (even though it may be the 

simplest).  Since neither approach was obviously superior, we pursued both, and in both 

cases we explicitly defined weirdness to our participants as involving the presence of 

unexplained features. Participants judged weirdness on both an absolute scale (Study 5A) 

and on a relative scale (Study 5B). We obtained consistent results with both methods. 

Risky transactions in prior uncertainty effect studies are weirder than their riskless 

counterparts.  
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STUDY 5A: BETWEEN-SUBJECTS RATINGS OF WEIRDNESS 

Method 

 Sample. We recruited 714 MTurk participants, 600 of whom (53.3% female, Mage 

= 35.3 years) passed an attention check and were able to continue to the rest of the 

survey, each paid $0.40 (pre-registration: https://aspredicted.org/3mu9d.pdf).    

 Design. In a between-subjects design, participants evaluated the weirdness of 

transactions used in prior uncertainty effect studies. Participants began by reading this 

passage: 

We will show you an example of a purchase that experimenters ask 

participants to evaluate. We are interested in knowing how 

“weird” you think the purchase is. By “weird,” we mean how much 

the purchase has unusual and unexplained features.   

Participants then read one of eight questions used in prior uncertainty effect 

studies—two from Gneezy et al. (2006), three from Yang et al. (2013), and three from 

this paper. Three of these questions were “baseline” questions (i.e., the riskless valuations 

that were used as control conditions in uncertainty effect studies).5 We preregistered that 

we would collapse the ratings for these conditions for analysis. The other five valuations 

were used in prior studies—Gneezy et al.’s (2006, p. 1301) lottery, Yang et al.’s (2013, p. 

737) certain and uncertain coins, our certain and uncertain boxes (Study 4). See the 

Appendix for the exact text of these stimuli. After reading the question, participants rated 

its weirdness using the following scale: “How weird is it to buy a gift [card/certificate] 

                                                           
5 These questions were slightly adapted in order to sound like an actual transaction (e.g., “Imagine you are 

buying this”) rather than an abstract valuation (e.g., “What is the most you are willing to pay for this?”). 

https://aspredicted.org/3mu9d.pdf
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like this?” (1 = It is not weird at all; 2 = It is a little weird; 3 = It is very weird; 4 = It is 

extremely weird). If risk and weirdness were confounded in these studies, we would 

expect that the weird transactions would be rated as weirder than the baseline ones. 

Results. Consistent with the notion that prior uncertainty effect studies have 

confounded risk and weirdness, participants rated all of the weird transactions (1.94 ≤ Ms 

≤ 2.68) as weirder than the baseline transaction (M = 1.35), all ts > 4.83, all ps < .001. 

See Figure 2, panel (i). In addition to this pre-registered comparison, we compared the 

share of participants rating a transaction as “not weird at all.” Seventy percent of 

participants gave this rating to the baseline transaction compared to between 8% and 39% 

for the weird transactions, Zs > 4.45, ps < .001.  

STUDY 5B: WITHIN-SUBJECTS RANKINGS OF WEIRDNESS 

Method 

 Sample. We recruited 184 participants, 153 of whom (42.7% female, Mage = 35.5 

years) passed an attention check and were able to continue to the rest of the survey, each 

paid $0.40 (pre-registration: https://aspredicted.org/p4hi5.pdf).   

Design. All participants were given the same instructions as in Study 5A, but 

instead of rating them between-subjects, they were shown six transactions (one of the 

three baseline transactions and all five weird transactions) and asked to rank them from 

weirdest (1) to least weird (6). Ties were not allowed. 

  

https://aspredicted.org/p4hi5.pdf
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Results 

 Consistent with Study 5A and more generally with the notion that prior 

uncertainty effect studies have confounded risk and weirdness, participants ranked 

purchasing a gift card outright as the least weird (M = 4.43 out of 6) out of all the 

transactions (between 2.40 for the Risky Box, t(149) = 8.47, p < .001, and 4.00 for the 

GLW Lottery, t(149) = 2.00, p = .047). See Figure 2, panel (ii). Here the weirdness 

difference between the baseline and the original uncertainty effect (Gneezy et al., 2006) 

seems smaller than in Study 5A. Part of this may be explained by some participants 

reversing the scale, since 14% of participants ranked the baseline transaction as the 

weirdest (the second most popular answer). Nevertheless, looking at the number of 

participants who ranked the transaction as least weird, a comparison not included in our 

pre-registration, we see a more substantial difference. Specifically, while 46% of people 

ranked the baseline as the least weird, only 15% did for the Gneezy et al. (2006) lottery, 

Z = 5.97, p < .001.   

STUDY 6: INCENTIVIZED LAB STUDY 

To this point, all of our studies have used hypothetical scenarios. To address the 

possibility that our findings were driven in part by participants’ inattention or lack of 

motivation, our last study is an incentive-compatible replication (pre-registration: 

https://aspredicted.org/dq97y.pdf). 

  

https://aspredicted.org/dq97y.pdf
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Figure 2. Prior uncertainty effect studies are weirder than their baseline comparisons 

 

 

Notes: Panel (i) shows between-subjects ratings (Study 5A; N=600) of transactions used in prior 

uncertainty effect studies (see Appendix). The scenarios were described verbatim to participants. The y-

axis shows the average response to the question: ‘We are interested in knowing how “weird” you think the 

purchase is . . .  By “weird,” we mean how much the purchase has unusual and unexplained features.’ 

Panel (ii) shows within-subjects rankings of weirdness (Study 5B; N=153) of the same scenarios.  
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Method 

 Sample. We recruited 219 participants (71.1% female, Mage = 20.8 years) at the 

Wharton Behavioral Lab. This study was part of a larger lab session with several 

unrelated studies, and all participants were paid $10 for completing the session.  

Design. In a three-cell between-subjects design, participants indicated their 

willingness to pay (WTP) for an item. The three conditions were (i) buying a $50 

Amazon gift card (neither weird nor risky condition), (ii) paying to open a locked box 

with a $50 Amazon gift card and taking the card (weird but not risky condition), and (iii) 

paying to open a locked box containing a $50 gift card and a $100 gift card, with values 

only visible on the inside, and taking a card without knowing its value (weird and risky 

condition). 

One in every twenty participants was randomly selected to have their decision 

count for real and receive a $100 bonus (to fund the purchase). To make the WTP 

elicitation incentive-compatible, a price was set but not revealed to participants. If 

participants’ WTP was greater than that price, they made the purchase and paid that price. 

Otherwise, they kept the entire bonus and did not make a purchase. To indicate their 

WTP, we showed participants a price, starting at $5, and they indicated if they would 

make the purchase for that amount. If they said yes, we increased the price by $5, and 

they answered again. This was repeated until they answered “No” or the price reached 

$100.6 The highest price participants said “Yes” to is our dependent variable.  We 

                                                           
6 Only one participant (in the neither weird nor risky condition) gave a WTP of $100. 
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purposefully avoided a multiple-price-list and used a multiple-price-sequence, concerned 

that the price list could prompt participants to choose valuations in the middle of the 

range for the uncertainty condition, attenuating the uncertainty effect (original materials: 

https://osf.io/x8cqm/).7 

Results 

Without accounting for weirdness, for the presence of unexplained transaction 

features, participants again acted as if they were extremely risk averse. Willingness to 

pay for the weird and risky transaction (M = $39.24) was similar to that for the neither 

weird nor risky one (M = $38.70), t(143) = .19, p = .85, even though the former has an 

expected value approximately 50% higher than the latter. As in prior uncertainty effect 

studies, this suggests the presence of direct risk aversion, since neither prospect theory 

nor expected utility theory can generate such extreme levels of risk aversion. But if 

defined narrowly, as obtaining a strictly lower mean, this result does not replicate the 

uncertainty effect.8 In any case, this comparison confounds risk and weirdness.  

Controlling for weirdness, participants appear to show very mild (if any) risk 

aversion: the risky purchase (M = $39.24) was valued noticeably above the not risky one 

                                                           
7 A reviewer expressed this concern about a multiple-price-sequence that we thought was worth sharing 

with readers: “[A] price-sequence may not be innocuous, either:  The initial, low prices may serve as 

anchors for subjects’ valuations […] which may bias WTPs down.  If such anchoring effects were 

asymmetric, and were more pronounced for risky or weird transactions (because, say, preferences for risky 

or weird transactions are less stable), then they could make the experimental results difficult to interpret.” 

To respond to this concern we ran a study on MTurk manipulating whether the multiple-price-sequence 

was increasing or decreasing. The effect of weirdness is significant and of the same magnitude for both. 

See Supplement 7. 
8 Although we preregistered that we would calculate the proportion of the uncertainty effect explained by 

weirdness, we could not do this here because we do not directionally replicate the original uncertainty 

effect. 

https://osf.io/x8cqm/
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(M = $30.47), t(143) = 2.94, p = .004. In fact, participants valued the uncertain gift card 

close to what a risk neutral buyer would be expected to value it. In particular, assuming 

participants would pay twice as much for a $100 gift card as they would for a $50 gift 

card (which is a conservative assumption that does not account for diminishing sensitivity 

or marginal utility), a risk neutral valuation of the risky gift card is $45.71 (1.5 * $30.74), 

which is not much higher than what we observe ($39.24), t(143) = 1.77, p = .080.9   

Finally, holding risk constant, we replicate weirdness aversion. The not weird 

purchase (M = $38.70) was valued above the weird one (M = $30.48), t(144) = 3.17, p = 

.002.  

GENERAL DISCUSSION 

We have documented that the presence of unexplained features lowers willingness 

to pay (WTP). We manipulated the presence of such features, weirdness, independently 

of risk and found that the effect of weirdness on WTP is of about the same magnitude as 

the uncertainty effect, which had previously been attributed to the presence of 

uncertainty. These results suggest that subtle transaction features can have dramatic 

effects on WTP—dramatic enough for multiple independent research teams to run 

successful replications of the original Gneezy et al. (2006) finding, but subtle enough that 

they did not notice the potential confound when doing so (including one of us; see 

Simonsohn, 2009).   

                                                           
9 To perform this t-test we multiplied all valuations in the weird but not risky condition by 1.5, and 

conducted a standard difference of means t-test comparing this new variable with the observed valuations 

in the weird and risky condition. The comparison, therefore, treats $45.71 as an estimated magnitude with a 

standard error (which it is), rather than as a pre-set constant (which it is not). We did not preregister this 

analysis, because we did not expect this valuation to be so high.  
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Unexplained features is the key manipulation 

 We have characterized our key manipulations as increasing weirdness, or 

introducing unexplained features to transactions. Some of the seven members of our 

review team proposed alternative interpretations for our manipulations. One reviewer 

proposed that perhaps we simply manipulated the total number of features (whether weird 

or not).  We do not believe the number of features per se is critical. First, in an 

experiment included in a prior version of the manuscript, we found that merely adding 

features did not reduce valuations (see supplement 6). Second, in many empirical studies, 

valuations are often elicited with procedure that require different numbers of steps (e.g., 

asking for a price outright vs. going through a multiple-price list), and it has not been 

previously documented that transactions with more steps lead to lower valuations. Third, 

there is no obvious psychological process that would seem to justify this prediction. In 

contrast, we believe that all mechanisms that have been proposed for ambiguity aversion 

would also predict that unexplained features lower valuations. 

 Another reviewer proposed that perhaps what’s special about the features we 

introduced is not that they are unexplained features, but that they are unusual features that 

transactions outside the lab would not include. That is to say, people would pay less for 

opening a box to buy an item, not because they see no reason to have that extra step, but 

because outside the lab they have never purchased an item by paying to open the box. We 

do not find this alternative explanation compelling either. First, most transactions in the 

lab are rather unusual. Take, for example, our baseline condition in incentive-compatible 

Study 6. Participants completed a multiple-price sequence which was then compared with 
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a pre-set price to determine if they would purchase a $50 gift card held by the 

experimenter.  This is not a transaction they would engage in outside the lab. And yet, 

their WTP was a rather high $38.70 and comparable to the valuations from prior studies 

that did not involve the convoluted incentive-compatible mechanism (e.g., $37 in Study 1 

here).  

Second, we can easily imagine situations where a completely new transaction 

feature, because it is accompanied by an explanation, would not be expected to lower 

WTP. Consider again that example from the introduction about a person’s first payment 

by signing on an iPad, or perhaps an American asked to pay in rubles during her first 

coffeeshop visit in Moscow. In these examples, consumers are facing entirely novel 

transaction features, but these features have self-evident explanations and would not be 

predicted to lower WTP. 

 When risk is not weird 

Our studies manipulate unexplained features independently of risk (i.e., we 

include transactions that are weird but not risky), but not risk independently of 

unexplained features (i.e., we do not include transactions that are not weird but risky). 

The absence of a not weird but risky cell in our experiments may pose some problems for 

the interpretation of our studies.  If a not weird but risky condition was valued similarly 

(or lower) than a weird and risky scenario, it would imply that unexplained features 

moderate, rather than account for, the effect of risk in those transactions. Although we 

think this is unlikely, our data cannot rule this out.   



27 
 

 

 

This is a challenge to explore empirically because it requires a situation where 

risk is an expected feature (e.g., buying stocks), and is therefore not weird. In such 

situations, however, offering an option with no risk (e.g., a riskless stock) would be 

weird, since it would involve the presence of a feature that requires an explanation (“why 

is this stock riskless?”). Yang et al.’s (2013) Experiment 4 provides an example of our 

concern. They include a condition where participants indicate their WTP for a coin flip 

that paid a $50 gift certificate if the coin landed on heads or tails (“Certain Coin Flip,” p. 

737). In our Studies 5A and 5B, we asked participants to rate how weird this transaction 

was, and they rated it as weirder than the risky coin flip (i.e., as containing more 

unexplained features), likely because a coin flip implies risk and removing risk makes the 

coin flip unnecessary.   

Further, even holding all features of a transaction constant, all risk per se may not 

be equally unexplained. For instance, in most gambling situations, payoffs are inversely 

proportional to the probability of winning. Therefore, a lottery with a 1% chance of 

winning $100 and a 99% chance of winning $50 is more typical (i.e., has an implicit 

explanation) than a gamble with a 99% chance of winning $100 and a 1% chance of 

winning $50. If this were true, and if unexplained features reduce valuations, people 

should appear more risk averse for the latter lottery. A closer look at Gneezy et al. (2006, 

p. 1287) reveals evidence consistent with this conjecture. Participants are risk seeking 

(i.e., WTP > Expected Value) when there is a 1% chance of winning the larger price and 

risk averse (i.e., WTP < Expected Value) when there is a 99% chance of winning the 

larger prize (p. 1287, Table 1). In fact, the median WTP for these two gambles are 
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identical ($37.50) in this study. Of course, this is speculative and there are several 

potential explanations for these findings that have little to do with the specific transaction 

features (e.g., probability weighting; McGraw, Shafir, & Todorov, 2010; Rottenstreich & 

Hsee, 2001).  

Attributing the uncertainty effect to unexplained transaction features may reconcile 

inconsistent findings 

The “direct risk aversion” explanation for the uncertainty effect (Gneezy et al., 

2006; Simonsohn, 2009) seems at odds with studies that show consumers responding 

more favorably to risky promotions than to riskless ones. Specifically, Mazar, 

Shampanier, and Ariely (2016) find that consumers prefer a probabilistic discount to a 

certain discount of the same expected value (e.g., a 10% chance of getting item for free 

vs. a certain 10% discount), while Goldsmith and Amir (2010) find that offering a 

randomly determined prize for making a purchase is nearly as effective as offering the 

most attractive prize for sure. 

If the uncertainty effect were caused by unexplained transaction features, rather 

than direct risk aversion, at least two explanations arise for the apparent contradiction. 

First, it may be that consumers can readily identify a reason for a company to offer the 

type of promotions examined in those studies. They have an explanation, so they are not 

aversive.10 Second, in uncertainty effect studies, the focal item (e.g., the gift card 

participants are purchasing) is uncertain, while in the risky promotion studies, the 

                                                           
10 A reviewer also suggested that the certain discount may be considered weird in these studies. 
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“bonus” is uncertain. The focal transaction does not contain an unexplained feature, the 

bonus does. Perhaps people tolerate (or even prefer) these features in such circumstances.  

Another difference is that uncertainty effect studies typically use WTP as their 

dependent variable, while the risky promotion studies use choice (Mazar et al., 2016) and 

attractiveness ratings (Goldsmith & Amir, 2010). Perhaps the WTP question implicitly 

forces a transaction on participants, enhancing the negative suspicions of buyers, but this 

pressure dissipates in the other tasks. Moon and Nelson (2015) do not replicate the 

uncertainty effect with a choice task, but Gneezy et al. (2006, p. 1292) do. The role of 

elicitation mode on the effects of risk and of unexplained features remains an open 

question, as there are too many differences in these respective designs to meaningfully 

interpret the differences in results. 

 

Potential transaction feature confounds in other literatures 

Much of consumer research involves the comparison of valuations of the same 

item across different transaction contexts. For example, the endowment effect compares 

valuations of items being sold against those being purchased, and time preference studies 

compare the valuations of delayed payments occurring at different points in time (e.g., 

payments happening today vs. payments happening in the future). Those contextual 

differences may unintentionally have added unexplained features as well.  

For example, it may be the case that giving participants an item and immediately 

ask them to sell it is an atypical feature, relative to giving them money and offering the 

opportunity to buy an item. This would depress WTP relative to WTA. Similarly, 
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delaying a payment due today may be perceived as less justified than delaying a payment 

occurring in the future. This potential confound would lead to more severe discounting of 

immediate than future delays, typically interpreted as evidence of impatience. In many 

cases, however, controlling for these differences may be difficult. In our case, for 

example, we could not find a way to induce risk without adding transaction features, so 

we added features to the riskless option, this may be the easiest path to control for the 

weirdness confound in other paradigms as well. 

This paper contains a supplement. Table 1 summarizes its contents. 

 

Table 1. Index of supplementary materials (available from http://osf.io/fzjuw)   

Section Pages 

Supplement 1. Complete age data for Studies 1-4 2 

Supplement 2. Additional Analyses for Study 1  3-4 

Supplement 3. Within-subject variation in valuation of gift cards in Studies 1-

3 
5 

Supplement 4. Pairwise comparisons across all conditions in Study 4 6 

Supplement 5. All means and pairwise comparisons for Studies 5A-B 7 

Supplement 6. Study S1 – Isolating and mediating with weirdness 8-10 

Supplement 7. Study S2 – Comparing ascending and descending price 

sequences 
11 

 

 

  

http://osf.io/fzjuw
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Appendix. Stimuli used in Studies 5A and 5B 

Baseline (randomly selected from the following): 

• Imagine that you could buy a $50 gift certificate to Barnes and Noble as part of 

this study. The gift certificate is good for use within the next two weeks. 

• Imagine that you could buy a $50 Target gift card as part of this study. 

• We are interested in how much you would pay for a $50 Barnes & Noble gift 

certificate, which you could buy as part of this study. 

Gneezy, List, and Wu (2006, p. 1301) Lottery 

Imagine that we offer you a lottery ticket that gives you a 50 percent chance at a $50 gift 

certificate for Barnes and Noble, and a 50 percent chance at a $100 gift certificate for 

Barnes and Noble. Whichever gift certificate you win is good for use within the next two 

weeks. 

Yang, Vosgerau, and Loewenstein (2013, p. 737) Certain Coin 

We are interested in how much you would be willing to pay for participating in a coin 

flip. If heads comes up, you will get a $50 gift certificate for Barnes & Noble bookstore. 

If tails comes up, you will get a $50 gift certificate for Barnes & Noble bookstore. 

Yang, Vosgerau and Loewenstein (2013, p. 737) Uncertain Coin 

We are interested in how much you would be willing to pay for participating in a coin 

flip. If heads comes up, you will get a $50 gift certificate for Barnes & Noble bookstore. 

If tails comes up, you will get a $100 gift certificate for Barnes & Noble bookstore. 

Study 4 Certain Box 

Imagine that you are standing in front of a table that has a locked box on it. The box has a 

$50 Target gift card inside. You can pay to open the box and take the gift card, which 

would be yours to keep. 

Study 4 Risky Box 

Imagine that you are standing in front of a table that has a locked box on it. The box has 

two gift cards inside: a $50 Walmart and a $50 Target gift card.  

You can pay to open the box and choose a gift card, which will be yours to keep. The gift 

cards do not have the names of the stores printed on them, so you will not know which 

gift card is which. 
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CHAPTER 2. 

 

CRITICAL CONDITION: 

PEOPLE ONLY OBJECT TO CORPORATE EXPERIMENTS  

IF THEY OBJECT TO A CONDITION 

 

Robert Mislavsky 

Berkeley Dietvorst 

Uri Simonsohn 

 

ABSTRACT 

Why have companies faced a backlash for running experiments? Academics and pundits 

have argued that it is because the public finds corporate experimentation objectionable. In 

this paper we investigate “experiment aversion,” finding evidence that, if anything, 

experiments are rated more highly than the least acceptable policies that they contain. In 

five studies participants evaluated the acceptability of either corporate policy changes or 

of experiments testing those policy changes. When all policy changes were deemed 

acceptable, so was the experiment, even when it involved deception, unequal outcomes, 

and lack of consent. When a policy change was unacceptable, the experiment that included 

it was deemed less unacceptable. Experiments are not unpopular, unpopular policies are 

unpopular.  
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 In June 2014, the Proceedings of the National Academy of Science (PNAS) 

published an article describing the results of a field experiment where academic authors 

(Kramer, Guillory, & Hancock, 2014) partnered with Facebook to manipulate content 

users saw (i.e., “News Feeds”), showing either more positive or more negative emotional 

content, to measure potential emotional contagion. A month later, the online dating site 

OkCupid published a blog post titled “We Experiment on Human Beings,” which 

described three experiments they had run on their users (Rudder, 2014). Reaction to the 

revelation of these experiments was swift and highly negative. 

 The backlash the Facebook and OkCupid experiments received, described by a 

Forbes contributor as “one epic freak out” (Muse, 2014), dominated several news cycles 

despite competing for attention with the 2014 World Cup and major U.S. Supreme Court 

rulings. Articles describing the negative reaction to the Facebook experiment reached the 

front page of the Wall Street Journal and were the number one most popular/shared 

articles on several news outlets, including The Atlantic, The Wall Street Journal, and The 

BBC.11 Articles on CNN.com and in the New York Times proclaimed that Facebook 

treated users like “lab rats” (Goel, 2014; Goldman, 2014). When the OkCupid experiment 

was revealed, an article in FastCompany declared that the experiment was “way creepier” 

than Facebook’s (Greenfield, 2014). Even legislators got involved, calling for 

investigations into data collection practices (R. Meyer, 2014; Stampler, 2014). A few 

months later, Facebook’s chief technology officer formally acknowledged that the 

company was “unprepared” for the reaction elicited by the experiments and admitted that 

                                                           
11 Internet Archive screenshots from The Atlantic (June 29, 2014), Wall Street Journal (June 30, 2014), and 

BBC (June 30, 2014) showing lists of most popular articles can be found at https://osf.io/z39aq.  

http://tinyurl.com/criticalosf
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they “should have considered non-experimental ways” to conduct research on the topic 

(Schroepfer, 2014).  

 In this paper, we present evidence suggesting that the backlash to these 

experiments had nothing to do with the experimentation itself. Instead, the backlash was 

likely driven by the specific policies that these experiments contained (i.e., the individual 

treatment arms), and reactions would have been at least as negative if these were 

implemented as standalone policy changes, outside of an experimental context. We 

conclude that marketing researchers and organizational decision makers should not 

hesitate to run field experiments using treatment arms that they would also be 

comfortable implementing as individual policy changes, since experimentation does not 

make policies more objectionable. Similarly, implementing objectionable policies outside 

of an experiment will not make them more palatable to the public.   

  

FIELD EXPERIMENTS AND MARKETING SCIENCE 

Experimentation provides an unrivalled source of actionable intelligence for 

businesses, governments, and non-profit organizations (Zoumpoulis, Simester, & 

Evgeniou, 2015), allowing researchers to identify the causal effects that alternative 

policies have on behavior.12 Field experiments overcome the lower external validity of 

stylized lab experiments by taking place in the precise environment where specific policy 

changes will occur (DellaVigna, 2009). In part because of these advantages, field 

experimentation has become a popular tool for marketing scholars that is used to test and 

                                                           
12  We define an experiment as an instance where an organization implements different policies for 

different groups with the intention of learning how they differently influence a specific outcome.  
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complement existing theory, as well as develop new insights into buyer behavior on 

wide-ranging topics. Within marketing, field experiments have been used to explore 

charitable giving behavior (Sudhir, Roy, & Cherian, 2016), the effect of social influence 

on the adoption of new technologies (Miller & Mobarak, 2015), strategies for inducing 

multi-channel buying (Montaguti, Neslin, & Valentini, 2016), and consumer purchasing 

habits after the end of a promotion (Yanwen Wang, Lewis, Cryder, & Sprigg, 2016).  

 Given the value of field experimentation, concerns about its acceptability must be 

taken seriously. Many pundits and scholars have interpreted the backlash to well-known 

field experiments as evidence that people have a broad and substantial aversion to 

experimentation. Gino (2015), for instance, proposed that managers are hesitant to run 

experiments within their own organizations, in part because they believe that customers 

and employees do not want to be experimented on. Hill (2014) found that companies that 

do run experiments often resort to using terms like “diagnostic test” or “A/B test” to 

avoid presumed negative associations with experimentation (see also, Luca, 2014).  M. 

N. Meyer (2015) stated that people view field experiments as “more morally suspicious 

than an immediate, universal implementation of an untested practice” (p. 278) and titled 

this preference the “A/B illusion.” 

 If consumers are indeed averse to experimentation, it would constitute an 

important barrier to evidence-based marketing and future collaborations between 

academics and organizations. Organizational decision makers may hesitate to run or 

publicize the results of experiments for fear of negative publicity, and customers may fear 



36 
 

 

 

engaging with companies that they believe will experiment on them. In this article, we 

investigate whether or not such an aversion to experimentation exists.  

 

THREE FORMS OF “EXPERIMENT AVERSION” 

 We define three different forms that experiment aversion could take and preview 

our ability to empirically distinguish among them in this article: 

1. Absolute experiment aversion – All experiments are deemed unacceptable, 

independent of the policies they include.  

2. Relative experiment aversion – An experiment is less acceptable than the 

policies it contains, either because experimentation is a negative attribute (i.e., 

a main effect), or because the underlying policies are deemed less acceptable 

when they are part of an experiment (i.e., an interaction). This means 

experiments with acceptable policies could still be considered acceptable in 

absolute terms, but less acceptable than their underlying policies.  

3. Critical condition – There is no experiment aversion. The acceptability of an 

experiment is instead a weighted average of the acceptability of its policies. 

Most importantly, this implies an experiment is no less acceptable than its least 

acceptable policy. Thus, an experiment is only viewed negatively if one of its 

conditions is viewed negatively. 

 In Studies 1 and 2, we test for absolute experiment aversion and find several 

instances where experiments are, in fact, rated positively. Thus, we reject absolute 

experiment aversion. In Studies 3 and 4 we directly pit the acceptability of experiments 
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against the acceptability of their underlying policies, finding that experiments are rated as 

no less acceptable than their least acceptable policies, consistent with the critical 

condition account of experiment aversion. Experiments, however, were also rated as less 

acceptable than the simple average acceptability of the underlying policies. This may 

reflect either moderate relative experiment aversion or negativity bias, where people give 

more weight to negative attributes than to positive ones (e.g., Folkes & Kamins, 1999; 

Rozin & Royzman, 2001; Skowronski & Carlston, 1989). In Study 5, we tease these two 

apart by asking participants to evaluate experiments with two positive policies that are 

similarly acceptable (thus negativity bias should be absent), and find no evidence of even 

modest experiment aversion. Therefore, our combined results support the “critical 

condition” account of experiment evaluation. 

TRANSPARENT REPORTING 

 

In all 5 studies, participants read scenarios describing an action that a company 

could take (either an experiment or a universal policy change) and indicated how 

acceptable each action is. We ran all studies, except for Study 3b, on Amazon’s 

Mechanical Turk (MTurk) using Qualtrics. Study 3b was a pen-and-paper survey of non-

academic university staff.   

Study materials, data, analysis code, and supplements for all studies as well as 

preregistrations for Studies 3b-5 are available at https://osf.io/z39aq. We report studies in 

the order they were conducted (except for Study 3b, which was added at the request of 

reviewers and conducted after Study 4) and discuss all additional studies conducted but 

not reported in the paper in Supplements 5 and 6. For all studies, we determined sample 

http://tinyurl.com/criticalosf
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size before beginning data collection.13 We report all data exclusions, all manipulations, 

and all measures.  

 STUDY 1: PEOPLE DO FIND (SOME) EXPERIMENTS ACCEPTABLE  

Our first study tests for absolute experiment aversion—people always object to 

experiments, even if all conditions are unambiguously beneficial. We presented 

participants with descriptions of corporate experiments that contained unambiguously 

positive conditions (e.g., giving $5 to employees for visiting the gym) or unambiguously 

negative conditions (e.g., taking $5 from employees for not visiting the gym). If absolute 

experiment aversion exists, participants should find all experiments objectionable. If 

experiments are instead evaluated based on their conditions, participants should only 

object to experiments that contain unambiguously negative conditions. Throughout these 

scenarios, we also added various aspects of experimentation that may contribute to 

experiment aversion, such as deception and lack of consent. If these specific features 

cause experiment aversion, participants should view these experiments negatively, even if 

they have only unambiguously positive conditions. 

Method 

 Sample. We recruited 577 participants on MTurk, of which 505 successfully 

passed the attention check (37.5% female, Mage = 34.1 years). Participants were paid 

$0.75 for completing the study. 

                                                           
13 In our online studies, we typically obtained sample sizes that slightly exceeded our goals because some 

participants did not submit a completion code, allowing additional participants to take the survey. 

Participants, identified by their MTurk ID number, were not able to participate in more than one study. We 

included an attention check (Oppenheimer, Meyvis, & Davidenko, 2009) in the first question, and only 

those who answered correctly were able to participate in the studies. All participant responses are included 

in analyses, regardless of whether or not they completed the entire survey. 
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 Design. Participants were assigned to one of ten experimental conditions. Fifty-

three participants were assigned to the policy change condition. The remaining 

participants (N = 452) were assigned to one of nine experiment conditions. 

 Participants in the policy change condition read descriptions of nine possible 

policy changes. These involved bad, good or very good outcomes, in three different 

contexts. See Table 2. Participants evaluated all nine policies in random order, answering 

three questions about their acceptability. We average them (Cronbach’s α = .96) to 

construct the “policy acceptability index.” These ratings served as a manipulation check 

for our stimuli in the experiment conditions. 

Participants in the nine experiment conditions read one scenario about a company 

running an experiment that randomly assigned employees/customers to one of two policy 

changes from one of the three contexts in Table 2. The condition pairs were bad/good, 

control/good, or good/very good. For example, the shipping control/good scenario read: 

“A shopping company runs an experiment on their shipping system where one 

group of customers is randomly picked and the company starts upgrading all 

‘Standard 5-day’ shipped packages to ‘Priority 3-day’ shipping (without changing 

the cost to the customer). Another group of customers is randomly picked and 

gets no change in their shipping. The company will then compare customer 

satisfaction across the two groups.”  

 

Participants then answered the same three questions from the policy change condition 

(measures 1-3 in Table 2), but now focusing on the experiment as a whole rather than the 

underlying policies. They also answered three additional questions designed to more 

unambiguously evaluate the acceptability of the experiment (rather than willingness to  
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Table 2. Stimuli and measures for Study 1 

        

Policy changes 

Context Bad Good Very good 

1. Shipping  
Slower 
delivery 

Faster delivery 
Much faster 
delivery 

2. Company gym 
$5 penalty 
for not going 

$5 bonus for 
going 

$10 bonus for 
going 

3. Product 
recommendations 

Poorly rated 
products 

Highly rated 
products 

Highest rated 
overall 

 
Measures of Acceptability 

Participants indicated agreement (1=Strongly Disagree; 7=Strongly Agree), 
with these statements. 

Acceptability of policy changes     
1. It is okay for the company to do this.   

 2. If I were [an employee/a customer], I would object to this. 
(reverse-coded) 
3. If I were [an employee/a customer] and was asked, I would agree 
to this. 

 
Acceptability of experiment     

4. It is immoral to run this experiment (reverse-
coded)   
5. People in this experiment are being treated 
like guinea pigs (reverse-coded)   
6. The company should be not allowed to run 
this experiment (reverse-coded)   

Notes: Participants in the policy change condition rated all nine policy changes. Participants in the 

experiment conditions rated one of nine experiments created by pairing two policy changes within a 

context. The pairs consisted of bad/good, control/good or good/very good. Control consists of keeping the 

status quo (e.g., shipping item as promised). The average of questions 1-3 is the policy acceptability index, 

the average of questions 4-6 the experiment acceptability index.  

 

participate in it). We average only these additional three questions (α = .86) to construct 

the “experiment acceptability index.” 14 

                                                           
14 In hindsight we found questions 1-3 to be ambiguous for interpreting the evaluation of experiments. 

Therefore, the experiment acceptability index in the main text is based only on questions 4-6. We report 

results aggregating over all 6 questions in footnote 15. 
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Participants also answered five comprehension checks to ensure they noticed 

potentially controversial attributes of the experiments (e.g., “People will be included in 

this study without agreeing to be included”). No other measures were collected in this 

condition. Results for measures not reported below are reported in Supplement 1.   

Results 

Acceptability of policy changes. Validating our choice of stimuli, the overall 

policy acceptability index for bad policy changes (M = 1.91) was below the midpoint (4) 

and below both the good (M = 6.18) and very good policy changes (M = 6.11), which 

were both above the midpoint. All t-tests vs. midpoint are ts > 20.9, ps < .001. The good 

and very good policies were rated as similarly acceptable, t(312) =.48, p = .63, and were 

close to the highest possible rating (medians of 6.7 and 7 respectively, on a 7-point scale). 

Acceptability of experiments. Figure 3 shows the average experiment acceptability 

index for the nine experiment conditions. The results are inconsistent with absolute 

experiment aversion. In particular, when experiments did not include an objectionable 

condition (control/good, M = 5.11; good/very good, M = 5.17), they were rated above the 

midpoint and as more acceptable than when experiments did include an objectionable 

condition (bad/good, M = 3.25). The experiments with objectionable conditions were in 

turn rated below the midpoint. All t-tests vs. midpoint are ts > 5.9, ps < .001. People 

found experiments to be acceptable when all conditions in the experiment were 

acceptable and found experiments to be unacceptable when a condition in the experiment 

was unacceptable.15 

                                                           
15 These results are based on questions 4-6 in Table 2 (see footnote 14). Including all six questions, the 

results are very similar. Experiments with a bad condition (bad/good, M = 3.01) were rated below the 
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Discussion 

The results from Study 1 are inconsistent with absolute experiment aversion and 

consistent with a critical condition account of experiment evaluation.  Additionally, 

participants found experiments with deception (e.g., one shipping speed was promised, 

another was actually delivered), unequal outcomes (e.g., some participants get $5 for 

attending the gym, others get $10), and lack of consent, to be acceptable, as long as all 

conditions were themselves acceptable.  

 

However, Study 1 has some important limitations. First, the experiments 

evaluated as acceptable had unambiguously beneficial outcomes (e.g., free shipping 

upgrade) and may not generalize to more routine corporate experiments where benefits to 

participants, if any, are less obvious. Second, we measured agreement with statements 

rather than absolute measures of acceptability, making it difficult to know whether the 

experiments are sufficiently acceptable. For example, the good/very good experiments 

were rated M = 5.17 on a 7-point scale where 7 implies strong agreement with the 

experiment being acceptable. While this is significantly above the midpoint, is it high 

enough to suggest people would not object to the experiment? Third, participants’ ratings 

in the policy change and experiment conditions are not directly comparable because: (i) 

the sets of dependent variables, and their interpretation, are different in the policy and 

experiment conditions (see footnotes 14 and 15) and (ii) participants saw all nine policies 

in the policy change condition and only two in the experiment conditions. Fourth, 

                                                           
midpoint and below experiments without a bad condition (control/good, M = 5.17; good/very good, M = 

5.30), which were both above the midpoint. All t-tests vs. midpoint are ts > 8.4, ps < .001.  
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participants in this experiment may have higher than average tolerance for experiments 

because they routinely volunteer for experiments on Amazon Mechanical Turk. 

 

 

Figure 3. Experiments without bad policies (gray and white circles) are rated positively 

(Study 1) 

 
 
Notes: Each participant (N = 452) rated the acceptability of one experiment (out of 9 possible 

experiments). Markers depict sample averages; error bars represent 95% confidence intervals.  

 

In Studies 2-5 we address all of these issues. We use a wider variety of stimuli 

(Studies 3a and 3b) and have participants evaluate experiments similar to (controversial) 

experiments that companies have actually run (Studies 2 and 4). We use questions with 

less ambiguous endpoints (Studies 2-5) and with neutral and labeled midpoints (Studies 

3-5). We have participants in the policy change condition rate only the two policy 
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changes that are included in the corresponding experiment condition (Studies 3-5) and 

use the same measures of acceptability across conditions (Studies 2-5). Finally, in Study 

3b, we recruited participants who do not routinely volunteer for experiments. 

STUDY 2: PREDICTING EXPERIMENT RATINGS FROM CONDITION RATINGS 

 

 Kramer et al. (2014) ran an experiment studying emotional contagion through 

social networks. They manipulated mood by modifying the emotional content of 

Facebook users’ status updates and measured its effect on users’ subsequent emotion 

expression, which upset many users and spurred public outrage (Albergotti, 2014).  If, as 

we have conjectured, people objected to the study because of its polices and not just 

because it was an experiment, then they should not object to a similar experiment with 

only acceptable conditions. In Study 2a, we conduct an exploratory search for acceptable 

and unacceptable mood inductions Facebook could have employed. In Study 2b, we test 

if the acceptability of the experiment hinges on the acceptability of the mood inductions 

used.  

STUDY 2A: FINDING (UN)ACCEPTABLE MOOD INDUCTIONS 

Method 

Sample. We recruited 382 participants on MTurk, of which 303 passed the 

attention check (40.7% female, Mage = 30.3 years). Participants were paid $0.30 for 

completing the study. 
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Table 3. Overview of study design and contributions 

Study 1 

• Test of absolute experiment aversion. 

• People find experiments with unambiguous benefits 

acceptable. 

Studies 2a & 2b 

• Extends Study 1 with more realistic stimuli. 

• Acceptability of conditions predicts acceptability of 

experiments. 

Study 3a 

• Direct comparison of experiments with underlying 

conditions. 

• Experiments rated at least as acceptable as worst condition is. 

• Results hold for variety of stimuli. 

Study 3b 
• Replicates Study 3a results using a sample that does not 

regularly volunteer for experiments 

Study 4 
• Best known example of experiment aversion is not an 

instance of experiment aversion 

Study 5 
• Experiments with similar and positively-viewed policies are 

rated identically to the average policy  

 

 

Design. We generated six interventions, involving positive and negative versions 

of three possible changes to the site—showing only sad ads, showing only happy ads, 

showing sad status updates first, showing happy status updates first, showing the least 

liked status updates first, and showing the most liked status updates first. Each participant 

evaluated three alternative policies, one for each possible change to the site, randomizing 

whether participants saw the positive or negative change. We counterbalanced the order 

of the stimuli.    

Measures. Participants answered two questions for each policy change: “Is it okay 

for a company to do this?” and “Would you object to a company doing this?” These 

questions were answered on 7-point scales, with endpoints labeled “1. It’s definitely not 
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okay”/ “7. It’s definitely okay” and “1. I would definitely object”/ “7. I would definitely 

not object,” respectively. We average the two items (r = 0.69; second question reverse-

coded) to construct the “policy acceptability index.”   

Results 

Participants found negative changes less acceptable than positive ones and 

manipulating status updates less acceptable than manipulating ads. From most to least 

acceptable, they ranked happy ads (M = 5.67), most liked status updates (M = 4.63), 

happy status updates (M = 4.58), sad ads (M = 3.90), least liked status updates (M = 3.62) 

and sad status updates (M = 3.08).  For Study 2b, we used the highest rated (happy ads) 

and lowest rated (sad status updates) changes to test our prediction that experiments are 

only objectionable if they contain objectionable conditions. 

STUDY 2B: EXPERIMENTS WITH (UN)ACCEPTABLE MOOD INDUCTIONS 

Method 

Sample. We recruited 255 participants on MTurk, of which 201 passed the 

attention check (43.9% female, Mage = 34.2 years). Participants were paid $0.30 for 

completing the study.  

Design. Participants were randomly assigned to one of two conditions in a 

between-subjects design. In both conditions, participants read descriptions of a social 

networking company that ran an experiment, assigning half of its customers to a control 

condition and the other half to a treatment condition. The treatment condition in those 

experiments was either the happy ads or sad status updates policy described in Study 2a. 

Participants answered the same two acceptability questions from Study 2a.  
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Results 

The results were consistent with the critical condition account of experiment 

evaluation and inconsistent with absolute experiment aversion; only the experiment with 

an objectionable condition was considered objectionable. Participants rated the happy ads 

experiment significantly above the midpoint (M = 4.72), t(98) = 3.47, p < .001, and the 

sad status updates experiment below it (M = 2.59), t(99) = 9.30, p < .001. 

Although Study 2 shows that experiments with acceptable conditions are 

acceptable in an absolute sense, relative experiment aversion may still exist if 

experiments are rated as being less acceptable than their underlying conditions. In Study 

3 we examine this possibility by directly comparing ratings of individual policies to 

experiments that use these policies as conditions.  

STUDY 3A: TESTING FOR RELATIVE EXPERIMENT AVERSION 

Method 

Sample. We recruited 533 participants on MTurk, of which 423 passed the 

attention check (43.5% female, Mage = 36.0 years). Participants were paid $0.50 for 

completing the study. 

Design. Participants were randomly assigned to one of six conditions, in a 2 

(action: policy change vs. experiment) x 3 (policy combination: negative/positive vs. no 

change/positive vs. negative/no change) fully between-subjects design.  

Participants in the policy change conditions were told that a company was 

deciding between two policies. They were then told to imagine the company chose one of 
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the policies and answered three questions about the acceptability of this action. They then 

answered the same questions, but imagining that the other policy had been chosen.  

Participants in the experiment conditions were told that a company was running 

an experiment that randomly assigned customers to one of two policies (from the same 

pool of policy pairs as the policy change conditions) and answered the same questions as 

the policy change conditions.  

Stimulus selection and sampling. To reduce the probability that the results would 

be driven by idiosyncratic features of the selected stimuli (Wells & Windschitl, 1999), we 

presented policy changes for seven different contexts (e.g., showing emotionally charged 

ads, changing a product recommendation system, and changing frequency of issuing 

coupons). See Supplement 2 for a full list of stimuli. 

Measures. Participants in all conditions answered the following three questions 

containing labeled neutral midpoints: 

1. How okay is it for the company to do this?  

(1 = It’s really bad; 4 = It’s okay; 7 = It’s really good) 

2. If you were a customer of this company and learned about the company’s 

plans, how would this influence your opinion of the company?  

(1 = I would view the company much more negatively; 4 = […] not view 

the company any differently; 7 = […] much more positively) 

3. If you were a customer of this company and learned about the company’s 

plans, how likely would you be to switch to a different company?  

(1 = […] definitely not switch […]; 4 = […] not change how likely I am to 

switch [...]; 7 = […] would definitely switch […]; reverse-coded) 

 

Participants in the policy change condition answered these questions twice, once 

for each policy (in counterbalanced order). Participants in the experiment condition 
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answered these questions once, evaluating only the experiment. We average these items 

(α = .86) to construct an “acceptability index.”  

Results 

Evaluating policy changes. Validating our choice of stimuli, the negative policies 

were rated as the least acceptable (M = 2.65), followed by the no change (M = 4.61) and 

positive (M = 5.46) policies. The negative policies were rated below the midpoint (4), 

while the no change and positive policies were rated above the midpoint, all ts > 6.4, ps < 

.001.  

Evaluating experiments. Replicating the results from Studies 1 and 2, and again 

inconsistent with absolute experiment aversion, experiments that only included 

acceptable policy changes (no change/positive) were rated as acceptable (M = 4.38); 

significantly above midpoint, t(79) = 3.54, p < .001. Conversely, experiments with an 

unacceptable policy (negative/positive, M = 3.22; negative/no change, M = 3.31) were 

rated below the midpoint, ts > 4.3, ps < .001. Because, in this study, we used a labeled 

neutral midpoint (see ‘Measures’ above), evaluations above/below the midpoint are 

unambiguously positive/negative.  

Because participants may not all have the same opinion of which policy is 

“worst,” we compare participants’ average ratings of each experiment in the experiment 

conditions to the average rating of each participant’s less preferred policy in the 

corresponding policy change conditions. When comparing average experiment ratings to 

the average of the lowest rated corresponding policies, participants found experiments to 

be significantly more acceptable in the no change/positive, t(139) = 2.53, p = .013, and 
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negative/positive, t(139) = 4.23, p < .001, conditions, and marginally more acceptable in 

the negative/no change conditions, t(137) = 1.77, p = .079. Collapsing across all policy 

combinations, experiments were rated as significantly more acceptable than the policy 

that represented their least acceptable condition, t(419)=5.16, p < .001.16  Most 

importantly, experiments were not rated as less acceptable than their worst conditions 

(see Figure 4). This suggests that participants rate experiments as some weighted average 

of its policies.  

 

STUDY 3B: REPLICATION WITH FIELD SURVEY 

 One concern about the generalizability of our findings may be that our results to 

this point have relied on a sample (MTurkers) that regularly opts-in to taking experiments 

and may therefore be less experiment averse than the general public. In this study, 

following suggestions of the review team, we replicated our findings using a sample of 

participants from outside an established participant pool.  

Method 

 Sample. Three research assistants walked around a university campus, approached 

non-academic staff members, and asked them if they were willing to take a short, one-

page pen-and-paper survey. We specifically instructed the research assistants to approach 

staff in and around non-academic buildings (e.g., the student union and library) to reduce 

                                                           
16 These results are consistent when comparing each experiment to the policy change with the lowest 

average rating (as opposed to the average of each participant’s lowest rated policy). Experiments were rated 

directionally more acceptable than their worst policies in all three cases (significantly so for the 

negative/positive experiment; t(139) = 3.94, p < .001, negative/no change experiment, t(132) =2.06, p = .04 

and when collapsing across all policy pairs, t(419) = 4.27, p < .001). 
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the likelihood that our participants themselves would be involved in conducting research. 

It is also important to note that our respondents did not initiate participation in the study 

(reducing potential selection effects), nor were they compensated for completing the 

survey (which may have caused them to view academic research and experimentation 

more favorably). In total, we obtained 247 responses (68.4% female, Mage = 33.4 years).  

 

Figure 4. Experiments (gray squares) are no less acceptable than their least acceptable 

condition (white circles) (Study 3a)  

 

 
Notes: Each participant (N=423) rated the acceptability of a company choosing one of two policies or 

running an experiment using those two policies as conditions. The policies involved a negative change, a 

positive change, or no-change. Circular markers depict means evaluation of each policy, squared markers 

the evaluations of the experiment that combines them. Error bars represent 95% confidence intervals.  
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 The design of the study was nearly identical to that of Study 3a, with two 

changes. First, participants only evaluated the negative/positive stimuli (i.e., the left-most 

panel from Figure 4). Second, to make the survey fit on one page, we only included one 

of the three dependent variables (“How okay is it for the company to do this?”) from 

Study 3a.  

Results 

 Replicating our results from Study 3a, participants rated the experiments (M = 

3.54) more favorably than their worst conditions (M = 2.41), t(239) = 7.06, p < .001.17 

These ratings are similar to MTurker ratings of identical stimuli in Study 3 (Experiments: 

M = 3.35; Worst Conditions: M = 2.26).18 

Discussion 

The results from Studies 3a and 3b are inconsistent with absolute experiment 

aversion, where people find all experimentation objectionable. Additionally, these results 

are inconsistent with a version of relative experiment aversion that is large enough to 

make an experiment less acceptable than its “worst” condition. In our next study, we 

apply the paradigm from Study 3 to directly examine the potential role of experiment 

aversion in the backlash to Kramer et al. (2014)’s Facebook experiment. Specifically, we 

assess whether the backlash may actually be attributed to the policies people were 

assigned to rather than experimentation per se.  

                                                           
17 This analysis was done using a regression with fixed effects for each stimulus. We preregistered that we 

would also conduct a simple t-test collapsing across stimuli. The results are consistent, t(245) = 6.24, p < 

.001. 
18 These numbers are not the same as those in Study 3a (and in the left panel of Figure 4) because in Study 

3a we used a composite of three measures. Here, we compare only results for the question (“Is it okay for 

the company to do this?”) that we used in both studies. 
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STUDY 4: WAS FACEBOOK BACKLASH REALLY EXPERIMENT AVERSION? 

 

As in Study 2, we investigated perceptions of an experiment based on Kramer et 

al. (2014). Unlike in Study 2, we used only stimuli that represented the specific 

conditions used in that experiment, rather than modifying certain aspects to find an 

“acceptable” version. We also used the same bipolar scales as Study 3, with labeled 

neutral midpoints, to evaluate policy changes and experiments.  

Method 

Sample. We recruited 748 participants on MTurk, of which 608 passed the 

attention check (41.3% female, Mage = 32.2 years). Participants were paid $0.30 for 

completing the study.  

Design. The overall design of Study 4 was nearly identical to that of Study 3, but 

used different stimuli. Participants were randomly assigned to one of six conditions in a 2 

(action: policy change vs. experiment) x 3 (policy combination: sad/happy vs. no 

change/happy vs. sad/no change) fully between-subjects design.  

Participants in the policy change condition read that Facebook was considering 

making two policy changes (randomly selected from: sorting status updates to prioritize 

happy ones, to prioritize sad ones, or making no change). They then read that Facebook 

chose to implement one of the two policies. Participants in the experiment condition read 

that Facebook was considering running an experiment where they would randomly assign 

customers to two of the policy changes described above.  

Measures. Participants answered the same acceptability questions from Study 3. 

However, because Facebook does not have an obvious competitor, we did not ask if 
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participants would switch to a different company.19 We average these two variables (r = 

.80) to construct the “acceptability index.” Participants then indicated whether or not they 

had previously heard of Facebook taking similar actions in the past. This was collected to 

account for participants that may have been influenced by media coverage of the 

Facebook study.20   

Results 

Figure 5 shows the main results from Study 4. All three experiments (grey 

squares), even the experiment with ostensibly “good” conditions (i.e., happy/no change), 

were rated significantly below the acceptability midpoint (ts > 4.8, ps < .001). At first 

glance, this could be consistent with absolute or relative experiment aversion. However, 

this conclusion is not supported once we take into account the fact that the underlying 

policies are unacceptable even outside of an experimental context. The lowest rated 

condition in each experiment was rated no higher than a 2.93 on a 7 point scale; 

significantly below midpoint, ts > 9.4, ps < .001.21  

  

                                                           
19 We exploratorily asked if participants would be inclined to cancel their Facebook membership; see 

preregistration file. 
20 Most participants said that they had not heard of Facebook doing something similar (70.3% in the 

experiment condition and 82.2% in the policy change condition). Those with prior knowledge in the 

experiment condition rated Facebook’s actions slightly more negatively (M = 2.77) than those with no prior 

knowledge (M = 3.06), t(301) = 1.75, p = .08. There was no difference between ratings in the policy change 

condition (p = .81). Therefore, we report results from all participants in our analysis. 
21 The only specific policy that was rated above the midpoint was making no change (M = 5.10). Both sad 

status updates (M = 2.48), and happy status updates (M = 3.67) are viewed as unacceptable (all pairwise ts 

> 8.0, all ts vs. midpoint > 3.0). 
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Figure 5. Facebook experiments (gray squares) are no less acceptable than their least 

acceptable condition (white circles) (Study 4)  

 

Notes: Each participant (N = 601) rated the acceptability of Facebook changing how status updates are 

sorted or of running an experiment randomly assigning users to one of those changes. Circular markers 

depict mean evaluations of the least and most acceptable change in the pair, squared markers mean 

evaluations of an experiment randomly assigning users to them.  For example, the first panel shows that 

people evaluating sorting status updates by sad/happy rated the worst of these with M=2.70, the highest 

with M = 4.22, and an experiment with M = 2.92. Error bars represent 95% confidence intervals.  

 

As was the case in Study 3, when we directly compare the acceptability of 

experiments to the acceptability of their treatments’ in the corresponding policy change 

conditions, we see that experimentation does not decrease the acceptability of the 

company’s actions relative to some weighted average of its policy ratings. Indeed, 

experiments were again rated as at least marginally more acceptable than their worst 
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conditions when considering each experiment individually, ts > 1.88, ps < .061, and 

significantly more acceptable when collapsing across all three experiments, t(599) = 3.94, 

p < .001.22  

Discussion 

 Again, if there is relative experiment aversion, it is not large enough to push the 

experiment’s ratings below the ratings of its policies. Thus, it is probable that participants 

were not reacting negatively to experimentation per se but to each experiment’s 

underlying policies. Although the reaction to the Kramer et al. (2014) Facebook 

experiment is held up as evidence of a public distaste for corporate experiments, in Study 

4 we find that Facebook probably did not face backlash because they ran an experiment, 

but because they implemented unacceptable policies. This suggests the public’s reaction 

would have been even worse had Facebook modified how status updates are sorted for all 

(rather than for a random subset) of its users.  

 

STUDY 5: RELATIVE EXPERIMENT AVERSION VS. CRITICAL CONDITION 

 Studies 3 and 4 demonstrate that relative experiment aversion, if it exists, may not 

be strong enough to drive ratings of an experiment below some weighted average of its 

policies. However, we cannot conclusively reject the existence of some relative 

experiment aversion. Even though the experiments were not rated worse than the least 

preferred policy, they were still rated below the equally-weighted average of its policies. 

                                                           
22 As indicated in our pre-registration, we ran a regression estimating ratings using fixed effects for each 

policy pair and an indicator for whether the participant rated a policy or an experiment. The coefficient for 

experiments was positive (b = .39; p < .001), indicating that experiments were rated more highly than 

policies when controlling for which policies participants saw.   
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This could be consistent with the critical condition account of experiment aversion if 

participants are taking a weighted average of their ratings of the two policies and giving 

more weight to the worse rated policy, as they might if they exhibit negativity bias 

(Skowronski & Carlston, 1989). However, this finding could also be consistent with the 

existence of moderate relative experiment aversion. For example, participants may be 

averaging their opinions of the policies and then applying some fixed “experiment 

penalty.” Alternatively, participants’ ratings of policies could be lower when those 

policies are part of an experiment. We ran Study 5 to more directly tease apart these two 

explanations by creating an experiment where both policies would be deemed equally 

acceptable. If there is relative experiment aversion, an experiment over both policies 

would be rated as lower than either, which would not happen if people evaluate 

experiments based on their critical conditions. We view this design as one which 

maximizes the ability to detect relative experiment aversion.  

Method 

 Sample. We recruited 502 participants on MTurk, of which 406 passed the 

attention check (46.4% female, Mage = 35.0 years). Participants were paid $0.40 for 

completing the study. 

 Design. Participants were randomly assigned to one of two between-subjects 

conditions (policy change vs. experiment). We pretested the acceptability of 30 policies 

(see Supplement 4) and chose two that had nearly identical means (Ms = 5.54 and 5.59 

out of 7) and distributions of responses (SDs = 1.40 and 1.32). The general design of 

Study 5 was similar to that of Studies 3 and 4. Participants read that a ride-sharing 
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company (e.g., Uber, Lyft) was considering implementing two discounts (either a flat 

10% discount or a $1 credit for every $10 spent) and either chose one of the two (policy 

change condition) or ran an experiment where they randomly assigned customers to 

receive one of the two discounts (experiment condition). 

In both conditions, participants answered the following question: “How okay is it 

for the company to do this?” (1 = It’s really bad; 4 = It’s okay; 7 = It’s really good).  

 

Results 

 Participants rated both discounts (10% discount: M = 5.84; $1 credit for every 

$10 spent: M = 4.85) significantly above the midpoint, ts > 9.14, ps < .001, indicating 

that they viewed both discounts positively.23 Participants rated the experiment that 

assigned participants to one of two discounts (M = 5.32) nearly identically to the average 

discount (M = 5.34), t(399) = .21, p = .83, and well above the least preferred discount (M 

= 4.61), t(399) = 5.24, p < .001. Participants in this study do not show even small levels 

of experiment aversion.24 

 

GENERAL DISCUSSION 

Taken together, the results of our studies are inconsistent with both absolute and 

relative experiment aversion, while consistent with the critical condition account of 

                                                           
23 We should point out that the mean ratings of the individual discounts diverged more in Study 5 (Ms = 

4.85 and 5.85) than they did in the pilot (Ms = 5.54 and 5.59). We believe that this is because evaluating 

only two discounts (compared to 10 in the pilot), made those discounts seem less similar. 
24 The 95% confidence interval for the difference between the acceptability of the experiment and the 

average policy is (-.21, +.26), thus we reject experiment aversion that is larger than .26 on our 7 point scale. 

With a pooled standard deviation of 1.19, we can reject experiment aversion having a Cohen’s d > .22. 
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experiment evaluation. In particular, experiments that include only acceptable policies are 

deemed acceptable, and whether they include acceptable or unacceptable policies, 

experiments are deemed to be at least as acceptable as their least acceptable policy.  

These results are good news for companies that want to learn from experiments. 

Companies should not be more hesitant to run an experiment that includes a certain 

policy than to implement that policy outright. A practical takeaway for organizations 

interested in running experiments is to first determine if their planned policy changes are 

objectionable (e.g., through a survey) and then run an experiment to determine which 

acceptable policy best achieves their desired objective. 

Limitations 

We have identified two key limitations with our studies. The first limitation is that 

our samples consist primarily of people who volunteered to complete our studies, 

possibly excluding individuals who most strongly oppose evidence gathering in general 

or experiments in particular. We are optimistic this is not a consequential limitation for 

two main reasons. First, our respondents did negatively evaluate experiments that 

included negative policies, indicating that they do not have universally positive opinions 

of experiments, and that they do discriminate between acceptable and unacceptable 

practices. Second, Study 3b surveyed a sample of non-academic university staff, who do 

not regularly participate in experiments. Their responses were indistinguishable from 

those of our online samples. It is nevertheless obviously impossible to obtain data on the 

attitudes of people who are unwilling to participate in an experiment. 
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The second limitation is that it is difficult to specify the threshold of acceptability 

that an action must reach to prevent a backlash. For example, a small group of motivated 

people (e.g., activists or media personalities) could be vocal enough to cause backlash 

against an experiment that most people find acceptable. At the same time, this concern 

applies to any action an organization can take and not solely experiments. Comparing the 

most extreme ratings across policy and experiment evaluations in our studies suggests 

experiments are not more polarizing than are policies. In Study 3a, for example, 12.5% of 

participants gave the negative policy the lowest possible rating and 7.6% of participants 

gave the experiment the lowest possible rating, a pattern that holds in all studies where 

this comparison is possible.25  

This also speaks to a larger issue of how different people may view different 

policy changes—what some may consider fine, others may find completely unacceptable. 

For this reason, we compared experiments to each participant’s least preferred policy, 

rather than the average of each specific policy. Additionally, it is important to examine 

distributions of responses (rather than means) to determine if a certain policy, although it 

may have a high mean, may be especially divisive (i.e., having a high variance). We 

encourage researchers and practitioners to pretest the acceptability of policies using 

surveys and measures like those we used in Studies 3 through 5. 

 

 

                                                           
25 In Study 3b, 35.5% gave the lowest possible rating to the worst policy, compared to 9.8% for the 

experiment. In Study 4, these values are 20.7% and 12.9%, respectively, and in Study 5, they are 2.5% and 

1.0%, respectively. 
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Experiment aversion is an interaction 

Finally, there are many factors that could influence how acceptable experiments 

are. For example, much research has examined how people view the ethics of corporate 

practices that can be included in experiments, such collecting sensitive data (e.g., Awad 

& Krishnan, 2006; Culnan & Armstrong, 1999; Miyazaki, 2008), changing pricing 

practices (e.g., Bolton, Warlop, & Alba, 2003; Campbell, 1999; Haws & Bearden, 2006), 

or introducing new marketing strategies (e.g., Smith & Cooper-Martin, 1997).  

Using the more specific context of our motivating example, it may be that 

Facebook’s experiment was more objectionable because it involved emotions (or 

specifically negative emotions).26 Our review team, in particular, proposed that perhaps 

people view experiments as less acceptable if they are in an experiment compared to if 

they simply heard about it or that it is less acceptable to tell customers about experiments 

after the fact than before they are run. We report two studies that test these two 

hypotheses in the supplement (Studies S4 and S5). We find that people prefer to hear 

about experiments before (rather than after) they are run, and that people rate 

hypothetical experiments that they were in similarly to those they merely heard about. 

However, asking “Do these factors impact the acceptability of experiments?” will 

not teach us about experiment aversion, because these factors can be present in corporate 

actions within and but also outside of an experiment. A company can take an action and 

only later tell customers about it. A company can also take an action and some non-

participating observer then evaluate it. The critical question for the purposes of this 

                                                           
26 See Supplements 5-6 for descriptions of studies that test these questions. 
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paper, then, is “Do these factors impact the acceptability of experiments more than they 

impact the acceptability of underlying policies?” That is, is there an interaction between 

these factors and whether or not they are part of an experiment? In Studies S4 and S5, we 

find none of these hypothesized interactions (Study S4: t(794)=.99, p=.32; Study S5: 

t(793)=.56, p=.58). For example, in Study S4 we find that the negative effect of learning 

about an experiment after it is conducted (versus before it is conducted) is not larger than 

the negative effect of learning about a policy change after it is conducted (versus before it 

is conducted). We would expect the same to be true for other potential factors that could 

influence opinion of experiments and universal policy changes. Experiments are not 

unpopular, unpopular policies are unpopular. 

 

This paper contains a supplement. Table 4 summarizes its contents.  

Table 4. Index of supplementary materials (available from https://osf.io/z39aq)  

Section Pages 

Supplement 1. Additional Study 1 analysis 2-3 

Supplement 2. Full list of Study 3 stimuli 4 

Supplement 3. Additional analyses for Study 4 included in pre-registration 5-7 

Supplement 4. Study 5 pilot results 8-9 

Supplement 5. Overview of studies not included in main manuscript 10-11 

Supplement 6. More details on studies not included in main manuscript  12-18 

 

  

http://tinyurl.com/criticalosf
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CHAPTER 3. 

 

60% + 60% = 60%, BUT LIKELY + LIKELY = VERY LIKELY 

 

Robert Mislavsky 

Celia Gaertig 

 

ABSTRACT 

How do we combine others’ probability forecasts? Prior research has shown that when 

advisors provide numeric forecasts, people typically average them together. If two 

advisors think an event has a 60% chance of occurring, we will also believe it has a 60% 

chance (more or less). However, what happens if two advisors say that an event is 

“likely” or “probable”? In four studies, we find that people combine verbal forecasts 

additively, making their forecasts more extreme than each advisor individually. If two 

advisors say something is “likely,” people then believe that it is “very likely.”  
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  Imagine that you are heading out the door and wondering if you should bring an 

umbrella. You check a weather app, which says there is a 30% chance of rain, and just to 

be sure, you turn on the TV where the weatherperson says that there is a 50% chance of 

rain. Given these two forecasts, do you bring an umbrella? Situations like these are 

common in daily life, from the mundane, such as bringing an umbrella, to the serious, 

such as getting a second opinion about a medical diagnosis. So how do we combine these 

forecasts to make our own judgments? Well, it depends. 

 In the above example, the forecasts were numeric. We know from prior research 

that we generally combine numeric probability forecasts by averaging them (Biswas, 

Zhao, & Lehmann, 2011; Budescu & Yu, 2006, 2007; Wallsten, Budescu, & Tsao, 1997). 

If one advisor says there is a “30% chance” and another says there is a “50% chance,” our 

own forecasts will typically be somewhere between 30% and 50%. However, we 

generally don’t use numeric probabilities in daily speech. Instead of saying there is a 

“60% chance,” we use verbal probabilities, saying that an event will “probably” happen, 

or that it is “likely” (Erev & Cohen, 1990; Zimmer, 1983). Despite this, there has been no 

study of how we combine verbal probability forecasts, for example, how our own beliefs 

update when two people tell us that something is “likely.” In the four studies that follow, 

we find that people tend to combine verbal probability forecasts additively. Beliefs about 

an event’s likelihood move closer to certainty when another person says an event is likely 

and closer to impossibility when another says an event is unlikely, regardless of prior 

beliefs. 
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DIFFERENCES BETWEEN NUMERIC AND VERBAL FORECASTS 

The differences between how we combine verbal versus numeric forecasts may be 

traced to several documented differences between how numeric and verbal probabilities 

are interpreted more generally. First, numeric probabilities are precise, while verbal 

probabilities are vague (Beyth‐Marom, 1982; Lichtenstein & Newman, 1967; Zimmer, 

1983). While a “60% chance” has a precise mathematical meaning, in a seminal study, 

Lichtenstein and Newman (1967) found that “likely” was interpreted to mean anything 

from 25% to 99%. Second, the subjective interpretations of numeric probabilities are 

more context-dependent than verbal probabilities, which are processed more intuitively 

(Bilgin & Brenner, 2013; Teigen, 2001; Teigen & Brun, 1995, 1999, 2000; Windschitl & 

Weber, 1999; Windschitl & Wells, 1996). It is easier to evaluate verbal probabilities as a 

positive or negative sign than it is for numeric probabilities. For example, a candidate that 

is “likely” to win an election should feel confident, but a candidate with a “30% chance” 

might feel confident if there are 10 other candidates, but not if there are two.   

Recognizing these differences, organizations that provide subjective probability 

forecasts have tried to standardize the interpretation of verbal probabilities in their 

reports. The Intergovernmental Panel on Climate Change (IPCC)27 defines “likely” as 

“greater than 66%,” and the United States Director of National Intelligence (DNI)28 

defines it as “between 55% and 80%,” although research suggests that these guidelines 

                                                           
27 https://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf 
28 https://fas.org/irp/dni/icd/icd-203.pdf 

https://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf
https://fas.org/irp/dni/icd/icd-203.pdf
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are mostly ineffective (Budescu, Broomell, & Por, 2009; Budescu, Por, & Broomell, 

2012; Budescu, Por, Broomell, & Smithson, 2014).  

However, even if these guidelines worked perfectly, they assume that verbal and 

numeric probabilities differ only in how they are initially interpreted. We show that this 

is not the case. They also differ in how they are aggregated, which can lead to drastically 

different judgments from relatively similar inputs. For example, imagine a group of 

military officials deciding to launch a risky operation. If the collected experts all agree 

that the operation has a 60% chance of success, the ultimate decision-maker should also 

think that the operation has a 60% chance of success. However, if the experts all agree 

that success is “somewhat likely,” we show that the decision-maker might think that 

success is nearly certain. 

TRANSPARENT REPORTING 

 We report four studies in this manuscript and include six more in the supplement. 

All studies were run on Amazon’s Mechanical Turk (MTurk) and were administered 

through Qualtrics. Studies 2-4 were preregistered. For all studies we report all data 

exclusions, all manipulations, and all measures. Preregistered exploratory measures are 

mentioned in footnotes and discussed Supplement 1, along with preregistered secondary 

analyses (e.g., robustness checks). Sample size for each study was determined before data 

collection, and participants in all studies were excluded from participating in any related 

studies run within one month. We analyze all answers participants provided, regardless of 
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whether they completed the survey. Supplementary materials, including data, analysis 

code, preregistrations, and survey materials, are available at http://osf.io/atruq.  

STUDIES 1-3: PREDICTING FUTURE EVENTS 

 Our first three studies have a relatively common design. Participants are asked to 

predict the likelihood of an event. To help make their forecasts, they are shown forecasts 

from one or two advisors. Forecasts are given either verbally (e.g., “Rather Likely”) or 

numerically (e.g., “60%”), which we refer to as forecast formats. Participants then make 

their own forecasts on scales using the same format that the advisors used. 

Analyses 

 To test the combination strategies that participants use, we look exclusively at the 

proportion of participants that make extreme forecasts (i.e., forecasts that are closer to 

impossibility or certainty than any individual advisor). For example, if the two advisors 

in the study say that an event has a 60% and 65% chance of occurring, an extreme 

forecast is anything that is 66% or higher. We predict that as the number of advisors 

increases, more participants will make extreme forecasts when using verbal probabilities 

than when using numeric probabilities. That is, we predict a positive interaction between 

format and the number of advisors on the likelihood of making an extreme forecast.  

We use this strategy because it is the most diagnostic test of whether participants use 

an additive strategy, compared to, say, testing for mean differences. For example, means 

can increase if participants move from far below the advisors’ average to slightly below 

the advisors’ average. This could be consistent with both an averaging or additive 

http://osf.io/atruq
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combination strategy. On the other hand, a participant who moves from a non-extreme 

forecast to an extreme forecast could not possibly be using an averaging strategy.  

 Finally, unless specified otherwise, analyses for Studies 1-3 are conducted using 

probit regressions, including indicator variables for condition (and their interactions 

where appropriate), fixed effects for each stimulus (e.g., stock), and clustering standard 

errors by participant. Full regression tables can be found in Supplement 2.  

STUDY 1: LIKELY + LIKELY = VERY LIKELY 

Method 

 Sample. We recruited 205 participants (35.0% female, Mage = 33.7 years), each 

paid $0.30. 

 Design. Participants were randomly assigned to one of two between-subjects 

conditions. All participants saw information about a stock29 (ticker symbol, company 

name, and most recent closing price) and predicted how likely it was that the stock’s 

price would be higher in one year. Before making their own forecasts, participants also 

saw forecasts from two (fictional) advisors. 

 In the numeric condition, the advisors’ forecasts were “60-69%,” and participants 

made their forecasts on a 10-point numeric probability scale (1 = “0-9%”; 10 = “90-

100%”). In the verbal condition, the two advisors’ forecasts were “7 – Rather Likely,” 

                                                           
29 For Studies 1 and 2, stocks were randomly selected from a list of 10. Our analyses in both studies include 

fixed effects for each stock. See Supplement 3 for full list of stimuli used. 
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and participants made their forecasts on a 10-point verbal probability scale (1 = “1 – 

Nearly Impossible”; 10 = “10 – Nearly Certain”; adapted from Windschitl & Weber, 

1999). In both conditions, the advisors’ advice corresponded to the 7th point on their 

respective scales, keeping the extremity of advisor forecasts constant across condition. 

See Figure 6 for example stimuli and response scales.  

Figure 6. Sample Study 1 stimuli and response scale 
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Results 

 We classify participant forecasts as “extreme” if they are closer to certainty than 

both advisors’ forecasts (i.e., answers from 8 to 10 on the response scale). More 

participants in the verbal condition made extreme forecasts (29.4%) than in the numeric 

condition (10.9%), Z = 3.29, p = .001.  

 This result suggests that participants are more likely to use an additive strategy 

when combining verbal forecasts than they are when combining numeric forecasts. 

However, this study has a key limitation: we do not know what participants’ forecasts 

would have been if they had only seen one advisor forecasts. It may be that participants 

always make more extreme forecasts when using verbal probabilities. Therefore, we need 

to compare the amount of extreme forecasts participants make when only seeing one 

advisor forecast and see how that proportion changes as they see additional advisor 

forecasts. We do this in Study 2. 

STUDY 2: SEQUENTIAL EVALUATION (AND UNLIKELY + UNLIKELY = VERY 

UNLIKELY) 

Method 

 Sample. We recruited 854 participants, of which 806 passed an attention check 

(39.0% female, Mage = 33.4 years). Participants who completed the survey were paid 

$0.35. 
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 Design. The general design of Study 2 was extremely similar to that of Study 1, 

with two changes. As in Study 1, all participants saw information about a stock and 

estimated how likely it was that the stock’s price would be higher in one year on either a 

verbal or numeric scale. Participants again saw forecasts from two fictional advisors, 

given either numerically or verbally.  

Unlike in Study 1, advisor forecasts were shown one at a time (i.e., manipulated 

within-subjects). Participants saw a forecasts from the first advisor, made their own 

forecast, saw a forecast from a second advisor, and could revise their first forecast. 

Further, we tested if our results held for forecasts below even chance by randomizing 

advisors’ forecasts to be the 7th point on the response scale (i.e., “60-69%” or “Rather 

Likely”) or the 4th point on the scale (i.e., “30-39%” or “Rather Unlikely”). 

 In summary, participants were assigned to one of four between-subjects 

conditions in a 2 (format: numeric vs. verbal) x 2 (direction: above vs. below midpoint). 

Number of advisors was manipulated within subjects for all participants.30 

Results 

 Again, we classify participant forecasts as “extreme” if they are closer to certainty 

than each advisor’s forecast (8 to 10 in the above midpoint conditions; 1 to 3 in the below 

midpoint conditions). We preregistered that we would analyze the above and below 

                                                           
30 We also asked participants two exploratory questions about their perceptions of advisor consensus. 

Participants perceived more consensus in the verbal condition (ps < .003), but this did not mediate our 

effect. See Supplement 1. 
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midpoint conditions together, but for ease of interpretation, we discuss them separately 

here and include results from the combined analyses in footnote 31.  

 In the above midpoint condition, participants’ forecasts became more extreme 

when they saw a second advisor. Specifically, 18.3% of participants made an extreme 

forecast after seeing the first advisor in the verbal condition, which increased to 29.7% 

after seeing the second advisor, Z = 4.13, p < .001. In contrast, the proportion of extreme 

forecasts in the numeric condition directionally decreased as participants saw more 

advisors (11.4% to 9.0%), Z = 1.24, p = .21. The interaction between format and number 

of advisors is significant, Z = 3.62, p < .001. 

 This pattern also held in the below midpoint condition. As they saw the second 

advisor’s forecast, the number of participants making extreme forecasts increased in the 

verbal condition (13.1% to 23.1%, Z = 3.28, p = .001) but decreased in the numeric 

condition (18.3% to 13.4%, Z = 2.46, p = .014). The interaction between format and 

number of advisors is significant, Z = 4.14, p < .001.31 See Figure 7.  

STUDY 3: REAL EVENTS AND ADVICE 

 In Studies 1 and 2, we tested how participants used forecasts from two fictional 

advisors that gave identical forecasts. In Study 3, participants make forecasts for real 

events using real advice (and as a result, had natural variation between advisors).  

                                                           
31 Combining the above and below midpoint conditions into one regression, the interaction between format 

and number of advisors is significant, Z = 3.99, p < .001. There is no significant 3-way interaction between 

format, number of advisors, and above/below midpoint, Z = -.41, p = .68, indicating that the effect is 

approximately the same size for forecasts better or worse than even chance.  
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Method 

 Sample. We recruited 626 participants (42.7% female, Mage = 35.6 years), each 

paid $0.50. 

 Design. Participants were assigned to one of four between-subjects 

conditions in a 2 (format: numeric vs. verbal) x 2 (number of advisors: 1 vs. 2) design. 

All participants were shown information about ten Major League Baseball games 

(randomly selected from the 15 games played that day) and asked to predict how likely it 

was that the favorite would win each game. For each game, participants either saw one or 

two forecasts, randomly selected from Fivethirtyeight.com, Fangraphs.com, or 

VegasInsider.com.32  

In the numeric condition, advisor forecasts were given as percentages (e.g., 

“55%”), and in the verbal condition, they were given as a number with a verbal label 

(e.g., “55 – Somewhat Likely”). The number was added to the verbal condition to keep 

the extremity of the advice consistent across conditions. Because advisor forecasts could 

take any value between 0 and 100, participants answered on a 0 to 100 slider scale with 

numeric or verbal labels depending on condition. 

  

                                                           
32 We also collected measures of participants’ baseball knowledge, favorite team, motivation, and trust in 

the advisor websites. See Supplement 1. 
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Figure 7. Participants’ forecasts become more extreme when they see additional verbal 

forecasts, but not when they see equivalent numeric forecasts 

Above Midpoint Condition 

 

Below Midpoint Condition 

 

Notes: Advisor forecasts in the above midpoint condition correspond to the seventh point (out of 10) on the 

response scale (“60-69%” in the numeric condition and “Rather Likely” in the verbal condition). Advisor 

forecasts in the below midpoint condition correspond to the fourth point on the response scale (“30-39%” in 

the numeric condition and “Rather Unlikely” in the verbal condition. Extreme forecasts are those that are 

above the seventh point in the above midpoint condition and below the fourth point in the below midpoint 

condition. Error bars represent 95% confidence intervals. 
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Results 

 Although participants made forecasts for all games played that day, we 

preregistered that we would only analyze forecasts for games where both advisors agreed 

on a winner, since those are the only games where we can meaningfully distinguish 

extreme forecasts from average ones. 

 Again, we classify participant forecasts as “extreme” if they are closer to certainty 

than each advisor forecast for each game.33 When participants saw only one advisor 

forecasts, there were no differences between the proportion of extreme forecasts in the 

numeric (50.0%) and verbal (55.5%) conditions, Z = 1.39, p = .17. However, participants 

that saw two advisor forecasts made many more extreme forecasts in the verbal condition 

(46.6%) than in the numeric condition (29.8%), Z = 5.11¸ p < .001.34 The interaction 

between format and number of advisors is significant, Z = 2.93, p = .003.35 

STUDY 4: DECISIONS BASED ON FORECASTS 

 In Studies 1 to 3, we find a common pattern. When participants see multiple 

verbal probability forecasts from advisors, they are much more likely to combine them 

                                                           
33 We preregistered that we would classify “extreme” as above the average advisor’s forecast and that the 

classification in the main text would be a secondary analysis. However, the analysis reported here is a more 

conservative test and consistent with our definitions from Studies 1 and 2. The results using the original 

definition are nearly identical, and we report them in Supplement 1.  
34 We should note that, unlike in Study 2, the number of extreme forecasts decreased in both conditions 

when participants saw two advisor forecasts. We believe that this is due to the granularity of the scale in 

this study. That is, it is more difficult to give an exactly average forecast in this study (when it is 1 out of 

101 points) than in Study 2 (when it is 1 out of 10 points). Indeed, in this study, only 13.0% of forecasts 

were exactly “average” when participants only saw one advisor forecast, compared to 44.2% in Study 2. 
35 We preregistered that we would include participant motivation, baseball knowledge, and average advisor 

forecast as control variables. Without these controls, the interaction is significant, Z = 2.56, p = .01. 
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additively than they are when they see multiple numeric probability forecasts. However, 

it may be that this is caused by differences in how participants use the respective 

response scales rather than, as we hypothesize, becoming more certain of an event’s 

outcome. We test this in Study 4, where participants make a decision that should be 

informed by their beliefs about the event’s likelihood. 

Method 

 Sample. We recruited 809 participants (44.8% female, Mage = 35.3 years), each 

paid $0.40. 

 Design. All participants were randomly assigned to read one of two scenarios 

about making a purchase that involved uncertainty. In one scenario, participants read that 

they were buying a plane ticket, where the price could change in the future. In the other 

scenario, participants read that they were buying a cell phone, and a new model could be 

released shortly. See Supplement 4 for full stimuli. 

In both scenarios, participants were told that they checked a forecasting website 

(e.g., Kayak.com in the plane ticket scenario). The website recommended waiting to 

make the purchase, giving either a verbal or numeric forecast that the price of the plane 

ticket would drop or that a new model would be released. Participants then indicated 

whether they would make the purchase on a 7-point scale (1 = Definitely buy; 7 = 

Definitely wait). 

After indicating their purchase intent, participants were told that they checked a 

second website, which gave the same forecast as the first. Finally, participants again 
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indicated whether they would make the purchase on the same 7-point scale.36 For 

example, participants in the plane ticket condition saw the following: 

You want to buy a plane ticket for a vacation you are taking. You 

found a ticket that fits your budget, but know prices can drop if 

you wait (although they can also go up or the flight could sell 

out). You’re willing to wait up to two weeks. You check a price 

prediction website, which says the following: 

 

"It is [somewhat/rather/55%/65%]37 likely that prices will drop in 

the next two weeks." 

 

Would you buy the ticket or wait to see if the price goes down? 

 

[page break] 

 

You decide to get a second opinion and check a different site 

that also makes price predictions. The second site says: 

 

"We think that it is [somewhat/rather/55%/65%] likely that prices 

will decrease within the next two weeks." 

 

Would you buy the ticket or wait to see if the price goes down? 

 

 

Results 

We preregistered that we would analyze the data collapsed across both scenarios, 

comparing the proportion of participants who became more likely to wait (i.e., more 

strongly agreed with the advice) when they saw the second website’s forecast. Over a 

third of participants (33.8%) in the verbal condition became more likely to wait, 

                                                           
36 We also asked participants four exploratory questions measuring the extent to which the two sites used 

different information, the extent to which the second site provided new information, the usefulness of the 

second site, and which forecast the participant weighed more when making their decision. See Supplement 

1 and General Discussion. 
37 We included multiple probability levels for the sake of stimulus sampling, but the second website always 

made the same forecast as the first site. We also counterbalanced the order of the precise wording of the 

advice. We preregistered that we would collapse results across probability levels. 
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compared to 20.5% in the numeric condition (20.5%), Z = 4.23, p < .001, indicating that 

participants updated their beliefs more when seeing an additional verbal forecasts. 

Considering participants’ untransformed responses, we find that although they were more 

willing to follow the websites’ verbal advice overall (5.32 vs. 4.92), t(806) = 2.98, p = 

.003, they increased their answers more after getting a second opinion in the verbal 

condition than in they did after getting a second opinion in the numeric condition (i.e., 

there is a positive interaction between format and number of websites), t(806) = 2.28, p = 

.02.  

GENERAL DISCUSSION 

 In four studies we find that people use different strategies to combine verbal 

compared to numeric probability forecasts. Specifically, when combining verbal 

forecasts, participants use an additive strategy, where their own forecasts move closer to 

certainty or impossibility as they see new advisor forecasts. Conversely, when combining 

numeric forecasts, participants’ forecasts move closer to advisor’s average forecast. 

These differences, if unaccounted for, could have substantial effects on how we 

understand judgments made from aggregating others’ forecasts and how we should 

present multiple forecasts to others. 

 Our research raises two primary questions. First, are people acting more optimally 

or less optimally when they use an additive strategy, compared to an averaging strategy? 

Second, why are participants using an additive strategy to combine verbal forecasts? We 

discuss these below.  
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Is this optimal? 

 If given two verbal probability forecasts or two numeric probability forecasts, 

how should we combine them? The unsatisfying answer is that it depends. When there 

are few advisors using similar information to make their decision, averaging forecasts is 

typically most effective, since reduces the impact of each advisor’s idiosyncratic error 

(Ashton & Ashton, 1985; Wallsten, Budescu, Erev, & Diederich, 1997; Wallsten & 

Diederich, 2001). However, when the number of advisors is sufficiently large, it is often 

best to use a more additive approach, since individual forecasts are often too 

conservative, particularly for hard to predict events (Ariely et al., 2000; Baron, Mellers, 

Tetlock, Stone, & Ungar, 2014; Wallsten, Budescu, Erev, et al., 1997). Additionally, if 

the advisors are using different information, then it may be optimal to use an additive 

strategy regardless of the number of advisors (Baron et al., 2014; Wallsten & Diederich, 

2001). In these cases, the decision-maker has more information than any individual 

advisor and therefore has “a right to much higher confidence” (Baron et al., 2014, p. 

134).38  

Why does this happen? 

In the studies presented in this paper and several studies reported in the 

supplement, we tested several potential mechanisms that may be causing the effect. 

Although we do not find strong evidence for any of these mechanisms in our studies, they 

                                                           
38 In Study 3, we found that participants in the verbal, 2 advisor condition were more accurate than those in 

the numeric, 2 advisor condition (measured by their average Brier score), but this difference was small and 

we hesitate to generalize it to other contexts. See Supplement 1. 
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are worth discussing, and our results do not necessarily mean that they are not present. 

They may simply be difficult to capture using self-report measures or that they may all 

contribute a small amount to the strategies that people use to combine forecasts.  

Given the discussion in the previous section, participants could just be doing what 

they believe is optimal. Because numeric probabilities are more precise (Beyth‐Marom, 

1982; Lichtenstein & Newman, 1967; Zimmer, 1983), if two advisors give identical (or 

nearly identical) forecasts, it may imply that the advisors used the same information to 

make their forecasts. On the other hand, if two advisors give identical verbal forecasts, 

there may be a greater chance that they used different information. Therefore, an additive 

strategy would more optimal when combining verbal forecasts than when combining 

numeric forecasts. Because verbal probabilities are considered more intuitive (Windschitl 

& Wells, 1996), this would be consistent with the idea that people make less accurate 

judgments when working with percentages but are better at working with more intuitive 

probability formats, such as frequencies (Gigerenzer & Hoffrage, 1995; Hoffrage, 

Lindsey, Hertwig, & Gigerenzer, 2000). Indeed Biswas et al. (2011) find that participants 

use a more additive strategy to combine frequencies, although they suggest that this 

occurs when frequencies are more difficult to combine. 

If this is the case, we do not find evidence that this is a major contributor to our 

effect. In Study 4, we asked participants if the websites used the same or different 

information to make their decisions and to what extent the second website provided new 

information. Participants thought that the second site used more different information and 

provided more new information in the verbal condition (ps < .001). However, these 
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measures mediated approximately 10% of the effect individually and 14% of the effect 

together. In three additional studies reported in Supplement 5, which all used a similar 

design to Study 2, we also asked participants if the second advisor had information that 

the first advisor did not, how much information the second advisor is providing to the 

participant, whether the advisors are using the same or different information to make their 

decisions, and how much intuition (vs. deliberation) participants used. There were no 

differences in participant responses between the numeric and verbal conditions (all ps > 

.09).  

 The second major candidate mechanism we considered is that because verbal 

probabilities have an inherent “direction,” they are intuitively converted to positive or 

negative signals and added together.39 In Supplement 6, we report four studies with the 

same general design as Study 2. Unlike in Study 2, however, we include an additional 

numeric condition, where we explicitly tell participants to interpret any advisor forecast 

above 50% as a positive sign. In three of the four studies, we find that participants are 

directionally more likely to use an additive strategy in this condition compared to the 

regular numeric condition, but none of these effects reach significance and are practically 

zero in the two most highly powered replications (with sample sizes of 400 and 800 per 

condition, respectively).  

Finally, in several studies, we included questions on participant confidence, 

advisor consensus, advisor thoughtfulness, the strength of the advisors’ opinions, whether 

                                                           
39 Yates and Carlson (1986) refer to this as “signed summation.” 
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forecast accuracy relied more on luck or knowledge (i.e., is the uncertainty aleatory or 

epistemic?), whether the advisor was making a subjective or objective judgment, and 

participants’ trust in the advisors. For most of these questions, there were no differences 

between responses in the verbal and numeric conditions, and where they did, none of 

those differences mediated a meaningful proportion of our effect. See Supplement 8.  

In summary, we find that individuals use distinct strategies to combine probability 

forecasts from different sources, where their judgments become more confident as they 

see more verbal forecasts and converge to the average as they see more numeric 

forecasts. We also tentatively rule out some potential mechanisms. Future research 

should delve deeper into possible causes of these differences and test how these strategies 

might affect decision on a larger scale. Individuals, and particularly organizational 

decision-makers, should take note of these results and consider their consequences when 

receiving and presenting probability forecasts from multiple sources.  

This paper contains a supplement. Table 5 summarizes its contents. 

Table 5. Index of supplementary materials (available from http://osf.io/atruq)  

 

Section 

Supplement 1. Additional preregistered measures and analyses 

Supplement 2. Full regression tables for Studies 1-4 

Supplement 3. List of stimuli used for Studies 1-3 

Supplement 4. Full scenario text for Study 4 

Supplement 5. Studies testing whether advisors use same vs. different 

information 

Supplement 6. Studies testing effect of adding direction to numeric forecasts 

Supplement 7. Studies testing use of intuition vs. deliberation 

Supplement 8. Studies testing additional mechanisms 

http://osf.io/atruq
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