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l. 1Introduction ,

"Oof the major areas into which experimental psychology
has been traditionally partitioned, motivation is the least
well understood and systematized. This is true whether we
consider theory, experimental paradigms or experimental re-
sults.... Moreover, of the various notions usually considered
to be primarily motivational, preference is the only one that
mathematical psychologists have attempted to analyze with
any care: there are almost no satisfactory formal theories
concerning, for example, drive and incentive, and those that
exist are best discussed as aspects of learning. So this
chaptef on mathematical theories of motivation isAlimited to
a study of preference and the closely related constructs of
utility and subjective probability." (Luce and Suppes, 1965,
p. 252)

In this thesis we develop certain aspects of the theor-
les of preference discussed in the above mentioned chapter.

Luce and Suppes (p. 256-257) classify asymptotic theor=~
"les of preference according to three binary distinctions,
two of which are relevant to the present study. If we sup-
pose that the responses that a subject makes to stimulug
presentations are governed by probability mechanisms then
a theory is algebraic if it requires that these probabilities
be either 0, 1/2, or 1 and probabilistic otherwise. We con-
fine our attention to probabilistic theories. A simple choice
experiment is one in which a subject 1s asked to select among
several outcomes and a ranking experiment is one in which
he is asked to rank order them. We consider theories for
both classes of experiments.

When decisions are governed by a probabillistic process
which genefates probabilities other than 0, 1/2 and 1 the

connections between simple choice and ranking are not

-1-—-




apparent. Nonetheléss, we expect regular relations to exist
between behavior in these two kinds of experiments and Luce
and Suppes (Pp. 351~-358) expound certain ideas on this topic.
In the first half of the thesis we show that their assump-
tions}have many interesting 1mplications beyond those that
they discuss.

In the second half of the thesis we suppose that a
Subject is making binary comparisons between elements of a
set A = X X X* where each element of A is called a two
component object. For a,b € A, p(a,b) denotes the prob-
ability that a 1is chosen over b . If the ordering 2z on
A defined by '

a b if and only if p(a,b) 2 1/2

is such that (A, 2) satisfies the axioms of Luce and Tukey
' (1964) then the equivalent axioms for the binary probabilities
yield a representation theorem of the form: there exist
real valued functions £, g with domains X, X* , respec-
"tively, such that for x,y € X s X¥,y¥ € Xx

Pl (x,%%), (y,y*)] 2 1/2 if and only if

£(x) + g(x*) 2 £(y) + g(y*) ,

where f,g are interval scales with a common unit.
This example is given by Luce and Suppes (p. 333) and
is the full extent of their discussion of pProbabilistic

theories for binary choices between two component objects,
The second half of the thesis contains a deeper, though

still incomplete, discussion of such theories.




2. Probabilistic Preference Theories

From Luce and Suppes' (1965, Sec. 5, 6, Pp. 331-358)
summary and extension of results about models of preference,
it is apparent that most theorists have been concerned with
the particular paradigm in which a subject has to choose the
most preferred element frbm the available set. A much smaller
body of work concerns experiments in which the subject has to
rank order the set according to some criterion or has to
choose the least preferred element from the available set.
In particular, the strict utility model‘[Luce and Suppes
(1965, .p. 336)] has been applied almost exclusively to choice
-0of the most preferred élement, the major exceptions being
Luce (1959, Pp. 56-58), Block and Marschak (1960, p. 111)
and Luce and Suppes (1965, Pp. 356-358), in each of which
it is also applied to choice of the least preferred element.
Block and Marschak (1960, p. 111) show, however, that such
constraints on the choice_behavior}ére incompatible with
certain reasonable conditions on ranking behavior unless
.a11 of the choice probabilities are equal. There are at
least two'ways of circumventing this undesirable theorem.
The first is to assume that the choice behavior is in agree=-
ment with the strict dtility model but that the ranking hypoth-
eses are incorrect; and the second is to assume that the
ranking hypotheses are correct, but that the choice behavior
is not in agreement with the strict utility model. 1In
this thesis we study the second alternative.

2.1 Notation. _

A = a set of elements.
For xeX¢Ca, )

PX(X) = the probability of choosing x as the most pre-

ferred element in X ,




P, = {Px(x): X € X}

P§(x) = the probability of choosing x as the least pre-

ferred element in X
* E— * .
PX [Px(x). X € X)
R(X) = the set of rank orders of X
p = an arbitrary element of R(X) .

Provided X has at least two elements, we may denote
p = plpz...pn_lpn € R(X) by p = p,0 where
O = pyPgeeeP 1P, € R(X-[pl}) and provided X has at

least three eleméents we may write p = p,Mp, where
W= PaP3ecePpoPpay € RX=[pip 1) .
R(x:X) = {plp € R(X) and Py = x} , 1.e. R(x;X) 1is the
set of rank orders of X 4in which x has rank 1.

p* = the inverse ranking of p s, Ll.e. pi = P p§ = Pr-1’
eePI = PpojqrrccePE = Py -

P(p) = the probability of obtaining p € R(X) when the
subject is ranking from the most preferred ele-
ment to the least preferred element, in which
case p, is the most preferred element.

p* (p) = the probability of obtaining p € R(X) when the
subject is ranking from the least preferred ele-
ment to the most preferred element, in which
case p, 1is the least preferred element.

For the notation to be complete, p(p) and p* (p)
should include reference to the set X of which p is a
rank order; however this omission will not lead to confusion
and so we use the simple; notation. We use the convention
that p(X](x) =1 = pTx](x) for each x € A and write

p(x,y) for p{x,y](x) , P*(x,y) for pTx’y](x) .



2.2 Reversible ranking models.

.We are interested in how the ranking probabilities
P(p), P*(p) relate to the preference probabilities Px and
. to the aversion probabilities P§ . Luce (1959, Pp. 69-70),
Block and Marschak (1960, p. 109) and Luce and Suppes (1965,
Sec. 6, Pp. 351-358) have considered the following possibil-

ity. A person might rank order a set of alternatives by
first selecting the most preferred outcome and giving this
rank one; he then selects the best outcome from the remaining
set and ranks it second and so on until the set is exhausted.
On the- other hand it is equally possible that he may select
the least satisfactory-outcome and rank it last, then the
least satisfactory outcome from the remaining set and rank

it next to last and so on. A possible formulation of the

first suggestion is that for any p € R(X) ,

plp) = Px(pl)Px—{pl}(pz)"‘p(pn-l’pn) (1)
' and of the second suggestion that
p* (p) = P§(pl)P§_[pl}(pz)...p*(pn_l,pn) . (2)

It is possible that the probability of obtaining a particular
ranking p when ranking from most preferred to least pre-
ferred equals the probability of obtaining this ranking when
ranking from least preferred to most preferred, i.e. for

each p € R(X) , '

p(p) = p*(p*) . | . (3)
These conditions are formalized as:

Definition 1. A reversible ranking model is a set of pref-

grence, gversion and non-zero ranking probabilities for the
subsets of a set A which satisfy Egs. 1-3 for all X.C a .,




A special case of this model was studied by Pendergrass

(1958) and by Pendergrass and Bradley (1960). These authors

restricted their attention to three element sets and also
.éssumed that the binary choice probabilities satisfy the
strict binary utility model.

We can now state precisely the result of Block and
Marschak (1960, p. 1ll) mentioned eaflier. They proved
that the set of preference and the set of aversion probabil-
ities of a reversible ranking model both satisfy the strict
utility model only if the preference and aversion probabili-
ties associated with any particular presentation set are all
equal. However, Pendergrass (1958) presents an interesting
reversible ranking model in which all choices need not be
equally likely and thus it is the joint assumption of a
reversible ranking'model and the strict utility model which
is entirely too strong.

2.3 Concordant choice models.
. We are also interested in how the preference probabili-
ties PX are related to the aversion probabilities P§ .
Suppose that a subject has to select both the most preferred

and the least preferred element in a set X and he does

this sequentially. Then it is possible that the probability

of choosing x as best and y # X as worst is independent
of whether the subject first chooses x € X as best and
then y € X-{x} as worst or first chooses y € X as worst
and then x € X-{y} as best. This condition is formalized

ass

Definition 2. A concordant choice model is a set of prefer-

ence and aversion probabilities for the subsets of a set A

such that for x,y € X€ a,
i) px,y) #0 P)




and ii) Px(x)P;{_[x} (y) = P§(Y)Px-[y] (x) .

We note that a concordant choice model for a set
A = {x,y} is any set of binary preference and aversion
probabilities such that p(x,y) = p*(y,x) # 0 .

2.4 Outline of results,

We first show that a set of preference and aversion
probabilities for the subsets of a set A satisfies a con=
cordant choice model if and only if the preference and aver-
sion probabilities for any subset X <€ A each have a partic-
ular representation in terms of the binary preference proba-
bilities p(x,y), X,y € X . These representations are more
complicéted than those of the strict utility model and are
équivalent'to the latter if and only if the preference and
" aversion probabilities associated_with any particular pre-
sentation set are all equal; we shall see later that this re-
sult is strictly stronger than Block and Marschak's.result
(1960, p. 1l1ll1).

We then show that ahy”reversible ranking model is a con-
‘cordant choice model énd use this result to prove that a set
of preference, aversion and ranking probabilities for the
subsets of a set A satisfies a revérsible ranking model if
and only if the preference, aversion and ranking probabilities
for any subset XC A each have a particular representation
in terms of the binary preference probabilities p(x,y) ,
X,y € X .

Finally we discuss the relation of concordant choice
models to certain other conditions which have appeared in
the mathematical literature on preference. The reader is

referred to Fig. 1 for a summary of the results.,




3. Concordant Choice Models

Lemmg 1. Any concordant choice model is suéh that all the
Preference and aversion probabilities are non-zero.

Proof. We proceed by induction, using part i) of Def. 2 as
the first step. We may suppose that A has at least three
elements and that all the preference and aversion probabili-
ties are non-zero for sets X C A with less than n ele-
ments, n 2 2., Let YSC A be an n element set and sup-
pose that PY(w) = 0 for some w e€ ¥ . Then by part ii)

of Def. 2, for any y € Y-{w]} ,

0= PY (w) PY— (w) (v)

= PLIB, (1)

By the induction hypothesis, Py_[y}(w) # 0 for any
v € Y-{w} and hence P;(y) =0 for all y € Y-{w} . Re-
versing the argument, we see that PY(x) =0 for all x e Y ‘ |
-which is impossible.
3.1 Concordant choice and strict utility models.
We next prove that the assumption that both the prefer-
ence and the aversion probabilities for the subsets of a set
A satisfy the choice axiom is in general incompatible with
the assumption that they satisfy a concordant choice model.
The following definition and lemma aré basic to any study of

the choice axiom.

Definition 3. A _set of preference probabilities for the sub=-

sets of a set A satisfy the choice axiom provided that for
all xeyYy XC a, PY(x) = Px(x|Y) .

Lemma 2. If the preference probabilities for the subsets of
a finite set A satisfy the choice axiom, then there exists

-8-
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a_ratlo scale v on A guch that for any PY(x) # 0, 1,

o v(x)
P (x) = .

: }:V(y)

YeY

This is‘Theorem 31 of Sec. 5.2 of Luce and Suppes (1965).

v 1s called a strict utility scale. Similar statements of
Def. 1 and Lemma 2 may be made in terms of the aversion prob-
abilities. '

Theorem 1. If the sets of preference and aversion probabil-
‘Aties for the subsets of a finite set A with at least

three elements both satisfy the choice axiom and a _concordant

choice model, then the strict utility scales v and v* are

constant functions.

Proof. By Lemmas 1 and 2 there exist ratio scales v and
v¥ such that for x e XS a,

Px(x) = v(x) }Z v(y) >0 (4)
yex

and | Pi(x) = v*(x) ve(y) >0 . i (5)
' yexX

And by Def. 2,

PA(X)P*_[X](y) = PX(y)P (x) .

A a-{y)
Substituting Eqs. 4 and 5 into this equation, we obtain that
v (x) v* (y) v* (y) v (x)

Zv(z)'. Zv*(w) ) Zv*(z) Z v (w)

Z€EA wea~-{x]) Z€EA wea-{y)

>0,




~10-
So,

Zv(z) Zv*(w) ‘= ZV*(z) ZV(W) .

Z€A wehA-{x]) Z€EA wea~{y]

It follows immediately that

ZV(Z) ZV*(W) -Zv(z) v* (x) =

Z€A . Wwe€A Z€A
Zv*(z) Zv(w) -ZV*(Z)V(y) ’
ZEA weA zeA
and so -
V¥ (x) ZV(Z) = v(y) Zv*(z) . (6)

zeA Z2€A

Because A has at least three elements there exists an
reA , r # x,y and replacing vy by r '1n the above argument
‘we obtain that ' L

v (x) sz) = v(x) Z"* (2) . (7)

Z€EA ZEA

Equating Egs. 6 and 7 and dividing by E:v*(z) yields

. ZEA
v(r) = v(y) . A similar argument shows v*(r) = v* (y) .
. QED.
3.2 Representation theorem.
Given x € X C A let
£(x,) = [[ Py,

yex=-{x}




~11-

£* (X)X) = H p¥* (x’y)
yex=-{x) -

and for p € R(X) , define

n-1

Flp,x) = [ 2(p,% |} py)
i=1 j<i
and ' n-1
F*(P:x) = H f*(Pi:x- U Pj)
: i=1 . i<t

Lemma 3. If for all x,y €e A, p(x,y) = p*(y,x) then for

each p eR(X) , Xca, F(p,X) = F* (p*,X) .

Proof., For X = {x,y} and p = XYy ,

F(p,X) = £(x,X)
p(x,y)
= p*(y,x)
= £%(y,X)
F*(p*,X)

n

and so the lemma is true for two element sets. For larger
A we proceed by induction. Iet XC A be an n element
set and for each p € R(X) write p = p,0 where

O = paP3ecePpafy € R(x-[pl}) . Then

n-1
Fp,0 = [ £6p,,% U p)
=1 j<i

n-1 .
= f(p, ,X) £f(p,,Xx- (!
Py 1I=Iz Py Jtéip B

n-1 ‘
£(pysX) [ £(p,,%x=(p.} - U )
. pl i]-?-[2 i pl 1<_j<:l.pJ
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i

f(pl,X)F(U,X-[pl})

f(pl,X)F*(G*,X-[pl]) . (by induction hypothesis)
.Also

' n=1 '
F* (p*,X) = ﬂ' f*(p*,x-[J p,)
| j<t

‘n=2
= |l £ (p%,%x- Up £ (px_ 1o (pX_1,p, 1)
igi | ’ J<i n-1’*fn-1’"3

n=2 -
151“'* (b;{,X-[pl}-jgip}) P*(p¥sp) ] P*(p* . 4p,)

n-2
= H f*(Pi:X-[Pl] UPJ’ H P(Pl,Pi) :

—
t—

1l

F* (0*,X-{plhf(pl,X)

-and thus
F(p,X) = F*(p*,X) QED.
Theorem 2. set of preference and aversion probabilities

for the subsets of a set a satisfies a concordant choice
model if and only if for each X,y € X:Q A,

i) p(x,y) = p*(y,x) # 0 ,

1) P () = ) P(p,x) Y rew (8)
PER (x: X) O€R (X)
and iii) PX (x) = Z F* (p,X) Z F* (U,X) . (9)

PER (x:X) O€R (X)



-]13=

Proof. As pointed out after Def. 2, if [PX,P§=X C a)

satisfies a concordant choice model then for x,y ¢ &,

p(x,y) = p*(y,x) # 0 . 2also for any set X = {x,ylc a,

o p(x,y)
). *e.0 /) rex - TGy = Ploy) = B (x)
PER (x%; X) O€R (X)

and Eq. 8 holds. It can be shown similarly that Eq. 9 holds
for two element sets and we proceed by induction. If XC A
1s an n element set then Lemma 3 implies that

E: F(p,X) = E: F* (p*,X) = }: F* (p,X) . (10)
pER (X) PER (X) "~ pER(X)

and by Lemma 1 we may write part ii) of Def. 2 in the form

that for x,y € X .

Pr) Py (g1
P% (y) P§+[x}(Y)

'But the induction hypothesis implies that

Px_{y] (x) Z F(p,x-{y}) Z F* (p,X-{x]})

_ peR(x:X-{v}) PER (X={x1})
P @ ) Flex-lyd ) m(p,x-(x)
peR (X=-{y}) PER (y: X~{x})

) E(p,x=(x)) ). Flo,x-(y))

_ pER(X-{x}) PER (x: xX=-{v1}) .
) P lp,x-(y]) ) P*(p,x-(x))
peR (X-{y}) PER (y; X-{x])

(by rearranging terms)
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Z F(p,x-{x}) Z f(x,x-{y})F_(c;X-[y,x})
LER (X={x]) O€eR (X-{x,v}])
), FrBXLY) ) £ (g% (k)P (o, % ()
PER (X~{y}) o¢R (X~{x,y})

(using Eq. 10 and the definition of F)

Z F(p,%X=(x}) f(x,x-{y})z F(%,%~(x,v))

PER (X-{x1) OeR (X~{x,v})
zF* (pJX"[Y}) £* (Y,X-[X}) ZF* (U,X-{X,Y])
peRr (X-{y}) . OeR (x-{x,y})

) E6e,X-(y)F (p,x-(x))
PeER (X~{x])

Z £% (y,X-{x})F* (p,x-{y))
peR (x-{y})

(using Eq. 10 and collecting terms)

P(x,Y) Z f(x,X-[y])F(p,X-{x))
PER (X-{x})

P* (v, x) Z £* (y,X-{x})F* (p,x~-{y})
PER (X~ (yv}) |
[because p(x,y) = pP* (y,x) # 0]

}; £(x,X)F (p,X~{x})
LER (X-{x})

) £y, xP* (p,x-(y))
PER (X-(y}) *
(from the definition of f)
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) rE,n

O€R (x:X)
s

ZF* (o,x)

O€R (y: X)

and thus

Py (%) Z F(p,X)
PER (x:X)

I ) FH(p,X)
PER (y; X)
Inverting both sides of this equation, summing over y € X

~and using Eq. 10 we have for each X € X,

'Px(x) = ZF(p,X) ZF* (p,X)

PER (x: X) PER (x)
= ZF(p,X) ZF(p,X)
pPER(x:X) / peR(X)

and similarly summing over x € X and using Eq. 10 we obtain

that for each y ¢ X,

P;‘((y) = ZF*(p,X) zF*(p,X) .
PER (y: X) PER (X)
Now assume that conditions i), ii) and iii) hold. Then
clearly for all x e XC 2, Px(x) #Z 0 and Px(x) #0 .
" These conditions with Lemma 3 imply that |
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P, (x) Z Flp,x)

- PER (:X)

PX (). }; F* (p,X)
' PER (y:X)

and

Px;(y}(X) E: F(p,X-(x]) E: F* (p,Xx~-{x})

_ DER(x:X={v}) PER (X-{x1) .
@ ) PRy ) P (p,x-(x)
peR (X-{y}) PER (y: X~ {x})

Lemma 3 implies that Eq. 10 holds and an e#amination of the
first part of the present theorem shows that this equation
is sufficient to pfove that the right-hand sides of the above
two equations are equal and hence

Pr(x) Py ®

PL (y) P;_[x}(y)

i.e. PX(X)P§_[X}(y) = PX(y)P y](x) QED.

x-{

3.3 Regularity and concordant choice models.

A condition on non-binary choice probabilities which
has certain‘rather surprising implications [see Marley (1965)
and Chap. 5 of this thesis] is reqularity which imposes the
condition that adding a new alternative to a choice set never
increases the probability of choosing an old alternative.
We formalize this condition and then consider its relation

‘ to concordant choice models.

Definition 4. A set of preference probabilities for the sub-

sets_of a set A is regular if for all x, X and Y such

that x ¢ XS ¥v<S A then Px(x) z PY(x) . A set of aversion




probabilities for the subsets of a set A is regular if for
all x, X and Y such that x € XC v € A then

* 2 %*

?X(x) PY(X)

It is clear that [PX:XE A} is regular if ang only
if for all x,y e YS a , Py-{y](X) 2 ]PY(x) and similarly
[p;e{:xg A} 1is regular if and only if for all x,y € YC A ,
P§_{y](x) 2 P§(x) - We use the conditions in the latter

form to prove the next theorem.,

Theorem 3. If a set of pPreference and aversion pronabilities
for the subsets of a set A satisfy a concordant choice

model then the preference probabilities are regular if and

only if the aversion probabilities are reqular,

Proof. 1If [PX:X:Q A} is regular then for arbitrary
X,y €Y< A,

PY__ (y) (x) = PY (x) (11)

and by part ii) of Def. 2,

PY(X)P§—{X] (Y) = P§(Y)PY"'{Y] (X) . (12)

Lemma 1 implies that all the Preference and aversion pProba-
bilities are non-zero and thus Egs. 11 and 12 imply that

z p* *s ¥ C
PY_(x) ¥) 2 P¥(y) which shows that ;PX'X S A} is regular.
The proof of the theorem is completed by reversing the
“argument., QED.

Theorem 4. Sets of pPreference ghd aversion probagbilities

that satisfy a concordant choice model need not be reqular.

Moreover, reqular preference and aversion probabilities for
the subsets of a set A need not satisfy a concordant choice

model.
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Proof. Let A = {x,y,z} and assume that [PX,P;E:X.C.: Al

satisfies a concordant choice model. Theorem 2 shows that

P (x) = P(x,v)p(x,2)
p(x,y)p(x,z)+p (z,y)p (=, x)+p(y,z)p(y,x)
If p(x,y) = 1/2 , p(x,z) = p(z,y) = 3/4 then the above
equation implies that P (x) = 6/11 > 1/2 = p(x,y) . Hence
[P :tX S a} is not regular and Theorem 3 implies that
[P§.X § A} is not regular.

Conversely, if both [PX:KS A} and (P;c:xg A} satisfy
the choice axiom with all the choice probabilities non-zero,
then Lemma 2 and the corresponding Lemma for [P;:X C a}
imply that both {PX=X§A} and {P;*{:X S A} are regular.
However, if for some x,y € a , PA(X) # PA(y) then the
strict utility scale v 1is not a constant function and
Theorem 1 implies that {PX’P§=X C A} does not satisfy a

concordant choice model. - QED.




4. Reversible Ranking Models

Theorem 5. A set of preference, aversion, and ranking prob-

abilities for the subsets of a set A satisfy a reversible

ranking model if and only if the preference and discard PYOD=

abilities satisfv a concordant choice model and for each

o €eR{X , XS A,

p(o) = F(9,X) ZF@J) (13)
PER (X)
and
p* (0) = F*(0,X) };F%(p,x) . (14)
P €R (X)

Proof. It is immediate from the definition of a reversible
ranking model that.for X,y € A, p(x,y) = p*(y,x) # 0

and thus 1f A 1s a two element set the probabilities
satisfy a concordant choice model. If A has more than
two elements then for arbitrary x,y € A let Y be any set
such that ({x,y}JCY¥ S A . Choose an arbitrary

o € R(Y={x,y]) and let p = xoy . Then p € R(Y) and it
follows from the definition of a reversible ranking model
that

PY(x)P§_[X}(y)p*(o*) Py (%) p* (yo*)

= PY(x)p(cy)

= p(xoy)
p* (yo¥*x)
P% (y) p* (0%x)

il

P%, (v) p (x0)

]

PY (y)P fx) p (o)

v-{y

- -19-




= P."{, (Y) PY"' [Y] (x) p* (o*) .,

But p*(0*) # 0 and hence for arbitrary X,y € YE A,

R (¥) = P3(v)®

Y-{y] (x)

which with the fact that p(x,y) = p*(y,x) ¥ O shows that
the probabilities satisfy a concordant choice model.
Also for X = {x,y}J€ A and o0 = xy , it follows from

the definitions of F and of a reversible ranking model
that

. e o px,y) o L
F(G,X/Z Fe(p,X) = P(xX,y)4p(y,%) - P(x,y) = p(p)
S PER (X) |

and

F# (0, %) }: F*(p,X) = p*(p) .
‘ PER (X) , -

- Thus Egs. 13 and 14 hold for subsets of size two, so we make
the induction hypothesis that they hold for all sets Y C A
with less than n elements, n > 2 , Let XS A bean n
element set. Each 0 € R(X) has the form ¢ = xu for some
XxXeX, pe R(X-[x}) and the reversible ranking model im-
plies that p(g) = Px(x)p(u) . Using Theorem 2 and the first
part of the present theorem to obtain the representation of
Px(x)_ and the induction hypothesis for the form of p(L) ,
we obtain that

P (G? = B (x)_ P (1)
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Z F(p,X)  F(u,X-(x]))

- PeR(x:X) »
) Pe,x) ) Plo,x=(x))
PER (X) PER (X={x})

Z £(x,X)F(p,x-{x}) F(p,x-(x))
PeR (X-{x1}) '

Z F(p,X-[x}) Z F(p,X)
PER (X~{x}) PER (X)

1

£(x,X)F (u,X-(x)})

Z ‘F(p,X)

PER (X)

F (0,X)

Z F(p,X)

PER (X)

We can usevsimilar arguments tQ derive the form of p* (o)
given by Eq. 14.

Now suppose that the preference and aversion probabili-
ties for the subsets of 2 satisfy a concordant choice
model and that Eqs. 13 and 14 hold for all rank orders.

Then from Egs. 13 and 14, the definition of F and the
convention that P{z}(z) =1-= PTZ}(Z) for all z e a ,
we obtain that for any set X = (x,yJ S A and o = Xy ,
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p(k.v)
p(x,y)+p(y,x)

p(c) =

p(x,y)

= PX (%) PX— (%) (v)

and similarly that

. p¥(0) = p*(x,y) PX (x) P;E—[x] (y) .

P*(Y,x) ¥ O which with the

Theorem 2 implies that p(x,y)

above shows that p(0) = p*(0%) # 0 and hence the preference,

~aversion and ranking probabilities for subsets of size two
satisfy a reversible ranking model. So we suppose that A
has at least three elements and make the induction hypothesis
that the preference, aversion, and ranking probabilities for
sets Y C A with less than n elements,' n> 2, satisfy a
reversible ranking model. ILet X C A be an n element set.
By assumption, p(o) , p(@) satisfy Eq. 13 and because the

- preference and aversion probabilities satisfy a concordant
choice model, Theorem 2 implies that Px(cl) satisfies

Eq. 8. The argument of the first part of the theorem shows
that under these conditions p(g) = p (cl)p(u) and using
the induction hypothesis that p(u) = Px-[cl]‘°2)

p(c) = P (cl)Px [U ](o )...p(cn 129, ) . (15)

In similar fashion it can be shown that

p* (0) = Px (cl)Px [o }(G )...p*(c <12, ) . (16)

Writing ¢ as ¢ = clwcn where w = 6203°°°°n-20n-1 €

R(Xx-{0,0 }) then using Eqs. 15 and 16, the fact that the
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preference and aversion probabilities for the subsets of A
satisfy a concordant choice model and the induction hypoth=-
esis that p(n) = p*(n*) for ne R(Y) , ¥ X s we obtain
that

p (o) p(olwcn)

= Px (cl) P (wcn)

= Px(cl)p*(cnw*)

= Px(°1)P§-[ol](°n)p*(w*)

= P;‘( (Un) PX_ [Un}~(°1) P* (w*)
= P§‘°n)Px-[cn]‘°1)P(W)

= P¥ (Gn) p (clw)

* %
P (0, ) p* (w¥g,)
= ¥*
p* (0 w*a,)
= p* (c*) .
We have already shown that p(o) # 0 , hence the above re-
sult with Egs. 15 and 16 proves that the preference, aver-

sion and ranking probabilities for the subsets of X satisfy

a reversible ranking model. QED.

It is immediate from Theorem 5 that any reversible rank-

ing model is a concordant choice model but not conversely.
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5. The Discard and Acceptance Conditions

Luce (1960) suggested that if a subject has to choose
the most preferred element in the available set X then he
may pick some element y € X as not worthy of further con-
 sideration thereby reducing his choice problem to the set
X - {y} . He repeats the elimihation process until a two
element set remains, at which point he makes his final de-
cision. Letting Q*(y) s Y € X denote the probability
that the subject decides that Y 1s not worthy of further
consideration relative to the elements of X » then Luce's
suggestion may be formalized as the assumption that for

each x e X,

P (x) = Z Q;(y)Px_[y] (x) . (17)
: yex-{x]}

The subject need not decide that Y 1s the worst ele-
ment in X in order to eliminate Y as not worthy of
further consideration but has simply to decide that some
- element 2z € X is better than Y . Thus the probability
Q§(y) need not equal the aversion probability P*(y) .
However, 1f a set of preference and aversion probabil-
ities for the subsets of a set A satisfy a concordant

choice model, then for each x,y € X.C A R
= *
PX (X) P;{-{X} (Y) Px (Y) PX_[Y} (X)

and thus

PX (x) Z P;{-[X] (v)
yvex-{x])

) BylEy )
yex-[x}

Py (x)
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= )Ej P§(Y)PX_{Y](X) ) | (18)
yex-{x) -

‘which is the special case of Eg. 17 in which the probability
Q§(y) of choosing y as not worthy of further consideration
relative to X 1is in fact equal to the aversion Probability
PX(y) . | -
Luce did not consider the case in which the subject's

task is to choose thé least preferred element in the set

X but a natural extengion of his argument to this case
leads to the assumption that there exists a distribution

Q. such that for each x ¢ X ,

PRl = ) 0 (IBp_ G0 o)
yex-[x]

Using arguments similar to those used to obtain Eq. 18 we
can show that if the preference and aversion probabilities
' for the subsets of a set A satisfy a’'concordant choice

model then for x ¢ 'xg A,

Px(x) = Z P IR () () (20)
yex-{x}

which is the special case of Egq. 19 in which Q

X
We have seen that any concordant choice model satisfies

Egs. 18 and 20 and in this section we show that if the bi-
nary preference probabilities are all non-zero then Egs. 18
and 20 are in fact equivalent to a concordant choice model.

5.1 Definitions and relations between the defined
quantities.
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Definition 5., A set of preference probagbilities for the

subsets of a set A satisfies the discard condition if

there exist probability measures Qx , X¢ A such that for

each xe€xSa,

P = ) @xlyle, 100
yex-{x}

A _set of preference and aversion probabilities for the sub-

sets of a set A satisfies the strong discard condition if
it satisfies the discard condition with Q;*{ :—‘_.:P;*( for each
XS a.. |

Definition 6. A set of aversion probabilities for the sub-

sets of a set A satisfy the acceptance condition if there

exist probability measures Qx » X.€ A such that for each

xe€eXCca,

* = . *
PR = ) (yeg (0 .
yeX—-{x}
A set of preference and aversion probabilities for the sub-

sets of a set A satisfies the strong acceptance condition

if it satisfies the acceptance condition with Q =P, .

The strong discard and the strong acceptance conditions
may appear tautological but examples ére easily constructed
which demonstrate that they are not. Such an example arises
in the proof of Theorem 9.

We use the following result of Luce (1960, Theorem 1)

in proving the next two theorems.

Lemma 4. Given a set A such that the binary choice proba-

bilities p(x,y) #0 , x,y € A - and _the preference probabil-




-27=

ities satisfy the choice axiom, then for any n element subset

x€ a, Q;(x) = [1-Px(x)]/(n-1) 1s the unique solution of
the discard condition.

Because the discard condition does not involve the aver=
sion probabilities and the acceptance condition does not in-
volve the preference probabilities it is obvious that in
general neither of these conditions implies the other. This
result is not so obviously true when the binary choice prob-
abilities for the set A satisfy p(x,y) = p*(y,x) for
X,Y € A . Theorem 6 demonstrates that the result is also

true in'this case,

. Theorem 6. The discard condition neither implies nor is

implied by the acceptance condition.

Proof. Let A = {x,y,z}] and suppose that PA(x) = 1/6 ,
p(y,z) = p*(z,y) = 2/5 , P(x,2) = p*(z,x) = P;(x) =
PY(y) = 174, Pplx,y) = p(y,x) = Pfy) = 1/3 ,

PA(z) P;(z) = 1/2 . The preference probabilities

{PX:X € A} satisfy the choice axiom and Lemma 4 implies

that the preference probabilities satisfy the discard con-
dition. If we let P* = [PK(X),PX(y),PZ(z)] ,

Q= [QA(x),QA(y),QA(Z)] sy a=p*(x,y) , b= p*(x,2z) and
c = p*(y,z) then the acceptance condition becomes
B¥* = MQ
where
B .
0 b a
M= c 0 l-a
l-C ) l-b 0 °
. .

M exists 1f and only 1if K = a(l-b)ec + (l-a) (1-c)b # O
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in which case

- (1-2) (1-1) a(l-b)  (1-a)b
W=z (1-2) (1-c) ~a (1-c) ac
(1-b)c b (l-c) =be .
- o«

Computing Q = M:1P¥ with the values for ‘a,b,c given

above, we obtain

o35 40 _27
= "\ 48’ 48’ 48 ’

which is not-a probability distribution. Hence the accept-
ance condition does not hold. |
A similar example shows that the acceptance condition

does not imply the discard condition.: QED.

Theorem 7. The strong discard condition is strictly stronger

than the discard condition and the strong acceptance condi-

tion is stfictlv stronger than the acceptance condition.

. Proof. Let A= {x,y,z} , p(x,y) = p*(y,x) = 1/3 ,

p(x,z) = p*(z,x) = 1/4 , p(y,z) = p*(z,y) = 2/5 , P, (x) =
Px(x) = 1/6 , P,(y) = Px(y) = 1/3, P,(z) = PX(z) = 172 .
The preference probabilities satisfy the choice axiom and
Lemma 4 implies that the preference probabilities satisfy
the discard condition, but

P¥ (x) = % 9""5‘— —X ='QK(x)

which shows that the preference and aversion probabilities
do not satisfy the strong discard condition.

A similar example can be constructed to show that the
strong acceptaﬂte condition is strictly stronger than the

acceptance condition. QED.




Theorem 8. The strong discard condition neither implies nor

is _implied by the strong acceptance condition.

Proof. Let A = {x,y,z}] and assume that p(k,z) = p(y,z)
= 1/3 P) P(X,Y) = PA(Z) = 1/2 ) PA(X) &= PA(Y) = 1/4 and
‘ ) 1-P, (w)

_ |x|-1
the number of elements in the set X . Then the preference

for each we xC a, PX (W) = where |[X| . denotes
probabilities satisfy the choice axiom and Lemma 4 implies
that thé preference and discard probabilities satisfy the
strong discard condition. However,

Py() = 3/8 4 5/12= ) B (IPE_ ()
‘ : wea-(x} |
which shows that the strong acceptance condition is not sat-
isfied. | | |

A similar example shows that the strong acceptance con-
dition does not imply the strong discard condition. QED.

5.2 Concordant choice models and the strong discard
and acceptance conditions.

The main result of this section is that if the binary
pPreference Probabilities between elements of a set A are
all non-zero then the preference and aversion probabilities
for the subsets of A satisfy a concordant choice model if
and only if these probabilities satisfy the strong discard
and the strong acceptance conditions.

" For notational simplicity we define for any x € X
}(k) = 0 = Px ](x) and ,PX is positive if

P
X-{x X-{x
Px(x) >0 for all x € X . The proof of the main theorem

H

is dependent on the following lemma.

Lemma 5. Let X be a set with at least two elements and




-30-

let PY ’ P§ be any positive probabilities for the sets
Y=X-{y}l, vex. If probability gis;fgbutigns Qx ’
Q; exist such that for each x € X :

n
0
¥
<
o
>4
A
|<
ot
o~y
Z

Q (x)

"

Qg = ) 0, (y)ey_ ) ()
yex-{x} '

then they are unique.

Proof. Suppose that X = [x1x2°'°xh} . If QX , Q§
satisfy the conditions of the theorem then for each x, ¢ X

]
j=1,2...n,

-Qx(xj) + Z 'Q;E(Y)Px—{y} (xj)v= 0
yex-{xj}

and

g xy) + Z A WBE_(yy (550 = 0 -

yeX-[xj]

2
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The last row of the matrix P 1s equal to minus the sum of
the remaining rows and we therefore study the feduced matrix
in which the last row is identically zero and the other rows
are the same as in the original matrix. ILet Hy >
i=1,2...2n-1 be any set of real numbers such that the
weighted sum of the first 2n-1 rows of the reduced matrix
is zero. We pProve that the ui are all zero, which implies
that the reduced matrix has rank 2n-1 and hence the ini-
tial matrix equation has at most one solution.
We first show that if Hy = max Hy then there exists
_ lsis2n-1
= j <n such that “j = “k . The proof has three parts.
i) kX <n . In this case the statement is clearly true.
ii) kx=n . We know zﬁat Hoep S M and if Moy < By
then we obtain from the n column of the reduced matrix
that
n=1

0= LN 2: “h+1?§-{xn](xi)
- i=1

n-1

< -p o+ 2: ”kp§-{xn}(xi)
i=1

n-1

THye Ty E: P§-[xn}(xi)
1=1

]

=0
which is a contradiction. Hence un+l = “k .
Now if uj < “k for all j < n then applying the above
equality to the . n+1St column of the matrix, we obtain that
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n
0 = —un+1 + Z ujpx_[xl}(xj)
j=1

: n
< THppy t jz |"'k‘:,}»{-{xl} (xj) _
=1

n
“He T Z Px—[xll(xj)
4=l

=0
which is a contradiction.
iii) x>n . If uj < Mo for all j < n then we obtain

from the kth column of the matrix that

n
0 = - + P )
Hy Z HyFx-( y =y
1=1 Pen

n
S THe }: u‘kPX-_[xk_n](xi)
i=1

=0
which is a contradiction.
It is immediate from i)-iii) that we may assume Xk < n.
If the Hy o 1l =1 s 2n-1 are not all zero, then without
loss of generality we may assume that b > 0 and we obtain

from the kth column of the matrix that

-1

| n |
0= Tt E: “h+ip§-[xk}(xi)
i=1 '
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o §
"‘IJ.k + 2 |J.kp§_ [33:] (xi)
- -1 .

A

n
i
= —H{P;c_(xk} (Xn)

<0
which is a contradiction. QED.

- Iheorem 9. A set of preference and aversion probabilities
for the subsets of a set A satisfy a concordant choice

model if and only if '
1) p(x,y) #0 for x,y € A
and ‘

ii) the preference and aversion probabilities fo;4thg

subsets of A satisfy the strong discard and the strong
-acceptance conditions. |

'Proof. It is part of the definition of a concordant choice
model that the binary preference probabilities satisfy
condition 1) and we showed in the introduction to Sec. 5
that any concordant choice model satisfies condition ii).
Therefore we have to show that conditions i) and ii) are
sufficient for the préference and aversion probabilities to
satisfy a concordant choice model.

The strong discard condition with condition i) implies
that for X = {x,y}C a , '

P(x,y) = p¥(y,x) # 0 (21)

which shows that the preference and aversion probabilities
for two element sets satisfy a concordant choice model. So

we suppose that A has more than two elements and make the
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induction hYpothesis that the preference and aversion proba-
bilities for sets Y C A with less than n elements ,

n > 2 , satisfy a concordant choice model. Theorem 2 then
,implies that the preference and aversion Probabilities for
such sets satisfy Egs. 8 and 9 and are non-zero. If xC a
is an n element set and PX, P§ are the preference and
aversion probabilities associated with X s then condition

1i) implies that for x e X ,

P = ) BEIZ, () (22)
| yex-{x]}
‘and |
" P (x) = Z Px(Y’PSE-[y] (%) . - (23)
yex-{(x)} ‘

Let 'Px, 3§ be the sets of choice probabilities given by

Egs. 8 and 9 when the arguments of F and F* are p(x,y)
and p*(x,y), respectively, x,y € XC A . Then the set

'{PY,P;;Ei,P§=Y C X} satisfies Egs. 8, 9 and 21 and Theorem
2 implies that it satisfies a concordant choice model. It

then follows from the first part of the present theorem that
this set satisfies the strong discard and the strong accept-

ance condition and in particular for x € X R

P = ) Fpwizg ) G0 (24)
yex=-{x}
and
Bed = ) Fmeg G0 (25)
yex=-{x} '

But Px-(y}’P§-{y]’ Y € X, are all positive distributions



and Lemma 5 applied to Egs. 22- 25 implies that Px....PX s
Pj*,:P* R i.e. the preference and aversion probabilities
for X satisfy Eqs. 8 and 9. By the induction hypothesis
_the Preference and aversion probabilities for sets YC x
satisfy Egs. 8 and 9 and we know that Eq. 21 holds for the
Pinary choice probabilities P(x,y),p* (x,y), %X,y € X .
Theorem 2 then implies that the set of preference and
" aversion probabilities [Py,P§:Y'C X} satisfies a concor-
dant choice model. - QED.
5.3 Regularity and the discard and acceptance conditions,
No necessary and sufficient conditions are known for
a set of preference prébabilities to satisfy the discard
condition or for a set of aversion pProbabilities to satisfy
the acceptance condition but Mérley (1965) proved the fol-
lowing sufficiency theorem.

Theorem 10. f a set of preference probabilities is reqular,

then it satisfies the discard condition but not conversel
)

If set of aversion probabilities is regular, then it satis-

fies the acceptance condition but not conversely.

The first part of Theorem 10 is Theorems 1 and 7 of

Marley (1965)., similar teéhniques may be used to prove the
second part.
We next prove that regularity is independent of the

strong discard and acceptance conditions.

Theorem 11. Neither the strong discard nor the strong gc-
ceptance condition on the subsets of a set A implies or

is implied by reqularity of the preference or aversion prob-

abilities for the subsets of A,
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Proof. Assume that the preference and aversion probabilities
for the subsets of A satisfy the strong discard and the
strong acceptance condition and that p(x,y) # 0 for any
X,y € A . Theorem 9 shows that such a set of probabilities
satisfies a concordant choice model and Theorem 4 implies
that neither the preference nor the aversion probabilites
need be regular. Thus neither the strong discard nor the
strong acceptance condition alone can imply the regularity
of the preference or -aversion probabilities for the subsets
of a .

Conversely, let A = {x,y,z} and suppose that p(x,s)
= p*(s,r) = 1/2 for r,s e a , Py(2) = PX(2) = 172,
Py(y) = PE(y) = 1/3 and P (x) = PX(x) = 1/6 . Then both
the preference and aversion probabilities for the subsets

of A are regular but

Py(x) = 1/6 # 5/12 = Px (y)p(x,2) + PX(2)p (x,Y)
which contradicts the stréhg discard condition and

p;(-{(x) = 1/6 # 5/12 = Px(y)p* (x,z) + Px(z)p* (x,y)

which contradicts the strong acceptance condition. QED.,




6. Joint Independent Random Utility Models
~.We have studied certain observable relations between the
preference, aversion and ranking Probabilities for the sub-
sets of a set A but we have not suggested any psychological
process which leads to choice probabilities satisfying these
conditions. In this section we study a process which can
generate sets of preference and aversion probabilities that
satisfy eilther the strong discard or the strong acceptance
conditions but not sets of probabilities that satisfy both
conditions. It then follows from Theorem 9 that this pro-
cess cannot generate sets of preference and aversion proba=-
bilities that satisfy a concordant choice model.
The process that we study is that which leads to the

random utility models [Luce and Suppes (1965), Sec. 5.3,
Pp. 337-339). Suppose that a subject's task is to choose
the most preferred element in a set X . Then the random
utility models assume that each element of X has a

‘value' associated with it and the subject chooses that ele-
.ment which haé the largest value at the time of choice, the
value of each element of X varying with repeated choices
according to some probability mechanism, Specifically,
the independent random utility model assumes that with each
element x € X there is associated a density fx(t) such
that

o .
e = [ g (0 ]| pyerae (26)
- yeX={x}
where Fy is the cumulative distribution of the density
fy « If the subject's task were to choose the least pre-
ferred element in the set X then it 1s reasonable that

the mechanism should be similar to that suggested for choice
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of the most preferred element. We therefore assume that the
subject chooses as least preferred that element which has
the smallest value at the time of choice and that the proba-
_ bllity mechanism generating the values in this case is the
same as in the previous case, i.,e. for each x € X

14

P* (x) = £, (€) [1-F_(t)]at . o (27)
0 -[ oo yl;[x-[x} Y |

These conditions are formalized as:

Definition 7. oint i dent_random utility model

- (JIRUM) is a set of preference ghd aversion probgbilities

for the subsets of a_set A for which there exist densities
fx s X € A such that the preference and aversion probabili-

ties satisfy Eqs. 26 and 27 for all xe xC a .

6.1 Two impossibility theorems.

There is only one result in the literature which con-
- cerns joint independent random utility models and this is due
to Luce [(1959), Theorem 7, Pp. 57). We now state this re-
sult.

Theorem 12. Let A=‘(x,y,2l and assume that

i. both the preference and aversion probabilities
for the subsets of A satisfy the choice ag;om,

ii. p(r,s) ¥ 0 for r,s ea,

iii. p(x,y) + p(x,z) # 1
and iv. p*(x,y) = ply,x) ,
then the preference and aversion probabilities for the sub-
sets of A do not satisfy a joint independent utility model.

We use techniques similar to those of Luce to prove

Theorem 13.
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Theorem 13. Let A = {x,y,z} and assume that the preference

and aversion probabilities for the subsets of A satisfy

a_concordant choice model with p(x,y) + p(x,Z) # 1 . Then

the preference and aversion Probabilities for the subsets of

A do not satisfy a_joint independent random utility model.

Proof. Suppose the theorem is false, then by Egs. 26 and 27

we have for x € a ,

P, (x) -P¥ (x) = _/_wf}‘{ () (F (£)F, (t) -[1-F () ][1-F, (t) ] )at

i

an fx(t)[Fy(t)+Fz(t)-1]

-c0

= p(x,y) + p(x,2) - 1. (28)

The set {PX,P§:X§; A} satisfies a concordant choice model
and it follows from Theorem 2 that

_ p{x,v)p(x,z)
. PA (x) -P% (x) = p(x,y)p(x,z)+P (Y,x)P(Y,z) +p (z,x)p(z,y)

pP* (x,v) p* (x,2)

p*(x,y)p*(x Z)+p*(y,x)p*(y,z)+p*(z x)p* (z,y) °

Also, Theorem 2 shows that p(r,s) = p*(s,r) for r,s € A ,
which is sufficient to prove that the denominators of the

above expressions are equal and hence

PA(X)-PZ(X) - P(x,v)p(x,2)-p(v,X)p(z,x)

- - P(x,¥)p(x,2)+p (v, %) P(y,2) +p (2, %) p (2, y)

p(x,y)p(x,z)=[1-p(x,y)1[1-p(x,2)]
P(x,¥)p(x,2)+p(y,x) p(v,2) +p (z,x) P (2,y)

- p(x,z)igfx,zz-l
p(x,y)p(x z)+p(y,x)p(y,2) +p(z,x)p(z,y) °

(29)
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Comparing Egs. 28 and 29 and remembering that
pP(x,y)+p(x,2) # 1 it follows that

P (x,Y)p(x,2)+p (v, x) P(y,2) +p(z,x)p(2,y) = 1 .
We demonstrate that this is not possible. If p(x,z) >
p(y,z), then because p(r,s) ¥ 0 for r,s € A, we have
 P(x,¥)p(x,2)+p (v,x)p(y,2) +p (2, %) p (2, 7)
= P(x,y)p(x,2)+[1-p(x,y) Ip(y,2) +p(z,X) p (2,Y¥)

< max [P (x,2) sR(Y,2) ]+P.(zsx)P(z}Y)
< p(x,z)+p(z,x)
=1.
The expression is also strictly less than one if p(y,z) S

p(x,z) and thus

p(x,¥)P(x,2)4p (v, %) D (y,2) +p (2, %)p (z,y) < 1

for all binary probabilities satlsfying the conditions of
the theorem. : QED,
6.2 Regularity and joint independent random utility

models.

Theorem 14. If the preference and aversion probabilities for

the subsets of a set A satisfy a joint random utiiitz
model then the preference and aversion probabilities for the |

subsets of A are reqular but not conversely.

Proof. If the preference and aversion probabilities satisfy

a joint independent random utility model with densities
fx(t), then for any x e xS vC A,

P.(x) = [ £ (t) F_(t)dt
X f-m ygx-{x}y ‘




and

Px (x) = £ (t) [1-F (t)]at
X foo X ygx-{x] Yy

zf fx(t) H [1-Fy(t)]dt

= yey-{x]}

= PY(x) .

Conversely, let A = {X,y,z} and assume that the pref-

~erence and aversion probabilities for the subsets of A sat-

isfy the conditions of Theorem 12. Then Lemma 2 implies that
the preference probabilities are regular and a similar re=-=
sult shows that the aversion probabilities are regular. How-
ever, Theorem 12 shows that the preference and aversion prob-
abilities for the subsets of A do not satisfy a joint in-
aependent random utility model. QED.

6.3 Joint random utility models and the strong discard
and acceptance conditions.

Theorem 14 with Theorem 10 shows that if a set of pref-
erence and aversion probabilities satisfy a joint independent
random utility model, then the preference probabilities
satisfy the discard condition and the aversion probabilities
satisfy the acceptance condition. However, if the binary
choice probabilities are non-zero and satisfy the constraints
of Theorem 13, then Theorem 13 with Theorem 9 implies that
no joint independent random utility model exists which im-
plies both the strong discard and the strong acceptance con-

dition; nonetheless, we show that each of the strong condi-

|
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tions is satisfied by some joint independent random utility
model. '

Theorem 12 shows that under quite generél conditions
no joint independent random utility model impliés that both
the preference and aversion probabilities for the subsets
of a set A satisfy the choice axiom. This result would
- be true if no independent random utility model existed such
that the preference prooabilities satisfied the choice axiom
or if no independent random utility model existed such that
the aversion probabilities satisfied the choice axiom.
However, Luce and Suppes [ (1965), Theorem 32, P. 338] show
that 1f a set of non-zero preference probabilities satisfy
the choice axiom then they satisfy an independent random u-
'tility‘model and similér techniques may be used to prove
that i1f a set of non-zero aversion provabilities satisfy the
choice axiom then they satisfy an independent random utility
model. These latter results show that the conditions of the

next two theorems can be met non-vacuously.

Theorem 15. If the preference and aversion probabilities

for the subsets of a set A satisfy a joint independent

random utility model such that the preference probabilities

satisfy the choice axiom and the binary choice probabilities

are all non-zero, then the preference and _aversion propabil-

ities for the subdsets of A satisfy the strong acceptance

condition but not the strong discard condition if

p(x,¥)+p(x,2) ¥ 1 for some =x,y,z € A .

Proof. When we write r,s € Y it is to be understood that
r7s . If YC A is an n element set, then for any

XxXeyY,
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Px (x) = £_(t) [1-F_(t)]at
Y . f_m YI;[Y-[X] Yy ‘
= 20" G40 ) Ry
zeX-{x)
+(-1)n-3ZPY [z W) (®)+... =) p(x,2) . (30)
z,weX-[x} zex-[x}

If XS A has n+l elements, then using the above expres-
sion for the expansion of Pi_[y}(x) y Y € X={x} , we ob-
tain that ‘

) BB (1 6 =) B [1e0 e (6o
yvex-{x]} veX-{x]}

n-2 '
HED EZPX-{z,y](X)
zeX-{x,y)

+(-1)""3 z P,._ {w,2,w) (x) .. '-ZP(X’S) ]

z,weX~{x,y) seX-{x,y)

| n-1 '
= [1--PX (%) 1+ (-1) Z Py (y)P

}(x)
yvex-{x} '

X-{y

n-2
HTE) ) R
yex-{x} zexX-{y,x}

n-3
+(-1) Z ZPx(y)PX_[y’z’w} (x). « .
YGX-[X} Z,W€X-{X,y]
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.. 5: Xpmﬁnﬂw
yeX-{x} sex-{y,x)

| n-1 '
- 2 @ 1+ 0™ ) e @y
| | - yex-{x}

n=2
+(f1) Z ZPX (v) Px-{r,s] (x)

'r,sex-{x} ve({r,s}

n-3 .
+(~1) ‘EZ E:PX(V)PX-[r,s,t}(X)' . o

r,s,tex-{x} ve(r,s,t}

D) e
vex-{x} wex-{(y,x)

Because the preference probabilities for the subsets
of A satisfy the choice_axiom With the binary choice prob-
abilities all non-zero, iﬁ follows from Lemma 2 that for
" all sets YC X

P (x) = [1 - pr(y)] P (x)
‘ YeEY

tee ) R ME, =R (0 - P () .
yeYy

Substituting these values in the above equation, we obtain
that

| _ n-1l |
E:Px(y)Pﬁ_{y}(x) = 1-P (x)+(-1) EI[PX-[Y](X)-PX(X)]
yex-{x} yex-{x}



-46=-

+(—l)n ZZ [PX {x,s

r,seX-{x)

) (x) -Px (x)]

HEDTT Y ey IR ]

r,s,tex-{x)

Z [p(x,y)-P (]

yex-(x}
n-1
=L D) e @D Y e )
. yex-[x} © r,seX-{x]}

L n-=3 |
+(-1)" ZPX-[r,s,t}(x)‘ . . -Z p(x,y) -

r,s,teX-{x} yeX=-{x}

n-l1 n

- () [14(D) (-1 T Q) -1 L L@ (-]
But 0 = (-1+1)" = (-1) +(1) (-1)" +(§) (-l)n'2+...(n§1) (-1) +1, 3

: -1 -2
Substituting this result in the above equation and using
Egq. 30 we obtain that -

) Ry () = =D R @™ ) R )
yex=-{x} yex-{x]}

+(-1)"2 Z Py(r,s) - - -

r,sexX-{x)

- Zp(x,y)

yexX-{x}
= P;"{ (x) ’
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which is the strong acceptance condition.
-Suppose how that for some x,y,z € A ,
P(x,y)+p(x,2) ¥ 1 . By assumption, all the binary preference
,probabilities are non-zero and we have proved that the pref-
erence and aversion probabilities for the subsets of A
satisfy the strong acceptance condition. If these probabil-
ities also satisfy the strong discard condition then Theorem
9 shows that they satisfy a concordant choice model. But
Theorem 13 shows that such a concofdant choice model does not
satiéfy a joint independent random utility model, contra-
dicting the hypothesis of the present theorem. QED.
Similar techniqueé may be used to prove the following

theoren.

Theorem 16. If the preference and aversion probabilities for
the subsets of 3 set A satisfy a joint independent random
utility model such that the aversion probagbilities satisfy
the choice axiom and the binary choice probabilities are all
" non-zero then the preference and aversion Erobabilitiés sat=-
isfy the strong discard condition but not the strong accept-

ance condition if p(x,y)+p(x,2) # 1 for some x,y,z € A .

Simple examples may be constructed to show that joint
independent random utility models exist which do not satisfy
the conditions of either Theorem 16 or Theorem 17.

Although the following result is an immediate conse-

quence of earlier theorems we state it here for completeness.

Theorem 17. A joint independent random utility model neither
implies nor is implied by either the strong acceptance or

the strong discard condition.
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Proof. Theorem 16 demonstrates a joint independent random
utility model which does not satisfy the strong discard
condition and Theorem 17 demonstrates a joiﬁt independent
random utility model which does not satisfy thé strong ac-

'ceptance condition.

Now suppose that the preference and aversion probabili-
ties for the subsets of the set A = (x,y,z)} satisfy the
strong discard‘and the strong acceptance condition and aiih
the binary preference probabilities are non-zero with the
additional constraint that p(x,y)+p(x,z) ¥ 1 . Then
Theorems 1l and 14 1mply'that the preference and aversion
probabilities do not satisfy a joint independent random
utility model and hence neither the strong discard or the
strong acceptance condition alone can inply a joint'random
utility model. .~ QED.



7. Binary Choice Between Two Component Objects

We have studiéd hdw choice and.ranking probabilities
for sets Y with more thah two elements might be related
to the binary choice probabiiities pix,y) , x;y € Y but
we have not studied binary choices themselves in any detail.
We next consider binary choices between elements of a set
A = X X X* where each element of A 1is called a two com-
ponent object. Examples of such choices are binary choices
of human subjects betﬁgen bitter-sweet solutions [McLaughlin
and Luce (1965)] and between uncertain outcomes when each
uncertain outcome consists of two equally probable elemen=-
tary outéomes [Davidson, Suppes and Siegel (1957)]. |

| McLaughlin and Luce (1965) introduced certain theoreti- |
cal ideas applicable to such situations which havé not yet
received the detailed attention that they deserve and in
the remainder of this thesis we study their suggestions and
vothers which follow quite naturally from earlier models for
binary choice. These earlier models have been extended by _ ;
Luce and Suppes (1965, Pp. 331-367) and for convenience
‘their results are summarized in Appendix A.

We first discuss certain models which impose mathemat-
ical structure over the .choice set and then consider obser-
vable properties which are stated entirely in terms of the *
binary choice probabilities. We next consider which ob-
servable properties are necessary consequences of each model ?
and relate these observable properties to those considered
by Luce and Suppes (1965). Finally we discuss a set of
conditions which is sufficient for a set of cboice proba=-
bilitiés to satisfy one of these models.

We assume throughout this part of the thesis that the

component sets X, X*¥ each contain at least two elements,

~4 G
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8. Models

Definition 8. A set of binary choice probabilities over a

set X X X* 1is_a weak conjoint utility model provided there
exist real valued functions f, g with domains X , x* ,
respectively, such that for any X,y € X , X*,y¥% € X*

pl (x,x*), (y,y*)] 2 1/2 if andg only if
£(x) + g(x*) 2 £(y) + gly*) .

A model discussed by Luce and Suppes (1965) is the

strong utility model (Appendix A, Def. 2) which requires
that there exist a real valued function u with domain X x X*

and a cumulative distribution ¢ such that ¢(0) = 1/2 ang,
- for any x,y € X , X*,y* € X* ~with pl (x,x*%), (y,y*)] # 0,1

Pl (x,2%) , (v,y*)] = o[u(x,x*)=u(y,y*)] . (31)

when all the choice probabilities are different from O and

1 , this implies the weak utility model (Appendix A, Def., 1),
namely |
pl(x,x*), (v,y*)] 2 1/2 if and only if
u (x,x*) zu(y,y*) (32)

and 1f the probabilities also satisfy a weak conjoint utility
- model then there exist real valued functions £f, g such
that

pl (x,%*), (y,y*)] & 1/2 if and only if

£(x) + g(x*) 2 £(y) + g(y*) . (33)

Egs. 32 and 33 imply [Aczel (1965)) that there exists a
strictly monotonic increasing function K such that for
any (x,x*) € X x X* ,
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u(x, x*) = K[f(x) + g(x*)]
and substituting this value in Eq. 31 we obtain that
pl (x,x*), (y,y*)] = ¢ (K[ £(x)+g (x*) ]-K[ £ (v) +g (y*) ]}

which is a possible stronger version of the strong utility
model.

We summarize these ideas as formal definitions and then

' discuss the interrelations between them, the weak conjoint

utility model (Def. 8), the weak utility model (Appendix A,
Def. 1) and the binary strict utility model (Appendix a,
Def. 3).

Definition 9. A _set of binary choice probabilities over a

'set A 4is a strong utility model provided there exist a

real valued function u ‘over A and a strictly monotonic

cumulative distribution ¢ such that ¢(0) = 1/2 and for
all a,b € A with p(a,b) # 0,1 ,

p(a,b) = ¢[u(a)-u(b)]
A strong utility model over a set X X X* which is also a

- weak conjoint utility model over X X X*¥ 1is a strong conjoint

utility model.
A strong conjoint utility model over a set X X X* is
of type K provided
i) K is a stric;lz monotonic incregsing, real valued

function

gggv ii) there exist real valued functions £, g with
| domains X, X* , respectively, and 3 strictly
monotonic cumulative distribution ¢ with
¢(O)‘= 1/2 such that for all x,y € X,
x*,y* € x* with p[(x,x*), (y,y*)] # 0,1 ,
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The customary definition of a strong utility model does
'not require ¢ to be strictly monotonic. The discussion
prior to Def. 9 shows that any strong conjoint utility model
is of some type and we later study a set of conditions under
which the class of admissible transformations of the function
K 1is known.

We next consider certain strict utility models which are

also strong conjoint utility models.

Definition 10. A set of binary choice probgbilities over a

set X X X* satisfy a (binary) strict conjoint utility

" model (of type K) provided
i) X 1is a strictly monotonic increasing, real valued

function

and 1i) there exist real valued functions f, g with do-

mains X, X* reepectivelvl such that for x,y € X,
x*,y* € X* with p[ (x,3%) , (y,y*)] # 0,1,

M&mhwmﬂl=quwMMﬂwwwﬂ%Mﬂmwmﬂn].

It is immediate from this definition that any binary
strict conjoint utility model of type K 1is a strong con-
joint utility model of type K , that there exist strong
conjoint utility‘models which are not strict conjoint util-
ity models and that any binary strict conjoint utility model
1s a'binary strict utility model but not conversely.

The following counterexamples, plus the relevant defi-
nitions, determine the relations between the models that we

have discussed, these relations being summarized in Fig. 3.
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Counterexample 1, A weék conjoint utility model need not be
a_strong utility model.

A necessary condition for the binary choiﬁe probabili-
‘ties over a set X x X* to satlsfy a strong utility model
is the quadruple condition (Appendix A, Def. 6 and Fig. 4).
If X= {x,y} , X*= (x*,y*] 1is such that pla,a) = 1/2
for all a e X.XFX*_ and

0 < pl (X,X*) s (¥,x%) ] pl (x,2%) , (x,y*)] < pl (x,x*), (Y:Y*) ]

< plly,=), v,y ] = pl (x,y*%), (y,y*)] < 1/2

= pl(y,x*), (x,3%)]

then the probabilities satisfy a weak conjoint utility model
with £(x) = g(x*¥)=1, £(y) = g(y*) = 2 but they do not
satisfy a strong utility model because '
pl (x,x%), (x,x*¥)] = 1/2 > p[(y,x*), (y,y*)] whereas

Pl (x,x%), (v,2¢)] < pl (x,x%), (vy,y9) ] .

‘Counterexample 2. A strong utility model need not be a weak |
conjoint utility model. | §

A necessary condition for a set of binary choice pfob-
abilities over a set X x X* to satisfy a weak conjoint
utility model is that if
min {p[ (x,x*), (v,¥*) },p[ (v, %x*), (x,%%) ]} 2 1/2 then
pl (x,x*), (x,y*)] 2 1/2 . This is violated by the binary
strict utility model over ({x,y} x {x*,y*} 1in which
v(x,x*) = v(y,y*) =‘v(y,x*) = 2v(x,y*) # 0 because

v (x,3x*) _
Pl (x,x%), (y,y*)] = T v (7, %) 1/; , |
P[ (Y,X*) » (X,X*)] = v (v, x*) = 1/2

V(y,x*) +v (x,x*)
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whereas

vV (xX,x*)
v(x,X*)+V(x.y*)

Pl (x,x*), (x,y*)] = = 1/3 <1/2 .

But any binary strict utility model is also a strong one
(Appendix A, Fig. 3).

Counterexample 3. A strong conjoint utilitv model need not
be a binary strict utility model.

A necessary and sufficient condition for a set of binary
choice probabilities over a set X x X* to satisfy a
strict utility model is that it satisfies the product rule
over X x X* (Appendix A, Def. 7) and it is easy to con-
struct a set of choice probabilities that satisfy a strong
conjoint utility model but not the product rule.

Counterexample 4. A binarvy strict utility model need not be
a strong conjoint utility model.

The set of probabilities of Counterexample 2 shows that
a binary strict utility model need not be a weak conjoint
utility model, the Batter being strictly weaker than a
strong conjoint utility modei.

8.1 A uniqueness theorem.

We know that any strong conjoint utility model is of
some type K and we next give a set of conditions under
which the admissible transformations of K are known. 1In
the following theorem, R(h) denotes the range of the
function h.

Theorem 18. Suppose that a set of binary choice probabili-
ties over a set X X X*¥ are different from O and 1 and




satisfy strong conjoint utility models of type K
i=1,2 . Let ¢i , £

i s

i and gi , 1 = 1,2 , be the real

valued functions such that, for x,y € X, x*,y* € X* and
i=11,2,

Pl (x,%%), (y,y%)] = o, (K, [£, (x)+g, (x*)]-K, [£, (v)+g, (y*)]) . (34)

Then if for 1 = 1,2

i) R(£,) = R(g,)

exist constants a, B, 7, €, and 6§ > 0 such that for

R(Ki) = the real numbers, then there

2

‘any (x,x*) € X x X* and real number a

£,(x) = af, (x)4B , (35)
g, (x*) =-agl(X*)+7 s (36)
0,(6a) = o, (a) , ET)
and | Kylaa+(B+y)] = 8K, (a)+e ; ~ (38)

ii) R(fi) = R(gi) = the real numbers and R(Ki) = the
nonnegative real numbers then Eqs. 35-38 hold for all

nonnegative real numbers . a with e= 0 ,

iii) R(fi) = R(gi) = the nonnegative real numbers and
‘ R(Ki) = the real numbers then Egs. 35-38 hold for all

H

real numbers a with Bp=y=0, a>0
and B
iv) R(fi) = R(gi) = R(Ki) = the nonnegative real numbers
then Egs. 35-38 hold with B=y=¢e¢=0, a>0.

Proof. Parts ii)-iv) are immediate from part i) and so we
prove the latter. Eq. 34 implies that for x,y € X,
X* € X* ,

pl Ge,x*), (y,x*)] 2 1/2 is equivalent to fl(x) 2 £, (y)

and to £,(x) z £,(y) .
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Because the range of fi , 1=1,2 1is the real numbers,
this.pair of equivalences implies [Aczel (1965)] that there
exists a continuous, strictly monotonic increasing function

~F such that for x ¢ X,
£,(x) = F£ (%) . (39)

Similar arguments prove the existence of continuous,
strictly monotonic increasing functions G and H such
that for x € X , x%¥ € X* ,

92(X?) = Ggl(x*) (40)

and
£, (x)+9, (x*) = H[£; (x)+g, (x*)] . (41)
Using'Eqs. 39-41 we obtain that for a,b € R(fl)-= R(gl) R

F(a)+G (b) = H(a+b)
= H(b+a)
=.F (b)+G (a)

~which for a= 0 ¢ R(fl) gives

G(b) = F(b)+[Gc(0)-F(0)] . (42)
Egs. 41 and 42 then imply that

'F(a+b)+G (0) = H(a+b+0)

= H(a+b)

= F (a) +G (b)

= F(a)+F (b) +[G (0)-F (0) ]
F(a)+F (b)-F (0) .

and so F (a+b)

But F 1s continuous with domain the real numbers and hence

there exists a constant o such that
F(a) = aa+F (0)

and so for x € X ,



£,(x) = Fl£, (x)] = ag, (x)+ B,

wheré B = F() . Substituting the above expression for F
in Eg. 42 we obtain that

G(b) = F(b)+G(0)~F (0)
aa+G (0)

and so for x* eix* R
= (X*") = G[gl (x%)] = ag, (Xf)+7
where ¥y = G(0) .

These expressions for £ substituted in Eq. 34

2 2 9
give that for any real numbers a,b

tbl[Kl (a)-K, (b)] = ¢2{K2[aa+(5+7)]"K2[0Lb+(6+7)]]‘

and if we let ¥ = ¢;1 ¢l then the above equation implies

that for any real numbers a, b, ¢ ,

VIK) (@) =Ky (B)] = K, laa+ (B+7) 1=K lab+(B+9) ] (43)

VIR ) K, ()] = K, [ab+ (B) 1K, [acs (847) ]

and

w[Kl(a)—Kl(c)] Kz[aa+(5+7?]-Ké[ac+(6+7)] .

But the sum of the right hand sides of the first two equa-
tions equals the right hand side of the third one and

R(Kl) = the real numbers. Hence for any real numbers d, e ,
Y(A)+y(e) = y(d+e) .

The only bounded solution to this equation is ¥(d) = &d
for some constant & and so ¢2(6d) = ¢l(d) . Because ¢2
is a cumulative distribution, we require & > 0 . Substi-
tuting this value in Eq. 43 for some fixed bo , we obtain -

that
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Kz[aéf(6+7)] = 6K1(a)+e

where e = K, [ab°+ (B+y) ]-6Kl (b o) | QED.

8.2 Strong conjoint utility models of exponential and
identity type.
‘ We next show that under certain interesting conditions
| only two classes of strong utility models arise, the first
being strong cénjoint models of exponential type, the other
being strong conjoint models of identity type. We state
these qonditions in the form of an assumption and then dis-

cuss this assumption.

Assumption 1. X, X* are sets-and the binary choice proba-

bilities over X X X* satisfy g strong utility model such
that, for x,y € X , x*,y* € x* with pl (x,x*), (y,y*)]

#0,1 14

pl (x,x%), (v,y*)] = ¢{K[£(x),g(x*)] -
K[f(Y):g(Y*)]}

where 1) each of the functions £f,9 4is either a ratio

scale with range the positive real numbers or an interval

scale with range the real numbers,

ii) K 4is_continuous in and dependent upon each of
its arquments and has range the real numbers,

and 1iii) if gf, gg, L, denote the class of admissible
transformations of £, g and K respectively, then for
any x € X, x* € X% , ?1 € gf ’ ‘I‘2 € gg there exists

D(Tl’Tz) € I, such that

R[T,£(x),T,g(x*)] = p(Tl,Tz)x[f(x),g(x*)] . (44)
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Assumption 1 without parts i) and iii) implies that K
is an interval scale [Block and Marschak (1960) , p. 104]
and thus EK of part iii) will be the class of linear trans-
formations.

Part iil) of the assumption is strong. A similar con-
straiht is implicit in dimensional analysis and Luce

(1959, 1965) uses it explicitly. Expressing the constraint
in words, we are assuming that any admissible transformation
of the independent variables f and g effects only ad-

- missible transformations of the dependent variable K .

The functions £ and g which arise in the above
assumption will be called the scale of X and the scale of
X* , respectively, and we say that these scales are indepen-
dent if we may choose any combination of their values and
any combination of their admissible transformations.

Theorem 19. If a set of binary choice probabilities over a
set X x X* satisfy Assumgtion 1l with the scales of X
'and X¥* independent, then either the probabilities satisfy

a strong conjoint utility model of exponential type or they
satisfy a strong conjoint utility model of identity type.

Proof. Luce (1965, Theorem 3) has shown that Eq. 44 can

hold under the conditions of Assumption 1 only if f and
g are ratio scales, in which case part i) of Assumption 1
requirés that they beAnonnegative functions. As pointed
out above, K 1is an interval scale anleheorem 2 of Luce
(1965) shows that under this set of conditions either there
exist a# 0, ﬁlﬁz # 0 and ¥ such that for each

(x,x*%) € X x xX* ,

Bl B2
K[£(x),g(x*)]= al£(x)]) “[g(x*)] “+y (45)
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or there exist Bl,Bz # 0 and 7y such that

K[£(x),g(x*)] = log[£(x)] “[g(x*)] “+y . (46)
' ' B
In either case, define fl(x) = log[f(x) 1 ,
él(x*) = log[g(x*)] 1 ang ¢l(a)~= ¢(za) . Then if Eq. 45

holds we obtain that

B g g g
o{al£(x)] Llg(x*)] 2-a[f(y)] 1[g(y*)] 2]

¢, lexpl £, (x) +g, (x*) ]-expl£, (v)+g, (¥) ]} ,

pl (x,x*), (y,y*) ]

u

which is a strong conjoint utility model of exponential type,
and if Eq. 46 holds we obtain that ,
’ ' Bl B,
pl (x,x*), (y,y*)] = ¢{log[£(x)] “[g(x*)]
-log[£(y)] “[g(y*)] °)

= ¢[[f1(x)+gl(x*)]-[fl(Y)+91(Y*)]] ’

which 1s a strong conjoint utility model of identity type.
- QED.,
If XZ= X* then clearly any admissible transformation
which is applied toﬁthe scale of X must also be applied to
the scale of X* and the scales of X , X* are not inde-
pendent in the sense defined above. Luce (1965) did not
study this case, but in Appendix B we use techniques similar
to his to obtain the class of possible funétional relations
when the scales are restricted in the above manner. This
class is quite large and in this paper we consider only one
strong conjoint utility model of type K with X neither
the éxponential nor identity function.
1 "Theorem 18 shows that under quite general conditions
the type of a model is gnique up to the class of ﬁransfor-
mations given 1n‘Eq. 38 and, in particular, under these
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conditions a strong conjoint utility model cannot be both of
éxponential type and of identity type. The following theorem
proves this result without any assumptions concerning the

range of £, g or K.

Theorem 20. A set of binary choice probabilities over a set

X X X* satisfies a strong conjoint utility model of expon-

ential type and a_strong conjoint utility model of identity

type only if the scale of X or the scale of X* is a con-
stant function in both models.

Proof. = If the probabilities satisfy a strong conjoint utility
model of exponential type and one of identity type then there

exist real valued functions £ and strictly monotonic

‘ i’ 94
distributions ¢i s 1=1,2 such that for x,y € X,

x*,y* € Xx* with p[(x,x*),(y,y*)] # 0,1 ,

o, ([£, (%) +g, (x*) ]

-[£, (v)+3, (v*) 1) . (48)
Eg. 48 implies that

pl (x,y*), (v, y*) ]

pl (x,x*), (y,x*) ]

which with Eq. 47 and the strict monotonicity of ¢
that

1 implies

£, (x)g, () -£, (v)g, (x*) = fl(x)gl(y*)-fl(y)gl(y*)
and so
L£) x)-£, (1 1[gy (x*) =g, (y1)] = 0 .
Because x,y € X , x*,y* € X*¥ are arbitrary elements this

result implies that either fi

tion and then Aczel's (1965) result applied as in Theorem

or gl is a constant func-



i

18 implies that either

constant function.

£

2

or g, , respectively, 1s a
QED.
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9. Observable Properties

Each conjoint utility model of the previous section in-
volves at least two unknown functions which we do not expect
 to calculate from data. In this chapter we study a series of
conditions which are stated entirely in terms of the observ-
able choice probabilities and in the next chapter we show
which observable properties are necessary consequences of
each model.

We first generalize to probabilistic situations the
algebraic "cancellation condition" discussed by Luce and
Tukey -(1965). This generalization is similar in nature to
- the well known generalizations of algebraic transitivity
(Appendix A, Def. 5).

Definition 11. Whenever min{p[ (x,x*), (v,y*)],p[ (v,2z*), i
(z,x¥)]} 2 1/2 the binary préferencé‘grobgbilities satisfy
i. weak stochastic cancellation provided that pl (x,z*),
(z,y*)] 2 12,
i1i. moderate stochastic cancellation provided that
Pl (x,2%), (z,y*)] 2 min{p[ (x,x*), (v,y*) 1,0l (y,2*),
(z,%%)]) | |
iii. strong stochastic cancellation provided that :
pl (x,2%), (z,y%)] 2 max(p[ (x,%x*), (v,y*) 1,0l (y,2%), |
(z,x%)1} . |

These conditions were introduced by McLaughlin and
Luce (1965) who studied whether they were satisfied by the
binary choices of human subjects between certain bitter-
sweet solutions. Their data provides almost complete sup-
. port for weak cancellation, considerable support for moder-
ate cancellation and throws'considerable doubt on strong

cancellation.
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Theorem 21. Strong stochastic cancellation is strictly

stronger than moderate stochastic cancellation which in turn
is strictly stronger than weak stochastic cancellation.

Proof. For any set of binary choice probabilities p over
a set X X X* we introduce a new set of probabilities g

via the definition: for each x,y € X , x¥,y*¥ € X»*» ,

q[ (x,x*), (Y’Y*)] = P[ (x,y*), (Y’x*)] .

Inspection of the definitions of stochastic transitivity and
stochaétic cancellétion shows that stochastic cancellation of
p of a certain strength is equivalent to stochastic trans-
itivity of g of the same strength. But strong stochastic
.transitivity is strictly stronger than moderate stochastic
transitivity, which in turn is strictly stronger than weak
stochastic transitivity (aAppendix A, Fig. 4). ‘ QED.

The following is a kind of independence condition on the

components of the objects under study.

Definition 12. A set of binary choice probabilities over a

set X X X* satisfies the transposition condition if for
a,b € X X X* , x,y € X and x*,y* € x* , p[ (x,x*),a] =

plb, (y,y*)] 1is equivalent to pl (x,y*),a] 2 plb, (y,x*) ]

and to pl(y,x*),al z plb, (x,y*)] .

We need the following lemma to prove the néxt theorem.

Lemma 6. If a set of binar hoice

X X X* satisfies the transposition condition then for
c,d € X X X* , x,y € X and x*,y* ¢ X* , plc,(x,x*)] &
pl (y,y*),d] is eguivalent to plc, (x,y*)] 2z pl (y,x*),d]
and to ple, (y,x*)] = pl(x,y*),d] . '
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Proof. Obvious since plc, (x,x*)] = 1-p[ (x,x*),c] QED.

We will occasionally use the symbol '«' to denote the

phrase 'if and only if.'‘

orem 22. The transposition condition implies strong

stochastic cancellation but not conversely.

Proof. Suppose that the transposition condition is satisfied
and min[p[(x,x*),(y,y*)],p[(y,z*),(z,x*)]] 2 1/2 . Then
the transposition condition and Lemma 6 imply that

P[(X,X*),(Y,Y*)] 2 1/2 = P[(z:z*):(z’z*)]

o pl(x,2%), (v,y*)] 2 pl (z,2%), (z,%%) ]
o pl(x,2*), (z,y*)] = p[ (y,z*), (z,x*) ] - (49)
and |
pl(y,2z%), (z,x%)] 2 1/2 = p[ (x,y*), (x,y*)]
o pl(y,y*), (z,x*)] 2z p[ (x,y*), (x,2z*)] |
o ply,y*), (x,x%) ] 2 pl (2,9%), (x,2%) ]
which is equivalent to |
pl (x,2%), (z,y¥)] 2 pl (x,2¢), (v,y0)] . (50)

Combining Egs. 49 and 50 we obtain that

pl (x,2*), (z,y*) ] 2 max{p[ (x,x*), (yv,y*) ],
: ' | pl (y,2%), (z,x*)])

which is strong stochastic cancellation.

To show that the converse is false consider the set of
probabilities given b& Fig. 2. These probabilities satisfy
strong stochastic cancellation but not the transpbsition be-
cause Pl (x,x*), (y,y*)] = 3/4 > 1/4 = p[ (y,x*), (x,y*)] but
pl (x,¥%), (y,¥%)] = 3/4 = pl (y,x*), (x,x%)] .




10. Relations Between the Models and the Observable

Properties | |

We now consider which of the observable properties of
‘Chapter 9 are necessary consequences of the strict and
strong conjoint utility models of exponential, logarithmic
and identity type. We need not consider every pair consisting
of an observable property and a model because certoin'results
are direct consequences of others. For example, we prove
that the strict utility model of exponential type does not
imply'moderate stochastic cancellation and it is immediate
from this result énd the comment after Def. 10 that the
strong conjoint utility model of exponentiél type does not.
imply moderate stochastic cancellation. We therefore prove
a sequence of results which are sufficient to derive the
relation of each model to each observable proﬁéfty,-these
relations being summarized in Fig. 3.

The study of the strict and‘strong conjoint utility
models is clearly incomplete since we only consider models
.of the exponential, logarithmicland identity type. We still
need a classification of other strict and strong conjoint
utility models in terms of which observable properties of
Chapter 9 are necessary consequences of each.

We assume throughout this chébter that all the probab-
ilities are different from O and 1. '

Theorem 23. Any weak conjoint utility model satisfies weak
stochastic cancellation but not converselv.

Proof. We have sets X, X* such that for a,p € X ,

a*,B* e X* r}

.P[(a,a*),(B,B*)] z 1/2 1if and only if
o £(a)+g (a*) 2 £(B)+g (B*)

-66-
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and hence if min{p[ (x,x*), (v,y*)],p[ (v,2z*), (z,x*) ]} z 1,2

then £(x)+g (x*) 2 £(y)+g (y*)
and £(y)+g(2*) 2 £(z)+g (x*)
 which implies that

£(x)+g(z*%) 2 £(z)+g (y*)
and so pl (x,z*), (z,y*)] 2 1/2 .

The set of probabilities given in Fig. 2 satisfies weak

stochastic cancellation but because

ol (x,3%) , (y,x9)] = 1/4 < 1/2 <
min{p[ (x,x¥), (v,y*) 1,0l (y,v*), (v,x*) ]}

- it does not satisfy weak transitivity, which is a necessary

cbndition for a weak conjoint utility model.

Theorem 24. Any strong conjoint utility model of ident

QED.

ity

type satisfies the transposition condition.

Proof. Using the notation of Def. 9, for a = (a,a*) ¢
. X X X* define h(a) = £(a)+g(a*) . Then for .
a,b, (x,x*), (y,y*) € X x X* )

pl (x,x%) :a] =4 P[b, (y,y*) ]

v

o o{[£(x)+g(x*)]-h(a)} 2 ¢ (h(b)-[£(y)+g (y*)])

o [£EE)+g(x*)]-h(a) 2z h(®)=[£(y)+a(y*)]
o [f(x)+g(y*)]-h(a) 2 h(®)-[£(y)+g (x*)]
o o{[£(x)+g(y*)]-h(a)} 2 o(h(b)-[£(y)+g (x*)])

- P[ (xJY*) :a] 2 p[b) (y’x*)]

which 1s the first part of the transposition condition.
second part is proved similarly.

The
QED.

It is not known whether the converse of Theorem 24 is
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true but in Chapter 12 we show that the transposition condi-
tion plus an existence condition is sufficient for a set of
binary choice probabilities to satisfy a strong conjoint
utility model of identity type.

Theorem 25. Strong stochastic cancellation does not imply
the weak conjoint utility model.

Proof. The set of probabilities given in Fig. 2 satisfies
strong stochastic cancellation but because Pl (x,%*), (y,x*)]
= 1/4 < 1/2 < min{p[ (x,x*), (y,y*) 1,p (y,¥*), (y,x*) ]} it
does th satisfy weak stochastic transitivity, which is a
necessary condition for a weak conjoint utility model.

QED.

Theorem 26. Any strong conjoint utilit odel of logarithmic

type satisfies moderate but not strong stochastic cancella-
tion and strong stochastic cancellation does not imply the

strong conjoint utility model of logarithmic type.

'Proof. We may without loss of Qenerality suppose that X,
X*¥ are subsets of the positive real numbers and that for
X,y € X, XxX¥,y¥ € X* ,

o[ log (x+x*) =log (y+y*) ]

X+x*
= O[log y+y* ] .

If min(p[(x x*), (v,y*) 1,pl (y,2*), (z,x*%)]} 2 1/2 then

p[(x,X*),(y,y*)i

Xix* ytz* '
vy 21 , 2tk 21 (51)

and without loss of generality suppose that

_321. ytz* . (52)
, y+y* Z+x¥



Then,

(x+2%) (2+x*) (z+30%) [ (x4x¥*) = (xx=z%) ]

"

(z+x¥) (X+x*)-(z+;(*) (x¥=z*)

(y+z*) (y+y*)-(z+x*) (x¥=z*) (by Eq. 52)

w

(y+2*) [ (z+y*) = (2=y) ] = (z+x*) (3¢ =2%)

»(Y+2*) (z+y*) =[ (y+2%) (2=y) +(z+x*) (x#-2#)] .
| ~ (53)
But Eq. 51 implies that

(y+2%) (y-2) + (2+x%) (z%-x*)

v

(z+x#) (Yy=2) + (2+x%) (z*=3*)

(z+30%) [ (y=2) + (2% =x%) ]

(z+x%) [ (y+2#) = (z4x%) ]
2 0 .
Substituting this result in Eq. 53 we obtain that

(x+z*) (24x*) 2 (y+z*) (2+y*)

and so

X+z* > ytz*

Z+y¥* T z4xH
which with Egq. 52 implies that

| P[ (x,2%), (z,y*)] = min(P[ (x,x*), (Y,Y*)]:
pl (Y:z*) , (2,%x%) ]}

which is moderate stochastic cancellation.

However, if x=y* =3 , y = x¥ =1 , then

Pl (x,x*) , (y,y*)] = ¢[log(4/4)] = ¢(0)

¢[log(4/2)] = ¢ (log 2)

P[ (¥,v*) , (y,x*) ]

whereas |
P[ (x:Y*)‘: (YJY*)] = ¢[log(6/4)] < ¢ (log 2)



which contradicts strong stochastic cancellation.

If strong stochastic cancellation implied the strong |
conjoint utility model of logarithmic type, then it would
follow from earlier results and those summarized in Appendix
A (see Fig. 3) that strong Stbchastic cancellation implied
the weak conjoint utility model, which contradicts Theorem
25. QED.

Theorem 27. A strict conjoint utility model of logarithmic
type neither implies nor is implied by strong stochastic

-cancéilation.

Proof. If we choose ¢(a) = l/(1+e-a)

of‘Théorem'26 then that counterexample shows that the strict

in the counterexample

conjoiht utility model of logarithmic type does not imply
strong stochastic cancellation and an argument similar to
that of the last paragraph of Theorem 26 shows that strong
stochastic cancellation dogs not imply the stricf conjoint

utility model of logarithmic type. ' QED.
Theorem 28. binarv strict co int u

ancellation and moderate stocha ation

imply the strict conjoint utility model of exponential type.

Proof. It is deducible from earlier theorems (see Fig. 3)
that the binary strict conjoint utility model of exponential
type satisfies weak stochastic cancellation. Now suppose
that X 1is real numbers not less than unity, X* the
positive reals and for x,y € X, Q@,B € X# '

xd.

P[ (x,a) ) (Y,ﬁ)] = o
R

i




This set of probabilities satisfies a strict conjoint utilitf
model of exponential type such Ehat pl (x,a), (v,B)]

pl(z,7), w,8)] 4if and only if xa/'y5 z z7/w5'. Thus if
Xx=y=a=2, z=1/2, P=1/4, y=1, then

xa
X -2

5=

/4 > 1 , hence P[(x,a),(Y.ﬁ)] > l/é ’

v

B =851 » hence pl(y,”),(z,0)] > 1/2
Z . .

whereas

7. | o Y
X_ o 25/% ¢ nin 27/4,23 = min (%, ¥
B p’ o
2 _ : Y 2

.and so

P[(x;7))(z:ﬁ)] < min{P[(x,a):(Y;B)]:p[(Y97)(z:a)]]
which contradicts moderate stochastic cancellation.

An argument similar to that of the last paragraph of

‘Theorem 26 shows- that moderate stochastic cancellation does

not imply the strict conjoint utility modei of exponential
type. QED.
Because any strict conjoint utility model of type K
is a strong conjoint utility model of type K , Theorems 26
and 28 prdve that a stréng conjoint utility model of expon-
ential type is not necessarily élso of logarithmic type;
Theorems 24 and 26 prove that a strong conjoint utility model
of logafithmic type is'not necessarily also of identity
type; and Theorem 20 proves that there exist strong conjoint
utility models which are of exponential but not of identity
type and vice versa. The questions remain whether there
exlst strong conjoint utility models of identity type which

are also of logarithmic type and whether there exist strong



conjoint utility models of logarithmic type which are
of exponential type. If the conditions of Theorem 18
satisfied then these questigns can be answered in the

tive but we do not know of much weaker conditibns for

this is the case.

are
nega=-
which
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11. Relations To the Results of Luce and Suppes

If a set of binary preference probabilitiés over a set
X X X* satisfy weak stochastic cancellatioh,.then in partic=-
ular if x,y,z € X and w* € X* are such that

| min{p[ (x,w*) , (y,w*)],pl (Y,W*) ’ (z;w*) 1} 21,2 » then

pl (x,w*),(z,w*)] 2 1/2 , i.e. if a,b,c € X X {w*} are such
that min{p(a,b),p(b,c)} 2 1/2 then p(a,c) 2 1/2 , which is
weak stochastic transitivity on X X {w¢} . Similar argu-
ments show that weak, moderate and strong stochastic cancel-
lation on x.x'x* imply weak, moderate and strong stochas-
tic transitivity, respectively, on (w)} X X* , X X {w*)

_for each (w,w*) € X x'X* . However, we next prove that,

provided X, X* each contain at least two elements the con-
verse of each of the above statements is false. We then dis-
cuss the relations between thé observable properties intro-
duced in this part of the thesis and those of Luce and

Suppes (see Appendix A) when all the properties'hold over

a set X X X* where X, X* each contain at least two ele-

" ments.

Theorem 29. Weak stochastic cancellation neither implies nor
is implied by the product rule.

Proof. The product rule is equivalent to the binary strict
utility model (Appendix A, Fig. 4) and it is immediate from
earliér results (sée Fig. 3) that weak stochastic cancella-
tion does not imply the binary strict utility model.

Counterexample 2 (p. 53) exhibits a set of choice prob-
abilities that satisfies a binary strict utility model but
does not satisfy weak stochastic cancellation. QED.

' Because the product céndition is stronger than weak,

moderate, and strong stochastic transitivity (Appendix a,
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Fig. 4) and weak stochastic cancellation is weaker than
moderate and étrong stochastic cancellation, Theorem 29 is
sufficient to show that the converse of each of the impli-

~ cations mentioned at the beginning of this chapter is false.

Theorem 30. The transposition condition implies the quad-
ruple condition but not the product rule and the product

rule does not imply the transposition condition.

Proof. If the transposition condition holds and

plr, (z,2*%)] 2 p[ (w,w*),s]

~then with this expression as the first inequality of lLemma

6, the second inequality becomes
plr, (z,w*)] 2 p (w,z*),s]

and with this expression as the first inequality of Lemma 6,
the third inequality becomes

plr, (w,w¥)] 2 pl (z,2¥),s] .

The equivalence of this inequality and the initial inequality
shows that the quadruple condition holds.

Theorem 24 shows that any strong conjoint utility model
of identity type in which the choice probabilities are dif-
ferent from O and 1 satisfies the transposition condition but
ekamples can easlly be constructed which show that such a
model need not satisfy the product rule and hence the
transposition condition does not imply the product rule.

If the product rule implied the transposition condition
then it would follow from Theorems 21 and 22 that the pro-
duct rule implies weak stochastic cancellation which contra-
dicts Theorem 29, QED.
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‘Theorem 31. Strong stochastic cancellation neither implies

nor is implied by either weak stochastic transitivity or the
triangle condition. '

,Proof. We have already pointed out in Theorem 25 that the

set of probabilities given in Fig., 2 satisfy strong stochas-

~tic cancellation but not weak stochastic transitivity. 1It

also does not satisfy the triangle condition because

pl (x,x*), (y,k*)]+ibl (y,x*¥), (x,y*)] = 1/2 < 3/4

pl (x,x*), (x,y%)] .

Conversely, if the choice probabilities satisfy the
product rule then they satisfy both weak stochastic transi-
tiviﬁy and the triangle condition (Appendix A, Fig. 4) where=-
as Théorem 29 shows that they need not satisfy weak stochas-
tic cancellation, which is strictly weaker than strong sto-

‘chastic cancellation.

Theorem 32. The weak conjoint utility model neither implies

-nor is implied by the triangle condition.

Proof. If ({x,y} x {(x*,y*} 4is such that

max {p[ (x,%¥), (v,%*) ],pl (v,x*), (v,y*)]} < 1/2 = p[ (y,x*),
(x,y*) ] , pllx,x¥), (x,¥%)] = p[ (x,¥*), (y,y*)] = 1/8 and
pl (x,%x*), (y,y*)] = 3/8 then the weak conjoint utility model
holds with £(x) = g(x*) = 1 , £(y) = g(y*) = 2 but the
triangle condition does not because

Pl (v,y*), (x,¥*)] = 7/8 > 6/3 = pl (y,y*), (x,%*) ]

+pl (x,x*), (x,y*)] .

If the triangle condition implied the weak conjoint
utility model then the triangle condition would imply the
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weak utility model, which contradicts the results of Luce
and Suppes (Appendix A, Fig. 4). o QED.



12. Representation Theorems

| In this section we study certain conditibns which are
sufficient for a set of binary preference probabilities to
satisfy a strong conjoint utility model of identity type and
also other conditions that imply the existence of functions
whose properties are very similar to those of the functions
which occur in the weak conjoint utility model. We first
state two lemmas, the first due to Debreu (1958) and the
second due to Aczel (1965). '

Lemma 7. §ugpose'thgt 3 set of biggry choice probabilities

‘over a set A 4is such that
1) it satisfies the quadruple condition
and ii) for any a,b,c € A and q € |0,1] with
p(b,a) s é s p(c,a) there exists e € A such
that p(e,a) = q,
- then there exists a real valued function u with domain A
such_that | '
p(a,b) 2 p(c,d) 4if and only if u(a)=-u(b) 2z u(c)-u(d) .

Lemma 8. For two real valued functions g, h with domains
S, T , xrespectively, and for a real valued function £ with
domain S x T the fact that for any x,y € S, p,q €T R

£(x,p) = £(y,q) Lf and only if g(x)+h(p) & g(y)+h (q)

implies the existence of a strictly monotonic map % such
that

C£(x,p) = klg(x)+h(p)] .

Thebrem 33. Suppose that 3 set of binarvy choice probgbili-

ties over a set X X X* is such that
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i) it satisfies the transposition condition: and
ii) for any a,b,c € X x X* and q € [0,1] with

" p(b,a) G p(c;a) there exists e € X X X* guch

that ‘P(e:a, =_q ’

‘then the probabilities satisfy a strong conjoint utility

model of identity type.

Proof. Théorem 30 shows that the transposition condiﬁion
implies the quadruple condition and thus the conditiohs of
Lemma 7.are satisfied, which implies that there exists a
real valued function u with domain X X X* such that for
any a,b,c,d € X X X*

p(a,b) = p(c;d) if and only if u(a)=u(b) % u(c)-u(p) .

Applying Lemma 8 to this equivalence we obtain that there
exlsts a strictly monotonic increasing function ¢ such that
for a,b € X X X* ,

p(a,b) = ¢[ufa)-u(®)] . ~ (54)

"If (xo,xg) € X X X*¥ 1s a fixed element then Eq. 54 implies

that for any (x,X*) € X X X* ,
pl ‘xyx*) ’ (x:x*) ] = P[ (xo:xg) «’ (xo,xg)]
which with the transposition condition implies that
P[ (x:xg) :‘(x)x*) ] = P[ (xo’xg) ’ (XO,X*) ] i

From the above result and the representation given by
Eq. 54 we obtain that

u(x,xg?-u(x,x*) = u(xo,xg)-d(xo,xf)
and hence

u(x,xf) = u(x,xg)+u(x°,x*)-u(xo,xg) . (55)
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If for any z € X, 2z* € X* we define £(z) = u(z,xg) and
g(z*) = u(xo,z*) , then substituting Eq. 55 in Eq. 54 we
obtain that for x,y € X , x*,y* ¢ X* ,

pl (x,x*), (y,y*)] = ¢[u(x,"*) -u(y,y*)]

= ¢[[u(x,x3)+u(xo,x*)-u(x°,xg)] -
u(y,x¥)+u(x ,y*)-u(x_,x*)])

= o{[£(x)+g(x*)]-[£(¥)+a(y*) ]} ,

which is a strong coﬁjoint utility model of identity type.
QED.

I have not found sufficilent conditions for a set of
probabilities to satisfy strong conjoint utility models of

other types.

j Theorem 34. JIf a set of binary choice probabilities over a

set X X X* satisfy strong stochastic sitivi

! - stochastic cancellation and for any a e X X X¥ , x € X,
| x* € X* there exists =z € X, 2% € X* such that
‘pla, (z,x*)] = 1/2 = pla, (x,2%)] then there exist real
valued functions u, £, g with domains X x X* , X, X*
espectively such that for =x,y € X , x¥*,y* € X% ,

i. pl (x,x*),(y,y*)] 2 1/2 4if and only if
u(x,x*) z u(y,y*)
ii. pl(x,x*),(y,x*)] 2 1/2 Aif and only if f£(x) 2 £(y)
and iii. p[ (x,x*), (x,y*)]) 2 1/2 Af and only if g(x*) 2 g(y*) .

Proof. 41i. This part of the proof is due to Luce (1964). For
a fixed o € X X X* let u(a) = p(a,a) for each a € X X X*,
If p(a,b) & 1/2 then there are three cases to consider.

1. p(b,a) 2 1/2 , then by strong stochastic transitivity
u(a) = p(a,o 2 p(b,a) = u(d) .
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2, p(a,a) 2 1/2 , then by strong stochastic transitivity
p(a,b) 2 p(a,a) which implies that u(a) = p(a,a)
z p(b,a) = u(d) . _
3. Neither 1l nor 2 holds i.e. u(a) = p(a,a) > 1/2
> p(b,a) = u(d) . |
Thus the weak utility model holds.
ii. Now suppose that x,y € X, 2% € X* are such that
p[(x,z*),(y,z*)] 2 1/2 . We show that p[ (x,w*), (y,w*)]
2 1/2 for all w* € X* , Given w*¥ € X*¥ , w* ¢ 2% choose
w € X such that p[(w,w*),(x,2%#)] = 1/2 . Then by weak
transitivity

P[ (w:w*) s (y,2%)] & 1/2
which with
P[ (x,2%), (w,w*) ] =172

implies by weak stochastic cancellation that

pl (x,w*), (y,w*)] 2 1/2 , which is the desired result.

Let xg € X¥ Dbe fixed and for each x € X define

. £(x) = u(x,xg) . The the above discussion shows that for

X,y € X, x¥% € X%,

p[(x,x*),(y,x*)] z 1/2 is equivalent to
| pl (x,x%), (v,x%)] 2 1/2 ,

which'by part i. holds if and only if £(x) = u(x,xg)
2 uly,x*) = £(y) i.e. pl (x,x*), (y,x*)] =z 1/2 if and only
if £(x) z £(y) .

Similar arguments may be used to prove part iii. QED,

although the above theorem does not give sufficient
conditions for a weak conjoint utility model the representa-
tion obtained is very similar to that required of such a

model.
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and failures of



(X,X*) - > (x,7*)

| (y,x*) <= (¥,y*)

Figure 2. (a,a*) -~ (B,B*) indicates that
P[ (ala*))(B:B*)l = 3/4 .
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Appendix A

The following definitions and Fig. 4 are taken from Luce
and Suppes [1965, Pp. 333-344].

Definition 1. A weak (binary) utility model is a set of binary
preference probabilities for which there exists a real-valued

function w over A such that

p(x,y) 2 1/2 if and only if w(x) 2z w(y), x,y € A .

Definition 2. A strong (or Fechnerian) (binary) utility model

is a set of binarv preference probabilities for which there
‘exist a real-valued function u over A and a cumulative
‘distribution function ¢ such that '

(1) ¢() = 1/2 and |
(ii) for all x,y € A for which p(x,y) #0oxr1l,
P(x,y) = ofu(x)-u(y)] .

Definition 3. A strict binary utility model is a set of binary .
- preference probabilities for which there exists a positive
real-valued function v over A such that for gli X,y € A
for which p(x,y) # 0 or 1,

V‘Z

v (x) +v (y)

p(x,y) =

Definition 4. A set of binary preference probabilities satis=-

fies the triangle condition if for evervy x,y,z € A ,

p(x,y)+p(y,z) z p(x,z) .

Definition §.>'ﬂhggever min[p(x,y) ,p(y,2)] 2 1/2, the binar
preference probabilities are said to satisfy '

(1) weak (stochastic) transitivity provided that
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| p(x,z) 2 1/2 ; |
(11) moderate (stochastic) transftivity provided that

| p(x,2) 2 min[p(x,y),p(y,2)] =
- (1i1) strong (stochastic) transitivity provided that

P(x’z) = max[P(x.vY) )P(YJZ)] .
Definition 6. A set of binary preference probabilities satisfy

the quadruple condition provided that Pp(w,x) z p(y,z) implies
p(x,y) z p(x,2) . -

Definition 7. A set of binary preference probabilities not
equal to 0 or 1 satisfy the product rule if for every set of
€A,

3 .
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Appendix B

Under the conditions of Theorem 19 any Strong conjoint
utility model is necessarily of either exponential or identity
type. However, if X = X* then the conditions of that
theorem cannot be met and in this Appendix we study a set of
conditions which are applicable to this case, these conditions

¥

being summarized as:

Assumption A. Ri” i=1,2, are subsets_of the real numbers

and u:R, X R, =R is a continuous, real valued function

l 1l 2
which is dependent upon each of its arquments with
i) R, = =R = the real numbers if variable i = 1,2 is

measured on an interval scale,
R+ the nonnegative real numbers if Vgrigble
i =1,2 is measured on @ ratio scglg,
and ii) if T, , 1= 1,2, denotes the class of admissible

transformations of variable 1 the or X,y € Rl’
T eT there exists D(T) € T2 such that

l i
u(Tx,Ty) = D(T)u(x,y) . (1)

aAssumption A holds throughout this aAppendix and we con=
sider only those cases in which each variable is either a

ratio or interval scale.

Theorem 1. If both fhe independent and dependent variagbles

are ratio scales_ then there exist a continuous function £
and a constant k such that

u(x,y) = e/

Proof. In this case Eq. 1 asserts that for X,y,z € R+ there

exists D(z) € R+' such that

-
«
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u(zx,zy) = D(z)u(x,y) 1 (2)
and hence for arbitrary =z,x,r,s € R+ ’

u(zxr,zxs) = D (zx)u(r,=s)
D(z)D(x)u(r,s)

which implies that either u(r,s) = 0 , which is not the

case since u depends on both its arguments, or for all

Z,X € R+
D(zx) = D(z)D(x) .
D 1is a continuous function and the solution of the above

equation is D(z) = zk for some constant Xk .
Using Eq. 2 with =z = l/y we obtain that

u (X/Y’ l) = D (l/Y)u (X,Y)
and hence '

u(x,y) = B_(-l.l/—yT u(x/y:,1)

YeE(x/y)
where f£(x/y) = u(x/y,1) QED.

| This result is a special case of the ﬂj-theorem of
dimensional éhalysis [see, for example, Sedov (1959},
Pp. 16-20].

Theorem 2. If the independent variables are ratio scales and

the dependent variable an interval scale, then either there

exist a continuous function £ and constant B such that

u(x,y) = £(x/y)+Blog y
or there exist a continuous function £ and _constants k, 7
suéh that

u(x,y) = yk[f(X/Y)-7]+7 .
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Proof. In this case Eg. 1 asserts that for x,y,z € R+
there exists D(z) € R+ , C(z) € R such that

‘u(zx,zy) = D(z)u(x,y)+c(z) . (3)
Using this equation in two ways we obtain that

u(zx,2zx) = D(z)u(x,x)+C(2)

D (z) [D(x)u(l,1)+C (x) ]+C(2)

D(x)u(z,z)+C(x)

| D (x) [D (2) u (1, 1) 4 (2) 14< (x)
which implies that |

| D(z)C (X)‘+C (z) = D (x)C(z)+C (x)
dee. c(x)[1-D(z)] = c(2) [1-D(x)] -

Since x,z are arbitrary either c=0 , DEZ1 or
c(x) = y[1-D(x)] for all x € R, and some constant ¥y . If

C=0 then u 1s in fact a ratio scale and Theorem 1

applies.
We now consider the other two cases.
1. =1.
In this case, using Eq. 3 in two ways we obtain that
u(zx,zx) = D(zx)u(1,1)+c(zx)
= u(l,l)+C (zx)
= D(z)u(x,x)+C(2)

= p(z) [D(x)u(1,1)+C (x) }+C (2)
= u(l,1)+C (x) +C (2)

and hence C(z)+C(x) = C(zx) for all z,X € R+ . C is con-
tinuous and the solution of this functional equation is

C(x) = P log x where P is a constant. Using EQ. 3 with
z = 1/y  we obtain that

u(x/y,1) = D(1/y)u(x,y)+c (1/¥)



= u(x,y)+p log (1/y)
£(x/y)+ B log y
u(x/y,l). .

and hence u (x,v)

where £ (x/y)

n

2. If c(x) = y[1-D(x)] for all x'€ R, then in particular

c(1) = y[1-p(1)] o (4)
' whereas Eq. 3 implies that for arbitrary y € R, y

u(l,y) = D(1)u(l,y)+c(1)
and hence |

c(l) =u@,y-d@W) . (5)

COmparing Eqs. 4 and 5 we see that u does not depend on its
second argument unless D(l) = 1 in which case there exists
~some w <-:»R+ such that u(l,w) # 7y .

For this w and arbitrary 2z,x € R+ , Eq. 3. implies that

D (zx)u (1,w) +C (2x)
D (zx) A+y : (6)

]

u (zx,zxw)

where A = u(l,w)=y # 0 .,
Using Eq. 3 it can also be shown that

u(zx,zxw) = D (z2)D (x)A+y | (7)
and Egs. 6 and 7 imply that |

D (2x) = D(z)D (x)
for all =z € R+ . D is continuous and the solution of this
equation is D(z) = zk for some Xk . ' '
Using Eq. 3 with z = 1/y , we obtain that

"

ul(x/y, 1) = D(1/y)u(x,y)+C(1/y)
= D(1/y)u(x,y) +y[1-D (1/¥)]
and hence “ A
u(x,y) = (ulx/y,1)-7[1-D(/9)]) 7079y

"

Yo lu(x/y;1) -y (1- %kv)]



volulx/y,1) =71+

fk[f(X/y)-7]+7

where f(x/y) = u(x/y,1) ’ - QED.

Theorem 3. If the independent variables are interval scales

and the dependent variable a ratio scale then there exist

_constants k and a,B > 0 such that

Cu(x,y) = a (x-y) " Xzy
B (y-x) " x<vy.

Proof. .In this case Eq. 1 asserts that for x,y,a € R,
z € R_ there exists D(z,a) € R, such that

u(zx+a,zy+a) = D(z,a)u(x,y) . ‘ | (8)

When a = 0 Eq. 8 reduces to Eq. 2 and hence the arguments

of Theorém 1 show that D(z,0) = zk for some constant k .
 Also Eq. 8 with =z = 1 implies that for arbitrary

x,y,0,B € R h

u (x+a+p, y+a+B) D(1l,a+B)u(x,y)

D (1,B)u (x+a,y+a)

D(1,B)D(1,a)u(x,y)

and hence either uZ 0 or D(l,a+B) = p(1,p)D(1,2) for all

a,p €ER . D is continuous and hence D(l,a) = exp Aa for

n

some constant A . Now assume that x =z Yy .
Eq. 8 then implies that

u(x,y) = ul (x-y)+y,0+y]
= D(1,y)u(x-y,0)
= D(1,y)D(x-y,0)u(1,0)
- Mx-pFu,0 .

: Because u depends on both its arguments, the above e€Quation
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implies that u(1,0) # 0 . Substituting the expression for
u(x,y) into Eq. 8 with o = 0 and equating terms, we obtain
that A =0 and hence for x 2 Yy ,

| u(x,y) = (e-y)“u(1,0) .
A similar argument shows that for x <Yy,
u(x,y) = (y-x)ku(O,l) . |
QED.

We have not yet obtained a satisfactory proof of the

following conjecture.

Conjecture. If beth the independent and dependent varigbles

are interval scales then either there exist o,B,y and k

‘'such _that for =x,y € R,

k
u(x,y) = a(x-y) + 7y for x2zYy
B(y-x)k + 7 for y<x

or there exist a, B and ¥y such that
u(x,y) = ax+py+y
- or there exist a, P and 7 such that

u(x,y) = a log (x-y)+y for x 2z Y
B log (y-x)+y for y <x .





