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Abstract - Toruses and meshes include graphs of many varieties of topologies, with lines, rings, 

and hypercubes being special cases. Given a d-dimensional torus or mesh G and a c-dimensional 

torus or mesh H of the same size, we study the problem of embedding G in H to minimize the 

dilation cost. For increasing dimension cases (d < c )  in which the shapes of G and H satisfy the 

condition of expansion, the dilation costs of our embeddings are either 1 or 2, depending on the 

types of graphs of G and H. These embeddings a,re optimal except when G is a torus of even size 

and H is a mesh. For lowering dimension cases (d > c) in which the shapes of G and H satisfy 

the condition of reduction, the dilation costs of our embeddings depend on the shapes of G and 

H. These embeddings, however, are not optimal in general. For the special cases in which G 

and H are square, the embedding results above can always be used to construct embeddings of 

G in H: these embeddings are all optimal for increasing dimension cases in which the dimension 

of H is divisible by the dimension of G, and all optimal to within a constant for fixed values of d 

and c for lowering dimension cases. Our main analysis technique is based on a generalization of 

Gray code for radix-2 (binary) numbering system to similar sequences for mixed-radix numbering 

systems. 
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1 .  ' Introduction 

1 Introduction 

An embedding of a graph G in a graph H is an injection (one-to-one mapping) of the nodes 

in G to the nodes in H .  The graph embedding ~ rob l em can be stated as follows: given a pair 

of graphs G and H, and a set of constraints and optimization measures, find an embedding of 

G in H that satisfies these constraints and optimizes these measures. Many variations of the 

graph embedding problem have been studied in the literature [AR82, BMS87, CS86, DEL78, 

DJ86, E1188, Fit74, Har66, HJ87, HMR83, HMR73, I(A88, LC76, LW87, MS88, RS78, Ros75, 

Ros78, Ros79, S87, Wu851. These variations differ mainly in the relative sizes of G and H, the 

constraints imposed on the embeddings, and the optimization measures used in the embeddings. 

Many important problems in parallel processing can be formulated as the graph embedding 

problem. They include the problem of matching the communication requirements of a task with 

the communication support of a parallel system (by interpreting G as the task graph and H as 

the interconnection network) and the problem of evaluating the relative performance of a pair of 

interconnection networks (by interpreting G and H as interconnection networks). 

This paper studies embeddings among toruses and meshes of various dimensions. A d- 

dimensional torus is a graph in which each node has two neighbors in each of the d dimensions. 

A d-dimensional mesh is a graph in which each node, except those at the boundaries, has two 

neighbors in each of the d dimensions, while a boundary node in any dimension has only one 

neighbor in that dimension. (The terms array and grid have also been used for mesh  in the liter- 

ature.) Toruses and meshes are two families of graphs that are important in parallel processing. 

These two families include lines, rings, and hypercubes. Many of these graphs arise naturally 

as task graphs in parallel processing, particularly in the application areas of image processing, 

robotics, and scientific con~putation [Fox83, HI(S"83, RI(82, BB821. Furthermore, because of 

their regularity and simplicity, many of these gra,phs have also been used widely as the topologies 

of large-scale interconnection networks [Lh487, OruS4, KWA82, PV791. 

The most commonly used optimization measure in graph embeddings is dilation cost. The 

dilation cost of an embedding of G in H is the maximum distance in H between the images of 

any two adjacent nodes in G [HMR83]. This cost gives a measure of the proximity in H of the 
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1. ' Introduction 

adjacent nodes in G under an embedding. In this paper, we study embeddings for which G and 

H are of the same size, using dilation cost as the optimization measure. Based on the dimension 

of G, we divide the embeddings among toruses and meshes into two classes: (i) basic embeddings, 

those for which the dimension of G is 1, that is, G is either a ring or a line; and (ii) generalized 

embeddings, those for which the dimension of G is greater than 1. Based on the dimensions of 

G and H, we further divide generalized embeddings into two classes: (i) generalized embeddings 

for increasing dimension, those for which the diinension of G is lower than the dimension of 

H; and (ii) generalized embeddings for lowering dimension, those for which the dimension of G 

is higher than the dimension of H. We study only those cases in generalized ernbeddings that 

satisfy some particular conditions: the condition of expansion for increasing dimension cases and 

the condition of reduction for lowering dimension cases. 

All of our generalized embeddings are constructed from several optimal, basic embeddings, 

which are derived by generalizing the concept of Gray code for the radix-2 (binary) numbering 

system to similar sequences for mixed-radix numbering systems. Given a torus, we take the 

lengths of its dimensions as the radices of a mixed-radix numbering system, and for each pair of 

numbers in such a numbering system, we define a distance measure between them in the same 

way as the distance between a pair of nodes in the torus is defined. The problem of finding an 

embedding of a line (a ring) in a torus with minimum dilation cost is then transformed into the 

problem of finding a sequence (a cyclic sequence) of all numbers in a mixed-radix numbering 

system to minimize the spread, which is the i~laximum distance between any pair of consecutive 

numbers in the sequence. For the problem of embedding a line or a ring in a mesh, a similar 

transformation is made by using a different distance measure for a mixed-radix numbering system 

(one corresponding to the distance measure of a mesh instead of a torus). 

All of our basic embeddings are optimal. With two exceptions, our embeddings have unit 

dilation cost. Our embeddings have an optimal dilation cost of 2 when ( i )  G is a ring of odd size 

and H is a mesh, and (ii) G is a ring and H is a line. 

For increasing dimension cases in which the shapes of G and H satisfy the condition of 

expansion, our embeddings have dilation costs of either 1 or 2, depending on the types of graphs 

of G and H .  Except for the case in which G is a torus of even size and H is a mesh, these 
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1.  Introduction 

embeddings are all optimal. For lowering dimension cases in which the shapes of G and H 

satisfy the condition of reduction, the dilation costs of our embeddings depend on the shapes of 

G and H. These embeddings, however, are not optimal in general. 

For the special cases in which both G and H are square, we can always construct an embedding 

of G in H using our results for generalized embeddings. For increasing dimension cases in which 

the dimension of G is divisible by the dimension of H, our embeddings have a dilation cost of 

2 if G is a torus of odd size and H is a mesh, and have unit dilation cost otherwise. These 

embeddings are all optimal. For lowering dimension cases, our embeddings have dilation cost 

21(d-c)lc if G is a torus and H is a mesh, and !(d-c)lc otherwise, where l is the length of the 

dimensions of G, d the dimension of G, and c the dimension of H. For fixed values of d and c, 

these embeddings are all optimal to within a constant. 

A few special cases of the embedding problem studied in this paper have been solved optimally 

in the literature: embedding a mesh (of size some power of 2) in a hypercube [CS86], embedding 

a 2-dimensional square torus in a ring [MNSG], embedding a 2-dimensional square mesh in a line 

[Fit74], embedding a 3-dimensional square mesh in a line [Fit74], and embedding a hypercube in 

a line [Har66]. We compare in detail the dilation costs of our embeddings with the dilation costs 

of these optimal embeddings in Sections 4 and 5 .  In addition to having minimum dilation cost, 

the embeddings of meshes in hypercubes given in [CS86] also satisfy other proximity properties, 

and they are derived using binary reflected Gray codes. Our basic embeddings and generalized 

embeddings for increasing dimension a,re derived using a generalization of the technique used in 

[CS86]. 

Other closely related results in the literature include the following: embeddings of 2- 

dimensional square meshes in lines to minimize average proximity [DEL78], embeddings of finite 

arrays (meshes), prism arrays, and orthant arrays in lines to minimize proximity in various lo- 

cal and global senses [Ros75], embeddings of 2-climensional rectangular meshes in 2-dimensional 

square meshes to  minimize the dilation costs while satisfying constraints on expansion costs 

[AR82, E11881, embeddings of meshes in hypercubes with various expansion costs and dilation 

costs [S87, HJ87, BMS871, and simulations between rectangular meshes [KA88]. (In a simulation 

of G in H, a constant number of nodes in G can be mapped into a single node in H ;  thus, a 
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2. Preliminaries 

simulation is not an injection but a many-to-one mapping.) With the exception of [KA88], in 

which the costs are expressed in terms of big 0 notation (thus, ignoring any constant factor), 

the costs in the papers cited above and in this pa,per are all exact. 

2 Preliminaries 

Unless stated otherwise, variables denote positive integers, logarithms refer to base 2, graphs 

are unweighted and undirected. Given an integer n 2 1, we use [n] to denote the set 

{0,1,.  . . , n - 11, and [n]+ to denote the set (1, 2, . . . , n). Given a list (xl, 2 2 , .  . . , xp) and 

a list (yl, y2,. . . , yq), we use (xl, 2 2 , .  . . , xp) o (yl, y2,. . . , yg) to  denote the concatenation of the 

two lists: (xl, 52, . . . , xp) o (yl, y2, . . . , yq) = (xl, 2 2 ,  . . . , xp, y1, y2, . . . , yq). Given two functions f 

and g, we use f o g to denote the composition of f and g: (f o g)(x) = f (g(x)) for all x in the 

domain of g. Given a positive integer k, a list (il, i2, . . . , ik), and a permutation .rr : [k]+ -+ [k] +, 

we use n((i l , i2, .  . . , ik ) )  to denote ( z , ( ~ ) ,  . . . , z , ( ~ ) ) .  Given a rational number x, we use 1x1 to 

denote the greatest integer less than or equal to x. 

A graph G = (VG, EG) is a pair consisting of a set VG of nodes and a set EG of edges. The 

size of G is lVGI. 

Definition 1 An embedding f of a graph G = (VG, EG) in a graph H = (VH, EH) is an injection 

f : VG 4 VH. The dilation cost of f is m a ~ ( ~ , ~ ) ~ ~ , { d i s t a n c e  between nodes f (i) and f (j) in H). 

Definition 2 Let d be a positive integer, and E l ,  12,. . . , ld be integers greater than 1. An 

(Il, 12,.. . , ld)-torus is a connected graph with nie[d1+ li nodes. The nodes are all lists 

(il , i2 ,..., id), where for all j E [dl+, i j  E [lj]. For each node A = ( i l , i2 ,..., id) and each 

j E [d l+ ,  A has in the j-th dimension a left neighbor ( i l , i2, .  . . ,ij-1, ( i j  - 1) mod Zj,ij+l,. . . , id)  

and a right neighbor ( i l , iz , .  . . ,ij-1, ( i j  + 1) mod l j , i j+l , .  . . , id) .  

Given an (11, 12,. . . , l d ) - t 0 ~ ~ s 7  (11, 12,. . . ,Id) is the shape of the torus; d is the dimension of the 

torus; and for all j E [dl+, l j  is the length of the j-th dimension of the torus. If l1 = Z2 = . . . = ld? 

we say that the torus is square. A torus of dimension 1 is a m'ng. For convenience in presentation, 
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2. Preliminaries 

Figure 1: A (4, 2, 3)-torus 

given a ring of size n,  instead of using the lists (0), ( I ) ,  . . ., (n  - 1) to denote its nodes, we often 

use the integers 0, 1, . . ., n - 1. An example of a (4,2,3)-torus is given in Figure 1. 

Definition 3 Let d be a positive integer, and 11, 12,. . . , ld be integers greater than 1. An 

(I,, 12,. . . , ld)-mesh is a connected graph with niEld1+ 1; nodes. The nodes are all lists 

(i,, i2 , .  . . , id) ,  where for all j E [dl+, i j  E [Ij]. For each node A = (i,, 22,. . . , id )  and each 

j E [dl+, if i j  $ (0, l j  - I}, then A has in the j-th dimension a lefi neighbor ( i l ,  i2 , .  . . , ij-1, i j  - 

1, ij+,,. . . , id) and a right neighbor (il, i2,. . . , ij-1, i j  + 1, ij+,, . . . , id). If i j  = 0, then A has no 

left neighbor in the j-th dimension, and if i j  = Ij - 1, then A has no right neighbor in the j-th 

dimension. 

The terms shape, dimension, length of a dimension, and square for meshes are defined in the 

same way as for toruses. A mesh of dimension 1 is a line. Given a line of size n, we often use the 

integers 0, 1, . . ., n - 1 to  denote its nodes. An example of a (4,2,3)-mesh is given in Figure 2. 

Given a torus or a mesh G, the type of G refers to whether G is a torus or a mesh. Two 

graphs are of the same type if they are both toruses or both meshes. 
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2. Preliminaries 

Figure 2: A (4, 2, 3)-mesh 

Definition 4 Let n = zd ,  for some positive integer d. A hypercube of size n is a connected graph 

in which the nodes are all lists ( i l l  i2 , .  . . , i d ) ,  where for all i  E [dl+, i j  E {0,1}. A pair of nodes 

A and B are neighbors if the lists A and B differ in exactly one position. 

A graph G is a hypercube if and only if G is both a torus and a mesh: a hypercube of size n 

is both a (1ogn)-dimensional torus and a (log n)-dimensional mesh in which the length of each 

dimension is 2. 

For every pair of nodes v and v' in a connected graph G,  the distance between v and v' in 

G is the length of the shortest paths between v and v' in G. The following two lemmas follow 

directly from the definitions of toruses and meshes. 

Lemma 5 Let G be an ( Z 1 ,  12,. . . , Id)-t0rus, and A = ( i l , i z , .  . . ,id) and B = ( i i ,  i;, . . . , i&) 

be a pair of nodes in G. T h e  distance between A and B in G,  denoted by  S t (A ,B) ,  is 

min {tik - iL1, lk  - lik - ikl}. 

Lemma 6 Let G be an ( Z 1 ,  Z 2 , .  . . , Id)-mesh, and A = ( i l ,  i2 , .  . . , i d )  and B = (ii, i i ,  . . . , i&) be a 

pair of nodes in  G.  T h e  distance between A and B i n  G,  denoted by  &,(A, B),  is c$=, lik - iLl. 
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2. Preliminaries 

In the torus given in Figure 1, the distance between the nodes (O,0, 1) and (3,0,0) is 2, and 

in the mesh given in Figure 2, the distance between the nodes (O,0, 1) and (3,0,O) is 4. 

Definition 7 Let d be a positive integer, and 11, 12,. . . , Id be integers greater than 1. Let L = 

(Il, 12,. . . , Id) ,  and n = nbl li. For all i E [d + 11, let wi = 1,. For all x E [n], the radix-L 

representation of x is the d-tuple (S1, 22,. . . , 2d) such that for all j E [dl+, 2, = Lx/wjJ mod 1,. 

L is a radix-base, and wo, wl, . . ., wd are the weights in the radix-L representation. The set of all 

radix-L numbers, denoted by Re, is the set of radix-L representation of x,  for all x E [n]. Re is 

a mixed-radix numbering system. Let u~ : [n] t RL denote the bijection given above that maps 

each integer in [n] to its radix-& representation in Or. Let u i l  : CIL t [n] denote the inverse of 

u ~ .  For every number ( i l ,  22, .  . . , 2d) E Re, ~ ~ ' ( ( 2 1 ,  22,.. . , gd)) = ~ 2 = ~  2 k ~ k .  

Every integer in [n] has unique radix-L representation [ T M 7 5 ] .  Note that the weight wo is not 

used in the definition of radix-L representation of numbers. This weight is included only for the 

simplification of our later definitions and analyses. Again, for convenience in presentation, when 

d = 1, instead of using the list (Il) to denote a radix-base L ,  and the lists (0), ( I) ,  . . ., (Il - 1) 

to  denote the numbers in RL, we often use the integer 11, and 0, 1, . . ., El - 1, respectively. An 

example of the radix-(4,2,3) numbering system is given in Figure 9 on page 26. In this example, 

l1 = 4, l2 = 2, l3 = 3, wl = 6, wz = 3, and wg = 1. 

Given a radix-base L = (I1, 12,. . . ,Id), we can view the radix-L numbers in Re as either the 

nodes in an (11, 12,. . . , Id)-torus or the nodes in an (11, 12,. . . , Id)-mesh using the obvious bijections. 

We can thus define the &-distance and the &,-distance between a pair of radix-L numbers as the 

distances between the corresponding pair of nodes in a torus and in a mesh, respectively. By 

the definitions of 6,-distance and St-distance, the &,-distance between any two numbers in RL 

is always greater than or equal to their St-distance. 

Definition 8 Let n be a positive integer, L = (Il, 12, . . . , Id) a radix-base, and f : [n] t Re 

a bijection. Such a function f is often treated as an acyclic sequence, namely, f (0), f (1), . . ., 
f (n - 1). For all i E [n - 11, f (i) and f (i + 1) are successive elements in the acyclic sequence 

f .  If the first and the last elements, f(0)  and f (n  - l ) ,  are also taken to be successive, then 

f is called a cyclic sequence. The 6,-spread of the acyclic sequence f is the maximum of the 
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2. ' Preliminaries 

Figure 3: A function f with n = 9 and L = (3,3) 

&,-distances among all pairs of successive elements in f ,  and the &-spread of the acyclic sequence 

f is the maximum of the St-distances among all pairs of successive elements in f .  The 6,-spread 

and St-spread of the cyclic sequence f are defined similarly. 

In the definition above, a function f can be treated as either an acyclic sequence or a cyclic 

sequence, depending on the way that successive elements are defined. Furthermore, whether f 

is viewed as cyclic or acyclic, we can always define a 6,-distance and a St-distance between pairs 

of elements of f .  In the remainder of this paper, we simply call an acyclic sequence a sequence. 

Figure 3 (a) gives an example of a function f : [9] -+ fl(3,3), and Figure 3(b) shows the 6,-distance 

and St-distance between the pair f (i) and f ( ( i  + 1) mod 9), for all i E [9]. In this example, if we 

view f as an acyclic sequence, then the 6,-spread of f is 2, and the St-spread of f is 1. If we 

view f as a cyclic sequence, then the 6,-spread of f is 3, and the St-spread of f is 2. 

As will be discussed in detail in the next section, given an embedding f of G in H, we often 

view f as an acyclic sequence if G is a line, and as a cyclic sequence if G is a ring. We use 

6,-distance measure on f if H is a mesh, and &-distance measure if H is a torus. 

For the special case in which n = 2d and L is a list of d elements each equal to 2, if the 

function f : [n] -+ RI, has unit St-spread (which is the same as the 6,-spread in this case), then 

the sequence f is called a Gray code [RJD77]. 
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3. Basic embeddings 

3 Basic embeddings 

In this section, we consider the embeddings of either a line or a ring in a mesh or a torus. The 

major results of this section are the following: 

(i) A line can always be embedded in a mesh or a torus with unit dilation cost. 

(ii) A ring can always be embedded in a torus with unit dilation cost. 

(iii) A ring can be embedded in a mesh with unit dilation cost if the ring is of even size and the 

mesh has dimension greater than 1, and with an optimal dilation cost of 2 otherwise. 

3.1 Embedding a line in a mesh or a torus 

Let G be a line of size n,  and H be an (Il, 12,. . . , Ed)-mesh or an (l1,E2,. . . , Ed)-torus such that 

n = n;d=, I;.  Let L = (11, 12,. . . , I d ) .  The problem of embedding G in H can be considered in 

terms of the radix-L numbers in flL: the nodes in G are all numbers in [n]; the nodes in H are all 

radix-L numbers in RL; and an embedding f of G in H is a bijection from [n] to RL. Since the 

neighbors in G correspond to  the pairs of successive numbers in the sequence 0, 1, , . . . , n - 1, 

the dilation cost of an embedding f is the &,-spread of the sequence f if H is a mesh, and the 

St-spread if H is a torus. The problem of finding an embedding of G in H with minimum dilation 

cost thus corresponds to the problem of finding a sequence of all numbers in RL with minimum 

&,-spread if H is a mesh, and finding one with minimum &-spread if H is a torus. 

Since the &-spread of a sequence is never greater than its 6,-spread, to prove that a line 

can be embedded in a mesh or a torus with unit dilation cost, it suffices to  prove that we can 

construct a sequence of all numbers in RL with unit &,-spread. 

Let P be the sequence of numbers 0, 1,. . . , n - 1 in their radix-L representations. In the 

following, we first show that the &,-spread of P is at lea.st 2 for all d > 1, and then construct 

another sequence P' from P with unit 6,-spread. 

In the sequence P ,  every element a is of the form (61, G2, . . . , lid), where hi E [li], for all 

i E [dl+. Every element a in P thus consists of cl components. The sequence P can be viewed 

as consisting of d separate sequences of natural numbers, namely pl, pz, . . ., pd, all of length n, 
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3. ' Basic embeddings 

sequence  P sequence  P' 

Figure 4: Sequences P and P' for L = (4, 2, 3) 

one for each of the d components of the elements in P. Let wo, wl, . . ., wd be the weights in 

the radix-L representation. From the properties of the radix-L representation of numbers, for 

all i E [d+, the sequence pi can be partitioned into n / ~ ; - ~  segments, each with w;-1 elements 

and of the form 0 . .  - 0 1 - 1 (1; - 1) - . (li - 1). We number these segments from 0 to n/wi-l - 1 
---A 

7 

Wi "4 w; 

successively. For every pair of successive elements in pi, for all i E [dl+, if they belong to the 

same segment in pi, then their difference is at most 1; otherwise, their difference is 1; - 1. The 

sequence P has thus a 6,-spread greater than 1 for all d > 1. An example of the sequence P for 

L = (4, 2, 3) and n = 24 is shown in Figure 4. 

We next construct a sequence P' with unit 6,-spread from P. The sequence P' can also 

' For all i E [dl+, pi is constructed from be viewed as consisting of d sequences, pi, p;, . . ., pd. 

pi by reversing all of the odd-numbered segments of pi, which produces segments of the form 
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3. ' Basic ernbeddings 

(I; - 1) . (1; - 1) - 
Wi 

As will be proved 

1 . . 1 0  . 0, and by leaving all of the even-numbered segments unchanged. 
,-- 

Wt WI 

below, for every pair of successive elements in p:, if they belong to the same 

segment, their difference is at most 1; otherwise, their difference is 0. The sequence PI has unit 

&,-spread. An example of PI for L = (4, 2, 3) and n = 24 is shown in Figure 4. 

We now define a function f L  : [n] -+ flL. Lemma 10 shows that the sequence fc is a sequence 

of all numbers in nL, and Lemma 11 and Lemma 12 show respectively that the sequence f L  has 

unit 6,-spread and unit &-spread. The sequence fL  is PI. 

Definition 9 Let L = (11, 12,. . . , ld) be a radix-base, and let n = 1;. Let wo, w1, . . ., 
wd be the weights in the radix-L representation. For all x E [n], let ($1, $2,. . . , ?d) be the 

radix-L representation of x. The function fL : [n] -+ RL is defined as follows: for all x E [n], 

fL(x) = (xl, x2 , .  . . , xd), where for all i E [dl+, 

if L X / W ; - ~ ]  is even; 

( - ? - 1, if L x / w ~ - ~ ]  is odd. 

In the definition above, for all i E [dl+, [ X / W ~ - ~ ]  determines the segment in the sequence pi 

to which ii belongs. An example of the function fL  is given in Figure 9 on page 26. 

We say that two numbers have the same parity if they are both even or both odd. 

Lemma 10 Let L = (11, 12,. . . , ld) be a radix-base, and Iet n = n;d=, I;. The  function fL  is 

bijective. 

Proof. Since IflcJ = n,  to show that f L  is bijective, it is sufficient to show that f L  is injective. 

Let x and y be an arbitrary pair of distinct integers in [n]. We want to show that fL(x) # 
fL(y). Let (?,, ?2,. . . , i d )  and (G1,G2,. . . ,Gd) be the radix-L representations of x and y. Let 

f ~ ( x )  = (x1,x2,. . . ,xd), and f ~ ( y )  = (yl,  y2,. . . ,yd). Since every integer in [n] has a unique 

radix-L representation, there is at least one index i E [dl+ such that 3; # Gi. Let k E [dl+ be 

the smallest index such that 31: # GI:. We first show that L X / W I : - ~ ]  and L ~ / W I : - ~ ]  have the same 

parity. There are two cases: 
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3. Basic embeddings 

Case 1. k  = 1. 

since wo = n, L X / W O ]  = L Y / W O ]  = 0. Thus, Lx/wo] and Ly/woj have the same parity. 

Case 2. k  > 1. 

Assume for contradiction that L X / W ~ - ~ ]  a.nd L y / ~ ~ - ~ j  have different parities. This implies 

that L X / W ~ - ~ ]  # L Y / W ~ - ~ ] .  Since 2k-l = ik-l, we also have L X / W ~ - ~ ]  mod lkWl = mod 

It follows that I L X / W ~ - ~ ]  - L Y / W ~ - ~ J  I = clk-1,  for some positive integer c .  By the definition 

of radix-base, lk-1 > 1 ,  and hence, 1 - I > 1.  This implies that lx-31 > wk-1. 

On the other hand, since k is the smallest index such that itk # G k ,  we have 

d d 

Ix - yI 5 I i j w j  - Gjwj  I 5 c ( l j  - 1 )  w j .  
j=k j=k 

Since by definition, for all j E [d + 11, w j  = J-J'&i+l l i ,  we have for all j E [4+,  l jw j  = wj-1. 

Thus, 

which is a contradiction. Therefore, L x / w ~ - ~ ~  and L Y / w ~ - ~ ]  have the same parity. 

If L X / W ~ - ~ ]  and L y / ~ k - ~ ]  are both even, then we have xk = ik and yk = G k .  If they are both 

odd, then we have xk  = l k  - itk - 1  and yk = El ,  - ijk - 1. In either case, the fact that 2 k  # i j k  

implies that xk  # yk. Thus, f L ( x )  # f L ( y ) .  The function f L  is therefore bijective. CI 

Lemma 11 Let L = (11, 1 2 , .  . . , ld)  be a radix-base, and let n = n;=, li .  For all x  E [n - 11, 

47L(fL(.), f L ( x  + 1 ) )  = 1. 

Proof. Let x  be an arbitrary number in [n - 11, and let y  = x  + 1. Let ( i t l ,  it2, . . . , d d )  and 

(il, G 2 ,  . . . , id) be the radix-L representations of x  and y. Let f L ( x )  = ( x l ,  x 2 , .  . . , x d ) ,  and 

f ~ ( y )  = (y1 ,  yz , .  . . , yd). We want to show that ( x l , x 2 , .  . . , xd )  and ( y l ,  y2,.  . . , y d )  differ by 1  in 

exactly one position. 

First we look at the relationship between the values of d ;  and 6; for all i E [4+ .  Since 

x  < n - 1 ,  by the properties of the radix-L representation of numbers, there exists exactly one 

index k  E [dl+ such that d k  < E k  - 1  and for all i E { k  + 1 ,  . . . , d), 2; = I ;  - 1. Since y  = x  + 1 ,  

for all i E { k + 1 ,  . . . ,  d), Gi = 0; Gk = d k +  1; and for a l l i  E (1, . . . ,  k -  l ) ,  i j i  = i t ; .  
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We now look at  the relationship between xi and yi, for all i E [d+. There are three cases: 

Case 1. i E {k + 1, . . . , d) .  

First we show that L x / w ~ - ~ J  and L ~ / W ; - ~ ]  have different parities. Since ii-l # iji-l, we have 

Lx/w;-IJ mod l;-l # L ~ / W ; - ~ ]  mod and hence, [ X / W ~ - ~ ]  # L y / ~ ; _ ~ j .  Furthermore, since z 

and y differ only by 1, [X/W;-~]  = L ~ / W ; _ ~ ]  + l .  Therefore, L X / W ; - ~ ]  and [ y / ~ ~ - ~ ]  have different 

parities. Since ii = Ei  - 1 and iji = 0, we have xi = yi. 

Case 2. i E [k - I]+. 

First we show that L X / W ; _ ~ ]  and l y / ~ ; - ~ ]  have the same parity. If i = 1, then since wo = n, 

we have Lz/wo] = Ly/wo] = 0. Therefore, [X/W;-~] and ly/wi-l] have the same parity. If 

i E {2 ,3 , .  . . , Ic - 11, then since 2i-l = Bi-l, we have L x / w ~ - ~ ]  mod Zi-1 = L ~ / W ~ - ~ ]  mod Ei-l. 

Furthermore, since > 1 and x and y differ only by 1, we have L X / W ~ - ~ ]  = L ~ / W ; - ~ ] .  Therefore, 

L X / W ; - ~ J  and L ~ / W ; - ~ J  also have the same parity. Since ii = jj;, we have xi = yi. 

Case 3. i = k. 

Using a proof as the one in Case 2, we can show that L X / W ~ - ~ ]  and Ly / w ~ - ~ ]  have the same 

parity. Since jjk = ik + 1, we have Jyk - xkl = 1. 

since Srn(f~(x), ~ L ( X  + 1)) = c!=, Ixi - pi], We have Srn(fL(x), f ~ ( z  + 1)) = 1. 

Lemma 12 Let L = (11, 12,. . . , E d )  be a radix-base, and let n = n;=, li. For all a: E [n - 11, 

&(f~(.), fL(x + 1)) = 1. 

Proof. Since for any two numbers in RL their &,-distance is never less than their St-distance, 

the claim follows from Lemma 11. 

Theorem 13 Let G be a line, and H be either an (11, 12 , .  . . , Ed)-torus or an (11, 1 2 , .  . . , Ed)-mesh 

such that G and H are of  the same size. Let L = ( E l ,  1 2 , .  . . , id). The line G can be embedded in 

H with unit dilation cost. The function f L  gives such an optimal embedding. 

Proof. The theorem follows from Lemmas 10, 11, and 12 by interpreting the numbers in [n] as 

the nodes in G, and the radix-L numbers in ilL: as the nodes in H. 

An example of embedding a line in a mesh using the function f L  is given in Figure 10 on 

page 27. 
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3.2 Embedding a ring in a mesh or a torus 

Let G be a ring of size n, and H be either an (El, 12,. . . , Id)-mesh or an (11,12,. . . , Id)-torus such 

that n = li. Let L = (11, 12,. . . , Id). As with the problem of embedding a line in a mesh, we 

can consider this problem in terms of the radix-L numbers in OL. The neighbors in a ring of size 

n correspond to  the pairs of successive numbers in the cyclic sequence 0, 1, , . . . , n - 1. The 

problem of finding an embedding of G in H with minimum dilation cost thus corresponds to the 

problem of finding a cyclic sequence of all radix-L numbers in OL with minimum &,-spread if H 

is a mesh and finding one with minimum St-spread if H is a torus. 

In this section, we first show that the 6,-spread of the cyclic sequence fL is at least ll - 1. 

We then construct from fL another cyclic sequence g t  with a 6,-spread of 2. The function g t  

provides an embedding of a ring in a mesh with a dilation cost of 2. We also prove that a ring of 

odd size cannot be embedded in a mesh of the same size with unit dilation cost. The embedding 

function g~ is therefore optimal for all rings and meshes of odd sizes. Finally, we construct a 

cyclic sequence hL that has unit 6,-spread if L consists of at least two components, and with the 

first component being an even number. The function hL can be used to construct an embedding 

of a ring of even size in a higher-dimensional mesh with unit dilation cost. Furthermore, the 

cyclic sequence hc has unit St-spread. Thus, the function hL also provides an optimal embedding 

of a ring in a torus with unit dilation cost. 

3.2.1 Embedding a ring in a mesh 

The embedding function g~ 

Let L = (11,12,. . . , ld) be a radix-base, and let n = nfZ1 li. Let fL(n - 1) = ( nl, n2, . .. , nd). 

The radix-LG representation of n - 1 is (11 - 1, 12 - 1, . . . , ld - 1). Since w0 = n,  we have 

L(n - l)/wo] = 0, which is even. It follows from the definition of fL that nl = l1 - 1. Hence, the 

6,-distance between f t (0)  and f t ( n  - 1) is at least ll - 1. The cyclic sequence fL therefore has 

a 6,-spread of at least lI - 1. 

A cyclic sequence with a &,-spread of 2 can be constructed from fL in the following way. We 

number all the elements in fL  successively from 0 to n - 1. Let R' and R" be the following two 
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sequences: R' consists of all even-numbered elements in fc in the same order as they appear in 

fL, and R" consists of all odd-numbered elements in fL in the reverse order. Since the sequence 

fL has unit 6,-spread, both R' and R" have a 6,-spread of 2. The cyclic sequence R'R", the 

concatenation of R' and R", has a &,-spread of 2: the first element in R' and the last element in 

R" correspond to the first two elements in fL; the last element in R' and the first element in R" 

correspond to the last two elements in fL; and the sequence fL has a unit 6,-spread. 

We first define the function t ,  : [ r ~ ]  + [n]. This function defines a cyclic sequence of all 

numbers in [n] with a &-spread of 2. We then define the function gc : [n] + R e  using fL and 

t,. The sequence g~ is R'R". 

Definition 14 Let n be any positive integer. The function t ,  : [n] + [n] is defined as follows: 

for all x E [n], 

if n is even, then 

if n is odd, then 

Definition 15 Let & = (I1, 1 2 , .  . . , Id) be a radix-base, and let n = n:=, I;. The function gc : 

[n] 4 Rt is defined as follows: for all x E [n], 

An example of the function gc for .C = (4,2,3)  is given in Figure 9 on page 26. It is clear 

that the function g ~ :  is bijective. The next lemma follows directly from the definition of gc and 

the properties of fL. 
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Lemma 16 Let L = (I1, 12,. . . , Id)  be a radix-base, and let n = n!=, li. For all x E [n], 

~ m ( g c ( x ) , s c ( ( ~  + 1) mod n)) 12. 

Theorem 17 Let G be a ring, and H be an (11,  12,. . . , Id)-mesh such that G and H are of the 

same size. Let L = (I1, 12,. . . , Id). The ring G can always be embedded in H with a dilation cost 

of 2. The function gr. gives such an embedding. Furthermore, such an embedding is optimal if 

H is a line of size greater than 2 or has odd size. 

Proof. We need only prove that a ring cannot be embedded in either a line of size greater than 

2 or a mesh of odd size with unit dilation cost. The other part of the theorem follows from 

Lemma 16. 

For the case in which H is a line of size greater than 2, it suffices to notice that since each 

of the two boundary nodes of H has only one neighbor, a ring cannot be embedded in the line 

with unit dilation cost. For the case in which H is of odd size and of dimension greater than 1, 

we prove the theorem by showing that there is no Harniltonian circuit in such a mesh. 

Assume for contradiction that a Hamiltonian circuit exists in an (11, 12,. . . , Id)-mesh of odd 

size. Since the mesh has an odd number of nodes, the circuit also has an odd number of edges. 

By specifying a direction in the circuit, we can view all of the edges in the circuit as directed. 

Each node in the mesh is a list of d components, (il ,  i 2 , .  . . , id) ,  where i j  E [Ij], for all j E [dl+. 

Since each edge (u, v) in the circuit connects a pair of neighboring nodes in the mesh, u and v 

differ in exactly one component by 1, that is, v can be obtained from u by either increasing or 

decreasing exactly one component of u by 1. Furthermore, for each edge (u, v) in the circuit, if 

v can be obtained from u by increasing the E-th component of u from a to a + 1, where k E [dl+ 

and a,  a + 1 f [Ik], then there must exist an edge (s , t )  in the circuit such that t can be obtained 

from s by decreasing the k-th component of s from a + 1 to a; otherwise, if we traverse the circuit 

starting from the node u, we will not be able to return to u in the circuit. For a similar reason, 

the reverse of the above condition is also true: if v can be obtained from u by decreasing the 

k-th component of u from a + 1 to a ,  then there must exist an edge (s , t )  in the circuit such 

that t can be obtained from s by increasing the k-th component of s from a to a + 1. It follows 

that every edge in the circuit has a unique mate. Therefore, the number of edges in the circuit 
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is even. This contradicts the assumption that H is of odd size. 

An example of an embedding of a ring of size 24 in a (4,2,3)-mesh using the function gt is 

given in Figure 10 on page 27. 

The proof of the following corollary is contained in the proof of the theorem above. 

Corollary 18 There is no Hamiltonian circuit in any mesh o f  odd size. 

For the special case in which the mesh is of even size and of dimension at  least 2, a ring 

can always be embedded in it with unit dilation cost. In the following, we first construct an 

embedding function r t  for the simple case in which the dimension of the mesh is exactly 2, and 

then construct a function ht for the case in which the dimension of the mesh is at  least 2. 

The embedding function r t  

The following lemma gives a property of fL that will be used in the construction of the 

function r t .  

Lemma 19 Let C = (I1, 12,. . . , Id) be a radix-base, and let n = nfZl li. If Il is even, then 

fL(n - 1 )  = (Il - 1, 0, .  . . , 0). 

Proof. By definition, the radix-,C representation of n - 1 is (Il - 1, l2 - 1,. . . , Id - 1). Since 

wo = n, we have [(n - l)/woJ = 0, which is even. We want to show that if Il is even, then for all 

i E (2, . . . , d), [(n - l ) / ~ ~ - ~  J is odd. These results together with the definition of the function 

fL will then imply the lemma. 
d Since n = nk=l It, and, by definition, for all i E {2, . .. , d l ,  w;-1 = n:==;lj, we can 

write ( n  - 1 ) w i l  as 1 - ( l w ) .  Furthermore, since 0 < ( I / W ~ - ~ )  < 1, we have 

[ (n  - I ) / W ~ - ~  J = n:~: lj  - 1. Therefore, for all i E 12, . . . , d}, ( n  - 1 ) w l  J is odd if ll is 

even. 

Let G be a ring, and H be an (Il, &)-mesh such that El is even, and G and H are of the 

same size. Let C = (11, 1 4 .  We assume the following coordinates: the origin of the mesh H, 

(0, 0), is at the lower left corner, the first dimeilsion increases vertically upward, and the second 

dimension increases horizontally to the right. If we use the function fL to embed the ring in 
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Figure 5: Embedding a ring in an (Il, la)-mesh with ll = 4 and la > 2 

the mesh, then by Lemma 19, both the first and the last nodes from the ring are embedded in 

the first column of the mesh, with node 0 at the bottom (node (0, 0) in the mesh) and node 

n - 1 at the top (node ( E l  - 1, 0) in the mesh) (see Figure 5(a)). The &,-distance between fL(0) 

and fL(n - 1) is thus Il - 1. For the case in which la > 2, the following simple modification of 

fL  gives an embedding of G in H with unit dilation cost. We first embed the nodes from the 

ring successively in the first column of the mesh, from top to bottom, and then by treating the 

remaining nodes in the mesh as an (11, i2 - 1)-mesh, we embed the remaining nodes from the ring 

using the function f~i,,l,-l). (See Figure 5(b).) In this embedding, all neighboring nodes in the 

ring are embedded in neighboring nodes in the mesh. 

For the case in which l 2  = 2, the function f(l,,f,-l) is not defined because every component 

in a radix-base must be greater than 1. For this case, we simply embed the nodes from the ring 

successively in the first column of the mesh, from top to bottom, and then embed the remaining 

nodes from the ring in the second column of the mesh, from bottom to top. This embedding also 

has unit dilation cost. 

We next define the function rc  : [n] -+ Rc. This function r~ gives the embedding above. 

Definition 20 Let L = (Il, 12) be a radix-base, and let n = Ell2. The function rc  : [n] -+ Or. is 

defined as follows: for all x E [n], 
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if 12 > 2, then 

(!I - 1 - X ,  0)) if x < 1,; 
~ L ( x )  = 

( x i ,  x2 + 1 )  where ( X I ,  x z )  = f ( r , , [ 2 - 1 ) ( ~  - 1 1 ) )  if x 2 11; 

if l2 = 2, then 

The next lemma follows directly from the definition of rL and the properties of the function 

fL .  

Lemma 21 Let L = ( 1 1 ,  1 2 )  be a radix-base for which ll is even, and let n = 1112. For all x E [n], 

&,(rL(x) ,rL((x  + 1 )  mod n ) )  = 1. 

The embedding function hL 

We next consider the case of embedding a ring of even size in a mesh of dimension at least 

3. Given a mesh of even size, first we assume that the length of its first dimension is even. 

Let d > 3, let ,C = (1 , )  12 , .  . . , l d )  be a radix-base for which l I  is even, and let n = nf=,  1;. 

Let L' = ( I l ,  1 2 ) ,  C" = (13 ,  14,. . . , I d ) ,  and m = n?=, 1;. We now construct a cyclic sequence of 

the numbers in R L  with unit &,-spread. This sequence is defined in terms of r ~ l  and fLll. We 

first define m sequences 40, q1, . . ., qm-1, each of which has length Z112. For all i E [m], let q; 

be the sequence rCl (0) o fLll ( i ) ,  r L l ( l )  o fLll (i), . . ., r ~ 1 ( ! 1 1 ~  - 1)  o f ~ 1 1  (i). ( o is the operator for 

concatenating two lists, as defined in Section 2, page 4.) Since the function r p  : [1112] -+ Ref 

and the function fLll : [m] t RLll are both bijective, each of these sequences consists of 1112 

distinct numbers in RL. Next we construct two disjoint segments from each of these sequences: 

for all i  E [m], the segment q: consists of the first 1112 - 1 elements of q;, with these elements 

in the same order as they appear in q; if i is even and in the reverse order if i is odd; and the 

I I1 I' segment q>onsists of the last element in q;. Let Q' = q; qi - . - q,-, , Q = qm-, qk-2 - . qi, 
and Q = Q'Q". An example of Q, Q', and Q" is given in Figure 6 for even m. The sequence Q 
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Q ' Q' 
Figure 6: Q, Q' and Q" for even rn 

consists of all numbers in aL, and each element in Q is a list of d components. We now show 

that the cyclic sequence Q has unit 6,-spread by establishing the following claims. 

Claim 1. The sequence Q' has unit 6,-spread. 

For every pair of successive elements in Q', if they belong to the same segment q:, for some 

i E [m], then they have the same rightmost d - 2 components, which are the components of 

fLtt(i), and their leftmost two components correspond to successive elements in the sequence ret. 

Therefore the 6,-distance between them is 1. If they belong to different segments, then they have 

the same leftmost two components, which are either the components of rLt(0) or the components 

of rLt(Z1Z2 - 2), and their rightmost d - 2 components correspond to successive elements in the 

sequence fL,i. Therefore the &,-distance between them is also 1. The sequence Q' thus has unit 

&,-spread. 

Claim 2. The sequence Q" has unit &,-spread. 

All elements in QN have the same leftmost two components, which are the components of 

t ( 1 2  - 1 )  Furthermore, for every pair of successive elements in Q", their rightmost d - 

2 components correspond to successive elements, in reverse order, in fLii. The sequence Q" 

therefore has unit 6,-spread. 

Claim 3. The cyclic sequence Q has unit 6,-spread. 
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Let y' and z' be the first and last elements of Q', and y" and z" be the first and last elements 

of Q". We show that the 6,-distance between z' and y" and the 6,-distance between y' and 

2'' are both 1. Both z' and y" come from the sequence q,-1, with y" being the last element in 

q,-~, and depending on whether m is even or odd, z' being either the first or the second to last 

element in q,-1. Since l1 is even, by Lemma 21, the cyclic sequence r t ~  has unit &,-spread. The 

6,-distance between z' and y" is therefore 1. For the pair y' and z" , since they both come from 

the sequence qo, with y' being the first element and z" being the last element, again since the 

cyclic sequence re1 has unit 6,-spread, the &,-distance between y' and z" is also 1. Using claims 

1 and 2, we conclude that the cyclic sequence Q has unit 6,-spread. 

We next define the function hG : [n] -+ RG. When d 2 3 and l1 is an even number, the 

sequence hL is Q'Q''. TO simplify our presentation, we also define the function hL for the special 

cases d = 1 and d = 2. For d = 2, we define hG to be r ~ .  For d = 1, we define hG to be the 

identity function. (The function ht with d = 1 appears only in the embedding of a ring in a 

torus, which will be discussed in the next subsection, but not in the embedding of a ring in a 

mesh .) 

Definition 22 Let L = (I1, 12,. . . , Id) be a radix-base, and let n = n:=, I;. The function hG : 

[n] -+ RL is defined as follows: for all x E [n], 

if d 2 3, then let L' = (Il, 12), L" = (I3, 1 4 , .  . . , Id), m = n,=, 1. t ,  a = Lx/(1112-I)], 

b = x mod (Ill2 - I ) ,  and 

I r ~ l ( b )  0 f ~ l l ( a ) ,  if x < m(lll;! - 1) and a is even; 

~ G ( x ) =  ~~~(1112-b-2)ofL, l (a ) ,  if x < m(ll12 - 1) and a is odd; 

rG~(1112 - 1) o fGll(n - x - I ) ,  otherwise; 

if d = 2, then hG(x) = rG(x); and 

if d = 1, then hL(x) = x. 

In the definition above, Ill2 - 1 corresponds to the length of each segment in Q', m(llla - 1) 

corresponds to the length of the sequence Q', a determines a particular segment in Q', and b 

determines a particular element inside the segment. An example of the function hL for L = 

(4,2,3) is given in Figure 9 on page 26. 
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The function hL is clearly bijective. The following lemma follows from the definition of hL 

and the properties of r,p and fLl1. 

Lemma 23 Let d > 1, let L = (11, 12,.  . . , Id) be a radix-base, and let n = nf=l li. I f  Il is even, 

then for all x E [n], 6,(hL(x), hL((x + 1) mod n)) = 1. 

We can view the function ht as embedding a ring in an (11, 12,. . . , Id)-mesh for which d 2 2 

and II is even in the following way. Let m = @, I;. We first divide the (11, 12,. . . , Id)-mesh into 

m (11, 12)-meshes, which we simply call planes. All nodes in each plane have the same rightmost 

(d - 2) components. The values of these components are used to order the planes from 0 to 

m - 1 according to the sequence fLu (0), f t 1 1  (1), . . ., fLll(m - 1). We refer to the nodes in each 

plane only by their leftmost two components. The embedding function ht marches through these 

planes in two passes: first a forward pass from plane 0 to plane m - 1, and then a backward pass 

from plane m- 1 to plane 0. In the forward pass, hL fills up Ill2 - 1 nodes in each plane according 

to the sequence rtl(0), rLl(l),  . . ., rC~(I1l2 - 2) for even-numbered planes, and according to the 

sequence rt~(1112 - 2), rL~(1112 - 3), . . ., rC1(O) for odd-numbered planes. In the backward pass, 

hL fills up the last node rL~(llE2 - 1) in each plane. (See Figure 7.) An example of an embedding 

of a ring of size 24 in a (4,2,3)-mesh using the function hL is given in Figure 10 on page 27. 

Given a ring G of even size and an L-mesh H of the same size and of dimension greater than 

1, the function hL(x) gives a unit dilation cost embedding of G in H only if the first component 

of L is an even number. If this condition is not satisfied, we can define an L*-mesh H* such 

that L* = ( I f ,  E,*, . . . ,I:), 1; is even, and r(L*) = L, for some permutation r : [dl+ 4 [dl+. (The 

application of a permutation to a list is defined in Section 2 on page 4.) Since H is of even size, 

L* must exist. The ring G can be embedded in H by first embedding G in H* using ht* and 

then embedding H* in H using T .  For any pair of neighboring nodes A and B in H*, r (A)  and 

r ( B )  remain neighbors in H because .R is only a permutation of the lists A and B. Hence, the 

function n o hL* gives a unit dilation cost embedding of the ring G in the mesh H. (o is the 

function composition operator defined in Section 2 on page 4.) 

Theorem 24 Let G be a ring of even size, and H be an L-mesh of the same size and of dimension 

d, ford 2 2. Let L* be a list such that r (L*)  = L for some permutation T : [dlf -+ [dlS, and the 
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--* forward pass 

---@-- backward pass 

Figure 7: Embedding scheme of h~ with L = (El, 12, 13) and Z3 = 3 

first component of L* is even. The ring G can be embedded in H with unit dilation cost. The 

function T o hL* gives such an optimal embedding. 

The next corollary follows from Theorem 24. 

Corollary 25 Every mesh of even size and of dimension greater than 1 has a Hamiltonian 

circuit. 

3.2.2 Embedding a ring in a torus 

By Lemma 19, if Z1 is even, then fL(n) = (Il - 1,0, .  . . ,0) .  In this case, while the &,-distance 

between f ~ ( 0 )  = (0,0,. . . , 0 )  and f ~ ( n  - 1) = (I1 - 1,0,. . . ,0) is ll - 1, the St-distance between 

them is 1. On the other hand, if l1 is odd, then [(n - l ) /wl j  (which was shown to be ll - 1 in 

the proof of Lemma 19) is even. It follows that the sublist corresponding to the leftmost two 

components of fL(n - 1) is (Il - 1, l2 - I ) ,  and thus the &-distance between fL(0) and fL(n - 1) 

is greater than 1. 

Let G be a ring, and H be an L-torus of the same size and of dimension d. If the size of 

G and H is even, we can define an L*-torus H* such that the first component of L* is an even 
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neighbors in torus 

Figure 8: The function r~ for odd El 

number, and r(L*) = L for some permutation T : [dl* + [d+. The ring can be embedded in H* 

using fp, and H* can be embedded in H using r, both with unit dilation cost. The function 

r o fp thus gives a unit dilation cost embedding of G in H. On the other hand, if the size of G 

and H is odd, then all the components in L are odd numbers. In this case, we cannot construct 

a unit dilation cost embedding of G in H in this way because the intermediate graph H* does 

not exist. 

We now show that the embedding function hL always embeds a ring in an L-torus of the 

same size with unit dilation cost, whether their size is even or odd. 

Let L = (II, lz) be a radix-base. While the cyclic sequence r c  has unit &,-spread only when l1 

is even, this cyclic sequence always has unit St-spread. When El is odd, rL(n - 1) = (E l  - 1, E2 - I ) ,  

which is the top node in the last column of a torus. (See Figure S.) Since this node and rc(0), 

which is the top node in the first column, are neighbors in a torus, St(rL(0), r t(n - 1)) = 1. This 

property is summarized in the following lemma. 

Lemma 26 Let L = (21, 12) be a radix-base, and let n = 1112. For aII x E [n], 

St(rt(x), rt((x + 1) mod n))  = 1. 

Let L = (I1, 12,. . . , Id) be a radix-base, and let L' = ( I I ,  12). For the case in which d 3 2, since 

the cyclic sequence rp in Definition 22 always has unit &spread, whether Il is odd or even, the 

cyclic sequence hL has unit &-spread. For the case in which d = 1, the cyclic sequence ht is O,1, 
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. . ., n - 1, which also has unit St-spread. The function hL therefore always provides an optimal, 

unit dilation cost embedding of a ring in an L-torus. We summarize these results in Lemma 27 

and Theorem 28. 

Lemma 27 Let L = (11, 12,. . . , ld) be a radix-base, and let n = nfZl li. For all z E [n], 

S,(hL(x), hL((x + 1) mod n) )  = 1. 

Theorem 28 Let G be a ring, and H  be an L-torus of the same size. The ring G can be 

embedded in H  with unit dilation cost. The function hr gives such an optimal embedding. 

The next corollary follows from the theorem above. 

Corollary 29 Every torus has a Hamiltonian circuit. 0 

4 Generalized embeddings 

In this section, we study embeddings for which the dimensions of the two graphs are greater than 

1. We analyze only the cases in which the shapes of the two graphs satisfy certain conditions: 

the condition of expansion for increasing dimension cases (G has lower dimension than H )  and 

the condition of reduction for lowering dimension cases (G has higher dimension than H ) .  The 

embedding functions for these cases are defined in terms of the basic embedding functions fL, 

SL, and hL. 

Except when G is a torus of even size and H  is a mesh, our embeddings for increasing 

dimension are all optimal. For the exception above, our embeddings can always achieve a dilation 

cost of 2, and when a certain condition on the shapes of G and H is satisfied, unit dilation cost 

is also achievable. 

The dilation costs of our embeddings for lowering dimension depend on the shapes of G and 

H .  They are not optimal in general. 
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Figure 9: Embedding functions f ~ ,  g ~ ,  and hr. for n = 24 and L = (4,2,3) 
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0 ,1 ,2 , .  . . ,21,22,23 

(a) A line of size 24 

- -  

(b) A ring of size 24 
z 2  = 2 

(c) A (4,2,3)-mesh 

2 2  

(d) Embedding the line in the mesh using f (4 ,2 ,3)  

2 2  

(e) Embedding the ring in the mesh using 9 ( 4 , 2 , 3 )  

i 2  

(f) Embedding the ring in the mesh using h ( 4 , 2 , 3 )  

Figure 10: Embedding a line or a ring of size 24 in a (4,2,3)-mesh 

July 31, 1988 



4. Generalized embeddings 

4.1 Embeddings for increasing dimension 

Given a list A = (al, a2 , .  . . ,ak), we use A to denote the product alas - .  ak. 

Definition 30 Let L = (11, 1 2 , .  . . , I d )  and M = (ml,  m2,. . . , m,) be lists of positive integers for 

which d < c. The list M is an expansion of the list L if there exist d lists of integers V1, V2, 

. . ., Vd such that (i) for all i E [dl+, n V ;  = I;; and (ii) the list M is a permutation of the list 

v = Vl o Vz o . o Vd. We call V = (V1, V2, . . . , Vd) an expansion factor of L into M. 

For example, the list M = (2,4,3,8,5,4) is an expansion of the list L = (6,8,80) because 

we can have V1 = (2 ,3) ,  V2 = (8)) and Vg = (4,5,4). The list V = ( (2 ,3) ,  (8), (4,5,4)) is an 

expansion factor of L into M. Expansion factors may not be unique: the list ((3,2), (8)) (5,4,4)) 

is also an expansion factor of L into M. 

Let G be a torus or a mesh of shape L ,  and let H be a torus or a mesh of shape M such that 

M is an expansion of L with an expansion factor V = (Vl, V2,. . . , Vd). Let v = Vl o V2. . - o Vd, 

and let HI be a graph of shape v and of the same type as H. (type of a graph is defined in 

Section 2 on page 5 . )  We now construct an embedding of G in H in two steps: G + HI -+ H .  

Let T : [c]+ --+ [c]+ be a permutation such that n(V) = M. By the definition of expansion, 

such a permutation always exists. Since H' has shape and H has shape M, H' can be embedded 

in H with unit dilation cost using the permutation T .  Next we construct an embedding of G in 

HI. 

We first consider the case in which G and H' are meshes. We map each node (il, i2, . . . , id) 

in G to the node fvl (il) o fv2(i2) o - .  o fvd(id) in HI. Since the functions fvl : [Z1] 4 Rvl, 

fv2 : [I2] -+ Rv2, . . ., fvd : [Id] -f nVd are all bijective, this mapping is an embedding of G in HI. 

For every pair of neighboring nodes (il, i 2 , .  . . , id )  and (i:, i;,. . . , i&) in G, by definition, there 

exists exactly one index k E [dl+ such that lik-i;) = 1 and i j  = ii ,  for all j E [d+ such that j # k. 

Since the sequences fvl ,  fv,, . . ., fvd a11 have unit &,-spread, we have S,( fvk(ik),  fvk(i',)) = 1, and 

&,(fv,(ij), fv,(ii)) = 0, for a l l j  E [dl+ such that j # k. The nodes fvl( i l )o  fv2(i2)o - - .  o fVd(id) 

and fvl (i:) o fvz(iL) o - - . o fvd(i&) thus have unit 6,-distance in HI, and hence must be neighbors 

in HI. This embedding therefore has unit dilation cost. Furthermore, since the sequences fvl, 
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fv2,  . . ., fVd all have unit St-spread. This embedding also has unit dilation cost when G is a mesh 

and H' is a torus. 

When G is a torus and H' is a mesh, we can define a similar embedding by replacing the 

functions fv, , fv2, . . ., fvd with the functions gv, , gv2, . . ., gv,. Since the cyclic sequences gvl , 

gv2, . . . , gvd a11 have a &,-spread of 2, by a similar argument, we can show that the embedding 

has a dilation cost of 2. 

For the remaining case in which G and H t  are toruses, we can construct a similar embedding 

by replacing fvl , fVz , . . ., fVd with hVl , hVz , . . ., hVd. Since the cyclic sequences hvl , hv2, . . ., hvd 

all have unit St-spread, the embedding also has unit dilation cost. 

The sequence of embeddings G + H' + H described above gives an embedding of G in H 

with a dilation cost of 2 if G is a torus and H is a mesh, and with unit dilation cost otherwise. 

As will be proved in Theorem 32, when G is a torus and H is a mesh, a dilation cost of 2 

is optimal for all G of odd size. On the other hand, if each dimension of G has even length 

and there is at least one expansion factor of L into M such that each list in the factor has at 

least two components, then we can choose an expansion factor V = (Vl, V2,. . . , Vd) of C into M 

such that for all i E [dl+, V; has length at least 2, and its first component is an even number. 

If we use such an expansion factor V to define the shape of H', then by Lemma 23, G can be 

embedded in H' with unit dilation cost by mapping each node (il, i2 , .  . . , id)  in G to the node 

hvl (zl) o hv2 (i2) o . . . o hVd(id) in Ht .  Such an embedding sequence G -+ H' + H gives a unit 

dilation cost embedding of G in H. 

For example, if L = (6,12) and M = (6,3,2,2), then both ((6), (3,2,2)) and ((2,3), (6,2)) 

are expansion factors of L into M. If we choose the expansion factor ((2,3), (6,2)) to define the 

shape of Ht,  then we get a unit dilation cost embedding of a (6,12)-torus G in a (6,3,2,2)-mesh 

H .  On the other hand, if we choose ((6), (3,2,2)) to define the shape of Ht,  then we get an 

embedding with a dilation cost of 2. 

We formalize the above results in the following definition and theorems. 

Definition 31 Let C = (Z1,Z2,. . . , I d )  and M = (ml ,m2, .  . . ,m,) be radix-bases such that M 

is an expansion of C with an expansion factor V = (V1, V2,. . . , Vd). Let 'V = Vl o V2 o - . o Vd. 

The functions F v :  RL -+ Ro, gv: RL -+ Q+ and 3-lv:flL + R+ are defined as follows: for all 
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(21, 22,  . - 1 id) E RL, 

G v ( ( ~ ~ ,  i2 ,  ~ d ) )  = g ~ l ( i l ) ~ g ~ z ( i 2 ) 0  . "  0 gvd(id), 

'Ftv((i1, i2, . . . , id)) = hv1 (il) o hV2(i2) o . . o hVd(id). 

Furthermore, let n : [c]+ -+ [c]+ be a permutation such that n ( ~ )  = M. Then we have the 

functions n o Fv : RL --+ OM, n o Gv : Rc -+ OM, and n o 3-Iv : RL -+ OM. CI 

Examples of the functions Fv, Gv, and 'Hv for L = (4,6), M = (2,2,2,3), and V = 

((2,2), (2,3)) are given in Figure 11. In this example, we have M = Vl o V2. 

Theorem 32 Let G be an (Il, 12,. . . , Id)-torus or an (11,12,. . . , Id)-mesh, and let H be an 

(ml, m2, .  . . ,m,)-torus or an (ml,m2,.  . . , m,)-mesh. Assume that (ml, m2,.  . . ,m,) is an ex- 

pansion of (11, 12, . . . , Ed) with an expansion factor V = (V1, V2, . . . , Vd). Let n : [c]+ -+ [c]+ be a 

permutation such that n(Vl oV2 . - o V d )  = (ml, 1722,. . . , m,). Then 

(i) If G is a mesh, then G can be embedded in H with unit dilation cost. The function n o .Fv 

gives such an optimal embedding. 

(ii) If G and H are toruses, then G can be embedded in H with unit dilation cost. The function 

n o 'Flv gives such an optimal embedding. 

(iii) If G is a torus and H is a mesh, then G can be embedded in H with a dilation cost of 2. 

The function n o Gv gives such an embedding. Furthermore, such an embedding is optimal 

for all G of odd size. If G is of even size, and for all i E [d+, Vi consists of at  least two 

components such that the first component is an even number, then G can be embedded in 

H with unit dilation cost. The function n o 3-Iv gives such an optimal embedding. 

Proof. We prove only the claim in (iii) that Gv is optimal for all toruses of odd sizes. We prove 

this by showing that such a torus cannot be embedded in a mesh with unit dilation cost. The 

other parts of the theorem follow from the definitions of Fv, Gv, and R v .  
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Figure 11: Embedding functions Fv7 Gv7 'Hv for L = (4,6), M = (2,2,2,3),  and V = 

((2,2), (27 3)) 
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Assume for contradiction that a torus G of odd size can be embedded in a mesh H with unit 

dilation cost. Let p be such an embedding. Since G is a torus, by Corollary 29, there exists 

at least one Hamiltonian circuit vo - vl - . - - vn-1 - v, (= vo) in G. By the definition of a 

Hamiltonian circuit, for all i E [n], vi and v;+l are neighbors in G. Since the embedding p has 

unit dilation cost, p(vi) and p ( ~ ; + ~ )  must also be neighbors in H .  This implies that the path 

P ( ~ o )  - P ( V ~  - - .  - - p ( ~ , - ~ )  - p(v,) (= p(v0)) is a Hamiltonian circuit in H, contradicting the 

fact that no mesh of odd size has a Hamiltonian circuit (Corollary 18). 

The embeddings for increasing dimension given in this subsection can be applied only if the 

shapes of the two graphs satisfy the condition of expansion. The next theorem states that if H 

is a hypercube, then the shapes of G and H always satisfy the condition of expansion. 

Theorem 33 Let G be a torus or a mesh of size some power of 2, and let H be a hypercube of 

the same size. Then the shape of H is an expansion of the shape of G. 

Proof. Let L = (I1, 12,. . . , E d )  be the shape of G, and M be the shape of H.  Since G is of size 

some power of 2,  for all k E [d+, Ik = 2qk, for some positive integer qk. Since G and H are of 

the same size, 2q12q2 . . .24d is the size of H.  The list M is thus an expansion of the list L with 

an expansion factor 

By viewing a hypercube as a special case of a torus, the next corollary follows directly from 

Theorems 32 and 33. This corollary was proved in [CS86]. 

Corollary 34 A torus or a mesh of size some power of 2 can be embedded in a hypercube of 

the same size with unit dilation cost. 

4.2 Embeddings for lowering dimellsioll 

Our embeddings for lowering dimension are defined using two types of embeddings: embeddings 

for increasing dimension (from preceding subsection) and embeddings among toruses and meshes 

of the same shape. 
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Given a torus or a mesh G and a torus or a mesh H of the same shape (I1, 12, . . . , Id ) ,  G 

can be embedded in H with unit dilation cost using the identity function, except for the case in 

which G is a torus, H is a mesh, and they are not hypercube. In this exceptional case, G clearly 

cannot be embedded in H with unit dilation cost because each boundary node in H has degree 

less than that of any node in G. An optimal embedding of G in H with a dilation cost of 2 can 

be constructed by embedding each node (il,  i2,. . . , id) of G in the node (tl, (il),  tr2(iz), . . . , tl,(id)) 

of H. Since for all i E [dl+, the function tli : [li] -+ [I;] defines a cyclic sequence of all numbers 

in [I;] with a 6,-spread of 2 (Definition 14)) every two neighboring nodes in G are mapped to 

nodes in H at a distance no greater than 2. This embedding thus has a dilation cost of 2. The 

following definition and lemma summarize these results. 

Definition 35 Let L = (11, E2,. . . , Id) be a radix-base. The function 'TL : f l ~ :  -f flC is defined as 

follows: for all (xl, 2 2 , .  . . , xd) E flL, 

Lemma 36 Let G be a torus or a mesh, and let H also be a torus or a mesh o f  the same shape 

C. I f  G is a torus, H is a mesh, and G and H are not hypercube, then G can be embedded in 

H with an optimal dilation cost o f  2 using the embedding function 'TL. Otherwise, G can be 

embedded in H with unit dilation cost using the identity function. EI 

For lowering dimension, we consider only those cases in which the shapes of G and H satisfy 

the condition of reduction. We define two types of reduction: (i) simple reduction and (ii) general 

reduction. 

4.2.1 Simple reduction 

Definition 37 Let L = ( I l , I2 , .  . . , Id) and M = (ml, m2,. . . , m,) be lists of positive integers 

for which d > c. The list M is a simple reduction of the list L with a reduction factor V = 

(V1, Vz, . . . , V c )  if L is an expansion of M with an expansion factor V. CI 
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Let L be a radix-base. We next define a function that will be used to construct our em- 

beddings. This function is defined in terms of the function u;', which maps each mixed-radix 

number in Rc to the corresponding natural number in (flcl, defined on page 7, Section 2. 

Definition 38 Let L = ( E l ,  12,. . .,Ed) and M = (ml,m2,.  . . ,mc)  be radix-bases such that M 

is a simple reduction of L with a reduction factor V = (Vl, V2,. . . , V,). Let V = Vl oV2 . oVC. 

For all k E [elf, let u$ : flvk -+ [mk]. The function Uv : fli, -- flM is defined as follows: for all 

(il ,  i2, . . . , id) E R$, 

Uv((il, i2, . . . , id)) = uZ(I1) ouZ(I2)  o . . o u ~ ~ ' ( I ~ ) ,  

where 11, 12, . . ., I, are partitions of ( i l , i2, .  . . , i d )  such that for all k E [elf, [Ik[ = IVkl, and 

Il o I2 o - 0  . o Ic = (il, i2 , .  . . , id). Furthermore, let T : [dl+ -+ [dl+ be a permutation such that 

T(L) = (v). Then we have the function Uv o a : RL -+ flM. 

Let G be a torus or a mesh with shape L, and let H be a torus or a mesh with shape M 

such that M is a simple reduction of L. Let V = (Vl, V2,. . . , V,) be a reduction factor of L into 

M such that for all i E [elS, the components in the list Vi are in non-increasing order. Let vi 

denote the index in [dlf such that l,, is the first component in V;. Let v = Vl o V2 . . o V,, and 

let G' be a graph with shape and of the same type of graph as G. Let a : [dl+ -+ [dl+ be a 

permutation such that a(L)  = i). The graph G can be embedded in G' using the permutation a 

with unit dilation cost. We next construct an embedding of G' in H. 

Let A = 110120 - a -  o I k o  o I c  and B = I i o I ;o  . . .  o I i o  - . -  01: be an arbitrary pair of 

neighboring nodes in GI, where for all i E [elf, IIil = = 1V;I. Let q = IVkl, and (l;, l;, . . . ,16) = 

Vk, where k E [c]+. Without loss of generality, assume that A and B differ at the r-th position 

in Ik,  for some r E [qlf. Let i, and i: denote respectively the components of A and B at this 

position. 

We first consider the case in which G' and H are meshes. We use the function Uv to 

embed GI in H. The distance between the images of A and B in H is S,(UV(A),Uv(B)) = 

Iu$(Ik) - u$(Ik)I = li, - i:l nj,,,, 1;. Since G' is a mesh, li, - i:l = 1, and since mk = n:=, I:, 

we have S,(UV(A),UV(B)) = mk/ n5=1 1; 5 mk/li.  Therefore, the function Uv gives an embed- 

ding of GI in H with a dilation cost of maxl~;~,{m;/l,,). - 
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For the cases in which either (i) GI is a mesh and H is a torus or (ii) GI and H are toruses, we 

use the same embedding function Uv to embed GI in H. The distance between the images of A 

and B in H is St(Uv(A), Uv(B)) = min{(i, - i: 1 n3=,+, 15, mk - li, - i: 1 nj"=,+, 1;). For case (i), 

li, - it1 is 1 and for case (ii) li, - i:l is either 1 or 1: - 1. In either case, using the fact that for all 

j E [q]+, 1; 2 2, we can show that the embedding also has a dilation cost of m a ~ ~ < ~ < ~ { r n ; / l ~ ~ ) .  - - 

For the remaining case in which GI is a torus and H is a mesh, using the embedding function 

I$, we first embed GI in an intermediate mesh G" that has the same shape as GI. Such an 

embedding has a dilation cost of 2. We then embed the mesh G" in the mesh H using the function 

Uv. This sequence gives an embedding of GI in H with a dilation cost of 2 m a ~ ~ < ~ < , { m ~ / l ~ , ) .  - - 

Theorem 39 Let G be a torus or a mesh of shape L = (1,) 12,. . . ,Id), and let H be a torus 

or a mesh of shape M = (ml, m2,. . . , m,). Assume that M is a simple reduction of L. Let 

V = (V1, V2,. . . , Vc) be a reduction factor of L into M such that for all i E [c]+, the components 

in the list Vi are in non-increasing order. Let v; denote the index in [dl+ such that lvi is the first 

component in Vi. Let V = Vl o V20 . - - o V,. Let T : [d+ + [dl+ be a permutation such that 

r (L )  = V .  If G is a torus and H is a mesh, then G can be embedded in H with a dilation cost 

of 2 r n a ~ ~ < ~ < ~ { r n ; / l ~ ~ ) ,  - - and the function Uv o I$ o r gives such an embedding; otherwise, G can 

be embedded in H with a dilation cost of maxl<;~c{m;/lvi), - and the function Uv o .rr gives such 

an embedding. 

By the definition of simple reduction and Theorem 33, given a hypercube G and a torus or 

a mesh H of the same size, the shape of H is always a simple reduction of the shape of G. The 

next corollary thus follows from Theorem 39 by treating hypercube as a special case of a mesh. 

Corollary 40 A hypercube can be embedded in an (ml, m2,.  . . , m,)-torus or an 

(ml, m2, .  . . , mc)-mesh of the same size wit11 a dilation cost of max{ml,m2,. . . , mc)/2. CI 

4.2.2 General reduction 

We first illustrate through a simple example the embeddings to be constructed under general 

reduction. Let G be a (3,3,6)-mesh, and H be a (6,9)-mesh. We can view G as a (3,3)-mesh 
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of supernodes, each of which is a line of length 6, and view H as a (3,3)-mesh of supernodes, 

each of which is a (2,3)-mesh. (See Figure 12.) With respect to supernodes, G and H have 

the same shape: a (3,S)-mesh. With the identity function, neighboring supernodes of G can be 

embedded in neighboring supernodes of H. Since the supernodes of G are lines of length 6, and 

the supernodes of H are (2,3)-meshes, the nodes belonging to a single supernode of G can be 

embedded in the nodes belonging to the corresponding supernode of H by using the embedding 

function f(2,3). This embedding of G in H is achieved by embedding nine separate lines of length 

6 in nine separate (2,3)-meshes, with neighboring lines embedded in neighboring meshes. Such 

an embedding gives a dilation cost of 3. 

In general, given a torus or a mesh G and a torus or a mesh H whose shape is a general 

reduction (to be defined below) of the shape of G, G and H can be viewed as graphs of some 

supernodes such that (i) with respect to supernodes, G and H have the same shape; and (ii) the 

shape of the supernodes of H is an expansion of the shape of the supernodes of G. An embedding 

of G in H can be achieved as follows: first establish a one-to-one correspondence between the 

supernodes of G and the supernodes of H ,  and then by using the embedding functions for 

increasing dimension defined in the preceding subsection, embed the nodes belonging to a single 

supernode of G in the nodes belonging to the corresponding supernode of H. 

We now define the relation general reduction between two lists of different lengths for which 

the shorter list is longer than half of the longer list. Given a list A = (al, a2, . . . , ak) and a list 

L? = (bl, b2,. . . , bk), we use A x 8 to denote the list (albl,a2b2,. . . ,akbk) and A + L? to denote 

the list (al + bl, a2 + b2,. . . , ak + bk). We use [ ] for grouping. 

Definition 41 Let L = (Il, 12,. . . , Ed) and M = (ml, m2, .  . . , m,) be lists of positive integers for 

which c < d < 2c. The list M is a general reduction of the list L if (i) there exist a list L' of 

length c and a list L" of length d - c such that L is a permutation of the list L'oL1'; (ii) there 

exist d - c lists S1, S2, . . ., Sd-,., the components of each of which are integers all greater than 1, 

such that the list L" is (n S1, n S2, .  . . , n Sd-c) and the list S = S1 o S 2 .  . . 0Sdbc has length b, 

where d - c < b 5 c; and (iii) M is a permutation of the list [ S o l ]  x L', where I = (u. 
C- b 

We call S = (S1, S2 , .  . . , Sd-c) a reduction factor of L into M,  L' the multiplicant sublist, and 
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A supernode of G 

I 

( a )  ( 3 , 3 , 6 )  -mesh G 

A supernode of H 

\ 
3 

Figure 12: Supernode view 
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L" the multiplier sublist. 

For example, the list M = (4,3,5,28,10,18) is a general reduction of the list ,C = 

(2,3,2,10,6,21,5,4) because we can choose L' = (2,2,6,4,3,5), L" = (10,21), S1 = (5,2), 

and S 2  = (3,7). The list [ S o  (1, I)] x L' = (10,4,18,28,3,5) is a permutation of M. The list 

S = ((5,2), (3,7)) is a reduction factor of L into M. Reduction factors may not be unique: the 

list ((2,5), (3,7)) is also a reduction factor of .L into M . 

By the definition, if M is a general reduction of L with a reduction factor S = 

(S1,S2,. . . ,Sd-,), then the list = S 1 ~ S ; ! ~  0Sd-, is an expansion of L" with an expan- 

sion factor S .  

Note that if M is a simple reduction of L, then each component in M is the product of 

one or more components of L. On the other hand, if M is a general reduction of L, then each 

component in M is either (i) a component in the multiplicant sublist L' or (ii) the product of a 

component in L' and a factor of one of the components in the multiplier sublist L". 

Let G be a torus or a mesh of shape L = (I1, 12,. . . , I d ) ,  and let H be a torus or a mesh 

of shape M = (ml, m2, . . . , m,). Assume that M is a general reduction of L with a reduction 
- 

factor S = (S1,S2,. . . ,Sd-,). Let S = (sl ,s2, .  . . , sb) = S1 o S 2 0  . - .  oSd-,, where d - c < b 5 c, 

and let Z = (1,. . . , I ) .  Let G' be a graph of shape L'oL" and of the same type as G, and let H' - 
C- b 

be a graph of shape [ S o q  x L' and of the same type as H .  We now construct an embedding 

of G in H in three steps: G -+ GI -+ H' -+ H .  Let cr : [d+ + [dl+ be a permutation such that 

a (L)  = L'oL", and let /? : [c]+ -+ [c]+ be a permutation such that P([SOZ] x L') = M. By the 

definition of general reduction, such permutations always exist. The graph G can be embedded 

in G' with unit dilation cost using the permutation cr, and H' can be embedded in H with unit 

dilation cost using the permutation P. Next we construct an embedding of G' in HI. 

The graph G' has shape L 'oLN = 1,(2), . . . , I,(,)) o . . . Iff(d)). If G' is a 

mesh, we can think of G' as an L'-mesh of supernodes with each supernode being an L"-mesh, 

that is, the supernode (il, 22,. . . , i,) consists of all nodes (ill  i2, .  . . , i,) o (*, *, . . . , *) in GI, where 

for all j E [c]+,  i E and (*, *, . . . , *) denotes all lists in RLrr. For example, if we view 

the (3,3,6)-mesh given in Figure 12(a) as a (3,3)-mesh of supernodes, then the supernode (2,O) 
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consists of the nodes (2,0, O ) ,  (2,0, I) ,  (2,0,2), (2,0,3), (2,0,4), and (2,0,5). These nodes are 

labeled 0, 1, 2, 3, 4, and 5 in the figure. Similarly, if GI is a torus, we can think of G' as an 

L'-torus of supernodes with each supernode being an L"-torus. 
,-, 

The graph H' has shape [SoZ] x L1 = ( ~ l l , ( ~ ) ,  ~ ~ l ~ ( ~ ~ ,  . . . , ~blcu(~), lcu(b+l) . . . , la(c)). If HI 

is a mesh, we can think of H' as an L1-mesh of supernodes with each supernode being 

an S-mesh, that is, the supernode (il, i 2 , .  . . , i,) consists of all nodes [(slill s2iz , .  . . , sbib) + 
(*, *, . . . , *)] 0 ( z ~ + ~ ,  ib+2,.  . . , ic) in HI, where for all j E [c ]+ ,  i j  E and (*, *, . . . , *) de- 

notes all lists in ns. For example, if we view the (6,9)-mesh in Figure 12(b) as a (3,3)-mesh of 

supernodes, then the supernode (2,O) consists of the nodes (4,O) , (4,1), (4,2), (5, O), (5, l), and 

(5,2). These nodes are labeled 0, 1, 2, 5, 4, and 3 in the figure. If H' is a torus, we can also 

think of HI as an ,C'-torus of supernodes. Each supernode in H' is now an 3-mesh instead of an 

S-torus. Notice that we cannot divide a torus into toruses of the same dimension and of smaller 

sizes because the neighborship required at the boundary nodes of the smaller toruses cannot be 

satisfied. 

In summary, the supernodes of G' are formed by partitioning the shape of G' into two parts, 

with one part forming the shape of the supernodes, and the other the shape of the graph consisting 

of these supernodes. On the other hand, the supernodes of H' are formed by factoring the length 

of each dimension of H' into one or two factors, with one factor forming the length of a dimension 

of the graph consisting of the supernodes, and the other factor, if present, forming the length of 

a dimension of the supernodes. The dimensions of the supernodes of G' and the graph consisting 

of these supernodes are both lower than the dimension of GI. On the other hand, the dimension 

of the supernodes of H' may be lower than the dimension of HI, while the dimension of the 

graph consisting of these supernodes is always the same as the dimension of H'. With respect 

to supernodes, G' and H' have the same shape 13'. The shape of the supernodes of HI ( 3 )  is an 

expansion of the shape of the supernodes of G' (L1') with an expansion factor of S. 

We consider the following four cases for constructing an embedding of G' in HI. 

Case 1. GI and HI are meshes. 

In this case, GI and H' are ,C1-meshes of supernodes. Neighboring supernodes in G' can be 

mapped to neighboring supernodes in HI using the identity function. The L"-meshes (supernodes 
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of G') can then be embedded in the $-meshes (supernodes of HI) using the embedding function 

Fs : atll -+ defined in the preceding subsection. Hence, we map each node (il,  iz, . . . ,id) in 

G' to the node 

FL((il,iZ,. . . id)) = [ ( ~ l i l , ~ 2 i 2 , .  0 .  7 sbib) + Fs((ic+l,ic+2,. id))]O(ib+l, ib+2,. - ,  ic) 

in HI. We call (slil ,s2i2 ,..., sbib) and (ib+1 ,..., i,) the base, and ~s ( ( i c+ l , i c+2  ,..., id)) the 

oflset. 

Let Fs((icS1, iC+z,. . . , id))  = (el, ez, . . . , e b ) .  We can write 

.FL((il, iS, . . . , id)) as (slil + el, s2i2 + e2,. . . ,  bib + eb, ib+i,. . . , ic). 

Since Fs: RLu + RS is bijective, and for all i E [b]+, 0 5 e; < s ; ,  the function FL: flLtOCtt + 

qxcl is injective. Since Inrl 0 Clt I = r l , a l ,  .Fi is bijective. Therefore, the function FL 

is an embedding of G' in H'. 

This embedding has a dilation cost of max{sl, s2, . . . , sb). Let A = (il, i2, . . . , id) and B = 

(ii, i i ,  . . . , i&) be an arbitrary pair of neighboring nodes in G', and let k = [dl+ be the index at 

which ik  # i',. Let A' = .Fi(A) and B' = Fk(B).  If k E [c]+, then A' and B'have the same 

offset but different bases. Since H' is a mesh, the distance between A' and B' is (skik - skiil 

if k E [b]+, and Jik - i',l if k E {b + 1,. .. , c ) .  Since G' is also a mesh, we have lik - i;( = 1. 

Therefore, the distance between A' and B' in H' is s k  if Ic E [b]+, and 1 if k E {b + 1, .  . . , c ) .  If 

k E {c + 1,. . . , d), then A' and B' have the same base but different offsets. Since the function 

.Fs embeds an LC1'-mesh in an S-mesh with unit dilation cost, the distance between A' and B' in 

H' is 1. 

Case 2. G' is a mesh and H' is a torus. 

We use the embedding function .FA from Case 1 but modifying the analysis slightly. We 

change the distance measure between A' and B' from 6,-distance to &-distance, and use the 

relation that for all k E [b]+, mk = sklk and lk > 1. In this way, we can show that this 

embedding also gives a dilation cost of max{sl, ~ 2 , .  . . , sb). 

Case 3. G' and H' are toruses. 

Since G' and H' are both L'-toruses of supernodes, neighboring supernodes in G' can be 

mapped to neighboring supernodes in H' using the identity function. The L"- toruses (supernodes 
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of G') can then be embedded in the S-meshes (supernodes of HI) using the function Gs : RL,, -+ 

RS defined in the preceding subsection. Hence, we map each node (il, i2 , .  . . , id) in G' to the 

node 

in H'. This mapping is also bijective, and is therefore an embedding of G' in HI. 

This embedding also has a dilation cost of max{sl, s2,.  . . , sb}. Let A, B, and k be defined 

as in Case 1; and let A' = GA(A), and B' = G;(B). Since G' is a torus, lik - i;l is either 1 or 

Ek - 1. If k E [b]+, then the distance between A' and B' is min{lskik - skiL(, mk - (skik - skiL(}; 

since mk = sklk, this distance is sk. If k E {b + 1, . . . , c), the distance between A' and B' is 

min{(ik - iL1, mk - lik - iil}; since mk = lk, this distance is 1. If k E {c + 1,. . . , d), then 

the distance between A' and B' in H' is at  most 2 because the function Gs embeds an L1'- 

torus in an S-mesh with a dilation cost of 2. Finally, since for all i E [dl+, li > 1, we have 

max{sl, s 2 ,  . . . , s b) 2 2. Therefore, the embedding has a dilation cost of max{sl, s2, . . . , sb). 

Case 4. G' is a torus and H' is a mesh. 

By Lemma 36, neighboring supernodes of G' can be mapped to some supernodes in H' at a 

distance no greater than 2 by embedding each supernode (il,  i2, .  . . , ic) in G' in the supernode 

(t la,l, (il ), tla,,, (i2), . . . , tl,, (i,)) in H'. The L"-toruses in G' are then embedded in the S-meshes 

using the function Gs. Hence, we can map each node (il , i2, . . . , i,) in G' to the node 

in HI. This mapping is also bijective, and is therefore an embedding of G' in HI. 

Let A, B, and k be defined as in Case 1, and let A' = Gz(A) and B' = G;'(B). The distance 

between A' and B' is lsktlk (ik) - sktlk(ii)l if k E [b]+, and Itlk(ik) - tlk(i;)l if k E {b + 1, . . . , c). 

Since for all j E [el+, the cyclic sequence tk iJ ,  has a 6,-spread of 2 if > 2, and 1 otherwise, 

this distanceis at most 2skif k E [b]+, andat  most 2 if L E  { b + l ,  . . . ,  c ) .  If k E { c + 1 ,  . . . ,  d), 

then as in Case 3, the distance between A' and B' in H' is at most 2. Hence, the embedding has 

a dilation cost at most 2 max{sl, 52, . . . , sb) .  
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In summary, the sequence of embeddings G + G' + H' + H defined above has a dilation cost 

at most 2 max{sl, s2 , .  . . , sb) if G is a torus, H is a mesh, and a dilation cost of max{sl, s 2 , .  . . , sb)  

otherwise. 

We formalize the above results in the following definition and theorem. 

Definition 42 Let d and c be positive integers such that c < d < 2c. Let C = (11, 12,. . . , l d )  

and M = (ml, m2,.  . . , m,) be radix-bases. Assume that M is a general reduction of L with 

a reduction factor S = (Sly S2,  . . . , Sd-c), multiplicant sublist L', and multiplier sublist L". 

Let a : [dl+ + [dlf be a permutation such that a(L)  = L1oC". Let s = (sl, s2,. . . , sb) = 

S10S20 ... oSd-,, and let I = (!,1,. Let Fs : OR! + Oj  and Gs : Oflo. + Rj. The 
C-b 

functions Fi: fit! o + RFo q x t t ,  g;: fiPoLu + OlsOqx,, and Gg:Rr~or~t  + O~sollx,t are 

defined as follows: for all (ill  i2, . . . , id) E fltl o L I ~ ,  

F2((i i1 i2,. . . , id)) = [ ( ~ l i l ,  ~2 i2 , .  . . ,  bib) + &((ic+17 ic+27. - 7 id))] 0 (ib+l, ib+2 . . , ic), 

Gk((il7 221. . . 1 id)) = [(slil, ~222). . 7  bib) + G~((ic+l, ic+2,. . . ,id))] 0 (ib+l, ib+2.. . , ic), 

( ( I  2 7 ) )  = [(s1tla,1,(iI)7s2t~a(2)(i2)7.. . .~bt&(~)( ib))  + E ~ ( ( i c + l ~  iC+2) . 7 id))] 

O (t[a(b+l) (ib+l), t la (b+ l )  (ib+2) . . - 1 tl,(,) (ic))- 

Furthermore, let ,B : [elf + [c]+ be a permutation such that ,B([S 0 1 1  x L') = M. Then we have 

t h e f u n c t i o n s ~ o F ~ o ( ~ : R ~ - , ~ ~ ,  P o G ~ o c Y : R ~ + O ~ , ~ ~ ~ , B O G ~ O ( Y : R ~  - + O M .  

Theorem 43 Let d and c be positive integers such that c < d < 2c. Let G be a torus or a mesh 

of  shape L = (I1, 12,. . . ,Id), and let H be a torus or a mesh o f  shape M = (ml,m2,. . . ,m,). 

Assume that M is a general reduction o f  L with a reduction factor S = (S1, S2, . . . , Sd-c), 
- 

multiplicant sublist L', and multiplier sublist C". Let S = (sl, ~ 2 , .  . . , sb )  = S10S20 . .  . o S ~ - ~ ,  

and let I = (1,1,. Let a : [dl+ + [dl l be a permutation such that a ( L )  = C'o L", and let 

c- b 

,O : [c]+ -+ [c]+ be a permutation such that / 3 ( [ 3 0 ~  x L') = M. Then 

(i) If G is a mesh, then G can be embedded in H with a dilation cost o f  max{sl, s2 , .  . . , sb}. 

The function ,B o F; o a gives such an embedding. 
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(ii) If G and H are toruses, then G can be embedded in H with a dilation cost of 

max{sl, s2 , .  . . , sb). The function P o GI, o cr gives such an embedding. 

(iii) If G is a torus and H is a mesh, the11 G can be embedded in H with a dilation cost at most 

2 max{sl, ~ 2 , .  . . , sb) .  The function P o 6: o a gives such an embedding. 

The condition of general reduction requires that the dimension of H must be higher than 

half of the dimension of G. If this condition is not satisfied, an embedding of G in H can 

still be constructed using the results in this subsection provided that there exists a sequence of 

intermediate graphs in which every pair of successive graphs have shapes satisfying the condition 

of general reduction. 

As will be shown in Section 5, if G and H are square, then one of the following two conditions 

must be true: (i) their shapes satisfy the condition of simple reduction, and (ii) the sequence of 

intermediate graphs described above exists. 

5 Generalized embeddings among square toruses and square 

meshes 

The results for generalized embeddings developed in the preceding section can be applied only if 

the shapes of G and H satisfy either the condition of expansion (for increasing dimension cases) 

or the condition of reduction (for lowering dimension cases). In this section, we study the cases 

in which G and H are square. For these cases, we can always construct an embedding of G in 

H through a sequence of one or more embedding steps using the embedding functions defined in 

Section 4. 

Let d be the dimension of G, c be the dimension of H,  a be the greatest common denominator 

of d and c, and l be the length of the dimensions of G. The major results of this section are the 

following: 

For the case of lowering dimension ( c  < d), G can be embedded in H with a dilation cost of 

2 . ~ ( ~ - " ) / "  if G is a torus and H is a mesh, and with a dilation cost of l(d-c)/c otherwise. For fixed 

July 31, 1988 4 3 



5. Generalized embeddings among square toruses and square meshes 

values of d and c, these dilation costs are optimal to within a constant. 

For the case of increasing dimension (d < c ) ,  if c  is divisible by d, then G can be embedded 

in H with an optimal dilation cost of 2 if G is a torus of odd size and H is a mesh, and with unit 

dilation cost otherwise. If c is not divisible by d, then G can be embedded in H with a dilation 

cost of 21(d-a)lc if G is a torus of odd size and H is a mesh, and with a dilation cost of l(d-a)lc 

otherwise; these dilation costs, however, may not be optimal. 

A lower bound on dilation cost for lowering dimension 

In [Ros75], Rosenberg studied the problem of embedding finite arrays (meshes), prism arrays, 

and orthant arrays in lines to minimize proximity in various local and global senses. Let t be 

an embedding of a d-dimensional mesh G in a line. For any positive integer k, the diameter of 

preservation Isk is the smallest positive integer i such that for every node v in G, and for every 

  air of nodes u and w in G whose distances from v are no greater than k, S,(t(u),t(w)) < i. 

Rosenberg proved that ak > bkpd-l, where p is the length of the shortest dimension of G, and b 

depends only on d and is a constant with respect to p .  

Let G be a d-dimensional torus or a d-dimensional mesh, and H be a c-dimensional torus 

or a c-dimensional mesh such that c < d and G and H are of the same size. In the following, 

using a straightforward modification of Rosenberg's proof for the lower bound on the diameter 

of preservation [Ros75], we show that the dilation cost of any embedding of G in H is bounded 

from below by bp(d-c)/c, where p is the length of the shortest dimension of G, and b is a constant 

with respect to p and depends only on d and c.  This lower bound on dilation cost will be used 

to prove the optimality properties of our embeddings among square toruses and square meshes 

in the lowering dimension case. 

Given a d-dimensional mesh G, a node v in G, and a positive integer k, let Q(v, k) denote 

the set of nodes in G whose distances from v are no greater than k. 

Lemma 44 [Ros75] Let G be a d-dimensional mesh. Let p be the  length o f  the  shortest dimen- 

sion o f  G. For any positive integer k such that k < p, rnaxvEolQ(v, k)l > > bbd, where 

b > 0 is a constant with respect t o  k ,  and depends only on d .  

July 31, 1988 



5. Generalized em beddings among square toruses and square meshes 

Lemma 45 Let G be a d-dimensional mesh, and H be a c-dimensional mesh such that c < d 

and G and H are of the same size. Let t be an embedding of G in H with a dilation cost of p. 

Then for any node v  in G and any positive integer k ,  IQ(v, k ) J  5 (2kp + 1)". 

Proof. Let pl, p2, . . ., p, be nonnegative integers. A set of lists is said to lie within a c- 

dimensional interval b l , p 2 , .  . . ,pel if the lists are all of the form (il + el ,  i2 + ez ,  . . . , ic + ec) ,  

where for all j E [el+, i j  is some fixed integer and ej E bj]. For v  an arbitrary node in G and k  

an arbitrary positive integer, let t ( Q ( v ,  k ) )  be the set of images of all the nodes in Q ( v ,  k )  under 

the embedding t. We first show by induction on k  that t ( Q ( v ,  k ) )  lies within a c-dimensional 

interval [2kp + 1,2kp + 1, . . . ,2kp + 11. 

Induction basis: k  = 1. 

Let q = IQ(v, 111. Let (a:,  a;, . . . ,a:),  (a:, a;, . . . ,a:), . . ., (a:, a;, . . . ,a:) denote the nodes 

in t ( Q ( v ,  1 ) ) .  For all j E [c]+, let a, = rnin{a:, a;,. . . ,a:}, and let ,Bj = max{a:, a:, . . . , a f } .  

Since for all u ,  w E Q ( v ,  I ) ,  S,(t(u), t ( w ) )  5 Sm(t (u) ,  t ( v ) )  + Sm(t (v) ,  t ( w ) )  I 2p, we have for 

all j E [GI+, loj - ,Bjl 5 2p. Therefore, t ( Q ( v ,  1 ) )  must lie within a c-dimensional interval 

[ 2 p + 1 1 2 p + 1  , . . a ,  2p+1] .  

Induction hypothesis: Assume that for all k  5 kt ,  t ( Q ( v ,  k t ) )  lies within a c-dimensional interval 

[2kfp + 1, 2ktp + 1 , .  . . , 2ktp + 11. 

Induction step: k  = kt  + 1. 

Since every node u in Q ( v ,  k' + 1)  must either belong to Q ( v ,  k') or be a neighbor of some 

node w in Q ( v ,  k t ) ,  the smallest c-dimensional interval containing t ( Q ( v ,  k'+ 1 ) )  contains at most 

2p elements more in each of the c dimensions than the corresponding interval for t ( Q ( v ,  k')) .  

Therefore, by our induction hypothesis, t ( Q ( v ,  k' + 1 ) )  must lie within a c-dimensional interval 

[2p+2ktp+ 1,2p+2ktp+ 1 , .  . . ,2p+2kfp+1] = [2(kt+ l ) p + 1 , 2 ( k t +  l ) p +  1 , .  . . ,2 (k t+ l ) p +  11. 

For any positive integer k ,  the maximum number of lists that can lie within a c-dimensional 

interval [2kp + 1,2kp + 1, .  . . ,2kp + 11 is (2kp + 1)". Since t is bijective, we have lQ(v,  k ) (  5 

(2kp  + 1)'. 

Lemma 46 Let G and H be meshes of the same size. Let G t  be a torus of the same shape as 

G, and H t  be a torus of the same shape as H. Assume that the dilation cost of any embedding 
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of  G in H is bounded from below by x. Then the dilation cost o f  any embedding o f  G' in H ,  G  

in H', or G' in H' is bounded from below by bx,  for some constant b. 

Proof. Let C be the dilation cost of an arbitrary embedding of the torus G' in the torus H'. By 

Lemma 36, the mesh G  can be embedded in the torus G' with unit dilation cost, and the torus 

H' can be embedded in the mesh H with a dilation cost of 2. Since the sequence of embeddings 

G $ G' & H' 5 H provides an embedding of G  in H with a dilation cost of 25, we have 

s 2 x /2 .  

Similarly, let X be the dilation cost of an arbitrary embedding of G' in H, and y  the dilation 

cost of an arbitrary embedding of G in H'. Since the sequence G & G' 4 H  and the sequence 

G 3 H' 5 H also provide embeddings of G  in H with dilation costs of X and 27 respectively, 

we have X 2 x  and y  2 x / 2 .  

Theorem 47 Let G be a d-dimensional torus or a d-dimensional mesh, and let H be a c- 

dimensional torus or a c-dimensional mesh such that c < d and G and H are o f  the same size. 

Let p be the length of  the shortest dimension o f  G .  Then the dilation cost of  any embedding o f  

G in H is bounded from below by b , ~ ( ~ - " ) / " ,  for some positive number b that is a constant with 

respect t o  p and depends only on d and c.  

Proof. We first assume that G  and H are meshes. Let p be the dilation cost of an arbitrary 

embedding of G in H. By Lemmas 44 and 45, for any positive integer k such that k < p ,  

( 2 k p  + 1)" > b k d ,  for some positive number b that depends only on d. We thus have p > 
( q ) k ( d - c ) / c  - I 2k > - ( q ) k ( d - c ) / c .  By letting k = p - 1, we have p > ( q ) ( p  - l ) (d-c)/c .  Since 

p > 2, p - 1 - > f. Therefore p 2 b'p(d-c)/c, for some b' that is a constant with respect to p and 

depends only on d and c. The other cases follow from Lemma 46. 

Embeddings for lowering dimension 

Theorem 48 Let G  be a square torus or a square mesh of dimension d ,  and H be a square torus 

or a square mesh of  dimension c such that c < d and G  and H are of the same size. Let .l' be 

the length o f  the dimensions of  G. Assume that d is divisible by c. Then the shapes o f  G and 
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H always satisfy the condition of simple reduction. Furthermore, G can be embedded in H with 

a dilation cost of 21(d-c)lc if G is a torus and H is a mesh, and with a dilation cost of dd-")lC 

otherwise; for fixed values of d and c, such dilation costs are optimal to within a constant. 

Proof. Let b = d/c .  Since d is divisible by c, b is an integer. Let m be the length of the 

dimensions of H. Since G and H are of the same size, we have mC = Ed, and m = lb. Hence, 

H is a simple reduction of G with a reduction factor (($. :. ,q,.. . , (l,. . . , l ) ) .  Therefore, by - 
b b 

Theorem 39, G can be embedded in H with a dilation cost of 2m/l  = 21(d-c)lc if G is a torus 

and H is a mesh, and with a dilation cost of l(d-c)Ic otherwise. 

By Theorem 47, the optimal dilation cost of embedding G in H is bounded from below by 

bE(d-c)lc, for some positive number b > 0 that is a constant with respect to E and depends only 

on d and c. Since the dilation costs of our embeddings are either 2dd-")lc or !(d-c)lc, they are 

optimal to within a constant for fixed values of d and c. 

The next corollary follows directly from Theorem 48. This corollary also follows as a special 

case of Corollary 40. 

Corollary 49 A hypercube can be embedded in a square torus or a square mesh of the same 

size with a dilation cost of m/2, for m the length of the dimensions of the given torus or mesh. 

The following lemma states a property of integers that will be used in Theorem 51 to construct 

our embeddings for lowering dimension cases in which d is not divisible by c. This lemma in turn 

uses the following properties of integers [Bun721 : 

(*) Any positive integer N > 1 can be written uniquely in a standard form N = pb,lp? . .pp' such 

that for all i E [r]+, b; is a positive integer and each p; is a prime with 1 < p ,  < . . < p,. 

Lemma 50 Let x be any integer greater than 1, and let u and v be any integers that are 

relatively prime. Assume that is an integer. Then s'/V is also an integer. 

Proof. Let y = PI". By assumption, y is an integer. Furthermore, since z is an integer greater 

than 1, y must also be an integer greater than 1. By property (*) of integers, s can be written 
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in its unique standard form pppF . . . p> in which r ,  bl, b2, . . . , b, are positive integers and pl, p2, 

. . ., p, are distinct primes with pl < p2 < . . - < p,. Similarly, y can be written in its unique 

standard form qFq2 - - . q,CS in which s, cl, cz, . . . , c, are positive integers and ql, qz, . . ., q, are 

distinct primes with ql < qg < < q,. 
ubi ~ b z  ub, Since yv = xu, we have qyc1qzc2 a - . q:CS = pl p2 p+ . Since ql, q2, . . . , qs are distinct primes 

with ql < q2 < . . . < q, and pl, pz, . . . , p, are also distinct primes with pl < p2 < . . . < p,, we 

have r = s and for all i E [r]+, q; = p; and vc; = ub;. Hence, for all i E [r]+, we have ub;/v = c;. 

Since ci is an integer, and u and v are relatively prime, bi must be divisible by v. It follows that 

b2/V . - -P:Iv, which is 5lIv, must be an integer. P1 P2 

Theorem 51 Let G be a square torus or a square mesh of dimension d, and H a square torus 

or a square mesh of dimension c such that c < d and G and H are of the same size. Let l be 

the length of the dimensions of G. Assume that d is not divisible by c. Then there always exists 

a sequence of intermediate graphs in which the shapes of every pair of successive graphs satisfy 

the condition of general reduction. Furthermore, G can be embedded in H with a dilation cost 

of 21(d-c)lc if G is a torus and H is a mesh, and with a dilation cost of l(d-c)/c otherwise. For 

fixed values of d and c, these dilation costs are optimal to within a constant. 

Proof. We first treat the case in which G and H are meshes. Let rn be the length of the 

dimensions of H. Since G and H are of the same size, we have mC = ld, and m = ldlc. Since m 

is an integer, ldlc must also be an integer. 

We first consider the simple case in which d and c are relatively prime. By the definition of 

meshes, l > 1, and hence by Lemma 50, ellc is an integer. Let Io, 11, . . ., be meshes such 

that for all k E [d - c + 11, Ik has dimension d - k and shape 

(l(c+k)/c e (~+*) /~ ,  l . . . , l ) .  
L 

Y '- 

We have I. = G; Id-c = H; .To, 11, . . ., all have the same size td; and, except for I. and Id-,, 

none of the meshes 11, 1 2 ,  . . ., Id-c-l is square. For all k E [d - c ] ,  the dimension of Ik is greater 

than the dimension of Ik+1 by 1, and the shape of Ik+1 is a general reduction of the shape of Ik 
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with a reduction factor 

C 

By Theorem 43, the mesh Ik can be embedded in Ik+l with a dilation cost of el/". The sequence 

of embeddings G = I. + Il + . . + Id-c-l + Id-c = H has a total of d- c steps, with a dilation 

cost of el/" in each step. This embedding of G in H therefore has a dilation cost of l(d-c)'c. 

Next we consider the case in which d and c are not relatively prime. Let a be the greatest 

common denominator of d and c, and let u = d / a  and v = c/a. Since d  is not divisible by c,  u 

and v are integers and relatively prime. We can write ld lC  as lU/" .  Since lu/" is an integer and u 

and v are relatively prime, by Lemma 50, 11/" is an integer. 

As in the preceding case, we can define a sequence of embeddings from G to H. This sequence 

consists of u - v embedding steps, in each step of which the dimensions of the two corresponding 

graphs differ by a. Let Io, 11, . . ., I,-, be meshes such that for all k E [u - v + 11, Ik has 

dimension a(u - k )  and shape 

We have I. = G; I,-, = H ;  Io, 11, . . ., I,-, all have the same size Cau = C d ;  and, except for I. 

and I %-,, none of the meshes 1 1 ,  12, . . ., Iu-v-l is square. 

For all k E [u - v] ,  let L6 be a list of length a(u - k - I), and L i  be a list of length a  such 

that 

L', = ([("fkll" e (u+k) / v  
? ' - - ,  , , . ,  ) and Li= (v. 

\ 
Y ' -  
av a ( ~ - v - k - 1 )  

Lk OLE is a permutation of Lk .  Let 

Rk = ( l lI" , .  . . ,11/") and R' - R k o  o R k .  - Ic-- 

The list R; has length av. We have 
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The list [Ri o ( 1, .  . . ,1 )] x L; is Lk+l. Therefore, the list LkS1 is a general reduction of the list - 
a(u-v-k-1) 

Lk with a reduction factor of 

By Theorem 43, the mesh Ik can be embedded in the mesh Ik+l with a dilation cost of el/". 

In the sequence of embeddings G = I. t I1 + . . . + Iu-,-l --+ Iu-, = H, each embedding 

step has a dilation cost of el/". Since there are a total of u - v steps, this embedding of G in H 

has a dilation cost of e(u-")/v = e(d-c)/c. 
We next consider the case in which G is a torus and H is a mesh. For all i E [u - v], let It. be a 

torus, and let Iu-, be a mesh. For all k E [u -v i- 11, the shape of Ik is defined as in the preceding 

case. Again by Theorem 43, for all k E [u - v - 11, the torus Ik can be embedded in the torus 

Ik+l with a dilation cost of el/", and the torus Iu-,-l can be embedded in the mesh Iu-, with a 

dilation cost of 211/". Therefore, the sequence of embeddings G = I. + Il + . - t Iu-, = H 

has a total dilation cost of 2e(d-c)1c. The proofs of the dilation costs for the other cases of G and 

H are similar and thus omitted. 

The optimality condition of these dilation costs follows from Theorem 47. 

Notice that in Theorems 48 and 51 and Corollary 49, the ratio of our dilation cost to the 

optimal dilation cost is bounded from above by l / b ,  for some positive number b that depends 

only on d and c. For fixed values of d and c, this upper bound on the ratio is a constant. Since 

in Theorems 48 and 51, an instance of G and H depends on d, c, and & (or equivalently, on b, c, 

and m ,  since ld = m c ) ,  we can fix the values of d and c without fixing an instance of G and H. 

Therefore, in Theorems 48 and 51, for all problem instances in which d and c are fixed but & is 

any integer greater than 1, the ratio of our dilation cost to the optimal dilation cost is bounded 

from above by a constant. On the other hand, in Corollary 49, in which case G is a hypercube, an 

instance of G and H depends only on d and c. Fixing d and c fixes such' an instance. Therefore, 

in this case, the upper bound l l b  on the ratio of our dilation cost to the optimal dilation cost 

varies with each problem instance. 

A few special cases of embeddings among toruses and meshes of the same size for lowering 

dimension have been solved optimally in the literature: optimal embedding of an (l, l,l)-mesh 
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in a line of the same size with a dilation cost of 13e2/4 + 4/21 [Fit74], optimal embedding of an 

(4, 4)-mesh in a line of the same size with a dilation cost of 4 [Fit74], optimal embedding of an 

(4, 4)-torus in a ring of the same size with a dilation cost of e [MN86], and optimal embedding of 

a hypercube of size 2d in a line of the same size with a dilation cost of c::; (L$21) [Har66]. 

For the cases of embedding an (l ,  [)-mesh in a line and embedding an (!,!)-torus in a ring, 

our embeddings also give a dilation cost of 4. Thus, both are truly optimal. For the case of 

embedding an (4,4,4)-mesh in a line, our embedding gives a dilation cost of e2. Thus, it is 

optimal to within a constant 413. 

For the case of embedding a hypercube of size 2d in a line, our embedding gives a dilation 

cost of 2d-1. The optimal dilation cost E:!: (Lk;21) can be written as ~ ~ - ~ 2 ~ - ~ ,  where = €1 = 

€2 = 1, and for all d 2 3, ~ d - 1  > ed. (See Appendix.) Hence, our embedding is truly optimal 

for 1 5 d 5 3. However, for all d > 3, the ratio of our dilation cost to the optimal dilation 

cost, which is l / ~ d - ~ ,  is strictly greater than 1. Furthermore, for all d > 3, this ratio is an 

increasing function of d, and hence, as we have discussed earlier, cannot be bounded from above 

by a constant. 

Embeddings for increasing dimension 

Theorem 52 Let G be a square torus or a square mesh of dimension d, and let H be a square 

torus or a square mesh of dimension c such that d < c and G and H are of the same size. Assume 

that c is divisible by d. Then G can be embedded in H with an optimal dilation cost of 2 if G 

is a torus of odd size and H is a mesh, and with unit dilation cost otherwise. 

Proof. Let a = c ld .  By the assumption of the theorem, a is an integer. Let 4 be the length of 

the dimensions of G, and m be the length of the dimensions of H. Let L be the shape of G, and 

M be the shape of H. We have 

L = (1, . . . 1 )  and M = (0 - 
d c 

Since G and H are of the same size, we have ld = mc, and t = ma. Let 
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Since R = l, and 

the list M is an expansion of the list L, with an expansion factor of 

Assume that G is a torus of even size and H is a mesh of the same size. Since d < c,  we 

have a 2 2. Hence, the list R consists of at least two components. Furthermore, since the size 

of H is even, m must also be even, and hence, all of the components of R are even. Therefore, 

by Theorem 32, G can be embedded in H with unit dilation cost. The other cases of G and H 

also follow from Theorem 32. 

Theorem 53 Let G be a square torus or a square mesh o f  dimension d, and let H be a square 

torus or a square mesh of dimension c such that d < c and G and H are o f  the same size. Let & 

be the length o f  the dimensions of G, and a be the greatest common divisor o f  c and d .  Assume 

that c is not divisible by d. Then G can be embedded in H with a dilation cost o f  2&(d-a)/c i f  G 

is a torus of odd size and H is a mesh, and with a dilation cost of l(d-a)/c otherwise. 

Proof. We construct an embedding of G in H through an intermediate graph GI for which the 

shape of GI is an expansion of the shape of G and the shape of H is a general reduction of the 

shape of GI. We first consider the case in which G and H are meshes. Let m be the length of 

the dimensions of H. Let u = dla, and v = c/a. Since u and v are relatively prime, and la/" is 

an integer, by Lemma 50, .el/" is also an integer. Let GI be a mesh of dimension vd and with the 

length of the dimensions equal to ll/". The mesh G' has the same size as G, and the shape of G' 

is an expansion of the shape of G with an expansion factor of 

(R, where R = (ll/v, . . . , l1Iv). - 
d u 

By Theorem 32, the mesh G can be embedded in G' with unit dilation cost. 

Next we construct an embedding of G' in H. The dimension of G', which is vd, can be written 

as (c/a)d = cu. By definitions of u and v, we have d = au and c = av. Since a is the greatest 
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common divisor of d and c, and since by the assumption of the theorem, c is not divisible by d, 

we have u > 1. The dimension of GI is thus greater than the dimension of H. Since G' and H 

are square and of the same size, by Theorem 51, GI can be embedded in H with a dilation cost 

of (ll lu)(ud-c)lc = l(d-a)lc.  Therefore, the embedding sequence G -+ G' -+ H gives an embedding 

of G in H with a dilation cost of !(d-a)lc. 

We next consider the case in which G is a torus and H is a mesh. We define a mesh GI the 

same way as in the preceding case. If the size of G is odd, then by Theorem 32, the torus G 

can be embedded in the mesh G' with a dilation cost of 2. If the size of G is even, then 11/" 

must also be even. Furthermore, since d < c and a is the greatest common divisor of d and c, 

it follows that v, which is c/a, must be greater than 1. Thus again by Theorem 32, G can be 

embedded in GI with unit dilation cost. Therefore, the embedding sequence G + G1 + H gives 

an embedding of G in H with a dilation cost of 2!(d-a)lc if the size of G is odd, and a dilation 

cost of l(d-a)lc otherwise. 

The proofs of the other cases of G and H are similar and thus omitted. 

In summary, our embeddings for square toruses and square meshes are all defined using the 

generalized embeddings defined in Section 4. For lowering dimension cases, if the dimension of G 

is divisible by the dimension of H, then the shape of H is a simple reduction of the shape of G. 

Otherwise, G can be embedded in H through a sequence of intermediate graphs in which every 

pair of successive graphs have shapes satisfying the condition of general reduction. In either 

case, our embeddings have dilation costs optimal to within a constant for fixed values of d and 

c.  For increasing dimension cases, if the dimension of H is divisible by the dimension of G, then 

H is always an expansion of G, and an embedding of G in H can be immediately constructed 

by applying the results from Section 4. Furthermore, this embedding is always optimal. If the 

dimension of H is not divisible by the dimension of G, then an embedding of G in H is constructed 

through an intermediate graph G1 such that the shape of GI is an expansion of the shape of G 

and the shape of H is a general reduction of the shape of GI. This embedding, however, may not 

be optimal in general. 
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6 Conclusion 

This paper studies the embeddings among toruses and meshes of the same size. All of the results 

are based on several basic embeddings from a line or a ring in a torus or a mesh. The results 

for basic embeddings are all optimal. For generalized enibeddings for which at  least one of the 

two graphs is not square, our results are restricted only to those cases in which the shapes of the 

two graphs satisfy the condition of expansion for increasing dimension cases and the condition of 

reduction for lowering dimension cases. The results for lowering dimension cases are not optimal 

in general. On the other hand, the results for increasing dimension cases are all optimal except 

when G is a torus of even size and H is a mesh. For this case, we provide an embedding with a 

dilation cost of 2, and under certain condition, an embedding with optimal unit dilation cost. 

For increasing dimension cases, if the graph H is a hypercube, the condition of expansion can 

always be satisfied; similarly, for lowering dimension cases, if the graph G is a hypercube, the 

condition of simple reduction can always be satisfied. Consequently, our results for generalized 

embeddings can always be applied if one of the two graphs is a hypercube. 

Furthermore, our results can always be applied if both graphs are square. For increasing 

dimension cases, these embeddings are optimal when the dimension of H is divisible by that of 

G. For lowering dimension cases, the embeddings are all optimal to within a constant for fixed 

values of d and c; by comparing with the several known optimal results in the literature, we have 

further shown that some of these embeddings are truly optimal. 

Given any argument in the corresponding domains of our embedding functions, the numbers 

of operations needed to evaluate the functions are all proportional to the dimension of H. 

7 Appendix 

In this appendix, we prove that for all positive integers d, zf=i (LL.21) can be written as 6d-1gd-', 

where ~ d - 1  > 0, e0 = el = ~2 = 1, and for all d L 3, ed-1 > sd. 

July 31, 1988 



7. Appendix 

For all positive integer k, let 

l'&1)/2(1 - 1/ (2 j  + 2))' for k - 1 even and k - 1 > 0; 
Ck-1 = 

r$z(l - I/(%)), for k - 1 odd and k - 1 2 1. 

Proposition 1. For all positive integers k, (LI;2,) = 2k-1Cr-1. 

Proof. We use induction on odd k's and even k's. 

Case 1 ,  k is even. 

Basis. k = 2. 

We have (:) = 2 = 2C1. 

Induction hypothesis. Assume that the proposition is true for all positive, even integers k 5 a, 

where a is an even number. 

Induction step. Prove for k = a + 2. 

- - (a + 2)! 
((a + 2)/2)!((a + 2)/2)! 

Case 2. b is odd. 

The proof is similar to  the proof for Case 1 and is omitted. 

Proposition 2. For all positive integers k ,  Ck 5 Ck-l. 

Proof. We consider two cases: 

Case 1. k is odd. 

July 31, 1988 



- 
7. Appendix 

Since Ck-l = ng<1;')12(1 - 1/ (2 j  + 2 ) )  = nj!=$i)12(1 - 1 / (2 j f ) ) ,  we have Ck-1 = Ck. 

Case 2. k is even. 

k12 Since Cx = n j = l ( l  - 1/(2j  + 2 ) )  = n:CT1(l - 1/ (2 j1) )  = (1 - l / ( k  + 2))Ck-l, we have 

Ck < Ck-1. 

Proposition 3. Let rn be a positive integer, and tm = Cr='=, (Lk;2J).  Then t ,  = ~,2", where 

eo = el = ~2 = 1, and for all m 2 3, E, = (em-l + Cm-l)/2 and Cm-l < em < &,-I. 

Proof. We only prove the case with m > 3; the proof for the case with m < 3 is obvious. We 

use induction on m. 

Basis. m = 3. 

Since t3  = 7, E~ = 1,  and C2 = 3/4, we have t3  = ~ ~ 2 ~ ,  where E Q  = 718 = (c2 + C2) /2 ,  and 

C2 < € 3  < E z .  

Induction hypothesis. Assume that the proposition is true for all positive integers m 5 a. 

Induction step. Prove for m = a + 1. 
k Since ta+l = c;:: ( L k , 2 J ) ,  by proposition 1, we have ta+1 = t ,  + 2"Ca = 2'+'(~,  + Ca)/2.  

Thus, ta+l = Ea+l 2,+', where = (e ,  + Ca)/2.  

Since Ca-l < e,  < by induction hypothesis, and C, 5 by proposition 2, we have 

C, < E,. Hence, < E ,  and C, < E,+I. Therefore, C,  < &,+I < e,. O 

From proposition 3, we thus have C~I: ( L k ; 2 J )  = ~ ~ - ~ 2 ~ - ~ ,  where € 0  = ~1 = e2 = 1,  and for 

all d > 3, ~ d - 1  > ~ d .  From the recurrence relation em = + Cm-1)/2 for all m > 3, we also 

have em = ( 1 / 2 ) ~ - ~  + ~ ~ ~ 1 ( 1 / 2 ) m - k c k ,  for all m > 3. 
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