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ABSTRACT

Provenance in Collaborative Data Sharing

Grigorios Karvounarakis

Supervisors: Zachary G. Ives and Val Tannen

This dissertation focuses on recording, maintaining and exploiting provenance in-

formation in Collaborative Data Sharing Systems (CDSS). These are systems that

support data sharing across loosely-coupled, heterogeneous collections of rela-

tional databases related by declarative schema mappings. A fundamental chal-

lenge in a CDSS is to support the capability of update exchange — which publishes

a participant’s updates and then translates others’ updates to the participant’s lo-

cal schema and imports them — while tolerating disagreement between them and

recording the provenance of exchanged data, i.e., information about the sources

and mappings involved in their propagation. This provenance information can be

useful during update exchange, e.g., to evaluate provenance-based trust policies. It

can also be exploited after update exchange, to answer a variety of user queries,

about the quality, uncertainty or authority of the data, for applications such as trust

assessment, ranking for keyword search over databases, or query answering in

probabilistic databases.

To address these challenges, in this dissertation we develop a novel model of

provenance graphs that is informative enough to satisfy the needs of CDSS users

and captures the semantics of query answering on various forms of annotated re-

lations. We extend techniques from data integration, data exchange, incremen-

tal view maintenance and view update to define the formal semantics of unidirec-

tional and bidirectional update exchange. We develop algorithms to perform update

exchange incrementally while maintaining provenance information. We present

strategies for implementing our techniques over an RDBMS and experimentally

demonstrate their viability in the ORCHESTRA prototype system. We define ProQL,
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a query language for provenance graphs that can be used by CDSS users to combine

data querying with provenance testing as well as to compute annotations for their

data, based on their provenance, that are useful for a variety of applications. Fi-

nally, we develop a prototype implementation ProQL over an RDBMS and indexing

techniques to speed up provenance querying, evaluate experimentally the perfor-

mance of provenance querying and the benefits of our indexing techniques.
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Chapter 1

Introduction

The World Wide Web has created opportunities for collaboration among organiza-

tions (in the sciences and academia, in businesses etc.), by allowing them to pub-

lish and access one another’s data. However, practical data sharing has remained

an elusive goal for several reasons. An important one is schema heterogeneity, i.e.,

the fact that data from different organizations even in the same “domain” is of-

ten structured using different schemas. Data integration [78] (and its variants, e.g.,

data exchange [45] and warehousing) identified this problem and proposed a “top-

down” approach: collaborating organizations need to first agree on a standardized

global schema and then map their individual sources to it using schema mappings.

This approach has been appropriate for cases when the problem domain is well

understood and relatively simple and static, e.g., company mergers, integrated E-

business websites, etc.

However, for larger-scale communities, coordination and agreement on a com-

mon global schema can be difficult and time-consuming. First, the creation and

maintenance of this schema requires central administration,1 which is hard to es-

tablish in communities of independent organizations (e.g., research institutes).
1Peer data management [1, 12, 64, 72, 83] supports multiple mediated schemas, thus relaxing

some aspects of administration, but it assumes data is consistent.
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Moreover, it requires collaboration and agreement by all members, which may be

difficult to achieve at a global scale, especially for large communities. Even when

this agreement is achieved, it essentially “fixes” the participants to those that were

involved in the creation of the global schema. Thus, it may be difficult for smaller

organizations left out of the standardization process or ones that started publish-

ing after the creation of the “standard” schema to contribute their data. Finally, in

communities where source schemas change frequently, the global schema needs

to be revised continuously. This requires additional effort from all participating

organizations to adapt to such changes and it results in inconsistencies between

different repositories, different versions, etc. For instance, in the field of bioinfor-

matics today, after years of effort in data integration, there are multiple schemas

that are considered “standard” and being used by different member organizations,

due to different research needs, competing groups, and the continued emergence

of new kinds of data. The prospect of investing time and effort with questionable

effectiveness often hampers collaboration efforts, by discouraging member orga-

nizations from taking part in them.

Even more problematic is the fact the data and associations in different partic-

ipants’ databases (“peers”) are often contradictory, because e.g., of disagreements

between researchers or the use of different scientific methods. In such cases, in-

dividual researchers may choose to resolve inconsistencies by selecting data that

have originated from sources they consider more “authoritative” or trusted. Each

peer may have different perceptions of trust and authority. Such situations cannot

be handled by data integration tools since they impose a global consensus on the

data, by translating user queries to queries over the actual sources, and they as-

sume that the data is stable, clean, and correct. However, in many large-scale data

sharing efforts, particularly in the sciences, data is neither stable nor clean. It is

being continuously annotated, corrected, and hand-cleaned by each user — and a

major task is not simply to integrate data for querying, but rather to propagate up-

2



1.1. Collaborative Data Sharing Systems

dates across interrelated, independently modified databases. Queries could then

be posed directly over updated local database instances at each peer, instead of

requiring reformulation over remote sources.

However, surprisingly little work in the data integration literature has addressed

propagation of updates across databases and the novel challenges they present. In-

deed, in order to be able to assess the quality, uncertainty or authority of data they

receive, users need to know the sources and mappings involved in their propa-

gation. The importance of such provenance [21, 35, 27, 11], information has been

recognized in data warehousing, but for data sharing we need to capture more

details about how source tuples were combined through mappings between het-

erogeneous schemas during this propagation. In this dissertation, we focus on the

problem of capturing the provenance of data, as it is exchanged during update

propagation, and exploiting this provenance information for various applications.

1.1 Collaborative Data Sharing Systems

To address the needs of scientists, as presented above, this dissertation adopts the

general principles of the new data sharing paradigm of Collaborative Data Shar-

ing Systems (abbreviated CDSS) [68], an extremely flexible scheme for sharing data

among different participants. Rather than providing a global view of all data the

CDSS instead facilitates import and export among autonomous databases. The

CDSS model provides a principled architecture that extends the data integration

approach to encompass today’s scientific data sharing practices and requirements.

In this dissertation, we develop the core formal model and techniques to fulfill the

vision of [68]. In particular, we define the formal foundations of the basic capa-

bility of update exchange, which publishes a participant’s updates to “the world” at

large, and then translates others’ updates to the participant’s local schema. As up-

dates are exchanged between peers we capture their provenance [21, 35, 27, 11], i.e.,

3



1.1. Collaborative Data Sharing Systems

information about what sources they originated from and what mappings were

involved in their propagation. Provenance can be used during update exchange,

to enable CDSS operations such as filtering which translated updates to apply ac-

cording to the local administrator’s unique trust policies about different peers and

mappings. Moreover, it can be exploited by CDSS users after update exchange has

been performed for a variety of applications, as we explain in Section 1.2.

Data sharing in a CDSS occurs among loosely coupled confederations of par-

ticipants (peers). Each participant controls a local database instance, encompass-

ing all data it wishes to manipulate, including data imported from other partici-

pants. Participants can then update both local and imported data, and their edits

are logged. Declarative schema mappings specify one database’s relationships to

other participants, much as in peer data management systems [64].

Example 1. Figure 1.1 illustrates an example bioinformatics collaborative data sharing

system, based on a real application and databases of interest to affiliates of the Penn Center

for Bioinformatics. GUS, the Genomics Unified Schema, contains gene expression, protein,

and taxon (organism) information; BioSQL, affiliated with the BioPerl project, contains

very similar concepts; and a third schema, uBio, establishes synonyms and canonical names

for taxa. Instances of these databases contain taxon information that is autonomously

maintained but of mutual interest to the others. Suppose that a peer with BioSQL’s schema,

PBioSQL, wants to import data from another peer, PGUS , as shown by the arc labeledm1, but

the converse is not true. Similarly, peer PuBio wants to import data from PGUS , along arc

m2. Additionally, PBioSQL and PuBio agree to mutually share some of their data: e.g., PuBio

imports taxon synonyms from PBioSQL (via m3) and PBioSQL uses transitivity to infer

new entries in its database, via mapping m4. Finally, each participant may have a certain

trust policy about what data it wishes to incorporate, according to their provenance: e.g.,

PBioSQL may only trust data from PuBio if it was derived from PGUS entries. The CDSS

facilitates dataflow among these systems, using mappings and policies developed by the

independent participants’ administrators.

4



1.1. Collaborative Data Sharing Systems

m2

m4

m3

m1

Figure 1.1: Example collaborative data sharing system for three bioinfor-
matics sources. For simplicity, we assume one relation at each participant
(PGUS,PBioSQL,PuBio). Schema mappings are indicated by labeled arcs.

Each peer operates in “offline” mode for as long as it likes, but it occasionally

performs an update exchange operation, which propagates updates to make its

database consistent with the others according to the schema mappings and local

trust policies. The update exchange process involves publishing any updates made

locally by the participant, then importing new updates from other participants (af-

ter mapping them across schemas and filtering them according to trust conditions).

Intuitively, this operating mode resembles deferred view maintenance across a set

of views — but there are a number of important differences, in part entailed by the

fact that instances are related by (paths of) schema mappings rather than views,

the fact that we want to record the provenance of exchanged data and the peers’

ability to specify local edits and trust policies.

The CDSS records the steps involved in the propagation of the updates, in-

cluding source tuples and mappings that were involved. This constitutes their

provenance or lineage [21, 35, 27, 11], and is useful during update exchange, e.g.,

in order to assess trust, as well as after update exchange, for a variety of applica-

tions akin to provenance querying, that are useful to CDSS users as we explain in

Section 1.2. After the update exchange, the participant has an up-to-date data in-
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stance, incorporating trusted changes made by participants transitively reachable

via schema mappings, and they can query and update that instance and its prove-

nance in an “offline” fashion, until the next time they perform an update exchange

operation.

One of the contributions of this thesis is a formal semantics for update exchange

and its provenance in a CDSS, that leaves room for disagreement by allowing par-

ticipants to add to, delete from or modify imported data as well as to filter them

according to trust policies. Another contribution involves methods for performing

update exchange efficiently, while maintaining the provenance of exchanged data.

1.2 Recording and Exploiting Provenance

Information

In the sciences, in intelligence, in business, the same adage holds true: data is

only as credible as its source. While data cleaning has been a topic of study for

many years in data integration and warehousing, only recently are we beginning

to see issues like data quality, uncertainty, and authority make their way into data

models, mapping formalisms, and even query languages. In most of these set-

tings, the notion of data provenance [21, 35, 58] lies at the heart of dealing with such

issues. For update exchange, we record provenance as updates are propagated

along schema mappings from one database to another, and use it to assess trust

and authority; systems like Trio [11] compute provenance or lineage, then use this

to derive probabilities associated with answers. Recently [94] provenance has even

been shown useful in learning the authority of data sources and schema map-

pings, based on user feedback over results: a system can learn adjustments to the

rankings of queries based on feedback over their answers, and it can then prop-

agate this adjustment to the score of one or more relations. Finally, provenance
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has been used to debug schema mappings [27] that may be imprecise or incorrect:

users can see how “bad” data has been produced. (We note that our focus is on

data provenance in the CDSS context, rather than workflow provenance, a separate

topic [26].)

Surprisingly, however, the study of data provenance as a first-class data arti-

fact itself — worthy of its own data model, query language, and indexing and

query processing techniques — has not yet come to the forefront. Several prove-

nance models have been proposed for specific applications [21, 35, 11, 27], but

none of them is general enough for all the purposes described above. To this

end, one of the contributions of this thesis is a rich model of provenance for data

derived through compositions of views or schema mappings. For every derived

tuple t, a provenance graph describes all derivations that have produced it, includ-

ing source tuples and how they were combined through views or mappings as

well as possibly other derived tuples that were used to derive t. We explain

how provenance graphs can be maintained in a CDSS together with data dur-

ing update exchange, by extending the datalog programs that perform the lat-

ter with appropriate rules. We also show that provenance graphs can be used

to compute different forms of data annotations. These include lineage or why-

provenance [21, 35, 11], confidentiality policies [50], scores assigned by authority-

based ranking schemes [8] or by machine learning based on user feedback about

query answers [94], as well as boolean expressions required for query answering

in incomplete [66] or probabilistic[52, 98, 11] databases.

Example 2. Consider the CDSS from Example 1. The graph of Figure 1.2 represents tuple

derivations that have been produced during update exchange. In particular, the graph

has two kinds of nodes: tuple nodes, shown as rectangles, and mapping nodes, shown as

ellipses. Arcs connect tuple nodes to mapping nodes and mapping nodes to tuple nodes.

In addition, we have nodes for the local insertions of each peer. This “source” data is

annotated with its own id (unique in the system) p1, p2, . . . etc., and is connected by an arc
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(3,5) (2,5)
(3,2)

p3:G(3,5,2) p1:B(3,5) p2:U(2,5)

m4

B U
(3,5,2) m1

m2

G

Figure 1.2: A provenance graph for the CDSS of Figure 1.1

to the corresponding tuple entered in the local instance.

From this graph we can analyze the provenance of, say, B(3, 2) by tracing back paths

to source data nodes — in this case through (m4) to p1 and p2 and through (m1) to p3.

As a result, we can determine that there are two alternative “justifications” for B(3, 2).

Moreover, if at some time after update exchange we decide that p1 should not be trusted,

e.g., because some error has been discovered in the scientific procedure that produced it, we

can determine that B(3, 2) is still valid, since it is still justified by p3 through (m1). On

the other hand, if p1 and p3 are discredited, we can conclude from the provenance graph

that B(3, 2) cannot be trusted anymore.

Provenance graphs can often be very large and complex, due to the volume of

data at each peer as well as the complexity of compositions of views or paths of

mappings. However, CDSS users may be interested in the provenance of specific

tuples, parts of certain derivations e.g., not starting from source tuples but from

other derived tuples, or derivations of a certain “shape”. One of the contributions

of this thesis is ProQL, a query language for provenance graphs that can help users

navigate through such graphs and focus on parts of interest to them. Moreover,

ProQL exploits the generality of the provenance model to compute annotations

such as the ones described above. Finally, we describe strategies for implementing

ProQL over an RDBMS and investigate indexing techniques to optimize process-

ing of ProQL queries.
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1.3 Challenges, Contributions and Outline of

Dissertation

To recap, in this dissertation we are addressing the following challenges:

• To define formal semantics for update exchange, that tolerate disagreement be-

tween participants and allow them to filter data according to their own provenance-

based trust policies, and develop algorithms to perform it.

• To record the provenance of data, as updates are propagated across peers dur-

ing update exchange, and exploit it for CDSS operations, e.g., to assess trust.

• To provide tools that allow CDSS users to also exploit the provenance of the

data in their local instance, after update exchange, e.g., in order to include

provenance testing in their data querying or compute annotations for their data

that are useful for a variety of applications.

To address these challenges, in this dissertation we make the following contri-

butions:

• Building upon techniques for exchanging data using networks of schema

mappings, in Chapter 3 we define unidirectional update exchange between

participants with heterogeneous schemas: this generalizes incremental view

maintenance, peer data management [64] and data exchange [89, 45].

• In Chapter 4 we define a rich model of provenance information for relational

algebra and recursive datalog queries based on semirings of polynomials with

coefficients from N. We extend this model to semirings of formal power series

with unary functions for the (possibly infinite) provenance of query answers

of datalog programs, such as the ones we use to perform update exchange,

as we explain in Chapter 5. We show that, even though datalog provenance
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can be infinite, it can be generated by finite algebraic systems of fixed point

equations, which imply a provenance graph model that is more suitable for

visualization and querying, while also capturing relationships between the

provenance of derived tuples. We also show that this provenance model gen-

eralizes query answering on other forms of annotated relations and can thus

be used to compute query answers for different kinds of annotated relations

by substituting appropriate values in the provenance expressions (without

needing to recompute the queries), including trust annotations for imported

tuples, according to users’ trust conditions.

• In Chapter 5 we describe a general data provenance encoding in relations

and show how sets of schema mappings can be translated into datalog pro-

grams that performs update exchange and records its provenance simulta-

neously. These techniques form the basis for an implementation of update

exchange. We also describe an algorithm that uses provenance information

to optimize update exchange, and in particular to detect which tuples are

no longer derivable and should be deleted, when a deletion is propagated.

Moreover, we introduce a language and semantics for bidirectional schema

mappings in data and update exchange, that generalizes view update in a

CDSS setting and is useful for propagating both data and updates symmet-

rically among sets of database instances. We show how update policies can

be expressed along with these mappings, and present an algorithm that uses

provenance information to detect and avoid updates that cause side effects at

run time

• We develop a complete implementation of unidirectional and bidirectional

update exchange in our ORCHESTRA CDSS prototype, with novel algorithms

and encoding schemes to translate updates, maintain provenance, and apply

trust conditions and provide a detailed experimental study of the scalability
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and performance of our implementation of CDSS operations (Chapter 6).

• We define a query language for provenance graphs, ProQL which is useful

in supporting a wide variety of applications with derived data (Chapter 7).

This language can be used to assess trust and derivability or detect side ef-

fects, as required for CDSS operations, as well as to express more complicated

provenance queries and, optionally, compute data annotations in particular

semirings.

• We develop a prototype implementation of ProQL — for acyclic provenance

graphs — over an RDBMS, introduce indexing techniques for speeding up

certain classes of ProQL queries and provide a detailed experimental study

of the performance of provenance querying in a CDSS as well as the benefits

of different indexing techniques (Chapter 8).

Chapter 2 provides background about data exchange, which forms the theoret-

ical foundation for CDSS update exchange. Finally, in Chapter 9 we discuss related

work and we present conclusions and future research directions in Chapter 10.
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Chapter 2

Background

Update exchange builds upon techniques for data exchange using networks of schema

mappings. In particular, we use schema mappings to express relationships be-

tween multiple schemas in a CDSS, and we propagate updates in order to maintain

peer instances that conform to an extension of data exchange solution semantics.

For this reason, before presenting its formal semantics, we recall some fundamen-

tal data exchange concepts, such as schema mappings and how to compute an in-

stance from which all certain answers to users’ queries can be computed directly.

2.1 Schema Mappings and Data Exchange

In a data exchange [45] setting, we have a source schema S and a target schema

T . For simplicity of the presentation, and without loss of generality, assume that

S ∩ T = ∅. The relationship between S and T is modeled through schema map-

pings, expressed in the form of tuple generating dependencies or tgds, i.e., logical

expressions of the form:

∀x,y (φ(x,y)→ ∃z ψ(x, z))
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where the left hand side (LHS) of the implication, φ, is a conjunction of atoms

over variables x̄ and ȳ, and the right hand side (RHS) of the implication, ψ, is a

conjunction of atoms over variables x̄ and z̄. A tgd expresses a constraint about the

existence of a tuple in the instance on the RHS, given a particular combination of

tuples satisfying the constraint of the LHS. Tgds are a popular means of specifying

constraints and mappings [39, 45] in data sharing, and they are equivalent to so-

called global-local-as-view or GLAV mappings [51, 64], which in turn generalize the

earlier global-as-view and local-as-view mapping formulations [78].

In the case of the data exchange problem, the authors consider only:

• source-to-target tgds, where φ and ψ are conjunctions of atoms from S and

T , respectively

• target tgds, in which both φ and ψ only contain relational atoms from T .

In [45] the authors also allow the use of target equality-generating dependencies

or egds, in order to specify constraints over the target schema. These are logical

expressions of the form:

∀x φ(x)→ xi = xj

where φ only contains relational atoms from T .

LetM be a set of dependencies of these kinds, and consider the joint schema

S ∪ T : its instances are pairs of instances 〈I, J〉 s.t. I is an instance of S and J

is an instance of T . In this context we can view M as a (conjunction of) logical

assertion(s) over the joint schema S ∪ T . Then, we write 〈I, J〉 |= M if the pair

of instances I, J satisfies the set of mappings M. Then, given source and target

schemas S, T , a set of dependenciesM and an instance I of S a solution to the data

exchange problem is an instance J of T such that 〈I, J〉 |=M.

In general, given a set of mappings M and a source instance I there may be

several possible solutions to the data exchange problem, i.e., instances J of T s.t.,

〈I, J〉 |=M. Consider for example the following situation:
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Example 3. Let S = {S1(a, b), S2(c, d)}, T = {T (e, f)},

M = {d1 : ∀x, y S1(x, y)→ ∃z T (x, z), d2 : ∀x, y S2(x, y)→ ∃z T (z, y)} and

I = {S1(a0, b1), S2(a1, b0)}

Observe that the tgds inM do not completely specify the target instance. For instance,

d1 requires that for every constant value that appears as value of attribute a of a tuple

t ∈ S1, there is a tuple t′ ∈ T with the same value for attribute e. However, it does not

specify the value of attribute f of t′, or whether there may be multiple tuples in T with the

same value for attribute e and multiple different values for attribute f. In order to express

this incomplete information, one can use special values, called labeled nulls, which are

essentially variables (as opposed to “normal” values, i.e., constants). For example, one

target instance for the setting presented above would be: J = {T (a0, Z0), T (Z1, b0)},

where Z0, Z1 are labeled nulls. Other solutions would be J ′ = {T (a0, b0)} and J ′′ =

{T (a0, Z0), T (Z1, b0), T (Z2, b0)}.

2.2 Computing Instances in Data Exchange

As shown in Example 3, for a given data exchange setting there can be (possibly

infinitely) many solutions, raising the natural question about which solution to

materialize. For this reason, the authors of [45] identified the special class of uni-

versal solutions, that have several desirable properties. Before we introduce the

definition of a universal solution, we need to clarify the notion of a homomor-

phism between joint “instances” that can contain labeled nulls:

Definition 2.2.1 (Homomorphism [45]). Let R be a schema, C be a finite set of con-

stants (the domain ofR) and V be an infinite set of variables (i.e., the labeled nulls). More-

over, for an instance K of R, let V(K) be the finite subset of V , whose contents are the

variables that appear in K. Let K1 and K2 be two instances overR, with values in C ∪ V .
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• A homomorphism h : K1 → K2 is a mapping from C ∪V(K1) to C ∪V(K2) that is

the identity on constants and for every tuple t and every relationRi ∈ R s.t. Ri(t) ∈

K1, Ri(h(t)) ∈ K2 (where if t = (t1, . . . , tn), then h(t) = (h(t1), . . . , h(tn))).

• K1 is homomorphically equivalent to K2 if there is a homomorphism h : K1 → K2

and h′ : K2 → K1

• K1 is isomorphic to K2 if there is a bijection h that is a homomorphism from K1 to

K2 and its inverse h−1 is a homomorphism from K2 → K1.

Definition 2.2.2 (Universal solution [45]). IfM is a mapping and I is a source instance

then a universal solution for I is an instance J s.t. for every solution J ′ there is a

homomorphism h : J → J ′.

Example 4. To return to our example above, the solution J turns out to be universal,

while J ′ and J ′′ are not. For example, the homomorphism h : J → J ′ is the identity in

constants plus {h(Z0) = b0, h(Z1) = a0}. Notice that h is also a homomorphism J → J ′′

(although it does not map any tuple to T (Z2, b0), since it does not have to be surjective).

Universal solutions turn out to have several useful properties, that make them

good candidates for materialization. First, they can be used to compute certain an-

swers for unions of conjunctive queries, which is the standard semantics for query

answering in data integration [45, 51, 64, 72, 79]. Moreover, a universal solution

can be computed by applying the chase on the joint instance 〈I, J〉, instead of on

a query, as in the case of equivalent reformulations for query optimization. More

precisely, applying the chase on a (joint) instance K proceeds as follows:

• if d : ∀x φ(x)→∃y ψ(x,y) is a tgd, the chase with d is applicable if there exists

a homomorphism h from φ(x) to K that cannot be extended to a homomor-

phism h′ from φ(x)∧ψ(x,y) to K
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• If the chase with d is applicable, let K ′ be the union of K with the facts pro-

duced by: (a) extending h to h′ such that each variable in y is assigned a fresh

labeled null (different for each yi), and (b) taking the image of the atoms of ψ

under h′.

The algorithm that computes the universal solution starts with a joint instance

〈I, ∅〉, where I is a source instance and ∅ is a target instance, and applies the chase

to it. For CDSS update exchange we only consider sets of tgds; in this case the

chase cannot fail (as is the case in the presence of egds). Moreover, if the set of

tgds is weakly acyclic [40, 45], the chase is guaranteed to terminate. In [45] the

authors define the result of the chase (when it terminates) as the canonical universal

solution. However, the chase is not deterministic i.e., considering the dependencies

in different order may produce different terminating chase sequences. As a result,

in the general case the universal solution that is computed by the chase is not

unique. The authors of [80, 65] identified a slightly different form of canonical

universal solution which can be defined deterministically and is also appropriate

for computing certain answers.

In a CDSS, we perform update exchange by maintaining peer instances that

correspond to the canonical universal solution (of [80, 65]) of the data exchange

setting that involves the source data and the schema mappings at each peer. As

a result, each peer can use their local instance to compute the certain answers for

any union of conjunctive queries. As we show in Chapter 5 such solutions can be

maintained incrementally by translating schema mappings into appropriate data-

log programs, whose execution involves similar steps to the chase procedure. For

this reason, in order to record the provenance of update exchange we need a model

that captures the provenance of datalog programs, such as the one we present in

Chapter 4.

In the general case, including target tgds and egds, the chase may also fail or
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diverge. As it was proved in [45], if the chase terminates, its result is a universal

solution, while if there exists some failing finite chase starting with 〈I, ∅〉, then

there is no universal solution. Moreover, they identified a sufficient condition for

the mapping to guarantee termination of the chase, namely that it is a union of a

weakly acyclic1 set of tgds with a set of egds. Finally, observe that in the general case

the chase is not deterministic, i.e., considering the dependencies in the mapping in

different order may produce different terminating chase sequences. As a result, in

the general case the universal solution that is computed by the chase is not unique.

2.2.1 Certain Answers

An important reason for materializing a target instance, especially for data inte-

gration applications, is to be able to answer queries over the target schema using

this target instance directly. To address this problem, we first need to define what

it is we expect to get as “relevant” answers by evaluating queries over a target

schema, given a source schema and instance and schema mappings. The answer

would be simple if for every I there was a single J s.t. 〈I, J〉 |=M, namely Q(J).

However, this is not the case, and in general there are many Js, instances of T , s.t.

〈I, J〉 |= M. This situation is reminiscent of the problem of querying incomplete

databases [97, 66], as it was first observed in [2] for a particular case of mappings.

For this reason, the authors of [2] suggested the set of certain answers, which has

been adopted by most researchers as the desired set of answers to the problem of

answering queries across mappings.

Definition 2.2.3 (Certain answers). A tuple t is a certain answer of QT acrossM if for

every J such that 〈I, J〉 |=M, t ∈ QT (J). As a result, for every source instance I , the set
1This notion refers to a different kind of mapping graph and is not to be confused with acyclic-

ity of mappings in the context of Peer Data Management Systems [64]. A more detailed analysis of
weak acyclicity is outside the scope of this dissertation, but can be found in [40, 45]
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of all certain answers of a query Q across a mappingM:

certainM,I(QT )
∆
=

⋂
J :〈I,J〉|=M

QT (J)

It turns out that not all data exchange solutions are appropriate for computing

certain answers. Fortunately, as it was proved in [45], universal solutions can be

used to compute the certain answers to (unions of) conjunctive queries over T ; in

particular, one can compute these answers by evaluating such queries over the

universal solution, treating labeled nulls as constants, and dropping tuples with

labeled nulls from the result.

As we explain in the next chapter, in a CDSS we use schema mappings to ex-

press relationships between multiple schemas and perform update exchange in a

way that maintains the canonical universal solution of the data exchange setting

involving the source data and the schema mappings at each peer. As a result, each

peer can use their local instance to compute the certain answers for any union of

conjunctive queries.
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Chapter 3

Introduction to CDSS Update

Exchange

The CDSS model builds upon the fundamentals of data exchange, data integration

and peer data management [64], but adds several novel aspects. As in a PDMS,

the CDSS contains a set of peers, each representing an autonomous domain of con-

trol. Each peer’s administrator has full control over a local DBMS, its schema, the

conditions under which the peer trusts data and the schema mappings relating its

schema with that of other peers. However, the main mode of operation is different.

PDMSs allow users to write queries over their own schema, and translate them

over the schemas of other peers, in order to be executed over their instances. In a

CDSS we want to deal with updates at each peer, as well as to leave room for dis-

agreement between peers, without requiring a global consensus on the data. For

this reason, each peer maintains a local instance containing their local data as well

as data imported through mappings, together with their provenance. Imported

data can be filtered according to each peer’s trust policies or curated, possibly tak-

ing their provenance into account; however, these changes are not imposed on

the sources from which this data was imported (who may, in fact, disagree with
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them).1 Then, CDSS users can pose their queries over, or perform further updates

to, this local instance. We describe CDSS operation in Section 3.1 with an example

showing update translation, provenance tracking and trust conditions. Section 3.2

formalizes these operations.

3.1 CDSS Operation

Each peer P in a CDSS represents an autonomous domain with its own unique

schema and associated local data instance. The users located at P query and update

the local instance in an “offline” fashion. Their updates are recorded in a local edit

log. Periodically, upon the initiative of P’s administrator, P requests that the CDSS

perform an update exchange operation. This publishes P’s local edit log — making

it globally available via central or distributed storage [95], as shown at the top

part of Figure 3.1. This also subjects P to the effects of the updates that the other

peers have published (since the last time P participated in an update exchange).

To determine these effects, the CDSS performs update translation (overview in Sec-

tion 3.1.1), using the schema mappings to compute corresponding updates over

P’s schema. As the updates are being translated, they are also filtered based on P’s

trust conditions (overview in Section 3.1.2) that use the provenance of the data in

the updates. As a result, only trusted updates are applied to P’s database, whereas

untrusted data is rejected. Additional rejections are the result of manual curation:

If a local user deletes data that was not inserted by P’s users (and hence must have

arrived at P via update exchange), then that data remains rejected by P in future

update exchanges of the CDSS. These steps are illustrated at the bottom part of

Figure 3.1.
1In Chapter 5.3 we introduce update exchange over bidirectional schema mappings, for peers

that require closer collaboration, e.g., involving the propagation of such changes back to their
sources. To distinguish with them, we sometimes refer to update exchange as described in this
chapter as unidirectional.
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Figure 3.1: High-level description of CDSS operation

After update exchange, P’s local instance will intuitively contain data mapped

from other peers, “overlaid” by any updates made by P’s users and recorded in the

local edit log. If P’s instance is subsequently updated locally, then P’s users will see

the effects of these edits. Other peers in the CDSS will only see data that resulted

from the last update exchange, i.e., they will not see the effects of any unpublished

updates at P. This situation continues until P’s next update exchange.

Intuitively, this operating mode resembles deferred view maintenance across a

set of views — but there are a number of important differences, in part entailed by

the fact that instances are related by schema mappings rather than views, and in

part entailed by peers’ ability to specify local edits and trust policies.

Application of updates. The result of update translation, once trust policies have

been enforced over provenance and data values, is a set of updates to the local in-

stances and their provenance. In this thesis, we assume that these updates are

mutually compatible. A more realistic approach would treat them as candidate up-
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dates and further use the prioritization and conflict reconciliation algorithm of [95]

to determine which updates to apply. In fact, we do so in our ORCHESTRA proto-

type implementation, but for simplicity of presentation we ignore this aspect in

the model formalization that follows.

In the remainder of this section, we provide a high-level overview of the char-

acteristic aspects of update exchange: (1) how updates are translated along map-

pings between different peer schemas, (2) how trust conditions can filter updates

based on their provenance and values.

3.1.1 Update Translation and Query Answers

The “source” or “base” data in a CDSS, as seen by the users, are the local edit logs

at each peer. These edit logs describe local data creation and curation in terms

of insertions and deletions/rejections. Of course, a local user submitting a query

expects answers that are fully consistent with the local edit log. With respect to

the other peers’ edit logs the user would expect to receive all certain answers in-

ferable from the schema mappings and the tuples that appear in the other peers’

instances [64]. Indeed, the certain answers semantics has been validated by over a

decade of use in data integration and data exchange [45, 51, 64, 72, 79].

Queries are answered in a CDSS using only the local peer instance. Hence, the

content of this instance must be such that all and only answers that are certain

(as explained above) and consistent with the local edit log are returned. As was

shown in the work on data exchange [45, 80, 65], the certain answer semantics can

in fact be achieved through a form of “data translation”, building peer instances

called canonical universal solutions. In our case, the source data consists of edit logs

so we generalize this to update translation. As we explained in Chapter 2, canonical

universal solutions can be computed using the chase procedure. This consists of

a series of applications of tgds from M to derive more tuples, until a fixpoint is

reached. Then, the provenance of an imported tuple essentially records all these
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3.1. CDSS Operation

chase steps that were involved in deriving the tuple.

A key aspect of the canonical universal solutions is the placeholder values or la-

beled nulls for unknown values that are nonetheless needed in order to validate

mappings with existentials (such as m3 in Example 5). The labeled nulls are inter-

nal bookkeeping (e.g., queries can join on their equality), but tuples with labeled

nulls are discarded in order to produce certain answers to queries. (We can ad-

ditionally return tuples with labeled nulls, i.e., a superset of the certain answers,

which may be desirable for some applications.)

Example 5. Having defined the main concepts of data exchange in Chapter 2, we can now

explain the CDSS of Figure 1.1 in more detail. To do so, we first need to establish some

notation. We use Σ for the union of all peer schemas and Σ(P) for the schema of peer P.

We useM for the set of all mappings, which we can think of as logical constraints on Σ.

When we refer to mappings we will use the notation of tgds. For readability, we will omit

the universal quantifiers for variables in the LHS. When we later refer to queries, including

queries based on mappings, we will use the similar notation of datalog (which, however,

reverses the order of implication, specifying the output of a rule on the left).

Peers PGUS, PBioSQL, PuBio have one-relation schemas describing taxa IDs, names, and

canonical names:Σ(PGUS) = {G(id, can, nam)}, Σ(PBioSQL) = {B(id, nam)}, Σ(PuBio) =

{U(nam, can)}. Among these peers are mappingsM = {m1,m2,m3,m4}, shown as arcs

in the figure. The mappings are:

(m1) G(i, c, n)→ B(i, n)

(m2) G(i, c, n)→ U(n, c)

(m3) B(i, n)→ ∃c U(n, c)

(m4) B(i, c) ∧ U(n, c)→ B(i, n)

Observe thatm3 has an existential variable: the value of c is unknown (and not necessarily

unique). The first three mappings all have a single source and target peer, corresponding
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3.1. CDSS Operation

to the LHS and the RHS of the implication. In general, relations from multiple peers may

occur on either side, as in mapping m4, which defines data in the BioSQL relation based on

its own data combined with tuples from uBio.

Continuing our example, assume that the peers have the following local edit logs (where

‘+’ signifies insertion):

∆G

+ 1 2 3

+ 3 5 2

∆B

+ 3 5

∆U

+ 2 5

The update translation constructs local instances that contain:

G

1 2 3

3 5 2

B

3 5

3 2

1 3

3 3

U

2 5

3 2

5 c1

2 c2

3 c3

Examples of (traditional) certain answers query semantics at PBioSQL:

• query ans(x, y) :- U(x, z), U(y, z) returns {(2, 2), (3, 3), (5, 5)};

• query ans(x, y) :- U(x, y) returns {(2, 5), (3, 2)}.

Moreover, if the edit log ∆B would have also contained the curation deletion (− | 3 2 )

then after update translation, B would not only be missing (3, 2), but also (3, 3); and U

would be missing (2, c2).

Finally, this example suggests that the set semantics is not telling the whole story. For

example the tuple U(2, 5) has two different “justifications”: it is a local insertion as well

as the result of update translation via (m2). The tuple B(3, 2) comes from two different

update translations, via (m1) and via (m4). These correspond to alternative derivations

in the provenance of B(3, 2).
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3.1. CDSS Operation

The challenge in the CDSS model is that peer instances cannot be computed

merely from schema mappings and data instances. The ability of all peers to do cu-

ration deletions and trust-based rejections requires a new formalization that takes

edit logs and trust policies into account. We outline in Section 3.2 how we can

do that and still take advantage of the techniques for building canonical universal

solutions.

3.1.2 Trust Policies and Provenance

In addition to schema mappings, which specify the relationships between data

elements in different instances, the CDSS supports trust policies. These express,

for each peer P, what data from update translation should be trusted and hence

accepted. The trust policies consist of trust conditions that refer to the other peers, to

the schema mappings, and even to selection predicates on the data itself. Different

trust conditions may be specified separately by each peer, and we discuss how

these compose in Section 4.8.1.

Example 6. Some possible trust conditions in our CDSS example:

• Peer PBioSQL distrusts any tuple B(i, n) if the data came from PGUS and n ≥ 3, and

trusts any tuple from PuBio.

• Peer PBioSQL distrusts any tuple B(i, n) that came from mapping (m4) if n 6= 2.

Adding these trust conditions to the update exchange in Example 5 we see that PBioSQL

will reject B(1, 3) by the first condition. As a consequence, PuBio will not get U(3, c3).

Moreover, the second trust condition makes PBioSQL reject B(3, 3). Note that formulations

like “comes from PGUS” need a precise meaning. We give this in Chapter 4.

Since the trust conditions refer to other peers and to the schema mappings,

the CDSS needs a precise description of how these peers and mappings have con-

tributed to a given tuple produced by update translation. Information of this kind
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3.2. Update Exchange Formalized

is commonly called data provenance. As we saw at the end of Example 5, prove-

nance can be quite complex in a CDSS. In particular, we need a more detailed

provenance model than why-provenance [21] and lineage [35] (including the ex-

tended model recently proposed in [11]). We discuss their limitations more thor-

oughly in Section 4.3, but informally, we need to know not just from which tuples

a tuple is derived, but also how it is derived, including separate alternative deriva-

tions through different mappings.

3.2 Update Exchange Formalized

After the informal overview in the previous section, we now provide a formal dis-

cussion of how local edits and schema mappings work together in a CDSS. After

we also present our model of provenance in Chapter 4 we explain how this frame-

work can be extended to incorporate trust conditions. In particular, we extend

the model proposed in the data exchange literature [45], which specifies how to

compute peer instances, given data at other peers. We discuss how to incorporate

updates into the computation of data exchange solutions, which we simply term

update translation.

We first explain how the system automatically expands the user-level schemas

and mappings into “internal” schemas and mappings. These support data ex-

change and additionally capture how edit log deletions and trust conditions are

used to reject data translated from other peers. First, we state two fundamental

assumptions we make about the form of the mappings and the updates.

We allow the set of mappings in the CDSS to only form certain types of cycles

(i.e., mappings that recursively define relations in terms of themselves). In general,

query answering is undecidable in the presence of cycles [64], so we restrict the

topology of schema mappings to be at most weakly acyclic [42, 45]. Mapping (m3)

in Example 5 completes a cycle, but the set of mappings is weakly acyclic.
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⋀

Ri(x)

R(x)

Ra(x)

Rl(x)

Ro(x)

+“Incoming” 
mappings

“Outgoing” 
mappings

“Incoming” 
mappings

“Outgoing” 
mappings

Local
acceptances

Local
contributions

¢R(+/-,x) Edit
log

Original relation and edit log Internal view separates input data, 
acceptances, contributions, and output

Figure 3.2: To capture the effects of the edit log on each relation (left), we in-
ternally encode them as four relations (right), representing incoming data, local
acceptances and local contributions, and the resulting (“output”) table.

We also assume that within the set of updates published at the same time by a

peer, no data dependencies exist (perhaps because transient operations in update

chains were removed [68]). These updates are stored in an edit log. For each rela-

tion R(x̄) in the local instance we denote by ∆R(d, x̄) the corresponding edit log.

∆R is an ordered list that stores the results of manual curation at the peer, namely

the inserted tuples whose d value is ‘+’ and the deleted tuples whose d value is

‘−’.

Internal peer schemas. For each relation R in Σ, the user-level edit log ∆R and

the local instance R are implemented internally by four different relations, all with

the same attributes as R. We illustrate these relations in Figure 3.2. Their meaning

is as follows:

• Ri is the peer’s input table. It contains tuples produced by update translation,

via mappings, from data at other peers.

• R`, the peer’s local contributions table, contains the tuples inserted locally, un-

less the edit log shows they were later deleted.
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3.2. Update Exchange Formalized

• Rα, the peer’s acceptance table, contains tuples that were imported from other

peers and have not been rejected through a local curation deletion. (Dele-

tions of local contributions are dealt with simply by removing tuples from

R`).

• Ro is the peer’s curated table and also its output table. After update exchange,

it will contain the local contributions as well as the input tuples that are not

rejected. This table is the source of the data that the peer exports to other

peers through outgoing mappings. This is also the table that the peer’s users

query, called the local instance in Section 3.1.1 and Example 5.

Internal schema mappings. Along with expanding the original schema into the

internal schema, the system transforms the original mappings M into a new set

of tgdsM′ over the internal schema, which are used to specify the effects of local

contributions and rejections.

• For each tgd m inM, we have inM′ a tgd m′ obtained from m by replacing

each relation R on the LHS by Ro and each relation R on the RHS by Ri;

• For each R in Σ,M′ is extended with rules to remove tuples in Rr and add

those in R`:

(iR) Ri(x̄) ∧Rα(x̄)→ Ro(x̄)

( R̀) R`(x̄)→ Ro(x̄).

Then, the results of [45, 80, 65] generalize to this set of tgds:

Theorem 3.2.1. LetM be weakly acyclic and I be an instance of all local contributions

and acceptance tables.Then M′ is also weakly acyclic, hence chaseM′(I) terminates in

polynomial time, and moreover it yields an instance of the of input and output tables that

is a canonical universal solution for I with respect toM′.

28
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To recompute the relation input and output instances based on the extensional

data in the local contributions and acceptance tables, we use a procedure similar

to the α-chase of [65], as described in Chapter 5. For the provenance of derived

tuples we want to record the sequence of steps of this chase procedure that were

involved in each of its (possibly multiple) derivations; for each step, this includes

the mapping that was used and the tuples that it was applied on.

Definition 3.2.1 (Consistent system state). An instance (I, J) of Σ′, where I is an

instance of the local acceptances and contributions tables and J of the input and output

tables, is consistent if J is a canonical universal solution for I with respect toM′.

(In [57] we provided an alternative formalization uses a rejections table, Rr, to

record all tuples rejected by the local curator at every peer. Although the intended

semantics is the same, we need to use negation in internal schema mappings in

order to express the application of rejection (i.e., the operation Ri − Rr). This is

a safe form of negation, since the negated atoms occur only on the LHS of the

implication and every variable in the LHS also occurs in a positive atom there. As

a result, this form of negation does not have adverse effects w.r.t. termination of

the computation of a solution, and in fact the chase procedure produces the same

instances for the input and output tables at every peer, as with the formalization

presented above. In fact, the two semantics are equivalent if all the tgds are full

(i.e., they contain no existentially quantified variables) or when the rejection tables

are all empty. However, if there are tuples with the labeled nulls Ri or Rr, their

interaction with negation can cause problems; in fact, there are cases where no

universal solution exists.2)

To recap, publishing a peer P’s edit log means producing a new instance of P’s

local acceptances and contributions tables, while holding the other peers’ local ac-
2A similar phenomenon was pointed out for mappings containing a more general form of nega-

tion in [41].
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3.2. Update Exchange Formalized

ceptances and contributions tables the same3. Recomputing P’s instance means

computing a new instance of P’s input and output tables that is a canonical uni-

versal solution with respect to the internal mappingsM′. By definition, after each

update exchange the system must be in a consistent state. (The initial state, with

empty instances, is trivially consistent.)

The semantics presented above deal with translating updates over schema map-

pings and allowing curation of imported data. However, update exchange also

involves tracking of provenance and evaluation of trust policies over it. In order

to incorporate these in our formal model, we first need to define our provenance

model. We do so in the next chapter, and present our the necessary extensions to

our formal update exchange semantics in Section 4.8.2.

3This easily generalizes to updates over multiple instances.
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Chapter 4

Provenance Model

For the kinds of provenance applications described in Section 1.2 we need, for ev-

ery imported tuple, to be able to determine the source tuples it originated from,

as well as how they were combined and the mappings involved in its propagation.

Existing provenance models, such as why-provenance [21] and lineage [35] (in-

cluding the extended model recently proposed in [11]) focus on identifying the set

of source tuples involved but fail to represent some aspects of the views involved

in the derivation: whether there is a single or multiple derivations, how the tuples

were combined in each of them and which specific queries were involved. Essen-

tially, we need a data provenance model that captures the abstract form of tuple

derivations produced by steps of applications of mappings during the computa-

tion of the canonical universal solution that is the result of update exchange. We

first define a model for the provenance of positive relational algebra (RA+) queries,

since the body of each mapping is such a query.

Intuitively, for every derived tuple we want to represent all the ways in which

it was derived as expressions over source tuples and the mappings involved, while

distinguishing alternative derivations. Similar requirements have appeared in

the context of annotated relations, where query answering involves generalizing

the relational algebra (RA) to perform corresponding operations on the annota-
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tions of input tuples, in order to compute correct annotations for output tuples.

One such example of query answering over annotated relations comes from the

seminal paper in incomplete databases [66], which generalized RA+ to c-tables,

where relations are annotated with Boolean formulas. In probabilistic databases,

[52] and [98] generalized RA+ to event tables, also a form of annotated relations.

In data warehousing, [35] and [36] compute lineages for tuples in the output of

queries, in effect generalizing RA+ to computations on relations annotated with

sets of contributing tuples. Finally, RA+ on bag semantics can be viewed as a

generalization to annotated relations, where a tuple’s annotation is a number rep-

resenting its multiplicity.

In [58] we observe that in all four cases, the calculations with annotations are

strikingly similar. However, the final annotations do not encode all the provenance

information we need, because they discard some of it during the computation in

order to simplify the final annotation. For example, in c-tables, as we explain in

Section 4.1, the annotations are boolean expressions, and boolean absorption is

used to simplify them along the way. This suggests looking for an algebraic struc-

ture on annotations that captures the above as particular cases. We propose using

commutative semirings for this purpose in Section 4.2. In fact, we can show that

the laws of commutative semirings are forced by certain expected identities inRA+.

Having identified commutative semirings as the right algebraic structure, we ar-

gue in Section 4.3 that a symbolic representation of semiring calculations is just

what is needed to record, document, and track RA+ querying from input to out-

put for applications which require rich provenance information. It is a standard

philosophy in algebra that such symbolic representations form the most general

such structure. In the case of commutative semirings, the symbolic representa-

tion is that of polynomials. We therefore propose to use polynomials to capture

provenance. To deal with sets of mappings that may contain cycles, we then extend

our approach in Section 4.4 to model to recursive datalog queries, where we also
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A B C

a b c ?
d b e ?
f g e ?

A B C

a b c b1

d b e b2

f g e b3

(a) (b)

{
∅, a c , d e , f e ,

a c
a e
d c
d e

,
d e
f e

,
a c
f e

,

a c
a e
d c
d e
f e

}

(c)

Figure 4.1: A maybe-table and a query result
A C

a c (b1 ∧ b1) ∨ (b1 ∧ b1)
a e b1 ∧ b2

d c b1 ∧ b2

d e (b2 ∧ b2) ∨ (b2 ∧ b2) ∨ (b2 ∧ b3)
f e (b3 ∧ b3) ∨ (b3 ∧ b3) ∨ (b2 ∧ b3)

A C

a c b1

a e b1 ∧ b2

d c b1 ∧ b2

d e b2

f e b3

(a) (b)

Figure 4.2: Result of Imielinski-Lipski compu-
tation

record the name of the mapping used at each step. Finally, in Section 4.8 we show

how we can use provenance to compute query answers in different commutative

semirings, and in particular in order to evaluate simple trust conditions in update

exchange.

4.1 Queries on Annotated Relations

We illustrate the general form of query answering on annotated relations by con-

sidering three important examples of such relations and highlighting the similari-

ties between them.

The first example comes from the study of incomplete databases, where a simple

representation system is the maybe-table [93, 59], in which optional tuples are an-
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A B C

a b c 2
d b e 5
f g e 1

A C

a c 2 · 2 + 2 · 2 = 8
a e 2 · 5 = 10
d c 2 · 5 = 10
d e 5 · 5 + 5 · 5 + 5 · 1 = 55
f e 1 · 1 + 1 · 1 + 5 · 1 = 7

(a) (b)

Figure 4.3: Bag semantics example

notated with a ‘?’, as in the example of Figure 4.1(a). Such a table represents a set

of possible worlds, and the answer to a query over such a table is the set of instances

obtained by evaluating the query over each possible world. Thus, given a query

like

q(R)
∆
= πAC

(
πABR 1 πBCR ∪ πACR 1 πBCR

)
the query result is the set of possible worlds shown in Figure 4.1(c). Unfortunately,

this set of possible worlds cannot itself be represented by a maybe-table, intuitively

because whenever the tuples (a, e) and (d, c) appear, then so do (a, c) and (d, e), and

maybe-tables cannot represent such a dependency.

To overcome such limitations, Imielinski and Lipski [66] introduced c-tables,

where tuples are annotated with Boolean formulas called conditions. A maybe-

table is a simple kind of c-table, where the annotations are distinct Boolean vari-

ables, as shown in Figure 4.1(b). In contrast to weaker representation systems,

c-tables are expressive enough to be closed underRA+ queries, and the main result

of [66] is an algorithm for answering RA+ queries on c-tables, producing another

c-table as a result. On our example, this algorithm produces the c-table shown in

Figure 4.2(a), which can be simplified to the c-table shown in Figure 4.2(b); this

c-table represents exactly the set of possible worlds shown in Figure 4.1(c).

Another kind of table with annotations is a multiset or bag. In this case, the

annotations are natural numbers which represent the multiplicity of the tuple in
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A B C

a b c X

d b e Y

f g e Z

E Pr
X 0.6
Y 0.5
Z 0.1

A C

a c X

a e X ∩ Y

d c X ∩ Y

d e Y

f e Z

(a) (b)

Figure 4.4: Probabilistic example

the multiset. (A tuple not listed in the table has multiplicity 0.) Query answering

on such tables involves calculating not just the tuples in the output, but also their

multiplicities.

For example, consider the multiset shown in Figure 4.3(a). Then q(R), where

q is the same query from before, is the multiset shown in Figure 4.3(b). Note that

for projection and union we add multiplicities while for join we multiply them.

There is a striking similarity between the arithmetic calculations we do here for

multisets, and the Boolean calculations for the c-table.

A third example comes from the study of probabilistic databases, where tuples

are associated with values from [0, 1] which represent the probability that the tu-

ple is present in the database. Answering queries over probabilistic tables requires

computing the correct probabilities for tuples in the output. To do this, Fuhr and

Röllecke [52] and Zimányi [98] introduced event tables, where tuples are annotated

with probabilistic events, and they gave a query answering algorithm for comput-

ing the events associated with tuples in the query output.1

Figure 4.4(a) shows an example of an event table with associated event probabil-

ities (e.g., X represents the event that (a, b, c) appears in the instance, and X, Y, Z are

assumed independent). Considering again the same query q as above, the Fuhr-
1The Fuhr-Röllecke-Zimányi algorithm is a general-purpose intensional algorithm. Dalvi and

Suciu [37] give a sound and complete algorithm which returns a safe query plan, if one exists, which
may be used to answer the query correctly via a more efficient extensional algorithm. Their results
do not apply to our example query.
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Rölleke-Zimányi query answering algorithm produces the event table shown in

Figure 4.4(b). Note again the similarity between this table and the example ear-

lier with c-tables. The probabilities of tuples in the output of the query can be

computed from this table using the independence of X and Y.

4.2 Positive Relational Algebra

In this section we attempt to unify the examples above by considering general-

ized relations in which the tuples are annotated (tagged) with information of vari-

ous kinds. Then, we will define a generalization of the positive relational algebra

(RA+) to such tagged-tuple relations. The examples in Section 4.1 will turn out to

be particular cases.

We use here the named perspective [3] of the relational model in which tuples

are functions t : U → D with U a finite set of attributes and D a domain of values.

We fix the domain D for the time being and we denote the set of all such U -tuples

by U -Tup. (Usual) relations over U are subsets of U -Tup.

A notationally convenient way of working with tagged-tuple relations is to

model tagging by a function on all possible tuples, with those tuples not consid-

ered to be “in” the relation tagged with a special value. For example, the usual

set-theoretic relations correspond to functions that map U -Tup to B = {true, false}

with the tuples in the relation tagged by true and those not in the relation tagged

by false.

Definition 4.2.1. LetK be a set containing a distinguished element 0. AK-relation over

a finite set of attributes U is a function R : U -Tup → K such that its support defined by

supp(R)
∆
= {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more structure on the set of tags.

To deal with selection we assume that the set K contains two distinct values 0 6= 1
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which denote “out of” and “in” the relation, respectively. To deal with union and

projection and therefore to combine different tags of the same tuple into one tag

we assume that K is equipped with a binary operation “+”. To deal with natural

join (hence intersection and selection) and therefore to combine the tags of joinable

tuples we assume that K is equipped with another binary operation “·”.

Definition 4.2.2. Let (K,+, ·, 0, 1) be an algebraic structure with two binary operations

and two distinguished elements. The definitions of the operations of the positive algebra

are shown in Table 4.1.

Proposition 4.2.1. The operations of RA+ preserve the finiteness of supports therefore

they map K-relations to K-relations. Hence, Definition 4.2.2 gives us an algebra on K-

relations.

This definition generalizes the definitions of RA+ for the motivating examples

we saw. Indeed, for (B,∨,∧, false, true) we obtain the usual RA+ with set seman-

tics. For (N,+, ·, 0, 1) it isRA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider the set of Boolean ex-

pressions over some set B of variables which are positive, i.e., they involve only

disjunction, conjunction, and constants for true and false. Then we identify those

expressions that yield the same truth-value for all boolean assignments of the vari-

ables in B.2 Denoting by PosBool(B) the result and applying Definition 4.2.2 to

the structure (PosBool(B),∨,∧, false, true) produces exactly the Imielinski-Lipski

algebra. Finally, for (P(Ω),∪,∩, ∅,Ω) we obtain the Fuhr-Rölleke-ZimányiRA+ on

event tables.

These four structures are examples of commutative semirings, i.e., algebraic struc-

tures (K,+, ·, 0, 1) such that (K,+, 0) and (K, ·, 1) are commutative monoids, · is
2in order to permit simplifications; it turns out that this is the same as transforming using the

axioms of distributive lattices [34]
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empty relation For any set of attributes U , there is ∅ : U -Tup→ K such that ∅(t) =
0.

union If R1, R2 : U -Tup→ K then R1 ∪R2 : U -Tup→ K is defined by

(R1 ∪R2)(t)
∆
= R1(t) +R2(t)

projection If R : U -Tup→ K and V ⊆ U then πVR : V -Tup→ K is defined by

(πVR)(t)
∆
=

∑
t=t′ on V and R(t′) 6=0

R(t′)

(here t = t′ on V means t′ is a U -tuple whose restriction to V is the same as
the V -tuple t; note also that the sum is finite since R has finite support)

selection If R : U -Tup → K and the selection predicate P maps each U -tuple to
either 0 or 1 then σPR : U -Tup→ K is defined by

(σPR)(t)
∆
= R(t) · P(t)

Which {0, 1}-valued functions are used as selection predicates is left unspeci-
fied, except that we assume that false—the constantly 0 predicate, and true—
the constantly 1 predicate, are always available.

natural join IfRi : Ui-Tup→ K i = 1, 2 thenR1 1 R2 is theK-relation over U1∪U2

defined by
(R1 1 R2)(t)

∆
= R1(t1) ·R2(t2)

where t1 = t on U1 and t2 = t on U2 (recall that t is a U1 ∪ U2-tuple).

renaming If R : U -Tup→ K and β : U → U ′ is a bijection then ρβR is a K-relation
over U ′ defined by

(ρβR)(t)
∆
= R(t ◦ β)

Table 4.1: Definitions ofRA+ operations on K-relations

distributive over + and ∀a, 0 · a = a · 0 = 0. Further evidence for requiring K to

form such a semiring is given by

Proposition 4.2.2. The followingRA identities:

• union is associative, commutative and has identity ∅;

38



4.3. Polynomials for Provenance

• join is associative, commutative and distributive over union;

• projections and selections commute with each other as well as with unions and joins

(when applicable);

• σfalse(R) = ∅ and σtrue(R) = R.

hold for the positive algebra on K-relations if and only if (K,+, ·, 0, 1) is a commutative

semiring.

Glaringly absent from the list of relational identities are the idempotence of

union and of (self-)join. Indeed, these fail for the bag semantics, an important

particular case of our general treatment.

Any function h : K → K ′ can be used to transform K-relations to K ′-relations

simply by applying h to each tag (note that the support may shrink but never

increase). Abusing the notation a bit we denote the resulting transformation from

K-relations to K ′-relations also by h. The RA operations we have defined work

nicely with semiring structures:

Proposition 4.2.3. Let h : K → K ′ and assume that K,K ′ are commutative semirings.

The transformation given by h from K-relations to K ′-relations commutes with anyRA+

query (for queries of one argument) q(h(R)) = h(q(R)) if and only if h is a semiring

homomorphism.

4.3 Polynomials for Provenance

Lineage and why-provenance were defined in [35, 36, 21] as ways of relating the

tuples in a query output to the tuples in the query input that “contribute” to them.

The lineage of a tuple t in a query output is in fact the set of all contributing input

tuples. The why-provenance is a set of sets, each of which corresponds to the

contributing input tuples of a single derivation (but multiple derivations with the
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A B C

a b c p
d b e r
f g e s

A C

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

A C

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

(a) (b) (c)

Figure 4.5: Lineage and provenance polynomials

same input tuples are still “collapsed” to the same set, i.e., the fact that there can

be many of them is ignored.)

Computing the lineage for queries inRA+ turns out to be exactly Definition 4.2.2

for the semiring (P(X),∪,∪, ∅, ∅) where X consists of the ids of the tuples in the

input instance. For example, we consider the same tuples as in relation R used in

the examples of Section 4.1 but now we tag them with their own ids p,r,s, as shown

in Figure 4.5(a). The resulting R can be seen as a P({p, r, s})-relation by replacing

p with {p}, etc. Applying the query q from Section 4.1 to R we obtain according to

Definition 4.2.2 the P({p, r, s})-relation shown in Figure 4.5(b).

This example illustrates the limitations of lineage (also recognized in [27]). For

example, in the query result in Figure 4.5(b) (f, e) and (d, e) have the same lineage,

the input tuples with id r and s. However, the query can also calculate (f, e) from

s alone and (d, e) from r alone. In a provenance application in which one of r or

s is perhaps less trusted or less usable than the other the effect can be different on

(f, e) than on (d, e) and this cannot be detected by lineage. It seems that we need

to know not just which input tuples contribute but also how they contribute.3

The semiring for why-provenance is more complicated, as described in [18],

and is informative enough for boolean trust computations, such as the ones in the

example above, but is still not rich enough for more complicated trust computa-
3In contrast to why-provenance, the notion of provenance we propose could justifiably be

called how-provenance.
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tions, such as the ones described at the end of Section 4.8.1 and in Chapter 7. On

the other hand, by using the different operations of the semiring, Definition 4.2.2

appears to fully “document” how an output tuple is produced. To record the doc-

umentation as tuple tags we need to use a semiring of symbolic expressions. In

the case of semirings, like in ring theory, these are the polynomials.

Definition 4.3.1. Let X be the set of tuple ids of a (usual) database instance I . The

positive algebra provenance semiring for I is the semiring of polynomials with vari-

ables (a.k.a. indeterminates) from X and coefficients from N, with the operations defined as

usual4: (N[X],+, ·, 0, 1).

Example 7. Start again from the relation R in Figure 4.5(a) in which tuples are tagged

with their own id. R can be seen as an N[p, r, s]-relation. Applying to R the query q from

Section 4.1 and doing the calculations in the provenance semiring we obtain the N[p, r, s]-

relation shown in Figure 4.5(c). The provenance of (f, e) is 2s2 + rs which can be “read”

as follows: (f, e) is computed by q in three different ways; two of them use the input tuple

s twice; the third uses input tuples r and s. We also see that the provenance of (d, e) is

different and we see how it is different! 2

The following standard property of polynomials captures the intuition that

N[X] is as “general” as any semiring:

Proposition 4.3.1. Let K be a commutative semiring and X a set of variables. For any

valuation v : X → K there exists a unique homomorphism of semirings

Evalv : N[X]→ K

such that for the one-variable monomials we have Evalv(x) = v(x).

As the notation suggests, Evalv(P ) evaluates the polynomial P in K given a

valuation for its variables. In calculations with the integer coefficients, na where
4These are polynomials in commutative variables so their operations are the same as in middle-

school algebra, except that subtraction is not allowed.
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n ∈ N and a ∈ K is the sum in K of n copies of a. Note that N is embedded in K

by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P ∈ N[x1, . . . , xn] and any K the polynomial

function fP : Kn → K is given by:

fP (a1, . . . , an)
∆
= Evalv(P ) v(xi) = ai, i = 1..n

Putting together Propositions 4.2.3 and 4.3.1 we obtain Theorem 4.3.1 below,

a conceptually important fact that says, informally, that the semantics of RA+ on

K-relations for any semiringK factors through the semantics of the same in prove-

nance semirings.

Indeed, letK be a commutative semiring, letR be aK-relation, and letX be the

set of tuple ids of the tuples in supp(R). There is an obvious valuation v : X → K

that associates to a tuple id the tag of that tuple in R.

We associate to R an “abstractly tagged” version, denoted R̄, which is an X ∪

{0}-relation. R̄ is such that supp(R̄) = supp(R) and the tuples in supp(R̄) are

tagged by their own tuple id. For example, in Figure 4.7(d) we show an abstractly-

tagged version of the relation in Figure 4.7(b). Note that as an X ∪ {0}-relation, R̄

is a particular kind of N[X]-relation.

To simplify notation we state the theorem for queries of one argument (but the

generalization is immediate):

Theorem 4.3.1. For anyRA+ query q we have

q(R) = Evalv ◦ q(R̄)

To illustrate an instance of this theorem, consider the provenance polynomial

2r2 + rs of the tuple (d, e) in Figure 4.5(c). Evaluating it in N for p = 2, r = 5, s = 1

we get 55 which is indeed the multiplicity of (d, e).
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4.3.1 Recording mapping names in provenance

In a CDSS, apart from the base tuples we also need to record the mappings that

were involved in a derivation. This can be achieved by extending semirings with

a set of unary functions, one for each mapping (henceforth called mapping func-

tions).

Definition 4.3.2 (M-semiring). LetM = {m1,m2, . . . ,mn} be a set of mapping names.

An M-semiring is an algebraic structure (K,+, ·, 0, 1,M) such that (K,+, ·, 0, 1) is a

semiring and ∀m ∈M,m : K → K is a unary function such that:

• ∀m ∈M m(0) = 0

• ∀m ∈M ∀a, b ∈ K m(a+ b) = m(a) +m(b)

The first property is essential in order to guarantee the finite support of re-

lations (otherwise, the mappings could be applied to the infinitely many non-

existent tuples of a K-relation, i.e., the ones annotated with 0 ...). The second

property is justified by commutativity of union with mapping application.

We write (N,M)[X] for theM-semiring of “polynomials” with coefficients in

N, with monomials such as: m1(a · b),m1(a · m2(c
2 · d)), 2 · m1(c · d) · (m3(e))

3 etc.

We can show that Propositions 4.2.3 and 4.3.1 can be extended for M-semirings.

In particular:

Proposition 4.3.2. Let h : K → K ′ and assume that K,K ′ are commutativeM andM′-

semirings, respectively. The transformation given by h from K-relations to K ′-relations

commutes with any RA+ query (for queries of one argument) q(h(R)) = h(q(R)) if and

only if h is anM-semiring homomorphism.

Proposition 4.3.3. Let K be a commutativeM′-semiring and X a set of variables. For

any valuation v : X → K there exists a unique homomorphism ofM-semirings

Evalv,M : (N,M)[X]→ K
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4.4. Datalog on K-Relations

Q(x, y) :- R(x, z), R(z, y)
(a)

a a 2
a b 3
b b 4

a a 2 · 2 = 4
a b 2 · 3 + 3 · 4 = 18
b b 4 · 4 = 16

(b) (c)

Figure 4.6: Datalog with bag semantics

such that for the one-variable monomials we have Evalv,M(x) = v(x).

As a result, Theorem 4.3.1 can be extended forM-semirings:

Theorem 4.3.2. For anyRA+ query q we have

q(R) = Evalv,M ◦ q(R̄)

4.4 Datalog on K-Relations

We now seek to give semantics on K-relations to datalog queries. It is more con-

venient to use the unnamed perspective [3] here, i.e., we ignore the names of the

attributes of each relation and view its contents as ordered n-tuples, where n is

the arity of the relation. We also consider only “pure” datalog rules in which all

subgoals are relational atoms. First observe that for conjunctive queries over K-

relations the semantics in Definition 4.2.2 simplifies to computing tags as sums of

products, each product corresponding to a valuation of the query variables that

makes the query body hold. For example, consider the conjunctive query and N-

relation shown in Figure 4.6(a) and (b), respectively.

There are two valuations that produce the answer Q(a, b): {x = a, y = a, z =

b} yields the body R(a, a), R(a, b) while {x = a, y = b, z = b} yields the body

R(a, b), R(b, b). The sum of products of tags is 2 · 3 + 3 · 4 which is exactly what

the equivalent RA+ query yields according to Definition 4.2.2. If we think of this
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4.4. Datalog on K-Relations

conjunctive query as a datalog program, the two valuations above correspond to

the two derivation trees of the tuple Q(a, b).

This suggests the following generalized semantics for datalog on K-relations:

the tag of an answer tuple is the sum over all its derivation trees of the product

of the tags of the leaves of each tree. Indeed, this generalizes the bag semantics of

datalog considered in [85, 86] when the number of derivation trees is finite. In general,

a tuple can have infinitely many derivation trees (an algorithm for detecting this

appears in [87]) hence we need to work with semirings in which infinite sums are

defined.

Closed semirings [96] have infinite sums but their “+” is idempotent which rules

out the bag and provenance semantics. We will adopt the approach used in formal

languages [75] and later show further connections with how semirings and formal

power series are used for context-free languages. By assuming that D is countable,

it will suffice to define countable sums.

Let (K,+, ·, 0, 1) be a semiring and define a ≤ b
def⇔ ∃x a + x = b. When ≤ is a

partial order we say thatK is naturally ordered. B, N, N[X] and the other semiring

examples we gave so far are all naturally ordered.

We say that K is an ω-complete semiring if it is naturally ordered and≤ is such

that ω-chains x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · have least upper bounds. In such semirings

we can define countable sums: ∑
n∈N

an
∆
= sup

m∈N
(

m∑
i=0

ai)

Note that if ∃N s.t. ∀n > N, an = 0 then
∑

n∈N an =
∑N

i=0 ai. All the semiring

examples we gave so far are ω-complete with the exception of N and N[X].

An ω-continuous semiring is an ω-complete semiring in which the operations +

and · are ω-continuous in each argument. It follows that countable sums are asso-

ciative and commutative, that · distributes over countable sums and that countable

sums are monotone in each addend.
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Semiring Annotation Fin.dist.lattice?
(B,∨,∧, false, true) Set semantics, boolean trust Yes
(N∞,+, ·, 0, 1) Bag semantics No
(PosBool(B),∨,∧, false, true) c-tables Yes (with B finite)
(P(Ω),∪,∩, ∅,Ω) Probabilistic event tables Yes (with Ω finite)
(C,min,max, 0, P ) Confidentiality policies [50] Yes
(P(X),∪,∪, ∅, ∅) Lineage Yes (with X finite)
(N∞,min,+,∞, 0) tropical semiring [75] No

Table 4.2: Examples of ω-continuous semirings

We show some interesting examples of ω-continuous semirings in Table 4.2. In

this table, the first column shows the formal definition of the semiring, the sec-

ond contains kinds of annotations it can be used to represent and the last column

indicates whether the corresponding semiring is also a finite distributive lattice [34]

and the natural order of the semiring is the lattice order. For bag semantics and the

tropical semiring, we add∞ to the natural numbers and define∞+n = n+∞ =∞

and∞ · n = n · ∞ = ∞ except for∞ · 0 = 0 · ∞ = 0. We can think of N∞ as the

ω-continuous “completion” of N. For the semiring of confidentiality policies, the

total order C: P < C < S < T < 0 describes the following levels of “clearance”: P

= public, C = confidential, S = secret, and T = top-secret.

Definition 4.4.1. Let (K,+, ·, 0, 1) be a commutative ω-continuous semiring. To keep

notation simple let q be a datalog query with one argument (it is easy to generalize to

multiple arguments). For any K-relation R define

q(R)(t) =
∑

τ yields t

( ∏
t′∈leaves(τ)

R(t′)
)

where τ ranges over all q-derivation trees for t and t′ ranges over all the leaves of τ .

The next result shows that Definition 4.4.1 does indeed give us a semantics for

datalog queries on K-relations.
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Proposition 4.4.1. For any K-relation R, q(R) has finite support and is therefore a K-

relation.

Proof. (sketch) Let S be the set of tuples t s.t.R(t) 6= 0 and let t′ be a tuple s.t. q(R)(t′) 6=

0. By Definition 4.4.1, this implies that there is a derivation tree for t (s.t. the tags of

the tuples in its leaves are non-zero and correspond to this product) i.e., t′ ∈ q(S).

Since q(S) is finite, q(R) has finite support.

As an example, consider the datalog program q with output predicate Q de-

fined by the rules shown in Figure 4.7(c), applied on the N-relation R shown in

Figure 4.7(a). Since any N-relation is also a N∞-relation and N∞ is ω-continuous

we can answer this query5 and we obtain the table shown in Figure 4.7(b).

A couple of sanity checks follow.

Proposition 4.4.2. Let q be an RA+ query in which the selection predicates only test

for attribute equality and let q′ be the (non-recursive) datalog query obtained by standard

translation from q. Then q and q′ produce the same answer when applied to the same

instance of a database of K-relations.

Proposition 4.4.3. For any datalog query q and any B-relationR, supp(q(R)) is the same

as the result of applying q to the standard relation supp(R).

4.4.1 Provenance equations

The definition of datalog semantics given above is not so useful computationally.

However, we can think of it as the proof-theoretic definition, and as with standard

datalog, it turns out that there is an equivalent fixpoint-theoretic definition that is

much more workable.

Intuitively, this involves representing the possibly infinite sum of products

above as a system of fixpoint equations that reflect all the ways that a tuple can be
5This is transitive closure with bag semantics.
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Q(x, y) :- R(x, y)
Q(x, y) :- Q(x, z), Q(z, y)

a b 2
a c 3
c b 2
b d 1
d d 1

a b 8
a c 3
c b 2
b d ∞
d d ∞
a d ∞
c d ∞

(a) (b) (c)

a b m
a c n
c b p
b d r
d d s

a b x
a c y
c b z
b d u
d d v
a d w
c d t

x = m+ yz
y = n
z = p
u = r + uv
v = s+ v2

w = xu + wv
t = zu + tv

x = m1(m) +m2(yz)
y = m1(n)
z = m1(p)
u = m1(r) +m2(uv)
v = m1(s) +m2(v2)
w = m2(xu) +m2(wv)
t = m2(zu) +m2(tv)

(d) (e) (f) (g)

Figure 4.7: Datalog example

produced as a result of applying the immediate consequence operator Tq (for a datalog

query q) on other tuples. Since such an immediate consequence can involve other

tuples in idb relations, that may themselves have infinitely many derivations, we

introduce a new variable for each tuple in the idb relation and use that variable to

refer to that tuple when calculating its immediate consequences. Thus, for every

tuple there is an equation between the variable for that tuple and a polynomial

over all the variables.

To make this precise we consider polynomials with coefficients in an arbitrary

commutative semiring K. If the set of variables is X we denote the set of polyno-

mials by K[X]. We have already used N[X] for provenance but K[X] also forms

a commutative semiring. We saw in Section 4.3 that because N can be embedded

in any semiring K the polynomials in N[X] define polynomial functions over K.

Similarly, if X = {x1, . . . , xn} then any polynomial P ∈ K[X] defines a polyno-

mial function fP : Kn → K. Most importantly, if K is ω-continuous then fP is
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ω-continuous in each argument.

Definition 4.4.2. LetK be a commutative ω-continuous semiring. An algebraic system

over K with variables X = {x1, . . . , xn} consists of a list of polynomials P1, . . . , Pn ∈

K[X] and is written

x1 = P1(x1, . . . , xn)

· · ·

xn = Pn(x1, . . . , xn)

Together, fP1 , . . . , fPn define a function fP : Kn → Kn. Kn has a component-wise com-

mutative ω-continuous semiring structure such that fP is ω-continuous. Hence, the least

fixed point

lfp(fP) = sup
m∈N

fm
P (0, . . . , 0)

exists, and we call it the solution of the algebraic system above.

As an example, consider the one-variable equation x = ax + b with a, b ∈ K.

This is closely related to regular language theory and its solution is x = a∗b where

a∗
∆
= 1 + a+ a2 + a3 + · · ·

For example, in N∞ we have 1∗ = ∞ while in PosBool(B) we have e∗ = true for

any e.

Consider a datalog program q and to simplify notation assume just one edb

predicate R and one idb-and-output predicate Q. Given an edb K-relation of fi-

nite support R we can effectively construct an algebraic system over K as follows.

Denote by Q also the K-relation that is the output of the program and let Q̄ be

the abstractly-tagged (as in Theorem 4.3.1) version of Q where X is the set of ids

of the tuples in supp(Q). Since Q̄ is a X ∪ {0}-relation and R is a K-relation both

can be seen also as K[X]-relations. The immediate consequence operator Tq is in

fact a union of conjunctive queries, hence Definition 4.2.2 shows how to calculate
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effectively Tq(R, Q̄) as a K[X]-relation of finite support. By equating the tags of Q̄

with those of Tq(R, Q̄) we obtain the promised algebraic system. We will denote

this system as Q̄ = Tq(R, Q̄) (although it only involves the tags of these relations).

Theorem 4.4.1. With the notation above, for any tuple t, the tag Q(t) given by Defi-

nition 4.4.1, when not 0, equals the component of the solution (Definition 4.4.2) of the

algebraic system Q̄ = Tq(R, Q̄) corresponding to the id of t.

To illustrate with an example, consider again the datalog program in Figure 4.7(a)

applied to the same N-relation, R shown in Figure 4.7(b). In Figure 4.7(e)we have

the abstractly-tagged version of the output relation, Q̄ in which the tuples are

tagged with their own ids. The corresponding algebraic system is the one ob-

tained from Figure 4.7(f)by replacing m = 2, n = 3, p = 2, r = 1, s = 1. (Note that

Tq(R, Q̄) = R ∪ Q̄ 1 Q̄.) Calculating its solution we get after two fixed point itera-

tions x = 8,y = 3, z = 2,u = 2,v = 2,w = 2. In further iterations x,y, z remain the

same while u,v,w grow unboundedly (in Section 4.7 we show how unbounded

growth can be detected). Hence the solution is the one shown in Figure 4.7(c).

Note that semiring homomorphisms are monotone with respect to the natural

order. However, to work well with the datalog semantics more is needed.

Proposition 4.4.4. Let K,K ′ be commutative ω-continuous semirings and let h : K →

K ′ be an ω-continuous semiring homomorphism. Then, the transformation given by h

from K-relations to K ′-relations commutes with any datalog query (for queries of one

argument q(h(R)) = h(q(R)) ).

4.5 Formal Power Series for Provenance

In Section 4.3 we showed how to use N[X]-relations to capture an expressive notion

of provenance for the tuples in the output of an RA+ query. However, polynomi-

als will not suffice for the provenance of tuples in the output of datalog queries
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because the semiring N[X] does not define infinite sums. As with the transition

from N to N∞ we wish to “complete” N[X] to a commutative ω-continuous semir-

ing. This problem has been tackled in formal language theory and it led to the

study of formal power series [75].

Note that when we try to apply naively Definition 4.4.1 to datalog queries on

N[X]-relations we encounter two kinds of infinite summations. First, it is possible

that we have to sum infinitely many distinct monomials. This leads directly to

formal power series. Second, it is possible that we have to sum infinitely many

copies of the same monomial. This means that we need coefficients from N∞, not

just N.

LetX be a set of variables. Denote byX⊕ the set of all possible monomials over

X . For example, if X = {x, y} then X⊕ = {xmyn | m,n ≥ 0} = {ε, x, y, x2, xy, y2, x3,

x2y, . . .}where ε is the monomial in which both x and y have exponent 0.

Let K be a commutative semiring. A formal power series with variables from

X and coefficients from K is a mapping that associates to each monomial in X⊕

a coefficient in K. A formal power series S is traditionally written as a possibly

infinite sum

S =
∑

µ∈X⊕

S(µ)µ

and we denote the set of formal power series by K[[X]]. As with K[X], there is a

commutative semiring structure on K[[X]] given by the usual way of adding and

multiplying, for example

(S1 · S2)(µ) =
∑

µ1µ2=µ

S1(µ1) · S2(µ2)

But the real reason we use formal power series is the fact that ifK is ω-continuous

then K[[X]] is also ω-continuous (see [75], for example).

Definition 4.5.1. Let X be the set of tuple ids of a database instance I . The datalog

provenance semiring for I is the commutative ω-continuous semiring of formal power
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series N∞[[X]].

Let us calculate, using the fixed point semantics, the provenances for the output

of the datalog query in Figure 4.7(a). We now take as input the relation, call it R̄, in

Figure 4.7(d) which is the abstractly-tagged (tagged with tuple ids) version of the

relationR in Figure 4.7(b). Note that we have two sets of variables here. The tuple ids

of R̄ form one set of variables and the provenance semiring in which we compute

is N∞[[m,n, p, r, s]]. At the same time, the ids of the tuples in Q̄ in Figure 4.7(e) are

used as variables in the algebraic system, whose right-hand sides belong to

N∞[[m,n, p, r, s]][x,y, z,u,v,w]

i.e., they are polynomials in the variables {x,y, z,u,v,w}, with coefficients in the

semiring of formal power series N∞[[m,n, p, r, s]]. The v component of the solution

can be calculated separately:6

v = s+ s2 + 2s3 + 5s4 + 14s5 + · · ·

Also, one can see that x = m + np, u = rv∗, w = r(m + np)(v∗)2. For example

the coefficient of rnps3 in the provenance w of Q(a, d) is 5, which means this tuple

can be obtained in 5 distinct ways usingR(a, c), R(c, b) andR(b, d) once andR(d, d)

three times.

Algebra provenance, N[X], is embedded in datalog provenance, N∞[X], by re-

garding polynomials as formal power series in which all but finitely many coeffi-

cients are 0. Here is the corresponding sanity check:

Proposition 4.5.1. Let q be an RA+ query (of one argument, to simplify notation) in

which the selection predicates only test for attribute equality, let q′ be the (non-recursive)

datalog query obtained by standard translation from q and let R be a N[X]-relation. Mod-

ulo the embedding of N[X] in N∞[X] we have q′(R) = q(R)

6[29] shows that the coefficient of sn+1 is 2n!
n!(n+1)! .
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Formal power series can be evaluated in commutative ω-continuous semirings:

Proposition 4.5.2. Let K be a commutative ω-continuous semiring and X a set of vari-

ables. For any valuation v : X → K there exists a unique ω-continuous homomorphism

of semirings

Evalv : N∞[[X]]→ K

such that for the one-variable monomials we have Evalv(x) = v(x).

Therefore, just like polynomials, formal power series define series functions

on any commutative ω-continuous semiring. Finally, we have the analog of Theo-

rem 4.3.1.

Theorem 4.5.1. The semantics of datalog onK-relations for any commutative ω-continuous

semiring K factors through the semantics of the same in provenance semirings (of formal

power series).

Although the coefficients in the provenance series may be∞, we can character-

ize exactly when this happens7:

Theorem 4.5.2. A datalog query q has provenance series in N[[X]] for some tuple t if and

only if the instantiation of q has no cycle of unit rules (rules whose body consists of a

single idb) s.t. t is part of the cycle (i.e., appears on the head of one of those unit rules and

the body of another) and t is in the result of q.

We can extend these results to include mapping functions as follows: in the sys-

tem of equations above, instead of polynomials inK[X] the bodies of the equations

are expressions over (K,M)[X], corresponding to the immediate consequence op-

erator “annotated” by the mapping used. Thus, if we call m1 and m2 the two
7In this theorem, the instantiation of a datalog query is the set of rules obtained by considering

all satisfying valuations for the variables in rules of q.
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rules of the datalog program in Figure 4.7(a), the corresponding system of equa-

tions with the mapping functions is shown in Figure 4.7(g). To ensure that the least

fixed point of these equations exists, we needM-semiring to also be ω-continuous:

Definition 4.5.2. A M-semiring (K,+, ·, 0, 1,M) is ω-continuous if (K,+, ·, 0, 1) is

ω-continuous and

∀m ∈M m(a1 + a2 + . . . ) = m(a1) +m(a2) + . . .

In the following, abusing notation, we useM to refer both to the name of the

set of mappings and the corresponding set of unary functions. The mappings

provenance M-semiring is the (M-)semiring of formal power series with map-

ping functionsM. We can show that factorization also works forM-semirings, as

long as they are ω-continuous:

Theorem 4.5.3. The semantics of applying a setM of mappings on K-relations for any

commutative ω-continuousM′-semiring K factors through the semantics of the same in

the mappings provenanceM-semiring ofM.

4.6 Provenance Graphs

In Section 4.4.1 we explained that, even if the provenances of some tuples are infi-

nite, we can represent all provenance information through a finite system of equa-

tions. We can alternatively look at these equations as forming a graph. We will

find graphs useful for encoding the provenance of data — as it is propagated dur-

ing update exchange in a CDSS — in relations (Chapter 5) and, ultimately, as the

data model for which we define our provenance query language (Chapter 7).

Definition 4.6.1 (Provenance Graph). The graph has two types of nodes: tuple nodes,

one for each tuple in the system, and mapping nodes. Each mapping node corresponds to
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Figure 4.8: Provenance graph of update exchange in Example 5

an instantiation of a mapping, and is labeled by the name of the mapping. This instantia-

tion defines some tuples that match the LHS of the mapping and we draw edges from the

corresponding tuple nodes to the mapping node (this encodes conjunction among tuples).

It also defines some tuples that match the RHS of the mapping and we draw edges from the

mapping node to the tuple nodes that correspond to them. Multiple incoming edges to a tu-

ple node encode the fact that a tuple may be derived multiple ways. Finally, some nodes in

the graph have no incoming edges. Such base tuples are the result of direct user insertions.

We call these leaf nodes and in the provenance semiring they are annotated with globally

unique provenance tokens, which correspond to the indeterminates of those semirings.

In the graph representation we represent these tokens as extra labels on the tuple nodes.

One can generate provenance expressions, that correspond to solutions of the

system of equations, from the provenance graph, by traversing it recursively back-

wards along the arcs as in Example 8. We write Pv(R(t)) for the provenance ex-

pression of the tuple t in relation R. When the relation name is unimportant, we

simply write Pv(t). We sometimes omit · and use concatenation.

Example 8. Consider the update exchange from Example 5. The provenance graph for all

tuples in the canonical universal solution is shown in Figure 4.8, with tuple nodes shown

as rectangles below, and mapping nodes shown as ellipses. Source tuples are annotated

by unique provenance tokens p1, p2, .... From this graph we can analyze the provenance
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of, say, B(3, 2) by tracing back paths to source data nodes — in this case through (m4)

to p1 and p2 and through (m1) to p3. In particular we can compute that Pv(U(2, 5)) =

p2 + m2(p3) and Pv(B(3, 2)) = m1(p3) + m4(Pv(B(3, 5))Pv(U(2, 5))) = m1(p3) +

m4(p1p2) +m4(p1m2(p3))

Observe that, even for cases in which all provenance annotations are finite,

the provenance graph provides a compact way of representing these annotations:

even if a derived tuple is part of the provenance of multiple other tuples, it is

represented by a single node in the graph. For example, B(3, 2) is involved in de-

riving both U(2, c2) and B(3, 3), so the provenance of both those tuples contains

Pv(B(3, 2)) or any of its subexpressions (e.g. m1(p3)). Such common provenance

subexpressions are ubiquitous as updates are propagated through paths of map-

pings in CDSS update exchange, and as a result the overhead of storing them re-

dundantly for each tuple can be prohibitive. Moreover, representing derived tu-

ples in the provenance graph has an additional benefit: by traversing the graph,

we can analyze the provenance of a derived tuple not only with respect to base

tuples, but also with respect to other derived tuples and mappings between them.

Indeed, many users may be interested in identifying such relationships between

tuples or in focusing on parts of the graph that are of interest to them, while hid-

ing the complexity of the complete provenance graph. For instance, some peer

P1 may trust the curation methods of another peer P2 sufficiently that they want

to consider all data that they receive from them as P2’s local data, regardless of

where they were inserted locally at P2 or imported from other peers. In this case,

they would like to project out the parts of derivations leading to some tuples being

imported in P2 and only focus on the remaining parts between P2 and themselves.

However, even for fairly small CDSS settings, with a few peers and mappings, the

provenance graph can be very large and complex, tasks involving exploration of

this graph can be very arduous. For this reason, in Chapter 7 we define these tasks

more precisely and propose a query language that operates on provenance graphs
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and allows users to navigate and extract information from such graphs.

4.7 Computing Provenance Series

We show here that several natural questions that one can ask about the com-

putability of formal power series in N∞[[X]] can in fact be decided and all finitely

representable information can in fact be computed. To simplify presentation, in

this section we consider semirings without mapping functions, but the results ex-

tend to the case ofM-semirings.

Given a datalog program q and a relational instance I , consider the formal

power series provenance of some tuple t in the output q(I), i.e., q(I)(t) where the

datalog semantics is taken in N∞[[X]] (X is the set of ids of the tuples in I). We

show that it is decidable whether q(I)(t) is in fact a polynomial in N [X]. The algo-

rithm All-Trees, shown in Figure 4.9 (inspired by [87]) decides this for all output

tuples and computes the polynomial when the answer is affirmative.

For an output tuple t for which the answer given by algorithm All-Trees is nega-

tive, we can use Theorem 4.5.2 to decide whether q(I)(t) is in N[[X]]. The remaining

question is whether q(I)(t) is in N∞[X], which we can decide by checking if there

is any cycle in the instantiation of the query involving at least one non-unit rule,

s.t. t is part of that cycle; otherwise, q(I)(t) is in N∞[[X]]. In algorithm All-Trees

shown in Figure 4.9:

• T is the set of derivation trees computed thus far; T∞ is the set of tuples with

infinitely many derivations; fringe(τ) is the bag of labels of leaves of the tree

τ .

• T ν
q (T, T∞) = {τ | τ 6∈ T ∧ τ ∈ Tq(T) ∧ root(τ) 6∈ T∞}, where Tq(T) is the set

of trees produced by applying a rule on tuples in {root(τ) | τ ∈ T} ∪ T∞.
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Algorithm All-Trees
Input: query q, instance I
Output: the power series P (t) for every tuple t ∈ q(I)
1. Initialize T← {t() : t ∈ I}
2. Initialize T∞ ← ∅
3. repeat
4. Tν ← T ν

q (T, T∞)
5. for every tree τ ∈ Tν

6. do if any child of root(τ) is in T∞ or any proper descendant of root(τ)
to a node associated with the same tuple

7. then T∞ ← T∞ ∪ {root(τ)}
8. else T← T ∪ {τ}
9. until nothing added to either T or T∞ in last iteration
10. for every t ∈ q(I)
11. do if t ∈ T∞
12. then P (t)←∞
13. else P (t)←

∑
τ∈T:

root(τ)=t

( ∏
l∈fringe(τ)

l
)

14. return P

Figure 4.9: Algorithm All-Trees

Algorithm All-Trees terminates because at every iteration only trees which are

not there already are produced and moreover, for every tuple that has infinitely

many derivations, as soon as it is identified and inserted in T∞, no more trees for

it are produced. Note also that by Theorem 4.5.1 this algorithm will also give us, in

particular, an algorithm for evaluating datalog queries on bag semantics, just like

in [87].

If the answer of algorithm All-Trees for an output tuple t is negative, we can

also use algorithm Monomial-Coefficient, shown in Figure 4.10, to compute the co-

efficient of a particular monomial µ in q(I)(t), even when that coefficient is∞. In

this algorithm:

• M is the set of tuples whose ids appear in µ, a monomial represented as a

bag of labels that appear in it; P∞ is a set of pairs (t, µ), representing tuples t
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Algorithm Monomial-Coefficient
Input: query q, monomial µ, tuple t
Output: C, the coefficient of µ in the power series P (t)
1. Initialize T← {t() : t ∈M}
2. Initialize P∞ ← ∅
3. repeat
4. Ti ← T i

q(T, T∞)

5. for every tree τ ∈ Ti

6. do if for any child tree τ ′ of root(τ), (root(τ ′), fringe(τ ′)) ∈ P∞ or there
is a chain from root(τ) to a node associated with the same tuple

7. then P∞ ← P∞ ∪ {(root(τ), fringe(τ))}
8. else T← T ∪ {τ}
9. until nothing added to either T or T∞ in last iteration
10. if (t, µ) ∈ P∞
11. then C ←∞
12. else for every τ ∈ T s.t. root(τ) = t and fringe(τ) = µ
13. do C ← C + 1
14. return C

Figure 4.10: Algorithm Monomial-Coefficient

for which infinite derivation trees whose leaves are equal to the monomial µ

have been found.

• T i
q(T, P∞, µ) = {τ | τ 6∈ T ∧ τ ∈ Tq(T) ∧ fringe(τ) ≤ µ ∧ (root(τ),m) 6∈ P∞},

where Tq(T) is the set of trees that can be produced by applying a rule on

tuples in {root(τ) | τ ∈ T} ∪ {t | (t,m) ∈ P∞} it, where the multiplicity of

each is the corresponding exponent in the monomial.

If n is the length of the longest acyclic path of unit rules, then every n + 1 iter-

ations the algorithm Monomial-Coefficient either has produced a tree τ with larger

fringe(τ) than the ones that were combined to produce it, or it has identified a pair

(t′, µ′) whose derivation trees involve a cycle of unit rules. The algorithm then is

guaranteed to terminate, because for all such tuples t′ with infinitely many deriva-

tions, no trees for t′ with fringe(τ) = µ′ are used in any subsequent derivations,
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and moreover, the set of trees τ s.t. τ does not involve nodes marked as infinite

and fringe(τ) ≤ µ is finite.

4.8 Using Provenance to Compute Annotations

As we discussed earlier, our provenance model generalizes query answering on

other forms of annotated relations and can be used to compute different kinds

of annotations that can be expressed as semirings. Theorems 4.5.1, 4.5.3 sug-

gest using algorithm All-Trees for computing annotations for answers of datalog

queries. We already noted in Section 4.7 that this will work fine for N∞. How

about PosBool(B), P(Ω), and, as a sanity check, B? When algorithm All-Trees re-

turns∞, the evaluation on these semirings will return a normal value! We show

that we can compute this value in the more general case when the semiring K is

a finite distributive lattice. We can do so with some simple modifications to algo-

rithm All-Trees:

• Redefine T ν
q to take only T as a parameter, and return all τ in Tq(T) such that

for all τ ′ in T, if root(τ) = root(τ ′), then fringe(τ) < fringe(τ ′).

Thus a derivation tree for a tuple is considered “new” only when its associated

monomial is smaller than any yet seen for that tuple. This modified algorithm

always returns a polynomial for each tuple. Evaluating these polynomials in K

gives the K-relation output.

The sanity check that for K = B the output tuples get the tag true is easy to

check. For K = PosBool(B), after also checking that for any valuation v : B → B

we have v(q(R)) = q(v(R)), we get a datalog on boolean c-tables semantics. This

is new for incomplete databases.

In probabilistic databases we restrict ourselves, as usual, to the case when the

domain D is finite, hence the sample space Ω of all possible instances is finite.
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K = P(Ω) is a finite distributive lattice so we get an effective semantics for datalog

on event tables. After checking that the resulting event tagging a tuple t does in

fact say that t is in q(R) for the random instance R, we conclude that our algorithm

also generalizes that of [53].

Alternatively, for semirings that are finite distributive lattices we can use the

provenance graph to compute different kinds of annotations, as suggested by The-

orem 4.5.3. As we pointed out in Table 4.2, many interesting kinds of annotations

can be represented by such semirings. Moreover, we can show that evaluation in

the tropical semiring is also always computable and returns a normal value. The

crux of the proof is that, even if there are infinitely many derivation trees for a

tuple, the one with the min value is always among a (finite) set of minimal trees,

since any tree whose set of leaves subsume the set of leaves of another tree also

has value that is greater or equal to it.

In the next section we show an example of evaluation through provenance for

a semiring for which this is always possible, namely one that represents boolean

trust in a CDSS. In Chapter 7 we show that semiring evaluation can in fact be

considered a core component of provenance querying, and we define clauses for

specifying the semiring in which a provenance graph should be evaluated, as well

as assignments of values for leaf nodes and mapping functions.

4.8.1 Semiring Evaluation Example: Assigning Trust to

Provenance

In Section 3.1.2, we gave examples of trust conditions over provenance and data.

Now that we have discussed our model for provenance as well as semiring eval-

uation through provenance, we can show how to determine trust assignments for

tuples.

Consider a domain {T,D}whose values represent trust and distrust. Consider
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also a second domain {Tm,Dm} whose values represent trust mapping, distrust

mapping. A participant will assign to each provenance token one of the values in

{T,D} and to each of the mappings one of the values in {Tm,Dm}. The intuition

is that tuples produced by a mapping labeled Dm cannot be trusted, while Tm

does not affect the trustworthiness of provenance tokens passing through it.

With such a trust assignment any finite provenance expression can be evaluated

by interpreting multiplication akin to conjunction over booleans, i.e., T ·T = T, T ·

D = D etc., and addition akin to disjunction over booleans, i.e., T+D = T, D+D =

D etc. We also interpret the Dm mappings as the constantly D function and the

Tm mappings as the identity on {T,D}.

In general the solutions of provenance equations may be infinite. Nonetheless

the algorithm of Figure 4.11 evaluates them correctly with respect to trust assign-

ments. We write Pv(R(t)) for the provenance expression of the tuple t in relation

R. When the relation name is unimportant, we simply write Pv(t). We describe

how the algorithm works in terms of the provenance graph.

Trust assignments as in the previous algorithm are not the only ones possible.

An equally useful assignment, involving the tropical semiring, associates “risk of

accepting”, to each provenance token, a positive real. Provenance multiplication

is interpreted as risk addition and provenance addition as the min operation. The

risk of tuple acceptance can then be calculated using a variant of Dijkstra’s shortest

paths algorithm, even when the provenance graph contains cycles. Peers can then

compare this risk against a threshold in order to decide whether to accept the tuple.

The following example illustrates trust computations for the boolean and ranked

trust models.

Example 9. In Example 8 we calculated the provenances of some exchanged tuples, and

found that the provenance of B(3, 2) is:

Pv(B(3, 2)) = m1(p3) +m4(p1p2) +m4(p1m2(p3))
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Algorithm ProvenanceTrustEval(trust assignment α)
1. for every mapping node labeled m
2. do if α(m) = Dm replace the node label with D
3. and erase incoming edges
4. if α(m) = Tm erase the mapping node and
5. connect incoming edges
6. directly to outgoing edges
7. for every tuple node labeled with provenance token a
8. do replace node label with α(a)
9. Initialize OUTPUT← ∅
10. repeat
11. for every tuple node N
12. do if N has an incoming edge from a T label
13. then replace N ’s label with T
14. erase incoming edges
15. and add Pv(N) = T to OUTPUT
16. until no more changes are made to OUTPUT
17. for every remaining tuple node N
18. do add Pv(N) = D to OUTPUT
19. return OUTPUT

Figure 4.11: Evaluating trust based on provenance

Suppose now that peer PBioSQL trusts data contributed locally by PuBio and itself, and

hence assigns T to the provenance tokens p2 and p1, but does not trust PGUS’s tuple (3, 5, 2)

and so assigns D to p3. Assuming that all mappings have the trivial trust conditions Tm,

the provenance of B(3, 2) evaluates as follows:

Tm(D) + Tm(T · T) + Tm(T · Tm(D)) = D + T + D = T

therefore PBioSQL should indeed have accepted (3, 2).

For the ranked trust model, assume that peer PBioSQL trusts completely all data con-

tributed locally at PBioSQL and hence assigns a cost of 0 to the provenance token p1. More-

over, it trusts data from PuBio more than those from PGUS , but not as much as local data,

and thus assigns e.g., the costs of 1 to p2 and 5 to p3. Suppose also that PBioSQL does

not trust equally PGUS’s tuples and thus assigns a cost of e.g., 5 to p3. Finally, assume
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mappings m1 and m2 are completely trusted, while m4 is considered somewhat untrusted,

and thus multiplies the cost of its input by 2. We write fm4 to indicate this function below,

and fid for the identity function used for the other mappings that are completely trusted.

Then, the cost of B(3, 2) evaluates as follows:

min(fid(5), fm4(0 + 1), fm4(0 + fid(5))) = min(5, 2 · 1, 2 · 5) = min(5, 2, 10) = 2

Note that, in the expression above, · is regular integer multiplication — introduced by the

definition of the mapping function for m4 — and not the multiplication operation of the

semiring (which is + for the case of the tropical semiring).

4.8.2 Update Exchange with Trust Conditions

We can now fully specify the mappings necessary to perform update exchange

— which combines update translation with trust. For each relation R, the trust

conditions are applied during update exchange to the input instanceRi of the peer,

thus selecting the trusted tuples from among all the tuples derived from other

peers. The result is an internal relation we can denoteRt. So instead of the internal

mappings (iR) described in Section 3.2 we actually have inM′:

(iR) Rt(x̄) = trusted(Ri(x̄))

(tR) Rt(x̄) ∧Rα(x̄)→ Ro(x̄)

and the definition of consistent state remains the same.

4.9 Query Containment

Before proceeding to explain how we can perform update exchange while record-

ing provenance that conforms to the model of this chapter, we present some re-

sults about query containment w.r.t. the general semantics in K-relations. Query

64



4.9. Query Containment

containment checks can be used to determine query equivalence, and thus enable

rewriting queries to equivalent more efficient ones, during query optimization.

Definition 4.9.1. Let K be a naturally ordered commutative semiring and let q1, q2 be

two queries defined on K-relations. We define containment with respect to K-relations

semantics by

q1 vK q2
def⇔ ∀R ∀t q1(R)(t) ≤ q2(R)(t)

WhenK is B and N we get the usual notions of query containment with respect

to set and bag semantics.

Some simple facts follow immediately. For example if h : K → K ′ is a semiring

homomorphism such that h(x) ≤ h(y) ⇒ x ≤ y and q1, q2 are RA+ queries it

follows from Prop. 4.2.3 that q1 vK′ q2 ⇒ q1 vK q2. If instead h is a surjective

homomorphism then q1 vK q2 ⇒ q1 vK′ q2. Similarly when K,K ′ and h are also

ω-continuous and q1, q2 are datalog queries (via Prop. 4.4.4).

The following result allows us to use the decidability of containment of unions

of conjunctive queries [25, 92].

Theorem 4.9.1. If K is a distributive lattice then for any q1, q2 unions of conjunctive

queries we have

q1 vK q2 iff q1 vB q2

Proof. (sketch) One direction follows because B can be homomorphically embed-

ded in K. For the other direction we use the existence of query body homomor-

phisms to establish mappings between monomials of provenance polynomials.

Then we apply the factorization theorem (4.3.1) and the idempotence and absorp-

tion laws of K.

Therefore, if K is a distributive lattice for (unions of) conjunctive queries con-

tainment with respect to K-relation semantics is decidable by the same procedure
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as for standard set semantics. PosBool(B), P(Ω) and the fuzzy semiring are all dis-

tributive lattices. A theorem similar to the one above is shown in [67] but the class

of algebraic structures used there does not include PosBool(B) or P(Ω) (although

it does include the fuzzy semiring).

In this chapter we presented a novel model of provenance that generalizes

query answering over different models of annotated relations and past models

of provenance. In the next chapter we show how such provenance information

can be stored in a relational database and maintained during update exchange.

Moreover, we explain how the existence of such provenance information enables

algorithms for internal CDSS operations, for different kinds of updates and map-

pings, that lie at the core of update exchange.
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Chapter 5

Performing Update Exchange

We now discuss how to actually compute peer data instances in accordance with

the model of Chapter 3, while maintaining a provenance graph as described in

Chapter 4. We begin with some preliminaries, describing how we express the

computations as queries and how we model provenance using relations. Then

we describe how incremental update exchange can be attained.

In order to meet participants’ needs for anonymity (they want all data and

metadata to be local in order to prevent others from snooping on their queries),

our model performs all update exchange computation locally, in auxiliary storage

alongside the original DBMS (see Chapter 6). It imports any updates made di-

rectly by others and incrementally recomputes its own copy of all peers’ relation

instances and provenance — also filtering the data with its own trust conditions

as it does so. Between update exchange operations, it maintains copies of all re-

lations, enabling future operations to be incremental. In ongoing work, we are

considering more relaxed models in which portions of the computation may be

distributed.

67



5.1. Computing Instances with Provenance

5.1 Computing Instances with Provenance

In the literature [45, 80, 65], chase-based techniques have been used for computing

candidate universal solutions. However, these are primarily of theoretical interest

and cannot be directly executed on a conventional query processor. In constructing

the ORCHESTRA system, we implement update exchange using relational query

processing techniques, in order to take advantage of robust existing DBMS en-

gines, as well as to ultimately leverage multi-query optimization and distributed

query execution. We encode the provenance in relations alongside the data, mak-

ing the computation of the data instances and their provenance a seamless oper-

ation. The Clio system [89] used similar techniques to implement data exchange

but did not consider updates or provenance.

5.1.1 Datalog for Computing Peer Instances

Work in data integration has implemented certain types of chase-like reasoning

with relational query processors for some time [44, 89]: datalog queries are used to

compute the certain answers [23] to queries posed over integrated schemas. Our

goal is to do something similar. However, when computing canonical universal

solutions for the local peer instances, we face a challenge because the instance

may contain incomplete information, e.g., because not all attributes may be pro-

vided by the source. In some cases, it may be known that two (or more) values

are actually the same, despite being of unknown value1. Such cases are gener-

ally represented by using existential variables in the target of a mapping tgd (e.g.,

(m3) in Example 5). This requires placeholder values in the canonical universal solu-

tion. Chase-style procedures [45, 80, 65] use labeled nulls to encode such values. In

our case, since we wish to use datalog-like queries, we rely on Skolem functions to

specify the placeholders, similarly to [89]. Each such function provides a unique
1This enables joins on tuples on unknown values that may result in additional answers.
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placeholder value for each combination of inputs; hence two placeholder values

will be the same if and only if they were generated with the same Skolem function

with the same arguments.

Normal datalog does not have the ability to compute Skolem functions; hence,

rather than converting our mapping tgds into standard datalog, we instead use

a version of datalog extended with Skolem functions. (Chapter 6 discusses how

these queries can in turn be executed on an SQL DBMS.)

Notation. Throughout this section, we will use the syntax of datalog to represent

queries. Datalog rules greatly resemble tgds, except that the output of a datalog

rule (the “head”) is a single relation and the head occurs to the left of the body. The

process of transforming tgds into datalogsk rules is the same as that of the inverse

rules of [44]:

φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄) becomes ψ(x̄, f̄(x̄)) :- φ(x̄, ȳ)

We convert the RHS of the tgd into the head of a datalog rule and the LHS to

the body. Each existential variable in the RHS is replaced by a Skolem function

over the variables in common between LHS and RHS: z̄ is replaced by f̄(x̄).2

Our scheme for parameterizing Skolem functions has the benefit of producing

universal solutions (as opposed, e.g., to using a subset of the common variables)

while guaranteeing termination for weakly acyclic mappings (which is not the case

with using all variables in the LHS, as in [65]). If ψ contains multiple atoms in its

RHS, we will get multiple datalog rules, with each such atom in the head. More-

over, it is essential to use a separate Skolem function for each existentially quanti-

fied variable in each tgd.

Example 10. Recall schema mapping (m3) in Example 5. Its corresponding internal
2Although the term has been occasionally abused by computer scientists, our use of Skolemiza-

tion follows the standard definition from mathematical logic.
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schema mapping:

Bo(i, n)→ ∃c U i(n, c) becomes U i(n, f(n)) :- Bo(i, n)

We call the resulting datalog rules mapping rules and we use PM to denote the

datalogsk program consisting of the mapping rules derived from the set of schema

mappingsM.

Proposition 1. If M is a weakly acyclic set of tgds, then PM terminates for every edb

instance I and its result, PM(I), is a universal solution.

Proof. (Sketch) Observe that, whenever the chase is applicable, the rules of PM are

also applicable, and moreover the tuples produced by PM in this case are isomor-

phic to those produced by the chase. On the other hand, there are cases when the

chase is not applicable with some homomorphism, because the homomorphism

can be extended to the conclusion of the tgd (but not necessarily mapping a vari-

able z to fm,z(x̄)), but some rule of PM still is. However, there is still a homomor-

phism from the extra tuples to the chase result, namely mapping the extra tuples

image of the head of the tgds under the extension of the homomorphism. Finally,

since the active domain and the set of names of Skolem functions in PM are finite,

for PM(I) to have an infinite result, there must be tuples containing Skolem terms

of the form f(...f(...)...). However, it is straightforward to verify that such Skolem

terms cannot be produced for weakly acyclic sets of tgds.

This basic methodology produces a program for recomputing CDSS instances,

given a datalog engine with fixpoint capabilities.

5.1.2 Incorporating Provenance

We now show how to encode the provenance graph together with the data in-

stances, using additional relations and datalog rules. This allows for seamless
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recomputation of both data and provenance and allows us to better exploit con-

ventional relational processing.

We observe that in a set-based relational model, there exists a simple means

of generating a unique ID for each base tuple in the system: within any relation,

a tuple is uniquely identified by its values. We exploit this in lieu of generating

provenance IDs: for the provenance of G(3, 5, 2), instead of inventing a new value

p3 we can use G(3, 5, 2) itself.

Then, in order to represent a product in a provenance expression, which ap-

pears as a result of a join in the body of a mapping rule, we can record all the

tuples that appear in an instantiation of the body of the mapping rule. However,

since some of the attributes in those tuples are always equal in all instantiations

of that rule (i.e., the same variable appears in the corresponding columns of the

atoms in the body of the rule), it suffices to just store the value of each unique

variable in a rule instantiation. To achieve this, for each mapping rule

(mi) R(x̄, f̄(x̄)) :- φ(x̄, ȳ)

we introduce a new relation PRi(x̄, ȳ) and we replace (mi) with the mapping rules

(m′i) PRi(x̄, ȳ) :- φ(x̄, ȳ)

(m′′i ) R(x̄, f̄(x̄)) :- PRi(x̄, ȳ)

Note that (m′i) mirrors mi but does not project any attributes. Note also that (m′′i )

derives the actual data instance from the provenance encoding.

Example 11. Since tuples in B (as shown in the graph of Example 8) can be derived

through mappings m1 and m4, we can represent their provenance using two relations P 1
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and P 4, using the mapping rules:

P 1(i, c, n) :- G(i, c, n)

B(i, n) :- P 1(i, c, n)

P 4(i, n, c) :- B(i, c), U(n, c)

B(i, n) :- P 4(i, n, c)

Recall from example 8 that Pv(B(3, 2)) = m1(Pv(G(3, 5, 2)))+m4(Pv(B(3, 5))Pv(U(2, 5))).

The first part of this provenance expression is represented by the tuple P 1(3, 5, 2) and the

second by the tuple P 4(3, 2, 5). (Both can be obtained by assigning i = 3, n = 2, c = 5

in each of the rules above.) In general, after applying mapping rules such as the ones

shown above, for every node labeled by a mapping m in a provenance graph there is a tuple

representing it in the provenance relation P . In the case of the graph of Figure 4.8 from

example 8, the contents of P 1 and P 4 are as follows:

P 1

3 5 2

1 2 3

P 4

3 2 5

3 3 2

As we detail in Chapter 6, we can further optimize this representation in order

to efficiently implement it in an RDBMS.

5.1.3 Derivation Testing

In addition to computing instances and their provenance, we can use datalog rules

to determine how a tuple was derived. This is useful in two contexts: first, to assess

whether a tuple should be trusted, which requires that it be derivable only from

trusted sources and along trusted mappings; and second, to see if it is derivable

even if we remove certain tuples, which is necessary for performing incremental

maintenance of CDSS instances.
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The challenge is to compute the set of base insertions (i.e., the union of their lin-

eages) from which a tuple (or set of tuples) was derived in a goal-directed way. In

essence, this requires reversing or inverting the mappings among the provenance

relations. We do this by first creating a new relation R′ for each R, and populat-

ing each R′ with the tuples whose derivation we wish to check. Then, for each

mapping rule specifying how to derive R from P i:

(m′′i ) R(x̄, f̄(x̄)) :- P i(x̄, ȳ)

we define an inverse rule that uses the existing provenance table to fill in the pos-

sible values for f̄(x̄), namely the ȳ attributes that were projected away during the

mapping. This results in a new relation P ′i with exactly those tuples from which R

can be derived using mapping P i:

P ′i (x̄, ȳ) :- R′(x̄), P i(x̄, ȳ)

If we run the program starting with the tuples whose derivability we want to

check in the corresponding R′ relations, its fixpoint will contain the set of tuples

involved in some derivation of some of those tuples. If we filter the R′ relations to

only include values from local contributions tables, the result would be the union

of all lineages of all tuples whose derivability we wanted to check. In general, we

will perform one final step to identify these base tuples, as well as to ensure we

only include trusted tuples. Finally, we essentially run a goal-directed variation3

of the original datalog program over the filtered R′ instances to identify the tuples

that can indeed be re-derived.

Example 12. Consider a CDSS with the following mappings from Example 5:

(m1) G(i, c, n)→ B(i, n)

(m2) G(i, c, n)→ U(n, c)

(m3) B(i, n)→ ∃c U(n, c)
3to check only for tuples of interest, instead of producing all possible tuples
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Figure 5.1: Provenance graph for derivability testing example

and the provenance graph shown in Figure 5.1. The corresponding mapping rules are:

(m′1) P 1(i, c, n) :- G(i, c, n)

(m′′1) B(i, n) :- P 1(i, c, n)

(m′2) P 2(i, c, n) :- G(i, c, n)

(m′′2) U(n, c) :- P 2(i, c, n)

(m′3) P 3(i, n) :- B(i, n)

(m′′3) U(n, f(n)) :- P 3(i, n)

From these we compute the following inverse rules:

(r1) P ′1(i, c, n) :- B′(i, n), P 1(i, c, n)

(r2) P ′2(i, c, n) :- U ′(n, c), P 2(i, c, n)

(r3) P ′3(i, n) :- U ′(n, c), P 3(i, n)

(r4) G′(i, c, n) :- P ′1(i, c, n)

(r5) G′(i, c, n) :- P ′2(i, c, n)

(r6) B′(i, n) :- P ′3(i, c, n)

Since B is an idb relation, we replace the atom in the head of (r6) using rules with B in the

target, namely (m′′1), to get:

(r1
6) P ′1(i, c, n) :- P ′3(i, n), P 1(i, c, n)
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Rules (r1)-(r5), (r1
6) form the derivation testing program. In particular, if we set U ′ =

{(2, c2), (3, 2)} and run this program, its fixpoint will also contain: P ′2(1, 2, 3), P ′3(3, 2),

B′(3, 2), P ′1(3, 5, 2), G′(3, 5, 2), G′(1, 2, 3). Of these, only G′(3, 5, 2) and G′(1, 2, 3) are

base tuples. We use those to check which of the tuples in U ′ are still derivable. For example,

if G′(1, 2, 3) has been deleted or is untrusted, we can run a goal-directed variation of the

original program on the only remaining base tuple G′(3, 5, 2) to infer that U ′(2, c2) is still

derivable but U ′(3, 2) is not.

5.2 Incremental Update Exchange

One of the major motivating factors in our choice of provenance formalisms has

been the ability to incrementally maintain the provenance associated with each tu-

ple, and also the related data instances. We now discuss how this can be achieved

using the relational encoding of provenance of Section 5.1.2.

Following [61] we convert each mapping rule (after the relational encoding of

provenance) into a series of delta rules. For the insertion delta rules we use new

relation names of the form R+, Pi
+, etc. while for the deletion delta rules we use

new relation names of the form R−, Pi
−, etc.

For the case of incremental insertion in the absence of peer-specific trust con-

ditions, the algorithm is simple, and analogous to the counting and DRed incre-

mental view maintenance algorithms of [61]: we can directly evaluate the insertion

delta rules until reaching a fixpoint and then addR+ toR, Pi
+ to P i, etc. Trust com-

bines naturally with the incremental insertion algorithm: the starting point for the

algorithm is already-trusted data (from the prior instance), plus new “base” inser-

tions which can be directly tested for trust (since their provenance is simply their

source). Then, as we derive tuples via mapping rules from trusted tuples, we sim-

ply apply the associated trust conditions to ensure that we only derive new trusted

tuples.
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Algorithm PropagateDelete
1. for every PRi, let R0 ← R
2. Initialize c← 0
3. repeat
4. Compute all Pi

− based on their delta rules
5. (∗ Propagate effects of deletions ∗)
6. for each idb R
7. do update each associated P i, by applying Pi

− to it
8. Define new relation Rc+1 to be the union of all P i, projected to the

x̄ attributes.
9. (∗ Check tuples whose provenance was affected ∗)
10. for each idb R
11. do Let R′ be an empty temporary relation with R’s schema
12. for each tuple Rc(ā) not in Rc+1(ā)
13. do if there exists, in any provenance relation P i associated with

R, a tuple (ā, ȳi)
14. then add tuple (ā) to R′

15. else add tuple (ā) to R−

16. Test each tuple in R chk for derivability from edbs; add it to R− if it
fails

17. Increment c
18. until no changes are made to any R−

19. return the set of all Pi
− and R−

Figure 5.2: Deletion propagation algorithm

Incremental deletion (also called decremental maintenance) is significantly more

complex. When a tuple is deleted, it is possible to remove any provenance expres-

sions and tuples that are its immediate consequents and are no longer directly

derivable. However, the provenance graph may include cycles: it is possible to

have a “loop” in the provenance graph such that several tuples are mutually deriv-

able from one another, yet none are derivable from edbs, i.e., local contributions

from some peer in the CDSS. Hence, in order to “garbage collect” these no-longer-

derivable tuples, we must test whether they are derivable from trusted base data

in local contributions tables; those tuples that are not must be recursively deleted

following the same procedure.
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Suppose that we are given each list of initial updates R̄− from all of the peers.

Our goal is now to produce a set of Ri update relations for the peer relations and

a corresponding set Pi
− to apply to each provenance relation. Figure 5.2 shows

pseudocode for such an algorithm. First, the algorithm derives the deletions to ap-

ply to the provenance mapping relations; based on these, it computes a new ver-

sion of the peer schema relations and their associated provenance relations (Lines

4–8). Next, it must determine whether a tuple in the instance is no longer deriv-

able (Lines 10-16): such tuples must also be deleted. The algorithm first handles

the case where the tuple is not directly derivable (Line 13), and then it performs

a more extensive test for derivability from edbs (Line 16). The “existence test” is

based on the derivation program described in Section 5.1.3, which determines the

set of edb tuples that were part of the original derivation. Given that set, we must

actually validate that each of our R chk tuples are still derivable from these edbs, by

re-running the original set of schema mappings on the edb tuples.

These two steps may introduce further deletions into the system; hence it is

important to continue looping until no more deletions are derived.

Example 13. Revisiting Example 8 and the provenance graph there, suppose that we wish

to propagate the deletion of the tuple T (3, 2). This leads to the invalidation of mapping

node labeled m4 and then the algorithm checks if the tuple S(1, 2) is still derivable. The

check succeeds because of the inverse path through (m1) to U(1, 2, 3).

We note that a prior approach to incremental view maintenance, the DRed al-

gorithm [61], has a similar “flavor” but takes a more pessimistic approach. (DRed

was formulated for view maintenance without considering provenance, but it can

be adapted to our setting.) Upon the deletion of a set of tuples, DRed will pes-

simistically remove all tuples that can be transitively derived from the initially

deleted tuples. Then it will attempt to re-derive the tuples it had deleted. Intu-

itively, we should be able to be more efficient than DRed on average, because we
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1 2
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1

n3 4 n+2

n1 2

Figure 5.3: Example provenance graph showing relationships between tuples

can exploit the provenance trace to test derivability in a goal-directed way. More-

over, since our algorithm proceeds one step at a time, if it finds that a tuple is still

derivable and does not need to be deleted, it will not need to test for derivability

any other tuples transitively derived from it. Finally, DRed’s re-derivation should

typically be more expensive than our test for derivability, because insertion is more

expensive than querying. In Section 6.4 we validate this hypothesis. However, to

provide an intuition of the differences, we give a brief example.

Example 14. Consider Figure 5.3, where nodes represent tuples and arrows represent the

immediate-consequence relationship. The diagram corresponds to the mappings:

R→ T1, S → T1,

T1 → T2, T2 → T1,

T2 → T3, T3 → T2,

. . .

Tn−1 → Tn, Tn → Tn−1,

and an instance where R and S contain one tuple each.

Now suppose r is deleted. This is a bad case for DRed, because it initially takes n

iterations to erroneously delete all ti-tuples, and subsequently takes another n iterations

to re-derive them. On the other hand, our algorithm would find that t1 is still reachable
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after deleting r and stop immediately, without affecting any other ti-tuples. The behavior

is similar if only s is deleted.

On the other hand, suppose both r and s are deleted. Then this is a good case for DRed

since all ti-tuples in fact need to be deleted, so no re-derivation is required. On the other

hand, our algorithm would require a derivation test before deleting each ti-tuple, although

each of these tests would only take one step to find that the corresponding tuple is not

derivable.

5.3 Extensions for Bidirectional Update Exchange

The CDSS model presented in the previous chapters employs mappings from source

to target peers, similar to those used in data integration and exchange. An update

made to a peer’s instance is applied to the peer’s local database instance. Upon re-

quest, the CDSS propagates this update to all downstream instances using update

exchange. This matches situations where one database is more authoritative than

another: updates from a curated database like SWISS-PROT should propagate to

individual biologists’ databases, but not the converse.

However, in some cases two peers, even with different schemas, want to mirror

data: either peer may update data from itself or its neighbor, and the effects should

propagate to the other peer. We are aware of no existing solution to this problem in

a setting with schema mappings. In this dissertation, we consider the problems of

specifying bidirectional mappings between instances, and propagating updates

along these mappings. We briefly illustrate with an example.

Example 15. Figure 5.4 shows a variant of the example bioinformatics CDSS setting of

Figure 1.1. PuBio and PGUS want to propagate updates to each other via mapping m1, and

so do PuBio and PBioSQL via m2. Note that update propagation composes: an update to

PBioSQL will result in a update of PuBio, which in turn induces an update over PGUS .
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B(id,nam)G(id,can,nam)

uBioGUS BioSQL

m1 m2

P P P

U(nam,can) S(id,can)

Figure 5.4: Collaborative data sharing system with bidirectional mappings among 3
peers: PuBio, PGUS , and PBioSQL.

Our problem generalizes two separately studied topics in the traditional re-

lational database realm: a materialized view may be simultaneously maintainable

(i.e., updates made to the base instance are propagated to the view instance) and

updatable (i.e., updates made to the materialized view are propagated to the base

relations). However, a view is a function between source instance and materi-

alized view instance; whereas a schema mapping represents a containment con-

straint among instances. Moreover, we consider settings with multiple mappings

and peers, some of which can interact with one another or share target relations,

whereas the view update literature typically focuses on a single view, whose def-

inition is a single (typically conjunctive) query. Another important difference is

that in a view definition, one side only contains base tuples, while the other only

consists of data derived from those base tuples. In a CDSS with bidirectional map-

pings between peers, each peer typically contributes its own data as well as im-

ports data from the other peers through mappings. These differences have signifi-

cant consequences, which we consider in this section.

5.3.1 Preliminaries: Bidirectional Data Exchange

Before considering bidirectional update exchange, we first consider an extension

to the traditional data exchange setting to support multiple peers, each with its

own data instance, and bidirectional schema mappings. Our setting looks like:

• Peer schemas P1, . . . , Pn.
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• Instances I1, . . . , In of P1, . . . , Pn, respectively.

• A set of mappingsM among the peer relations of P1, . . . , Pn, specified as logical

expressions of the form:

(m) ∀x̄(∃ȳ φ(x̄ȳ)↔ ∃z̄ ψ(x̄z̄))

where the formula in each side of the mappings is a conjunction of atoms over

one of the schemas (e.g., φ is a conjunction of atoms over P1 and ψ is a conjunction

of atoms over P2).

Every bidirectional mapping m of the form shown above is logically equivalent to

a pair of tgds:

(m→) ∀x̄ȳ φ(x̄ȳ)→ ∃z̄ ψ(x̄z̄)

(m←) ∀x̄z̄ ψ(x̄z̄)→ ∃ȳ φ(x̄ȳ)

Example 16. The mappings for Figure 5.4 are:

(m1) ∀cn (∃i G(i, c, n)↔ U(n, c))

(m2) ∀nc (∃i B(i, n) ∧ S(i, c)↔ U(n, c))

These mappings are equivalent to the following tgds:

(m→1 ) ∀icn G(i, c, n)→ U(n, c)

(m←1 ) ∀nc U(n, c)→ ∃i G(i, c, n)

(m→2 ) ∀inc B(i, n) ∧ S(i, c)→U(n, c)

(m←2 ) ∀nc U(n, c)→∃i B(i, n) ∧ S(i, c)

For readability, as in Chapter 3, in the rest of this Chapter we will omit the

universal quantifiers for variables that appear in the left-hand side (LHS) of map-

pings.
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Bidirectional Data Exchange Semantics

Any set of bidirectional mappings can be converted to a standard data exchange

setting (S, T ,Σst,Σt) as follows: Let P `
1 , . . . , P

`
n be the schemas obtained by replac-

ing each relationR of P1, . . . , Pn, respectively, byR` (the local contribution relations).

In the data exchange setting, let:

• Source schema S = P `
1 ∪ · · · ∪ P `

n,

• Target schema T = P1 ∪ · · · ∪ Pn

• Source instance I = I1 ∪ · · · ∪ In

• Source-target mappings Σst = {R`(x̄R)→ R(x̄R) | R ∈ P1 ∪ · · · ∪ Pn}

• Target mappings Σt =M (i.e., the set of tgds that the bidirectional mappings are

equivalent to)

We define the canonical universal solution for our bidirectional data exchange set-

ting to be the one for this translated data exchange setting.

Example 17. For the mappings in Example 16, assume local contribution relations:

G`

1 a b

2 d e

B`

3 b

3 c

4 h

S`

3 a

5 k

U `

f g

The canonical universal solution (according to [65]) of the corresponding data exchange
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setting is:

G

1 a b

2 d e

x5 g f

x6 a b

x7 a c

x8 d e

B

3 b

3 c

4 h

x1 b

x2 e

x3 c

x4 f

S

3 a

5 k

x1 a

x2 d

x3 a

x4 g

U

b a

e d

c a

f g

Values x1, ..., x8 are labeled nulls: placeholder values for unknown values that are gener-

ated by mappings with existential variables in the right-hand side (RHS) (m←1 ,m←2 here).

Existential variables must be used with care in mappings, since bidirectional

mappings introduce cycles. The canonical universal solution is guaranteed to

exist, and the algorithms in [45, 65] compute it, if the set of target dependencies is

weakly acyclic [45, 42]. For a single bidirectional mapping, we can show [69] that if

there are no self-joins on either side of the mapping, the resulting pair of mappings

is always weakly acyclic, even if there are existential variables on both sides.

Theorem 5.3.1. If a bidirectional mapping M between two peers with disjoint schemas

has no self-joins on either side, then the pair of tgds that is equivalent to M is weakly-

acyclic.

Proof. Let ∀x(∃y φ(xy) ↔ ∃z ψ(xz)) be a bidirectional mapping. As explained

above, it is equivalent to the pair of tgds:

∀xy φ(xy)→ ∃z ψ(xz)

∀xz ψ(xz)→ ∃y ψ(xy)
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Consider the dependency graph for this pair of tgds, according to the definition

in [45]. For the pair of tgds above, this graph has a node for each attribute in each

relation appearing in φ and ψ. Moreover, there is an edge A→ B in this graph if:

• the same variable xi ∈ x appears at the attributes for A and B on opposite

sides of the tgds. We call these common variables. Since bidirectional map-

pings are translated to a pair of tgds as above, for each such pair of attributes

there is in fact a pair of edges, A→ B and B → A.

• an existentially quantified variable (e.g., zj ∈ z in the first of the pair of tgds,

yk ∈ y in the second) appears at attributeB and any of the common variables

xi ∈ x appears at A at the source of the tgd. In this case, the edge is called

“starred”.

According to [45], a set of dependencies is weakly acyclic if this graph doesn’t

contain any cycle going through a starred edge.

In the case of a bidirectional mapping, since peer schemas are disjoint and φ

and ψ are conjunctions of atoms over different peer schemas, the corresponding

graph is bipartite. Moreover, if there are not multiple atoms of the same relation

in each side (i.e., self-joins) in either side of the tgd, each attribute appears once

on each side of the tgd (and only on one side of the bipartite graph). Then, for all

attributes at which an existentially quantified variable appears in either tgd, there

is a starred edge going in it, according to the definition of edges above, but there

are no outgoing edges (starred or not) in the opposite direction, since they are not

among the common variables of the other tgd.4 As a result, there cannot be any

cycle containing a starred edge, and thus the graph is weakly acyclic.

4Note that this would not necessarily be true if we could have atoms of the same relation in the
same side, because then there could exist an attribute in which both a common and an existentially
quantified variable appear (in different atoms in the body of the same tgd), and thus there could
be outgoing edges from this node because of the common variables.
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If there are multiple mappings with the same target, the situation is more com-

plex and we must apply the weak acyclicity test given in [45].

As explained in [57], one way to compute the canonical universal solution is to

translate mappings into a datalog program, whose least fixpoint is the canonical

universal solution. For every atom in the RHS of the mapping, we create a rule

with that atom as its head and the LHS of the mapping as its body. To deal with

mappings with existential variables in the RHS, we again use datalogsk, which

uses Skolem functions to create unique placeholder values for each combination

of relevant values on which the mapping is applied. The mappings above are

translated to the rules:

1 U(n, c) :- G(i, c, n)

2 G(f(n, c), c, n) :- U(n, c)

3 B(g(n, c), n) :- U(n, c)

4 S(g(n, c), c) :- U(n, c)

where f (see Rule 2) is the Skolem function for the existential variable i in mapping

m←1 , and g is the one for variable i in mappingm←2 . Note that the same Skolem term

appears in Rules 3 and 4, since the corresponding mapping atoms share the same

variable i.

5.3.2 Performing Bidirectional Update Exchange

Incrementally

We now consider updates in the form of insertions and deletions. The previous

section identified a means of generating a (recursive) datalog program for com-

puting instances for the peers, given instances of locally introduced data (local

contributions). Now our goal is to take as input updates made by users over the

computed instances, translate these updates into modifications over local contri-

bution relations (i.e., base data) as appropriate, and then achieve the update over
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a recomputed version of the canonical universal solution. In essence, this is a ver-

sion of the view update problem, over the datalog program for generating the

canonical universal solution. However, in contrast to a view setting, here tuples

may be introduced locally by any peer, and deletion of a tuple must remove data

from every peer from which that tuple can be derived.

We first consider insertions and deletions that affect only the local contributions

tables at the same peer, before considering how to propagate deletions to local

contribution relations at other peers. (Insertions will always be made locally, in

accordance with the existing CDSS model.)

Insertions and Deletions at the Same Peer

For insertions, we start with a previous instance of the CDSS, which is a solution

〈I, J〉, and we take a set of insertions ∆+ that we apply directly over the local con-

tribution relations at the peers that originated the updates. Then we compute a

new canonical universal solution 〈I + ∆+, J + Y +〉. We can directly recompute the

instance using the datalog program of the previous section, adding new tuples to

the peer relations until the mappings are satisfied. Even better, since bidirectional

mappings are equivalent to a pair of unidirectional mappings, we can derive an

incremental maintenance program using the delta rules [62] extension that was pre-

sented in [57], and perform the recomputation more efficiently.

If a tuple is deleted from relation R at the peer where it originated, we can sim-

ply remove the tuple from the local contribution relation R`, and then propagate

the effects of the deletion “forward” in incremental fashion, quite similar to the

program described for insertions, but with a caveat. As in decremental view mainte-

nance [62], there are subtleties in determining whether to remove a derived tuple,

since that tuple could be derived in an alternative way. Two general schemes ex-

ist for performing decremental maintenance (when recursion is present, as with

our data exchange program of the previous section). The first is the DRed (Delete
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and Rederive) algorithm of [62], which removes derived tuples, then tries to see

if there is an alternate derivation. A more efficient alternative, presented in [57],

makes use of data provenance [21, 35, 58], encoded as edge relations in a graph de-

scribing which tuples are directly derived from one another, to determine when a

tuple is no longer derivable from local contributions.

Deleting from a Different Peer

When a tuple is deleted from a peer other than its origin, we must propagate the

effects to the local contribution relation(s) of the tuple’s originating peers, in a

manner analogous to view update. More precisely, we want to derive a set of

updates over local contribution relations that perform the update requested on the

target peer:

Definition 5.3.1 (Performs). Let 〈I, J〉 be the canonical universal solution and Y − be a

set of tuples of J (i.e., peer relations) to be deleted. Let ∆− be a set of deletions over I (i.e.,

local contribution relations) and let 〈I −∆−, J ′〉 be the canonical universal solution. We

say that ∆− performs Y − iff J ′ ∩ Y − = ∅.

This generalizes a definition by Dayal and Bernstein [38] to canonical universal

solutions in data exchange. As with view update, there may be multiple ways

to perform a target deletion. For example, if the LHS of the mapping involves a

join, the desired effect may be achieved by deleting tuples from either (or both)

of the relations in the join.5 We now discuss how an administrator may specify

policies for performing the updates. We assume that an administrator may wish

to manage, or even override, default behaviors. In the next section we consider

side effects and how to ensure updates do not produce them. However, we note

that in certain settings with many interacting mappings, the administrator may be

willing to allow side effects.
5We only consider options where deletions are accomplished by removing tuples, as in [38] and

unlike [71].
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Update Policies. We specify update policies as annotations on mappings: if an

atom for relation R on one side of a mapping is annotated with ?, this means that

if a tuple in the opposite side of the mapping is deleted, then any tuples from R,

as well as its corresponding local contribution relation Rl, should be deleted. An

annotated version of m2 from Example 16 is:

(m2) ∃i B(i, n) ∧ ?S(i, c)↔?U(n, c)

If a tuple is deleted from U , we delete any tuples of S from which it can be derived.

Similarly, deletingB and/or S tuples results in a deletion of U tuples, thanks to the

update policy in the opposite direction. In some cases, the composition of update

policies may cause cascading deletions: e.g., deleting from U as above may trigger

further deletions from S. We can show [69] that any update policy of a bidirec-

tional mapping for which there is at least one atom in each side that is annotated

with ?, is guaranteed to perform any given set of updates.

We generate delta rules for deletion propagation only for the marked relations

and their corresponding local contribution relations; the set of such rules for all

mappings form the update policy program. The rules for them2 update policy shown

above would be:
1 S−(i, c) :- U−(n, c), B(i, n), S(i, c)

2 U−(n, c) :- B−(i, n), U(n, c)

3 U−(n, c) :- S−(i, c), U(n, c)

4 S`−(i, c) :- S−(i, c), S`(i, c)

5 U `−(n, c) :- U−(n, c), U `(n, c)

6 B`−(i, n) :- B−(i, n), B`(i, n)

Rules 1-3 (and the delta tables U−, B−, S− involved in them) are used to prop-

agate deletions “backwards” along bidirectional mappings, specifying deletions

over peer relations U,B, S, respectively. Rules 4-6 “collect” in the delta tables

U `−, B`−, S`− the actual local contribution tuples to delete from U `, B`, S`, if such

tuples exist.
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Interactions among Mappings. With bidirectional mappings, a deletion over a

peer relation may propagate to deletions over multiple local contribution relations,

from both sides of the bidirectional mapping. Moreover, in certain cases tuples can

be transitively derived by going back and forth through the two directions of the

bidirectional mapping more than once. For instance, in Example 17, B(x3, c) and

S(x3, a) were produced by applying m←2 to U(c, a), which in turn was derived by

applying m→2 to B(3, c), S(3, a). The situation gets even more complex when there

are multiple bidirectional mappings with relations in common: their update poli-

cies can interact. In general, computing the set of local deletions (∆−) necessary to

perform the deletions in Y − requires us to compute the fixpoint of the update policy

program. The computation of the local updates using this update policy program

also deletes tuples from peer relations derived “on the path” from the user dele-

tions to the base data in local contribution relations. The update policy program

helps us compute two sets of updates, given a set of user updates Y −: ∆− over

local contribution relations and another set Y ′− ⊇ Y − over peer relations. We can

compute these sets using the following algorithm:

Algorithm PropagatePeerDeletions

1. Run the update policy program (Sect. 5.3.2) on Y − to compute R`− for each

local contribution relation R`

2. For each local contribution relation R`, remove tuples in R`− from R`

3. Run the decremental maintenance program (Sect. 5.3.2) on the local deletions

R`− computed in the previous step. For each peer relation P , this computes a

set of deletions P−; the set of all P− is Y ′− above

4. For each peer relation P , remove tuples in P− from P

The following example illustrates a run of this algorithm:
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Example 18. Suppose the mappings are:

(m1)
?R(xy) ∧ S(xzw)↔ T (xyz) ∧ ?V (wx)

(m2)
?T (xyz)↔ ?U(xyz)

Then, given the local insertions indicated by + below, the result of update exchange is:

R

+ 1 1

+ 3 2

S

+ 1 1 4

+ 1 2 4

3 3 5

T

1 1 1

1 1 2

3 2 3

V

4 1

+ 5 3

U

1 1 1

1 1 2

+ 3 2 3

Suppose now that the user deletes T (1, 1, 1) and T (3, 2, 3). In Step 1 of the algorithm, ac-

cording to the right-to-left update policy ofm1,R(1, 1) andR(3, 2) should be deleted, while

according to the left-to-right update policy ofm2 U(1, 1, 1) andU(3, 2, 3) should be deleted.

Moreover, according to the left-to-right update policy ofm1 onR(1, 1) andR(3, 2), V (4, 1)

and V (5, 3) should also be deleted. After these deletions, no more tuples need to be deleted,

i.e., the deletion program has reached a fixpoint. Among those deletions, in Step 2 we “ap-

ply” the ones corresponding to local insertions, namelyR(1, 1), R(3, 2), V (5, 3), U(3, 2, 3)

and propagate their effects forward, by running the maintenance program (Steps 3-4). As

a result, we get the following peer relation instances.

R S

+ 1 1 4

+ 1 2 4

T V U

Note that forward propagation of the deletions identified by the update policy resulted in

the unintentional deletion of some additional tuples (namely S(3, 3, 5), T (1, 1, 2), U(1, 1, 2)).

These deletions are called side effects, and we present an algorithm that avoids them in

the next section.
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5.3.3 Avoiding Side Effects at Run Time

The term side effect was invented in the view update literature to refer to a propaga-

tion of an update to a source, which in turn causes other, undesired effects when

the contents of a view are recomputed (e.g., because multiple view tuples were

derived from the same source tuple). In other words, we propagate an update

backwards via a policy, and then its forward effects (via maintenance or recompu-

tation) change tuples that were not part of the original modification. (We do not

consider cascading deletions caused by multiple update policies to be side effects.)

Definition 5.3.2 (Side effects). Let 〈I, J〉 be the canonical universal solution, where I

is an instance of local contribution relations and J is an instance of peer relations. Let Y −

be a set of updates over J , and ∆−, Y ′− be the output of the update policy program on Y −.

Let 〈I − ∆−, J ′〉 be the canonical universal solution, then the translation that produced

∆− is side-effect-free iff J ′ = J − Y ′−, while it has side effects iff J ′ ⊂ J − Y ′−.

An administrator may wish to propagate updates only if they avoid side effects

on a given instance. Previous work typically considers static checking, based on

functional dependencies and other constraints, on whether a view can be updated

without introducing side effects. We believe such checking is inappropriate for

large-scale data sharing: in databases produced by non-expert users, constraints

are often under-specified, making static checking overly pessimistic and checking

statically may prevent any update to a view, even when some tuples may be up-

datable without causing side effects. Thus we allow the administrator to request

detection and elimination of side effects at update-time, based on the actual con-

tents of the database instances.

The following algorithm identifies which of the local deletions returned by the

update policy cause side effects, and only applies to local contribution relations

those that do not, before computing the new canonical solution.

91



5.3. Extensions for Bidirectional Update Exchange

Algorithm PropagatePeerDeletionsWithoutSideEffects

1. Run the update policy program on Y − to compute R`− for each local contri-

bution relation R` and P− for each peer relation P (but do not modify R,P )

2. Run the decremental maintenance program on the local deletions R`−, to get

sets of peer deletions P d for every peer relation P (do not apply updates to

the peer relations)

3. For each peer relation P , set P se := P d − P− and P− := ∅. These are the side

effects on P

4. For each tuple t ∈ P se, compute its lineage, i.e., the set of all tuples in local

contribution relations involved in some derivation of t.6 For each local contri-

bution relation R`, collect all such sources of side effects in a relation R`
inv

5. For each local contribution relation R`, set R`− := R`− − R`
inv. These are the

side effect-free source updates

6. For each local contribution relation R`, remove tuples in R`− from R`

7. Run the decremental maintenance program on the local deletions R`− com-

puted in the previous step. For each peer relation P , this computes deletions

P−

8. For each peer relation P , remove tuples in P− from P

The algorithm applies deletions of local tuples identified by the update policy

program, when these do not cause side effects (tested in Line 3); it can additionally

be relaxed to consider cases where some peers tolerate side effects and others do

not. Importantly, each of the steps of the algorithm above (as well as the one in

the previous section) can be expressed as a datalog-like program, which can be

translated to SQL queries that can be evaluated over an RDBMS.

The following example illustrates an application of this algorithm.

6 An algorithm for this was sketched in Chapter 5, as part of decremental maintenance. The
main idea is to traverse mappings backwards, starting from each side-effecting tuple. In Chapter 7
we will see that this can also be expressed as a provenance query.
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Example 19. Consider again the mappings and instances in Example 18, and suppose we

want to avoid side effects on T , but don’t mind side effects on other peer relations. As in

Example 18, suppose also that the user wants to delete T (1, 1, 1) and T (3, 2, 3). In Step 1,

according to the right-to-left update policy of m1, R(1, 1) and R(3, 2) need to be deleted,

while according to the left-to-right update policy of m2 U(1, 1, 1) and U(3, 2, 3) should be

deleted. Moreover, according to the left-to-right update policy ofm1 onR(1, 1) andR(3, 2),

V (4, 1) and V (5, 3) should also be deleted. After these deletions, no more tuples need to be

deleted, i.e., the deletion program has reached a fixpoint. Let D be the set of the tuples in

local contribution relations among these, i.e., D = {R(1, 1), R(3, 2), V (5, 3), U(3, 2, 3)}.
At this point, instead of actually deleting all these tuples, we use the decremental main-

tenance algorithm in Step 2 to identify which of them cause side effects to the relations

for which we want to avoid them in Step 3 - T (1, 1, 2), in this case. Then, in Step 4 we

trace the tuples in local contribution relations from which T (1, 1, 2) was derived, namely

D′ = {R(1, 1), S(1, 2, 4)}. Consequently, in order to ensure that there are no side effects

on T , we only delete (Steps 5-6) tuples inD−D′ = {R(3, 2), V (5, 3), U(3, 2, 3)}. Finally,

in Steps 7-8 we propagate the effects of these source deletions forward, as in Example 18,

to obtain the following peer relation instances:

R

+ 1 1

S

+ 1 1 4

+ 1 2 4

T

1 1 1

1 1 2

V

4 1

U

+ 1 1 1

+ 1 1 2

Observe that the deletion of T (1, 1, 1) was not performed, as a result of not deletingR(1, 1)

to avoid side effects on T , while the deletion of T (3, 2, 3) was performed, since that was

possible without causing side effects on T .

We note that our treatment of side effects is different from that in the deletion

minimization problem [22], where the authors show that finding a set of source dele-

tions that perform a view deletion and cause the minimal of side effects is NP-hard.

In our case we are only interested in propagations with no side effects at all and,

as we showed in the example above, it is possible that some deletions are not per-

93



5.3. Extensions for Bidirectional Update Exchange

formed, if this we cannot be done without side effects.

In the next chapter we describe the implementation of our ORCHESTRA proto-

type, which includes the algorithms presented above, as well as the ones for uni-

directional update exchange from Chapter 5. We also compare the performance

of unidirectional vs. bidirectional update exchange, as well as the overhead of

avoiding side effects during deletion propagation.
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Chapter 6

The ORCHESTRA Prototype

Implementation

We have implemented unidirectional and bidirectional update exchange, as de-

fined in Chapters 5 and 5.3, in the ORCHESTRA system, the first real-world imple-

mentation of a CDSS. In particular, we have developed the following components

in order to perform update exchange incrementally:

• Wrappers connect to RDBMS data sources, obtain logs of their updates, and

apply updates to them.

• A global update store, where all peers publish their updates, so that other

peers can obtain them during update exchange.

• Auxiliary storage holds and indexes provenance tables for peer instances.

• The update exchange engine performs the actual update exchange operation,

given schemas, mappings, and trust conditions.

ORCHESTRA performs two different but closely related tasks. When a peer first

joins the system, the system imports its existing RDBMS instance and logs, and
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creates the necessary relations and indices to maintain provenance. Later, when

the peer actually wishes to share data, we (1) obtain its recent updates via a wrap-

per and publish these to the CDSS, by inserting them to the update store, and (2)

perform the remaining steps of update exchange in an incremental way. To re-

view, these are update translation, provenance recomputation, and application of

trust conditions. The final resulting instance is written to ORCHESTRA’s auxiliary

storage, and a derived version of it is recorded in the peer’s local RDBMS.

The majority of our technical contributions were in the update exchange en-

gine, which comprises around 50,000 lines of Java code, in about 500 classes. A

demonstration of ORCHESTRA has been presented in [60] and we plan to make

it available under an open-source license. ORCHESTRA has also been a valuable

research platform, for developing techniques to learn trust levels from user feed-

back [94] as well as for exploring and querying provenance, as explained in Chap-

ter 7. Last but not least, ORCHESTRA has been deployed in pPOD [90], a bioinfor-

matics system for sharing of phylogenetic data intended to become a production

system as a part of NSF’s AToL (Assembling the Tree of Life) program, that aims

to reconstruct the evolutionary origins of all living things.

Figure 6.1 illustrates the main steps involved in performing update exchange

at each peer in ORCHESTRA. An RDBMS is used as the central component, to

store data and updates, as well as the provenance of their propagation. The en-

gine parses tgds and creates rule-based (datalogsk) programs to perform update

exchange operations, as described in Chapter 5. Individual rules are then trans-

lated into SQL queries that can be evaluated over the underlying RDBMS, using

data and provenance stored in it, as well as updates retrieved from the global up-

date store. The control-logic of the datalogsk programs is handled by the fixpoint

engine that we implemented in Java, and together with the RDBMS comprises a

pluggable back-end for ORCHESTRA.
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Mappings

(Extended) Datalog
Program

SQL queries +
recursion, sequence

Data, provenance

Updates from users
Updates to data 
and provenance

RDBMS

Fixpoint engine

Figure 6.1: Steps in performing update exchange over RDBMS

6.1 Data and Provenance Storage

Our system receives as its input a “real” scientific database. In order to be able to

handle labeled nulls, introduced during update exchange through mappings with

existential variables, we extend the relations in the schema of the input database.

In particular, for every attribute A that can “receive” a labeled null, we introduce

an additional integer attribute A LN to the schema of its relation. Moreover, we

associate each Skolem term (i.e., combination of a Skolem function name and a set

of parameter values) with a unique integer. Then, if a tuple has a regular value for

A, we enter that value in A and fill A LN with a special integer value. However, if

the tuple has a labeled null in the corresponding position, we put a special value

– which depends on the data type of A – in A and the appropriate integer value in

the Skolem term. By using special values instead of regular NULLs we can trans-

parently compare tuples with and/or without labeled null values, by converting
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each comparison of the form (X.A = Y.A) to a pair of comparisons (X.A = Y.A

AND X.A LN = Y.A LN).

We also extract the updates from the user database by scanning the DBs edit

logs (offline), while what the users see in the end is in terms of their original

schema. This way, the (non-ORCHESTRA-admin) user still only needs to interact

with their favourite RDBMS and can completely ignore the existence of ORCHES-

TRA in the middle, and only the institute’s ORCHESTRA admin needs to know

more.

For the storage of provenance relations we considered several alternatives along

the lines of 5.1.2. Our first approach was to convert mapping tgds into rules with

a single atom in the head, and create one provenance relation for each such rule

(i.e., essentially one relation for each pair of mapping tgd and relation in its RHS).

However, we found that we needed to pursue strategies for reducing the number

of relations (and thus the number of operations performed by the query engine).

For this reason, we experimented with the so-called “outer union” approach of [24]

— which allows us to union together the output of multiple rules even if they have

different arity.

However, we found that in practice an alternate approach, which we term the

composite mapping table, performed better. Rather than creating a separate prove-

nance table for each source relation, we instead create a single provenance table

per mapping tgd, even if the tgd has multiple atoms on its RHS. This approach

essentially takes advantage of the fact that tuples produced by different atoms in

the head of the same mapping tgd have common provenance derivations. Thus,

instead of redundantly storing such common provenance information in separate

relations for each source relation, it stores the shared provenance once.

In order to make processing of provenance tables more efficient, we also needed

to define appropriate indexes on them. For this purpose, we define indexes/keys

for these tables, as the union of all attributes in the keys of the relations in the body
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of the mapping corresponding to these provenance relations.

6.2 Creating datalogsk Programs for Update

Exchange

The update exchange engine is essentially a middleware layer. It is configured

with the peer schema mappings specified as tgds, which it converts into datalogsk

programs (cf. Chapter 5) over the stored and temporary source and provenance

relations. In particular, we have implemented translation modules that:

• Introduce provenance relations in mappings, by converting each mapping

tgd into a pair of mappings, a) from the LHS of the original mapping to the

provenance relation and b) from that to the RHS of the original mapping,

and convert the resulting mappings to inverse rules, where the existential

variables in the RHS are replaced by appropriate Skolem functions.

• Based on these inverse rules, create a datalogsk program consisting of delta

rules, as explained in Section 5.2, that can be used to perform incremental

insertion propagation. These delta rules employ some of the temporary rela-

tions, which represent insertions in the corresponding relations, to compute

some intermediate results of the propagation, before finally adding their con-

tents to the original stored relations. The resulting program is generally re-

cursive but its fixpoint is the result of performing the incremental insertion

propagation.

• Moreover, create a datalogsk program to perform incremental deletion prop-

agation, according to the algorithm described in Section 5.2. Part of this pro-

gram involves delta rules that involve temporary deletion relations, for the

original and the provenance relations. It also involves the derivability testing
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algorithm of Section 5.1.3, that uses some more temporary tables to explore

the provenance of tuples that may need to be deleted, in order to determine if

some alternative derivations still exist for them. The derivation program re-

quires a stratified form of recursion, where a part of it iterates until reaching

a fixpoint, before another part is evaluated (also until reaching a fixpoint).

This derivability program is nested inside another recursive program, which

also involves this form of stratification between its components. Finally, in

contrast to common datalog evaluation, only some of the rules of the dele-

tion propagation program should not be considered when checking whether

a fixpoint has been reached. This is necessary to achieve termination, e.g., if

in one iteration all of the tuples that were checked for derivability were deter-

mined to still be derivable; in this case the deletion propagation is complete,

but the rules of the derivability testing program have returned non-zero an-

swers.

• For settings with bidirectional mappings, create datalogsk programs to per-

form bidirectional propagation algorithms PropagatePeerDeletions and Propa-

gatePeerDeletionsWithoutSideEffects. The rules of these programs involve some

more temporary relations, e.g., to store tuples that we want to determine

whether they can be deleted without causing side effects, or to identify side

effects, by comparing the effects of deleting a source tuple with the set of

deletions specified by the the user and the update policies. These programs

also require the complex control-flow capabilities explained for the deletion

propagation program above.

The programs produced by these translation modules can be used to perform

the corresponding update exchange operations, if executed over an query process-

ing engine with the required capabilities. In the next section we illustrate how an

RDBMS can be used as the central component of such an engine, combined with
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a Java layer that provides the advanced control flow capabilities required for the

processing of datalogsk programs.

6.3 RDBMS-based Implementation

Using an off-the-shelf RDBMS as a basis for the update exchange component is at-

tractive for several reasons: (1) each peer is already running an RDBMS, and hence

there is a resource that might be tapped; (2) much of the data required to perform

maintenance is already located at the peer (e.g., its existing instance), and the to-

tal number of recent updates is likely to be relatively small; (3) existing relational

engines are highly optimized and tuned.

However, there are several ways in which our requirements go beyond the

capabilities of a typical RDBMS. The first is that the datalogsk rules are often mutu-

ally recursive, whereas commercial engines such as DB2 and Oracle only support

linearly recursive queries. The second is that our incremental deletion algorithm

involves a series of datalogsk computations and updates, which must themselves

be stratified and repeated in sequence. Finally, RDBMSs do not directly support

Skolem functions or labeled nulls. For this reason, we implemented the control

logic of a recursive datalog engine in Java and evaluate individual “rules” as SQL

queries through JDBC, over several different commercial RDBMSs.

Hence, we take a datalogsk program and compile it to a combination of Java

objects and SQL code. The control flow and logic for computing fixpoints is in

Java,1 using JDBC to execute SQL queries and updates on the RDBMS (which is

typically on the same machine). To achieve good performance, we make heavy use

of prepared statements and keep the data entirely in RDBMS tables. Moreover, we

use semi-naive datalog evaluation, so that in every iteration we only use data from

the latest one (instead of using all previous ones, as in naive datalog evaluation).
1We chose to use Java over SQL rather than user-defined functions for portability across differ-

ent RDBMSs.
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To avoid the cost of packaging and returning query results through JDBC to the

Java layer, we store results into temporary tables, and the Java code only receives

the number of tuples returned, which it uses to detect fixpoint. Moreover, we

exploit key information to optimize the translation of rules into SQL queries. For

example, even if a rule joins two atoms on all attributes, if e.g., the keys of the two

corresponding relations are among the equated attributes we suppress from the

SQL query the redundant equality conditions between non-key attributes.

For Skolem functions we create one DB2 user-defined function for each possible

arity (i.e., number of parameters). Because of RDBMS limitations we create these

functions statically, without looking at a particular set of mappings. In order to

avoid creating too many functions, we cast all input parameters to strings and

create all functions up to a reasonable maximum arity (e.g., if we know what the

maximum possible number of attributes in each relation and relations in the body

of a mapping are). These user-defined functions use a persistent store in order to

“remember” Skolem terms that have been created before, and avoid creating new

values for such terms, as well as to guarantee that unique values are given to new

Skolem terms.

As part of the process of building the system, we experimented with several

different DBMSs; the one with the best combination of performance and consis-

tency was DB2, so we report those numbers in Section 6.4. Even for DB2, we found

that achieving satisfactory performance was challenging for several reasons.

First, update translation requires many round-trips between the Java and SQL

layers. While this might be reduced by using the stored procedure capabilities

available in one of the DBMSs, there is still a fundamental impedance mismatch.

Moreover, even for settings of tens of peers, update exchange ends up produc-

ing hundreds of tables and the update exchange programs comprise thousands of

rules. Combined with the need to iterate until a fixpoint is reached, executing these

programs essentially involves evaluating a very large numbers of queries over rel-
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atively few tuples, while, unfortunately, conventional DBMSs are optimized for

few queries over large numbers of tuples. As a result, getting this implementa-

tion functional and usable for such settings involved a great deal of experimen-

tation with numerous parameters of the RDBMS configuration. More challenging

was the fact the general-purpose query optimizer would occasionally chose poor

plans in executing the rules, partly because of the large number of queries and the

fact that the cardinality of many relations varies largely during update exchange,

as updates are propagated through mappings. In fact, since these rules are pro-

duced by the automatic translation, it would have been fairly straightforward to

determine efficient evaluation strategies and heuristics, that are common for all

mappings. Unfortunately, there was no way to influence the choice of plans by

the optimizer directly, e.g., by pre-selecting appropriate query plans to be used.

However, through extensive tuning and experimentation with the DB2 configura-

tion we were able to achieve good and consistent performance, that satisfies the

requirements of our target usage model, as we discuss in Section 6.4.

6.4 Experimental Evaluation

In this section, we investigate the performance of our incremental update exchange

strategies, answering several questions. First, we consider the impact of different

strategies for computing the effects of updates: complete recomputation from an

updated set of base tuples, the DRed strategy of [61], and our new provenance-

based propagation strategy. (The latter two only differ with respect to propagation

of deletions and use the same insertion propagation techniques.) Next we consider

scalability with respect to several factors: number of peers, number of base tuples,

and relative size of attributes in the tuples. Finally, we study the effects of map-

pings: what happens as we vary the number of mappings among a set of peers,

change from unidirectional to bidirectional mappings, and change our deletion
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policies.

6.4.1 Experimental Setup

We conducted all experiments on our full ORCHESTRA implementation, which

consists of the previously-discussed Java layer running atop a relational DBMS

engine. We used Java 6 (JDK 1.6.0 07) and Windows Server 2008 on a Xeon ES5440-

based server with 8GB RAM. Our underlying DBMS was DB2 UDB 9.5 with 6GB

of RAM.

Experimental CDSS Configurations

To test the system at scale, we developed a synthetic workload generator based

on bioinformatics data and schemas to evaluate performance, by creating different

configurations of peer schemas, mappings, and updates. The workload generator

takes as input a single universal relation based on the SWISS-PROT protein data-

base [7], which has 25 attributes.

For each peer, it first chooses a random number i of relations to generate at

the peer, where i is chosen with Zipfian skew from an input parameter represent-

ing the maximum number of schemas. It then similarly chooses j attributes from

SWISS-PROT’s schema, partitions these attributes across the i relations, and adds

a shared key attribute to preserve losslessness. Next, full mappings2 are created

among the relations via their shared attributes: a mapping source is the join of all

relations at a peer, and the target is the join of all relations with these attributes

in the target peer. Typically for a set of n nodes, we generate a spanning tree

containing n − 1 edges. For experiments where we increase the fan-in or fan-out

(Section 6.4.6) we start with this spanning tree and add edges until we satisfy the

fan-in and fan-out constraints. We emphasize that this was a convenient way to
2A full mapping is one that preserves all source attributes in the target.
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synthesize mappings; no aspect of our architecture or algorithms depends on this

structure.

Finally, we generate fresh insertions by sampling from the SWISS-PROT database

and generating a new key by which the partitions may be rejoined. We generate

deletions similarly by sampling among our insertions. The SWISS-PROT database,

like many bioinformatics databases, has many large strings, meaning that each tu-

ple is quite large. Clearly, the size of tuples (and attributes) makes a significant

difference in performance, as does, e.g., whether non-key attributes are stored as

CLOBs or as strings.

To study a range of different possible input workloads, we conduct most of our

experiments with two different sizes for the initial database instance (2,000 and

10,000 original insertions over the base tables). We also use two different sizes for

the tuples: “integer,” where we substituted integer hash values for each string,

providing the properties of CLOBs or other small attribute types; and “string”,

where we use 1KB VARCHAR strings to directly encode the data from SWISS-

PROT. We vary the number of peers and mappings, as well as their properties.

Apart from our first experiment in the next section (where we consider the effects

of tuples with multiple derivations), we keep a disjoint set of tuples in the base

instances of our peers.

Terminology

We refer to the base size of a workload to mean the number of SWISS-PROT entries

inserted initially into each peer’s local tables and propagated to the other peers

before the experiment is run. Thus, in a setting of 10 peers, a base size 2000 begins

with 20000 SWISS-PROT entries, but as these are normalized into each of the peers’

schemas, this results in 176,000 total tuples in peer and mapping relations, for a

setting with one incoming and one outgoing mapping per peer. When we discuss

update sizes, we mean the number of SWISS-PROT entries per peer to be updated
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(e.g., 200 deletions in the setting above translates to 2000 SWISS-PROT entries, or

about 15000 tuples total).

Experimental Methodology

Each individual experiment was repeated seven times, with the final number ob-

tained by discarding the best and worst results — to ensure that the final result

is not affected by cold caches — and computing the average of the remaining five

numbers.

6.4.2 Incremental vs. Complete Recomputation

Our first experiment investigates where our incremental maintenance strategy pro-

vides benefits, when compared with simply recomputing all of the peers’ instances

from the base data. The interesting case here is deletion (since incremental inser-

tion obviously requires a subset of the work of total recomputation). Moreover,

our rationale for developing a new incremental deletion algorithm, as opposed to

simply using the DRed algorithm, was that our algorithm should provide superior

performance to DRed in these settings.

Figure 6.2 shows the relative performance of recomputing from the base data

after it is updated (“Non-incremental”), our incremental deletion algorithm, and

the DRed algorithm, for a setting of 10 peers, full mappings, and 10,000 base tu-

ples in each peer. One important differentiation between DRed and our algorithm

is how they perform when a tuple is derivable multiple ways. Hence in this set of

experiments we allow each tuple to exist in multiple base instances (as opposed

to all remaining experiments). As a result, in this case some of the derived tuples

have multiple alternative derivations, and even though some of the source tuples get

deleted, the output tuples may still be derivable from other sources. We note sev-

eral key facts: first, our deletion algorithm is faster than a full recomputation even
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when deleting up to approximately 50% of the instance. Second, in comparison

DRed performs worse in all measured settings — in fact, only outperforming a re-

computation for delete settings of under 30%. One reason for these results is that,

when a tuple t has alternative derivations and some other tuples are derived from

it, DRed transitively deletes all of them and then rederives them. In contrast, our

algorithm identifies the existence of alternative derivations for t and thus avoids

deleting t, as well as other tuples transitively derived from it. Moreover, our algo-

rithm does the majority of its computation while only using the keys of tuples (to

trace derivations), whereas DRed (which does reinsertion) needs to use the com-

plete tuples.

Figure 6.3 shows the relative performance of these algorithms, for a setting

of 10 peers with disjoint data at each peer, for different base sizes when deleting

either 10% or 50% of the base data at each peer. We note that in this case our

algorithm and DRed perform and scale very similarly, even though this case is

ideal for DRed, because it never needs to rederive any tuples. Moreover, both

algorithms vastly outperform a full recomputation when deleting 10% of the base

data at each peer, and perform similarly to it when deleting 50% of those data.
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6.4.3 Cost and Overhead of Computing Instances

In our second experiment, we look at how the algorithms scale with respect to the

number of peers, the complexity of the tuples, and the base size. Our parameters

of interest include both running times and storage overhead.

In this set of experiments (and all subsequent ones), we assume a setting with

n − 1 mappings among n peers (in the form of a spanning tree, generated as de-

scribed above). In general, the spanning tree is somewhat irregular, but we can

expect the size of the joint instances across the peers will grow at an approximately

quadratic rate.

We compare the instance sizes, provenance overhead, and running for our dif-

ferent configurations: Figure 6.4 shows the results for 2,000 tuples of integer data;

Figure 6.5 for a larger set of base instances with 10,000 tuples of integer data; and

Figure 6.6 shows what happens if we increase the tuple size (using 2,000 tuples of

large strings) instead of the number of tuples. The left y-axis shows time and is

used for the time-to-join plot. The right y-axis indicates the number of tuples and

is used for the other line plots.
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We see that the instance size indeed grows roughly quadratically in all cases

(with some minor variance). The cost of computing these instances grows roughly

correspondingly with the number of tuples that must be created. We observe that

the size of the provenance relations (in terms of tuples) is relatively small com-

pared with the total instance size, averaging around 25% of the total number of

tuples in the relations. In Section 6.4.6 we examine the overhead for storing prove-

nance in settings with more mappings/peer. The size of a tuple in a provenance

relation is roughly the same as that of a typical integer-dataset relation tuple, and

significantly smaller than an average string-dataset tuple: provenance relations do

not contain copies of attributes from both the source and target tuples — but only

of the keys of both relations.

Overall, the 2,000-tuple relation cases show running times on the order of 13-

15 minutes to materialize all instances in a 100-peer configuration. We feel this is

a reasonable startup cost for a system that will be initialized once and incremen-

tally maintained during off-hours. For the 10,000-tuple instance, as one would ex-

pect, running times increase by approximately by a factor of 5 from the equivalent

2,000-tuple case. Here we only show scalability to 20 peers because our original

SWISS-PROT dataset did not contain enough unique tuples for us to create non-

overlapping base instances for more than 20 peers. In any case, it is evident that,

even with these large sizes, we can scale well beyond 20 peers (since running times

are in the 3 minute range). We note that most real bioinformatics data sharing con-

federations are much smaller than 20 peers today.

6.4.4 Incremental Update Exchange vs. Number of Peers

Next, we look at how incremental insertion and deletion scale with the number

of peers. Figure 6.7 begins with the integer/2,000-tuple base instances. We see

that insertion and deletion in these cases (with single derivations for every tu-

ple) is often significantly faster than the time necessary to recompute from scratch
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(equivalent, for a small update ratio, to the time to join the system, shown as the

top-most line plot). The performance of insertions and deletions is quite compara-

ble, with deletions running slightly faster because they reduce the table sizes used

in the computation as they are applied (whereas insertions increase the size of the

tables). Given that our target application domain is one where updates are only

occasionally propagated (likely during off-hours), performance seems entirely ac-

ceptable: we can propagate updates to 50% of the tuples in 100 peers with running

times in the range of 6 minutes.

Increasing the size of the base data to 10,000 tuples (Figure 6.8) increases the

running times by approximately a factor of 5 — as with our previous time-to-

join experiment. Again, we only show scalability to 20 peers because our original

SWISS-PROT dataset did not contain enough unique tuples for us to create non-

overlapping base instances for more than 20 peers.

Our experiments to this point considered data with “small” attributes — inte-

gers or CLOBs. If we consider large attributes (long VARCHARs), the cost of in-

sertions goes dramatically up (since insertions must contain all attributes), whereas

the cost of deletions can remain similar (since deletions can be done purely with
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key attributes). We see this validated in Figure 6.9, where the gap between deletion

and insertion cost widens.

6.4.5 Performance vs. Base Data Size

The previous experiments studied the effects of increasing the number of peers.

We now see what happens if we fix the number of peers (10 peers with 9 mappings

among them) and vary the base size. Integer data is shown in Figure 6.10, and

string data in Figure 6.11. We observe that in both cases the running times of the

incremental algorithms scale at a slightly-more-than-linear rate with the number

of tuples. Moreover, propagation of incremental deletions is generally faster than

that of equal insertion loads. The difference is more extreme for the string dataset,

due to the use of keys by the deletion algorithm, as explained above.

6.4.6 Performance vs. Mappings

Our next experiment focuses on the impact of adding more mappings among a

fixed number of peers. More mappings result in more individual datalog rules in

the update exchange process, more alternative derivations and hence provenance
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values, and often more overall tuples in the resulting instance. Hence we expect

the cost of computation to go up significantly.

Here we focused simply on the cost of joining the system, computing peer in-

stances from scratch, for a case where each base instance contains 2,000 tuples with

integer data. As Figure 6.12 shows, we varied the fan-in and fan-out values from

the default of 1 all the way up to 3 — this results in 9, 18, and 27 mappings, re-

spectively, with the mappings distributed uniformly among the 10 peers. We see

that, especially for more than 10 peers, increasing the fan-in dramatically increases

the rate of growth of the computation times. However, for up to 20 peers and a

fan-in/fan-out of 2 mappings the running times are quite reasonable.

Moreover, we measured the impact of adding more mappings to the size of

provenance and peer relations, with a particular interest in the relative overhead

incurred by storing provenance. As shown in Figure 6.13, the number of tuples in

provenance relations is around 25% of that in peer relations for a fan-in/fan-out of

1, but increases to more than 50% for fan-in/fan-out of 2, while for a fan-in/fan-out

of 3 the number of tuples in peer relations and provenance relations is about equal.

This is expected, since the addition of more mappings results in more alternative

derivations for each tuples that need to be recorded in provenance relations.
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6.4.7 Bidirectional Mappings

We now investigate the performance of bidirectional update exchange in a CDSS.

First, we compare bidirectional and unidirectional update exchange properties,

for the same number of peers. Then we compare preliminary implementations of

our deletion propagation algorithms, with and without detection of side effects.

For both experiments, each peer had a base size of 2,000 tuples from the integer

dataset — different for each peer — in its local contributions tables. We randomly

generated graphs of unidirectional mappings among the peers with fan-in/fan-out

1, and converted those mappings to bidirectional, to test the bidirectional update

exchange algorithms (essentially resulting to a fan-in/fan-out of 2 in this case).

Cost of Unidirectional vs. Bidirectional Mappings

We first consider the effects of unidirectional mappings vs. bidirectional ones: in

general, bidirectional mappings should result in larger data instances (since all

data will propagate to all peers) and longer computation times. Figure 6.14 shows

the total size of peer instances after propagating 2,000 base tuples (from the in-

teger dataset) inserted at each peer, measured in millions of tuples (scale on the

113



6.4. Experimental Evaluation

2

3

4

300

400

500

600

700

e 
(s
ec
)

tu
pl
es
 (M

)

Bidirectional ‐ time to join
Unidirectional ‐ time to join
Bidirectional ‐ instance size
Unidirectional ‐ instance size

0

1

0

100

200

300

5 10 15 20 25

Ti
m
e

N
um

be
r 
of
 

Number of peers

Figure 6.14: Solution size and compu-
tation time for unidirectional and bidi-
rectional mappings

150

200

250

300

e 
(s
ec
)

Side effect free 10% ‐ total
Side effect free 10% ‐ update policy and s.e. detection
Side effecting 10% ‐ total
Side effecting 10% ‐ update policy

0

50

100

150

2 4 6 8 10 12 14

Ti
m
e

Number of peers

Figure 6.15: Propagation time for bidi-
rectional deletion policies

right y-axis), as well as the total time for propagating these insertions (scale on

the left y-axis). As we scale the CDSS to increasingly larger sizes, we see that for

unidirectional mappings, the total instance sizes and running times grow at an ap-

proximately linear rate; whereas for bidirectional mappings, the number of tuples

and the computation time grow quadratically. This mirrors our expectations, given

the topologies and the amount of data exchanged. Moreover, the setting with bidi-

rectional mappings essentially corresponds to one with unidirectional mappings

with a fan-in/fan-out of 2. Similar performance characteristics are indeed seen

between Figure 6.14 and the plot in Figure 6.12 for the fan-in/fan-out of 2 . How-

ever, bidirectional mappings incur an additional overhead, since they essentially

propagate all base data to all other peers. We note that running times of several

minutes are tolerable for offline batch operations, which are the emphasis in the

CDSS. However, we also observe that the slower running times for bidirectional

mappings suggest opportunities for optimization and indexing.
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Deletion Policies and Side Effect Detection

Our first experiment analyzed how bidirectional mappings increase the complex-

ity of computation and the size of instances. If we consider deletion in a bidirec-

tional context, in fact the cost of deletion can be divided into the time for applying

the update policy and removing side effects followed by forward propagation of

source tuples deleted by the policy.

For this experiment we start by deleting 10% of the SWISS-PROT entries at

every peer (i.e., 200 entries per peer). In Figure 6.15 we show the total time for

incremental maintenance, and separately plot the time for applying the update

policy (the difference between the two is the forward propagation cost). We con-

sider settings where we do not attempt to avoid side effects, versus those where

we remove side effecting deletions.

Clearly, it is more expensive to use the side effect-free strategy, since it must do

additional work. We observe that the update policy and side effect detection phase

is the dominant cost in side effect-free maintenance, whereas forwards propaga-

tion represents almost the entire cost in the side effecting mode. For side effecting

propagation, the costs are still acceptable for 14 peers, although they grow quite

fast over 10 peers. For the side effect-free mode, the amount of data and the map-

ping complexity results in a more expensive operation for settings with more than

10 peers. Again, we believe this suggests opportunities for future research on op-

timization.

6.4.8 Overall Conclusions

Our final conclusion from these experiments is that the CDSS approach is amenable

to incremental maintenance of both data and provenance. Our algorithms scale to

tens and possibly low 100s of peers, depending on the data set sizes and the com-

plexity of the mappings. This performance is easily adequate for relatively small
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data sharing confederations, as we are targeting for bioinformatics domains. We

also believe there is opportunity to further improve these running times by devel-

oping custom optimization techniques, which we hope to do as future work.
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Chapter 7

ProQL: a Query Language for

Provenance

As we explained in previous chapters, we maintain data provenance in a CDSS with

several objectives in mind. First, CDSS administrators want to be able to express

provenance-based trust policies. Second, in many settings scientific users actually

find it useful to visualize provenance (as a graph showing the derivations) in order

to understand how it came to be in their local instance. Third, internally the OR-

CHESTRA incremental update propagation algorithms make use of provenance to

boost performance, as it enables them to test when a tuple is no longer derivable

and should be removed from a data instance. Fourth, in the case of bidirectional

update exchange, determining the lineage of a tuple is an important part of detect-

ing and avoiding side effects at run time. Finally, [94] have developed techniques

to learn relative authorities of data sources based on user feedback on query answers.

In developing the primitives for these operations, we have found a significant

amount of overlap in the implementation strategies. From a theoretical perspec-

tive, we have in fact shown that all of these operations involve identifying the

part of the provenance graph that is relevant for certain tuples, traversing it to

compute provenance expressions and evaluating those expressions in a particular
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semiring. As a result, we have come to the question of what the core principles,

operations, and computation schemes should be for a general provenance query lan-

guage that supports such operations. This chapter describes our preliminary ideas,

framed within the ORCHESTRA architecture but generalizable to a wide variety of

other applications. First, we identify important provenance querying use cases in

Section 7.1. We proceed with an informal description of the semantics of ProQL

queries in Section 7.2. Finally, in Section 7.3 we present the syntax of each ProQL

clause in detail and illustrate their functionality by using them to express queries

for the use cases of Section 7.1.

7.1 Interesting types of provenance queries

To give a better sense of the provenance querying problem, we first describe a

number of common use cases. We model provenance as a graph specifying tuples,

mapping or view operations performed on these tuples, and results produced as

immediate consequents, as explained in Section 4.6. Provenance queries traverse this

graph, returning either a projection of it or a mapping from nodes of the graph

to values in a particular semiring (trust value, Boolean, score, etc.). We will later

show a formal specification of each of these queries.

Q1. The ways a tuple is derivable. A scientist, intelligence analyst, or author

of mappings may want to visualize the ways a tuple can be derived — including

the source tuple values and the combination of mappings used. This is intuitively

a projection of the provenance graph, containing all base tuples from which the

tuple of interest is derivable, as well as the derivations themselves, including the

mappings involved and intermediate tuples that were produced. This graph may

be visualized for the user.

Q2. Relationships between tuples Alternatively, one may not be interested in vi-
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sualizing all derivations from base tuples, but only in derivations involving tuples

from a certain relation.

Q3. Results derivable from a given mapping or view. The above examples

started with a tuple and considered its provenance. Conversely, we can query

the provenance for tuples that were derived using a particular mapping or from a

particular source.

Q4. Identifying tuples with common/overlapping provenance As data is propa-

gated along different paths in a CDSS, it may be useful to be able to determine at a

given time whether tuples at two different peers have some common provenance.

For instance, suppose we are trying to assess trustworthiness of information ac-

cording to the number of peers in which it appears independently. In that case, it

is important to be able to identify peers that essentially received such information

from the same other peer or source.

Q5. Whether a tuple remains derivable. During incremental view maintenance

or update exchange, when a base tuple is derived, we need to determine whether

existing view tuples remain derivable. Provenance can speed this test [57].

Q6. The lineage of a tuple. The algorithm of Section 5.3.3 needs to know the

lineage of a tuple — i.e., the set of all base tuples it can be derived from, with-

out distinguishing between different derivations — in order to determine whether

update propagation can be performed without side effects.

Q7. Whether to trust a tuple. Given a set of trust policies assigning trust/distrust

and authority levels to different data sources, views, and mappings, it is possible

to determine a trust level for each derived tuple based on its provenance.

Q8. A tuple’s rank or score. In keyword query systems over databases, it is com-

mon to represent the data instance or the schema as a graph, where edges represent

join paths (e.g., along foreign keys) between relations. These edges may have dif-
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ferent costs depending on similarity, authority, data quality, etc. These costs may

be assigned by the common TF/IDF document/phrase similarity metric, by Ob-

jectRank and similar authority-based schemes [8], or by machine learning based

on user feedback about query answers [94]. The score of each tuple is a function of

its provenance. If we are given a materialized view in this setting, we may wish to

store the provenance, rather than the ranking, in the event that costs over the same

edges might be assigned differently based on the user or the query context [94].

Q9. A tuple’s associated probability. In ULDBs [11], query results are first

computed with their provenance (called lineage in Trio), and then probabilities are

assigned based on this lineage. While to the best of our knowledge the Trio system

has not considered materialized views, one would need to materialize and query

provenance in order to support such views in a ULDB.

Q10. Computing confidentiality/access control levels for data. Recent work [50]

has shown how provenance can be used to assigning access control levels to dif-

ferent tuples in a database. If the tuples might represent “shredded XML,” i.e., a

relational representation of an XML document, then the access control level of a

tuple (XML node) should be the strictest access control level of any node along the

path from the XML root. In relational terms, the access control level of a tuple rep-

resents the strictest level of any tuple in a join expression corresponding to path

evaluation.

Provenance query capabilities are additionally useful in a variety of other prob-

lem settings. For instance, they can be used to facilitate the debugging of schema

mappings (as in [27]).
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7.2 Core ProQL Semantics

In this section, we propose a language, ProQL (for Provenance Query Language),

which can query provenance in support of these types of queries. We can sum-

marize the use cases Q1-Q10 by noting that provenance is primarily useful in two

ways: (1) it helps a user or application determine the relationship between sets of

tuples, or between mappings and tuples; (2) it can be used to provide a score/rank,

access control level or assessment of derivability or trust for a tuple or set of tuples.

Consequently, there are two core operations that must be performed over prove-

nance. The first is computing projections of the provenance graph, typically with re-

spect to some tuple or tuples of interest: we would like to extract the derivations of

a certain tuple, or the parts of derivations “connecting” certain tuples. The second

is evaluating a subgraph as an expression under a specific semiring, e.g., in order to ob-

tain a score, as explained in Section 4.8. Our language, ProQL, is oriented around

these core operations.

A ProQL query takes as its input a provenance graph G, as described in Sec-

tion 4.6. The graph projection part of the query:

• matches parts of the input graph according to path expressions (also filtering

them based on predicates specified by the query author)

• binds variables on tuple and mapping nodes of the matched paths

• returns an output provenance graph G′, that is a subgraph of G and is com-

posed of the set of paths returned by the query. Apart from the nodes on

the paths, G′ also contains tuple nodes required to maintain the correct arity

of mapping inputs. For example, if there is a mapping node along a path

and the corresponding mapping has a join in the LHS, the returned path will

include both input nodes for that mapping node.
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• also returns a set of tuples of bindings from distinguished variables in the

query to nodes in G′, henceforth called distinguished nodes.

Note that, unlike other graph query languages, such as GraphLog [31], UnQL

[20], Lorel [4] or StruQL [47], and similarly to XPath [30], ProQL cannot create new

nodes or graphs, but always returns a subgraph of the original graph. Moreover,

provenance graphs are different from the underlying graph models of those lan-

guages, in that they contain two kinds of nodes, i.e., tuple and mapping nodes,

with different properties and returned paths over such graphs have the unusual

“shape” explained above.

If the ProQL query only consists of a graph projection part, it can return the

subgraph described above directly. However, ProQL queries can also contain a

semiring evaluation part, to compute the annotations for the distinguished nodes

of the returned subgraph in a particular semiring. This is a unique feature for

ProQL compared to other graph query languages, that is enabled by the fact that

provenance graphs can be used to compute annotations in various semirings. The

semiring evaluation part of a ProQL query specifies an assignment of values from

a particular semiring (e.g., trust value, Boolean, score) to some of the nodes in G′

and computes the values in that semiring for the distinguished nodes. The result

of a semiring evaluation query is a mapping from a set of tuples of bindings to dis-

tinguished nodes, as returned by the graph projection part of the query, to values

in the specified semiring. Intuitively, this mapping associates each distinguished

tuple node with its annotation, as computed according to the provenance graph.

7.3 ProQL Syntax

As we explained above, ProQL queries can have two main components, graph

projection and semiring evaluation. The graph projection part can be used inde-

pendently, if one only needs to compute a projection of a provenance graph. The
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query ::= ’EVALUATE ’ semiring ’ OF {’ graphProjection ’}’ assignment?
query ::= graphProjection
graphProjection ::= forClause whereClause? inclPathClause returnClause
forClause ::= ’FOR ’ pathExpression ( ’,’ pathExpression )*
whereClause ::= ’WHERE ’ conditions
inclPathClause ::= ’INCLUDE PATH ’ retPathExpression ( ’,’ pathExpression )*
returnClause ::= ’RETURN ’ var ( ’,’ var )*
pathExpression ::= node? ( derivation node )*
retPathExpression ::= retNode? ( derivation node )*
node ::= ’[’ relation? var? ’]’
retNode ::= ’[’ var? ’]’
derivation ::= ’<-+’ | ’<-’ | ’<’ identifier | ’<$’ identifier
assignment ::= ’ASSIGNING EACH ’ leaf node var listAssgn
assignment ::= ’ASSIGNING EACH ’ mapping var listAssgn
assignment ::= ’ASSIGNING EACH ’ leaf node var listAssgn mapping var ’(’ var ’)’ lis-
tAssgn
listAssgn ::= ’ {’ caseClause* defaultClause? ’}’
caseClause ::= ’CASE ’ conditions : ’ SET ’ semiringValue
defaultClause ::= ’DEFAULT : SET ’ semiringValue
semiring ::= DERIVABILITY | LINEAGE | TRUST | CONFIDENTIALITY |
PROBABILITY | WEIGHT
var ::= ’$’ identifier
relation ::= identifier
conditions elided for brevity.
semiringValue elided for brevity.

Figure 7.1: Excerpt of EBNF form of grammar

semiring evaluation part can apply an assignment to a provenance graph and com-

pute values for its distinguished nodes in the corresponding semiring. Figure 7.1

shows the key portions of the EBNF grammar for our language, and we discuss

the various clauses below. To simplify the presentation of the language, we first

explain the main two operations of ProQL separately.

7.3.1 Graph Projection

First, we present the clauses of the graph projection part of ProQL.
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FOR: This clause is used to bind variables to sets of tuple or mapping nodes in

the graph, through appropriate path expressions. In particular, the FOR clause

contains a list of path expressions of the form shown in Figure 7.1. The following

examples illustrate the semantics of these path expressions:

• [ R $x ] binds the variable $x to all tuple nodes corresponding to tuples

in the relation R (or a subset of it, as specified by conditions in the WHERE

clause, explained below).

• [ R $x ] <- [ $y ] binds $x as above and $y to all tuple nodes from

which nodes in R can be derived in one step, through any mapping. Note

that this means that y can range over tuples of more than one relation, i.e., a

heterogeneous collection.

• [ R $x ] <$p [ $y ] binds $x and $y as above, and p to the mapping

nodes, from which tuples in R can be derived in one step.

• [ R $x ] <m1 [ $y ] binds $x as above and $y to all tuple nodes in S

from which nodes in R can be derived in one step, through mapping m1. Note

that if, in fact, R does not appear in the target of mapping m1, the path expres-

sion above should cause a type error.

• [ R $x ] <-+ [ $y ] binds $x as above and $y to all tuple nodes from

which nodes in R can be derived in one or more steps.

• [ R $x ] <-+ [ T $y ] binds $x as above and $y to all tuple nodes in

T from which nodes in R can be derived in one or more steps.

Note that specifying a relation name in the square brackets is essentially a syn-

tactic shortcut for a filtering condition, restricting the range of the variable in the

same square brackets to tuple nodes from that relation, and the path expression to
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paths involving such tuple nodes. Alternatively, one can specify such a condition

explicitly in the WHERE clause, as explained below.

As shown in the general form of the expressions above, one can also create

longer path expressions, to match derivations involving several steps, e.g., the ex-

pression

[ R $x ] <m1 [ ] <-+ [ S $y ] only matches derivations of tuples in R from

tuples in S whose last step involves mapping m1.

WHERE: This clause is used to specify filtering conditions on the variables bound

in the FOR clause. Some examples for the variables from the FOR clauses above:

• $x.a > 5 selects the tuple nodes for which the corresponding tuple’s value

for attribute a has a value greater than 5. In this case, since $x is bound to

tuples from R if R does not have an a attribute, this condition should cause

a type error.1 Similarly, one can compare values of attributes of tuple nodes,

e.g., $x.a = $y.b, if they have compatible data types.

• $y in S restricts the values of $y to those corresponding to tuple nodes in

S (e.g., if $y is bound to a heterogeneous collection in the FOR clause).

• $p = m1 restricts $p to mapping nodes of type m1.

• Path expressions are interpreted as existential conditions, i.e., they are true

if the specified path exists between the nodes to which variables are bound

(in the FOR clause). If the path expression also involves variables that do not

appear in the FOR clause, they are also interpreted as existential, i.e., the path

condition is satisfied if there exists some assignment for the corresponding

variable for which the path exists. For example, the path expression [ R $x

] <-+ [ T $y ] appearing in the WHERE clause — if $x has been defined
1If $x is bound to a heterogeneous collection, this expression does not cause a type error, but

will return false for tuples that don’t have an a attribute
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in the FOR clause but $y has not — is satisfied if there is a path of any length

from any tuple in T to the tuple to which $x is bound.

INCLUDE PATH: This clause defines the output graph, by specifying the nodes

and paths to be included in it. In particular, it specifies a list of paths involving

(tuple or mapping node) variables defined in the FOR clause or constant mapping

names or wildcards (i.e., <-+), but not relation names. Then, for each valuation of

these variables that satisfies the conditions in the WHERE clause, the correspond-

ing path or set of paths involving them is included in the output graph. Some

examples follow:

• [ $x ] <m1 [ $y ]. If $x=t1, $y=t2 is a valuation satisfying the FOR and

WHERE clauses of the query (henceforth called satisfying valuation), this ex-

pression includes in the result all one-step paths from t2 to t1 using mapping

m1 (if $x, $y are bound to single relations that do not appear on the source

or target of m1, respectively, this query should return an error). Note that, if

there is e.g., a 3-way join in the LHS of m1, this path will include the nodes

corresponding to the other two tuples that join with t2 using m1, but not their

provenance.

• [ $x ] <-+ [ $y ]. If $x=t1, $y=t2 is a satisfying valuation, this expres-

sion includes in the result all paths (of any length) from t2 to t1.

RETURN: Finally, this clause specifies the distinguished variables of the graph

projection part of a ProQL query. The query returns a set of tuples of distinguished

tuple nodes, corresponding to satisfying valuations of those variables.

Query Examples

Using these clauses we can express the following ProQL queries, e.g., over the

provenance graph of Figure 4.8, that match the use cases Q1-Q4 of Section 7.1.
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Q1. Return the subgraph containing all derivations of tuples in U from base

tuples:

FOR [U $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

A couple of similar queries, where we use a path expression or a relational join

to identify the tuples whose derivations we want to return:

Q1a. Find all tuples from which tuples in U can be derived in one step, and return

the subgraph containing all of their derivations from base tuples:

FOR [U $x] <- [$y]

INCLUDE PATH [$y] <-+ []

RETURN $y

Q1b. Return the graph containing derivations of tuples that are selected through

a relational join:

FOR [U $x], [B $y], [G $z]

WHERE $x.nam = $y.nam AND $x.can = $z.can

INCLUDE PATH [$x] <-+ []

RETURN $x

Q2. Return the part of derivations of tuples in U that involve tuples in relation

G.

FOR [U $x] <-+ [G $y]

INCLUDE PATH [$x] <-+ [$y]

RETURN $x

Q3. Find tuples that can be derived through mappings m1 or m2 and return all

one-step derivations from those tuples.
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FOR [$x] <$p [] <-+ [], [$y] <- [$x]

WHERE $p = m1 OR $p = m2

INCLUDE PATH [$y] <- [$x]

RETURN $y

Note that the second path expression in the FOR clause of the query above refers

to $x, which is defined in the first path expression. This is essentially a syntactic

shortcut for:

FOR [$x] <m1 [] <-+ [], [$y] <- [$z]

WHERE $x = $z

INCLUDE PATH [$y] <- [$y]

RETURN $y

In the WHERE clause above, $x= $z iff they refer to the same tuple node, i.e.,

$xand $zbelong to the same relation and have the same values on all attributes.

Q4. Select some tuples from U and B that have common provenance (“provenance

join”), and return their derivations:

FOR [U $x] <-+ [$z], [B $y] <-+ [$z]

INCLUDE PATH [$x] <-+ [], [$y] <-+ []

RETURN $x, $y

Observe that there are two variables in the RETURN clause of the query above.

As a result, this query returns pairs of tuple nodes that have common provenance.

7.3.2 Annotation computation

Next, we present the clauses of the annotation computation part of ProQL, which

specify the semiring in which these annotations belong and the assignment of val-

ues to nodes in the projected provenance graph that are used as the provenance

tokens for semiring evaluation.
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ProQL name Semiring Annotation
DERIVABILITY/TRUST (B,∨,∧, false, true) Derivability, trust
PROBABILITY (P(Ω),∪,∩, ∅,Ω) (with Ω finite) Probabilistic event tables
CONFIDENTIALITY (C,min,max, 0, P ) Confidentiality policies [50]
LINEAGE (P(X),∪,∪, ∅, ∅) (with X finite) Lineage
WEIGHT (N∞,min,+,∞, 0) Ranks, scores, weights

Table 7.1: Examples of semirings in ProQL

EVALUATE semiring OF this clause is used to specify the semiring for which

we want to evaluate the graph returned by the nested graph projection query.

Recall that in Chapter 4 we identified semirings for which evaluation is always

computable and returns non-infinite values. We summarize these semirings in Ta-

ble 7.1, and explain their use in ProQLbelow.

• DERIVABILITY corresponds to the boolean semiring (B,∨,∧, false, true), with

the default assignment of true to all leaf nodes of the graph, and determines

whether a tuple is derivable from those nodes (although more complicated

assignments can also be specified).

• TRUST also refers to the boolean semiring, but we can specify an assignment

of true or false to leaf nodes, and Tm, Dm for mapping functions, as ex-

plained in Section 4.8.1, according to whether specific base tuples and map-

pings are trusted or not.

• PROBABILITY computes probabilistic event expressions in the semiring

(P(Ω),∪,∩, ∅,Ω). Such expressions can be subsequently used to compute

tuple probabilities (as in Trio [11]).

• CONFIDENTIALITY evaluates provenance in the semiring of confidentiality

policies [50] (C,min,max, 0, P ), where the total order C: P < C < S < T < 0

describes the following levels of “clearance”: P = public, C = confidential, S

= secret, and T = top-secret. It is useful in assigning a access control level to
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a tuple derived by joining multiple source tuples: for any join, it assigns the

highest (most secure) level of any input tuple to the result; for any union, it

assigns the lowest (least secure) level required.

• LINEAGE corresponds to the lineage semiring (P(X),∪,∪, ∅, ∅) whereX con-

sists of the ids of the tuples in the input instance. This is useful e.g., for de-

tection of side effects in bidirectional update exchange.

• WEIGHT corresponds to the tropical semiring [75] (N∞,min,+,∞, 0) and is

useful in ranked models where output tuples are given a cost, evaluating

to the sums of the individual scores or weights of atoms joined (and to the

lowest cost of different alternatives in a union). This semiring can be used

to compute costs according to the common TF/IDF document/phrase simi-

larity metric, by ObjectRank and similar authority-based schemes [8], or by

machine learning based on user feedback about query answers [94].

Using these clauses we can express the following ProQL queries, match the use

cases Q5-Q6 of Section 7.1.

Q5. Determine derivability of the tuples in U from base tuples.

EVALUATE DERIVABILITY OF {

FOR [U $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

}

Q5. Compute the lineage of the tuples in U .

EVALUATE LINEAGE OF {

FOR [U $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

}
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ASSIGNING EACH: For the provenance semiring(s), each leaf tuple is associated

with a unique provenance token and the provenance of each tuple is an expression

over these provenance tokens and the mapping functions. To evaluate queries in

other semirings, one needs to assign values from that semiring to leaf nodes, as

well as definitions to the mapping functions. The ASSIGNING EACH clause can

be used to specify such assignments for leaf (tuple) nodes similarly to a switch

statement in C or Java: first, we define a variable that iterates over the set of all

leaf nodes of the provenance graph returned by the nested graph projection query,

and then a list of cases specifies what the value of a node should be if the condition

of that CASE is met.2 In these conditions one can check membership in a relation

or express selections on values of particular attributes of the corresponding tuples.

Finally, there is an optional DEFAULT statement, if none of the CASE statements is

satisfied. If there is no DEFAULT statement, all leaf nodes not matching any CASE

are assigned the value 1 of the semiring, i.e., the identity element for the · operation

of the semiring.

Similarly, a second ASSIGNING EACH clause can be used to specify an assign-

ment of values in the semiring for the mapping functions. In this case, one can

specify conditions over the name of the mapping as well as the semiring value of

its single parameter. The default value for mappings, if no DEFAULT statement is

provided, is the identity function. Note that function definitions need to satisfy

the conditions of Section 4.3.1, i.e. one cannot specify an assignment that returns a

non-zero value when the input of the function is 0 and mapping application must

commute with (finite and infinite) sums.

One or both of these clauses can be used in a semiring evaluation query, de-

pending on whether a user wants to “customize” their value assignment for both

leaf nodes and mappings or they are satisfied with default values. We illustrate the

usage of the ASSIGNING EACH clause(s) its usage through the following queries,
2if multiple CASE statements match, the first one is followed
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that can be used to express use cases Q7-Q10.

Q7. Assuming peer B distrusts any tuple B(i, n) if the data came from G and

n ≥ 3, and trusts any tuple from U, as in the first trust condition in Section 6, and

distrusts m2 while trusting all other mappings if their input is trusted, determine

what set of tuples in B is trusted:

EVALUATE TRUST OF {

FOR [B $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

} ASSIGNING EACH leaf node $y {

CASE $y in U : SET true

CASE $y in G and $y.nam >= 3: SET false

DEFAULT : SET true

} ASSIGNING EACH mapping $p($z) {

CASE $p = m2 : SET false

DEFAULT : SET $z

}

Q8. Find scores for the tuples in U according to the cost function described

below:

EVALUATE WEIGHT OF {

FOR [U $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

} ASSIGNING EACH leaf node $y {

CASE $y in B AND $y.id < 5 : SET 0

CASE $y in G AND $y.id >= 7 : SET 5
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DEFAULT : SET edit distance($y.nam, "GENE")

} ASSIGNING EACH mapping $p($z) {

CASE $p = m2 : SET 0

}

Q9. Assuming the correlation between tuples in B and G described in the assign-

ment below, compute the probabilistic events associated with tuples in U:

EVALUATE PROBABILITY OF {

FOR [U $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

} ASSIGNING EACH leaf node $y {

CASE $y in B AND $y.id < 5 : SET X1

CASE $y in B AND $y.id >= 5 : SET X2

CASE $y in G : SET X1

}

Q10. Find access control levels of tuples in U, assuming tuples in B are con-

fidential, those in G are secret, mapping m3 is top-secret and everything else is

public:

EVALUATE CONFIDENTIALITY OF {

FOR [U $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

} ASSIGNING EACH leaf node $y {

CASE $y in B : SET C

CASE $y in G : SET S

DEFAULT : SET P
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} ASSIGNING EACH mapping $p($z) {

CASE $p = m3 and $z != 0 : SET T

}

In the next chapter we focus on developing a prototype implementation for the

core semantics of the language, as presented in the previous sections. To this end,

in the next chapter we outline our main strategies for implementing ProQL over an

RDBMS, using the relational encoding for provenance graph that we presented in

Chapter 5 to store provenance and translating ProQL queries to SQL queries that

can be executed by the RDBMS. We also suggest structures for indexing paths in

provenance graphs that can be maintained, along with the relations in which the

provenance graph is stored, in an RDBMS.
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Chapter 8

ProQL Query Processing and

Optimization

In this chapter we describe our implementation of ProQL for acyclic provenance

graphs. In the first section we describe the core aspects of our execution strategy

that exploits a relational DBMS engine. In the next section we discuss how we

enhanced this basic engine with indexing techniques, that we believe will speed

up query answering significantly. Finally, we demonstrate experimentally the per-

formance of provenance querying and illustrate the benefits of our indexing tech-

niques.

8.1 Translating ProQL to SQL

In this section, we describe our strategy for executing ProQL queries that return

projections of the provenance graph or compute annotations based on a prove-

nance graph. ProQL queries may include conditions in the WHERE clause specify-

ing a set of tuples of interest. For instance, perhaps we have a screenful of tuples

from some relation R for which we wish to compute rankings. Rather than com-

pute a ProQL query over all tuples in R, we would like to perform goal-directed
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computation such that we only evaluate provenance for the selected tuples, as

well as only for the paths matching the path expressions in the query. Intuitively,

this resembles pushing selections through joins in relational algebra queries.

We assume that provenance graphs are stored in an RDBMS, according to our

relational encoding of Section 5. Thus, our approach relies on converting ProQL

queries into SQL queries (or sets of SQL queries) that can ultimately be executed

over an underlying RDBMS. More precisely, we break the query answering process

into several stages:

• Converting the schema mappings into a provenance schema graph (this is com-

mon for all queries).

• Matching the ProQL query against the provenance schema graph to identify

nodes that match patterns, as described by path expressions.

• Creating a datalog program based on the set of schema mappings and map-

ping tables that correspond to the schema graph nodes, as well as the source

relations whose EDB data is to be included.

• Executing the program in an SQL DBMS, in a goal-directed fashion, based

on tuples and mappings of interest.

We explain each of these stages in more detail below.

8.1.1 Provenance Schema Graph

While paths in the provenance graph exist in the instance (tuple) level, in fact

these tuples belong to specific relations that are related through mappings de-

fined at the schema level. Hence, it makes sense to abstract the set of possible

provenance relationships among tuples into a set of potential derivations among

relations — in essence to define a schema for the provenance. Intuitively similar to
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B U

m3

m4G m1

m2

Figure 8.1: Provenance schema graph for running example

a Dataguide [56] over the provenance, this graph is useful as a basis for matching

patterns and ultimately defining queries.

We term this graph among relations and mappings a provenance schema graph.

We construct it as follows. We begin by creating one node for each relation (a

relation node, which we label with the name of the relation) and one mapping node

for each mapping table (where, again, we label the node with the table’s name). We

add directed edges from the mapping node to a relation node if the mapping has

a target atom matching the relation node’s label. We direct edges from a relation

node to the mapping node if the mapping has a source atom matching the relation

node’s label. The result looks like Figure 8.1, where we show relation nodes with

rectangles and mapping nodes with ellipses.

8.1.2 Matching ProQL Path Expressions

The next step is to determine which subgraphs of the provenance schema graph

match the ProQL patterns. We start with the distinguished reference nodes speci-

fied to be returned by the ProQL query: these nodes can range over all relations,

or if specified by the query, may be restricted to a single relation. For each path

expression in the FOR clause, our algorithm traverses the schema graph from each

node that can match the “originating” node of the path, using a nondeterministic-

state-machine-based scheme to find paths that match the pattern. (We prevent

paths from cycling back upon themselves.) The ultimate result is a set of mapping

nodes and relation nodes.
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8.1.3 Creating a Datalog Program

As an intermediate step towards creating the ultimate SQL queries to return an-

swers, we first create a datalog program based on the set of mapping and relation

nodes returned by the pattern-match.1 This process is fairly straightforward. For

each pair of relation nodes R,S returned from the matching step, we determine if

any schema mappings define R in terms of S, or vice versa: if so, we add these

mappings as rules to the program. For every relation node matched in the schema

graph, we also add any rules necessary to test when we have reached an EDB

relation (containing leaf nodes of the provenance graph).2

8.1.4 Executing the Program

In this section we discuss how to execute the datalog program over a provenance

graph stored in an RDBMS. Recall from 5.1.2 that our storage scheme uses one

provenance relation for all one-step derivations involving a particular mapping.

On our running example, for the provenance graph of Figure 4.8, the one-step

derivations involving the mappings

(m1) G(i, c, n)→ B(i, n)

(m4) B(i, c) ∧ U(n, c)→ B(i, n)

are stored in the relations P 1 and P 4 shown below:

P 1

i c n

3 5 2

1 2 3

P 4

i n c

3 2 5

3 3 2

1This program can be recursive for cyclic provenance graphs. However, in this dissertation
we focused on ProQL evaluation over acyclic provenance graphs, for which this program is not
recursive.

2This may be a join with a separate “hidden” EDB table, or a selection against the provenance
relation in which the EDB bit is set to true.
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In order to reconstruct partial or complete derivations of a tuple — as described

in path expressions in the graph projection part of ProQL queries — we need to

combine tuples from multiple provenance relations. Moreover, in order to execute

ProQL queries with an annotation computation component, we need to identify

complete derivations of certain tuples from base data, for which an assignment of

semiring values is given in the ASSIGNING EACH clause. For example, to execute

the ProQL query

EVALUATE DERIVABILITY OF {

FOR [U $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

} ASSIGNING EACH leaf node $y {

CASE $y in B : SET false

DEFAULT : SET true

}

we need to reconstruct complete derivations of tuples in U from base tuples,

and use those derivations — together with the assignment specified in the ASSIGNING

EACH clause — to determine which tuples in U are trusted.

For acyclic provenance graphs, each tuple can only have a finite number of dis-

tinct derivation tree shapes. For each one of those derivation shapes, we can compute

a conjunctive rule that reconstructs them from the one-step derivations stored in

the provenance relations, by recursively unfolding the rules of the datalog pro-

gram of Section 8.1.3. The result of this unfolding is a union of conjunctive rules

over provenance relations and the base data “reachable” from those tables. More-

over, during this unfolding we can create a semiring expression corresponding

to this derivation tree shape. This expression can then be used to compute an-

notations, by “plugging in” annotations for leaf nodes and combining them with
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the appropriate semiring multiplication operation at intermediate tree nodes. Fi-

nally, we can evaluate the unfolded rules and annotation computation expressions

by translating them to SQL queries that can be evaluated over the underlying

RDBMS.

In the rest of this section, we describe in more detail the unfolding process

for graph projection queries, as well as the creation of semiring expressions that

can be used for annotation computation.3 We also explain how unfolded rules

and semiring expressions can be translated to SQL queries that can be evaluated

directly over an RDBMS.

Graph projection. The basic strategy is to take the datalog program as defined

above, and to recursively unfold it, creating a union of conjunctive queries over

provenance relations and base data. To perform every step in this unfolding, we

need to find a homomorphism from the head of the rule we use at each unfolding

step to the body of the current result of the unfolding.

However, simple unfolding will result in a query that recomputes all of the tuples

derivable in the relation of interest. In many cases we only seek the provenance

of a few target tuples, and here we would like to make our execution goal-directed.

We achieve this by modifying each of the conjunctive queries as follows. Suppose

we are computing the derivations for tuples in relation T , and we are given an

initial set of target tuples T trg. If our query is of the form T (x̄) :- Ψ(x̄, ȳ) (where Ψ

represents a series of query atoms), then we rewrite it as T (x̄) :- T trg(x̄),Ψ(x̄, ȳ). A

similar technique was used in [61].

We illustrate this unfolding in the following example.

3We note that the approach described in this section would not work for cyclic provenance
graphs, for which the recursive unfolding process may not terminate. In Chapter 10 we outline an
alternative strategy, based on bottom-up execution of the datalog program and materialization of
intermediate results, that can also be applied in cyclic settings.
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Example 20. Suppose we have the mappings:

(m1) R2(x, z)→ R1(x, z)

(m2) R3(x, y) ∧R4(y, z)→ R2(x, z)

(m3) R5(x, y
′) ∧R6(y

′, z)→ R3(x, y) ∧R4(y, z)

Suppose also that all relations have local data. Following the notation of Section 3.2, we

writeR`
i to indicate the data inserted locally atRi. Now, consider the ProQL query:

FOR [R1 $x]

WHERE $x.att1 < 5

INCLUDE PATH [$x] <-+ []

RETURN $x

Each tuple in R1 above can be derived in one of the following ways:

• Locally, from R`
1

• Through m1, from R2s local data (i.e., R`
2)

• Through m1 and m2. In this case, since there is a join in the body of m2, we need to

consider all combinations of alternative derivations for tuples in R3 and R4. Since

both may include both local and derived data (through m3) we need to consider all

four combinations (local data from both relations, derived data from both relations

and 2 combinations with local data from one relation and derived from the other).

• For data derived through m3 above, the only way to derive them is by joining local

data from R5 and R6.

For simplicity, in this example we use mappings for which the homomorphisms in-

volved in all unfolding steps are trivial identity functions (i.e., the same atom appears

in the body of the partially unfolded rule and in the head of the rule used at that step).

Finally, suppose that Rtrg
1 contains the tuples from R1 that satisfy the conditions in the
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WHERE clause of the query. Then, this unfolding would produce a union of the following

conjunctive queries:

Rtrg
1 (x, z), R`

1(x, z)

Rtrg
1 (x, z), P 1(x, z), R

`
2(x, z)

Rtrg
1 (x, z), P 1(x, z), P 2(x, y, z), R

`
3(x, y), R

`
4(y, z)

Rtrg
1 (x, z), P 1(x, z), P 2(x, y, z), R

`
3(x, y), P 3(x, y

′, z), R`
5(x, y

′), R`
6(y
′, z)

Rtrg
1 (x, z), P 1(x, z), P 2(x, y, z), R

`
4(y, z), P 3(x, y

′, z), R`
5(x, y

′), R`
6(y
′, z)

Rtrg
1 (x, z), P 1(x, z), P 2(x, y, z), P 3(x, y

′, z), R`
5(x, y

′), R`
6(y
′, z)

Observe that, apart from the atoms specifying sets of tuples whose provenance we want

to explore (such as Rtrg
1 ),4 the unfolded rules consist only of atoms of provenance (such as

P 1) and EDB (such as R`
1) relations. The former are the relations where the provenance

of the corresponding mapping is stored, according to the provenance storage scheme pre-

sented in Chapter 5. Including the provenance relations in these rules is necessary, in order

to be able to apply filtering conditions at intermediate nodes of a derivation tree. Moreover,

provenance relations incorporate possible overrides by CDSS users that cannot be deter-

mined by only looking at the sources of a mapping, e.g., when users delete imported tuples

that they consider untrusted.

Since the result of the unfolding is a non-recursive datalog program, we can

execute each rule in that program by translating it to an SQL query. In our imple-

mentation, we compute such SQL queries using the same translation layer as in

the case of the RDBMS implementation of update exchange (cf. Section 6.3). The

resulting SQL queries can then be executed directly over the underlying RDBMS.5

Annotation computation. Additionally, for ProQL queries with an annotation

computation component, we need to translate unfolded rules to SQL queries that
4If this set of tuples can be expressed through some filtering conditions, e.g., as specified in the

WHERE clause of a ProQL query, we can avoid introducing an Rtrg
1 atom and instead push these

conditions to the appropriate provenance or EDB relations.
5For cyclic provenance graphs, ProQL query evaluation could involve recursive datalog pro-

grams, whose evaluation would need to use the datalogsk fixpoint layer described in Section 6.3.
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also compute such annotations based on an assignment of values to base tuples

and the stored provenance information. To achieve this, as a part of the unfold-

ing process we generate a semiring evaluation expression for each unfolded rule as

follows:

• For each unfolding step, we insert a semiring product operation, whose operands

are filled by later unfolding steps.

• When an unfolding step expands to a leaf relation — i.e., a relation with no in-

coming mappings in the provenance graph returned by the graph projection

part of the query — we insert the appropriate assignment of semiring values

from the corresponding ProQL ASSIGNING EACH clause.

Of course, each conjunctive query only computes a subset of the tuples and

their provenance — specifically the tuples and provenance values for one potential

derivation tree shape. We combine these to compute an annotation for each tuple

as follows:

• We convert each unfolded rule into an SQL query, that also computes an

annotation for each output tuple, according to the semiring evaluation ex-

pression for this rule, as computed during the unfolding. This annotation is

stored with each tuple as an additional attribute.

• We introduce another additional attribute for the provenance expression eval-

uation. In particular, this attribute has a unique value for each different SQL

query generated in the first step above.

• We combine all SQL queries into a single query using UNION ALL; the ad-

ditional attribute introduced in the second step ensures that different deriva-

tions that result in the same value will not be eliminated by set semantics.
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• We GROUP BY the values of the attributes of the tuples (not including any

of the special attributes above).

• We aggregate the annotations — as found in the first provenance attribute —

within each group, using an appropriate aggregation function depending on

the kind of annotations we are computing. Referring to the possible semir-

ings of the EVALUATE clause, for DERIVABILITY and TRUST we can SUM

the annotations (assuming we represent true as 1 and false as 0), then add

a HAVING clause testing for a non-zero annotation. CONFIDENTIALITY

and WEIGHT can be evaluated using the MIN function. For LINEAGE and

PROBABILITY we need SQL user-defined table functions to union the anno-

tations together.

• Finally, we threshold the results with a HAVING expression if, e.g., we only

want to return tuples with non-zero annotations, or those whose rank is un-

der a certain value.

If the query does not contain an annotation computation component, we create

a string representation of each derivation, which is also stored in the additional

attribute, using appropriate string concatenations for each of the semiring opera-

tions.

These components form a baseline implementation of ProQL, providing all the

required functionality. However, more can be done to improve its performance.

In the next section we introduce indexing techniques that can be used to speed up

processing of provenance queries.

8.2 Indexing for Provenance

The main challenge in answering ProQL queries is essentially in navigating through

graph-structured data, according to path expressions. As we explained in Sec-
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tion 8.1, such path traversals are translated into joins among provenance relations,

representing one-step derivations. Such paths in provenance graphs can often be

long, and their translation produces unfolded rules containing multi-way joins,

whose execution can be expensive. Moreover, different unfolded rules often cor-

respond to derivation tree shapes with overlapping paths. As a result, some joins

between provenance relations may be common among several unfolded rules.

Based on these observations, a natural question to ask is whether one could

optimize ProQL queries by indexing paths in a provenance graph. Then, queries

involving those paths can start at one node and find sets of nodes reachable within

a certain number of hops directly from this index, without needing to join indi-

vidual provenance relations. Ideally, such an index structure could be retrofitted

into a relational DBMS engine, in a way that our SQL-based strategy could benefit

from it.

Among a variety of path indices that have been studied in the literature [84, 56,

73, 70, 33], the most natural indexing technique to adapt for our provenance query

scheme is the access support relation [73, 74] from object-oriented databases. An

access support relation (ASR) is an n-ary relation among sets of objects connected

through paths. For example, suppose there is a class A that has a field b, and b is an

object of classB. Moreover, suppose classB has a field c that is an object of class C.

Then, one may create an ASR whose entries correspond to triplets of objects from

classes A, B and C that appear along such a path. For instance, if there is an object

a1 of class A such that a1.b = b1 and b1.c = c1, the ASR would contain an entry

for the path a1.b1.c1. Then, this ASR can be used to speed up queries involving the

path expression X.b.c, where X ranges over a set of objects of class A. Importantly,

the same ASR can be used to answer queries beginning from different classes of

objects, as long as some path expression in those queries overlaps with the paths

stored in the ASR.

In the case of object-oriented databases, each object has a unique object iden-
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tifier (OID) and the ASR is an auxiliary structure known to the DBMS, consisting

of tuples with references to objects by their OIDs. Clearly, in our case we neither

have objects nor OIDs. Moreover, our patterns have some subtle differences from

paths in the object-oriented sense. However, one can take most of the basic prin-

ciples of the ASR and extend them to match our setting. In particular, we can

define ASRs for paths in provenance graphs by creating materialized views for joins

among provenance relations that correspond to paths of mappings along some

derivations. These views can also be stored as relations in the RDBMS, together

with the provenance relations. Then, rewriting unfolded rules to take advantage

of such ASRs amounts to a simple case of answering queries using materialized

views [63]. Moreover, we can define relational indices on key columns of the ASRs

to provide efficient lookup of specific rows (corresponding to paths in particular

derivations) as well as to optimize queries that involve longer paths (and, there-

fore, need to join multiple ASRs).

We illustrate such an ASR definition in the following example.

Example 21. Continuing from Example 20, we saw that path traversals are translated

into joins among provenance relations. For example, creating an ASR that corresponds to

the path that involves m2 followed by m1 amounts to joining P 2 with P 1.

In the sequel, we write P (2,1) to refer to the relation used to store the ASR cor-

responding to the path(s) involving m2 followed by m1.

In the rest of this section we explore different options regarding how to adapt

ASRs so that they can be combined with our relational storage of provenance to

speed up processing of ProQL queries. These options also determine the appropri-

ate schema for the relational storage of the resulting ASRs.
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8.2.1 ASR Design Choices

As we explained in the example above, to index paths in a provenance graph we

need to store joins between provenance relations. In general, however, there may

be tuples in each relation that do not join with a tuple in the other relation, e.g., be-

cause they originated from the propagation of disjoint data coming from different

mapping paths. Moreover, some queries may only require looking at one mapping

in such a path, or a subpath.

As a result, we have several options with respect to what to store in ASR re-

lations in order to optimize provenance queries. In this section, we present these

options and discuss their theoretical advantages and disadvantages. In the sequel

we describe in more detail the implementation of several of these options over

ORCHESTRA and evaluate their performance experimentally.

For an ASR indexing a path of n steps, one of the choices involves whether to

materialize only the complete path or (some or all) of its subpaths. This choice is

related to the type of join among provenance relations that we materialize in the

ASR. The type of join that we materialize also affects whether we need to store sep-

arately individual provenance relations that appear in some ASR. More precisely,

for the case of an ASR for a path containing mapping m2 followed by m1, we have

the following options:

1. Store the full outer join P 2 −
−1−
− P 1 in P (2,1). This includes all tuples from both

relations, whether they join or not, and amounts to storing the path and all

its subpaths in the ASR.

2. Variations of (1) involving the left or right outer join, i.e., all subpaths starting

(or ending) with the first (last) mapping in the path.

3. Store just the inner join P 2 1 P 1 in P (2,1) (i.e., only the complete path). This

only includes tuples from both relations that join with each other. For tuples
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that don’t join, we still need to maintain P 2 and P 1.

4. Store P 2 1 P 1 in P (2,1), and all tuples (whether they join or not) in P 2 and P 1.

For longer paths we only allow combinations that follow the same option for

each step of the path.

Another design choice is related to the ability to incrementally maintain these

ASR relations, when updates occur. Some of the join types presented above are

more amenable to incremental maintenance than others. In particular, in cases

(1), (2) and (3), if we insert a tuple t1 in P 1 that joins with t2 in P 2, incremental

maintenance involves:

• checking whether t2 used to join with any tuples before the insertion of t1,

and if not removing it from the corresponding table (e.g., removing t3 from P 2

in case (3)).

• inserting a “join” tuple involving t1 and t2 in P (2,1)

Similarly, in cases (1), (2) and (3), deleting a tuple t1 from P 1 that used to join

with t3 in P 3 requires:

• deleting the “join” tuple involving t1 and t2 from P (2,1)

• checking whether t2 still joins with some other tuple, an if not “reinserting” it

in the appropriate table (e.g., inserting t2 in P 2 in case (3), or t2 padded with

nulls for P 1s distinct attributes in P (2,1) in case (1)).

Note that, apart from their conceptual complexity, the above operations involve

an additional (anti)semi-join with the index relations for each insertion and dele-

tion, e.g., to check whether a tuple that used to join with some deleted tuple also

joins with some other tuple. This can be costly and the effect on overall incremen-

tal maintenance performance should be taken into account. On the other hand,

case (4) is simpler, since it does not require these existential checks.

148



8.2. Indexing for Provenance

In previous chapters we have presented a framework in which such updates

can be propagated, but this is only possible for mappings that can be expressed as

tgds (or, equivalently, as datalogsk rules). As a result, if we can express the ASR

definition as a set of such rules, we can use this framework for its incremental

maintenance. On the other hand, for cases where a more expressive language is

needed for their definition, it is not possible to maintain them incrementally using

existing ORCHESTRA facilities.6

Finally, another choice involves whether to allow a mapping to appear in more

than one ASR relation or not. Overlapping ASRs allow more flexibility for cover-

ing a broader range of queries, possibly traversing different but overlapping paths.

However, their existence also make it more difficult to rewrite the original queries

in order to use those ASRs.

8.2.2 ASR Implementation over ORCHESTRA

In this dissertation, we chose to implement those of the options above that fit

within the framework of CDSS, as outlined by the functionality supported by OR-

CHESTRA. As a result, we have implemented the different types of joins described

above in ways that their definition can be expressed using datalogsk rules (essen-

tially, unions of conjunctive queries), similar to the ones we use in Chapter 5 to

maintain individual provenance relations. Moreover, to keep unfolding simple

and efficient, in the current implementation we assume non-overlapping ASR def-

initions for the case of outer joins, i.e., no mapping can appear in more than one

outer join ASR. Non-overlapping outer join definitions allow for a greedy unfold-

ing algorithm, which is not possible if the same mapping or path appears in more

than one ASR definition. This greedy unfolding algorithm works for overlapping

inner join definitions, so long as no ASR is contained in another.
6In future work we intend to explore extensions to ORCHESTRA to allow outer joins in map-

pings.
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For the case of inner joins, this can be done as follows:

• Store the mapping in individual provenance relations (e.g., m1 in P 1)

• Add a rule of the form:

P (2,1)(x, y, z) :- P 2(x, y), P 1(x, z)

In the rule above, the variables have been renamed according to the homomor-

phism from the body of m1 to the head of m2, as described in the previous section.

The ones that are common (i.e., x) correspond to the join conditions and only need

to be stored once, since P (2,1) contains the inner join between the two relations, and

thus the values of those variables for both relations P 2, P 1 are equal. Finally, we

index the ASR relation on the attributes that belong to the key of at least one of the

individual provenance relations.

On the other hand, the outer join cases cannot be directly expressed using

datalogsk rules. However, it is possible to use datalogsk rules to define null-padded

relations that resemble outer joins as follows:

• Store the provenance of each mapping in an individual provenance relation

(e.g., m1 in P 1)

• For the case of full outer join, add rules of the form:

P (2,1)(1, 1, x, y, x, z) :- P 2(x, y), P 1(x, z)

P (2,1)(1, 0, x, y,−,−) :- P 2(x, y)

P (2,1)(0, 1,−,−, x, z) :- P 1(x, z)

In the rules above, the symbol ‘−’ indicates that we pad the tuples with NULLs

for all attributes that are irrelevant in the corresponding case. Observe that, in the

case of outer joins the schema of the ASR relation needs to have a distinct attribute

for every attribute in each of the individual provenance relations. This is necessary
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for tuples of one relation that don’t join with any tuples from the other relation.

The first rule above inserts to P (2,1) the inner join between the two relations. The

other two rules also insert tuples from one relation that don’t join with a tuple

from the other relation, padding the remaining attributes in the join relation with

NULLs. Note that, for each individual relation, the tuples that join with tuples

in other relations will be inserted twice in the ASR relations, using the rules above

(and multiple times, for longer paths). This could be avoided using some datalogsk

rules with negation in their body, i.e., to ensure that tuples that appear in the join

are not also inserted by the second or third rule, padded with nulls. Incremental

insertion propagation for such rules would require that the rules in the program

above are executed in the order presented above, using the explicit stratification

capabilities of datalogsk. However, incremental deletion propagation would not

be possible. For this reason, in this dissertation we chose to implement outer joins

using the rules shown above.

For left (right) outer joins, we can use the first and third (resp. first and second)

rules above.

Rewriting unfolded rules to use existing ASRs

In order to take advantage of existing ASRs, we need to rewrite the rules produced

by the unfolding described earlier, to replace provenance relation atoms with ASRs

that contain those provenance relations. We have developed a greedy algorithm

that performs this rewriting as follows:

1. For every ASR, consider the paths contained in it in inverse order of length,

and if there is a homomorphism from such a path into the body of the rule,

replace the image of the homomorphism with an appropriate ASR atom.

2. Once such a homomorphism has been found for an ASR, don’t consider sub-

paths of shorter length, but consider the next ASR on the rule produced as a
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result of the rewriting in step 1.

In the algorithm above, the ASRs are considered in some random order. For

the case of ASRs containing inner joins, the first step essentially simplifies into one

homomorphism check, since no subpaths are stored in the ASR. Then, if we have

two overlapping inner join ASRs, only one of which can be used in some unfolded

rules, the correct rewriting employing this ASR will be produced, no matter which

ASR we use first, as long as there is no ASR that is completely contained in another

ASR. On the other hand, with overlapping outer joins, even if the path indexed by

an ASRs A is completely contained in an unfolded rule, if we first consider some

other overlapping ASRB — that is not completely contained in the rule — we may

unfold some subpath ofB, thus making it impossible to take full advantage ofA in

the rewriting, since some of the atoms in the path indexed byA have been replaced

by a B atom. In this case, we would need to consider a dynamic programming

approach, considering the ASRs in all possible orders and assigning some value

on the resulting reordering, in order to finally pick the one considered optimal.

In our implementation, we selected to only allow non-overlapping outer join ASR

definitions, for which our greedy algorithm above is sufficient.

8.3 Experimental Evaluation

In this section, we investigate the performance of path traversal queries, which

are at the core of any provenance query, and the optimization benefits of ASRs

for such queries on CDSS settings with different mapping topologies. First, we

consider a simple topology, where all peers are connected through mappings that

form a chain. For this setting, we investigate the effect of the number of peers

with local data to the number of unfolded rules, and the resulting performance

in terms of unfolding and query evaluation time. Next, we consider more com-

plex topologies for moderate numbers of peers with local data, and investigate
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the performance and scalability of both the unfolding algorithm and evaluation

time for the unfolded rules on these topologies, for different numbers of peers and

amounts of data at each peer. Finally, we consider grouping mappings along paths

in ASRs of different types and lengths, and we investigate the effects to unfolding

time (including the time for rewriting rules to use these ASRs), evaluation time

and maintenance time.

8.3.1 Experimental Setup

We conducted all experiments on our ProQL implementation on top of ORCHES-

TRA. As with the rest of ORCHESTRA, the ProQL implementation, including pars-

ing, unfolding and translation to SQL queries was implemented as a Java layer

running atop a relational DBMS engine. We used Java 6 (JDK 1.6.0 07) and Win-

dows Server 2008 on a Xeon ES5440-based server with 8GB RAM. Our underlying

DBMS was DB2 UDB 9.5 with 8GB of RAM.

Experimental CDSS Configurations and Terminology

For CDSS settings, we extended the workload generator used in the ORCHES-

TRA experiments of Section 6.4, in order to generate topologies to test provenance

querying at scale.7 The resulting schemas are still based on the schema of the

SWISS-PROT protein database [7], from which we also extract data to use as local

insertions for the peers that have local data. For the provenance querying exper-

iments, we partition the 25 attributes in the SWISS-PROT universal relation into

two relations, adding a shared key to preserve losslessness. Then, each mapping

has a join between two such relations in the body and another join between the

two relations of the peer in the target of the mapping. We give more details about

specific mapping topologies in the discussion of experiments below.
7for randomly generated topologies we typically got very short paths with mappings in the

same direction, and thus we have omitted them from this experimental evaluation.
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As in the case of the experiments of Section 6.4, we generate fresh insertions

by sampling from the SWISS-PROT database and generating a new key by which

the partitions may be rejoined. For these experiments, we substituted integer hash

values for each large string in the SWISS-PROT database, under the assumption

that such data would be stored as CLOBs in a real bioinformatics system. We refer

to the base size of a workload to mean the number of SWISS-PROT entries inserted

initially into each peer’s local contribution relations and propagated to the other

peers before provenance queries were executed. Unless otherwise specified, in

our experiments we insert 10,000 tuples in each relation of each peer that has local

data, and propagate these tuples through mappings, before evaluating provenance

queries. In some experiments, we insert data at every peer.

In typical bioinformatics CDSS settings, one would expect most of the data to

be contributed by a small subset of authoritative peers; thus, in most of our ex-

periments we consider settings with relatively few peers with local data, while

the remaining peers import data from them along incoming mappings, edit them

according to their trust policies, and propagate them further along outgoing map-

pings. In our first experiment we also explore the scalability of provenance query-

ing in a setting where all peers have local data, as a stress test. However, in most

of the remaining experiments we consider settings where local data is only con-

tributed by leaf peers, i.e., peers with no incoming mappings, or leaf and middle

peers, i.e., peers that appear roughly halfway along some path from a leaf peer to

the root peer, i.e. the peer with no outgoing edges (which is unique in all of our

topologies).

The particular topologies we present in the experiments below should not be

interpreted as a complete CDSS setting, but instead as patterns that could appear

within a CDSS setting. In particular, they focus on a projection of the complete

mapping graph that only contains peers from which our root peer of interest is

reachable. Typically, in a CDSS, there will be many peers and mappings that do
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not propagate data to this peer (e.g., other peers that import data from common

authoritative sources) and such other mapping paths do not affect the evaluation

or the result of the provenance queries whose performance we measure.

Provenance Queries

The main goal of these experiments is to evaluate the performance of the path

traversal component of ProQL, with or without the use of ASRs. As a result, for

our experiments, we used queries of the form

FOR [R $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

where in most cases R is a relation at the peer at the root of the correspond-

ing topology, unless otherwise specified. Such queries traverse all the paths in the

mappings graphs up to their end, and thus are ideal in order to evaluate path

traversal, both in terms of unfolding cost and evaluation time of the unfolded

rules. We also experimented with similar queries involving annotation compu-

tation, such as:

EVALUATE DERIVABILITY OF {

FOR [R $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

} ASSIGNING EACH leaf node $y {

CASE $y in T : SET false

CASE ...

DEFAULT : SET true

}

Perhaps surprisingly, we found that the execution time for queries involving
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such annotation computation was very similar to that the execution time for their

graph projection component, i.e., the graph projection component dominates exe-

cution time. Thus, for simplicity, in the experiments below we will focus on graph

projection queries that don’t involve annotation computation.

Experimental Methodology

Each individual experiment was repeated seven times, with the final number ob-

tained by discarding the best and worst results and computing the average of the

remaining five numbers, to ensure warm caches. We note that the first run was

usually a lot slower than all subsequent ones, likely because of the time the DB2

optimizer took to find a good query plan for each of the unfolded rules (which,

for some of the topologies considered could have up to around 40 atoms, resulting

in 40-way joins with numerous join conditions). In subsequent runs, this plan se-

lection was likely cached, and evaluating the selected plan turned out to be pretty

efficient, even for such large queries, as we show in our experiments below.

8.3.2 Effect of Number of Peers with Local Data

In the experiments of this section we use a simple topology, where mappings form

a chain, as shown in Figure 8.2. For the first experiment, we perform a “stress-

test” by assuming that all peers have local data and investigate the performance

of the following query (hereby called the “root” query) for different numbers of

peers:

FOR [R0 $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

Figure 8.3 shows that, in this case, the number of unfolded rules grows expo-

nentially with the number of peers. Intuitively, this is because every tuple at every
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peer may either be inserted locally or derived from some peer further “down-

stream” in the graph of mappings, and the unfolding needs to cover all these pos-

sible derivations. Moreover, for every join we need to consider all combinations

for each side of the join. Thus, as also shown in Figure 8.3, unfolding time and

evaluation time for the unfolded rules also grow exponentially and is efficient for

up to 10 peers. In a related experiment, we varied the number of peers with local

data, out of a total of 8 peers. Figure 8.4 shows that the number of unfolded rules,

as well as unfolding and evaluation times also grow exponentially when the ratio

of peers with local data increases.
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8.3.3 Scalability of Provenance Querying vs Number of Peers

and Base Size

The experiments above show that the number of unfolded rules as well as the time

required for their evaluation grows very fast with the number of peers, for set-

tings where most peers have local data. As explained earlier, these experiments

were meant mostly for stress-testing, but more realistic bioinformatics settings are

unlikely to contain long chains where each of the peers along the way contributes

more data. It is more likely that mappings in a chain would propagate data be-

tween user databases from some authoritative source at the source of the chain,

without introducing new data, or that a peer imports data from multiple authori-

tative sources along different (and typically shorter) mapping paths.

For this reason, in the next experiments, we consider CDSS settings with the

chain topology of Figure 8.2 that only have data either at the last peer (hereby

called “leaf” peer), or at the leaf and middle peer (i.e., the one half-way between

the leaf and root peer, along the path of mappings).
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Figure 8.5 shows that the size of the instance produced as a result of the prop-

agation of local data at the leaf or leaf and middle peers grows linearly with the

base size, for a settings of 30 peers with mappings forming a chain. Unfolding time

and evaluation time for the unfolded rules also grow linearly up to a few seconds,

even for a base size of 10k tuples per peer relation. For this reason, in subsequent

experiments we use 10k tuples per peer relation as the base size.

In Figure 8.6 we show that the size of the instance, that results from the prop-

agation of 10k tuples at the leaf or leaf and middle peers also grows linearly with

the total number of peers. Unfolding time and evaluation time for the unfolded

rules also grow linearly, and is within few seconds, even for a chain of 30 peers.

However, we were unable to run experiments for settings with more than 30 peers

because the resulting SQL queries are too large for DB2 (recall from the translation

explained in the previous section that the unfolded rules would contain up to n-

way joins, where n is roughly equal to the number of peers along a path from the

root peer to a peer with local data).

We also study scalability of provenance querying for other topologies. In par-

ticular, we considered the branched topology of mappings shown in Figure 8.7,

where half of the mappings form a chain, while the remaining ones form two

shorter branches, connected at different points with the chain. For this topology,

we assigned local data to the peers at the end of each mapping path, as well as

possibly in the middle of each such path.

Figure 8.8 shows that unfolding and evaluation time grow fairly slowly for

branched settings up to 30 peers, with data at the leaf or leaf and middle peers.

The “jump” that occurs between 5 and 10 peers — in the case where both leaf and

middle nodes have local data — is caused by the fact that the number of unfolded

rules jumps between the corresponding cases (essentially because a setting of 5

peers is too small to have “middle” peers). Moreover, even for 30 peers in that

case, the total provenance query processing time (i.e., the sum of unfolding and
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evaluation times) is within 20 sec, which is well within the requirements of our

target applications.

Finally, we also considered a topology that corresponds to a situation where

some peer imports data from many different authoritative sources. In this topol-
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ogy, the mappings form a 4-ary tree, as the one shown in Figure 8.10. As in the

previous topologies, we assign local data to all peers with no incoming mappings.

However, in this topology the number of such peers (e.g., for the same total num-

ber of peers) is considerably larger. For instance, in the case of 30 peers, 24 of them

contain local data. This, combined with the existence of many alternative deriva-

tions due to the large number of branches at every level of the tree, results in a

large number of unfolded rules, as shown in Figure 8.9. As a result, unfolding and

evaluation times for the root query scale linearly for small number of peers and

exponentially, for over 20 peers — although at a slower rate than in the case of

a chain topology with data at every peer. Even so, total query processing time is

under a minute, even for a 4-ary tree of 30 peers, which is within the requirements

of our target applications.
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8.3.4 Comparison of Different Join Types for ASRs

Even though we showed that query performance is fairly efficient (perhaps sur-

prisingly so, given the size and complexity of the unfolded rules in some cases),

there is a lot of room for optimization, using ASRs to essentially materialize joins

that appear in many of these unfolded rules. As we discussed earlier, there are

several options about what kind of join to store in an ASR. In this section, we in-

vestigate — for the topologies presented in the previous section — the effect of

these different options to query processing as well as maintenance times, i.e., the

time to propagate local data to peer, provenance and ASR relations.

First, we consider a CDSS setting with 30 peers, with mappings forming a chain

topology, such as the one of Figure 8.2, with 10k tuples of base data only at the leaf

peer. When defining ASRs of different types, we varied the length of paths that we

store in them. In the following graphs we call this length the maximum join width,

since the length of the paths we store is reflected in the width of the corresponding

join between provenance relations (i.e., a path of length n is translated to an n-way

join). For the chain topology, we essentially “split” the chain into paths up to this

maximum width, and possibly store the remaining mappings in a shorter ASR, if

the number of mappings is not a multiple of this join width. We note that, in this

topology, the root query is essentially translated into a single unfolded rule, and

the join in the body of the rule contains all ASRs we define (and in that sense it is

an ideal case for optimization using ASRs).

Figure 8.11 shows the total query processing time (i.e., the sum of evaluation

and unfolding times) for the root query in the cases of inner, full outer, left outer

and right outer join being stored in the ASR. The dotted line indicates the process-

ing time for this query without using any ASRs. First, we observe that, in this case,

all kinds of ASRs improve performance. Among different join types, inner joins

provide the best performance, left and outer joins are identical and full outer join
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comes in last. We also note that inner join performance improves, as the joins get

eider, while for outer joins, performance gets worse beyond a certain length. One

reason for the latter is that, for wider outer joins, the resulting ASR relation is sig-

nificantly wider (e.g., in our experimental workload we have to add 26 attributes

to it for every additional “unit” of width). Moreover, since in the outer join cases

we have to consider subpaths of the complete path, the number of these subpaths

grows roughly quadratically with the length of the complete path. Finally, recall

that our “simulation” of outer joins using conjunctive queries repeats tuples that

appear in a path for each subpath of it. Thus, this redundancy is more pronounced

for wider outer joins, because they contain more subpaths. On the other hand,

for inner joins the width of ASR relations is the same for paths of different length,

since we have the same attributes at all peers (and would grow more slowly for

any CDSS, since we only need to store joined attributes once). Moreover, in this

case, longer paths can only contain the same or fewer tuples than shorter paths.

This redundancy affects the size of the instance produced from the propagation

of local data, including peer, provenance and ASR relations. Thus, it also affects
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the maintenance time for different kinds of joins, as illustrated in Figure 8.12. In

this graph, the dotted line indicates the maintenance time for the case where no

ASRs are defined. The overhead of inner joins in both cases is minimal, and de-

creases for wider joins, due to the fact that splitting the chain topology into wider

joins produces fewer ASR relations. At the other extreme, for full outer joins, the

overhead for both maintenance time and instance size is significant, and grows fast

with join width, due to the large number of subpaths stored in the ASR, and the

redundancy between contained subpaths, as explained above. For left and right

outer joins the number of subpaths is smaller — and grows more slowly with join

width — and so does maintenance time. We note that in these cases the instance

size actually gets smaller in terms of the total number of tuples in the instance be-

yond a certain join width, again because splitting the chain topology into wider

joins produces fewer ASR relations. However, even in this case the produced ASR

relations are wider, resulting in slower maintenance times.

We also performed the same experiment on a CDSS setting with 30 peers where

mappings form a branched topology, such as the one shown in Figure 8.7, with 10k

tuples of base data at the leaf peers (i.e., the three peers with no incoming map-

pings at the end of each branch). In this topology, the root query is translated to 13

unfolded rules, each containing paths along combinations of these branches. The

total query processing times for this query, for different kinds and widths of joins,

are illustrated in Figure 8.13, where the dotted line indicates the query processing

time when no ASRs are defined. First, we observe that inner joins provide a signifi-

cant performance benefit. Note that, going from a join width of 5 to 7, this speedup

decreases. This is because, due to the branched topology and the large width of the

joins, some of the unfolded queries do not contain completely some of the ASRs,

and thus cannot take advantage of them. On the other hand, outer joins contain

all subpaths and thus there is always a way to use them with any rule. However,

the very large number of attributes they contain and their large size, partly due to
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redundancy, as explained above, end up having a negative impact in performance.

Thus, as shown in the figure, query processing time for all kinds of outer joins is

worse than in the case when no ASRs have been defined. Figure 8.14 shows that

the large number of tuples and attributes in the outer join relations (more so in the

case of full outer joins) also incurs a larger overhead in maintenance time for the

different kinds of joins, while the overhead for the case of inner joins is minimal.

Finally, we investigate the performance of provenance querying on the 4-ary

tree topology, which contains multiple overlapping short paths, as shown in Fig-

ure 8.10. In particular, we consider a setting with 30 peers, where each of the 24

leaf peers is initialized with 10k tuples of local insertions. For 30 peers, the longest

path ending at the root peer only contains three mappings. For outer joins, since

no overlapping between ASRs is allowed, we defined as many non-overlapping

paths as possible, of length 3 or 2. Thus, only a small part of the paths in the

mapping graph is covered by ASRs. For inner joins, we considered two cases: one

where we defined the ASRs for the same paths as in the case of the outer joins, and

another where we defined overlapping ASRs of length 3, for each path from a leaf
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peer to the root.

Figure 8.15 shows the total query processing time for each of these cases. We

observe that, as in the case of the branched topology, outer joins perform worse

than the case where no ASRs have been defined (slightly worse for left outer joins,

much worse for the case of full and right outer join). On the other hand, inner

joins yield a significant performance benefit, especially when overlapping ASR

definitions are allowed. Figure 8.16 shows the corresponding maintenance times

for the different join kinds, showing a moderate overhead in the case of outer joins

and a small overhead for inner joins. We note that the overhead for outer joins

is relatively smaller for the 4-ary tree topology than for the chain and branched

topologies. This is due to the fact that in the 4-ary topology the ASRs have rela-

tively small width, while there is also a relatively small number of them, due to

the requirement that they do not overlap.

166



8.3. Experimental Evaluation

Inner Join Width

In the experiments above, inner join ASRs always yielded a performance benefit,

and in most cases this benefit increased for wider inner joins. In this section we

investigate the effect of inner join width in more detail, and identify cases where

wider inner joins may provide smaller performance benefits, as hinted before in

the case of Figure 8.13 in the previous section.

We first examine the case of a chain topology of 30 peers, with local data at

the leaf and middle peers, and the provenance query (hereby called “middle”

query):

FOR [R15 $x]

INCLUDE PATH [$x] <-+ []

RETURN $x

Figure 8.17 shows the effect of different maximum width of inner join ASRs on

unfolding and evaluation times for the middle query, as well as maintenance time,

i.e., the time for propagating 10k base tuples at each peer with local data. In this

graph, width of 1 indicates the case where no ASRs have been defined. We observe

that wider ASRs generally result in faster evaluation times. However, when the

width reaches 15 the inner join is too wide to be used by the single unfolded rule,

and the evaluation time is essentially the same as in the case where no ASRs have

been defined. We also observe that unfolding time stays approximately constant

for wider inner joins. This is because wider ASRs are more complex to unfold, but

there are fewer of them. For the same reason, inner joins incur a small overhead

to maintenance time, but this overhead stays approximately constant for different

inner join widths.

Figure 8.18 shows a similar phenomenon for 30 peers in a branched topology

with 10k base tuples at the leaf peers. Evaluation time for the root query improves

for wider inner joins, but the benefit is smaller when the width reaches 7. This
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is because these inner joins cross the boundaries where the branches “connect”

with the chain in the topology of Figure 8.7, and the utilization of the ASRs in the

unfolded rules is lower than in the case of narrower joins.

8.3.5 Overall Conclusions

Our final conclusion from these experiments is that ProQL query processing can

be performed within the requirements of target CDSS applications, i.e., with ex-

ecution times under a minute for various mapping topologies of tens of peers.

Moreover, inner join ASRs can be used to improve this performance significantly.

In particular, query processing times are in the scale of seconds or tens of seconds,

even for settings with tens of peers, and the main limit for scaling to larger settings

comes from limitations of the underlying DBMS, regarding the size and complex-

ity of the generated SQL queries. Inner join ASRs improve the performance of path

traversal significantly, and the benefit increases for wider ASRs, as long as they do

not exceed some width that depends on the particular query and topology. On the

other hand, outer join ASRs often performed worse even than the case when no
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ASRs have been defined. We believe that this is due to the large number of tuples

in the outer join relations, that is partly due to the redundancy caused by our im-

plementation of inner joins, using unions of conjunctive queries. In future work,

we intend to explore the performance of ASRs using real outer joins, avoiding this

redundancy, as well as techniques for their incremental maintenance. We expect

that such outer join ASRs will provide a speedup that is closer to that of inner

joins, since they will avoid some of the redundancy in our current outer join im-

plementation. Moreover, for large outer join widths, we plan to consider ASRs that

only contain a subset of all possible subpaths, depending on the particular map-

ping topology, to further decrease the number of tuples and attributes in outer join

ASRs, which we believe to be the cause of the unsatisfactory performance of outer

join ASRs in many of our experiments above.

Finally, the conclusions drawn from this experimental evaluation provide some

hints for heuristics that can used for determining which ASRs to create and main-

tain, given a CDSS setting and a workload of provenance queries. One obvious

such heuristic could be that, for any chain of mappings with no branches and no

local data along the way, creating an as wide as possible inner join ASR is guaran-

teed to provide a significant performance benefit. Such heuristics, combined with

cost-based techniques, as we discuss in Chapter 10, can form the basis a framework

for automated index seletion for provenance queries.
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Chapter 9

Related Work

Our work on CDSS update exchange takes advantage of previous work on PDMS

(e.g., [64]) and on data exchange [45, 80, 65, 89]. With our encoding in datalogsk,

we reduce the problem of incremental updates in CDSS to that of recursive view

maintenance where we contribute an improvement on the classic algorithm of [61].

Incremental maintenance of recursive views is also considered in [81] in the con-

text of databases with constraints using the Gabrielle-Levi fixpoint operator; we

plan to investigate the use of this technique for CDSS. The AutoMed system [83]

implements data transformations between pairs of peers (or via a public schema)

using a language called BAV, which is bidirectional but less expressive than tgds;

the authors consider incremental maintenance and lineage [46] under this model.

In [54], the authors use target-to-source tgds to express trust. Our approach to

trust conditions has several benefits: (1) trust conditions can be specified between

target peers or on mappings themselves; (2) each peer may express different lev-

els of trust for other peers, i.e., trust conditions are not always “global”; (3) our

trust conditions compose along paths of mappings. Finally, our approach does not

increase the complexity of computing a solution.

Bidirectional update exchange is closely related to the view update problem, in

which tuples in the base instance are to be changed in order to accomplish updates
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over the view, is more subtle because each source tuple may produce several tu-

ples in the view. A given view update may thus introduce side effects: in order

to modify one tuple in the view, we must modify a tuple in the base, which in

turn causes other tuples in the same view to be inadvertently changed (a “side

effect”). Dayal and Bernstein identified constraints under which an update does

not introduce side effects within the same view [38]; other work has explored a

variety of other, generally stricter, restrictions over what data is allowed to be

affected [9, 38, 71]. Recent work [17] has considered restricted view definition

languages in which view update is side effect-free. Generally the view update

literature considers only a single view, which is typically a conjunctive query. Fi-

nally, [22] considered the related problem of deletion minimization, i.e., finding a set

of source deletions that perform a view deletion and cause the minimal of side ef-

fects. This is different from our approach, where we want to detect and avoid all

side effects, even at the cost of not performing the requested update.

We propose a novel provenance model that is useful for a variety of applica-

tions and generalizes previous models of provenance (lineage, why-provenance)

and query answering on annotated relations. Lineage was first introduced in [35,

36] and why-provenance in [21] but the relationship with [66] was not noticed. The

papers on probabilistic databases [52, 98, 76] note the similarities with [66] but do

not attempt a generalization. Datalog with bag semantics in which derivation trees

are counted was considered in several papers, among them [82, 85, 86]. The eval-

uation algorithms presented in these papers do not terminate if some output tuple

has infinite multiplicity. Datalog on incomplete and on probabilistic databases is

considered in [43, 77], again with non-terminating algorithms. Later [87] gave

an algorithm for detecting infinite multiplicities in datalog with bag semantics

and [53] gave a terminating algorithm for datalog on probabilistic databases.

Two recent papers develop among other things provenance models that bear a

relationship to our approach. Like us, [27] identifies the limitations of lineage and
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why-provenance and proposes route-provenance, which is also related to deriva-

tion trees, but uses it for a different purpose—debugging schema mappings. Our

model maintains a graph from which provenance can be incrementally recom-

puted or explored, whereas their model is based on recomputing the shortest

routes on demand. [11] proposes a notion of lineage of tuples which is a com-

bination of sets of relevant tuple ids and bag semantics. This is more detailed than

the older notion of lineage [35] but we can also describe it by means of a special

commutative semiring, so our approach is more general. The paper also does not

mention recursive queries, which are critical for our work. Moreover, [11] does

not support any notion of incremental translation of updates over mappings or

incompleteness in the form of tuples with labeled nulls. Our provenance model

also generalizes the duplicate (bag) semantics for datalog [86] and supports gen-

eralizations of the results in [87].

The first attempt at a general theory of relations with annotations appears to

be [67] where axiomatized label systems are introduced in order to study contain-

ment. Our provenance model borrows the machinery of semirings and formal

power series from the theory of formal languages (see [75] and references in there).

For example, (non-commutative) algebraic systems of equations can be associated

to context-free grammars and the integer coefficients in the formal power series

solutions count the “degree of ambiguity” of a string in the language [29] (their re-

striction to grammars without unit rules inspired our Theorem 4.5.2). Context-free

grammars have been used in the study of datalog but mainly chain datalog pro-

grams were considered (e.g., [5]) in order to capture the inherent order in strings.

Closed semirings are used in [96, 32] but only in order to use Kleene’s regular

expression algorithm to optimize special classes of datalog programs.

Semirings have also been used in AI, in a line of work on constraint satisfaction

problems (CSP) [14, 15]. Their constraints over semirings are in fact the same as our

K-relations and the two operations on constraints correspond indeed to relational
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join and projection. CSP solutions are expressed as projection-join queries in [14]

and as Prolog programs in [15]. Computing solutions is the same as the evaluation

of join and projection in Section 4.2 and [15] also uses fixed points on semirings.

There are some important differences though. The semirings used in [14, 15] are

such that + is idempotent and 1 is a top element in the resulting order. This rules

out our semirings N,N∞,N[X],N∞[[X]] hence the bag and provenance semantics.1

More importantly, much of the focus in CSP is in choosing optimal solutions rather

than how these solutions depend on the constraints.

The design of ProQL has been influenced by graph query languages, such as

GraphLog [31], UnQL [20], Lorel [4], StruQL [47]. However, provenance graphs

are different from the graph models of those languages, in that they have two

kinds of nodes, for tuples and mappings, and paths of this graph need to main-

tain all inputs of each mapping node along them. Moreover, semiring evaluation

capabilities as well as the fact that ProQL queries only compute projections of a

provenance graph, without the ability to create new nodes or graphs, are unique

in our language.2 [55] propose a query language for data annotations consisting of

blocks and colors, which can considered as a form of data provenance, that is how-

ever less suitable than our graph model for applications such as the ones discussed

in Chapter 7.

A related line of work involves languages that manipulate annotations that are

stored together with the data. Bhagwat et al. [13] propose an annotation mecha-

nism for relational databases where annotations are stored in extra attributes, and

extend the Select-Project-Join-Union fragment of SQL with a clause which allows

the user to specify explicitly how annotations should propagate. The focus is thus

on the propagation of the annotations through queries, and the issue of how to
1Another difference is that for datalog semantics we require our semirings to be ω-continuous

while [15] uses the less well-behaved fixed points given by Tarski’s theorem for monotone opera-
tors on complete lattices. However, the semiring examples [15] appear to be in fact ω-continuous.

2with the possible exception of XPath [30] for the latter
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query the annotations themselves is not addressed. The DBNotes system [28] ex-

tends this framework and offers limited support of querying stored annotations.

Finally, [19] studied the expressive power of languages that manipulate annota-

tions explicitly, and compared them with the implicit provenance associated with

a query or update. However, none of these approaches provides the flexibility of

annotations from different semirings provided through a query and combined us-

ing appropriate operators for that semiring. Moreover, they refer to propagation

through a single query, and do not deal with propagation through complex graphs

of schema mappings, as in the case of CDSS.

Although we focus on data provenance, some of our provenance querying use

cases have been influenced by work on workflow provenance querying [91, 26, 16].

In particular, the provenance queries proposed as part of the Second Provenance

Challenge [91] includes identifying derived data that has been produced from spe-

cific source data. The use cases suggested by the authors of [26] include retrieving

the provenance of a subset of all data or using provenance to filter data, either

through a selection condition or “joining” data with common provenance. Finally,

in [16] the authors propose the use of views to present (parts of) the graph to users

at different levels of abstraction, in order to deal with the complexity of workflow

provenance graphs and allow users to only focus on what is interesting to them.

Despite the shared motivations and use cases with workflow provenance query-

ing, there is a fundamental difference with our work: our underlying model of

data provenance deals with declarative queries with operations such as union and

join, for which particular identities hold, and relationships between data come

from the properties of these operations. Some of the unique features of our query

language, such as the ability to use provenance to compute annotations, are only

possible because the operators we consider form commutative semirings. On the

other hand, workflow provenance models, such as [88], typically describe proce-

dural workflows and involve operations that are treated as black boxes, because
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of their complexity, while connections between different operations are explicitly

prescribed in the workflow specification. Identifying workflows whose runs can

be described declaratively or whose operations satisfy similar identities, as in the

case for relational operators, could be an interesting direction of future research.

Business process querying can also be considered a form of workflow prove-

nance querying. In [10], the authors introduce BP-QL, a visual language for query-

ing business processes, that have been produced by runs of BPEL specifications.

This is especially convenient for BPEL users, because the graphical user interface

used to formulate BP-QL queries resembles that of graphical BPEL specification

editors. An analogous graphical interface could possibly be built on top of the

graph projection component of ProQL, although in the case of schema mappings

and/or datalog queries there is no “standard” graphical user interface for their

specification that would be familiar to users. Moreover, it is not clear how annota-

tion computation could be expressed in such a graphical interface.

Our encoding of the provenance graph in relations resembles the approach

of [48, 49], where edge relations are used to store XML in an RDBMS. In terms of

indexing to improve evaluation of path expressions, a wide variety of techniques

have been studied in the literature for different data models, ranging from semi-

structured data [84, 56] to objects [73, 74] to XML [70, 33]. However, virtually all

XML index techniques are based on the notion of a distinguished document root,

and that they also do not tolerate cycles. Our queries can have multiple relation

nodes of interest, and the provenance graph can indeed have cycles. It may be pos-

sible to leverage the index techniques for semistructured data in a custom prove-

nance storage system, but in general their representations (state machines over

the graph, with extent records pointing to data) do not fit well into the relational

DBMS model we currently use. As explained in Section 8.2, ASRs [73, 74] were

the most natural index technique to adapt for our provenance query scheme, and

thus we chose to use them as the basis for our provenance indexing techniques,
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with encouraging perforance results, as we showed in Section 8.3. In future work,

we intend to explore automated techniques, such as [6], to select the set of indexes

to create, given a provenance graph and ProQL query workload.
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Chapter 10

Conclusions and Future Research

Directions

In this dissertation we have described the fundamental role of provenance in Col-

laborative Data Sharing Systems, both as a first-class artifact, that users can explore

and query, and as an enabler for complex CDSS operations involved in update ex-

change. In order to realize the vision of such systems described in [68], we had to

address several challenges.

First, we had to define formal semantics for update exchange, that tolerate dis-

agreement between participants and allow them to filter data according to their

own provenance-based trust policies, and develop algorithms to perform it. To ad-

dress this challenge, in this dissertation we built upon techniques for exchanging

data using networks of schema mappings to define the semantics of update ex-

change over unidirectional and bidirectional mappings.

Second, we needed a rich model of provenance that captures enough infor-

mation as updates are propagated through mappings both to answer CDSS users

queries, e.g., regarding trust, and to enable and optimize internal CDSS opera-

tions. For this reason, we defined a rich model of provenance for relational and

datalog queries, based on the mathematical framework of semirings, that is suf-
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ficiently informative for the needs of a CDSS. In particular, we showed that this

form of provenance can be used to compute annotations for propagated data, such

as whether they should be trusted. Moreover, we described how this form of

provenance can be stored in relations and maintained together with update ex-

change, using datalog programs generated from the schema mappings. We also

presented algorithms exploiting this provenance information in order to enable

or optimize update exchange operations, such as detecting which tuples are no

longer derivable and should be deleted, when a deletion is propagated over unidi-

rectional mappings, or avoiding updates that cause side effects at run time, in CDSS

with bidirectional mappings. Finally, we developed a complete implementation of

unidirectional and bidirectional update exchange in our ORCHESTRA CDSS pro-

totype, with novel algorithms and encoding schemes to translate updates, main-

tain provenance, and apply trust conditions and provided a detailed experimental

study of the scalability and performance of our implementation of CDSS opera-

tions, illustrating the feasibility of our approach

Last but not least, we discussed that CDSS users need tools that allow them

to exploit the provenance of data, after updates have been exchanged, e.g., in or-

der to include provenance testing in their data querying or compute annotations for

their data that are useful for a variety of applications. For this reason, we first pro-

vided an alternative equivalent graph representation of our provenance semirings,

called the provenance graph model, that is more suitable for visualization and query-

ing by CDSS users, while also capturing relationships between the provenance of

derived tuples. We then defined a query language for provenance graphs, ProQL

which is useful in supporting a wide variety of applications with derived data.

This language can be used to assess trust and derivability or detect side effects, as

required for CDSS operations, as well as to express more complicated provenance

queries and, optionally, compute data annotations in particular semirings. Finally,

we developed a prototype implementation of ProQL over an RDBMS, introduced
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10.1. Future Research Directions

indexing techniques for speeding up ProQL queries that involve path traversals

and provided a detailed experimental study of the performance of provenance

query processing in a variety of CDSS settings and of the benefit yielded by differ-

ent indexing techniques.

10.1 Future Research Directions

The work in this dissertation laid the foundations for the realization of Collabora-

tive Data Sharing Systems, and illustrated the importance of provenance both as

enabler for update exchange operations and for provenance querying. However,

there are several ways to extend the applicability, functionality and performance

of update exchange and provenance querying.

10.1.1 Exploiting Provenance to Support More Flexible

Update Exchange

In this dissertation, we have developed algorithms for propagating updates in set-

tings with either only unidirectional or only bidirectional mappings. In practical

data sharing scenarios it is more likely that a combination of them could be re-

quired, e.g., bidirectional mappings between “authoritative” sources and unidirec-

tional ones from those sources to the databases of individual researchers who want

to import data from them. However, this raises interesting research questions, such

as identifying which updates to propagate to which sources while preventing side

effects, i.e., causing unintended deletions of tuples with shared sources with those

that the user deleted. Moreover, techniques from propagation along unidirectional

mappings can be used in order to perform deletions that cannot be propagated to

the sources without causing side effects. Furthermore, in our work on bidirectional

mappings we took a conservative approach regarding the treatment of side effects:
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we only delete source tuples that are not in the provenance of any side effect. How-

ever, in some cases it may be possible to delete some of those source tuples while

not causing a side effect, e.g., if an alternative derivation exists. An interesting

research direction would involve examining if provenance can be used in order

to efficiently compute a maximal set of source tuples that can be deleted without

causing side effects. These issues are closely related to the view update problem,

which has been an ongoing research topic in the database community for the last

25+ years, and we believe that using rich provenance information could lead to a

better solution.

10.1.2 ProQL User Evaluation and Possible Extensions

In Chapter 7 we proposed core semantics and a syntax for ProQL and showed

how it can be used to express the use cases we presented in Section 7.1. In our

design of ProQL we tried to envision the provenance querying requirements of

CDSS users, as well as provenance querying use cases that have appeared in re-

lated work on data and workflow provenance querying. In the future, it would

be important to deploy ProQL together with ORCHESTRA in a real-world system,

such as pPOD [90], in order to assess its impact in practice, and possibly identify

new use cases to be handled by future ProQL extensions.

One possible such extension involves the ability to assign values to mapping

nodes individually, e.g., according to values of the tuples on which the mapping is

applied, instead of in terms of a definition of a function in the corresponding semir-

ing, as in the current language specification. However, to provide this functionality

we would also need to extend our provenance model, intuitively to treat mapping

nodes as “first-class” citizens, similar to the tuple nodes. Another possible ex-

tension involves an “advanced” form of projection over provenance graphs, that

involves replacing paths of mappings with a single mapping representing their

composition.
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10.1.3 Evaluating ProQL Queries Over Cyclic Provenance

Graphs

In this dissertation we presented a scheme for evaluating provenance queries over

acyclic graphs, based on unfolding the queries according to the provenance schema

graph. An alternative scheme — that may also provide better performance if there

are large numbers of possible derivations for each tuple, as e.g., in the case when

most peers have local data, and which also handles recursion — is to execute the

set of rules in bottom-up fashion, materializing the results. We can convert each

rule to an SQL query that creates or adds tuples to an intermediate relation. This

query also adds two attributes, one to store the provenance value of the tuple, and

another encoding the sequence of views by which the tuple was derived, up to

but not including cycles. As in the per-derivation-tree method, we must ensure

that derivations of the same tuple value with the same provenance value are not

removed by SQL set semantics.

If there are no cycles present, we can perform a topological sort on the rule

dependency graph, and execute the SQL queries according to that ordering. In the

presence of recursion, we may need to iterate through this process multiple times,

adding new tuples to intermediate relations in each step, until the computation

reaches fixpoint.

Using this scheme, each view to be created may be defined as a union of con-

junctive queries. For each conjunctive query in the union, our SQL statement will

evaluate its output tuple’s provenance attribute by applying the product opera-

tion to the values of its input tuples’ provenance attributes. The creation of the

sequence-of-views attribute is done using SQL string manipulation (the current

view name is appended to the input sequence, unless the view name already ap-

pears within the sequence). Finally, as with the unfolding scheme presented in

this dissertation, once the set of tuples is computed to fixpoint, we can take the
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resulting tuples and apply a GROUP BY and aggregation operation over them to

produce our final result.

10.1.4 Cost-based Index Selection for Provenance Querying

In the experimental evaluation of our ProQL implementation we manually se-

lected ASR definitions to index paths in the provenance graph, according to the

mapping topology in each case. In general, one would like these definitions to

be generated automatically, for a given workload of ProQL queries over a stored

provenance graph. It would be interesting to investigate whether automated index

selection techniques, such as [6] can be applied in our case, directly or with some

extensions and combined with cost estimates from the optimizer of the underly-

ing RDBMS. Moreover, it would be important to evaluate experimentally whether

the indexing techniques presented in this dissertation can yield similar benefits for

ProQL queries involving more complicated tree patterns.

182



Bibliography
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