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ABSTRACT 

EFFECTS OF DIET AND PARASITES ON THE GUT MICROBIOTA OF DIVERSE 

SUB-SAHARAN AFRICANS 

Meagan A. Rubel 

Sarah A. Tishkoff 

Contemporary African populations possess myriad genetic and phenotypic adaptations to 

diverse diets, varying climates, and infectious diseases. Most microbiome studies to date 

have focused on primarily European and Asian populations in urban, industrialized 

settings. By comparison, relatively little is known about traditional African gut 

microbiomes, and the range of variation they contain. Many African populations are 

undergoing substantial changes because of rapid globalization, easier access to hygienic 

resources and medications, shifts away from traditional lifestyle, and increased exposure 

to processed diets high in sugars and fats. By characterizing microbiome variation among 

sub-Saharan African populations using metagenomic sequencing, we can better 

understand differential response to diseases and environmental factors in producing 

physiological adaptations. Furthermore, by extending microbiome sampling across a 

range of traditional African populations in multiple countries, it may be possible to trace 

subsistence transition with changes in settlement and diet, and interrogate how these are 

shaped by industrialization. In this dissertation, I describe the gut microbiomes of 

populations practicing agropastoralism, hunting and gathering, and pastoralism in three 

African countries: Botswana, Cameroon, and Tanzania. To do this, I used amplicon and 

shotgun sequencing to characterize microbial genomes and annotate their functions. I 
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combined this microbial data with extensive phenotype and ethnographic data. With this 

dataset, I detected gut microbial taxa associated with subsistence strategy, sex, 

geography, and host genetics. I demonstrated that the degree of industrialization in these 

populations correlated with enrichment of functional pathways involved in the 

metabolism of xenobiotics and industrial pollutants. Moreover, I found that the gut 

microbiome has no association with HIV infection, but is highly predictive of multiple 

gastroenteric parasite infections within Cameroonians. Parasite infection and microbiome 

composition were, in turn, associated with Th-2 proinflammatory cytokines that are 

produced during helminthiasis. My research captures microbiota and taxa that are rare or 

absent from microbiomes of industrialized populations and expands the definition of 

normal variation within the human gut microbiome. My dissertation identifies multiple 

factors affecting microbiome composition and works towards generating a more holistic 

interpretation of the structure and function of human gut microbiota, and their potential 

associations with human physiology and adaptation. 
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Chapter 1. Introduction  

This dissertation expands knowledge on the impact of subsistence, geography, pathogen 

infection, and ancestry on gut microbiome composition in diverse, rural African 

populations. In Chapter 2, I provide a broad background about human evolutionary 

history in Africa, with a focus on Homo sapiens, through the lens of ‘-omics research. I 

then provide background on the gut microbiome, including its association with health and 

disease states in humans and a description of the tools that are used to interrogate the gut 

microbiome. Finally, this chapter concludes with a description of substantial health 

problems in Africa, with an emphasis on infectious disease, and their known correlates 

with gut microbiome composition and function.  

In Chapters 3 and 4, I describe the characterization of the gut microbiomes of diverse 

sub-Saharan African populations, focusing on the roles of subsistence, geography, 

genetics, and human pathogens. My aim is to provide insights into the co-evolutionary 

relationships between people, their enteric microbiota, pathogens, and the external 

environment (diet, geography). 

Specifically, I test the following hypotheses:  

1) Rural African gut microbiome composition will be adapted to different 

subsistence groups, diets, local geography, sex, and host genotype (Chapters 3 

and 4). 

2) Consequent to their level of industrialization, agropastoralist and pastoralist 

populations will have microbial genes that are enriched for functions in the 
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degradation of chemicals, including industrial pollutants and antibiotics, as 

compared to hunter-gatherer populations (Chapters 3 and 4).  

3) Human gut microbiome composition will have correlations with pathogen 

presence and frequency, including blood/fecal parasite infection and HIV. 

Infected individuals will possess microbiota with pro- or anti-inflammatory 

functions associated with their physiological response to pathogen infection, 

which can be further evidenced by cytokine and other biomarker responses in the 

host (Chapter 4).  

In Chapter 3, I describe the gut microbiota from six rural populations with agropastoral, 

pastoral, and hunter-gatherer subsistence from Botswana and Tanzania and compare them 

with an urban U.S. population.  I demonstrate that the Tanzanians harbor the most 

individual diversity in their gut microbiomes, and that hunter-gatherer microbiomes are 

phylogenetically distinct from the microbiomes of pastoralist and agropastoralist groups. 

Pastoralists, whose diets are enriched in meat, blood, and dairy, do not have significantly 

different microbiomes from agropastoralists, indicating the potential convergence in 

microbiota types required to catabolize their different diets. Although genetic relatedness 

is correlated with bacterial composition for two African populations, I find that 

geographic proximity varies more significantly with bacterial abundance. Furthermore, I 

find evidence for sex-specific taxa in two populations, the Maasai and Hadza, who are 

known to practice sexual-specific division of labor. Bantu-speaking agropastoralists from 

Botswana have gut bacteria very similar to U.S. individuals, with imputed metagenomic 
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content that is enriched for genes found in metabolic pathways for industrial pollutant 

degradation.   

In Chapter 4, I test for associations between the gut microbiomes of traditional African 

populations with their pathogens Most studies tend to pursue helminth-microbiota 

research in one of three ways: They either classify variation between case and control 

groups of helminth infected individuals, to treat with specific bacteria to test for 

inhibitory effects on parasite survival or map pro- and anti-inflammatory physiological 

response from bacterial changes associated with parasite infection. Conflicting results in 

the microbiota associated with parasite positive and negative individuals thus necessitate 

reproducible results on large, global cohorts to identify shifts in taxa related to pathogens. 

I quantify parasite copy genome number in Cameroonians for seven parasites: Ascaris 

lumbricoides, Pan-Cryptosporidum spp., Entamoeba histolytica, Giardia lamblia, 

Necator americanus, Strongyloides stercoralis, and Trichuris trichiura, and I test for HIV 

and cytokine levels. I use extensive phenotype and ethnographic data to create case 

control matches for different types and combinations of parasites in Cameroonians 

representing three subsistence groups (hunter-gatherers, pastoralists, and 

agropastoralists). These data are compared with the microbiomes of healthy individuals 

from the industrialized U.S. The results indicate that parasite infection in Cameroonian 

populations was common, especially in hunter-gatherers, and that bacterial diversity was 

positively correlated with frequency of parasite infections. Microbiome composition 

could be used to predict parasite infections with a significantly co-occurring group, A. 

lumbricoides, N. americanus, T. trichiura, and S. stercoralis, dubbed the “ANTS” group, 
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with high accuracy. I also found multiple infections of pathogenic and commensal 

Entamoeba species that were not detected in traditional qPCR and note that microbiome 

composition can be used to predict Entamoeba infection, although with less accuracy 

than ANTS infection can be predicted. There was no association with either HIV 

infection or the lactose persistence phenotype with the gut microbiome, although the 

pastoralists had an enrichment of bacteria capable of catabolizing the products of lactose 

metabolism (galactose). Finally, supervised machine-learning models using microbiome 

abundance to separately predict IL-5 cytokine levels and different categories of ANTS 

produced overlapping results. Some microbial taxa were highly predictive of both IL-5 

and ANTS status, and warrant further investigation for their role in promoting or 

decreasing helminth-associated physiological morbidity. 

Through the study of contemporary groups with different, traditional subsistence 

practices, such as those described here, ethnographic analogies can be developed for how 

ancestral populations lived. The characterization of gut microbiota from these 

populations- which, for some groups, marks the first time their gut microbiota has been 

sequenced- may inform on how humans have adapted to shifting environments and 

selective climatic, dietary, and infectious pressures in sub-Saharan Africa. Here, we find 

evidence for associations between the gut microbiota with sex, genetics, geography, 

subsistence, multiple types of infection, and cytokines. Many of these specific 

associations have not been described in the human gut microbiome before. Given the 

rapid rate of globalization in many parts of sub-Saharan Africa, and the microbial 

changes consequent to the processes of industrialization, this dissertation serves as a 
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cross-sectional study on the changing landscape of human gut microbiota in diverse, rural 

populations.  
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Chapter 2. African evolutionary history, health, and the gut 

microbiome 

Section 2.1 of this chapter has been modified from a previously published article:  

Holsbach-Beltrame†, M., Rubel†, M.A. & Tishkoff, S.A. (2016). Inferences of 

African evolutionary history from genomic data. Curr. Opin. Genet. Dev. 

doi:10.1016/j.gde.2016.10.002 

† Contributed equally 

2.1  Inferences of African evolutionary history from genomic data 

Using ‘-omics’ to understand human origins in sub-Saharan Africa 

Archaeological and genetic studies indicate that Africa is the origin of anatomically 

modern humans (AMH) within the past 300 thousand years (ky), the source of the 

worldwide range expansion of modern humans in the past 100 ky, and contains the 

greatest levels of human genetic variation on a global scale (Campbell & Tishkoff, 2008, 

2010; Hublin et al., 2017; Reyes-Centeno, 2016; The 1000 Genomes Project Consortium, 

2015). Africa contains substantial linguistic and cultural diversity, with populations that 

traditionally eat diverse diets and practice various subsistence methods (e.g. 

agriculturalists, hunter-gatherers, and pastoralists) (Beltrame, Rubel, & Tishkoff, 2016; 

Campbell & Tishkoff, 2008, 2010; Tishkoff et al., 2009). Geographically and ethnically 

diverse African populations have been exposed to distinct selective pressures through 

dramatically different environments, climates, diet, and pathogen exposures. Some of 

these genetic adaptations are known to play roles in diet (e.g. amylase copy number 

variation, lactase persistence, bitter taste perception) and diseases (e.g. 

hemoglobinopathies) (Campbell et al., 2012; Campbell & Tishkoff, 2008; Perry et al., 

https://dx.doi.org/10.1016%2Fj.gde.2016.10.002
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2007; Scheinfeldt et al., 2012; Tishkoff, Reed, et al., 2007). Despite the wide spectrum of 

phenotypic and genotypic diversity (M. Jakobsson et al., 2008; Ramachandran et al., 

2005; Schlebusch et al., 2012; Tishkoff et al., 2009), sub-Saharan Africans (SSA) remain 

underrepresented and understudied for analyses of adaptive traits and genetic variation. 

This research deficit, in turn, has produced gaps in the understanding of African disease 

susceptibility and population history.   

As the development and cost of sequencing technologies continues to decrease and more 

sophisticated computational models are developed, researchers are increasingly able to 

decipher sub-Saharan genetic and biological structure and function to understand human 

evolutionary history on a finer and more cohesive scale than ever before. This section 

summarizes how omics-technologies (specifically genomics, methylomics and 

microbiomics) and analyses of SSA shed light on (1) AMH origins and archaic human 

introgression (gene flow between species via repeated hybrid backcrossing with parent 

species), (2) patterns of diversity and substructure in contemporary SSA populations, and 

(3) SSA genetic adaptations and disease.  

As AMH left Africa and migrated through Eurasia, they encountered now-extinct archaic 

populations (i.e., Neanderthals and Denisovans), with gene flow events occurring 

between AMH and archaic populations at least once and potentially multiple times from 

37 to 96 kya (B. Y. Kim & Lohmueller, 2015; Mafessoni, 2019; Nielsen et al., 2017; 

Sankararaman, Patterson, Li, Pääbo, & Reich, 2012; Vernot & Akey, 2014, 2015; Wolf & 

Akey, 2018). As a result, ~2–6% of the genomes of non-African individuals derive from 
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Neanderthals (Green et al., 2010) and/or Denisovans (Reich et al., 2010). However, less 

is known about archaic admixture in early modern human groups residing in SSA. AMH 

fossils from the Jebel Irhoud (Hublin et al., 2017), Herto (Clark et al., 2003; White et al., 

2003) and Omo Kibish (Aubert et al., 2012; McDougall, Brown, & Fleagle, 2005) sites 

date to ~300 kya, 160 kya, and 195 kya, respectively (Figure 2.1). These AMH fossils 

overlap with other Pleistocene fossils from transitional Homo genera that show a range of 

archaic and modern traits. Such transitional fossils support the coexistence of AMH with 

other, morphologically differentiated forms of archaic hominins until ~35 kya (Bräuer, 

2008; Harvati et al., 2011; Rightmire, 2009).  

Buttressing fossil evidence (Harvati et al., 2011; Rightmire, 2009), various genetic 

studies have proposed that anywhere from 2-5% of African genomes were contributed 

from a now-extinct taxon of the genus Homo (Hammer, Woerner, Mendez, Watkins, & 

Wall, 2011; Hsieh, Woerner, et al., 2016; Lachance et al., 2012; Plagnol & Wall, 2006; 

Stringer, Harvati, Allsworth-Jones, Grün, & Folorunso, 2010; Wall, Lohmueller, & 

Plagnol, 2009; Xu et al., 2017), and that archaic lineages may have persisted as late as 

25-10 kya (Hammer et al., 2011; Harvati et al., 2011). While a direct comparison 

between a full archaic African reference sequence and modern African genomes would 

provide unambiguous evidence for interbreeding, DNA from ancient samples remains 

challenging to obtain as fossils rapidly decay in the tropical environments found 

throughout much of SSA. Thus, indirect approaches to identify and model ancient 

admixture have been developed to discern signals of introgression within SSA 

populations (Hammer et al., 2011, p. 201; Lachance et al., 2012; Plagnol & Wall, 2006; 
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Wall et al., 2013). Hammer and colleagues (2011) examined multilocus DNA sequence 

polymorphism data from 61 non-coding regions in one West African population 

(Mandinka), a Central African rainforest inhabiting hunter-gatherer (CAHG) population 

(Biaka) and southern African San populations and detected signals of archaic 

introgression in the Biaka and San, but not the Mandinka. Approximate-likelihood 

statistical models, with and without gene flow from archaic populations, were used to 

infer that ~2% of genetic material found in contemporary African populations was 

introgressed ~35 kya from a group of unspecified archaic hominins that separated from 

the ancestors of AMH ~700 kya during the Lower-Middle Pleistocene (Hammer et al., 

2011). 

To explore these observations, Lachance et al., 2012 conducted high-coverage whole-

genome sequencing on fifteen hunter-gatherers from three ethnic groups, including 

CAHG from Cameroon characterized by a short-statured ‘pygmy’ phenotype, Hadza 

hunter-gatherers from Tanzania, and the Sandawe from Tanzania, who until recently 

practiced a hunting and gathering lifestyle. Analysis of these populations revealed 

overlapping introgressed genetic regions in all three populations from at least one archaic 

population. Using the putative introgressed haplotypes, Lachance et al. (2012) noted a 

median time to most recent common ancestor (TMRCA) of 1.2–1.3 million years ago 

(mya), which is similar to the TMRCA for introgressed haplotypes in Europeans (1.1–1.2 

mya) and indicates a similar timeframe of divergence of archaic populations in Africa 

and Europe (Neanderthals) from AMH.  
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Similarly, Hsieh and colleagues (2016) used whole genomic sequences from seven 

hunter-gatherers (three Baka, four Biaka) to statistically model isolation and gene flow 

events. Their results revealed 265 candidate introgressed loci with a median TMRCA of 

1.08 mya, which was compatible with prior ranges (Lachance et al., 2012). Furthermore, 

Hsieh et al. (2016) found support for at least one, and possibly recurrent, admixture 

event(s) that favored a model of low level, frequent interbreeding between archaic and 

modern humans in Africa.  

Future studies of genomic introgression of modern and archaic populations in Africa 

would benefit from the inclusion of more ancient human genomes from SSA fossils and 

larger samples of modern human genomes from diverse SSA populations. To date, three 

studies have conducted aDNA research on SSA populations. The first sequenced the 

genome of a 4,000-year old AMH fossil, nicknamed “Mota,” from Ethiopia (Llorente et 

al., 2015), the second conducted genome-wide analysis on 16 African individuals who 

lived ~8 kya (Skoglund et al., 2017), and the third focused on the origins of pastoralism 

in ~5,000-year old East African samples (Prendergast et al., 2019). The latter study 

yielded evidence of genomic adaptations to bitter taste perception and growth in modern 

and ancient sub-Saharan Africans, indicated that hunting and gathering populations 

related to the South African San were once widespread in eastern Africa, and showed that 

a divergent lineage contributed to the genomes of western Africans. Although 

informative for reconstructing recent events, analyses of additional ancient fossils will be 

necessary to infer introgression events. Screening for introgressed variants that are 

adaptive, as has been done with Neanderthal variants in extant European and East Asian 
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populations (Mathieson et al., 2015; Sankararaman et al., 2012; Vernot & Akey, 2015), 

may reveal whether archaic alleles played a role in adaptation in SSA populations. 

Patterns of diversity and substructure in sub-Saharan Africans 

The patterns of genetic diversity in SSA populations reflect their complex demographic 

history of short-range and long-range migration events, subdivision and admixture, as 

well as local adaptation to a diverse array of environments. The genetic diversity of 

African populations parallels their linguistic diversity, with more than 2,000 languages 

being spoken across the continent (Ehret, 2000). The majority of these languages belong 

to four major families: Niger-Kordofanian, which includes Bantu languages and 

predominates throughout most of SSA; Afroasiatic, which is spoken in Saharan, 

northeastern and eastern Africa; Nilo-Saharan, which is spoken in portions of Saharan, 

eastern, and northeastern Africa; and Khoesan, a family of languages denoted by their 

click consonants and spoken by the San in southern Africa and the Hadza and Sandawe in 

eastern Africa (Boyeldieu et al., 2008; Heine & Nurse, 2000; Sands, 1998; Tishkoff et al., 

2009) (Figure 2.1).  
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Figure 2-1. Map of Africa showing the distribution of the major language families, the 

location of hominid remains discussed in the text, and major migration routes of AMH 

through the continent within the past 10 kya. Numbers on the map denote how old different 

migratory events are in thousands of years.The expansion of Bantu-speaking people 

(referred to as the “Bantu expansion”) started around 5–4 kya from the Cameroon/Nigeria 

border, initially from west to east, either north or south of the rainforest, to the Great Lakes 

of Uganda by around 3 kya and then from east to south in the last 2.5 ky, rapidly expanding 

into central and southern Africa, reaching Mozambique ~1.8 kya and South Africa ~1.5 

kya. Another dispersion occurred ~3.5 kya from Cameroon, moving south to Angola. The 

spread of pastoralism into sub-Saharan Africa occurred around 4.5 kya (for a review see 

Pedro Soares, Rito, Pereira, & Richards, 2016). Afroasiatic-speaking agropastoralist 

populations migrated from Ethiopia into Kenya and Tanzania within the past 5 ky (Patin et 

al., 2009). After admixing with Bantu groups, pastoralist populations from eastern Africa 

migrated through Tanzania to southern Africa around 2.4 kya (Gurdasani et al., 2015; 

Pickrell et al., 2014). Migrations through the Sahel occurred bidirectionally between east 

and west Africa in the past 8 ky (Gibbs et al., 2003; Hirbo, Ranciaro, & Tishkoff, 2012). 

There are many fossil sites of archaic and early AMH populations in Africa. A handful of 

sites important to discussions on human origins and archaic introgression are listed 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=5161638_nihms834019f1.jpg
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here. Herto: The well-preserved cranial remains of three individuals, dated to ~160 kya, 

were recovered at Herto Bouri, near the Middle Awash of Ethiopia. The crania are robust, 

consistent with other large archaic subspecies of Homo fossils found in Africa, but have 

endocranial morphology and facial features typical of modern Homo sapiens; thus they are 

thought to represent an extinct subspecies of Homo sapiens. Mota: The first ancient DNA 

analysis from Africa came from a ~4.5 ky old fossil found in the Mota Cave in the Ethiopian 

highlands (Llorente et al., 2015). This fossil set the timing of reverse gene flow from Eurasia 

into Eastern Africa AMH ~1.5 ky earlier than prior estimates. Omo Kibish: Two crania, 

named Omo 1 and Omo 2, as well as post-cranial skeletal elements were found near the 

Omo River in Ethiopia. Dated to 195 kya, they possess a cranial vault height similar to 

AMH, situating them as early members of the Homo sapiens lineage. Of the two crania, 

Omo 1 has stronger morphological similarity to modern humans. 

The International HapMap Project (Gibbs et al., 2003) and the Human Genome Diversity 

Project (HGDP) (Cann et al., 2002) represent some of the earliest large-scale efforts by 

research consortiums to catalog human genetic diversity. More recently, the international 

“1000 Genomes Project” (The 1000 Genomes Project Consortium, 2015) has included an 

expanded range of populations to compile a global reference of human genetic variation. 

Although twelve African populations are represented between these projects, with 

overlap of Nigerian Yoruba in all three, most of the African populations are of recent 

Niger-Kordofanian ancestry and do not reflect the range of diversity present in Africa. To 

rectify this problem, the African Genome Variation Project (AGVP) is currently 

conducting dense genotyping and whole-genome sequencing across individuals 

belonging to ten language subgroups in sub-Saharan Africa; however, their low coverage 

genomic sequencing (4x coverage) risks misclassifying rare variants (Gurdasani et al., 

2015). In addition, statistically imputing genetic variants from low coverage genome 

data, and from genetically sub-structured African populations, can be challenging. The 

largest high coverage whole genome sequencing data set, representing 44 indigenous 

African populations, identified millions of novel genetic variants and regions contributing 

to local adaptation among populations (Fan et al., 2019).   
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There have been efforts to expand studies of genome-wide genetic markers to include 

broader groups of sub-Saharan African populations. Analysis of genetic substructure 

based on genome-wide microsatellite and insertion/deletion markers in 121 

geographically diverse African populations identified fourteen ancestral population 

clusters that were correlated with self-described ethnicity and shared cultural or linguistic 

features (Tishkoff et al., 2009). The results of this study and others suggested that African 

populations have maintained a large and subdivided population structure throughout 

much of their evolutionary history (reviewed in Hirbo, Ranciaro, and Tishkoff 2012). 

More recent genome wide SNP genotyping studies have largely supported these 

observations. Principal components analysis (PCA) indicates that, generally, SSA 

populations cluster based on their geographic distribution (Bryc et al., 2010; Busby et al., 

2016; Montinaro, Busby, Gonzalez-Santos, & Oosthuitzen, 2016; Tishkoff et al., 2009; 

Uren et al., 2016) with some exceptions. For example, the CAHG cluster near the 

southern African San, suggesting that they may once have ancient shared common 

ancestry (Tishkoff et al., 2009; Veeramah et al., 2012). There has also been extensive 

admixture in African populations (Hellenthal et al., 2014; Tishkoff et al., 2009). Much of 

this admixture is driven by the Bantu expansion, which marked a series of major human 

migrations in the last 4000 years from west Africa (Soares et al., 2016) (Figure 2.1). The 

Bantu migration began around the Nigeria/Cameroon highlands and moved to the east 

and then to the south of the continent (reviewed in Hirbo, Ranciaro, and Tishkoff 2012) 

resulting in the expansion of agricultural practices, and the displacement, replacement, or 

admixture with other populations in many regions of SSA (Busby et al., 2016; Li, 

Schlebusch, & Jakobsson, 2014; Tishkoff et al., 2009).  
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Several studies of SSA populations have included analysis of African groups that 

currently, or until recently, have practiced hunting and gathering subsistence. Autosomal 

sequencing and SNP array data indicate that the genetic lineages of Khoesan-speaking 

populations of southern Africa are basal to other populations, with an estimated 

divergence time around 157-108 kya (Fan et al., 2019; Lachance et al., 2012; Pickrell et 

al., 2012; Schlebusch et al., 2012; Veeramah et al., 2012; Veeramah & Hammer, 2014). 

Furthermore, genome-wide SNP array studies indicate extensive population substructure 

in southern Africa (Montinaro et al., 2016; Pickrell et al., 2012; Uren et al., 2016). A 

recent analysis of genome-wide SNPs from 21 southern African populations indicate that 

this structure was the byproduct of geographical and ecological barriers around the 

Kalahari Basin (Uren et al., 2016). Pickrell et al. (2012) inferred that the southern 

Khoesan-speaking San split into two geographic groups in the northwestern and 

southeastern Kalahari ~30 kya. Challenging this observation, a recent study of whole-

genome SNP data from 46 African populations found evidence for at least three 

genetically divergent Khoesan groups (northern, central, and southern Kalahari), and 

dated their divergence to ~33 kya (Montinaro et al., 2016). CAHG populations diverged 

from the San ~48 - 60 kya (Patin et al., 2009; Veeramah et al., 2012) and the Hadza and 

Sandawe diverged from other populations > 15 kya (Tishkoff, Gonder, et al., 2007).  

Adaptation in sub-Saharan Africa 

African populations have adapted to a broad range of environments and diets and are 

likely to have regional- or population-specific adaptive traits. Many statistical approaches 

have been developed to detect recent selective sweeps (i.e. iHS and EHH) or local 
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adaptation (i.e. FST, LSBL, PSB, XPCLR) (reviewed in Scheinfeldt & Tishkoff, 2013) 

and Fan et al. (2016). If these targets of selection fall within a genomic region associated 

with a putative function, the adaptive phenotype can potentially be inferred. Functional 

significance of an adaptive variant can be determined by in vitro studies of gene 

expression, in the case of  regulatory variants, in vivo analyses in model organisms (e.g., 

genetic variation at MFSD12 was associated with reduced pheomelanin in mice (Mfsd12), 

and corresponded to darker skin pigmentation in Africans (Crawford et al., 2017), or by 

genotype/phenotype association studies. Some prominent examples which integrate 

genome-wide scans of selection with genotype/phenotype association studies or other 

functional assays in Africans include bitter taste perception (Campbell et al., 2012), 

adaptation to diverse diets (Breton et al., 2014; Perry et al., 2007; Ranciaro et al., 2014; 

Tishkoff, Gonder, et al., 2007), high-altitude adaptation (Alkorta-Aranburu et al., 2012; 

Scheinfeldt et al., 2012), short stature in CAHG (Jarvis et al., 2012; Lachance et al., 

2012; Perry et al., 2014), skin pigmentation (Crawford et al., 2017), and immune 

response (Genovese et al., 2010; Jallow et al., 2009; Ko et al., 2011; Lachance, 2010; 

Schlebusch et al., 2012; Timmann et al., 2012; Tishkoff et al., 2001), a few of which are 

discussed here in greater detail (Figure 2.2).  
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Figure 2-2. Distribution of locally adaptive traits within Africa. Adaptation to diverse 

environments during human evolution has resulted in phenotypes that are at the extremes 

of the global phenotype distribution. Integrated scans of natural selection and GWAS have 

been used to identify genomic regions that influence trait variation. Within Africa, these 

include genes, allelic variants, and copy number variants associated with malaria resistance 

(G6PD, HBB, HbS, HbC, GYPA), short stature (DOCK3, CISH, STAT5, HES1, POU1F1, 

others), high altitude adaptation (VAV3, ARNT2, THRB), lactase persistence (MCM6), skin 

pigmentation (MFSD12, DDB1, TMEM138, OCA2, HERC2), bitter taste perception 

(TAS2R16), and starch digestion (AMY1). This figure has been modified from a previously 

published version in Rubel, M.A., Cuadra A., Illustration for Tishkoff (2015). Strength in 

small numbers. doi: 10.1126/science.aad0584. 

Genome-wide scans for selection have revealed extended haplotype homozygosity on 

chromosome 2 in the region containing lactase persistence (LP) associated alleles in the 

genomes of Europeans and Africans (Bersaglieri et al., 2004; Voight, Kudaravalli, Wen, 

& Pritchard, 2006). LP confers the ability to digest lactose (the sugar present in milk) 

during adulthood, giving a selective advantage to those individuals who can consume 
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dairy products as a source of nutrition and hydration. Four alleles associated with LP 

have been demonstrated to be functional, and they are located in a regulatory region in 

intron 13 of the MCM6 gene, an enhancer of the lactase gene (LCT) (Hassan et al., 2016; 

Labrie et al., 2016). The variant T-13910 is common in Europe, but is also present at low 

levels in the Middle East and in Central and Western Africa, where it was introduced 

through migration (Bersaglieri et al., 2004; Breton et al., 2014). In eastern/northeastern 

Africa, three functionally relevant genetic variations have been identified: C-14010, G-

13915 and G-13907 (Ingram et al., 2007; Macholdt, Slatkin, Pakendorf, & Stoneking, 

2015; Ranciaro et al., 2014; Tishkoff, Reed, et al., 2007). The presence of African and 

European LP-associated variants on different haplotype backgrounds shows that the LP 

trait has evolved independently multiple times, a classic example of convergent evolution 

(Tishkoff, Reed, et al., 2007).  

Genomic scans for selection have also been applied to complex traits that are influenced 

by multiple genetic variants and environment, such as stature. For example, the short 

stature phenotype of CAHG populations has been proposed to be an adaptive phenotype 

for a tropical forest environment (Hsieh, Veeramah, et al., 2016; Jarvis et al., 2012; 

Lachance et al., 2012; Migliano, Romero, Leavesley, & Pagani, 2013; Perry et al., 2014; 

Pickrell et al., 2009). Jarvis et al. (2012) genotyped CAHG from Cameroon and 

neighboring Bantu groups using a genome-wide SNP array and identified signatures of 

positive selection in CAHG for regions enriched in genes involved with immune 

response, reproduction, thyroid function, and body size. A subset of these loci (e.g., 

DOCK3 and CISH) was previously associated with stature. Lachance et al. (2012) looked 
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for differentiated regions of the genome in CAHG using high coverage whole genome 

sequence data. Genes in the top differentiated regions include TRHR, which is expressed 

on the surface of anterior pituitary cells and has an important role in thyroid function, and 

HESX1, which encodes a homeobox-containing transcriptional repressor that plays a 

critical role in development of the anterior pituitary, the site of growth hormone synthesis 

and secretion. Other targets of selection were near genes involved in immunity, 

metabolism, fertility, and olfaction. Perry et al. (2014) genotyped Batwa CAHG and 

neighboring Bakiga agriculturalists from Uganda using a genome-wide SNP array. 

Consistent with results from Jarvis et al. (2012) and Lachance et al. (2012), Perry et al. 

(2014) found several potential signals of selection, including a 15 Mb region on 

chromosome 3. They identified sixteen genomic regions marginally associated with short 

stature. These results did not replicate those from a group of western CAHG (Baka), 

leading Perry et al. (2014) to suggest that the “pygmy” phenotype may be an example of 

convergent evolution in western and eastern CAHG groups. The identification of loci 

associated with short stature in CAHG, and the question of convergent evolution in 

western and eastern CAHG populations remains an ongoing area of investigation. 

Two recent studies (Fagny et al., 2015; Gopalan et al., 2017) investigated patterns of 

methylation across the genome (e.g. “methylome”) of CAHG and Bantu groups. These 

studies revealed differentially methylated loci near genes that play a role in immunity, 

glucose and lipid metabolism, fatty acid, bone growth, and stature. They also identified 

genetic variants influencing differential methylation (known as methylation quantitative 

loci, or meQTLs) in genes involved in insulin metabolism, bone-mineral density, and 
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height. Gopalan et al. (2016) found patterns of methylation in African hunter-gatherers 

(Baka CAHG and San) that could be useful for inferring age, particularly in geographic 

regions where age is often unknown. Taken together, these epigenomic studies highlight 

how genetic variation and the environment can influence methylation patterns, which in 

turn can influence adaptive trait variation.  

Lastly, gut microbiome studies in SSA are informative for distinguishing how humans 

and bacteria have co-evolved. These studies have indicated that gut microbiomes of 

hunter-gatherers are generally distinct from western populations and are abundant in 

microbiota that may be particular to their traditional diets (Ayeni et al., 2018; De Filippo 

et al., 2010; Gomez et al., 2016; Hansen et al., 2019; Morton et al., 2015; Rampelli et al., 

2015; Schnorr et al., 2014; Smits et al., 2017; Yatsunenko et al., 2012). A detailed 

discussion on the gut microbiomes of non-industrialized populations is given in section 

1.3. Broadly, while these studies indicate that subsistence practice and pathogen infection 

shape the microbial composition of the gut, an expansion of this research to include more 

studies of ancient human microbial communities could elucidate differences between 

modern and ancient microbe structure and function, and provide evidence for adaptation 

to changing environmental pressures and dietary shifts during long term human 

evolution. 

Advances in ‘-omics technologies are generating an unprecedented level of knowledge 

about human genomes and physiology, disease susceptibility, and evolutionary history, 

but their application to SSA populations is still disproportionately small. The analysis of 

large sample sizes in diverse African populations is becoming increasingly possible and 
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financially feasible with next-generation ‘-omics approaches. Integrating multiple 

methods to detect local adaptation to diverse environments, such as GWAS and genome-

wide scans for selection, takes advantage of the variable environments, demography, and 

population structure present in SSA. There is a substantiated need to develop better 

demographic models that provide accurate estimates of divergence times, migration 

events, and fluctuations in population size in African populations, as well as the ability to 

discern these genome-wide demographic effects from locus-specific selection. 

Combining these approaches, together with novel integrative genomics studies that 

incorporate data from proteomics, metabolomics, transcriptomics, epigenomics and 

microbiomics, will shed light on the complex demographic and adaptive history of sub-

Saharan African populations. 

2.2  Metagenomics and the Multifactorial Gut Microbiome 

Microbiota of the distal gastrointestinal tract in humans 

The human microbiome is composed of bacterial, viral, archaeal, protist, and unicellular 

fungal microbes found on and within human hosts. There is an estimated ~1:1 ratio of 

human to bacterial cells in the human body (Sender, Fuchs, & Milo, 2016), and among 

human microbiota sites, the gastrointestinal (GI) tract contains the most bacterial 

diversity (Ley, Peterson, & Gordon, 2006; O’Hara & Shanahan, 2006; Wilson & 

Nicholson, 2009). The gut microbiome consists of microbes which interact with one 

another as well as their hosts (Clemente, Ursell, Parfrey, & Knight, 2012; Qin et al., 

2010). Consequently, gut microbiome composition has significant implications for 
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human disease and health with regard to nutrition, digestion, metabolism, and immune 

response (Kelly, 2010; Walter & Ley, 2011; Wilson & Nicholson, 2009).  

The GI tract is generally divided into the upper GI tract (esophagus, stomach, and 

duodenum), the lower GI tract (small intestine, large intestine), and their accessory 

organs. Due to its restricted accessibility, the microbiomes of the human stomach and 

small intestine have been less intensively investigated than the large intestine microbiome 

(Marchesi, 2014). The large intestine resorbs ions and water from gastric juices and 

partially digested food (known as “chyme”), which is processed into fecal matter. The 

density of resident microbiota in the large intestine is greater than any other human 

microbiome (1012 cells per gram of intestinal content, 30% of large intestine volume), 

and they are responsible for processing nutrients, mucus, digestive enzymes, and shed 

epithelial cells (Marchesi, 2014).  

High-throughput sequencing of the taxonomically informative bacterial 16S ribosomal 

RNA gene (16S rRNA) has revealed that there could be at least 1,800 genera and 

between 15,000 to 36,000 species of bacteria in the large intestine (Frank et al., 2007). 

Obligate anaerobes dominate the large intestine, with two phyla, Firmicutes and 

Bacteroidetes, comprising more than 80% of all phylotypes, or groups of DNA sequences 

sharing similar gene markers (Frank et al., 2007). The Firmicutes are comprised of the 

Clostridium coccoides and C. leptum families (among others), while Bacteroidetes is 

affiliated with genera including Bacteroides. Other bacterial taxa occupy the lower 

intestine in comparatively smaller numbers (Arumugam et al., 2011). The microbiota of 

the large intestine produce short chain fatty acids (SCFA) (butyrate, acetate, and 
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propionate) from carbohydrate and mucin fermentation end-products, biosynthesize 

vitamin K, convert equol (an isoflavandiol estrogen metabolized from daidzein), and are 

involved in various drug and nutrient metabolism activities (Marchesi, 2014; Wilson & 

Nicholson, 2009). 

Archaea are present in smaller numbers than bacteria in the microbiome (Matarazzo et 

al., 2012). Archaea are dominated by Methanobrevibacter smithii, which degrades 

complex plant polysaccharides and produces methane as a byproduct of fermentation 

(Stewart, Chadwick, & Murray, 2006). Much of what is known about archaea in the gut 

is focused on the abundant M. smithii, and to a lesser extent other methane producing 

archaea, or “Methanogens.” Research on methanogens indicates that they increase in 

humans over the first years of life, have stable abundances during early adult years, and 

display high levels of diversity in elderly adults (Dridi, Fardeau, Ollivier, Raoult, & 

Drancourt, 2011; Lewis & Cochrane, 2007; Mihajlovski, Doré, Levenez, Alric, & 

Brugère, 2010; Reeves-Daniel et al., 2010; Woodmansey, McMurdo, Macfarlane, & 

Macfarlane, 2004). The presence of M. smithii has been linked to Bacteroides dominated 

gut microbiomes, while sulfate-reducing Desulfovibrio has been linked to Ruminococcus 

dominated gut microbiomes, suggesting further interactions with other microbial 

communities (Arumugam et al., 2011). 

The role of eukaryotic fungi in the gut microbiome has not been thoroughly interrogated. 

Fungal sequences are underrepresented in annotated reference databases and therefore 

fungi may be relatively under-detected in sequence-based studies (Underhill & Iliev, 

2014). Fungi constitute an estimated 0.1% of the gut microbiota (Issa, Badran, Akl, & 
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Shehabi, 2011; Qi, Hu, & Zhou, 2005) and are substantially larger than bacteria (~5 μm 

in diameter; bacteria are ~1 μm in diameter). Like bacteria and archaea, fungal 

colonization typically occurs at or around birth (Issa et al., 2011; Qi et al., 2005) and 

fungi can be transmitted through close physical contact (Bougnoux et al., 2006; Pierson, 

Mehta, Magee, & Mishra, 1995). Fungi may contribute unique metabolic features to gut 

microbiota/host interactions, and fluctuations in fungal proliferation in response to 

dysbiosis (abnormal gut microbiota) or diet can have considerable impacts on the 

immune system (Bull-Otterson et al., 2013, p.; Devkota et al., 2012; Sonnenberg et al., 

2012). While most fungi are commensal, they have the potential to cause life-threatening 

infection, particularly in critically ill or immunocompromised patients (Eggimann, 

Garbino, & Pittet, 2003).  

Recent studies using high-throughput sequencing indicate that more than 50 genera of 

fungi reside in human guts, with Saccharomyces, Cladosporium, and Candida species 

being the most abundant (Hoffmann et al., 2013; Iliev et al., 2012). Candida is the most 

well-studied yeast species, and has been cultured from the GI tracts of healthy patients 

and from sufferers of inflammatory bowel disease (IBD), indicating its presence in the 

gut during normal and disease states (Odds et al., 2006; Standaert-Vitse et al., 2006). 

Changes in fungal populations may be due to their reduced abundance relative to 

bacteria, sensitivity to unknown environmental factors, or alteration in diet. In humans, 

consumption of an animal based diet has been linked to an increase in Penicillium 

species, whereas consumption of a plant based diet has been linked to an increase in 

Candida species (David et al., 2014).  
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The human gut virome is constituted primarily by bacteriophages (phages) and, to a 

lesser extent, by plant/animal/amoebae-infecting viruses. Phages can follow either a 

lysogenic (latent) or lytic (virulent) lifecycle, and lysogenic viruses can transition to lytic 

viruses in the presence of an environmental stressor (e.g., antibiotics). Phage populations 

are generally specific to individuals (Castro-Mejía et al., 2015, p.; Hoyles et al., 2014), 

and relatively stable over time (Broecker, Russo, Klumpp, & Moelling, 2017), although 

they can rapidly accumulate sequence variation (Minot et al., 2013). Identifiable 

prophages in bacterial genomes indicate that their predicted hosts are members of the 

Firmicutes and Bacteroidetes phyla, which are the most abundant bacteria in the human 

GI tract (Carding, Davis, & Hoyles, 2017). Metagenomic sequencing has become integral 

to human virome characterization given the high genetic diversity of viruses and lack of a 

universal marker gene. However, only a small fraction (~4-22%) of gut microbiome reads 

will map to viral DNA unless extraction steps are taken to enrich on virus-like particle 

(VLP) targets (Dutilh et al., 2014; Minot et al., 2013; Ogilvie et al., 2013). In general, the 

fecal viromes of healthy adults tend to be composed of phage in the order of 

Caudovirales (1015 phages in total) (Castro-Mejía et al., 2015; Dalmasso, Hill, & Ross, 

2014; Hoyles et al., 2014; Lepage et al., 2008), eukaryotic ssDNA viruses (e.g., 

anelloviruses), eukaryotic dsDNA viruses (e.g., adenoviruses, polyomaviruses), human 

RNA viruses (e.g., retroviruses), and plant RNA viruses (e.g., Pepper mild mottle virus), 

the latter of which are transient members of the human gut virome (e.g., ingested from 

food) (Carding et al., 2017).  
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Protists, including protozoan parasites, helminths, and amoebas, can be commensal or 

opportunistic pathogens of the human gut (Laforest-Lapointe & Arrieta, 2018). The 

degree to which protists within the gut could affect or be affected by surrounding 

microbiota is not fully understood. Protists in the gut or in other tissues may also affect 

the gut microbiota indirectly via the immune system and host metabolism. A detailed 

discussion on putative protist-microbiome interactions is provided in the sub-section of 

1.3 entitled, “The role of parasitemia and HIV in the gut microbiome.”  

The advent of next-generation metagenomic sequencing 

Many microbes in the gut microbiome are difficult to culture (Amann, Ludwig, & 

Schleifer, 1995), and thus early culture-based studies of gut microbiome composition 

underestimated its diversity. Sanger sequencing was used to characterize microbial DNA 

in early microbiome studies (Collado, Donat, Ribes-Koninckx, Calabuig, & Sanz, 2009), 

but has been largely supplanted by next-generation sequencing (NGS) (Collado et al., 

2009). NGS allows targeted amplification of hundreds of thousands of microbial samples 

using multiplexed “barcodes” to tag fragmented sample DNA (Hamady, Walker, Harris, 

Gold, & Knight, 2008). The top 99.9% of bacteria can be characterized using this method, 

and no prior knowledge of the sequence data is required besides the 16S ribosomal RNA 

(16S rRNA) gene primer sequences. Furthermore, NGS can quantitatively measure 

mRNA transcripts (or the “transcriptome”) to assess microbial gene expression.  

The most commonly employed NGS strategies are targeted amplicon sequencing and 

untargeted shotgun sequencing. Conserved marker genes, functional genes, non-coding 
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sequences, and 16S rRNA genes can be used in phylogenetic classification, although 16S 

rRNA is currently the most commonly analyzed gene. The 16S rRNA gene is a 1.5kb 

gene in the 30S small subunit of prokaryotic ribosomes. It is conserved between different 

species of Archaea and Bacteria (Coenye & Vandamme, 2003) and has nine 

hypervariable regions that contain species-specific sequences that allow bacterial 

identification. Each of these regions is phylogenetically informative and can be targeted 

with sequence-specific primers. The most commonly used regions are V1-V6 due to their 

longer fragment length (informative for identifying genera) and overlapping reads 

(V1/V2 and V3/V4 paired region sequencing reduces noise in data and genera 

inflation)(Marchesi, 2014). To classify archaea, the V6-V9 sections of the 16S rRNA 

gene are frequently used (Hoffmann et al., 2013; McKenna et al., 2008). The 18S rRNA 

gene or the V6-V9 sections of the internal transcribed spacer (ITS) region in the nuclear 

ribosomal repeat unit are regularly used to type fungi (Ghannoum et al., 2010; Hoffmann 

et al., 2013). Enrichment of the target sequences is performed prior to metagenomic 

sequencing using polymerase chain reaction (PCR) amplification, various enzymatic 

methods, and hybrid capture approaches. While financially tractable, amplicon 

sequencing is limited in its ability to describe more than the microbial kingdom of choice, 

and primer bias for 16S rRNA regions can result in a loss of sensitivity for different taxa 

of interest (Clooney et al., 2016; Meisel et al., 2016).  

Nucleotide sequence data require assembly, taxonomic assignment, and functional 

annotation of microbial genomes. To avoid misassembled contigs (chimeras) and uneven 

coverage of low abundance taxa, reference-based assembly and de novo assembly are 
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used. Reference based assembly relies on a mapping the consensus contigs to a reference 

database of genomes1 and is limited by the availability of relevant reference genomes in 

the database. De novo assembly requires more computational memory and time, but can 

produce novel sequences by clustering sequences based on similarity or assigning 

taxonomies to clusters based on matching representative sequences in a reference 

database.  Taxonomic classification, or “binning,” is done in de novo assembly by using 

either: 1) a similarity based method, which places sequences in the same taxonomy based 

on close relationship to a reference genome, 2) a composition based method, which 

places sequences in the same taxonomy based on similarity in sequence composition, or 

3) an abundance based method, which uses abundance differences between species to 

classify taxa (Morgan & Huttenhower, 2012).  

Functional annotation refers to identifying regions within DNA sequences that encode 

RNA and/or protein-coding genes. Determining if a sequence is functional (coding vs. 

noncoding) is very different from determining the function of a gene. Functional 

annotation can be performed through various open-source software packages such as 

Quantitative Insights Into Microbial Ecology (QIIME, QIIME2) (Caporaso et al., 2010, 

https://qiime2.org), Ultra-Fast Sequence Analysis (USEARCH) (Edgar, 2010), and 

mothur (Schloss et al., 2009). 

                                                

1 These include NCBI Microbial Genomes (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi?view=1), the 

Ribosomal Database Project (http://rdp.cme.msu.edu/), Greengenes (http://greengenes.lbl.gov/), the Human 

Oral Microbiome Database (http://www.homd.org/) and the HMP Data Analysis and Coordination Center 

(http://hmpdacc.org/). 

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi?view=1
http://rdp.cme.msu.edu/
http://greengenes.lbl.gov/
http://www.homd.org/
http://hmpdacc.org/
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Whole-genome shotgun sequencing methods aim to identify all DNA in a sample, 

independent of its origin, and without a marker-gene amplification step. Sequenced reads 

are then mapped back to microbial databases. Shotgun metagenomic data allow the 

reconstruction of partial-to-full microbial genomes, which provides information about the 

repertoire of genes as well as genomic structure and function (Morgan & Huttenhower, 

2012). Highly complex shotgun data can be computationally expensive and time 

consuming to process as well as difficult to analyze, as reads often cannot be mapped 

back to reference genomes due to a lack of available information in databases and 

incomplete genomic characterization. For this same reason, viruses tend to be 

underrepresented in public databases (Bzhalava, Hultin, & Dillner, 2018).  

In general, human metagenomics pipelines involve quality control processing and host 

read decontamination, followed by multiple downstream steps to classify, assemble, and 

search reads against existing databases (Peabody, Van Rossum, Lo, & Brinkman, 2015). 

Currently, many 16S rRNA studies are complemented with whole-genome shotgun 

sequencing on only a subset of samples (Clemente et al., 2015; Consortium, 2012; 

Obregon-Tito et al., 2015; Smits et al., 2017; Yatsunenko et al., 2012), often due to cost 

limitations. Presumably, as sequencing costs decrease, amplicon target enrichment and 

sequencing will be replaced by whole-genome sequencing strategies. 

Origins, establishment, and aging of the human gut microbiome 

Comparisons of gut microbiomes of bonobos, chimpanzees, gorillas, and humans 

revealed that the mean level of microbial diversity in multiple human populations’ gut 
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microbiomes are less diverse than those of non-human primates, supporting the 

hypothesis that gut microbial diversity has decreased during human evolution (Moeller et 

al., 2014). An alternative, less parsimonious hypothesis posited by Moeller and 

colleagues (2014), was that Pan and Gorilla species have experienced increased gut 

microbiome diversity since diverging from humans >7 mya (Moeller et al., 2014; Stone 

et al., 2010). African ape species share bacterial assemblages dominated by Bacteroides, 

Prevotella, and Ruminococcus (Arumugam et al., 2011), which may indicate that these 

microbial relationships in host guts may predate the diversification of African ape species 

and humans. Phylogenetic reconstructions of African ape and human microbiomes 

indicate consistent differences arising in host species since their divergence (Moeller et 

al., 2014). From the Moller et al. study (2014), 35 instances of relative microbial 

abundance taxon shifts have occurred since the divergence of gorillas and humans, 

including 17 specific to humans. Of these 17, several may have functional significance 

for host nutrition, including a more than fivefold increase in relative abundances of 

Bacteroides in humans compared to other apes, which is implicated in digestion of 

animal fats, and a substantial reduction in Fibrobacter, a common plant-fermenting genus 

characteristic of wild ape microbiomes (Moeller et al., 2014). 

Longitudinal ecological studies show that gut microbiota are stable, and that early 

colonizing microbiota of the gut (including taxa acquired by offspring from parents) have 

a pivotal role in determining microbiome composition (Faith et al., 2013; Lozupone, 

Stombaugh, Gordon, Jansson, & Knight, 2012; Yatsunenko et al., 2012). The gut 

microbiota of pregnant women have been shown to differ between mothers, become 
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reduced in richness (See Table 2-1), and increase in Proteobacteria and Actinobacteria 

taxa between the first and third trimesters (Koren et al., 2012). Furthermore, gut 

microbiota composition in the third trimester are correlated with weight gain and insulin 

desensitization. Transfer of third trimester fecal microbiota from mothers into germ free 

mice induced greater inflammation and adiposity than did first trimester microbiota. 

Taken together, these lines of evidence show that pregnancy has a profound impact on 

the gut microbiome of pregnant women and is strongly correlated with changes in host 

phenotype (Koren et al., 2012). 

Metric Definition 

Alpha Diversity The number (richness) and distribution  

(evenness) of taxa within a single 

population, i.e., the within-person 

diversity. Examples include Shannon 

Index, rarefaction curves, Chao1 index, 

and Faith’s phylogenetic diversity. 

Beta Diversity The absolute or relative amounts of taxa 

shared between two units of analysis. This 

acts as a similarity score between 

populations, i.e., comparing between two 

populations or individuals. Weighted beta 

diversity measures population abundance, 

and unweighted beta diversity measures 

population presence/absence. 

Table 2-1. Commonly used statistical terms in microbiome research and their definitions 

Mounting evidence indicates that the placenta is a sterile environment (Lauder et al., 

2016; Leiby et al., 2018; Perez-Muñoz, Arrieta, Ramer-Tait, & Walter, 2017), save for 

some pregnancies with adverse events (e.g., preterm birth) (Ardissone et al., 2014; Payne 

& Bayatibojakhi, 2014; Prince, Antony, Chu, & Aagaard, 2014). Infant gut microbiomes 

are influenced by mode of delivery, with some taxa probably transferred vertically from 
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mother to child. Caesarean-section (C-section) deliveries transmit environmental and skin 

microbes to the infant, whereas vaginal deliveries transmit vaginal and perianal 

microbiota (Brumbaugh et al., 2016; Dominguez-Bello et al., 2010; Gilbert, 2014; Song, 

Dominguez-Bello, & Knight, 2013). Artificial “seeding” of the microbiome for C-section 

infants using vaginal swabs was suggested to establish a persistent vaginal-like state of 

early infant gut microbiomes, indicating that critical windows may exist for manipulation 

of early gut microbiome communities (Dominguez-Bello et al., 2010). Although 

differences in species richness have been noted for C-section infants compared to those 

delivered vaginally (Mueller, Bakacs, Combellick, Grigoryan, & Dominguez-Bello, 

2015), there remains scant evidence to link C-section associated microbiomes to 

deleterious health outcomes for infants (Stinson, Payne, & Keelan, 2018). Infant 

microbiomes also undergo a series of changes with the introduction of solid food 

regardless of delivery mode that ultimately produce an adult-like microbial composition 

(Bäckhed et al., 2015; Koenig et al., 2011). 

After initial seeding at birth, the main determinant of infant gut microbial composition is 

feeding mode. Human milk is not sterile, and breastmilk can transmit maternal 

antibodies, milk microbiota, and skin-associated taxa to infant guts. Breastmilk 

composition can be affected by multiple factors, including maternal age, diet, metabolic 

and hormone status, and delivery (Nuriel-Ohayon, Neuman, & Koren, 2016). Exclusively 

formula-fed babies are enriched in Streptococcus and Enterococcus, whereas breastfed 

babies tend to have several skin-associated genera and distinct phylotypes of 

Actinobacteria and Bifidobacteria (Timmerman et al., 2017). Human milk 
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oligosaccharides (HMOs) are one of the most abundant components of breastmilk, and 

although they are indigestible by host intestinal enzymes, they can be directly hydrolyzed 

by some species of beneficial colonic Bifidobacteria (Marcobal et al., 2010), providing 

evidence of host-microbial coevolution.  

Globally, gut microbiome composition between young adults, elderly, and centenarians 

does not change linearly with age. Age-associated changes in these groups vary based on 

population and geographic location (Benno et al., 1989; Hayashi, Sakamoto, Kitahara, & 

Benno, 2003; Mäkivuokko, Tiihonen, Tynkkynen, Paulin, & Rautonen, 2010; Mueller et 

al., 2006; Zwielehner et al., 2009). Centenarian microbiomes show high species diversity, 

a decrease in certain Clostridia species and shifts in abundance of several butyrate 

producing species (Maslowski et al., 2009), which have been linked to longevity. 

Conversely, pathobiont species of Proteobacteria and decreased diversity have been 

associated with increased inflammation and fragility in elderly groups (Jackson et al., 

2016). 

Influence of non-dietary factors on the gut microbiome 

The composition of an individual’s gut microbiome is influenced by several non-dietary 

factors, including sex, genetics, nutrition status, health, socioeconomic group, 

geographical location, age, lifestyle, and medication (Deschasaux et al., 2018). Diet is 

discussed in the next section, “Influence of dietary factors on the gut microbiome.” 

Conflicting results regarding the effect of sex on the human gut microbiome have been 

found, with some studies noting differences in taxa by sex, including higher Bacteroides 
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(Mueller et al., 2006), Clostridia, Proteobacteria (Li et al., 2008), Bacteroidetes 

(Dominianni et al., 2015; Li et al., 2008), Veillonella, and Methanobrevibacter (Haro et 

al., 2016) in men and higher Bilophila (Haro et al., 2016) in women. Other studies have 

found no difference between male and female gut microbiomes (Human Microbiome 

Consortium, 2012; Dicksved et al., 2007; Lay et al., 2005). Enrichment of taxa based on 

sexual division of labor and consequent differential nutrient consumption has been noted 

for certain traditional populations, including an enrichment of Treponema in Hadza 

women and Blautia and Eubacterium in Hadza men (Schnorr et al., 2014). Hansen et al. 

(2019) also found sex-specific gut microbiome differences in the Hadza, and additionally 

found sex differences in the gut microbiomes of pastoralist Maasai (see Chapter 2 for 

details). Confounding effects including BMI, diet, sex hormones, age, and genetic 

background, making the discernment of human sex differences in the gut microbiome an 

ongoing challenge (Bolnick et al., 2014; Elderman et al., 2017; Org et al., 2016; 

Yurkovetskiy et al., 2013). 

Several studies have associated hundreds of host genome-wide loci to microbiome 

composition, diversity, and taxon abundance (Blekhman et al., 2015; Bonder, 

Kurilshikov, et al., 2016; Goodrich et al., 2016; Rothschild et al., 2018; Turpin et al., 

2016; Wang et al., 2016; Xie et al., 2016), however, the only overlap amongst different 

studies has been a significant positive association between genetic variants in the LCT 

locus with Bifidobacteria abundance (Goodrich, Davenport, Clark, & Ley, 2017). The 

human LCT gene encodes the lactase enzyme that facilitates lactose digestion, and 

Bifidobacteria catabolize milk sugars (i.e, lactose) (Bouhnik et al. 2004). Rothschild et al. 
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(2018) estimated the average heritability of the gut microbiome of >2k mono- and 

dizygotic twins to be between 1.9%-8.1%. Unfortunately, host single-nucleotide 

polymorphism (SNP)-bacteria associations have been population dependent and tend to 

be underpowered due to small sample sizes and technical artifacts.  

Acute and chronic infections with other microbial pathogens can disturb the host gut 

microbiome, and individual bacterial infections in the GI tract have been identified as the 

etiological agents behind multiple diseases. Vibrio cholerae, Yersinia pestis, 

Mycobacterium tuberculosis and Treponema pallidum have co-evolutionary relationships 

with humans dating to antiquity, and produce the diseases cholera, plague, tuberculosis, 

and syphilis, respectively (Spyrou, Bos, Herbig, & Krause, 2019). Introduction of 

Helicobacter pylori was directly attributed to the formation of stomach ulcerations after 

its infamous ingestion by physicians (Marshall, Armstrong, McGechie, & Glancy, 1985; 

Morris & Nicholson, 1987). Other bacteria, such as Escherichia coli and Clostridium 

difficile, are commensal members of the gut flora that can become toxigenic when the gut 

microbiome is disturbed from its normal state, i.e., by antimicrobial-induced shifts in 

bacterial diversity (Goldin & Gorbach, 1980). Declines in bacterial diversity have been 

detected as much as three years from the initial antibiotic exposure (Leong, Derraik, 

Hofman, & Cutfield, 2018).  

Some pathogenic bacterial infections are a major global public health concern; in 2011, 

C. difficile infections alone produced ~29,000 deaths in the United States due to 

recurrent, acute diarrhea and colonic inflammation (“CDC Press Releases,” 2016). As 

various bacteria have become resistant to conventional chemotherapy, fecal 
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transplantation has been used from healthy donors to restore gut microbiome function and 

composition in human patients suffering from C. difficile associated diarrhea (Aas, 

Gessert, & Bakken, 2003; Bakken et al., 2011; Khoruts, Dicksved, Jansson, & Sadowsky, 

2010; Peterfreund et al., 2012; van Nood et al., 2013). 

Although individual bacteria can cause disease, studies of the gut microbiome focus on 

the contribution of a complex consortium of gut microbes with regard to the 

predisposition for, acquisition of, and response to disease. Gut microbiota are critical for 

establishment and regulation of the immune system (Amann et al., 1995; Blekhman et al., 

2015; Koren et al., 2012; Million et al., 2012; Renz et al., 2017; Schwiertz et al., 2010).. 

The increased prevalence of atopic disease in Western societies as a byproduct of 

increased sanitization, decreased early life microbial exposure, and hypersensitivity of the 

immune system has been referred to as the “Hygiene Hypothesis” (Isolauri, 2004; Okada, 

Kuhn, Feillet, & Bach, 2010; Strachan, 2000). This has been augmented by the “Old 

Friends” hypothesis (Grammatikos, 2008; Rook, Martinelli, & Brunet, 2003), which 

proposes that ambient microbes co-exist with humans and that these microbes (e.g., 

helminths, viruses) reside in a carrier or chronic state tolerated by the immune system, 

with variable amounts of interdependency. Together, these hypotheses have led to 

speculation that diet and antibiotic use are inhibiting or changing normal development of 

the immune system (Noverr & Huffnagle, 2005). For example, initial allergic responses 

often arise in the gastrointestinal tract as a result of food allergens. Once certain foods are 

ingested, irregular functioning in the gut mucosa can result in greater antigen transfer 

from the mucosal barrier to the innate immune system, which evokes an aberrant immune 
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reaction and the production of proinflammatory T helper cell 2-type (Th-2) cytokines 

(Marchesi, 2014). Th-2 cytokines include interleukin (IL) 4, IL-5, and IL-3, which 

promote IgE production. Interestingly, Th-2 immune responses may be inversely related 

to cytokines produced by Th-1, Th-3, and Treg cells, partially as a result of stimulation 

by the gut microbiota (sometimes called “Th1/Th2 balance”) (Rautava, Collado, 

Salminen, & Isolauri, 2012). Increased proinflammatory cytokines can weaken barrier 

function of the gut mucosa, potentiating an auto-catalytic cycle of increasing allergic 

sensitivity and dysregulation in immune response (Marchesi, 2014).  

Many studies have described the differences in gut microbiota of infants who developed 

allergic disorders (increased Bifidobacterium adolescentis and Bifidobacterium 

pseudocatenulatum) and healthy infants without allergic disorders (increased 

Bifidobacterium breve, Bifidobacterium longum subsp. infantis, Bifidobacterium bifidum) 

(Björkstén, Sepp, Julge, Voor, & Mikelsaar, 2001; Kalliomäki et al., 2001; Penders et al., 

2007, 2006; Ventura, Canchaya, Fitzgerald, Gupta, & van Sinderen, 2007). The gut 

microbiota of infants with allergic disorders more closely reflects the bacterial types 

found in adult gut microbiomes (Ventura et al., 2007). Table 2-2 summarizes associations 

between immune and metabolic features with changes in particular bacterial taxa. 
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Immune, 

Metabolic 

Component 

Pre-

biotics 

Pro-

biotics  

Poly-

phenols 

Unsaturated 

fat 

Saturated 

fat 

Animal 

protein 

Pea 

protein 

Artificial 

sweeteners 

C-reactive 

Protein (CRP) 
  ↓ ↓           

High density 

lipoprotein 

(HDL) 
  ↑ ↑           

Immunoglobulin 

A (IgA) 
  ↑ ↑           

Insulin 

sensitivity 
↑ ↑     ↓     ↓ 

Insulin-like 

growth factor -1 

(IGF-1) 

production 

          ↑     

Interleukin-6 

(IL-6) 
↓               

Interleukin 10 

(IL-10) 
↑ ↑             

Lipopolysacchar

ides (LPS) 
↓     ↓ ↑       

Low density 

lipoprotein 

(LDL) 
↓ ↓   ↓         

Metabolic 

Endotoxemia 
      ↓ ↑       

Plasma 

Triglycerides 
  ↑ ↑           

Short-chain fatty 

acids (SCFAs) 
↑ ↑       ↓ ↑   

Toll-like 

receptor 

activation (TLR) 
      ↓ ↑       

Total cholesterol ↓ ↓   ↓         

White adipose 

tissue (WAT) 
      ↓ ↑       
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Table 2-2. Effects of dietary components on immune and metabolic parameters; Adapted from 

Singh et al. (2017). 

References: (Akatsu et al., 2013; Caesar, Tremaroli, Kovatcheva-Datchary, Cani, & 

Bäckhed, 2015; Cani et al., 2008; M. Carmen Collado, Surono, Meriluoto, & Salminen, 

2007; Cuervo et al., 2016; Druart et al., 2014; Filippis et al., 2016; Foligné et al., 2016; 

Francavilla et al., 2012; Inoguchi et al., 2012; Jantchou, Morois, Clavel-Chapelon, Boutron-

Ruault, & Carbonnel, 2010; Kang et al., 2010; Keim & Martin, 2014; M.-S. Kim, Hwang, 

Park, & Bae, 2013; Lecomte et al., 2015; Levine et al., 2014; J.-E. Liu et al., 2010; Machiels 

et al., 2014; F.-Martin et al., 2012; Martínez et al., 2013; Matsumoto et al., 2010; Queipo-

Ortuño et al., 2012; Rajkumar et al., 2014; Schley & Field, 2002; Singh et al., 2017; Suez et 

al., 2014; Świątecka et al., 2011; Tzounis et al., 2008; Urwin et al., 2014; S. Wang et al., 

2012; West et al., 2013; Yu, Liu, Mukherjee, & Newburg, 2013) 

Shared environments between humans and animals such as dogs have been associated 

with an increase in overlapping bacterial OTUs, although dogs still maintain gut 

microbiomes distinct from cohabitating humans (Song, Lauber, et al., 2013). Early 

exposure to dogs and farm animals has been tied to a decrease in the risk of atopic 

diseases in children, and animals may increase bacterial diversity in children’s gut 

microbiomes (Fall et al., 2015; Kettleson et al., 2015; Torres et al., 2017). This 

observation indicates that cross-species transmission of microbiota is not only possible, 

but may modulate bacterial diversity and help attenuate immunity in industrialized, 

sterilized environments.  

Besides atopic illness, autoimmune diseases including Type 1 diabetes, IBD (Crohn’s 

disease, ulcerative colitis), celiac disease, as well as nonalcoholic fatty liver disease 

(NAFLD), inflammatory state nonalcoholic steatohepatitis (NASH), colon cancer, 

metabolic disease, and obesity, have all been associated with dysbiosis (Kao, Hotte, 

Gillevet, & Madsen, 2014; Kau, Ahern, Griffin, Goodman, & Gordon, 2011; Wu et al., 

2010). Type 1 diabetes is characterized by insulin deficiency and results from 

autoimmune destruction of pancreatic beta cells. Increasing evidence points towards the 
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gut microbiota having a role in the progression of Type 1 diabetes. Studies in rat models 

of diabetes showed that the microbiota of diabetes-resistant rats were higher in 

Bifidobacterium and Lactobacillus (Roesch et al., 2009). The pathogenesis of IBD has 

been associated with a loss of microbial community diversity and an increase in 

pathogenic species including Bacteroides vulgatus, E. coli, and C. difficile (Meyer, 

Ramzan, Loftus, Heigh, & Leighton, 2004). While certain alleles in the CARD15 gene 

have been associated with intestinal inflammation and an account for up to 20% of the 

risk for Crohn’s disease (Guarner & Malagelada, 2003; Henckaerts, Figueroa, Vermeire, 

& Sans, 2008), these changes do not fully explain the mechanism of immune 

dysregulation. The success of fecal transplants from healthy donors to treat Crohn’s 

disease also indicates that the gut microbiome may play a significant role in IBD (Bak et 

al., 2017; Kao et al., 2014). Preclinical evidence also supports a role for gut microbiota in 

the establishment and progression of liver diseases like NAFLD and NASH, although the 

mechanisms mediating the gut-liver axis are still poorly understood (Bashiardes, Shapiro, 

Rozin, Shibolet, & Elinav, 2016). Celiac disease is an inflammatory auto-immune disease 

triggered by the proteins of rye, wheat, and barley. Fecal microbial analysis of celiac 

patients showed an increase in proportions of Bacteroidetes/Prevotella and a reduction in 

Clostridium histolyticum, Clostridium lituseburense, Faecalibacterium prausnitzii, and 

Bifidobacterium spp. (Cenit, Olivares, Codoñer-Franch, & Sanz, 2015; De Palma et al., 

2010; Nadal et al., 2007). 

While there has been little indication that the microbiome directly affects immune 

response against cancer, it has been implicated in the onset of colorectal carcinoma 
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(CRC). Rats with commensal bacteria that promoted gastrointestinal inflammation after 

exposure to carcinogens develop colorectal carcinomas, while germ-free rats exposed to 

the same agents did not (Uronis & Threadgill, 2009). Lactic acid bacteria have also been 

observed to prevent carcinogenic tumors and lesions in mice (Goldin & Gorbach, 1980; 

Goldin, Gualtieri, & Moore, 1996; Rowland, Rumney, Coutts, & Lievense, 1998). 

Specific bacteria (Fusobacterium nucleatum, E. coli, Bacteroides fragilis) have been 

experimentally shown to promote intestinal tumorigenesis in CRC patients (Tilg, Adolph, 

Gerner, & Moschen, 2018).  

Whether obesity and metabolic disease (a group of risk factors including high blood 

sugar and blood pressure, abnormal triglyceride or cholesterol levels, and increased 

abdominal fat) causes or are affected by altered gut microbial communities is widely 

debated. A few studies have described a relative decrease (50%) in the number of 

Bacteroidetes and an increase in Firmicutes in genetically rendered obese mice (Ley et 

al., 2005) and overweight human subjects (Ley, Turnbaugh, Klein, & Gordon, 2006). 

Akkermansia mucinophila has garnered recent attention for its ability to reduce insulin 

resistance, fat mass, and dyslipidemia in mice (Plovier et al., 2017) and humans (Dao et 

al., 2016). Microflora from obese human subjects have shown an enrichment for genes 

associated with carbohydrate and lipid metabolism (Turnbaugh & Gordon, 2009). Other 

studies have indicated that the opposite trend is true (Schwiertz et al., 2010), or that 

obesity most closely correlates with shifts in different bacterial taxa (Bifidobacteria, 

Methanobacteria, Lactobacilli) (Million et al., 2012). Mice fed high fat diets showed 

higher levels of lipopolysaccharides and Enterobacteriaceae, which resembles the 
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metabolic state associated with obesity and insulin resistance. This finding points to 

obesity as the cause and not the result of altered gut microbiomes (Cani et al., 2007). 

Furthermore, genetically engineered mice lacking the gene for Toll-like receptor 5, an 

important innate immune system receptor, were found to eat 10% more than wild type 

mice and show signs of metabolic syndrome, including insulin resistance, increased 

adiposity, hypertension, and substantial changes in Firmicutes and Bacteroidetes taxa 

(Vijay-Kumar et al., 2010). These outcomes were mirrored by similar findings from 

healthy, overweight, and obese humans (Fernandes, Su, Rahat-Rozenbloom, Wolever, & 

Comelli, 2014).  

The connection between immune function, gut microbiome changes, and phenotype may 

also indicate a link to host genotype. Overall, the primary driver of obesity still appears to 

be a positive energy balance (increase of calories relative to energy expenditure), and 

reducing caloric intake while increasing energy expenditure can reverse obese 

phenotypes and the associated alterations in gut microbial communities (Ley et al., 2005). 

Nevertheless, the transmission and manipulation of gut microbiota provides an intriguing 

therapeutic target for the prevention and treatment of chronic conditions and diseases.  

Influence of dietary factors on the gut microbiome  

The composition of large intestine microbial communities can vary substantially in 

healthy individuals in as little as 24 hours (David et al., 2014; Turnbaugh & Gordon, 

2009; Wu et al., 2011), although the proportions and absolute numbers of different taxa 

within a single person remain relatively stable over time. This observation has prompted 

the question of whether a “core microbiome” maintains gut homeostasis. This idea has 
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been bolstered by studies showing that the human gut microbiome is enriched for genes 

coding for metabolic pathways involved in energy conservation and biosynthesis of 

amino acids, nucleotides, vitamins, secondary metabolites, and carbohydrates (Gosalbes 

et al., 2011; Turnbaugh, Henrissat, & Gordon, 2010; Verberkmoes et al., 2009). In a 

meta-analysis of nearly 4000 individuals from multiple human populations distributed 

across the world, Falony et al. (2014) found 14 “core genera”2 comprising a global 

human core microbiome. The cumulative effect size of the global core microbiota on total 

microbial variation across multiple populations was only 7.63%, emphasizing that total 

gut diversity hasn’t been fully characterized (Falony et al., 2016).  

Three general gut microbial “enterotypes”, or classifications of gut microbiota based on 

their bacterial communities, have been proposed for humans based on the relative 

abundance of bacteria present: Bacteroides (enterotype 1), Prevotella (enterotype 2), and 

Ruminococcus (enterotype 3) (Arumugam et al., 2011). Wu et al. (2011) found that these 

enterotypes are associated with long-term dietary patterns and bacterial nutrient-

processing preferences: Prevotella was predominant in individuals on vegetarian diets 

with carbohydrate enriched metabolism, while Bacteroides was associated with 

omnivorous diets high in animal fats and protein. Ruminococcus was associated with fat 

enriched “Western” diets (De Filippo et al., 2010). However, more recent studies have 

failed to find associations between enterotype and diet (Wu et al., 2014), or have found 

                                                

2 The core genera were Roseburia, Faecalibacterium, Dorea, Coprococcus, Clostridium XIVa, Blautia, 

Bacteroides, and unclassified taxa in the following families: Veillonellaceae, Ruminococcaceae, 

Lachnospiraceae, Hyphomicrobiaceae, Erysipelotrichaceae, Clostridiales, and Clostridiaceae (Falony et 

al., 2016). 



44 

 

alternate, strong associations between enterotype and ethnicity (He et al., 2018), 

enterotype and geography (Deschasaux et al., 2018), and enterotype with industrialization 

(Ayeni et al., 2018; Gomez et al., 2016; Stagaman et al., 2018). Thus, the factors shaping 

enterotype composition are not fully clarified. 

Abundance of bacterial taxa can increase or decrease in response to different dietary 

substrates. Dietary variation can come from differences in local environment, genetic 

factors in host metabolism, cultural practices surrounding food processing and 

consumption, and individual preference. For instance, gut microbiomes of Japanese 

individuals contain a specific strain of Bacteroides plebeius that has acquired a novel 

gene from marine bacteria which degrades the polysaccharide porphyran in seaweed, a 

common component of many Japanese diets (Hehemann et al., 2010). This gene was not 

detected in North American gut microbiomes, and demonstrates adaptation to local diet 

by the gut microbial community. Some bacteria are better able to catabolize particular 

food-derived sugars and fats over others. A summary of the associations between 

bacterial abundance and microbiome features (e.g., microbial diversity) for different 

dietary components is provided in Table 2-3. Several studies have analyzed the effects on 

the gut microbiome of different diets, including vegan, gluten-free, vegetarian, 

Mediterranean (high in antioxidants/fiber/unsaturated fatty acids/low in red meats), 

omnivorous, and “Western” (high in protein/animal fat) (Table 2-3).  By contrast, recent 

studies of industrialized U.S. and Italian cohorts indicated that omnivores and vegans 

showed negligible gut microbiome differences (Wu et al., 2016) which may be attributed 

to their equal intake of nutrients, regardless of food source (Losasso et al., 2018). 
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Taxa or 

Feature 

High 

Fat 

Low 

Fat 

High 

Saturated 

Fat 

High 

Unsaturated 

Fat 

Animal 

Protein 

Whey 

Protein 

Extract 

Pea 

Protein 

Extract 

Glucose 

Akker-

mansia 

muciniphila 

      ↑         

Alistipes         ↑       

Bacteroides ↑   ↑   ↑↓ ↓   ↓ 

Bifido-

bacteria 

  ↑   ↑ ↑↓ ↑ ↑ ↑ 

Bilophila     ↑   ↑       

Clostridia         ↑ ↓     

Clostridiales ↑               

Entero-

coccus 

        ↑↓       

Eubacterium 

rectale 

        ↑↓       

Faecali-

bacterium 

prausnitzii 

    ↑           

Lactic acid 

Bacteria  

↓     ↑         

Lactobacilli           ↑ ↑   

Microbial 

Diversity 

        ↑ ↑ ↑   

Roseburia         ↓       

 

Taxa or 

Feature 

Fructose Sucrose Lactose Artificial 

Sweeteners 

Fiber/  

prebiotics 

Resistant 

Starch 

Bacterial 

Abundance 

        ↑ ↑ 

Bacteroides ↓ ↓ ↓ ↑     
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Bifidobacteria ↑ ↑ ↑ ↓ ↑ ↑ 

Bilophila     ↓ ↓     

Clostridia         ↓   

Enterococcus         ↑↓   

Eubacteria           ↑ 

Gene 

Enrichment 

        ↑ ↑ 

Helicobacter 

pylori  

            

Lactobacilli     ↑ ↓ ↑ ↑ 

Roseburia           ↑ 

Ruminococcus 
     

↑ 

Streptococcus 
     

↑ 

Total aerobes/ 

anaerobes 

     
↑ 

 

Taxa or Feature Probiotics Polyphenols "Western" 

diet 

Mediterranean  

diet 

Gluten-Free 

Diet 

Bacterial 

Abundance 

↑         

Bacteroides   ↓ ↑ ↑   

Bifidobacteria ↑ ↑ ↓ ↑ ↓ 

Clostridia   ↓       

Enterobacteria     ↑   ↑ 

Escherichia coli  ↓         

Eubacteria     ↓ ↑ ↓ 

Helicobacter pylori  ↓         

Lactobacilli ↑ ↑ ↓ ↑ ↓ 



47 

 

Prevotella     ↓ ↑ ↓ 

Roseburia       ↑ ↓ 

Streptococcus ↑ 
    

Total bacteria 
   

↓ 
 

Total coliforms ↓ 
    

Table 2-3. Effects of fats, proteins, carbohydrates, nondigestible carbohydrates, probiotics, 

polyphenols, and specific diet on gut microbiota. Modified from Singh et al. (2017) 

Columns highlighted in orange are fats, columns in pink are proteins, columns in green are 

carbohydrates, columns in blue are non-digestible carbohydrates, columns in yellow are 

specific diets. References: (Barroso et al., 2014; Bartram et al., 1994; Bialonska et al., 2010, 

2010; Bonder, Tigchelaar, et al., 2016; Bouhnik et al., 1996; Cani et al., 2008; Carvalho-

Wells et al., 2010, p.; Costabile et al., 2012, 2008; Cotillard et al., 2013; Cuervo et al., 2016, 

2014; Cueva et al., 2013; David et al., 2014; De Filippo et al., 2010; De Palma, Nadal, 

Collado, & Sanz, 2009; De Palma et al., 2009; Del Chierico, Vernocchi, Dallapiccola, & 

Putignani, 2014; Drasar et al., 1973; Druart et al., 2014; Eeckhaut et al., 2013; Eid et al., 

2014; Fava et al., 2013; Filippis et al., 2016; Flickinger et al., 2002; Francavilla et al., 2012; 

François et al., 2014; García-Albiach et al., 2008; Gomez et al., 2016; Goossens, Jonkers, 

Russel, Stobberingh, & Stockbrügger, 2006; Gori et al., 2011; Halmos et al., 2015; He et al., 

2008; Inoguchi et al., 2012; Jantchou et al., 2010; J.-S. Jin, Touyama, Hisada, & Benno, 

2012; Kapiki et al., 2007; Kedia, Vázquez, Charalampopoulos, & Pandiella, 2009; Keim & 

Martin, 2014; Kim, Park, & Kim, 2014; Kris-Etherton, Harris, Appel, & American Heart 

Association. Nutrition Committee, 2002; Lecomte et al., 2015; Lee, Jenner, Low, & Lee, 

2006; Leitch, Walker, Duncan, Holtrop, & Flint, 2007; Link-Amster, Rochat, Saudan, 

Mignot, & Aeschlimann, 1994; Liu et al., 2014; Lopez-Legarrea, Fuller, Zulet, Martinez, & 

Caterson, 2014; Lorenzo Pisarello, Vintiñi, González, Pagani, & Medina, 2015; Machiels et 

al., 2014; Matsumoto et al., 2010; Meddah et al., 2001; Parvin et al., 2015; Queipo-Ortuño et 

al., 2012; Rajkumar et al., 2014; Reddy, Weisburger, & Wynder, 1975; Romond et al., 1998; 

Sairanen et al., 2007; Sánchez-Patán et al., 2012; Spanhaak, Havenaar, & Schaafsma, 1998; 

Suez et al., 2014; Świątecka et al., 2011; Tormo Carnicer, Infante Piña, Roselló Mayans, & 

Bartolomé Comas, 2006; Tzounis et al., 2011, 2008; Urwin et al., 2014; Vendrame et al., 

2011; Wacklin et al., 2014; Walker et al., 2011; S. Wang et al., 2012; Wu et al., 2011; Yang 

& Sheu, 2012; Yu et al., 2013; Zhong, Huang, He, & Harmsen, 2006) 

Distinguishing taxa that represent resident gut microbes from transient microbes linked to 

diet is an ongoing area of research. For instance, although fungal DNA in food appears to 

be mostly degraded during digestion, trace amounts of Agaricus sequences from white 

button mushrooms have been found in human gut microbiomes (Hoffmann et al., 2013). 
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This observation indicates that some fungal sequences found in gut microbiomes may be 

acquired from transient foods instead of coming from long term “residents.” Hoffman 

and colleagues (2013) noted that the high prevalence of Saccharomyces in their fungal 

sequences could be due to the ingestion of foods containing yeast, such as beer and bread 

(Hoffmann et al., 2013).  

Microbiome targeted therapies including the administration of prebiotics (dietary 

supplements that stimulate survival and expansion of probiotics), probiotics (cultured 

microbiota with putative health benefits), and synbiotics (combinations of pro- and 

prebiotics) can be considered forms of dietary supplementation or replacement. Various 

probiotics purported to have beneficial effects within the gut microbiome have been 

developed from sources including yogurt starter cultures (B. longum), infant stool (B. 

infantis), and a World War I soldier who proved resistant to dysentery (Escherichia coli 

Nissle) (Spiller, 2008). A few clinically validated studies have reported improvement for 

Irritable Bowel Syndrome (IBS), a GI disease associated with disruption of the gut 

microbiota (Sonnenborn & Schulze, 2009), with use of B. infantis probiotics (Brenner, 

Moeller, Chey, & Schoenfeld, 2009). Other bacteria (Lactobacillus 

paracasei, Lactobacillus rhamnosus, and Bifidobacterium animalis ) have been linked 

to weight loss and improved glucose-insulin homeostasis (Wang et al., 2015). Particular 

prebiotics (e.g., oligofructose, inulin) may alter the structural composition of the 

microbiota that results from a high-fat diet, which could improve inflammation associated 

with metabolic syndrome and obesity (Nicolucci et al., 2017). 
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Both the richness and composition of human gut microbiota are altered with consumption 

of a high-fat diet (Martinez, Leone, & Chang, 2017). Supplementation with dietary fiber 

improved metabolic syndrome in animals and humans, potentially by increasing 

microbial short chain fatty acid production (Rosenbaum, Knight, & Leibel, 2015;  

Sonnenburg & Bäckhed, 2016). The loss of dietary fiber in Western population diets has 

been linked to a decrease in overall microbial diversity and a rise in chronic conditions, 

including metabolic disease (Sonnenburg & Bäckhed, 2016). Therapeutic manipulations 

of the gut microbiota to treat and manipulate obesity and metabolic syndrome include 

fecal microbiome transplant and antibiotic usage (de Groot, Frissen, de Clercq, & 

Nieuwdorp, 2017). Metabolic syndrome patients receiving transfers of lean donor stool 

showed a decrease in fasting triglyceride levels and increased insulin sensitivity (Vrieze 

et al., 2012).  Small observational studies indicate that decreased microbial diversity 

resultant from human antibiotic treatment is correlated with risk for increased weight gain 

(Jakobsson et al., 2010; Jernberg, Löfmark, Edlund, & Jansson, 2007, 2010; Panda et al., 

2014; Vrieze et al., 2014; Zaura et al., 2015).  

2.3  The Gut Microbiomes of Non-industrialized Populations  

Expanding the spectrum of normal human gut microbiome variation from study of non-

industrialized populations 

Changing subsistence practices during the Neolithic demographic transition (~12 kya) are 

significant factors in recent human evolution (Richerson, Boyd, & Henrich, 2010). The 

shift from hunter-gatherer diets characterized by starch-rich bulbs and roots to the high 

starch plant foods and dairy products associated with agriculture and animal 
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domestication has been suggested to be a major influence in shaping the gut microbiome 

of AMH (Walter & Ley, 2011). Dairying practices in Neolithic pastoralist groups are 

strongly correlated with a selective genetic sweep across European and African 

populations at loci that impact the lactase persistence (LP) trait (Bersaglieri et al., 2004; 

Tishkoff, Reed, et al., 2007), and host genomic variation at the LCT locus that confers the 

LP trait has been associated with lactose-digesting Bifidobacteria in the gut (Goodrich et 

al., 2017). Many traditional populations practice small-scale agriculture, and cultivate 

regionally specific crops in community or family-owned gardens, while other populations 

practice multiple subsistence practices, which can allow access to additional nutritive 

resources during periods of food scarcity.  Historically, the majority of human gut 

microbiome research has centered around populations from western, educated, 

industrialized, rich, and democratic countries (Gupta, Paul, & Dutta, 2017; Morton et al., 

2015) that practice commercially-sustained food production (“industrial 

agropastoralism”). It is only recently that the gut microbiomes of diverse, non-

industrialized populations have been intensively researched (Ayeni et al., 2018; De 

Filippo et al., 2010; Gomez et al., 2016; Morton et al., 2015; Rampelli et al., 2015; 

Schnorr et al., 2014; Smits et al., 2017; Yatsunenko et al., 2012).  

Studies on the gut microbiomes of traditional populations have produced a wealth of 

insights into defining the spectrum of normal and diseased human microbial states (Table 

2-4). Metagenomic analyses from Tanzanian Hadza hunter-gatherer gut microbiomes 

showed an enrichment of carbohydrate metabolizing microbes, which could be an 

adaptation to their diet which is high in tubers (Rampelli et al., 2015). In CAHG 
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populations from Cameroon, Morton et al. (2015) found associations between infection 

with gut parasites and particular gut microbial composition (discussed in more detail in 

the next section). Longitudinal studies of populations practicing hunting and gathering 

(Smits et al., 2017) and small scale agropastoralism (Davenport et al., 2014) revealed that 

recurrent shifts in taxa can be detected across seasons, when different foods are readily 

available. Despite no known exposure to antibiotics, South American hunter-gatherers 

possessed an enrichment of functional antibiotic genes, including genes conferring 

resistance to synthetic antibiotic drugs (Clemente et al., 2015), which could be the 

indirect result of industrialization through shared environments with overlapping, more 

settled groups, or due to the presence of antibiotic genes environmentally in high 

frequencies for reasons unrelated to human antibiotic use..  

Population Location (Region, 

Country, City) 

Subsistence Data Type 

(Amplicon 

Sequenced) 

Study  

Bantu Africa, Botswana Rural farming 16S rRNA (V1-

V2) 

Hansen and 

Rubel et al. 2019 

Herero Africa, Botswana Pastoralism 16S rRNA (V1-

V2) 

Hansen and 

Rubel et al. 2019 

San Africa, Botswana Rural farming, 

hunting and 

gathering 

16S rRNA (V1-

V2) 

Hansen and 

Rubel et al. 2019 

Burkinabe Africa, Burkina Faso Rural farming 16S rRNA (V5-

V6) 

Filippo et al. 

2010 

Cameroon 

hunter-

gatherers 

Africa, Cameroon Hunting and 

gathering 

16S rRNA (V5-

V6) 

Morton et al. 

2015 

Bantu Africa, Cameroon Rural farming 16S rRNA (V5-

V6) 

Morton et al. 

2015 

Bantu Africa, Cameroon Fishing 16S rRNA (V5-

V6) 

Morton et al. 

2015 

BaAka Africa, Central African 

Republic 

Mixed hunting 

and gathering, 

rural farming, 

trade 

16S rRNA (V1-

V3) 

Gomez et al. 

2016 

Bantu Africa, Central African 

Republic 

Rural farming, 

market 

agriculture 

16S rRNA (V1-

V3) 

Gomez et al. 

2016 
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Liberians Africa, Liberia Rural  Shotgun (subset), 

16S rRNA (V1-

V3) 

Rosa et al. 2018 

Malawians  Africa, Malawi, 

Chamba/Makwhira/Mayaka/

Mbiza 

Rural farming, 

Market 

Agriculture  

Shotgun (subset), 

16S rRNA (V4) 

Yatsunenko et al. 

2012 

Bassa Africa, Nigeria Rural farming 16S rRNA (V3-

V4), 

Metabolomics 

(subset) 

Ayeni et al. 2018 

Southwest 

Nigerians 

(Hausa, Igbo, 

Yoruba, Ebira) 

Africa, Nigeria Urban, market 

agriculture 

16S rRNA (V3-

V4), 

Metabolomics 

(subset) 

Ayeni et al. 2018 

Rural South 

Africans 

Africa, South Africa Rural farming, 

market 

agriculture 

16S rRNA 

pyrosequencing, 

qPCR 

Ou et al. 2013 

Burunge Africa, Tanzania Rural farming 16S rRNA (V1-

V2) 

Hansen and 

Rubel et al. 2019 

Hadza Africa, Tanzania Hunting and 

gathering 

16S rRNA (V4) Schnorr et al. 

2014 

Hadza Africa, Tanzania Hunting and 

gathering 

Shotgun Rampelli et al. 

2015 

Hadza Africa, Tanzania Hunting and 

gathering 

Shotgun (subset), 

16S rRNA (V4), 

Metabolomics 

(subset) 

Smits et al. 2017 

Hadza Africa, Tanzania Hunting and 

gathering 

16S rRNA (V1-

V2) 

Hansen and 

Rubel et al. 2019 

Maasai Africa, Tanzania Pastoralism 16S rRNA (V1-

V2) 

Hansen and 

Rubel et al. 2019 

Sandawe Africa, Tanzania Rural farming, 

some hunting 

and gathering 

16S rRNA (V1-

V2) 

Hansen and 

Rubel et al. 2019 

Ugandans 

(HIV+/-) 

Africa, Uganda Rural farming 16S rRNA (V4), 

Virome (VLP 

NGS) 

Monaco et al. 

2016 

Chinese 

Mongolians 

Eurasia, China, Hohhot Urban, market 

agriculture 

Shotgun Liu et al. 2016 

Han (low 

altitude) 

Eurasia, China, Sichuan 

Province, Chengdu 

Urban, market 

agriculture 

16S rRNA (V1-

V3) 

Li et al. 2016 

Chinese 

Mongolians 

Eurasia, China, Xilingol 

pasturing area 

Pastoralism Shotgun Liu et al. 2016 

Khentii Eurasia, Mongolia Pastoralism 16S rRNA (V1-

V3) 

Zhang et al. 2014  

Khentii Eurasia, Mongolia Pastoralism Shotgun Liu et al. 2016 

Ulan Bator Eurasia, Mongolia, TUW 

province 

Urban, market 

agriculture 

16S rRNA 

pyrosequencing, 

16S qPCR 

Zhang et al. 2014 

Ulan Bator Eurasia, Mongolia, TUW 

province 

Urban, market 

agriculture 

Shotgun Liu et al. 2016 
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Rural Russians Eurasia, Russia, 

Khakassia/Omsk 

Tatarstan/Tyva 

Rural farming, 

market 

agriculture 

Shotgun Tyakht et al. 

2013 

Urban 

Russians 

Eurasia, Russia, 

Novosibirsk/Rostov-on-

don/Saratov/St. Petersburg 

Urban, market 

agriculture 

Shotgun Tyakht et al. 

2013 

Han (high 

altitude) 

Eurasia, Tibet, Lhasa Urban, market 

agriculture 

16S rRNA (V1-

V3) 

Li et al. 2016 

Tibetan 

herders (high 

altitude) 

Eurasia, Tibet, Qinghai-

Tibet plateau 

Pastoralism 16S rRNA (V1-

V3) 

Li et al. 2016 

Tibetan 

herders (low 

altitude) 

Eurasia, Tibet, “Lowlands” Urban, market 

agriculture, 

rural farming 

16S rRNA (V1-

V3) 

Li et al. 2016 

Metagenomics 

of the Human 

Intestinal Tract 

(MetaHIT) 

Europe, Denmark & Spain Urban, market 

agriculture 

16S rRNA gene  MetaHIT 

consortium 

TwinsUK Europe, United Kingdom Urban, market 

agriculture 

16S rRNA (V4) Goodrich et al. 

2016 

TwinsUK Europe, United Kingdom Urban, market 

agriculture 

Shotgun Xie et al. 2016 

Urban Italians Europe, Italy, Bologna Urban, market 

agriculture 

16S rRNA (V4) Schnorr et al. 

2014 

Urban Italians Europe, Italy, Bologna Urban, market 

agriculture 

Shotgun Rampelli et al. 

2015 

Urban Italians Europe, Italy, Florence Urban, market 

agriculture 

16S rRNA (V5-

V6) 

Filippo et al 

2010 

LifeLines-

DEEP 

Europe, Netherlands Urban, market 

agriculture 

16S rRNA (V4) Fu et al. 2015 

LifeLines-

DEEP 

Europe, Netherlands Urban, market 

agriculture 

Shotgun Zhernakova et al. 

2016 

Urban 

Canadians 

North America, Canada, 

Montreal 

Urban, market 

agriculture 

16S rRNA (V4) Girard et al. 

2017 

Inuit North America, Canada, 

Nunavut 

Hunting, 

Fishing, market 

agriculture 

16S rRNA (V4) Girard et al. 

2017 

American Gut 

Project (AGP) 

North America, USA Urban, market 

agriculture 

Shotgun, 16S 

rRNA (V4), 

Metabolomics 

AGP consortium 

Human 

Microbiome 

Project (HMP) 

North America, USA Urban, market 

agriculture 

Shotgun, 16S 

rRNA, Whole-

genome 

sequencing, 

Transcriptomics, 

Proteomics, 

Metabolomics 

HMP consortium 

Urban USA North America, USA, 

Colorado/Boulder, 

Missouri/St. Louis, 

Pennsylvania/ 

Philadelphia 

Urban, market 

agriculture 

Shotgun (subset), 

16S rRNA (V4) 

Yatsunenko et al. 

2012 

Urban USA North America, USA, 

Nebraska, Lincoln 

Urban, market 

agriculture 

16S rRNA (V5-

V6) 

Martínez et al. 

2015 

https://www.sciencedirect.com/science/article/pii/S221112471500340X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S221112471500340X?via%3Dihub
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Ancient Native 

American 

North America, USA, 

Northern Mexico, Rio Zape 

Hunting and 

gathering, rural 

farming 

16S rRNA (V3) Tito et al. 2012  

Urban USA  North America, USA, 

Oklahoma, Norman 

Urban, market 

agriculture 

Shotgun, 16S 

rRNA (V4) 

Obregon-Tito et 

al. 2015 

Urban USA North America, USA, 

Pennsylvania, Philadelphia 

Urban, market 

agriculture 

16S rRNA (V4) Hansen and 

Rubel et al. 2019 

Hutterites North America, USA, South 

Dakota 

Rural farming 16S rRNA (V4) Davenport et al. 

2014 

Shuar South America, Ecuador Hunting, 

fishing, rural 

farming, small 

to moderate 

market 

agriculture 

16S rRNA (V4) Stagaman et al. 

2018 

Matses South America, Peru Mixed foraging, 

rural farming, 

paracultivation 

Shotgun, 16S 

rRNA (V4) 

Obregon-Tito et 

al. 2015 

Amerindian South America, Venezuela, 

Bolivar, Kanarakuni Village 

Hunting and 

gathering 

16S rRNA (V4) Ruggles et al. 

2018 

Yanomami South America, Venezuela, 

High Orinoco state 

Mixed foraging 

and 

paracultivation 

Shotgun (subset), 

16S rRNA (V4) 

Clemente et al. 

2015 

Guahibo South America, Venezuela, 

Platanillal/Coromoto 

Rural farming Shotgun (subset), 

16S rRNA (V4) 

Yatsunenko et al. 

2012 

Ballabhgarh 

(low altitude) 

South Asia, India Rural farming 16S rRNA (V1-

V5) 

Das et al. 2018 

Ballabhgarh South Asia, India Urban, market 

agriculture 

16S rRNA (V1-

V5) 

Das et al. 2018 

Hmong South Asia, Thailand Rural farming Shotgun (subset), 

16S rRNA (V4) 

Vangay et al. 

2018 

Karen South Asia, Thailand Rural farming Shotgun (subset), 

16S rRNA (V4) 

Vangay et al. 

2018 

Leh (high 

altitude) 

South Asia, India Rural farming 16S rRNA (V1-

V5) 

Das et al. 2018 

Tai-Phage, Tea 

Tribe, Tai-

Aiton, Bodo, 

Karbi, Gond  

South Asia, India, Assam 

region 

Rural farming 16S rRNA (V3-

V4) 

Dehingia et al. 

2015 

Koya, Nayak, 

Kolam 

South Asia, India, 

Telangana region 

Rural farming 16S rRNA (V3-

V4) 

Dehingia et al. 

2015 

Tangkhul, 

Kuki, Meitei 

South Asia, India, Manipur 

region 

Rural farming 16S rRNA (V3-

V4) 

Dehingia et al. 

2015 

Nepalia, 

Bhutia, Lepcha 

South Asia, India, Sikkim 

region 

Rural farming 16S rRNA (V3-

V4) 

Dehingia et al. 

2015 

Nicobarese South Pacific, Andaman and 

Nicobar Islands 

Mixed rural 

farming and 

foraging, small 

to moderate 

market 

agriculture 

16S rRNA (V3), 

qPCR 

Anwesh et al. 

2016 

Indonesians South Pacific, Flores Island Rural Shotgun (subset), 

16S rRNA (V1-

V3) 

Wammes et al., 

2016, Rosa et al. 

2018 
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Asaro South Pacific, Papua New 

Guinea 

Rural farming 16S rRNA (V5-

V6) 

Martínez et al. 

2015 

Sausi South Pacific, Papua New 

Guinea 

Rural farming 16S rRNA (V5-

V6) 

Martínez et al. 

2015 

Urban, 

unspecified 

Unspecified Urban, 

unspecified 

16S rRNA (V4) Ruggles et al. 

2018 

Table 2-4. List of gut microbiome datasets from traditional subsistence, rural 

populations and comparative and/or frequently referenced industrialized populations 
*Originally published separately in Wu et al. 2011, Minot et al. 2013, and Ni et al 2017 

Lifetime exposure to non-industrialized environments and subsistence economy are 

strong explanatory variables in gut microbiome composition (Obregon-Tito et al., 2015; 

Schnorr et al., 2014; Smits et al., 2017). Geographically disparate populations living in 

environments with comparable levels of antibiotics, hygienic resources, and sterile 

cleaners who also practice the same subsistence (i.e., industrial agropastoralism, hunting 

and gathering, etc.) possess compositionally similar gut microbiomes (Schnorr, 2018). 

Ancient human gut microbiome studies show that ancient humans from Rio Zape, 

Mexico, have similar taxonomic profiles to contemporary traditional and rural human 

communities (Tito et al., 2012; Tito et al., 2008), further linking subsistence practice to 

taxonomic profile, and emphasizing the antiquity of some bacteria within human gut 

microbiomes. In general, the gut microbiomes of traditional populations are higher in 

Prevotellaceae, and, to a lesser extent, Ruminococcaceae, both of which garner energy 

from carbohydrates and mucins. By contrast, industrialized populations have gut 

microbiomes that are enriched in Bacteroidaceae, which is associated with diets high in 

animal fats and proteins (Arumugam et al., 2011; De Filippo et al., 2010).  

To explore bacterial diversity, Deschasaux et al. (2018) compared 16S rRNA sequences 

from more than two thousand residents of Amsterdam within six ethnic groups- Dutch, 

https://www.sciencedirect.com/science/article/pii/S221112471500340X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S221112471500340X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S221112471500340X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S221112471500340X?via%3Dihub
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Moroccans, African Surinamese, South-Asian Surinamese, Turks, and Ghanaians. They 

found that within-individual (alpha diversity) differences could be detected in the gut 

microbiome. These results were largely recapitulated in microbiome studies of urban and 

rural Nigerians (Ayeni et al., 2018). He et al. (2018) found estimates of health made from 

microbiome data were most accurate when informed by the Chinese participants’ local 

geography. These results indicate that ethnicity and geography are important 

determinants of gut microbiome composition,  independent of lifestyle, demographic, and 

dietary factors (Deschasaux et al., 2018; He et al., 2018).  

Several other studies have highlighted that a transition from non-industrialized to 

industrialized environments and lifestyle is associated with a decrease in gut microbiome 

diversity (Clemente et al., 2015; De Filippo et al., 2010; Gomez et al., 2016; Obregon-

Tito et al., 2015; Schnorr et al., 2014). Gomez et al. (2016) analyzed metabolites and gut 

microbiota samples from Central African Republic populations, and showed that while 

the gut microbiomes of CAHG (BaAka) and Bantu generally looked distinct from those 

of U.S. populations, the settled, agriculturalist Bantu had gut microbiome profiles that 

were more similar to those of U.S. guts than those of the BaAka (Gomez et al., 2016). 

The levels of urbanization and economic development associated with decreased 

diversity and altered inter-individual taxonomic variation contingent on level of 

settlement in the Ecuadorian Shuar, a hunting and gathering group transitioning away 

from traditional lifestyle (Stagaman et al., 2018). Species in the Treponema genus are 

common constituents of the gut microbiomes of traditional, rural populations such as the 

Venezuelan Yanomami (Clemente et al., 2015) and Tanzanian Hadza (Schnorr, 2018), 
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but are considered “missing” taxa in the gut microbiomes of industrialized countries. 

Non-pathogenic species of Treponema are thought to facilitate digestion of fibrous foods, 

and the lack of this genus in industrialized countries may be linked to Western diets that 

are fiber-depleted, or are incapable of sustaining this bacteria due to other factors such as 

antibiotic use.  

Recent work by Vangay et al. (2018) sampled Hmong and Karen Thai U.S immigrant 

populations and observed decreased diversity contingent on their duration in the U.S. 

(Vangay et al., 2018). Hmong and Karen Thai immigrant microbiome profiles converged 

towards those of European Americans within 6-9 months and coincided with weight gain. 

The loss of diversity was compounded over generational time and microbial losses such 

as these are likely permanent (Sonnenburg et al., 2016). Given the diversity of traditional 

population microbiomes, and that traditional populations are being increasingly exposed 

to dietary and environmental changes consistent with industrialized countries, some 

researchers have speculated that certain microbial taxa could be lost from human gut 

microbiomes in perpetuity. This statement has bolstered calls for international consortia 

to biobank and preserve microbial diversity in repositories that would serve as long-term, 

secure “vaults” (Bello, Knight, Gilbert, & Blaser, 2018), although issues of indigenous 

access, consent, and ownership make such storage and concomitant open-ended research 

problematic. 

Health of traditional African populations 

While two-thirds of deaths outside of Africa in 2002 were attributed to noncommunicable 

diseases, 72% of deaths within Africa are caused by communicable diseases including 
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malaria, HIV/AIDS, tuberculosis, and neglected tropical diseases (Africa, 2006; Hotez, 

2014) (Soil-transmitted helminths, leprosy, onchocerciasis, dracunculiasis, Schistosoma, 

etc.).  Concerted efforts to control leprosy, poliomyelitis, dracunculiasis, and 

onchocerciasis have been comparatively more successful than measures targeting 

tuberculosis, malaria, and HIV/AIDS despite improvements to disease prevention, 

detection, and treatment techniques (Africa, 2006).  

Malaria is a mosquito-borne infectious illness that causes fever, vomiting, headache, and 

fatigue, and can lead to seizures, coma, and death. There are an estimated 300-500 

million clinical cases of malaria in the world every year, 90% of which occur in Africa. 

(Africa, 2006). Close to 90,000 children die annually of malaria, and malarial-related 

anemia causes around 10,000 maternal deaths in Africa (Africa, 2006). Forced settlement 

and forest clearing activities of Pygmy3 groups within Central Africa have further 

propagated mosquito communities (Froment, 2014). It has been hypothesized that 

increased malaria endemicity from forest clearing may have increased the selection 

pressure in populations from those regions, resulting in genomic adaptations (Myers et 

al., 2013; Tishkoff et al., 2001). 

                                                

3 George Schweinfurth (1873) coined the term “Pygmy” when referring to the rainforest-dwelling 

hunter gatherers of the Congo Basin based on their short stature (Schweinfurth, 1873). Anthropologists 

used the term “Pygmy” in the Journal des Africanistes (2012) as they lacked a more parsimonious term to 

refer to people of the Congo Basin, who are no longer confined to rainforests, and have subsistence 

practices other than hunting and gathering (Robillard & Bahuchet, 2012). Due to its global recognition, this 

paper also uses the term “Pygmy,” although its potential pejorative meaning, embedded in phenotypic 

classification, is duly noted.   
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African governments acknowledge the heavy disease burden of malaria, and since 2002 

have pledged to treat initial onset of symptoms with expanded clinical care, preventative 

doses of antimalarial drugs, and insecticide treated nets for at least 60% of “vulnerable 

groups,” defined as children <5 years of age and pregnant women (Organization of 

African Unity, 2000). However, these simple interventions can be hard to implement due 

to the scale of need.  Nets must be re-treated with insecticide every three years and many 

countries with high malarial burdens do not have the health infrastructure or financial 

resources to treat or prevent malaria (Africa, 2006). Furthermore, insecticide resistance, 

expanded mosquito habitat from climate change, and the proliferation of drug-resistant 

parasites pose major challenges to eradicating malaria in Africa (Myers et al., 2013; 

World Health Organization, 2013). 

Human immunodeficiency virus (HIV) is a retrovirus that causes acquired 

immunodeficiency syndrome (AIDS), and is characterized by progressive failure of the 

immune system and increased rates of opportunistic infections and some cancers.  Africa 

contains 60% of all people living with HIV, making it the region of the world most 

affected by the HIV/AIDS pandemic (Africa, 2006). HIV is predominantly transmitted 

among heterosexual people in Africa, and 57% of infected individuals are women 

(Africa, 2006). Many factors contribute to viral incidence, including migrations, lack of 

education, poverty, stigma, high levels of sexually transmitted infections (STIs), and 

social instability (Cohen, 2002). Commercial sex and sexual violence also increase 

incidence rates, and may disproportionately affect young women (Joint United Nations 

Programme on HIV/AIDS (UNAIDS), 2004). Increasingly affordable antiretroviral 
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therapy (ART) lowers HIV levels in blood, postpones opportunistic infections, prevents 

mother-to-child transmission, and increases quality of life (World Health Organization, 

2006). The relative isolation of San populations results in a lower HIV/AIDS rate than 

populations in urban regions (i.e., an adult prevalence rate of HIV/AIDS in urban 

Botswanans of 37.3% in 2002, as compared to 21.4% for San). However, forced 

resettlement into areas with higher HIV/AIDS prevalence threatens to substantially 

increase the infection rate (Ohenjo et al., 2006). 

Tuberculosis (TB), a respiratory infection of pathogenic Mycobacteria strains, has an 

ancient history of causing illness in humans, with a current estimate of its origin at ~3 

mya (Gagneux, 2012). Although there has been an affordable and safe cure for TB since 

the 1950s, millions of people die from the disease every year (Global Tuberculosis 

Control, 2010). In Africa, an estimated 2.4 million new cases and 0.5 million deaths from 

TB occur annually (Africa, 2006). Africa has nine of twenty-two high TB burden 

countries (Ethiopia, the Democratic Republic of Congo, Nigeria, Kenya, South Africa, 

Mozambique, Uganda, Zimbabwe, and the United Republic of Tanzania) and eleven of 

fifteen countries with the highest incidence of TB (Botswana, Lesotho, Malawi, Kenya, 

Sierra Leone, Namibia, South Africa, Swaziland, Zambia, Uganda, and Zimbabwe) 

(Africa, 2006). As pathogen resistance to conventional chemotherapies has increased, 

new strains such as Multiple Drug Resistant (MDR) and Extremely Drug Resistant 

(XDR) TB are on the rise, causing increased morbidity and requiring expensive 

antibiotics for treatment (Global Tuberculosis Control, 2010; Sharma et al., 2017). 
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The incidence of tuberculosis has risen in tandem with the HIV/AIDS epidemic, as 

people who are immunocompromised due to AIDs easily contract tuberculosis. 

Additionally, treatment with antiretroviral drugs can lyse granulomatous sequellae of 

latent TB disease, causing an active and transmissible disease state (Lawn, Butera, & 

Shinnick, 2002). Close supervision of antibiotic administration with directly observed 

treatment (DOTS) can produce higher TB cure rates, fewer relapses, and prevents drug 

resistance,- however, African region countries often lack trained health workers to 

implement treatment plans (Africa, 2006). The Bacille Calmette- Guérin (BCG) 

vaccination routinely administered to newborns provides protection against some severe 

forms of TB, but it is not efficacious against pulmonary TB and does little to relieve the 

TB burden (Africa, 2006). 

Neglected Tropical Diseases (NTDs) continue to be common in Africa, generating 

substantial morbidity, but do not garner much attention or funding to their treatment and 

prevention.  Among these, schistosomiasis and Soil Transmitted Helminths (STH) are 

some of the most prevalent infectious agents in developing countries (Hotez, 2014).  

Schistosomiasis is caused by parasitic worms (common species in Africa include 

Schistosoma mansoni and Schistosoma haematobium) which infect the intestines or the 

urinary tract causing diarrhea, abdominal pain, hematuria, and in cases of prolonged 

infection, infertility, bladder cancer, kidney failure, and liver failure (Chitsulo, Engels, 

Montresor, & Savioli, 2000). In schistosome endemic regions, many regional African 

governments have treated at-risk groups with annual doses of the deworming medication 

praziquantel, but reinfection is common (Hotez et al., 2006). The most common STH 
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include intestinal parasitic whipworms (Trichuris trichiura), roundworms (Ascaris 

lumbricoides), and hookworms (Necator americanus and Ancylostoma duodenale), which 

are contracted through contact via eggs in soil, ingestion of eggs in contaminated food, or 

through skin penetration by infective larvae (Africa, 2006). Symptoms of infection with 

STH include abdominal pain, diarrhea, anemia (for hookworms) general malaise, and 

weakness, which can impair growth, learning ability, and work capacity (Africa, 2006). 

Campaigns within Africa to control STH include giving targeted drug treatment to 

children, pregnant women, and high risk adults (Hotez et al., 2006). African populations 

are also infected by protozoans, including Entamoeba histolytica, Cryptosporidium spp., 

and Giardia, which account for ~357 million cases of illness (Torgerson et al., 2015).  

 Intestinal parasites are endemic to the equatorial rainforests of Africa, which are 

inhabited by many indigenous African groups (Ohenjo et al., 2006). Diarrheal diseases 

are the main cause of children’s growth defects and mortality in Pygmy groups of Central 

Africa (Froment, 2014) and most Pygmy groups have comparable if not higher levels of 

intestinal parasites as their agricultural Bantu neighbors (Ohenjo et al., 2006). Clinics are 

often located in urban centers, limiting Pygmy access to deworming medications (Ohenjo 

et al., 2006). The rate of helminth infection in Pygmy groups indicates that their semi-

nomadic lifestyle provides limited, if any, protection against helminths (Cavalli-Sforza, 

1986). Rates of helminth infection in Pygmies similar to agricultural Bantu populations 

may show an increase in sedentism and increasingly agricultural subsistence among 

Pygmy groups (Ohenjo et al., 2006). 
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 Interestingly, African pastoralist groups have lower STH incidence compared to 

hunter-gatherer groups, which may be due to their nomadic lifestyle (Teklehaymanot, 

2009), although some groups have higher levels of schistosomiasis (Chinwe & Agi, 

2014).  Fulani pastoralists, who practice cattle husbandry, are required to be in close 

proximity to freshwater sources which could increase their risk of exposure to 

schistosoma larvae or cercariae. A recent study found that 66.4% of 593 Fulani 

pastoralist herdsmen tested positive for infection with Schistosoma haematobium 

(Chinwe & Agi, 2014). The level of helminthiasis and schistosomiasis may depend on 

periodic movements of pastoralists between seasonally contaminated environments and 

encampment locations (Teklehaymanot, 2009). 

Epidemiological surveys of viral infections in indigenous Africans are rare and never 

exhaustive, due to a combination of population isolation, small group size, government 

resources, and NGO/donor interest (Africa, 2006; Froment, 2014). Most observations of 

viral disease are based on reports from survivors of disease and small children, and 

indicate that yellow fever, hepatitis C, foamy viruses, and hemorrhagic fevers all have a 

varying degree of presence in indigenous African communities (Froment, 2014; Hotez, 

2014). Around 10% of Bakola pygmies in Cameroon were found to have antibodies to 

the Ebola virus, which had not been seen in the region before and may indicate infection 

with a weakly pathogenic strain that could be protective against more severe forms of 

Ebola hemorrhagic fever (Calattini et al., 2007). Marburg viruses, which are clinically 

indistinguishable from Ebola, are endemic to woodlands of equatorial Africa, and cases 

have been reported in Kenya, the Democratic Republic of Congo, Angola, and Uganda 
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(Adjemian et al., 2011; Bausch et al., 2003; Towner et al., 2006). Fatality rates vary 

greatly depending on the outbreak, ranging from 23-90% (Leffel & Reed, 2004). Like 

Ebola, Marburg viruses4 are spread through human to human transmission and 

consumption of undercooked African bushmeat containing the virus (MacNeil & Rollin, 

2012). Both Ebola and Marburg have no specific antiviral treatment, and although there 

have been vaccine candidates for Ebola, there are none that are yet approved for clinical 

use in humans (Henao-Restrepo et al., 2017; Schandock et al., 2017).   

Effects of parasitemia and HIV on the gut microbiome 

Investigations of the microbiome, immune function, and helminths have focused on how 

parasite presence in the gut may stimulate mammalian immune response (Allen & 

Maizels, 2011; Elliott & Weinstock, 2012; Hooper, Littman, & Macpherson, 2012; 

Littman & Pamer, 2011; Macpherson & Harris, 2004). Many enteric protozoa have a 

fecal-oral route of transmission, introducing them into the same gastrointestinal space as 

gut microbiota. It is uncertain if helminths directly modulate the immune system or 

indirectly affect it through changes in microbiota (Bancroft, Hayes, & Grencis, 2012; 

Cox et al., 2014; Leung & Loke, 2013).  

Gut bacterial families Elusimicrobiaceae and Ruminococcaceae were important 

predictors of asymptomatic infection with Entamoeba parasites in rural Cameroonian 

fishers and hunter-gatherer groups (Morton et al., 2015). Gut bacterial composition 

                                                

4 The fruit bat Rousettus aegypti is the natural reservoir of Marburg viruses and can transmit the virus to 

humans; the putative reservoir of Ebola is also thought to be a fruit bat (Paweska et al., 2012).  
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overall produced models that were highly predictive of Entamoeba infection (79% 

accuracy) (Morton et al., 2015). A separate study on diarrheal illness in Bangladeshi 

children found that levels of Prevotella copri were significantly associated with 

Entamoeba infection (Gilchrist et al., 2016). P. copri has also been associated with 

autoimmune disease and severe inflammation (Scher et al., 2013), indicating that 

Entamoeba may trigger an inflammatory response in the distal colon. Mice treated with 

segmented filamentous bacteria (SFB) were protected from experimental infection with 

E. histolytica and showed increased levels of intestinal neutrophils and IL-23 (Burgess et 

al., 2014). This immune response suggested that commensal bacteria may alter 

responsiveness of cytokine induction to inflammatory challenges induced by Entamoeba 

infection. 

Higher abundances of Proteobacteria, lower abundances of Verrumicrobia and 

Bacteroidetes, and higher ratios of Firmicutes to Bacteroidetes are thought to have a non-

specific protective effect against Cryptosporidium infection (Chappell et al., 2016). The 

indole producing bacteria Escherichia coli CFT073, Bacillus spp., and Clostridium spp. 

had relative higher abundance in the guts of uninfected humans. Indole could directly 

inhibit the parasite, stimulate anti-inflammatory pathways, or improve host intestinal 

barrier function (Chappell et al., 2016; Jin et al., 2014; Shimada et al., 2013). A study on 

a population from the southern Côte d'Ivoire found that infection with Giardia 

duodenalis was positively associated with increases in Bifidobacterium (Iebba et al., 

2016), and in vitro models have shown that G. duodenalis survival was significantly 

inhibited when Lactobacillus johsonii La1 was introduced at the trophozoite phase of 
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infection (Humen et al., 2005; Pérez et al., 2001). Gut dysbiosis associated with Giardia 

infection has been demonstrated to persist as long as six years after the infection is 

resolved (Hanevik et al., 2014; Wensaas et al., 2012). Bifidobacterium, along with 

Streptococcus, were found in higher proportions in individuals infected with Plasmodium 

falciparum (Yooseph et al., 2015). Plasmodium falciparum causes blood and liver stage 

malaria infections, which are usually treated with antimalarials. These antimalarials can 

induce metabolic dysregulation, which could in turn affect microbiota composition via 

modulation of the metabolome or immunity. Bifidobacterium is normally considered a 

beneficial microbe of the gut, so its presence in infected individuals prompts questions 

about its role in mediating immune responses and gut equilibrium. 

 Gastrointestinal helminth infection with Necator americanus, Ascaris sp., and Trichuris 

trichiura has been linked to increased alpha (within-individual) and beta (between-

person) diversity (See Table 1-1) (Giacomin et al., 2015, 2016; Zaiss et al., 2015). Rural 

Malaysians with T. trichiura or A. lumbricoides infections have a greater number of 

observed taxa, overall species richness, and higher amounts of Paraprevotellaceae than 

non-infected Malaysian controls (Lee et al., 2014). In a large cross-sectional study of 

rural populations from Indonesia and Liberia, twelve bacterial taxa were significantly 

associated with helminth (A. lumbricoides, T. trichiura, and N. americanus) infection 

(Rosa et al., 2018). Most notably, Olsenella was significantly associated with infection 

and with reduced gut inflammation, and decreased in abundance after infection. 

Functional categorization of gene content from Indonesian and Liberian helminth 

infected individuals pointed towards a role for arachidonic acid metabolism as a 
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precursor for pro-inflammatory leukotrienes that could reduce helminth survival in vivo 

(Rosa et al., 2018).   

Infection with Strongyloides stercoralis has been associated with an increase in families 

Leuconostocaceae, Paraprevotellaceae, Ruminococcaceae, genus Peptococcus, several 

strains of Clostridia implicated in maintaining gut homeostasis, an increased amount of 

amino acids, and lower levels of short chain fatty acids (SCFAs) (Jenkins et al., 2018). 

Leuconostocaceae has been experimentally shown to release inflammatory Th1 cytokines 

IL-12 and IFN-γ, producing an antimicrobial immune response (Jenkins et al., 2018); 

however, other studies on ascarids, whipworms, and hookworms have shown a decrease 

in Leuconostocaceae, warranting further investigation (Jenkins et al., 2017). Bacterial-

derived SCFAs exhibit anti-inflammatory properties, and these molecules may play a role 

in therapeutic effects of helminths used for the treatment of inflammatory disorders. 

Celiac disease patients that were experimentally treated with N. americanus showed 

increases in SCFAs during infection (Zaiss et al., 2015). However, patients infected with 

S. stercoralis showed significantly decreased amounts of acetate, butyrate, and 

propionate (Jenkins et al., 2018), indicating that parasite induced changed in bacterial-

derived SCFA production may vary by parasite. Differences in cohort sizes and 

demographics between the S. stercoralis and N. americanus studies could also contribute 

to contrasting results.   

Some of the regulatory mechanisms influencing helminth-microbiome-host immune 

functioning in mice co-infected with Trichinella spiralis and murine norovirus were 

recently described (Osborne et al., 2014). Helminth infection upregulated Th-2 cytokines 
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(IL-4, IL-13) and transcription of STAT6-dependent macrophages. Antiviral immunity 

was inhibited at the cost of suppressing the helminth parasites, and there were no changes 

in the bacterial microbiota that correlated with the immune response. Taken together, 

these results indicated that helminths may have mechanisms that allow direct regulation 

of antiviral immunity and the host immune system independent of gut microbiome 

changes (Osborne et al., 2014).  

Human immunodeficiency virus (HIV) has a substantial role in disturbing gut 

homeostasis. HIV infection causes a severe T-cell depletion in the human gut, which in 

turn compromises gut epithelial integrity and causes microbial translocation from the 

gastrointestinal tract into the circulatory system, which results in further immune 

activation and increased HIV replication and pathogenesis (Brenchley et al., 2006; Mudd 

& Brenchley, 2016). Thus, there is an expectation that HIV infection, development of 

AIDS, and antiretroviral therapy (ART) will affect structural, metabolic, immunological 

and functional aspects of the gut microbiome. Prior work on HIV and the enteric bacterial 

microbiome indicated that chronic HIV infection in western populations being treated 

with ART correlated with changes in bacterial beta diversity, depletion of Bacteroides, 

and increases in Prevotella  (Dillon et al., 2014; Dinh et al., 2015; Catherine A. Lozupone 

et al., 2013, 2014; McHardy et al., 2013; Vázquez-Castellanos et al., 2015; Vujkovic-

Cvijin et al., 2013). However, observational studies have proved contradictory, with 

some studies finding differences in the gut microbiomes of HIV positive individuals in 

comparison to HIV negative individuals (Goedert, 2016; McHardy et al., 2013; Mutlu et 

al., 2014; Williams, Landay, & Presti, 2016) and others finding no differences.  



69 

 

In Africa, a study of anorectal swabs from 130 homosexual men in Nigeria failed to find 

differences between HIV uninfected and infected (ART-naïve) men; however, there was 

an increased abundance of Firmicutes, Campylobacter, and lower Prevotella in the gut 

microbiomes of individuals who were HIV positive and had undergone ART treatment 

(Nowak et al., 2017). Monaco et al. (2016) were also unable to identify differences in the 

gut microbiomes of HIV positive and negative Ugandan men, but found that alterations in 

the bacterial microbiome occurred when their sample population was stratified by CD 4 

T-cell numbers, with lower counts linking to increased Enterobacteriaceae and enteric 

adenovirus expansion. Higher abundances of Prevotella in these populations, as 

compared to Bacteroides in sub-Saharan Africans could mask increased abundances of 

Prevotella associated with HIV in western cohorts. This research indicates that therapies 

designed on western populations targeting bacterial microbiomes as an intermediary for 

treating HIV and AIDS may be ineffective at treating individuals from non-industrialized 

countries. Additionally, existing microbiome studies on cohorts of sub-Saharan HIV and 

AIDS positive individuals have focused almost exclusively on men, despite the fact that 

women and young girls make up a disproportionate amount of new HIV infections 

(>44% higher than men for girls aged 15-24) (UNAIDS, 2017). 
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Chapter 3. Population structure of human gut bacteria in a 

diverse cohort from rural Tanzania and Botswana 

The contents of this chapter have been previously published as:  

Hansen, M.E.B. †, Rubel, M.A. †, Bailey, A.G., Ranciaro, A., Thompson, S.R., 

Campbell, M.C., Beggs, W., Dave, J.R., Mokone, G.G., Mpoloka, S.W., Nyambo, 

T., Abnet, C., Chanock, S.J., Bushman, F.D., Tishkoff, S.A. (2019). Population 

structure of human gut bacteria in a diverse cohort from rural Tanzania and 

Botswana. Genome Biology 2019 20:16. doi: 10.1186/s13059-018-1616-9 

†Contributed equally 

3.1. Abstract 

Gut microbiota from individuals in rural, non-industrialized societies differ from those in 

individuals from industrialized societies. Here, we use 16S rRNA sequencing to survey 

the gut bacteria of seven non-industrialized populations from Tanzania and Botswana. 

These include populations practicing traditional hunter-gatherer, pastoralist, and 

agropastoralist subsistence lifestyles and a comparative urban cohort from the greater 

Philadelphia region. We find that bacterial diversity per individual and within-population 

phylogenetic dissimilarity differs between Botswanan and Tanzanian populations, with 

Tanzania generally having higher diversity per individual and lower dissimilarity 

between individuals. Among subsistence groups, the gut bacteria of hunter-gatherers are 

phylogenetically distinct from those of both agropastoralists and pastoralists, but those of 

agropastoralists and pastoralists were not significantly different from each other. Nearly 

half of the Bantu-speaking agropastoralists from Botswana have gut bacteria that are very 

similar to the Philadelphian cohort. Based on imputed metagenomic content, U.S. 

samples have a relative enrichment of genes found in pathways for degradation of several 

https://doi.org/10.1186/s13059-018-1616-9
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common industrial pollutants. Within two African populations, we find evidence that 

bacterial composition correlates with the genetic relatedness between individuals. Across 

the cohort, similarity in bacterial presence/absence compositions between people 

increases with both geographic proximity and genetic relatedness, while abundance 

weighted bacterial composition varies more significantly with geographic proximity than 

with genetic relatedness. 

3.2. Background 

Gut microbiota have been shown to be affected by numerous factors, including host diet, 

medications, pets, socioeconomic status, environment of residence, and chance 

acquisition of lineages (Azad et al., 2013; Blaser, Bork, Fraser, Knight, & Wang, 2013; 

Chen et al., 2012; Chong et al., 2015; Consortium, 2012; Eckburg et al., 2005; Falony et 

al., 2016; Gill et al., 2006; Harrison & Taren, 2017; Hoffmann et al., 2013; Song, Lauber, 

et al., 2013; Turnbaugh et al., 2006; Wang et al., 2016; Wu et al., 2011; Zhernakova et 

al., 2016). While temporary changes in diet have been shown to cause circumscribed 

shifts in gut bacterial composition, the dominant bacterial composition in healthy adults 

remains relatively stable and is influenced by long-term diet (Muegge et al., 2011; 

Turnbaugh, Bäckhed, Fulton, & Gordon, 2008; Turnbaugh, Ridaura, et al., 2009; Wu et 

al., 2011). Plant and animal domestication during the Neolithic period (~ 10 kya), and the 

shift from hunter-gatherer subsistence patterns to pastoralist and agriculturalist practices, 

constituted a major change in diet (Mira, Pushker, & Rodríguez-Valera, 2006). Numerous 

contemporary, rural African populations continue to practice traditional subsistence 

lifestyles, including pastoralism, hunting and gathering, and small-scale agropastoralism. 
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Examining their microbiome composition and function can inform host-microbiota 

dynamics in the absence of the impact of industrialization and widespread antibiotic use. 

Several cross-population studies have compared the gut microbiome of urban-industrial 

societies with those of traditional hunter-gatherer or agricultural societies. The latter two 

types of populations consume foods that are relatively lower in sugars, fats, and animal 

protein and are relatively higher in fiber (Arumugam et al., 2011; Koren et al., 2013; Wu 

et al., 2011). The gut bacteria of urban-industrialized populations often have high 

abundances of Bacteroides, while the gut bacteria from traditional hunter-gatherer or 

agropastoral societies have higher abundances of Prevotella (Clemente et al., 2012; De 

Filippo et al., 2010; Gomez et al., 2016; Martínez et al., 2015; Obregon-Tito et al., 2015; 

Schnorr et al., 2014; Yatsunenko et al., 2012). Whether these trends are due to the types 

or quantities of foods consumed, cultural or social practices, geographic, genetic, or other 

factors is unclear. Although there have been several studies of microbiome diversity 

within African populations (De Filippo et al., 2010; Gomez et al., 2016; Morton et al., 

2015; Rampelli et al., 2015; Schnorr et al., 2014; Smits et al., 2017; Yatsunenko et al., 

2012), the range of gut microbiome compositions among African populations with 

diverse subsistence practices remains largely unknown. 

Here, we present a comparison of gut microbiota from rural populations in Tanzania 

(N = 60), Botswana (N = 54), and individuals living in an urban U.S. city (Philadelphia, 

PA) (N = 12) (Figure 3.1, Table 3-1) (Minot et al., 2013; Ni et al., 2017; Wu et al., 2011). 

The African populations are composed of multiple ethnic groups practicing varying 



73 

 

degrees of hunting and gathering, agropastoralism, and pastoralism. “Pastoralists” are 

defined here as any population whose diet and economy are centered on cattle herding. 

We term populations whose diet and economy are centered around small-scale 

subsistence farming as “agropastoralists,” as every farming village we sampled also 

raised cattle or small livestock. Any population that derives most of its food from foraged 

plants and/or hunted game animals are termed “hunter-gatherers.” 

The four Tanzanian populations sampled are (1) the Khoesan click-speaking Hadza, who 

are savannah hunter-gatherers; (2) the Khoesan click-speaking Sandawe, who are former 

savannah hunter-gatherers that adopted agropastoral practices over a hundred years ago; 

(3) the Nilo-Saharan-speaking Maasai, who are semi-nomadic cattle herders; and (4) the 

Afroasiatic-speaking Burunge, who are agropastoralists. The three Botswanan groups 

sampled are (1) the Khoesan click-speaking San, who are hunter-gatherers of the 

Kalahari desert that have recently adopted some agropastoralist practices (Hitchcock, 

2002; Ikeya, 2001);  (2) the Niger-Kordofanian Bantu-speaking Herero, who are Kalahari 

pastoralists; and (3) several groups of Niger-Kordofanian Bantu-speaking 

agropastoralists, hereafter referred to as “Bantu agropastoralists.” The U.S. cohort is 

mainly composed of individuals who self-identified as “White,” with one self-identified 

“African American.” 
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Figure 3-1. Map of the sampled population groups in Tanzania and Botswana.  
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Country Population Subsistence Number 

Total 

Number 

Female 

Number 

Male 

Age 

Ave 

Age 

Min 

Age 

Max 

Tanzania Burunge Agropastoralist 11 10 1 48 22 70 

 Sandawe Agropastoralist 12 10 2 47.2 33 61 

 Maasai Pastoralist 12 6 6 39.5 24 68 

 Hadza Hunting & 

Gathering 

25 10 15 44.2 19 90 

  subtotals: 60 36 24 44.5 19 90 

Botswana Bantu  Agropastoralist 26 19 7 49.8 24 92 

 Herero Pastoralist 8 7 1 44.5 19 77 

 San Hunting & 

Gathering 

20 15 5 28.0 18 42 

  subtotals: 54 41 13 40.9 18 92 

U.S. Philadelphia Industrial 

agropastoralist 

12 4 8 26.2 22 33 

  Totals: 126 81 45 41.2 18 90 

Table 3-1. Botswana and Tanzania cohort metadata per population group 

This metadata includes country, population name, subsistence practice, number of 

individuals, and age range.  

3.3. Results 

3.3.1. Data overview 

DNA was extracted from stool samples, and the 16S rRNA gene V1-V2 segments were 

amplified and sequenced in all 126 participants. Sequences were aggregated at 97% 

identity, yielding 18,915 operational taxonomic units (OTUs). Seventeen thousand eight 
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hundred seventy OTUs mapped to one of 191 bacterial taxa in the Greengenes 

classification database (D. McDonald et al., 2012), 1,044 OTUs were unassigned, and 

one OTU could only be mapped at the taxonomic resolution of Kingdom (Bacteria). The 

mean population abundance of unassigned reads was less than 0.15%, and we removed 

the 1,044 unassigned OTUs and single Kingdom (Bacteria) OTU from further analysis 

(Supp. Figure 3-1). Compared to the U.S. samples, the African samples have a larger 

relative abundance of OTUs that were not confidently assigned to a known taxa (Figure 

S1A). The four Tanzanian populations have the largest number of unassigned OTUs per 

individual (Supp. Figure 3-1B), while the Sandawe have a larger number of total 

unassigned reads per individual compared to any other population (Figure S1B). 

Collector’s curves showing the rate that new OTUs are detected as sample size is 

increased were calculated for OTUs with abundance > 0.01% and averaged per 

population (Supp. Figure 3-2). These curves show that increasing our sample size would 

only marginally increase OTU counts. On average, the Sandawe have the highest number 

of OTUs, while the U.S. have the lowest (Figure 3-2). 

3.3.2. Abundance of Prevotellaceae varies within and between African 

populations 

Bacteroidales (phylum Bacteroidetes) and Clostridiales (phylum Firmicutes) are the two 

most common orders of bacteria in nearly every individual (Figure 3-2A), as expected for 

the human gut microbiome (Lozupone et al., 2012). The relative proportions 

of Bacteroidales and Clostridiales varies by individual and by population (Figure 3-2C). 

Comparing each population against the rest of the cohort and considering just the two 



77 

 

taxa Bacteroidales and Clostridiales, we find that the Hadza have a significantly higher 

proportion of Bacteroidales (Mann-Whitney-Wilcoxon (MWW) test, p-value 6.3 × 10−4), 

the U.S. have a significantly lower proportion of Bacteroidales (MWW test, p-value 

0.020), whereas no other population had a significantly different proportion 

of Bacteroidales (smallest MWW test p-value is 0.27). 

Prevotellaceae is the most common bacterial family among the Africans in this cohort, 

being the most abundant family in 70.2% of Africans as well as having the largest mean 

abundance per population in every African population (Figure 3-2B). 

Higher Prevotellaceae abundance has been previously associated with infection by the 

globally endemic gastrointestinal parasite Entamoeba in central African rainforest hunter-

gatherers (Kirk et al., 2015; Morton et al., 2015). Fecal DNA was screened for E. 

histolytica but this parasite was not detected in our samples, demonstrating that the 

high Prevotellaceae abundances are not due to E. histolytica infection in our 

samples. Ruminococcaceae is the second most common bacterial family in the African 

cohort, being the most abundant bacteria in 14% of Africans. 

Bacteroidaceae is the most common bacterial family among the US cohort, being the 

most abundant family in 50% of U.S. samples and having the largest population mean 

abundance. Ruminococcaceae is the second most common bacteria in the US cohort, 

being the most abundant bacteria in 25% of the US samples and having the second largest 

mean abundance. 
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Figure 3-2. Relative abundance per individual for the ten most common taxa 

The relative abundance per individual for the ten most common taxa, shown for the 

bacterial taxonomic rank of A) Order and B) Family. C) The population distribution of the 

relative proportion of Bacteroidales per total of Bacteroidales and Clostridiales. 
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Considerable variation in taxa abundances exists within African samples. In particular, 23 

Africans have abundances of Prevotellaceae as low as what we find in the U.S. samples 

(within one standard deviation of the mean US, an abundance of 12.4%). Among the 

African samples with such low Prevotellaceae abundance, 19 are from Botswana and of 

those, 12 are from the Bantu population. Fifty-two Africans were tested by quantitative 

PCR for absolute 16S rRNA copy numbers per gram of stool, including eight Bantu from 

Botswana. Of these eight Bantu, six individuals were in the low Prevotellaceae Bantu 

subset, and this group had the lowest average 16S rRNA copy number per gram of stool 

among any of the African groups (Supp. Figure 3-3, Supp. File 2, Supp. Table 3-1, 

“Bantu_2”). We tested whether age, sex, host BMI, sampling latitude, or sampling 

longitude distinguished these 12 individuals from the other Bantu, but none were 

statistically significant (Wilcoxon rank sum tests, smallest p-value is 0.41). Finally, we 

note that for 12 African individuals, their most abundant bacterial family is not 

Prevotellaceae, Ruminococcaceae, or Bacteroidaceae, and in ten of these samples the 

most abundant bacterial family is unresolved.  

3.3.3. Bacterial diversity per individual is higher in Tanzania than in 

Botswana 

The African populations varied in gut microbial α-diversity (bacterial diversity, or 

bacterial richness and evenness, within each individual), as quantified with the Shannon 

diversity index (Figure 3-3A). The U.S. cohort had the least bacterial diversity, while the 

Sandawe had the highest, similar to previous comparisons of industrialized populations 

versus hunter-gatherers (Clemente et al., 2012; Gomez et al., 2016; Morton et al., 2015; 
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Obregon-Tito et al., 2015; Schnorr et al., 2014) and small-scale agropastoralists (De 

Filippo et al., 2010; Yatsunenko et al., 2012). These trends are not impacted by the 

rarefaction of OTU counts to 5000 per individual, as evidenced by the high correlation in 

Shannon diversity index with and without rarefaction (Spearman’s rho correlation 0.998, 

Supp. Figure 3-4). The α-diversity was not significantly correlated with the absolute 16S 

rRNA gene copy number (R2 = − 0.011, p-value = 0.51) (Supp. Figure 3-3E). However, 

we do find that the absolute 16S rRNA gene copy number is significantly higher in the 

Tanzanians than in Botswanans (MWW test, FDR q value = 0.023) (Supp. Figure 3-3D). 

Figure 3-3. Within 

group mean a  and 

b  diversity.           

A) Shannon index 

B) Unweighted 

UniFrac distance 

distribution within 

each group. C) 

Weighted UniFrac 

distribution within 

each group.  
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Figure 3-3 (cont.). 

Within group mean 

a  and b  diversity 

The within-

population mean 

Shannon diversity 

versus unweighted 

and weighted 

UniFrac distances 

are shown in D) 

and E), 

respectively.  

 

 

 

 

 

 

3.3.4. Between host bacterial diversity is correlated with within-host 

bacterial diversity 

The populations also varied in the within-population β-diversity (microbiota 

compositional dissimilarity between hosts), quantified by the UniFrac distance. The 

UniFrac distance is the fraction of the phylogenetic tree not shared between two samples, 

where the phylogeny of all taxa found in a bacterial community is estimated based on 
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ribosomal RNA sequence similarity. Smaller values indicate greater sharing of the 

microbial phylogenetic tree among hosts within a population, which may reflect greater 

homogeneity in environmental factors (e.g., diet, cultural practices, shared geographic 

location). The Tanzanian Sandawe have the lowest within-population β-diversity, while 

the Botswanan Bantu and US have the largest within-population β-diversity (Figure 3-

3B,C). 

We find a significant negative correlation between mean population α- diversity and 

mean within-population β-diversity for unweighted UniFrac distances (Figure 3-3D,E) 

(unweighted UniFrac β-diversity: linear regression R2 = 0.84, p-value = 1.47 × 10-3, and 

Kendall Tau correlation − 0.79, p-value = 6.5 × 10-3; weighted UniFrac β-diversity: linear 

regression R2 = 0.49, p-value = 0.052, and Kendall Tau correlation − 0.43, p-

value = 0.14). When individual pairs are restricted to the same sampling location for the 

within-population UniFrac calculation, the trend across Tanzanian populations is no 

longer evident, though the differences between Tanzania and Botswana remain (Supp. 

Figure 3-5). The correlation between α- diversity and β-diversity also holds when counts 

are rarefied to 5000 reads per individual (Supp. Figure 3-6), which accords with the high 

degree of correlation in UniFrac distances with and without rarefaction (Spearman’s rho 

correlation of 0.965 and 0.999 for unweighted and weighted UniFrac, respectively, Supp. 

Figures 3-7 and 3-8). Additionally, the Bray-Curtis dissimilarity metric for β -diversity 

yields similar results as the weighted UniFrac distance (see Supp. Figures 3-9 and 3-10). 

Thus, the correlation between α- and β-diversity does not appear to be an artifact of 
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choice of UniFrac as a β-diversity measure, uneven sampling location diversity, or 

uneven sequencing depth across individuals. 

3.3.5. Gut bacteria composition is more distinct between countries than 

between subsistence practices 

The gut bacterial compositional differences between populations were quantified by the 

mean UniFrac distance between all pairs of individuals taken from between-population 

pairs. The between-population bacterial phylogenetic distances were larger between the 

U.S. cohort and each African population than between any two African populations 

(Supp. Figure 3-11, Additional File 2, Supp. Tables 3-2, 3-3). The largest unweighted 

UniFrac distance within Africa was between the Botswanan Bantu and Tanzanian Hadza, 

which represented 92% of the average distance between the U.S. and African 

populations. The largest weighted UniFrac distance within Africa was between the Bantu 

and the Herero in Botswana, which is nearly 84% of the mean distance average between 

the US and African populations. 

The degree of compositional difference between two groups was assessed with 

PERMANOVA (Anderson, 2001) tests of UniFrac distances, which measures the 

significance of the between-group variation to within-group variation (pseudo F-statistic) 

by permutation of group assignment. If two groups have identical distributions of 

bacterial composition, then the pseudo F-statistic will be ~ 1, with larger values 

corresponding to greater difference in composition between the two groups. As shown in 

Figure 3-4, among pairs of countries, the U.S. and Tanzania have the largest pseudo F-

statistic. The pseudo F-statistic for Tanzania and Botswana is as large, or nearly as large, 
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as the pseudo F-statistic between the U.S. and Botswana (Figure 3-4A,D,  

Additional File 2, Supp. Table 3.4-3.7). This result demonstrates that the bacterial 

compositional variation between two regional, rural, African cohorts can be of similar 

magnitude as the compositional variation between an urban/industrialized cohort and a 

rural African cohort. 

Among the three pairs of African subsistence groups, the hunter-gatherers have 

significantly different compositions from both the agropastoralists and the pastoralists, 

while the agropastoralists and pastoralists are not significantly different from each other 

(Figure 3-4B,E, Additional File 2, Supp. Table 3-8, 3-9). Comparing the magnitudes of 

difference between subsistence groups and geographic groups, we therefore find that the 

bacterial compositional difference between Tanzania and Botswana (a geographic 

grouping) is larger than between any of the African subsistence groups (both unweighted 

and weighted UniFrac F-statistics). From this observation, we infer that the gut bacteria 

are phylogenetically more distinct between groups defined by region (country) than by 

subsistence practice. 
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Figure 3-4. PERMANOVA tests of the phylogenetic difference between pairs of groups, 

based on unweighted UniFrac and weighted UniFrac. Shown are groups defined by country 

of origin (panels A, D), subsistence practice (panels B, E), and sex (panels C, F). Unweighted 

UniFrac panels are A-C and weighted UniFrac panels are D-F. The subsistence practices 

are abbreviated as U.S. = western (Philadelphian), HG = hunter-gatherers (Hadza, San), 

AP = agropastoralists (Bantu agropastoralists, Burunge, Sandawe), and PA = pastoralists 

(Herero, Maasai). Bar in red denote pairs where the F-statistic p-value is < 0.05. 

3.3.6. Gut bacterial composition is significantly different between males and 

females in the Maasai and Hadza 

Four populations were tested for differences between sex in bacterial α-diversity 

(Shannon diversity index, minimum of five individuals per sex for MWW test) (Hadza, 

Maasai, San, and Bantu), and none showed a significant difference (all MWW test p-

values > 0.17). In addition, five populations were tested for a significant β-diversity 

distance between sexes using PERMANOVA (UniFrac distances, minimum of four 



86 

 

individuals per sex) (Hadza, Maasai, San, Bantu, and U.S.). The Hadza and Maasai had 

significantly larger unweighted UniFrac distances between sexes than expected by chance 

(PERMANOVA p-value < 0.05) (Figure 3-4C, Additional File 2, Supp. Table 3-10), 

while no population had a significantly elevated weighted UniFrac distance between 

sexes (all PERMANOVA p-values > 0.2, Figure 3-4F, Additional File 2, Supp. Table 3-

11). Thus, there appears to be elevated phylogenetic differences between sexes in the 

Hadza and Maasai in terms of presence or absence of bacterial OTUs but not in terms of 

OTUs weighted by their abundance. Although we find a significant difference between 

sexes for these two populations, larger sample sizes will be needed to identify the factors 

causing these differences.  

3.3.7. Gut bacteria compositions of individuals from the U.S. are more 

similar to Botswanans than to Tanzanians 

Using principal coordinate analysis (PCoA), we find that the similarities in overall 

bacterial OTU composition among individuals are strongly correlated with the 

abundances of three common bacterial families, Prevotellaceae, Bacteroidaceae, 

and Ruminococcaceae (Spearman’s rho correlation with PCo1 p-values are 1.0 × 10−40, 

1.0 × 10−18, and 3.3 × 10−12, respectively, and Spearman’s rho correlation with PCo2 p-

values are 5.0 × 10−7, 6.0 × 10−2, and 1.1 × 10−20, respectively) (Figure 3-5, Supp 

Figure 3-12). The first principal coordinate (45% of variance) is most strongly associated 

with Prevotellaceae abundance while the second principal coordinate (12% of variance) 

is most strongly associated with Ruminococcaceae abundance. 
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The per population distribution of weighted UniFrac distances between Africans and the 

U.S. cohort shows that the Botswanan gut bacteria are phylogenetically more similar to 

the U.S. gut bacteria than the Tanzanian gut bacteria (Figure 3-5D). This observation is 

consistent with the PERMANOVA results and the observation that there are more people 

with low Prevotellaceae abundance and high Bacteroidaceae abundance in Botswana 

than in Tanzania. 

The 13 Bantu with high Prevotellaceae abundance similar to other Africans were 

markedly more different from the US cohort based on both weighted and unweighted 

bacterial composition as well as within-individual bacterial diversity (weighted UniFrac 

PERMANOVA test p-value = 2.0 × 10−5; unweighted UniFrac PERMANOVA test p-

value = 2.0 × 10−5; MWW test on Shannon diversity p-value = 0.014). By contrast, the 12 

Bantu with low Prevotellaceae abundance, similar to the US cohort, were not statistically 

different from the U.S. samples based on bacterial abundance (weighted UniFrac 

PERMANOVA test, p-value = 0.12). However, they were different based on unweighted 

bacterial composition and within-individual bacterial diversity (unweighted UniFrac 

PERMANOVA test, p-value = 3.0 × 10−4 and MWW test on Shannon diversities, p-

value = 0.028, respectively). Thus, the similarities between these Bantu and US 

individuals are driven by common bacteria. 
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Figure 3-5. Principle Coordinate Analysis (PCoA) for weighted UniFrac distances. The first 

two principle coordinates for all individuals in the study, where marker shape and color 

denote the population of origin. Sidebar panels B and C show the abundances of 

Prevotellaceae (Prev.), Bacteroidaceae (Bact.), and Ruminococcaceae (Rumi.) aligned to the 

first two principal coordinates. D) Box-and-whisker distributions between each African 

population and the U.S. samples, over all pairs of individuals.  
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3.3.8. Observations of differentially abundant bacterial families among 

populations, subsistence groups, age, and sex 

The Analysis of Composition of Microbiomes (ANCOM) method (Mandal et al., 2015) 

was used to test for significantly differentially abundant bacteria among groups defined 

by country, population, subsistence lifestyle, and sex. We found that two bacterial genera 

(out of Ngenus = 48) vary significantly between Africa and the 

U.S., Bacteroides and Prevotella (Figure 3-6A), both of which also varied significantly 

between Tanzania and Botswana (Figure 3-6B). We also observed that Bacteroides is one 

of several bacteria that are differentially abundant among the seven African populations 

(Figure 3-6C). We note that 43.3% of all Bacteroides reads, and 35.2% of 

African Bacteroides reads, came from a single OTU (denovo36).  

Among the three African subsistence categories, three genera varied significantly (Figure 

3-6D): p-75-a5, Ruminococcus, and Treponema. p-75-a5 has previously been found in 

fecal samples from healthy children from Bangladesh (Lin et al., 2013) as well as in pre-

weened calves (Malmuthuge, Griebel, & Guan, 2014). Ruminococcus is also found in 

both human and ruminant fecal samples (Russell & Rychlik, 2001). The fact that both p-

75-a5 and Ruminococcus bacteria have the highest abundance in pastoralists may be the 

result of close interaction between humans and livestock. The third genera that varied 

significantly among subsistence groups, Treponema, was most abundant in hunter-

gatherers and agropastoralists, and has been previously associated with hunting and 

gathering and small-scale agropastoral populations with diets high in fiber (Gomez et al., 

2016; Obregon-Tito et al., 2015; Schnorr et al., 2014). Within the African cohort, no taxa 
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were found to vary significantly between sexes nor among three age classes (18-39, 40-

59, 60+). 

Figure 3-6. Box-and-whisker plots of relative abundances distributions per group for the 

taxa that varied significantly among groups by the ANCOM tests. Individuals are grouped 

by A) traditional or industrial lifestyle, B) country of origin, C) population, and D) 

traditional subsistence strategy. Relative abundances were log-transformed to account for 

the wide range of values (e.g., the means between Africans and the U.S. in A are ~2 orders 

of magnitude different). 

3.3.9. Imputed metagenomes show functional differences between 

populations and countries 

The functional variation among populations was predicted using the metagenomic 

imputation method Phylogenetic Investigation of the Communities by Reconstruction of 
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Unobserved States (PICRUSt) (Langille et al., 2013).  For every individual and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway, PICRUSt estimates the total 

gene count within that pathway (normalized to a relative abundance per pathway). 

Individuals were then grouped by population, subsistence, country, and continent, and 

statistical tests were computed on differences in the distribution of pathway abundances. 

One hundred forty-six KEGG pathways were significantly differentially enriched 

between the U.S. and African cohorts, and 148 KEGG pathways were significantly 

differently enriched between Botswana and Tanzania (White’s nonparametric t test, 

FDR < 0.1) (Additional File 2, Supp. Table 3-12:3-15). The pathway abundances of the 

Botswanan cohort were almost always intermediate between those of the Tanzanian and 

the U.S. cohorts. The pathway relative abundance difference between Tanzania and 

Botswana was highly correlated with the pathway relative abundance difference between 

Africa and the U.S. (Spearman’s rho correlation 0.51, p-value < 10−22; Supp. Figure 3-

13A). We infer that the regional differences in bacterial abundances may lead to regional 

differences in functional pathway abundances, depending upon the accuracy of gene 

content imputation. For example, we find that the degradation pathway of the pesticide 

dichlorodiphenyltrichloroethane, commonly known as “DDT,” is enriched in Botswanan 

samples but not in Tanzanian or U.S. samples (Supp. Figure 3-13B). No KEGG pathways 

varied significantly among African subsistence groups (ANOVA, FDR > 0.1). Twenty-

six KEGG pathways were significantly differentially enriched both between Africa and 

the U.S. and between Tanzania and Botswana and also have absolute relative differences 

> 15% between continent and between country (Additional File 2, Supp. Table 3-12 and 

Supp. Figure 3-13A, shown in red). These are the pathways with the most extreme 
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regional differences in pathway enrichment. Among these, five involve antibiotic 

biosynthesis or resistance, six involve the degradation of industrial xenobiotic 

compounds, nine involve digestion, and three involve cell recognition or cell-cell 

signaling. The frequencies for antibiotic resistance pathways and the xenobiotic 

degradation are highest in the U.S. and lowest in Tanzania, while the biosynthesis of the 

antibiotic ubiquinone has highest pathway frequency in Tanzania and lowest in the U.S. 

3.3.10. Gut bacterial alpha-diversity is higher in people with low BMI 

Previous research in humans and mice have observed correlations between lower α-

diversity and prevalence of obesity (Haro et al., 2016; Turnbaugh, Hamady, et al., 2009; 

Turnbaugh et al., 2006).  Across all individuals (N = 126), we find that the α-diversity 

was significantly negatively correlated with the age- and sex-regressed BMI values 

(Kendall tau (KT) correlation − 0.21, p-value = 6.2 × 10−4) (Additional File 2, Supp. 

Table 3-17), indicating lower bacterial diversity in individuals with higher BMI. The 

correlation remained significant among just the African individuals (N = 114, KT 

correlation − 0.18, p-value = 5.1 × 10−3), although it was not significant within any single 

population (each population p-value > 0.05). There is, however, a significant negative 

correlation within the pastoralists (KT correlation − 0.42, p-value = 0.0094) and within 

the agropastoralists (KT correlation − 0.22, p-value = 0.023). In addition, we tested for 

correlation (Kendall tau) between the regressed BMI values and the abundance of each 

bacteria at the taxonomic rank of genus with at least a 0.1% relative abundance in at least 

one population (Ngenus = 56) (Additional File 2, Supp. Table 3-18. 3-19). We observed 
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that 11 bacteria were significantly correlated with BMI (FDR < 0.01), the most significant 

of which are Treponema and Anaerovibrio. 

To test whether the between-population differences in mean BMI (regressed on age and 

sex) drive the correlation between BMI and α-diversity over all individuals, we 

constructed “population re-centered” residuals by subtracting the population mean BMI 

from each individual’s BMI, according to their population of origin. The resulting 

correlation between the “population re-centered” BMI residuals and the α-diversity was 

not statistically significant (KT p-value > 0.1 over all samples and over African samples 

only, see Additional File 2, Supp. Table 3-17). Similarly, none of the bacterial taxa at the 

rank of genus are significantly correlated with the population re-centered BMI residuals 

(FDR > 0.5). From this observation we conclude that the significance of the correlation 

between BMI and α-diversity is due to between-population differences. Thus, we cannot 

rule out that other host environmental or cultural covariates affecting BMI may be 

associated with bacterial diversity and abundance. 

3.3.11. Bacterial compositional similarity increases with geographic 

proximity and inter-individual relatedness 

We investigated the differences in gut bacteria based on geographic distance and the 

degree of host genetic relatedness. A subset of 97 people was densely genotyped using 

the Illumina 5M SNP array, with at least eight individuals from each African population, 

allowing for the estimation of their genetic relatedness. To test whether genetic 

relatedness had any impact on the distribution of bacteria within a population, we 

calculated the correlation between host genetic relatedness and bacterial UniFrac distance 
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among all pairs of individuals within each population. Genetic relatedness is quantified 

by the estimated identity-by-descent fraction, which is the fraction of the genome that is 

estimated to be identical between two people due to a shared recent common ancestor. 

Estimation of the identity-by-descent fraction assumes a panmictic population and is, 

therefore, reasonably suited for use as a within-population relatedness metric. To control 

for possible differences between sexes, we filtered the pairs of individuals to only include 

individuals of the same sex. 

Only the Hadza have statistically significant correlations between identity-by-descent and 

both unweighted and weighted UniFrac bacterial distances (Additional File 2, Supp. 

Table 3-20), while the Maasai have a significant correlation between identity-by-descent 

and unweighted UniFrac bacterial distance, indicating in both cases that more related 

individuals have more similar bacterial composition. Considering all tests, the correlation 

between identity-by-descent and unweighted UniFrac distance is negative in all but one 

case (unweighted UniFrac among the Herero). The probability that all seven weighted 

UniFrac correlations are negative by chance is < 0.01 (sign test), while the probability 

that at least 6 of 7 weighted UniFrac tests are negative by chance is 0.0625 (sign test). 

Thus, while we detect a statistically significant correlation between host relatedness and 

bacterial phylogenetic overlap only in the Hadza and the Maasai, there is a general trend 

for more related individuals to have more similar bacterial composition. 

In addition, we examined the joint impact of geography and host relatedness on bacterial 

composition with a linear analysis of UniFrac distances. We modeled the bacterial 

phylogenetic distance (UniFrac) between hosts as a linear function of the host genetic 
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relatedness and the host geographic separation: Uij~Dij + Gij, where i and j are index 

individuals, Uij is the bacterial UniFrac distance, Dij is the geographic distance between 

the sampling sites for the individuals (measured in kilometers), and Gij is the genetic 

relatedness of individuals. Here, we quantify Gij with the correlation of normalized and 

centered genotype counts (Speed & Balding, 2015; J. Yang et al., 2010). This relatedness 

measure is widely used to control for population structure in cohorts drawn from multiple 

mating populations (e.g., genetic principal components analysis or as the covariance 

structure of random effects in linear-mixed models of genetic association tests) and, thus, 

is well suited as a measure of genetic relatedness when considering differences across 

genetically diverse populations. 

The genetic relatedness and geographic distance between sampling sites are highly 

correlated (Spearman’s rho correlation − 0.66, p-value < 10-10). We therefore 

regressed Gij on Dij and used the residuals, G’ij, when fitting the model Uij~Dij + G’ij to the 

observed data using linear least squares. For unweighted UniFrac bacterial distances, the 

best fit coefficients of Dij and G’ij are both significantly non-zero (T test p-values 

< 0.002, Additional File 2, Supp. Table 3-21), indicating that bacterial similarity is 

greater with closer geographic proximity and closer relatedness. For weighted bacterial 

UniFrac distances, only the coefficient of the geographic separation is significantly non-

zero (T test p-value < 0.001, Additional File 2, Supp. Table 3-21). Although a linear 

model can only capture the main trends of the complex processes that shape the observed 

distribution of the gut microbiome, it serves to indicate that bacterial composition varies 
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with geographic proximity and that the stratification with host relatedness is larger for 

bacterial presence/absence data than for abundance weighted data. 

3.4. Discussion 

We surveyed the bacterial composition of fecal samples from rural populations in 

Tanzania and Botswana and a comparative population from Philadelphia in the U.S. 

Among the rural Tanzanian and Botswanan populations, there are population level 

differences in bacterial diversity and abundances. We also found correlations between 

host BMI and both overall microbial diversity (less diverse microbiota were correlated 

with higher BMI) and the abundances of specific taxa. Host genetic similarity is 

correlated with more similar bacterial composition within the Hadza and Maasai 

populations. When comparing across African populations, we find genetic relatedness is 

correlated with presence/absence of gut bacteria, even when accounting for geographic 

separation. 

The bacterial community diversity we observe between rural African populations is 

comparable to that observed by Gomez et al. (2016) between two groups from the Central 

African Republic, the BaAka hunter-gatherers and a neighboring group of Bantu-

speaking agriculturalists. The unweighted UniFrac distances between the BaAka and the 

neighboring Bantu is nearly 74% of the mean distance between the U.S. and the African 

cohort, while for weighted UniFrac this ratio is nearly 70%. The African populations in 

our cohort are slightly more phylogenetically diverse based on unweighted UniFrac 
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distances (83% of distance between U.S. and Africa) and are comparable in terms of 

weighted UniFrac distances (68% of distance between U.S. and Africa). 

Given the difficulty of directly comparing microbiome studies that use different 

amplicons for OTU measurements, we contextualize our results with taxa-level meta-

analysis from Smits et al. (2017), which identified four bacterial families and one 

bacterial phylum that primarily associate with traditional 

(Prevotellaceae, Spirochaetaceae, Succinivibrionaceae) or industrialized 

(Bacteroidaceae, Verrucomicrobia) populations (Supp. Figures 3-14, 3-15; 

Additional File 2, Supp. Table 3-22). Additionally, three of these five taxa 

(Succinivibrionaceae, Spirochaetaceae, and Prevotellaceae) were highly variable with 

season. With the inclusion of our study cohorts, this modified meta-analysis has bacterial 

compositional data from 26 populations in 17 countries (34 cohorts). For the U.S. cohort 

used in this study, the mean abundances of the five taxa were within a standard deviation 

of the mean values for one or more U.S. cohorts in the Human Microbiome Project 

(Supp. Figures 3-14, 3-15; Additional File 2, Supp. Table 3-22), indicating that it is not 

an outlier compared to prior studies. 

The relative abundance of Prevotellaceae in the Hadza from our study was ~58%, which 

is nearly ten-fold higher than the 8% relative abundance of Prevotellaceae found in the 

Hadza by Schnorr and colleagues (2014) (Schnorr et al., 2014), although it is within a 

standard deviation of the relative abundance reported by Smits et al. (2017) (~38%) 

(Supp. Figures 3-14, 3-15; Supp. Table 3-22). Prior studies of the Hadza (Smits et al., 

2017) and the Hutterites from the U.S. (Davenport et al., 2014)  indicate that seasonally 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1616-9#MOESM2
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volatile gut bacterial taxa correlate with seasonally available food. The Hadza in our 

study were sampled mid-October through early November, which is the late dry season 

and the beginning of the wet season, when there is an average rainfall of 57 mm (The 

World Bank Group, n.d.). Schnorr and colleagues sampled from the Hadza population in 

the rainy season during January (Schnorr et al., 2014), when average rainfall  is ~146.6 

mm (The World Bank Group, n.d.). The increased abundance of Prevotellaceae in the 

Hadza in our study is concordant with seasonal variation of this taxa reported in Smits et 

al. (2017). As with any bacterial taxon and study population, differences in 

Prevotellaceae abundance between microbiome studies of the Hadza could be affected by 

use of different protocols, reagents, and primers.  

Fluctuations in short-term diet could also explain some of the variability seen between 

microbiome studies (David et al., 2014) in the Hadza and our other sampled populations. 

Although we unable to obtain individual or population level dietary information for our 

research participants, we conducted a nutritional literature review to provide a qualitative 

assessment of contemporary diet in the traditional populations presented in this study (see 

Supp. Table 3-23 and Methods for extended dietary information). Given the dissimilarity 

of food types between industrialized and traditional populations, the compositional 

similarity between the Bantu and U.S. is noteworthy and may be reflective of individual 

nutritive changes in the Bantu from Botswana and a shift from traditional to 

industrialized diets. It is clear from Figure 3-2 that there is heterogeneity in bacterial 

abundance profiles within the Bantu, where roughly half the population has gut bacteria 

similar to the other African groups, and the other half has gut bacteria more similar to the 
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U.S. cohort. We could not identify any host factors (age, sex, BMI, location) that 

significantly distinguish these two groups of Bantu. If we are observing a population 

undergoing changes in life styles that impact gut bacteria, then the changes in gut bacteria 

are not uniform across the population. Future work aimed at pairing longitudinal gut 

microbiome research with individual and population level dietary surveys would be 

informative for determining the extent to which shifts in subsistence and diet affect 

microbial changes.  

Bacteroides has been used to distinguish between developing 

(low Bacteroides abundance) and industrialized (high Bacteroides abundance) 

populations (Clemente et al., 2012; De Filippo et al., 2010; Gomez et al., 2016; Martínez 

et al., 2015; Morton et al., 2015; Obregon-Tito et al., 2015; Schnorr et al., 2014; 

Yatsunenko et al., 2012) and is significantly variable across the African populations, with 

generally higher abundances in Botswanans than in Tanzanians. We find that the gut 

bacterial composition of the U.S. population is closer that of the Botswanan populations 

than to any of the Tanzanian populations. In particular, the U.S. gut bacterial composition 

was most similar to the Botswana Bantu agropastoralists, and 12 of the Botswana Bantu 

agropastoralist individuals have gut bacteria that are not significantly different from the 

U.S. individuals by abundance weighted composition. The U.S. and Botswana Bantu 

agropastoralists also have the two lowest measures of taxonomic diversity within hosts 

and two of the highest measures of inter-individual diversity in this cohort. Botswana is 

more economically developed than Tanzania, reflected in higher yearly per capita gross 

national income ($15.5 k in Botswana to $1.75 k in Tanzania), and a higher percentage of 
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Botswanans (57%) than Tanzanians (30%) live in urban areas (Regional Office for 

Africa, Africa Health Organization, World Health Organization, 2016b, 2016a). None of 

the populations in our study live in an urban setting; sites are ~ 60 km or more walking 

distance from the nearest town (see Additional File 2, Supp. Table 3-24 for more details). 

It is possible that there are country-level differences in pathogens, sanitation, hygiene 

practices, transportation access, or medical access between Tanzania and Botswana that 

impact gut microbiome composition in rural areas. 

The Hadza, San, and Sandawe are three current or former hunter-gatherer populations in 

various stages of settlement or transition from their ancestral subsistence lifestyle. The 

Sandawe settled into villages and adopted small-scale agropastoral practices in the mid-

1800s (Newman, 1970). The Sandawe have the greatest bacterial α-diversity in the 

cohort, which may be related to their genetic admixture with neighboring populations 

and/or their mix of subsistence practices. Varying subsistence strategies could plausibly 

increase gut bacterial diversity 1) neutrally, through the introduction of a wide array of 

microbes due to a varied life style and diet, or 2) selectively, due to bacterial community 

adaptation to varying environments. The high Shannon diversity values in the Sandawe 

are consistent with the “Intermediate Disturbance Hypothesis” which proposes diversity 

of bacteria is maximized under conditions of fluctuating environments (e.g., diet in this 

case) (Jiang & Patel, 2008; Kadmon & Benjamini, 2006).  

The Hadza are unique in this cohort in that they still largely practice hunting and 

gathering (Marlowe, 2010). Their gut bacteria are outliers in several respects: A) they 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1616-9#MOESM2
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have the highest abundance of Prevotellaceae and Spirochaetaceae (Clemente et al., 

2012; Gomez et al., 2016; Morton et al., 2015; Obregon-Tito et al., 2015; Schnorr et al., 

2014), in particular, the genus Treponema within family Spirochaetaceae, which is a 

common constituent of hunter-gatherer gut microbiomes (Clemente et al., 2012; Gomez 

et al., 2016; Morton et al., 2015; Obregon-Tito et al., 2015; Schnorr et al., 2014) and a 

catabolizer of fibrous plant materials (cellulose and xylans) that form a large component 

of Hadza diets (Schnorr et al., 2014), B) the Hadza are outliers in unweighted UniFrac 

PCoA, indicating that their bacteria, in terms of presence/absence, are phylogenetically 

the most dissimilar to other African populations, C) they and the Maasai are the only two 

populations (out of five tested) with a significantly distinct microbiome between sexes, 

D) the Hadza common gut bacteria are phylogenetically more homogenous across the 

population relative to all other populations in this study, and E) the within-population 

variation in their gut bacteria is correlated with the relatedness among individuals, where 

more related individuals tend to have more similar bacterial composition (both 

presence/absence and abundance weighted). The bacterial phylogenetic differences 

between sexes in the Hadza that we observe corroborates a previous finding of sex 

differences in the Hadza gut microbiome (Schnorr et al., 2014), and may be partly 

attributable to sexual division of labor and differential food intake (Schnorr et al., 2014). 

Hadza men and women have different activity patterns, where men are highly mobile 

foragers with access to honey and game meat, while Hadza women forage for local 

materials and may engage in more frequent "snacking" on fiber-enriched foods than men 

(Berbesque, Marlowe, & Crittenden, 2011; Pontzer et al., 2012). 
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The Maasai of Tanzania and the Herero of Botswana are two cattle herding peoples that 

live in close proximity to domesticated animals and have a heavy dairy component to 

their diet (International Livestock Centre for Africa, 1991). However, the Maasai and 

Herero gut bacteria are not more similar to each other than to those of other neighboring 

populations in their respective countries. The Maasai, like the Hadza, have a significant 

distinction in bacterial communities between sexes. Maasai men are in charge of 

supervising and herding cattle (International Livestock Centre for Africa, 1991; Nestel, 

1985) whereas women traditionally manage the household, oversee milk production from 

animals and milk distribution (or sale), and supervise small livestock (goats, sheep) 

(International Livestock Centre for Africa, 1991; Nestel, 1985). The separation of labor 

and the time away from home spent by men while tending cattle (Christensen et al., 

2012) could affect the types and quantities of food that men eat compared to women. 

Across the seven African populations, we find a significant negative correlation 

between α and β-diversity, which corroborates a trend that has been previously observed 

between pairs of Western and non-Western populations (Clemente et al., 2012; De 

Filippo et al., 2010; Gomez et al., 2016; Martínez et al., 2015; Obregon-Tito et al., 2015; 

Schnorr et al., 2014; Yatsunenko et al., 2012). Several implications follow from this 

general trend: first, the negative correlation between α and β-diversity exists among a set 

of non-Western populations practicing largely traditional subsistence lifestyles, 

demonstrating that the correlation is not entirely a Western versus non-Western 

phenomenon; second, the correlation is not associated with the particular subsistence 

lifestyle; and third, the correlation is more significant for unweighted β-diversity than for 
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abundance weighted β-diversity. These three points, and the fact that the correlation is 

negative, are consistent with a neutral, diffusion-limited process accounting for most 

phylogenetic differences in gut microbiome communities between the African 

populations in our study. This does not argue against selection acting on specific bacteria 

according to their niche role, only that selection on broad subsistence type does not 

appear to determine the overall phylogenetic distance between populations (Etienne, 

2005).  

The contribution of host genetics to gut microbiome composition remains an open 

question, with studies finding evidence for heritability of relative bacterial abundances or 

specific taxa (Bonder, Kurilshikov, et al., 2016; Etienne, 2005; Goodrich et al., 2016, 

2014; Qin et al., 2010; Turpin et al., 2016; Xie et al., 2016), and alternately, estimating 

that host genetics explain only a minor percentage of microbiome variation (Rothschild et 

al., 2018). We do not know whether the observed correlations between bacterial 

composition and host genetic similarity that we find in the within-population analysis of 

the Hadza and Maasai, or in the joint analysis of geographic and relatedness across all 

population, is tracking differences in specific genetic factors that mediate interactions 

with commensal microbiota (e.g., inflammation response or mucin production genes), or 

the tendency for closely related individuals to live and/or work in the same places and 

hence have a greater degree of shared environment compared to unrelated individuals. 

The bacterial compositional differences seen between countries, between populations 

within a country, and the significant dependence on the geographic distance between 

individuals in a linear model, underscore the importance of physical separation on the 
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distribution of gut bacteria among population groups. Longitudinal studies may be may 

be required to understand whether these correlations are plausibly due to bacterial 

dynamics within a population, while much larger cohorts are required for adequately 

powered statistical tests of whether these correlations are due to heritable host genetic 

factors.  

The functional differences of the predicted metagenomic content of the gut microbiomes 

supports the hypothesis that there are both country-level and population-level differences 

in the distribution of functional pathways among the gut bacteria. We find that most 

imputed KEGG pathways that are more enriched in the USA compared to the two 

African countries as a whole are also more enriched in Botswana than in Tanzania. 

KEGG pathways with this enrichment pattern include categories that relate to the 

degradation of industrial compounds and by-products, such as bisphenol, xylene, DDT, 

and styrene. This pattern possibly reflects selection for increasing the abundance of 

bacteria that can degrade or metabolize environmental xenobiotic compounds. 

The imputed bisphenol degradation pathway also has highest frequency in the USA, 

followed by Botswana, then Tanzania. Bisphenol is a common industrial organic 

compound used in many plastics and epoxies. The sampled African populations live far 

from industrial centers and arguably have less contact with plastics and industrial by-

products compared to the U.S. individuals; consequently, the frequency pattern of the 

bisphenol degradation pathway could indicate that the presences of bisphenol is 

influencing the composition of the U.S. gut microbiome. A similar argument applies to 
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the higher frequencies of imputed styrene degradation and xylene degradation pathways 

in the U.S. compared to Botswana and Tanzania. 

Within Africa, we find that Botswana has a higher frequency of these industrial 

compound degradation pathways compared to Tanzania, including imputed DDT 

degradation pathways. Interestingly, Botswana, but not Tanzania, is one of nine countries 

worldwide that uses indoor residence spraying of traditional structures for control of 

malaria-carrying mosquitos (Chihanga et al., 2016; World Health Organization & Global 

Malaria Programme, 2017). These results suggest potential metagenomic adaptation to 

increased exposure to industrial compounds in western populations, and to DDT in 

Botswanans.  

There are caveats to interpretation of PICRUSt results; we do not know with certainty 

what variables explain the differences in imputed functional enrichment. Additionally, 

imputed gene content from reference strains may not adequately capture the gene content 

in strains that have diverged due to, for example, horizontal gene transfer and selection 

(e.g., antibacterial resistance). Shotgun sequencing of the gut bacteria will be required to 

directly verify the metagenomic functional differences observed here and to investigate 

potentially novel bacterial strains found in these Africa populations. The U.S. population 

sampled here is the only population from an urban city in our study, which we may 

reasonably expect to contain more industrial pollutants in the general environment than in 

the environment of any of the populations we sampled in Africa. Consequently, it would 

be of interest to sample populations from Botswana and Tanzania that reside in major 

urban centers where there is more exposure to industrial pollutants, to see if their gut 
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bacteria are enriched for functions more similar to what we see in the U.S. population 

with regard to industrial by-product degradation and xenobiotic metabolism. 

3.5.  Conclusions 

The genetic and cultural diversity of Africans extends to the taxonomic diversity of their 

gut microbiomes. The gut bacteria in Botswana are relatively more similar to the U.S., 

and a subset of traditional farmers has gut bacteria nearly indistinguishable from that in 

the U.S. cohort. Correspondingly, the phylogenetic diversity between rural African 

populations can be as large as the differences we find between traditional and urban 

populations. In general, the regional phylogenetic distinction between Botswana and 

Tanzania exceed the distinction found between subsistence lifestyles. The factors causing 

a shift towards Western microbiome compositions remain unknown but appear to have a 

regional component that is not entirely due to differences in agricultural, pastoral, or 

hunting-gathering subsistence modes.  

3.6. Methods 

3.6.1. Sampled populations 

Ethnic groups, language, sample sizes, subsistence classifications, and sampling 

coordinates of populations are listed in Additional file 2: Table S1A. Written informed 

consent was obtained from all participants, and ethics/research approval and permits were 

obtained from the following institutions prior to the start of sample collection: NIMR, 

COSTECH, and Muhimbili University of Health and Allied Sciences in Dar es Salaam, 

Tanzania; The University of Botswana and the Ministry of Health in Gaborone, 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1616-9#MOESM2
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Botswana; IRB approval from the University of Pennsylvania. Samples were collected 

from Botswana during the wet season and the start of the dry season (January–April) and 

from Tanzania at the end of the dry season/start of the wet season (October–March). We 

recruited 114 adult participants (26 Bantu, 8 Herero, 20 San, 25 Hadza, 12 Sandawe, 12 

Maasai, 11 Burunge) who practiced diverse modes of subsistence (such as pastoralism, 

agropastoralism, hunting and gathering, and mixed hunting and gathering). Demographic 

information including age, sex, ethnicity, and ancestry was recorded (for further 

participant details see Additional File 2, Supp. Table 3-1). We provide a dietary literature 

review of our sampled populations in Additional File 2, Supp. Table 3-23. Basic 

demographic data and fecal 16S rRNA V1-V2 sequences for healthy Philadelphians (U.S. 

cohort) were collected during prior studies at the University of Pennsylvania (Minot et 

al., 2013; Ni et al., 2017; Wu et al., 2011). All fecal and blood samples were extracted, 

sequenced, and analyzed using the same laboratory and computational pipelines, thereby 

reducing the impact of batch effects in the cross-population comparisons. 

In Tanzania, samples were obtained from the Hadza hunter-gatherers who live in the 

Arusha and Shinyanga regions surrounding Lake Eyasi, the Maasai pastoralists from the 

northern Ngorongoro district, and the Burunge agropastoralists and Sandawe former 

hunter-gatherers who reside near each other in the Kondoa district in Central Tanzania 

(Figure 3-1). Each of these four ethnic groups has a distinct dietary pattern. Hadza 

hunter-gatherers rely on local, natural resources that are structured by annual and 

seasonal changes in rainfall (Smits et al., 2017). Specifically, Hadza diets are dominated 

by tubers, legumes, berries, baobab fruit, honey, and foraged plant material (Marlowe, 
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2010; Marlowe & Berbesque, n.d.). The Sandawe are a former hunter-gatherer group that 

settled in villages and began farming in the 19th century. They primarily subsist on 

grains, with supplements of tubers and plant material gathered from the bush. Up until the 

mid-1800s, the Sandawe were a semi-nomadic hunter-gatherer population living in the 

savannahs of Tanzania. The Sandawe have admixed with neighboring populations of 

diverse ancestries who migrated into Tanzania within the past 5,000 years (Tishkoff et 

al., 2009). The Sandawe also adopted the agropastoral subsistence practices of 

neighboring Bantu-speaking Turu, which comprises the bulk of their caloric intake, 

though they continue to supplement a small portion of their diet with hunting and 

gathering (Newman, 1970; Yatsuka, 2016).The Maasai are nomadic cattle, sheep, and 

goat herders living in the Ngorongoro highlands region. Maasai diets primarily consist of 

meat, milk, and blood, which are lactose rich and high in fat and cholesterol, though they 

supplement that diet with maize traded from neighboring groups (Århem, 1989). The 

Burunge are settled farmers that also keep livestock, with a diet heavily dependent on 

millet and subsidized by cattle derived dairy and meat.  

In Botswana, samples were obtained from western/northwestern regions from San 

populations who traditionally have practiced hunting and gathering (Naro, Kaukau, 

Ju|’hoan, !Xoo) and from several agropastoralist populations (Kgalagadi, Tswana, 

Mophadima) that are classified here as “Bantu” based on their shared language family 

and broad subsistence practice, and one population, the Herero, who practice a pastoralist 

lifestyle. The traditional diet of San hunter-gatherers is composed of foraged meat, 

vegetables, fruits, and nuts, the latter of which contributed the largest percentage of 
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dietary protein and calories (Lee, 1979; Silberbauer, 1965, 1972; Tanaka, 1980; Valiente-

Noailles, 1993). Some San settlements receive a substantial component of their food from 

government sources (Hitchcock, 2002; Ikeya, 2001). Bantu agropastoralists have diets 

mainly composed of sorghum, maize, millet, legumes, cucurbits (squash and melons), 

eggs, and seasonally available fruits in addition to goat, chicken, fish, and cattle meat 

(Grivetti, 1978). Herero pastoralists have diets based on beef, milk, and milk products 

with supplements of goats, chickens, garden produce, foraged plants and animals, and 

bulk grains (especially ground corn) (Pennington, 2002).  

3.6.2. Sample collection and storage 

Participants produced a fecal sample in a sterile container that was immediately returned 

to researchers at the field site. A midsection sample of stool was harvested in a 5ml 

container and immediately frozen in liquid nitrogen. Samples were later aliquoted into 

smaller 1.5 ml containers on dry ice in a fume hood to maximize storage space. The 

samples were stored at -80°C before transportation to the U.S. in dry ice, where it was 

again stored at -80°C until extraction. 

3.6.3. Biological sample processing and quantification 

16S rRNA gene sequencing and processing for microbiome sequencing 

Total DNA from fecal materials was extracted using a PSP Spin Stool DNA Plus Kit 

(Stratec Molecular) with a modified bead-beating method (Salonen et al., 2010). PCR and 

extraction blanks were used to control for reagent and environmental contamination, and 

all extractions were conducted in a laminar flow hood, with equipment and consumables 
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given UV irradiation for a minimum of 30 minutes prior to use. Eluted DNA was 

quantified by fluorometry and stored at −20°C. PCR reactions were performed in 

quadruplicate using the Accuprime system (Invitrogen) and barcoded composite primers 

with Illumina adapters to amplify the V1-V2 sections of the 16s rDNA genome (see 

Table S1Y for 16s rDNA gene sequencing metadata and PCR conditions). The resulting 

300-320 bp products were pooled and visualized by gel electrophoresis, followed by 

product purification using 1:1 volume of Agencourt AmPure XP beads (Beckman-

Colter). Purified PCR products, including extraction and PCR blanks, had their final 

concentration determined with Qubit PicoGreen dsDNA BR assays (Invitrogen) and were 

pooled in equal amounts prior to Illumina Nextera XT library preparation (processed by 

the manufacturer’s protocol). Libraries were multiplexed on the Illumina MiSeq system 

and sequenced using 2 x 250 bp cycles. Sequence data were deposited under project 

accession PRJNA395034 in the NCBI Sequence Read Archive; sample details and 

individual accession numbers are included in the Additional File 2, Supp. Table 3-1. 

16S rRNA processing and qPCR 

In a separate extraction, total DNA from fecal materials was extracted from samples 

using a MO BIO PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA). 

Eight samples from each population were included save for the Herero, where only three 

were available, and the Bantu, where nine were available. No stool samples were 

available for the U.S. individuals, so they were not included in this analysis. Each fecal 

sample was individually weighed, with samples ranging from 0.012 to 0.196 g. The 

samples were then processed according to manufacturer’s protocols, and eluted DNA was 
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quantified by fluorometry and stored at −20°C . Bacterial abundance was quantified by 

qPCR amplification of the V1V2 region of the 16S rRNA gene, with reactions performed 

in triplicate (25 μL each), using 1:1000 dilutions of DNA template. For qPCR, equal 

volumes of purified DNA of all samples were used in this assay.  Primer and probe 

sequences are as follows: BSF8 (Forward) qPCR primer – 5´-

AGAGTTTGATCCTGGCTCAG-3´, BSR65/17 (Reverse) qPCR primer–  5´-

TCGACTTGCATGTRTTA-3´, Fluorescent dye (5´6 -FAM (Fluorescein)), landing 

sequence, dark quencher (3’ Black Hole Quencher®-1) 5'– /56-FAM/TAA +CA+C ATG 

+CA+A GT+C GA/3BHQ_1/ - 3'. *A + indicates a locked nucleic acid base. Primers and 

probes were purchased through Integrated DNA Technologies (IDT).  

Prior research has indicated that the differences between 16S qPCR copy numbers 

produced from the same samples but extracted with both PSP and MoBio kit were 

statistically negligible (Lauder et al., 2016); thus, the MoBio extracts can serve as an 

accurate proxy for PSP extracts for 16S qPCR. The Bantu had a mean 16S rRNA gene 

copy number per gram of stool of 1.51 × 109 ± 3.73 × 108 SEM (standard error of the 

mean), the Burunge had 8.06 × 109 ± 5.01 × 109 SEM, the Hadza had 

1.81 × 109 ± 4.25 × 108 SEM, the Herero had 1.68 × 109 ±  4.73 × 108 SEM , the San had 

1.41 × 109 ±  3.27 × 108  SEM, the Maasai had 1.81 × 109 ±  3.35 × 108  SEM, and the 

Sandawe had 1.87 × 109 ±  2.12 × 108  SEM . 

OTU clustering 

Bacterial 16S rRNA reads were analyzed using the Quantitative Insights into Microbial 

Ecology (QIIME) software package (Caporaso, Kuczynski, et al., 2010). During the 
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quality-filtering process, reads were removed from the analysis if they did not match 

golay error-corrected barcode with less than two mismatches, if the read pairs could not 

be joined with an overlapping sequence of less than 35 bp, if they had a homopolymer 

sequence (repeated base call) greater than 6 bp, and if they had more than two ambiguous 

base calls (N’s). OTUs were created by single-linkage clustering the reads using Swarm 

(Mahé, Rognes, Quince, de Vargas, & Dunthorn, 2014) and removing OTUs comprised 

of only a single or pair of reads. Representative sequences from each OTU were aligned 

using the PyNAST aligner (Caporaso, Bittinger, et al., 2010), and a phylogenetic tree was 

inferred using FastTree v. 2.1.3 (Price, Dehal, & Arkin, 2010) after applying the standard 

Lane mask for 16S sequences (Lane, 1991). As an additional quality control step, all 

OTUs were tested for correlations between the proportional abundance of the OTU and 

the post-PCR amplicon concentration of a sample using the method developed by Jervis-

Bardy et al. (2015) as implemented in the contam_test program for R 

(https://github.com/eclarke/eclectic). A negative correlation indicates a potential 

contaminant: an increasing proportional abundance of that OTU in correlation with lower 

sample biomass (as implied by lower amplicon concentration) suggests that the increased 

proportional abundance of that OTU comes in as part of the reagents, and is not truly part 

of the sample. Correlation significance was assessed using Pearson's rho, and OTUs with 

a significant negative correlation were considered to be contaminants and removed. Final 

OTU sequences are listed in Supp. Table 3-26. Taxonomic assignments were generated 

using the Greengenes 16S database v. 13_8 (Daniel McDonald et al., 2012) (Table 

S1AA) and OTUs mapping to chloroplast or mitochondrial sequences were removed. All 

OTUs are denoted by the prefix "denovo" since they are determined without use of 

https://github.com/eclarke/eclectic


113 

 

reference sequences. OTU and MRT abundances are measured as the proportion of the 

total reads per individual. 

Host genotyping and genetic relatedness 

DNA was extracted from white blood cells using a salting out method (Gentra Puregene) 

and 97 of the 114 African individuals were genotyped on the Illumina Omni5M Exome 

array that includes a small number of indels and ~4.5 million SNPs (see Supp. Table 3-1). 

In collaboration with the Cancer Genomics Research laboratory (CGR) at NIH, array 

intensity data was clustered and all genotypes were called based on standard operating 

procedures using the hg19/37 SNP coordinates in the Illumina software GenomeStudio. 

See Crawford et al. (2017) for further details on this genotype callset.  We retained the 

segregating autosomal biallelic single nucleotide polymorphisms (SNPs) over the 97 

individuals, and variants were pruned to be in approximate linkage equilibrium, r2
LD 

< 0.1 using plink (Chang et al., 2015) (plink --indep-pairwise 200 kb 20 0.1), leaving 

158,891 SNPs for genetic relatedness estimation. From these sites, we constructed A) the 

estimated pairwise identity-by-descent fraction among all pairs of individuals from the 

same population (plink --genome, see Supplemental File 1), and B) a genetic relationship 

matrix between all pairs of individuals i and j from the standardized genotype vectors 

using the Genome-wide Complex Trait Analysis (GCTA) software (J. Yang, Lee, 

Goddard, & Visscher, 2011) (--make-grm-gz) for subsequent analyses (see Supplemental 

Files 2 and 3). 
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qPCR for Entamoeba histolytica 

Primers, probes, and protocols for the qPCR, including methods for generating a 

recombinant plasmid containing target E. histolytica sequence to make a standard curve, 

were taken from Mejia et al. (2013). qPCRs were run on a QuantStudio7 Flex Real-Time 

PCR system.  

3.6.4. Statistical methods 

Diversity and richness measurements 

Diversity metrics (α and b -diversity) were quantified using all 17,861 taxonomically 

mapped OTUs using QIIME (Lozupone & Knight, 2005; Catherine A. Lozupone, 

Hamady, Kelley, & Knight, 2007). QIIME was also used to calculate UniFrac distances, 

which are an estimate of the fraction of the total branch length over the bacterial 

phylogenetic tree that is not shared by two bacterial communities (Lozupone & Knight, 

2005; Catherine A. Lozupone et al., 2007). Unweighted UniFrac distance is based on the 

presence/absence of bacteria (Lozupone & Knight, 2005), while weighted UniFrac 

distance weights the shared branches in the phylogenetic tree by abundance (Lozupone et 

al., 2007). Species accumulation curves were calculated using the specaccum function 

from the vegan library for R.  

Phylogenetic variation among groups 

PERMANOVA tests between groups were computed with Python package scikit-bio 

(scikit-bio.org), using 50,000 permutations. The PERMANOVA test statistic is the ratio 
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of between-group to within-group variance, and is sensitive to whether the mean 

separation between groups is larger than the mean variance within groups.  

Principal Coordinate Analysis 

Principle coordinate analysis (PCoA) was computed using the Python package scikit-bio 

0.5.1 (scikit-bio.org). 

Analysis of differentially abundant taxa 

We used the Analysis of Composition of Microbiomes (ANCOM) method to detect 

differentially abundant taxa between groups (Mandal et al., 2015), as implemented in the 

Python scikit-bio 0.5.1 package. The ANCOM method accounts for the simplex nature of 

compositional data, and so does not suffer from spurious negative correlations imposed 

by the fact that (relative) abundances across all bacteria must sum to one within a given 

bacterial community. This method tests for taxa that vary significantly among groups 

more than a significant number of the other taxa. Consequently, if a large number of taxa 

all vary similarly among the groups, then none of these will show up as significantly 

varying compared to the other taxa. As such, this is a sensitive test for taxa that vary 

significantly and in an unusual way compared to the other taxa. For all tests, we used the 

default "one way ANOVA" base test, with a significance threshold of 0.05, tau parameter 

0.99, and theta parameter 0.25, and we used the Holm-Bonferroni multiple testing 

correction.  

For these analyses, we used abundances per mapped genus that have at least 0.1% mean 

abundance in at least one of the eight populations for the between continent comparison, 

http://scikit-bio.org/
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and at least 0.1% mean abundance in at least one of the seven African populations for 

Africa-only comparisons. Since we were testing for difference between groups for each 

taxa, we rescaled the relative abundance by a constant factor and re-centered the relative 

abundances by adding a constant for each taxa, such that the rescaled relative abundances 

span from 1/N to 1, where N is the total number of samples. The ANCOM analysis tests 

for differences between groups using the logarithm of the rescaled abundances. Since the 

logarithm cannot handle zero values, the choice of 1/N as the minimum rescaled value 

avoids this issue. For the between continent comparison, all individuals were used, 

N=126. For the Africa-only comparison we used N=114. The rescaled relative 

abundances are given by X = (x-A)/ (B-A), where x is the original relative abundance, 

A=Min (x)-1/N, and B = Max (x). Note that the rescaling was done separately when 

using all samples (N=126) or the Africa-only samples (N=114).  

Functional metagenomic analysis 

Subsampled reads were subjected to closed reference OTU picking against the Green 

Genes reference taxonomy (Greengenes database, May 2013 version; 

http://greengenes.lbl.gov) using the pick_closed_reference_otus.py script in 

QIIME(Caporaso, Kuczynski, et al., 2010) using 97% identity. Metagenomes from 

bacterial OTUs were imputed with PICRUSt on the online Galaxy interface 

(http://huttenhower.sph.harvard.edu/galaxy). For each individual and each KEGG 

pathway (NKEGG=328), PICRUSt calculates the cumulative gene count across all OTUs 

that overlap the pathway, which are then normalized into a pathway abundance. The data 

were analyzed statistically by using STAMP v. 2.0.6. In this data set, the highest pathway 

http://huttenhower.sph.harvard.edu/galaxy
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frequency values are on the order of 0.1-1%, while the smallest non-zero pathway 

frequencies are on the order of 10-7-10-6 %. The Nearest Sequenced Taxon Index (NSTI), 

which measures the phylogenetic distance between observed OTU sequences and the 

reference, has a mean and standard deviation of 0.140 and 0.037 across all samples, with 

10th and 90th percentiles 0.095 and 0.186 (Table S1AB). For multiple (>2) populations, 

ANOVA and Tukey-Kramer post-hoc tests were performed. Two-group comparisons 

were done with White’s non-parametric t-test with two-sided confidence intervals 

obtained by bootstrapping. Multiple tests were controlled with FDR correction calculated 

by the Benjamini-Hochberg method.  

For a given pathway k, the relative abundance difference between two groups A and B, 

  
R

k
(A,B), is defined by

  
R

k
(A,B) =

X (A) - X (B)

(X (A) + X (B)) / 2
. Across all pathways k we find a 

significant, positive, correlation between 
  
R

k
(Africa,U.S.)  and 

  
R

k
(Tanzania,Botswana) 

(Spearman rank correlation 0.51, p-value < 10-22) (Table S1AC). 

PICRUSt relies on the assumption that the bacterial strains in each sample have the same 

gene content as database strains used for the analysis, which can be inaccurate when 

strains vary substantially in gene content. However, it does not appear that the above 

correlation in pathway abundances can be explained by annotation biases alone. For 

example, if OTUs from Tanzania had a lower mapping rate to known taxa compared to 

those from Botswana, then this would result in lower abundances across all pathways in 

Tanzania compared to Botswana; this is not what we observe, as many pathways have a 

higher abundance in Tanzania than Botswana. The above correlation could only be 
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explained by OTU annotation biases that A) happen to impact certain pathways more 

than others, and B) have the same mapping biases between Tanzania and Botswana as 

between the U.S. and Africa. While we cannot rule this out, it would require several 

biases to align in direction. 

BMI correlation 

All of the individuals in our study have BMI measurements, which allowed testing for 

correlations between a -diversity and BMI. The BMI values were regressed on age and 

sex, and the residuals were tested for correlation with the Shannon diversity index. The 

"population re-centered" BMI residuals are computed as follows: the mean BMI residual 

is computed for each population, and for every individual in this population this value 

gets subtracted from their BMI residual. 

Linear regression 

Linear modeling and least squares fitting of UniFrac distances as a function of host 

geographic separation and host genetic relatedness were computed using the Ordinary 

Least Squares routines in the python package statsmodels). 
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3.8. Supplemental Materials 

3.8.1. Supplemental figures 

 

Supp. Figure 3-1. Unassigned reads that were not classified into any known taxa within the 

kingdom Bacteria. A) The mean unassigned abundance per individual per population. B) 

The mean number of unassigned OTUs per individual per population. C) The mean 

number of unassigned reads per individual per population.  
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Supp. Figure 3-2. Population Averaged Species Accumulation Curves showing OTUs 

greater than 0.01% abundance for each population 
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Supp. Figure 3-3. 16S rRNA gene qPCR values across populations, countries, and 

subsistence groups. A) 16S rRNA gene copy number per uL of sample within each 

population. Lines through the center of the boxes show the median, and the top and bottom 

are the 25th and 75th percentiles. Dashed line in center represents the group mean for all 

populations, against which a global ANOVA for all populations is derived (adjusted p=1e-

06). B) 16S rRNA Copy Number per gram of stool within each population. Global ANOVA 

for all populations is not significant (adjusted p=0.27). Two samples within the Burunge had 

values high enough that they are plotted separately above the main boxplot (this was also 

done for all subsequent panels in S15). C) 16S rRNA Copy Number per gram of stool within 

each African subsistence group. Global ANOVA for all subsistence groups is not significant 

(adjusted p=0.58). D) 16S rRNA Copy Number per gram of stool within Botswana and 

Tanzania. Wilcoxon Rank-Sum test indicates that significant differences in copy number 

exist between the two countries (FDR corrected p=0.023). E) Linear regression on 16S 

rRNA Copy Number per gram of stool to Shannon Diversity per sample, colored by 

Population, and showing 95% confidence intervals. 
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Supp. Figure 3-4. Comparison of the Shannon Index between all reads and rarefied data  

Read counts subsampled down to 5,000 reads per individual, and reads are shown for all 

individuals.  
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Supp. Figure 3-5. Shannon Index, mean unweighted and weighted UniFrac distances within 

same sampling location and population. Similar to Figure 2-3 D, E, where the pairs of 

individuals used for calculating the mean unweighted A) and weighted B) UniFrac distances 

are restricted to be individuals from the same sampling location as well as from the same 

population group.  

 

Supp. Figure 3-6. Rarefied Shannon Index, mean unweighted and weighted UniFrac 

distances within populations. Similar to Figure 2-3 D, E where the OTU data is rarefied to 

5,000 counts per individual, showing unweighted A) and weighted B) UniFrac distances. 
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Supp. Figure 3-7. Comparison of the unweighted UniFrac distances between all reads and 

rarefied data for all pairs of individuals. Read counts subsampled down to 5,000 reads per 

individual. 

 

Supp. Figure 3-8. Comparison of the weighted UniFrac distances between all reads and 

rarefied data for all pairs of individuals. Read counts subsampled down to 5,000 reads per 

individual. 
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Supp. Figure 3-9: Bray-Curtis dissimilarity measure of beta-diversity within populations 

Similar to Fig. 2-3 D, E.  
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Supp. Figure 3-10. Correlation plot between Bray-Curtis dissimilarity UniFrac distances 

 A) unweighted UniFrac distance and B) weighted UniFrac distance, across all pairs of 

individuals. 
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Supp. Figure 3-11. Mean pairwise unweighted (A) and weighted (B) UniFrac distances 

between populations 
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Supp. Figure 3-12. Principal Coordinate Analysis of unweighted UniFrac distances. 

Analogous to Figure 2-5. 
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Supp. Figure 3-13: Relative pathway frequency differences between Tanzania and 

Botswana, and Africa and the U.S., for all KEGG pathways analyzed. Differences between 

Tanzania and Botswana are shown on the x-axis and differences between Africa and the 

U.S. are shown on the y-axis for all KEGG pathways analyzed (N=328). Marker size is 

proportional to the mean pathway frequency across the U.S. and Africa. Dotted lines 

demark relative differences of ±15%. Pathways in red denote those shown in Table S1 

(absolute relative differences > 15% and FDR < 0.1). Panels B), C), and D) show the 

pathway frequency distribution boxplots per population for the DDT degradation, xylene 

degradation, and bisphenol degradation pathways, respectively. Lines through the center of 

each box show the median, the star represents the mean, and the top and bottom are the 

25th and 75th percentiles.  
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Supp. Figure 3-14. Comparison of reported 

relative abundances of our study cohort with 

those of global populations  

Means and standard deviations are shown. The 

taxa included are the bacterial Families 

Bacteroidaceae, Prevotellaceae, 

Spirochaetaceae , Succinivibrionaceae, and the 

bacterial Phylum Verrucomicrobia, shown on a 

linear abundance scale and have been adapted 

from Smits et al. (2017). 
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Supp. Figure 3-15. Comparison of reported 

relative abundances of our study cohort with 

those of global populations on a log scale 

Same as Supp. Figure 3-14 but transformed on 

a log scale.  
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3.8.2. Supplemental tables and files 

Supplemental Tables: 

All supplemental tables are attached in the Digital Supplement named 

SupplementalTables_Ch3.xlsx. 

Supp. Table 3-1. Sample Metadata. 

Supp. Table 3-2. Unweighted UniFrac distances between all pairs of populations. 

Supp. Table 3-3. Weighted UniFrac distances between all pairs of populations. 

Supp. Table 3-4. PERMANOVA results for unweighted UniFrac distances between 

countries. 

Supp. Table 3-5. PERMANOVA results for weighted UniFrac distances between 

countries. 

3-6. PERMANOVA results for unweighted UniFrac distances between all pairs of 

populations. 

Supp. Table 3-7. PERMANOVA results for weighted UniFrac distances between all 

pairs of populations. 

Supp. Table 3-8. PERMANOVA results for unweighted UniFrac distances between 

groups defined by subsistence category. 

Supp. Table 3-9. PERMANOVA results for weighted UniFrac distances between 

groups defined by subsistence category. 

Supp. Table 3-10. PERMANOVA results for unweighted UniFrac distances between 

sexes within the Maasai, Hadza, San, and U.S. populations. 

Supp. Table 3-11. PERMANOVA results for weighted UniFrac distances between 

sexes within the Maasai, Hadza, San, and U.S. populations. 
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Supp. Table 3-12. PICRUSt analysis of pathway abundance differences between 

Tanzania and Botswana, and the U.S. and Africa. 

Supp. Table 3-13. PICRUSt analysis of pathway abundance differences between the 

Hadza population and the remaining Africans. 

Supp. Table 3-14. PICRUSt analysis of pathway abundance differences between the 

Burunge population and the remaining Africans. 

Supp. Table 3-15. PICRUSt analysis of pathway abundance differences between the 

San population and the remaining Africans. 

Supp. Table 3-16. PICRUSt analysis of pathway abundance differences between the 

Bantu population and the remaining Africans. 

Supp. Table 3-17. BMI correlation with Shannon Index, shown for different subsets of 

individuals included in the correlation. 

Supp. Table 3-18. BMI correlation with OTU abundances. 

Supp. Table 3-19. BMI correlation with taxa (genus) abundances. 

Supp. Table 3-20. Spearman’s Rho correlation between host Identity-by-Descent and 

Bacterial UniFrac distance, among all pairs of individuals of the same sex within each 

population. 

Supp. Table 3-21. Linear regression analysis of the dependence of UniFrac distance on 

host relatedness and host geographic separation. 

Supp. Table 3-22. Modified gut microbiome meta-analysis from Smits et al. (2017). 

Supp. Table 3-23. Dietary literature review on sub-Saharan African populations 

included in this study. 

Supp. Table 3-24. Closest towns to Tanzanian and Botswanan sampling sites showing 

estimated sample sizes from census data for both sampling sites and closest town, 

location inhabitant groups, and corresponding inhabitant number created from the 
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United Nations Statistics Division, and distance in kilometers of the town from the 

sampling site. 

Supp. Table 3-25. 16S rRNA gene sequencing metadata and amplification conditions. 

Supp. Table 3-26. Sequences of denovo OTUs specifically named in the paper and 

supplemental figures. 

Supp. Table 3-27. Individual counts for all 17,870 OTUs with a mapped bacterial 

lineage used. 

Supp. Table 3-28. PICRUSt quality control metric Nearest Sequenced Taxon Index 

(NSTI) for each individual. 

Supp. Table 3-29. Two group KEGG pathway abundance differences. 

 

 

Supplemental Files: 

All supplemental files are attached in the Digital Supplement named 

SupplementalFile1_Ch3.ibd, SupplementalFile2_Ch3.id, and SupplementalFile3_Ch3.gz. 

Supplemental File 1: The estimated identity-by-descent used for the within-population 

correlation between UniFrac distance and host relatedness, as calculated using the 

plink --genome routine on the Illumina Omni 5M genotype array dataset for 97 

African individuals.  

Supplemental Files 2 and 3: Genetic relationship matrix file sets used for linear 

regression analysis of UniFrac dependence on host relatedness and host geographic 

separation.  

This is constructed using the GCTA software (--make-grm), based on Illumina Omni 5M 

genotype array dataset for 97 African individuals. Supplemental File 2 contains the 

(anonymized) individual identification codes. Supplemental File 3 contains the genetic 

similarity values, where each row corresponds to a pair of individuals. 
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Chapter 4. Gut microbiome composition is predictive of 

gastrointestinal parasites in Cameroonians 

Rubel, M.A., Abbas, A.A., Taylor, L.J., Mbunwe, E., Connell, A. Tanes, C., 

Bittinger, K., Fokunang, C., Njamnshi, A.K., Bushman, F.D., Tishkoff, S.A.  

4.1. Abstract 

African populations provide a unique opportunity to interrogate host-microbe co-

evolution and its impact on adaptive phenotypes, thanks in part to their genomic, 

phenotypic, and cultural diversity. Here, we integrate sequence data from gut amplicon 

and metagenomic sequencing with data on parasite burden, and immune parameters for 

575 ethnically diverse Africans from Cameroon who follow pastoralist, agropastoralist, 

and hunter-gatherer lifestyles. These populations were compared to an urban U.S. 

population from Philadelphia. We found that Fulani pastoralists who consume high levels 

of milk possessed an enrichment of bacteria that catabolize galactose, an end product of 

lactose metabolism. We assessed these data for interactions between eukaryotic protists 

and prokaryotes (transkingdom interactions). Microbiota composition and levels of soil-

transmitted helminths varied significantly among Cameroonian populations. Hunter-

gatherers had high frequencies of parasite infections, while agropastoralists and 

pastoralists showed lower levels of parasite infections. Across all populations, increased 

frequency of gut parasites correlated with increased gut microbial diversity. Ascaris 

lumbricoides, Necator americanus, Trichuris trichiura, and Strongyloides stercoralis 

soil-transmitted helminths (STH), referred to as the “ANTS” group, significantly co-

occurred. Gut microbiome composition predicted ANTS positivity with 80% accuracy. 

Infection with ANTS parasites, in turn, was associated with elevated levels of TH1, TH2, 

and proinflammatory cytokines, indicating engagement of multiple immune mechanisms. 

These data document transkingdom interactions that are correlated with distinctive host 

immune responses and indicate that Cameroon pastoralist populations may possess 

unique bacteria to facilitate digestion of dairy products. 

4.2. Introduction 

Twenty-four percent of the world’s population, predominantly in developing countries, is 

estimated to be infected with gastrointestinal parasites. Enteric parasites are understudied 

components of the complex ecosystem of microorganisms that can colonize the human 

gastrointestinal tract, and their effects on host physiology and the gut microbiota remain 

poorly understood. The mechanisms by which heterogeneity in microbial communities 
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modulates immune responses to infectious diseases is just beginning to be studied. 

Industrial countries are characterized by an overall reduction in exposure to pathogens 

and microbes consequent to cultural and technological societal shifts. Microbial diversity 

may have an essential role in host physiology. Thus, there is a need to characterize 

microbial diversity from rural populations living traditional lifestyles before they make 

subsistence shifts to industrialization and this diversity is lost (Bello et al., 2018). 

The relative contribution of environmental and physiological variables to development of 

gut microbial composition, including geography, pathology, diet, immune parameters, 

genetics, and ethnicity are incompletely understood. The nature of a healthy gut 

microbiome differs among ethnic groups, locations and lifestyles (Ayeni et al., 2018; 

Gomez et al., 2016; Hansen et al., 2019; Schnorr, 2018; Yatsunenko et al., 2012). For 

example, different bacterial genera tend to dominate the fecal microbiome in people 

around the world living traditional rural lifestyles (Prevotella) compared to urban 

dwellers (Bacteroides) (Arumugam et al., 2011; Gomez et al., 2016; Hansen et al., 2019; 

Yatsunenko et al., 2012). Recent research has shown that infection with gastrointestinal 

parasites Entamoeba histolytica (Morton et al., 2015), Ascaris lumbricoides (Rosa et al., 

2018), Necator americanus (Jenkins et al., 2017; Rosa et al., 2018), and Trichuris 

trichiura (Cooper et al., 2013; Lee et al., 2014; Rosa et al., 2018) influence the structure 

and function of the human gut microbiome. Microbiota-parasite interactions within the 

human gut may have profound impacts on the course of systemic infection, parasite 

virulence, and host immune response (Leung, Graham, & Knowles, 2018). Prior 

microbiome research has considered many gastroenteric parasites as separate exposures 
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(Lee et al., 2014; Lin et al., 2013; Morton et al., 2015; Rosa et al., 2018). However, in 

developing countries, parasite coinfection is frequent (Morton et al., 2015), and likely has 

a role in microbiome structure and function. Here we focus on populations from 

Cameroon that are genetically, linguistically, phenotypically, and culturally diverse. 

These populations have different types of subsistence practices but share overlapping 

environments and high infectious disease burdens. Integrating metagenomic comparisons 

of the microbiota, quantitative measurements of multiple parasite loads, host immune 

parameters, and extensive demographic data, we investigate correlations between 

microbial structure and function, host immune response, and parasite infections. 

4.3. Results 

4.3.1. Data collection and populations studied 

The Cameroonian populations studied here are Mbororo Fulani pastoralists (hereafter 

referred to as “Fulani”), Baka and Bagyeli rainforest hunter-gatherers, and Bantu-

speaking agropastoralists (hereafter referred to as Bantu). Fulani pastoralists have 

subsistence practices centered largely around cattle, and the Bantu grow crops and raise 

livestock. The Baka and Bagyeli hunter-gatherers, who are sometimes referred to as 

“pygmies” for their short stature, engage in small-scale agriculture but also forage for 

meat and plant materials. These populations were sampled over nine sites in the 

Northwest, South, and East regions of Cameroon (Figure 4-1).  
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Figure 4-1. Sampling sites and demographics (Cameroon and U.S.) 

A) Cameroon sampling sites. At every sampling site, Bantu agropastoralists were sampled. 

One of two hunting and gathering groups (Baka and Bagyeli) or Fulani pastoralists were 

also sampled at these sites. B) Top- Image of a representative village with a large population 

of Bantu agropastoralists (creative commons license). Bottom- Image of a representative 

village with a large population of hunter-gatherers (photograph by Meagan A. Rubel). D) 

Demography table of truncated metadata for Cameroon and U.S. (See Supp. Table 1 for full 

metadata).  

Because subsistence and ethnicity are strongly correlated in these populations (e.g., all 

pastoralists are Fulani, all agropastoralists are Bantu, and all Baka and Bagyeli are 

hunter-gatherers), only subsistence was included as a statistical parameter in the analyses 

described below. Extensive anthropometric measurements and biomarkers (Supp. Table 

4-1) were recorded for Cameroonians (see Methods). We also included two cohorts of 

U.S. industrial agropastoralists who have diets high in animal fats, proteins, and refined, 

processed foods that are the byproducts of intensive agricultural and pastoral practices, 

from the Human Microbiome Project (Consortium, 2012; Human Microbiome Project 

Consortium, 2012) and the COMBO study (Wu et al., 2011). By integrating multiple data 
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types, we define complex interactions between parasites, the microbiota, and their human 

hosts across populations and lifestyles. 

4.3.2. Quantification of pathogens and their correlates with host physiology 

Using thin and thick smears with light microscopy, a total of 198 blood infections were 

identified for Plasmodium falciparum, Microfilaria loa loa, Mansonella perstans, 

Wuchereria bancroftii, and Microfilaria spp.; P. falciparum accounted for the most 

infections detected by microscopy (N=96) (Supp. Figure 4-1). 

Fecal parasites were identified by light microscopy using wet-mount techniques and 

qPCR (Mejia et al., 2013). The concordance between microscopy and qPCR results for 

fecal parasite infection was 86% (Supp. Table 4-1). qPCR was more sensitive, detecting 

almost three times more infections than microscopy. We tested for the following fecal 

parasites by qPCR: the giant roundworm Ascaris lumbricoides, hookworms Necator 

americanus and Ancylostoma duodenale; whipworm Trichuris trichiura; roundworm 

Strongyloides stercoralis; and protists Giardia lamblia, Entamoeba histolytica, and pan-

Cryptosporidium spp. (Supp. Figure 4-2). None of our samples were positive for A. 

duodenale, and it was not considered in further analyses. Given the increased sensitivity, 

qPCR-confirmed parasite infections were used for subsequent analysis. 

Total infectious disease burden was determined by counts of fecal/blood parasites. This 

analysis indicated that Cameroonian populations had significantly different distributions 

of infectious disease burden (Kruskal-Wallis chi-squared = 244, df = 3, p-value < 2.2e-

16). All groups were significantly different from each other in terms of their distribution 
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for pathogens except for the Baka and Bagyeli who were statistically indistinguishable 

from each other (FDR-corrected p-values<0.05, Dunn’s test of multiple comparisons). 

The Bagyeli hunter-gatherers had the highest individual infection rate (an average of 3.91 

infections/person) compared to other Cameroonian populations (Baka = 2.83, Fulani = 

0.22, Bantu = 1.13) (Fig. 2A).  
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Figure 4-2. Pathogen characterization in the Cameroon cohort 

A) Distribution of individuals infected with different combinations of soil-transmitted 

helminths within the “ANTS” group in the Cameroon sample colored by subsistence group. 

B) Positive, negative, and random association based on a probabilistic model of pathogen 

co-occurrence, calculated across all types of tested pathogens (blood parasites, fecal 

parasites, and HIV) for all Cameroonians. The expected frequency is calculated from 

presence/absence data of parasites, with the assumption that each distribution of each 

pathogen is independent and random of other pathogens. Probabilities that are more 

extreme than would have been obtained by chance are shown for positive co-occurrences in 

blue (as one pathogen occurrence increases, the other increases), negative co-occurrences in 

yellow (as one pathogen occurrence increases, the other decreases) and random co-

occurrences in grey (no significant association). Top hits for negative and positive co-

occurring pathogens are annotated as follows: Asc: Ascaris lumbricoides, HIV: Human 

Immunodeficiency Virus, Nec: Necator americanus, Pla: Plasmodium falciparum, Tri: 

Trichuris trichiura. 

Concurrent infection with >1 tested pathogen occurred in (226/575) 39% of 

Cameroonians. We performed species co-occurrence analysis to identify combinations of 

HIV, blood, and fecal pathogens that occurred together more frequently than expected by 

chance. Twenty-one pathogen pairs positively co-occurred more than expected by chance 

(p-values < 0.05 by the hypergeometric distribution). The parasites that most frequently 

co-occurred were A. lumbricoides, N. americanus, T. trichiura, and S. stercoralis (the 

occurrence of any these parasites is labeled as “ANTS” group) (p-values < 0.05 by 

hypergeometric distribution) (Figure 4-2B, Supp. Table 4-2).  

 To determine which physiological variables were intercorrelated, we generated 

correlation coefficients and tested their significance (Wei & Simko, 2017). Co-

occurrence results indicated that eosinophils, white blood cell count (WBC), and 

temperature were significantly positively correlated with any metadata variable that 

incorporated ANTS helminth parasites (Spearman’s correlation test, corrected p-values < 

0.01, Supp. Table 4-3, Supp. Figure 4-3). Other significantly positive correlates included 
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WBC with eosinophils, and temperature with WBC (Supp. Table 4-3, Supp. Figure 4-3). 

Eosinophilic leukocytes are normally a small fraction of WBC but increase dramatically 

during helminth infection (Huang & Appleton, 2016). The other WBC fractions that were 

tested in correlation analysis (lymphocytes, monocytes, neutrophils), which represent 

most of the remaining portion of total WBC, were significantly negatively correlated with 

all variables incorporating ANTS (p-values < 0.01). Furthermore, they were significantly 

negatively correlated with all blood parasites tested in this study. Since many individuals 

are concurrently infected with ANTS and blood parasites, the positive associations of 

eosinophils and any variable including ANTS may outweigh other WBC cell responses to 

blood parasite (or other) infections.  

A combination HIV-1/2 immunoassay was conducted on the plasma of 524 individuals 

who had produced a fecal sample, which showed that 28 participants were HIV positive. 

No parasites were positively associated with HIV status by this assay. HIV co-occurred 

less frequently than expected by chance with T. trichiura and A. lumbricoides (Figure 4-

2B); however, this observation is confounded by the distribution of the parasites and 

HIV+ status by ethnic group (Supp. Table 4-1 ), and is unlikely to be a direct 

consequence of HIV infection.   

4.3.3. Association of pathogens with the gut microbiome  

We amplified and sequenced the V4 region of the bacterial 16S rRNA marker gene from 

fecal samples obtained from 103 Fulani, 150 Baka and Bagyeli, 322 Bantu, and 37 U.S. 

industrial agropastoralists (COMBO cohort). A comparison of alpha-diversity metrics 
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(Faith’s phylogenetic diversity and bacterial richness) indicated that that the Bagyeli had 

the highest diversity and richness, and that the Fulani agropastoralists had the lowest 

diversity and richness, with the U.S. being the second lowest (Supp. Figure 4-4A-D). In 

the Cameroonian samples, we observed a significant positive correlation between 

increasing numbers of parasite infections and higher phylogenetic alpha diversity (Figure 

4-3A) (One-way ANOVA, p-values < 0.01).  
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Figure 4-3.16S rRNA Diversity and Composition of the Gut Microbiome and Parasites  

A) Total bacterial diversity measured against total “ANTS” parasite count, where parasite 

count is a presence/absence count of unique instances of a parasite. Thus, an individual with 

a score of “4” has qPCR-confirmed infection for four different gastrointestinal parasites 

(see Supp. Table 1 for details). Bacterial diversity increases with gastrointestinal 

parasitemia for all Cameroonian subsistence groups. B) Bray-Curtis distances on 16s rRNA 

V4 bacterial abundances show that most Cameroonians cluster separately from U.S. 

individuals (PERMANOVA p = 0.001). C) 16s rRNA V4 clustering of U.S. versus most 

Cameroonians along separate axes is largely reflective of differences between two highly 

abundant genera, Prevotella and Bacteroides. Several pastoralists and agropastoralists 

overlap with the U.S. samples. Age and sex clusters were not significant by PERMANOVA. 

D) Fifteen most abundant bacterial genera per population, averaged across populations, 

studied in 16S analysis. E) Fifteen most abundant bacterial families per population, 

averaged across populations, studied in 16S analysis. F) Bray-Curtis on Cameroonians, 

showing 16s rRNA V4 bacterial abundances colored by “ANTS” parasite positivity. ANTS 

positive samples are significantly different from ANTS negative samples by PERMANOVA 

(p = 0.001) across all Cameroonians. ANTS positive samples remain significantly different 

by PERMANOVA from ANTS negative samples when only considering Bantu 

agropastoralists (Supp. Fig. 10B), who are the only individual population with large cohorts 

of both positive and negative individuals in this study (p = 0.001). 

The agropastoralists were the only subsistence group that had a significant positive 

correlation between bacterial diversity and ANTS count in a linear regression model (t-

test with FDR corrected p-value = 0.02). Any single ANTS parasite sufficed to confer 

increased diversity (One-way ANOVA with Tukey’s post-hoc testing; adjusted p-values 

< 0.05). Across the entire Cameroonian cohort, bacterial diversity significantly increased 

by 0.55 for every additional ANTS helminth (t-test, p =1.3x10-7). Increased bacterial 

diversity with a single helminth or protist parasite infection has been noted before in 

populations from Cameroon (Morton et al., 2015), Indonesia (Lin et al., 2013; Rosa et al., 

2018), Liberia (Rosa et al., 2018), Bangladesh (Lin et al., 2013), and Malaysia (Lee et al., 

2014). However, this is the first time that significantly co-occurring gastroenteric 

parasites have been shown to additively associate with increased bacterial diversity. 
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Bacterial microbiome composition in most individuals from Cameroon (based on both 

abundance and presence/absence) was significantly different from the microbiome 

composition of U.S. individuals (Figure 4-3B) (PERMANOVA p-value = 0.003 for both) 

(Fig. 3B) (Supp. Tables 4-4, 4-5). This observation is largely explained by differential 

prevalence of Prevotella and Bacteroides in the U.S. versus Cameroonian populations. 

Prevotella was the most highly abundant bacteria in most Cameroonian individuals, 

whereas Bacteroides was most abundant in the U.S. individuals (Figure 4-3C, 4-3D, 4-

3E). An analysis of the top ten significant metadata variables by PERMANOVA (FDR 

corrected p-values < 0.05, Supp. Tables 4-4, 4-5) revealed that parasite variables and 

subsistence categories (including total ANTS and parasite counts, being positive for 

Trichuris and Ascaris, and Subsistence) explained the most variance in gut composition 

(largest R2 values).  

ANTS positive individuals also had significantly different bacterial composition 

compared to ANTS negative individuals when considering all Cameroonians (Figure 4-

3F) (PERMANOVA test, p-values < 0.006; Supp. Tables 4-4, 4-5). Given the uneven 

distribution of ANTS helminth infection among the different groups, we repeated the 

analysis considering only the Bantu agropastoralists, who had sufficient ANTS cases and 

controls for statistical comparison and found a similar result (PERMANOVA test, p-

values < 0.006). A possible confounding factor is that ANTS infection is more common 

in Bantu populations from the South and East than the Northwest, so we looked for 

differences in the gut microbiomes between Bantu individuals by region. Bacterial 

abundances were still significantly different based on ANTS infection (p = 0.004) in a 
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PERMANOVA model accounting for both local geography and parasite infection. The 

majority of differences among Bantu populations were driven by taxa in the Firmicutes 

and Bacteroidetes phlya (Supp. Figure 4-5).  

We used a supervised machine learning technique, random forest classifiers (RFCs), to 

determine which gut microbiota best predict metadata variables identified as significantly 

associated with bacterial prevalence or abundance by PERMANOVA in the pooled 

Cameroonian dataset. Previous studies indicate that moderate to heavy parasite load is 

associated with increased morbidity (Hotez et al., 2008) and could affect gut microbiome 

composition Therefore, we binned individuals based on the highest quartile of qPCR 

copy number for any of the four ANTS parasites (referred to as “highly positive for 

ANTS”). RFC analysis revealed that the country of origin could be predicted from 

microbiome composition with ~90% accuracy, followed by individuals who were highly 

positive for ANTS (83.97% accuracy). Pastoralist and hunter-gatherer subsistence, as 

well as infections with (separately) Microfilaria spp., A. lumbricoides, or T. trichuris 

could be predicted with 81-82% accuracy. Finally, positivity for any ANTS parasite 

could be predicted with ~81% accuracy (Supp. Table 4-6). 

To determine the importance of a given taxa predicted by RFC for a particular variable, 

we plotted the proportional abundance of the top ten taxa from the RFC analysis. This 

revealed that hunter-gatherers have higher abundances of Bacteroidales, Prevotella 

stercorea, Succinivibrio, Phascolarctobacterium, and Treponema; pastoralists have high 

abundances of Odoribacter, Rikenellaceae, Bacteroides caccae, and Bacteroides ovatus, 
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and agropastoralists have comparatively lower abundances for all of these taxa (Figure 4-

4A).  

Fig 4-4. RFC on subsistence for all Cameroonians and ANTS infection in Bantu 

A) Top ten most important taxa in predicting Cameroonian subsistence in 16S rRNA data, 

shown by model importance on left and relative bacterial abundance (z-scores) on the right. 

B) Top ten most important taxa in predicting ANTS infection in Bantu agropastoralists only 

in 16S rRNA data, shown by model importance on left and relative bacterial abundance (z-

scores) on the right. 

An individual who was positive for any of the ANTS helminth parasites was considered 

“Positive” in an ANTS binary analysis. In our RFC analysis, Bacteroidales, CF231, 

Treponema, Prevotella stercorea, Anaerovibrio, and Succinivibrio increased with ANTS 

infection (Supp. Figure 4-6). In addition, we analyzed the Bantu agropastoralists 

separately, to avoid confounding with subsistence. In this subset of individuals, we found 

that the taxa most associated with infection were CF231, Bacteroidales, Succinivibrio, 

Treponema, and Clostridiaceae (Figure 4-4B). From these analyses, we find that the only 

bacteria predictive solely of ANTS infection and not simply predictive of subsistence 
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were Ruminococcus bromii (increased abundance in ANTS-negative individuals) and 

CF231 (increased abundance in ANTS-positive individuals).  

4.3.4. Relationships between ANTS infection and the microbiome using 

shotgun sequencing 

We performed shotgun metagenomic sequencing on a subset of 175 Cameroonian fecal 

samples (94 Bantu, 37 Baka, 22 Bagyeli, 22 Fulani) to investigate the contribution of 

both bacterial and non-bacterial members of the microbiome to ANTS infection, as well 

as the associations between ANTS parasite positivity and gene function. These samples 

were selected to include ANTS-positive and negative individuals, diverse subsistence 

groups, and HIV-positive and negative individuals. Where possible, ANTS or HIV-

positive subjects and controls were matched by sex, age, and sampling site (Supp. Table 

4-1). The Cameroonian cohort was compared to 27 healthy U.S. human gut microbiome 

samples from the HMP cohort (Consortium, 2012; Human Microbiome Project 

Consortium, 2012). 

Alpha diversity (Shannon Index) and evenness (Simpson’s Index) results derived from 

shotgun metagenomic sequencing data were similar to those observed by 16S rRNA 

marker gene sequencing (Supp. Figure 4-7). The Fulani pastoralists were the only 

population that had significantly different microbial diversity from all other Cameroonian 

populations (1-way ANOVA with Tukey’s honest significant difference test, adjusted p-

values < 0.05), and had comparatively reduced alpha diversity by both metrics. However, 

samples from healthy U.S. urban individuals from the HMP cohort had significantly 
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lower alpha diversity than the Fulani population (p= 0.035 1-way ANOVA with Tukey’s 

honest significant difference test on Simpson index). 

Metagenomic reads were pre-processed using the Sunbeam pipeline (Clarke et al., 2019) 

and assigned to microbial taxa using several methods, including MetaPhlAn2 (Truong et 

al., 2015), KrakenUniq (Breitwieser, Baker, & Salzberg, 2018), and alignment to the 

Greengenes collection of 16S sequences (DeSantis et al., 2006; Wood & Salzberg, 2014). 

Across all three analyses, the top three bacterial genera were Prevotella, Bacteroides and 

Faecalibacterium (Figure 4-5A).  
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Figure 4-5. Shotgun Sequencing Composition of the Gut Microbiome 

A) Fifteen most abundant bacterial genera per population, averaged across populations, 

studied in shotgun metagenomics analysis. B) Fifteen most abundant bacterial genera per 

population studied in shotgun metagenomics analysis. Individual vertical bars represent 

different samples. Human Microbiome Project samples shown for comparison at the far left 

show high levels of Bacteroides.  

Shotgun metagenomic sequencing also showed that the Fulani pastoralists had higher 

levels of Bacteroides (average relative abundance = 34%) and lower levels of Prevotella 

(average relative abundance = 5.3%) than other Cameroonian populations, as was 

observed by 16S gene sequencing (Supp. Figure 4-8). Fulani and U.S. samples shared 

similarly high relative average bacterial abundances of Bacteroides (median 59% U.S., 

median 29% Fulani) and Alistipes (median 4% U.S., median 3% Fulani) compared to the 

other Cameroon populations (Figure 4-5B). 

     

  

 

                            

 th r
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Using the KrakenUniq database we found that a larger fraction of metagenomic 

sequences remained unclassified in Cameroonian fecal samples compared to those from 

the HMP. Among the Cameroonian groups, the Fulani had the fewest unclassified 

sequences, which is likely attributable in part to their high Bacteroides abundance, 

members of which are well-studied and well-represented in genomic sequence databases 

(Pasolli et al., 2019). The Baka had the greatest number of reads unclassifiable at any 

level. Reads classified as viral, fungal, and parasitic-eukaryotic represented a small 

fraction of average total reads across samples (average 0.05%, max 1.5%). Although 

samples were not purified for virus-like-particles, we occasionally detected eukaryotic 

viruses including adenovirus and astrovirus (Supp. Figure 4-9). In particular, we noted 

that Cameroonians were more frequently positive for human mastadenovirus D than any 

other virus. Human mastadenovirus D species have associations with gastrointestinal, 

respiratory, and eye infections, have been found in river and drinking water in South 

Africa (van Heerden, Ehlers, Heim, & Grabow, 2005), and could be in Cameroonian 

water sources. However, we did not find significant differences between subsistence 

groups, sampling sites, or regions in frequency of human mastadenovirus D (Fishers’s 

Exact test with Bonferroni test correction, p-values > 0.05). The detection of other 

eukaryotic viruses was too low to test for statistically significant differences between 

populations. 

Metagenomic samples from four Cameroonian populations clustered by Bray-Curtis 

dissimilarities based on ANTS positivity (PERMANOVA p-values < 0.05) (Supp. Figure 

4-10A). ANTS-positive Bantu agropastoralists were significantly different from ANTS-
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negative Bantu agropastoralists (first principal component tested, Wilcoxon Rank-Sum 

test with continuity correction p = 0.008) (Supp. Figure 4-10B). This result emphasizes 

that the differences between ANTS positive and negative individuals in the entire 

Cameroonian cohort can be replicated in the Bantu alone, which is the only group in this 

study with adequate cases and healthy controls for within-group ANTS statistical tests. 

There was a significant correlation between molecular (qPCR cycle of threshold) and 

metagenomic detection (total k-mers) of A. lumbricoides (p < 0.001, Spearman’s ρ = -

0.74), N. americanus (p < 0.001, Spearman’s ρ = -0.63 and T. trichiura (p= 0.0008, 

Spearman’s ρ = -0.36) (Figure 4-6A).  
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Figure 4-6. Comparisons of Parasite Detections using qPCR and shotgun sequencing 

A) Comparison of average Ct (Cycle threshold) values are shown along the y axis for ANTS 

(to the left of 4-6A), Cryptosporidum spp., Entamoeba histolytica, and Giardia lamblia. The x-

axis corresponds to log-10 transformed total k-mers from shotgun metagenomic sequencing. 

A lower average Ct translates to an earlier cycle florescence threshold, and higher initial 

parasite genomic copy number. Lower Ct values have higher total k-mer counts and 

correspond to a higher copy of parasite genomes. The dashed line represents the highest 

standard. Blue dots along the y axis represent positive controls, which were not shotgun 

sequenced. Filled dots are samples that were positive in qPCR detection, and green filled 

dots were simultaneously positive in fecal microscopy. B) qPCR tested for Entamoeba 

histolytica only; however, given the amount of hits to qPCR negative targets, we looked at 

reads assigned at the species level to species of Entamoeba known to infect humans. 

. For these parasites, higher parasite genome copies by qPCR were directly related 

to greater numbers of unique k-mers classified as those parasite species. We used unique 

k-mers (called by KrakenUniq) as a measure of genome coverage for this analysis rather 

than reads as unique k-mer counts are robust to potentially spurious read pileups. 

Furthermore, we saw a robust representation of large parasite genomes (N. americanus, 

A. lumbricoides) and limited detection of parasites with comparatively smaller genomes 

(T. trichiura, Cryptosporidium spp.), as expected. For Cryptosporidium spp. and S. 
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stercoralis, a positive trend was observed between molecular and metagenomics 

detection. 

By incorporating multiple species of Giardia and Entamoeba parasites into the 

KrakenUniq database, we were able to identify infection with species other than those obtained in 

qPCR. All reads for Giardia mapped to sequences for G. lamblia or Giardia intestinalis (G. 

intestinalis and G. lamblia are names of the same organism). This difference in nomenclature for 

the same parasite explained the discrepancy in our early species-level shotgun taxonomic 

assignment. We identified different species of Entamoeba in shotgun analysis that were not 

detected by species-specific qPCR for Entamoeba histolytica. Of those known to infect humans 

(Fotedar et al., 2007), Entamoeba dispar, Entamoeba coli, and Entamoeba hartmanni were co-

detected with E. histolytica in 33 samples (Figure 4-6B). With the exception of one Fulani 

individual who was positive for both E. hartmanni and E. histolytica, all other Entamoeba 

detections occurred in agropastoralists and hunter-gatherers. We again performed RFC analysis 

on the shotgun metagenomics data to validate 16S results and to test for additional associations 

between gut microbes and gut parasites not evident by 16S. Given the different species of 

Entamoeba detected in shotgun sequencing, three additional classification RFCs were run 

to test whether gut microbiota composition could predict positivity for commensal 

Entamoeba (E. coli, E. dispar, E. hartmanni), pathogenic Entamoeba (E. histolytica), or 

any Entamoeba, which had 69%, 54%, and 72% model accuracy, respectively. Of these, 

eight taxa had significantly different abundances between Entamoeba positive and 

negative categories (FDR-corrected Wilcoxon rank-sum test p-values < 0.05). Taxa that 

had significantly higher abundances in Entamoeba positive (Ent+) individuals were 

Blastocystis hominis, Erysipelotrichaceae, Trueperella pyogenes, and Staphylococcus 
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aureus. Taxa that had significantly higher abundances in Entamoeba negative (Ent-) 

individuals were Flavobacterium magnum, Shigella dysenteriae (S. dysenteriae), and 

Anoxybacillus kamchatkensis.  

 Blastocystis hominis (B. hominis) is a unicellular protozoan found in human large 

intestines and stool at rates higher than any other parasite in non-industrialized countries 

(Jantermtor et al., 2013; Stenzel & Boreham, 1996). Although B. hominis is usually 

considered a non-pathogenic commensal, it has been noted to associate with increased 

diversity of human gut bacteria of humans (Audebert et al., 2016). Members of the 

Erysipelotrichaceae family have been associated specifically with Entamoeba infection 

in western lowland gorillas (Vlčková, Pafčo, et al., 2018) and humans (Rosa et al., 2018). 

Both S. aureus (associated with Ent+) and S. dysenteriae (associated with Ent-) can 

induce changes in E. histolytica virulence and host response through modification of E. 

histolytica surface lectin expression, adhesion, cytotoxicity, and proteolysis (Bär, Phukan, 

Pinheiro, & Simoes-Barbosa, 2015). Trueperella pyogenes (Ent+) Flavobacterium 

magnum (Ent-), and Anoxybacillus kamchatkensis (Ent-) have not been associated before, 

to our knowledge, with Entamoeba infection status.  

Subsistence RFCs using shotgun data were less accurate than 16S models (64% accuracy 

vs. 72%), but still detected three genus-level and species-level taxa that matched those 

implicated in the 16S analysis: Bacteroidales bacterium CF, Phascolarctobacterium 

succinatutens, Treponema succinifaciens, and Bacteroides caccae (Supp. Figure 4-11A). 

ANTS positivity was again a strong predictor of microbiome composition (77% 

accuracy) among tested metadata variables in shotgun RFC classification (Supp. Figure 
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4-11B), and had higher accuracy than the RFC for Bantu individuals who were ANTS 

positive (RFC 59% accuracy) (Supp. Figure 4-11C). Two taxa were identified that 

predicted ANTS positivity in both the Bantu and full Cameroonian cohorts, independent 

of subsistence: Peptoclostridium acidaminophilum and Candidatus Azobacteroides 

pseudotrichonymphae. Both taxa had significantly higher abundances in ANTS helminth 

positive individuals in the shotgun cohort and within Bantu-only (two-tailed Wilcoxon-

rank sum test, p-values < 0.05). 

Functional annotation of shotgun reads against Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa & Goto, 2000; Wixon & Kell, 2000) was performed using 

DIAMOND (Buchfink, Xie, & Huson, 2015). Pathway enrichment for Bantu individuals 

who were positive versus negative for ANTS, all Cameroon ANTS positive and negative 

individuals, and subsistence were assessed using Linear Discriminant Analysis Effect 

Size (LefSe) (Segata et al., 2011). Several KEGG classes were significantly differentially 

enriched amount the three subsistence groups (Figure 4-7A). 
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Figure 4-7. Functional analysis of gene content by pathway and association of ANTS 

parasites with cytokine levels 

A) Functional analysis of gene content by pathway for ANTS using KEGG. B) Functional 

analysis of gene content by pathway for Cameroonian subsistence using KEGG. EIP: 

Environmental Information Processing. GIP: Genetic Information processing. C) Boxplots 

showing levels of all cytokines indicated as positively correlated in correlation analysis 

(Supp. Tables 8-9), binned by positive/negative status. D) Boxplots showing the same 

cytokines indicated as significantly correlated from C, but compared across counts of 

unique ANTS parasites (e.g., a dot in the “4” boxplot is an individual who was positive for 

all four ANTS parasites). Individuals are counted only once. E) Average abundance of 

bacteria from the KEGG galactose metabolism pathway in Fulani pastoralists with the LP 

and LNP phenotypes. The top ten most abundant bacteria produced from LefSe analysis 

for each phenotype are shown. 

In agropastoralists, we found an enrichment of bacterial gene pathways involved in 

streptomycin biosynthesis, acarbose and validamycin biosynthesis, beta-Lactam 

resistance, and cationic antimicrobial peptide (CAMP) resistance. These gene pathways 

are all involved in the production of antibiotics or antibiotic resistance. Hunter-gatherers 

had an enrichment of genetic information processing pathways (e.g., Aminoacyl tRNA 

biosynthesis, RNA polymerase) and microbially-mediated disease pathways (e.g., 

tuberculosis, legionellosis), in addition to enrichment in methane, purine, and pyrimidine 

metabolism. Fulani had a bacterial gene enrichment for pathways in galactose, starch and 

sucrose, glycan, and lipid metabolism. 

We again considered Bantu ANTS positive and negative individuals as a separate cohort 

in functional enrichment analysis given their balanced case/control ratios, but found that 

there were no significantly different pathways within Bantu individuals who were ANTS 

positive after multiple test correction. Across the entire Cameroon cohort, ANTS 

negative individuals tended to have pathway differentiation that closely followed the 

results for subsistence, and is likely a reflection of the comparatively larger populations 
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of ANTS infected individuals in hunting and gathering and agropastoralist groups versus 

pastoralists (Figure 4-7B). However, ANTS positive individuals had enrichment for 

genes that play a role in bacterial purine and pyrimidine metabolism, as well as longevity 

regulation. Purine and, less often, pyrimidine auxotrophic parasites must salvage these 

nucleotides from extraneous sources to synthesize DNA for their survival and 

proliferation (Gazanion & Vergnes, 2018), which may explain the enrichment in 

pathways that synthesize purines and pyrimidines. Purine-salvaging parasites that were 

found in the Cameroonians included the protozoans Giardia spp., Plasmodia spp., 

Entamoeba spp., and Cryptosporidum spp., as well as nematode S. stercoralis (Coghlan 

et al., 2019). When we looked at the bacterial contributing to enrichment of KEGG 

pathways in ANTS positive individuals from all Cameroonians, we identified a 100% 

overlap between these bacterial and the top ten taxa that were most predictive of ANTS 

helminth infection across all Cameroonians in shotgun RFC (Supp. Table 4-7). This 

result serves as an additional point of cross validation that these taxa and their functional 

pathways are significantly different for ANTS by predictive modeling and in LefSe 

analyses.  

The concentrations of 19 cytokines across 72 Cameroonian plasma samples were 

measured and visualized in separate correlation plots by ANTS positivity (“ANTS 

binary”), ANTS total count (where count is 0-4), and HIV. ANTS positivity was 

significantly and positively associated with Th1 associated cytokines IL-7 and IL-2, Th2 

cytokines IL-5 and IL-13, Th17 cytokine IL-17a, and proinflammatory cytokines 

MIP1b/CCL3 and IL-1b (Supp. Figure 4-12A; Figure 4-7C) (Spearman’s correlation 
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coefficient, p-values < 0.01, Supp. Table 4-8). The count of ANTS parasites was 

positively associated with the same cytokines, except IL-2 (Supp. Figure 4-12B; Figure 

4-7D) (Spearman’s correlation coefficient, p-values < 0.01, Supp. Table 4-9). Levels of 

cytokines IL-13, IL-17a, and IL-1b increased with ANTS count, whereas cytokine values 

peaked at an ANTS count two for MIP-1b, IL-5, and IL-7. HIV had a positive but non-

significant association with proinflammatory cytokine TNFα (Supp. Figure 4-12C, Supp. 

Table 4-10). 

Regression-based RFC was performed on all cytokines in conjunction with 16S gene and 

shotgun metagenomic data to assess whether microbiome composition could be used to 

predict cytokine values (Supp. Table 4-6, Supp. Figure 4-12). Among all regression-

based RFCs, and among all cytokines, IL-5 explained the most variation in 16S (31%) 

and shotgun (75%) microbiome data. The higher percentage of IL-5 explained variation 

in shotgun sequencing as compared to 16S gene sequencing is likely the result of the 

higher level of intentionally selected ANTS-positive individuals in the shotgun 

sequencing dataset, as IL-5 is positively associated with helminthiasis. IL-5 is essential in 

the development and recruitment of eosinophils to sites of infection and stimulates the 

production of anti-microbial peptides and mucus in the intestinal epithelium during 

helminthiasis (Annunziato, Romagnani, & Romagnani, 2015; Rosenberg, Dyer, & Foster, 

2013). Of note, the Bacteroidales taxon explained the most IL-5 RFC model variation in 

shotgun analysis and the second most in the 16S gene analysis. In both cases, 

Bacteroidales was associated with a significant, positive relationship between 

Bacteroidales abundance and IL-5 level (Spearman’s test for correlation in 16S p-value < 
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0.001; and ANOVA in shotgun p-value < 0.001). It was also the most explanatory taxon 

in highly positive ANTS, and ANTS infection (“Ants Binary”) in shotgun and 16S RFCs. 

Bacteroidales bacterium CF had significantly higher abundance in ANTS positive versus 

ANTS negative individuals (Wilcoxon rank-sum test with continuity correction, p-value 

< 0.001) in shotgun analysis and in 16S gene (p-value < 0.001) analysis. 

4.3.5. Gut microbiota are not associated with the lactase persistence 

phenotype in Cameroonians 

The ability to breakdown lactose milk sugar in the small intestine past weaning and into 

adulthood is known as the lactase persistence (LP) phenotype (Arola, 1994). We 

predicted that hosts who are lactase non-persistent (LNP) would not be capable of 

metabolizing lactose in the small intestine and, instead, the lactose would be catabolized 

by bacteria containing the LAC operon in the distal colon. The LAC operon, which 

produces beta-galactosidase, cleaves the milk sugar lactose into galactose and glucose, 

and gut bacteria with this operon may play a role in the digestion of dairy products (Supp. 

Figure 4-13).  

We administered a lactose-tolerance test (LTT) to 154 Cameroonians to test for 

association of the gut microbiome with the LP/LNP phenotype. Of the Cameroonians 

(see Methods, Supp. Table 4-1), 52 were LP and 102 were LNP. Although bacterial 

microbiome composition (16S) across the entire Cameroonian cohort did not differ by 

lactase persistence phenotype by weighted or unweighted PERMANOVA (Supp. Table 

4-4, 4-5) and was not a strong predictor of microbiome composition in either 16S 
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(65.56% accuracy) or shotgun data (48.84% accuracy), we found an enrichment of genes 

in the galactose metabolism pathway for Fulani pastoralists (Figure 4-7A). 

We traced these genes back to their bacteria of origin, which produced a list of over 1,619 

unique bacteria in the Fulani with putative functional ability to catabolize galactose. We 

then filtered this list to inspect the top ten most abundant bacteria, and visualized their 

relative abundances by subsistence (Figure 4-7E). Although seven of these taxa were 

highest in Fulani pastoralists, the other three taxa, Prevotella dentalis, Prevotella 

ruminicola, and Bacteroides salanitronis all had higher abundances in agropastoralists 

and hunter gatherers than pastoralists. We then estimated the probability that high 

abundances of galactose associated bacteria identified here would produce an LP 

phenotype across the full Cameroonian cohort. Odds ratios were used to ascertain the 

likelihood that any of these ten taxa were higher or lower than their median abundances 

across the entire Cameroonian cohort in either LP or LNP individuals. We found that the 

taxa did not confer a higher chance of being LP or LNP across the entire cohort (Supp. 

Table 4-11). Although representing a small fraction of the total bacteria we identified as 

being able to breakdown lactose, we reasoned that they were most likely to have an effect 

on lactose phenotype since they were the most abundant However, given our results, we 

cannot rule out the possibility that all the galactose metabolizing bacteria may be together 

contributing to the catabolism of lactose in the distal colon, and could be considered in 

their entirety as a lactose-catabolizing community in future analyses. In summary, we can 

use shotgun sequencing data to infer dairy sugar catabolism in the colonic microbiota in 
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the Fulani, who have diets and subsistence practices consistent with high dairy 

consumption.  

4.4. Discussion 

Our results indicate that commensal microbiome compositions in Cameroonian 

populations are quite heterogeneous. These results parallel other studies of the gut 

microbiota of rural populations with traditional subsistence strategies (Arumugam et al., 

2011; Ayeni et al., 2018;  Clemente et al., 2015; De Filippo et al., 2010; Gomez et al., 

2016; Morton et al., 2015; Obregon-Tito et al., 2015; Pasolli et al., 2019; Rampelli et al., 

2015; Schnorr et al., 2014; Smits et al., 2017), while for the first time analyzing the 

impact of infection by multiple gastrointestinal parasites on the microbiota. We show that 

Cameroonians have higher amounts of Prevotella relative to Bacteroides-enriched U.S. 

samples. Bacteroides relative abundance is higher in Fulani than the other Cameroonian 

populations, which could be the byproduct of increased industrialization. Our ability to 

identify microbes from remote, rural settings is limited by the availability of appropriate 

reference microbial genomes. As a result, we have a larger fraction of “unknown” reads 

that could not be classified at any taxonomic level in Cameroonian samples as compared 

to U.S. samples. Our sample set also allows us to ask how the different baseline 

microbiotas in rural populations respond to colonization with multiple parasites. 

Although our sampled populations live in rural areas, the Bantu and Fulani of Northwest 

Cameroon live in more developed villages with higher population density than the 

populations we sampled in South and East Cameroon. Furthermore, many individuals in 



169 

 

these two populations live in cooler, mountainous climates in the northwest. Since 

helminthiasis has been closely linked to moist, tropical environments, it’s expected that 

we would have higher rates of parasites in southern and eastern populations. These 

factors may contribute to the higher rates of co-occurring fecal and blood parasites in the 

hunter-gatherers. Within Cameroonians, microbial alpha diversity positively correlated 

with gut parasite count. Increased gut bacterial diversity has been positively and 

negatively associated with intestinal helminth and protist infections (Leung et al., 2018). 

Here, we show that increasing parasite count correlated with higher bacterial diversity. 

We speculate that this higher diversity could be associated with disease morbidity, where 

factors such as parasite-induced rapid peristalsis and epithelial shedding could produce an 

optimal environment for opportunistic microbial colonization. 

Recently, Morton et al. (2015) characterized the bacterial microbiome of rural 

populations in southwest Cameroon that were highly parasitized by protists and 

helminths through 16S rRNA gene sequencing. Morton et al. (2015) found that E. 

histolytica colonization was predictive of microbiome diversity and composition (79% 

accuracy). Here, we found that when A. lumbricoides, N. americanus, T. trichiura, and S. 

stercoralis helminths are considered as co-occurring morbidities, the cumulative effects 

of ANTS helminth infection are highly predictive of microbiome composition (81% 

accuracy). The use of molecular techniques in this study enabled the quantification of 

species that are not morphologically distinguishable by light microscopy 

(Cryptosporidium spp., multiple Entamoeba species). Although we did not have enough 

qPCR positive E. histolytica samples for species-specific RFCs, shotgun sequencing 
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revealed that several Cameroonians were infected with multiple types of commensal and 

pathogenic Entamoeba. Coinfection with Entamoeba commensal and pathogenic species 

has been previously documented in human and nonhuman primate hosts in east 

Cameroon (Vlčková, Kreisinger, et al., 2018). The degree to which human commensal 

and pathogenic enteric Entamoeba interact, enhance, or inhibit one another remains an 

open area of investigation. 

Multiple RFC models testing different categories of ANTS parasite infection and IL-5 

cytokine response indicated that Bacteroidales was an important predictive taxon. 

Bacteroidales was consistently found at elevated abundances in ANTS positive 

individuals in comparison to ANTS negative in this study. Previously, Bacteroidales has 

been found in lower abundances in the guts of humans infected with Entamoeba 

histolytica (Morton et al., 2015). In murine models, infection with helminths led to the 

reduction of Bacteroidales and the concurrent expansion of Clostridiales communities 

(Ramanan et al., 2016), which was hypothesized to stimulate an anti-inflammatory 

response (increased IL-5 and IL-13) in the host. In this study, rural Cameroonians with 

high abundances of Bacteroidales were a strong predictor of helminthiasis and Type-2 

immune response (IL-5) in our dataset. This observation is consistent with similar 

Bacteroidales expansions detected in the gut microbiomes of rural Malaysians infected 

with T. trichiura (Lee et al., 2014); however, we cannot rule out that Bacteroidales 

abundances found here may be confounded with subsistence practice. Rural populations 

may have different microbial responses to particular types of parasite infections, which 

may be shaped in part by subsistence, host genetics, geography, or other factors. Whether 
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or not any of these differences may contribute to host anti-inflammatory properties and 

parasite clearance in the absence of antihelminthic drugs remains to be investigated.  

Furthermore, RFC results suggested that four taxa, Ruminococcus bromii, CF231, 

Peptoclostridium acidaminophilum and Candidatus Azobacteroides 

pseudotrichonymphae may have roles in ANTS infection exclusive of subsistence. 

CF231 is a common occupant of ruminant guts (Wang et al., 2016) that has occasionally 

been found in humans (Yun et al., 2017) but has not, to our knowledge, been associated 

with human fecal parasite infection. Ruminococcus bromii has functions in degrading 

foods high in resistant starch and has been associated with fishing subsistence in coastal 

Cameroonians (Morton et al., 2015). In our study we found that individuals with this 

bacterium were less likely to be infected by ANTS when controlling for subsistence. 

Diets rich in starch-resistant foods have been linked to reductions in gastrointestinal 

inflammation (Lockyer & Nugent, 2017), making it possible that R. bromii could have a 

protective effect against helminthic disease, or at least in alleviating helminth-associated 

inflammation. Peptoclostridium acidaminophilum (previously known as "Eubacterium 

acidaminophilum" (Galperin, Brover, Tolstoy, & Yutin, 2016) is a versatile, amino-acid 

degrading anaerobe that has not been associated, to our knowledge, with helminthiasis in 

prior research. However, Hadza hunter-gatherers were previously described to have an 

enrichment of KEGG Orthologous genes involved in amino acid metabolism, and greater 

functional potential to metabolize proline, serine, glycine, and threonine (Schnorr et al., 

2014, p. 201). Candidatus Azobacteroides pseudotrichonymphae is a termite 

endosymbiont (Pramono et al., 2017) and unclassified taxa in the carbohydrate-
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metabolizing Ruminococcaceae family and nonpathogenic species in the genus 

Treponema (both of which are present in our data) are considered common occupants of 

termite guts (Angelakis et al., 2018). Termites are a substantial component of hunter-

gatherer and agropastoralist diets in many parts of Cameroon (Sato, Kawamura, Hayashi, 

Inai, & Yamauchi, 2012; Tamesse, Kekeunou, Tchouamou, & Meupia, 2018). 

Treponema is also a common constituent of healthy nonhuman primate guts (Clayton et 

al., 2018; McKenna et al., 2008). Termite consumption could be more common in 

individuals that are ANTS positive, which could be affected by bioavailability of 

termites, subject to climate and location (i.e., more tropical locations, which are 

correlated with a higher infectious disease burden of helminths). Whether the presence of 

these taxa has any effect on susceptibility or response to ANTS helminth infection 

remains an open question. 

In addition, we studied HIV+ subjects who had no obvious symptoms and found no 

detectable microbial community alterations (Supp. Figure 4-15 and 4-16), paralleling 

some but not all studies of lentiviral infection and the gut microbiome. We did find a 

modest positive correlation between TNFα and HIV infection. The TNFα/TNFR pathway 

has been established as a component of immune activation and the development of viral 

reservoirs during HIV infection (Pasquereau, Kumar, & Herbein, 2017). 

Given the dairy-rich diet of Fulani pastoralists, and a reported 50% prevalence of clinical 

lactose tolerance (Enattah et al., 2007; Lokki et al., 2011; Tishkoff, Reed, et al., 2007), 

we had expected that many of the Fulani would produce the lactase enzyme, which 

cleaves lactose into glucose and galactose. If the host can successfully take up lactose in 
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the small intestine then less is passed to the distal colon, which would hypothetically 

result in lower abundances of gut bacteria capable of catabolizing lactose in lactase-

persistent hosts as compared to lactase non-persistent hosts. When we tested for 

association of the gut microbiome with the lactase persistence phenotype, we did not 

detect a significant correlation with the gut microbes between LP and LNP individuals or 

with the taxon Bifidobacterium, which has been extensively associated with dairy 

catabolism in populations with majority European ancestry (Goodrich et al., 2017).  

We found that pastoralists had higher levels of galactose-metabolizing microbial genes 

compared to the other Cameroonians. The abundances of the top ten bacterial taxa 

implicated as most correlated with Fulani galactose metabolism had variable abundances 

among the subsistence groups. Notably, galactose metabolizing Prevotella dentalis and 

Prevotella ruminicola had comparatively higher abundances in agropastoralists and 

hunter-gatherers across the entire Cameroonian cohort. Consumption of short-chain 

galactooligosaccharides, has been associated with increased Prevotella abundance and 

attenuated lactose tolerance in the guts of lactose-intolerant individuals (Azcarate-Peril et 

al., 2017). As such, Prevotella species may provide lactase non-producers with an 

enhanced ability to degrade milk sugars. Overall, these results indicate that several 

individual bacteria may be capable of catabolizing lactose sugar and have roles in 

galactose catabolism within Fulani pastoralist gut microbiomes. 
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4.5. Conclusions 

This study represents the largest work to date on the correlations between 

polyparasitemia (fecal and blood) and gut microbiota in sub-Saharan Africans. We 

establish that cooccurrence of gut parasites is significantly associated with microbial 

community structure in the gut, and identify putative taxa associated with subsistence 

type, cytokine response, and the ANTS helminth infection. Further studies would benefit 

from longitudinally sampling populations and integrating individualized dietary 

information to establish baseline, to distinguish healthy host microbiome structure from 

parasitized states, and to test for association of microbial diversity with seasonality. The 

gut microbiota are an intriguing potential therapeutic target in the treatment or prevention 

of helminthiasis, motivating further investigation into the mechanisms behind parasite-

host-microbiota interactions.  

4.6. Methods 

4.6.1. Subject Details 

Written, informed consent was obtained from all study participants and research/ethics 

approval was obtained from the following institutions prior to the start of sample 

collection: Institutional Review Board of the University of Pennsylvania, the 

Cameroonian National Ethics Committee and the Cameroonian Ministry of Public 

Health. All subjects provided written informed consent for the collection and analysis of 

samples. All samples were coded with an alphanumeric identifier to protect participant 

confidentiality. 
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Cameroon samples were collected from nine villages in the Northwest (Ntambang, 

Sabga), South (Bidou I, Ndtoua), and East (Nkolbikong, Missoume, Njibot, Aviation, 

Bosquet) regions of Cameroon (Figire 4-1A), all of which represented rural communities. 

The villages in the East and South Administrative regions are located in densely forested 

areas with primarily tropical monsoon and rainforest climates (Köppen-Geiger climate 

classification), while the villages in the northwest are primarily in tropical savanna 

climates (https://en.climate-data.org/location/2905/). The traditional wet season for 

Cameroon is April through September, and the traditional dry season runs October 

through March. The Cameroon populations were sampled between January to July of 

2015. All populations sampled in this study speak languages in the Niger-Kordofanian 

family. Ethnicity, sample sizes, sampling coordinates, and subsistence classifications are 

listed in Supp. Table 4-1. 

DNA extracted from fecal samples from 37 healthy, omnivorous, U.S. participants in the 

greater Philadelphia, was used here for comparative purposes in the 16S analyses. Eleven 

of the U.S. participants self-described their ethnicity as African-American, and 26 self-

described as European-American. These samples were collected for a prior research 

study, the details of which can be found in Wu et al., 2011. Data for age, sex, height, 

weight, location, and BMI, were included in diversity metric analyses (Supp. Table 4-1).    

4.6.2. Sample collection and storage 

Fecal samples were obtained from asymptomatic subjects with no signs of clinical illness 

and who self-reported as not pregnant. Participants produced a fecal sample in a sterile 
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plastic container that was immediately returned to researchers at the field site. A 

midsection sample of stool (~5 g aliquots) was harvested into a 5 ml container and 

immediately frozen in liquid nitrogen. Samples were stored at -80°C before 

transportation to the US in dry ice, where it was again stored at -80°C until extraction. 

For 524 of these individuals, contemporaneous plasma samples were also collected. 

Blood was drawn into 10ml capacity BD Vacutainers containing EDTA, and small drops 

of blood were taken from this tube to measure white blood cell count (HemoCue WBC 

analyzer and HemoCue WBC cuvettes), and to make thick and thin blood smears on 

slides for malaria and filarial parasite testing. Relative percentages of lymphocytes, 

monocytes, eosinophils, basophiles, and neutrophiles were measured for 570 individuals. 

Following this step, the tube of blood was immediately spun down and plasma was 

processed through a Leukolock kit (Ambion Inc.). Plasma was aliquoted into 0.5ml 

Eppendorf SafeLock tubes and frozen in liquid nitrogen. The plasma was frozen at -20°C 

and all samples were analyzed simultaneously. 

4.6.3. Fecal sample processing and DNA sequencing  

4.6.3.1. Fecal DNA Extraction 

Cameroonian and U.S. fecal samples were processed with the same laboratory and 

computational pipelines for extraction and 16S analysis. Total DNA from fecal materials 

was extracted from ~220mg aliquots using a PSP Spin Stool DNA Plus Kit (Stratec 

Biomedical, Germany) with a modified bead-beating method (Salonen et al., 2010). PCR 

and extraction blanks were used to control for reagent and environmental contamination, 
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and all extractions were conducted in a laminar flow hood. Eluted DNA was quantified 

by fluorometry and stored at -20°C. 

4.6.3.2. Bacterial 16S rRNA amplicon sequencing 

PCR reactions were performed on extracted fecal DNA in triplicate using Accuprime Pfx 

Supermix (Invitrogen) and barcoded composite primers with Illumina adapters to amplify 

the V4 region of the bacterial 16S rDNA genome following the methods of Kozich et al. 

(2013) on a GeneAmp 9700 PCR System. Sequences of DNA primers used in this study 

are reported in Supp. Table 1. PCR conditions were as follows: 95°C for 2 min, followed 

by 30 cycles of 95°C for 20 sec., 55°C for 15 sec., 72°C for 5 min., and then a final 

elongation step at 72°C for 10 min. A gene block mock community of eight archaeal 

species not normally detected in experimental data was used as a positive control 

following Kim et al. (2017) (Supp. Table 4-12). Samples containing the resulting ~250 bp 

products were pooled, and a subset were visualized by gel electrophoresis on a 1% 

agarose gel. Library clean-up was performed using SequalPrep Plate Normalization Kits 

(Invitrogen), and average library fragment size was checked on a subset of samples using 

a Tapestation d1000 ScreenTape System (Agilent). Libraries were quantified using Qubit 

dsDNA HS Assays (Thermo Fisher Scientific) and pooled in equal amounts. Libraries 

were sequenced on an Illumina MiSeq across 4 runs using 2 x 250 bp cycles in the 

Bushman Lab. Sequence data are deposited under project accession PRJNA547591 in the 

NCBI Sequence Read Archive; sample details are in Supp. Table 4-1. 
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4.6.3.3. Shotgun metagenomic sequencing 

A total of 178 fecal DNA sample aliquots and controls were normalized to 0.2 ng/ul 

DNA and 1 ng of DNA per sample was used as input for the Nextera XT DNA Sample 

Prep Kit (Illumina Inc.) and manufacturer protocols. PCR amplification using unique 

combinations of barcoded primers was performed on a GeneAmp 9700 PCR System, and 

short DNA fragments were removed using AMPure XP bead purification. Library 

fragment size was visualized on a Tapestation d1000 ScreenTape System (Agilent) and 

libraries were quantified using PicoGreen before being pooled in equimolar ratios for 

sequencing. Three extraction negative controls (denoted “EB” in the metadata) and two 

library negative controls (“Lib Neg”) were included on the run. The pooled library was 

subjected to a second round of quantification on a BioAnalyzer 2100 (Agilent), followed 

by a MiSeq Nano sequencing run for quality control. After this, the pooled library was 

diluted in hybridization buffer, heat denatured, and paired-end sequenced on an Illumina 

HiSeq 2500 using V4 reagents in the Penn CHoP Microbiome Core. 

4.6.4. Parasite and HIV testing 

4.6.4.1. Microscopy 

Stool samples were examined in the field for parasite presence using wet-mount fecal 

microscopy. Samples were examined with and without iodine staining and visualized 

with standard light microscopy to identify visible gastrointestinal parasites or parasite 

ova, including hookworm (species indeterminate with light microscopy), amebiasis 

(Entamoeba spp.), giant roundworm (Ascaris lumbricoides), human whipworm 

(Trichuris trichiura), giardia (Giardia spp.), and human roundworm (Strongyloides 
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stercoralis). Thick and thin blood smear slides were prepared with Giemsa staining to 

identify blood parasites in the field, including plasmodia (Plasmodium spp.) and filaria 

(Microfilaria loa loa, Microfilaria spp., Mansonella perstans, Wuchereria bancrofti). 

Details on microscopy positivity are in Supp. Table 4-1.  

4.6.4.2. Quantitative PCR (qPCR) 

DNA oligonucleotide sequences used in qPCRs are listed in Supp. Table 4-13. A gBlocks 

gene fragment (IDT) containing parasite target sequences was synthesized and cloned 

into a TOPO cloning vector, transformed into TOP10 competent E. coli cells and purified 

with a Qiaprep Spin Miniprep Kit (Qiagen). Purified plasmid DNA was quantified by 

Picogreen and the sequence was validated with Sanger sequencing. Plasmids were diluted 

to a known concentration and serial 1:5 dilutions were performed to generate a 9-point 

standard curve. Unknown samples were compared against this standard curve for 

quantification. Positive control DNA was extracted from three parasite samples: 

Cryptosporidium parvum from infected mouse stool sample, and Giardia lamblia and 

Strongyloides stercoralis from infected canine stool samples using the same methods as 

human stool DNA extraction. Wells with no template were used as negative controls, and 

all controls and standards were tested in duplicate. Species-specific primers and probes 

used in Mejia et al. (2013) were used to assay parasite genome copy number for Ascaris 

lumbricoides, Necator americanus, Ancylostoma duodenale, Giardia lamblia, Entamoeba 

histolytica, Trichuris trichiura, and Strongyloides stercoralis parasites. The pan-

Cryptosporidium spp. qPCR uses primers and probes from Jothikumar et al., 2008 which 

tests for ten Cryptosporidium species: C. hominis, C. parvum, C. canis, C. felis, C. 
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parvum-like (from lemurs), C. muris, C. andersoni, C. baileyi, C. wrairi, and C. 

serpentis. All qPCRs were conducted on individual parasites using 384-well MicroAmp 

EnduraPlate Optical 384-Well Clear Reaction Plates (Applied Biosystems) in triplicate 

on a QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). The total volume 

per reaction was 7 ul, consisting of 3.5 ul of Taqman Fast Advanced Master Mix 

(Applied Biosystems), 2 ul of template DNA and 1.44 ul of species-specific primers 

(final concentration of 900 nM) and probes (final concentration of 250 nM), and 0.06 

Sigma water (Sigma-Aldrich). qPCRs were run with default parameters and 40 cycles. In 

this study, we report quantification cycle threshold (Ct), which correspond to the PCR 

cycle values measuring when fluorescence from template amplification exceeds 

background fluorescence and is an inverse measure of nucleic acid. At least two of the 

three replicates had to fluoresce within the standard range for the sample to be positive. 

We had no samples that were positive for Ancylostoma duodenale, and thus this parasite 

was removed from all downstream analyses. 

4.6.4.3. HIV testing 

For all participants who produced a plasma sample, simultaneous qualitative testing for 

Human Immunodeficiency Virus (HIV) p24 antigen and antibodies to HIV Type 1 (HIV-

1 Groups M and O) and HIV Type 2 (HIV-2) was done using a GS HIV Combo Ag/Ab 

EIA immunoassay (BioRad). Testing was performed on 75 ul per sample of thawed 

plasma according to manufacturer’s instructions. Results were read on a SpectraMax 190 

absorbance microplate reader (Molecular Devices). In addition to positive controls from 

the GS HIV Combo Ag/Ab EIA kit, human serum from an anonymous, seropositive 
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donor from the U.S. who had not yet been treated with antiretroviral drugs was used on 

every test plate. 

4.6.5. Serum cytokine measurements 

We measured 21 cytokines from plasma using a high-sensitivity multiplex cytokine panel 

(Milliplex MAP Human High Sensitivity T Cell Magnetic Bead Panel, 21-Plex). They 

included Fractalkine/CX3CL1, granulocyte macrophage colony-stimulating factor (GM-

CSF), interferon-gamma (IFNγ), interleukin (IL) 1β, IL-2, Il-4, IL-5, IL-6, IL-7, Il-

8/CXCL8, IL-10, IL-12 (p70), IL-13, IL-17A/CTLA8, IL-21, IL-23, I-TAC/CCL11, 

MIP-1α/CCL3, MIP-1β/CCL4, MIP-3α/CCL20, and TNFα (tumor necrosis factor α). The 

panel was run on a Bio-Plex 200 machine using the manufacturer’s protocols (Millipore 

Sigma). Cytokine concentrations were determined using standard curves, with the limits 

of detection for analytes reported in Sup. Table 4-1. A total of 72 Cameroonian samples 

were analyzed in two batches, with high and low cytokine-specific controls used across 

both batches. Measurements for each sample and standard curve were performed in 

duplicate, with the average of the two measurements reported. For two cytokines (MIP-

1α/CCL3 and IL-2), we had an insufficient amount of non-NA values to conduct 

statistical tests, and we removed these from further analysis.  

4.6.6. Lactose tolerance test and lactase persistence association test 

4.6.6.1. Lactose tolerance test  

To test for association of the gut microbiome with the lactase persistence phenotype and 

genetic variants that confer lactase persistence, 154 individuals from the Cameroonian 
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cohort were given a lactose tolerance test (LTT) (Ranciaro et al., in preparation ). 

Participants fasted overnight and had baseline glucose measured before beginning the test 

using either a Code Free glucometer with SD CodeFree strips or an Accu-Chek Active 

glucometer with Accu-Chek Active strips. Exclusion criteria included having a baseline 

glucose outside of 60-100 mg/dl and diabetes. Participants drank a 50 g lactose powder 

solution (QuinTron USA) dissolved in 250 ml water which was equivalent to ~1-2 liters 

of cow’s milk (Arola, 1994). Blood glucose was measured in 20-minute intervals over the 

next hour. 

4.6.6.2. Lactase persistence association test 

Glucose values were first adjusted to correct for test strip error using the regression 

equation y = 0.985x − 7.5, where x is the measured glucose value. The maximum rise in 

glucose level was ascertained by comparing observed glucose values against the baseline 

value and used to classify lactase phenotype. Individuals were classified as either lactase 

persistent (LP) (rise in blood glucose >1.7 mmol/l), lactase non-persistent (LNP) (rise in 

blood glucose <1.1 mmol/l), or lactase intermediate persistent (LIP) (rise in blood 

glucose between 1.1 and 1.7 mmol/l). We tested for enrichment of counts of lactase 

persistence associated alleles in either LIP or LP individuals (denoted as the lactose 

tolerant trait, also referred to as lactose digesters) relative to LNP individuals (lactose 

non-digesters). Of 154 participants, 102 were LNP, 21 were LP, and 31 were LIP. The 

latter two groups are both considered “Positive” in LP binary analysis, where samples are 

considered either lactase persistent (n = 52) or non-persistent (n = 102). 
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4.6.7. Anthropometry 

4.6.7.1. Height 

Height was measured using a Shorrboard Stadiometer (www.shorrproductions.com), with 

the individual in an erect position with the Frankfurt plane as horizontal as possible. 

Height was measured with shoes if worn (this was noted in the anthropometry form). 

Height was recorded in centimeters to the nearest millimeter. 

4.6.7.2. Temperature 

Temperature was measured in triplicate on a non-contact infrared thermometer. 

4.6.7.3. Weight 

Weight was measured using a set of Seca 876 scales and recorded in kilograms to one 

decimal place. Weight was measured with shoes if worn. Care was taken to ensure that 

the scales were firmly seated and level. 

4.6.8. Quantification and statistical analysis 

4.6.8.1. ASV inference 

The V4 region of the bacterial 16S rRNA gene was sequenced on the Illumina MiSeq 

platform across 4 MiSeq runs. FASTQ files were generated from raw BCL files using 

“configureBclToFastq.pl” (Illumina Inc.) and paired-ends were assembled using the 

QIIME2 pipeline. All sequences went through quality-filtering, demultiplexing, chimera 

removal, denoising, and merging using the demux and DADA2 plugins with default 

settings. DADA2 produces an amplicon sequencing variant (ASV) table that can resolve 

unique sequences down to single-nucleotide differences and attaches biological meaning 
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to sequences independent of a reference database. All ASV feature tables were then 

merged (https://github.com/marubel/R-ubelMisc). We used a classifier that was 

pretrained on the V4 region targeted by the 515F and 806R primer sets (Caporaso, 

Kuczynski, et al., 2010; Caporaso et al., 2011) with 99% OTU sequence similarity using 

the most recent version of the GreenGenes (http://greengenes.secondgenome.com/) 

database. Sequences classified as mitochondria and chloroplasts were removed. To 

conduct phylogenetic analyses of microbiome sequences, sequences were aligned with 

MAFFT and a phylogenetic tree was produced with FastTree2 using default settings. 

Sequences derived from plastids and mitochondria were removed. A gene block mock 

community of eight archaeal species not normally detected in experimental data was used 

as a positive control across runs (Supp. Table 4-12), following the methods used in Kim 

et al., (2017). The four gene block controls, 12 negative extraction and PCR controls 

were dropped from further analysis. This produced a total of 14,138 ASVs. 

4.6.8.2. Shotgun metagenomic sequencing processing and analysis 

Illumina Basespace output metrics from the shotgun metagenomics run are available in 

Supp. Tables 4-14:4-16. In brief, there were 1,820,262,487 raw reads and 1,820,262,480 

reads that passed the Illumina chastity filter. The Illumina chastity filter measures the 

ratio of the intensity base call divided by the sum of the brightest and second brightest 

intensity base calls. Raw shotgun metagenomic data files from were de-multiplexed and 

converted from BCL to FASTQ using bcl2fastq (Illumina), which drops unassigned 

reads, including those mapping to PhiX, a common sequencing control. Demultiplexed 

FASTQ files were analyzed using the Sunbeam pipeline (Clarke et al., 2019), as detailed 
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in (https://github.com/sunbeam-labs/sunbeam/). In short, quality filtering was done using 

default settings of Trimmomatic (reads below 36 bases, trailing or leading bases with 

quality scores below three, and base reads scanned in a 4-nt sliding window with average 

quality/base < 15 were dropped) (Bolger, Lohse, & Usadel, 2014) and adapters were 

trimmed from sequences with Cutadapt (fwd_adapters: ['GTTTCCCAGTCACGATC', 

'GTTTCCCAGTCACGATCNNNNNNNNNGTTTCCCAGTCACGATC'] 

rev_adapters: ['GTTTCCCAGTCACGATC', 

'GTTTCCCAGTCACGATCNNNNNNNNNGTTTCCCAGTCACGATC'] (M. Martin, 

2011) software. This effectively dropped the two library negatives and the three 

extraction blanks from further shotgun analyses. FastQC (Babraham Bioinformatics) was 

used to assess read quality on read pairs surviving quality filtering (Supp. Table 4-15). 

Low complexity sequences were masked using (https://github.com/eclarke/komplexity) 

with a normalized complexity score of < 0.55. For k=4, this scores that across a 64-120 

bp region, the sequence is strongly suggestive of being low-complexity, repetitive 

sequence, and thus is unlikely to be informative. Reads that mapped to a human reference 

sequence (Genome Reference Consortium Human Build 38, GRCh38) were identified 

using bwa (H. Li & Durbin, 2009). Samples reads with > 60% of the read fraction 

mapping to GRCh38 or with a percent identity >50% and were removed. Per sample 

nonhost (microbial) reads can be found in Supp. Table 16. Output from the Sunbeam 

quality control was inspected manually using the sbx_report extension 

(https://github.com/sunbeam-labs/sbx_report). This produced a total amount of 1.65 

billion host-filtered, quality-controlled reads (controls not included). This amounts to a 
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median of 8.5 million reads per sample, or an average of 9.3 million reads. KrakenUniq 

(Breitwieser et al., 2018) was used to classify human-filtered, quality-controlled reads 

using the Sunbeam extension sbx_kraken_uniq 

(https://github.com/ArwaAbbas/sbx_kraken_uniq) on a low-complexity masked database 

of bacterial, archaeal, viral, fungal and protozoal sequences from NCBI nt (downloaded 

13 December 2018). Classifications reported at genus and species level are reported as 

relative abundances and were further filtered based on a meeting a threshold of number of 

reads and read:k-mer ratio, as described in the figure legends. Shotgun metagenomic 

reads were also classified using two alternate methods for comparison: MetaPhlAn2 

(Truong et al., 2015) on the MetaPhlAn2 mpa_v20 database using the sbx_metaphlan 

Sunbeam extension (https://github.com/sunbeam-labs/sbx_metaphlan/), and the 

GreenGenes 16S database using Kraken2 (https://ccb.jhu.edu/software/kraken2/). As 

expected given the differences in the database used, and known 16S primer biases, the 

relative proportions of bacterial genera classified by amplicon and shotgun sequencing 

did not always correspond. In a comparison across MetaPhlAn2, KrakenUniq, and 16S 

Greengenes classification for both V4 and shotgun data, comparisons between V4 and 

shotgun data annotated against the same Greengenes Database most closely paralleled 

each other (Supp. Figure 4-8). Second to that, the KrakenUniq database showed the least 

divergence between V4 and shotgun taxonomic identification. We note that some 

relevant genera were highly divergent in KrakenUniq to V4 comparison, including 

Klebsiella and Eubacterium, which were absent from V4 datasets. This could be the 

result of primer or database bias. 
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We note that average 16S copy number across Prevotella and Bacteroides genomes 

varies (average 16S copies across 24 species of Prevotella = 4, average across 24 species 

Bacteroides = 5.3) (https://rrndb.umms.med.umich.edu/genomes/). In our shotgun 

metagenomics data, the average size of Bacteroides genomes was 5.3 Mbp and the 

average size of Prevotella genomes was 2.7 Mbp. Larger genome size and more 16S 

copy numbers in Bacteroides could account for some of the variation we see in higher 

relative abundances of this taxon in 16S versus shotgun sequencing compared to 

Prevotella. Quality-controlled reads were aligned to the KEGG database (Abbas et al., 

2019; Kanehisa & Goto, 2000; Wixon & Kell, 2000) using DIAMOND (Buchfink et al., 

2015), using an e-value cutoff 1x10-6. The resulting KO numbers were mapped to the 

associated pathway, module, and enzyme identifiers (https://github.com/marubel/kegg-r-

ator). Where a single KO mapped to multiple pathways, enzymes, or modules, weighted 

counts were used such that each KO contributed a single count equally distributed across 

all pathways, enzymes, or modules mapped to it. 

To detect helminths in shotgun metagenomic sequences, human-filtered, quality-

controlled reads were aligned to nine representative genomes downloaded from NCBI 

Genome (Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis, Ascaris 

lumbricoides, Necator americanus, Entamoeba histolytica, Giardia lamblia, 

Cryptosporidium hominis and Cryptosporidium parvum) or WormBase ParaSite (Ascaris 

lumbricoides). Read alignments were performed using hisss 

(https://github.com/louiejtaylor/hisss) (Abbas et al., 2019) using the following 

modifications to Bowtie2 (-end-to-end --very fast). 



188 

 

Results from all analyses were visualized in R (Ihaka & Gentleman, 1996) using 

packages tidyverse (Wickham, 2017), taxonomizr (Sherrill-Mix, 2018), magrittr (Bache 

& Wickham, 2014), reshape2 (Wickham, 2007), ggplot2 (Wickham, 2016), vegan 

(Oksanen et al., 2013), and ape (Paradis, Claude, & Strimmer, 2004). Pathway, module, 

and enzyme differential enrichment were calculated using LefSe (Segata et al., 2011), 

which produces absolute values of log10 transformed LDA scores as effect sizes for a 

given taxa/group. Code used to generate LefSe metrics and heatmaps can be found at 

https://github.com/ressy/LEfSe. FDR correction was applied to all LefSe results.  

4.6.8.3. Diversity metric analysis 

For 16S data, alpha diversity was assessed by three metrics in QIIME2: the observed 

number of OTUs (bacterial “richness”), Shannon’s index (bacterial abundance and 

evenness of species present), and Faith’s Phylogenetic Diversity index (Faith, 1992), 

which incorporates phylogenetic relatedness of taxa in each sample. Beta diversity was 

assessed using Bray-Curtis dissimilarity index, which measures abundance information, 

and the Jaccard similarity coefficient, which measures presence/absence information. 

Both metrics quantify the compositional dissimilarity between two different samples, 

bound between 0 and 1, where 0 is the same composition and 1 is maximally dissimilar 

composition. Metadata covariates were tested for associations with the microbiome using 

permutational multivariate analysis of variance (PERMANOVA) tests in R using the 

“adonis” function of the vegan package. PERMANOVA tests were done on both 

unweighted and weighted UniFrac distance matrices, which allows for comparison of 

intragroup and intergroup distances using a permutation scheme to obtain p-values. 
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PERMANOVA test were done with 999 randomizations. Low variance ASVs were 

removed for differential sample abundance analysis, which was determined with the 

edgeR (Robinson, McCarthy, & Smyth, 2010) and phyloseq (McMurdie & Holmes, 

2013) packages in R. False discovery rate correction was performed on all resulting 

PERMANOVA and differential abundance p-values using the Benjamini-Hochberg 

(FDR/BH) criterion. 

For shotgun metagenomic data, alpha diversity was calculated with Simpson’s and 

Shannon’s diversity indices. Simpson’s diversity index is a measure of diversity which 

considers the number of species present, as well as the relative abundance of each 

species. The distribution of reads classified at the prokaryotic genus level and >1% 

abundance in each fecal sample ranged between a minimum of 195404 and a maximum 

of 7662130 reads. For diversity metrics, reads were randomly subsampled to 150000 

reads. The R function vegdist in the vegan package (Okansen, 2013) computed 

dissimilarity indices using Bray-Curtis, which quantifies the compositional dissimilarity 

between two different samples.  

4.6.8.4. Random forests 

Random forest classifiers (RFCs), were implemented using the randomForest package 

(Liaw & Wiener, 2002) in R. Parameters included 5,001 decision trees, which were 

trained on taxa abundance data consisting of 14,138 ASVs for our 16S dataset and 20,844 

taxa for our shotgun metagenomics dataset. Binary variables (e.g., positive, negative) 

were analyzed using classificatory RFC and continuous variables (e.g., cytokine values) 

were analyzed using regression RFC. Discriminating taxa were identified by random 
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forest using importance values, which were calculated as mean decrease in Gini index for 

classification random forests and percent increase in mean squared error (%IncMSE) for 

regression random forests. The top ten importance values are reported for each random 

forest test. Error of the model was assessed using out of bag (OOB) error. To increase the 

classifier’s ability to detect true positives, we introduced a positive control consisting of 

statistical noise with a probability density equal to the values within the variable of 

interest (i.e., values within those present in the classification/regression variable) 

(https://github.com/marubel/R-ubelMisc). In RFC classification, prediction accuracy of 

the model was tested by randomly sampling half the samples of whichever of the two 

groups was smaller and training the classifier on this subset, for variables that had a 

minimum of at least five samples in each group. For example, if there were 80 positives 

and 100 negatives for a parasite, 40 positive and 40 negatives would be input as the 

training set for the classifier. RFC uses bootstrap sampling, which means that some 

training set samples in each downsampled category will be selected more than once, over 

a total of 5,001 iterations, to produce a consensus tree. 

4.6.8.5. Co-occurrence analysis 

Probabilistic co-occurrence analysis was done in R using the cooccur package (Griffith, 

Veech, & Marsh, 2016; Veech, 2013). Parasite pairs were removed if they shared less 

than one site. For parasite groups with presence/absence data, all pairwise combinations 

were tested using the hypergeometric distribution, which produced an observed-expected 

ratio and effect size for significant species combinations. Sample pairs were dubbed 

“random” if they didn’t significantly differ from their expected number of co-occurrences 
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and if they did not deviate by <10% of the total number of sites, following the power 

analysis recommendations in Veech (2013). Pairwise combinations were visualized as 

heatmaps using ggplot2, where parasite combinations are measured from most negative 

to most positive interactions (left to right in the heatmap). Deviation from expected co-

occurrence values was plotted against observed values.  

4.6.8.6. Correlation analysis 

Correlation analysis was conducted using the corrplot package in R (Wei & Simko, 

2017). Correlations were calculated using Spearman’s nonparametric rank-based 

correlation tests to control for potential outliers and hierarchical clustering was used to 

aggregate the correlation matrix. Correlation p- and r-values and figures are available in 

Supp. Tables 4-3, 4-8:4-10, and Supp. Figure 4-3 and 4-14. Correlation values were 

considered significant if p-values were less than or equal to 0.01. Cytokine plots 

incorporating 19 cytokines across 72 Cameroonians. For the metadata correlation 

analysis, we excluded 82 samples due to null values in metadata variables (n = 492 

Cameroonians). Variables for the metadata correlation analysis were: Ants binary, Total 

Parasites, Total Parasites & HIV, Total Parasites & HIV & Blood Parasites, Total 

Parasites & Blood Parasites, Total ANTS Parasites, Height in centimeters, Weight in 

kilograms, Body Mass Index, Average Temperature, White blood cell count, Sex, 

Subsistence, Populations, Sampling site, HIV status, Neutrophile, Lymphocyte, 

Monocyte, Eosinophile, Mf. M. perstans, P. falciparum, Mf. Loa loa, W. bancrofti, 

Microfilaria spp., and Highly positive ANTS.  
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SRR1803892, SRR1803862, SRR1804618, SRR1803903, SRR1803864, SRR1804203, 

SRR1803877, SRR1804107, SRR1804009, SRR1804055, SRR1804676, SRR532163, 

SRR1804148, SRR1804756, SRR1031154, SRR1804119, SRR1803355, SRR1803358, 

SRR1804539, SRR1564387, SRR512768, SRR1803287, SRR1031102, SRR1804688, 

SRR1804086. 
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4.8. Supplemental Material 

4.8.1. Supplemental Figures 

 

Supp. Figure 4-1. Infection frequency colored by assay type 
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Supp. Figure 4-2. Positive parasite samples visualized by their qPCR cycle threshold values 

(Ct), with ANTS parasites on the top row                               
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Supp. Figure 4-3. Correlation plot between metadata variables of interest  
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Supp. Figure 4-4. Bacterial 16S rRNA alpha diversity metrics across populations and 

subsistence groups. A) Faith’s Phylogenetic Diversity for U.S. and Cameroon populations. 

B) Faith’s Phylogenetic Diversity for subsistence groups. C) Richness for U.S. and 

Cameroon populations. D) Richness for subsistence groups.  
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Supp. Figure 4-5. Most differentially abundant taxa between Bantu regions by bacterial 

phylum for A) Bantu in Northwest and East regions, B) Bantu in the South and Northwest 

Regions, and C) Bantu in the South and East Regions. 

  

   

  

 

 
 
 
 
  
 
 
  
   

 
 
 
 
 
 
 
  
  
  
 
 
 

 
 
 
 
 
 
    

 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
   

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
  
 
 
  
   

 
 
 
 
 
  
   
  
  

 
 
 
 
 
 
  
 
 
 
    

 
 

 
 
 
 
 
 
 
 
 
 
  
   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
  
 
    

  
 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
   

  
   

 
 
 
 
 
   

 
 
 
 
   

 
 
 
 
 
 
   

  
   

 
 
 
 
 
 
  
 
 
 
  
  
  
 
 
 

 
 
 
 
 
 
 
  
  
  
   

 
 
 
 
 
 
 
 
  

 
 
 
  
 

 
 
 
  
  
 
 
  
   
  

 
 
 
 
 
  
  
 
 

 
 
 
 
 
 
 
 
 
 
 
   

 
 
 
 
 
 
 
 
 
 
  
  
  
 
 
 
  
   

 
 

 
 
 
 
 
  
 
 
  
 
 
 
 
 
 
 
 

 
 
 
  
 
 
 
 
  
   

 
  

 
 
 
 
    

 
 
 
 
  
   

 
 

 
 
 
 
 
    

 
 
   

 
 
 
 
 
 
  
  
 
 
 
 
 
 
 

 
 
 
 
  
 
   

 
 
 
 
 
   

 
  
 
 
 
 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
  
   

 
 

 
 
 
 
 
 
 
 
   
 
 
  
   

 
 

 
 
 
 
 
 
    

 
 
   

 
 
 
 
 
 
    

 
 
   

 
 
 
 
 
 
  
 
 
 
  
   

 
 

 
 
 
 
 
   
 
 
 
 
  
  

 
 
 
 
   

 
 
  
   

 
 

 
 
 
  
 
 
  
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
  
  
  
 
   

 
 
 

 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
  
   

  
   

 
 
 
 
 
 
 
 
  
 
  
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  
 
 
 
 
  
  

 
 
 
 
 
 
 
 
  
 
 
 
  
 

     

      

                 
              
                
                
                  
                   
                  
                 
              

                 

                  

                 

                

      

  

   

  

  

 

 
 
 
 
  
 
 
  
   

 
 
 
 
 
 
 
 
 
   
 
 
  
   

 
 

 
 
 
 
 
 
 
 
 
  
  
  
 
 
 
  
   

 
 

 
 
 
 
    

 
 
 
 
  
   

 
 

 
 
 
 
 
 
 
 
  
 
 
 
  
  

 
 
 
 
 
  
 
  
 
 
  
   

 
 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
  
  
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 
 
  
   

 
 

 
 
 
  
  
 
 
  
   
  

 
 
 
 
 
 
  
 
 
 
 
  
  

 
 
 
 
 
 
    

 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
  
   

 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
   

 
 
 
 
   

 
 
 
 
 
  
   
  
  

 
 
 
 
 
 
 
  
  
  
 
   

 
 
 

 
 
 
 
  
 
    

  
 
 

 
 
 
 
 
   
 
 
 
 
  
  

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
  
   

 
 

 
 
 
 
 
 
 
   

 
  
   

 
 
 
 
 
 
 
 
 
 
   

 
 
 
 
 
 
 
 
  
 
  
 
 
 
 

 
 
 
 
 
   

  
   

 
 
 
 
 
 
 
  
 
 
 
    

 
 

 
 
 
 
 
 
 
  
 
   

 
 
 

 
 
 
 
 
  
  
 
 

 
 
 
 
 
 
 
  
  
  
   

     

      

                 
              
                  
                  
                
                
              

                 

                

      

                 

                 

  

   

  

  

 

 
 
 
 
  
 
 
  
   

 

 
 
 
 
 
 
  
  
  
 
 
 

 
 
 
 
 
 
 
 
 
 
  
   

 
 

 
 
 
 
  
   
  
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
   

 
 

 
 
 
 
 
 
    

 
 

 
 
 
 
 
  
 
  
 
 
  
   

 

 
 
 
 
 
 
 
 
 
  
  
  
 
 
 
  
   

 
 

 
 
 
 
   
 
 
 
 
   

 

 
 
 
 
 
 
 
  

 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
    

 
 
 
 
  
   

 
 

 
 
 
 
  
 
    

  
 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
 
 
 
 
   

  
   

 

 
 
 
 
 
  
 
 
  
 
 
 
 
 
 
 
 

 
 
 
  
  
 
 
  
   

  

 
 
 
 
 
 
 
  
  
  
   

 

 
 
 
 
 
 
    

 
 
   

 

 
 
 
 
 
 
  
 
 
 
    

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
   

  
   

 

 
 
 
 
 
 
 
 
   

 
 
  
   

 
 

 
 
 
 
 
  
 
 
 
  
  
  
 
 
 

 
 
 
 
 
 
 
 
 
   

 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
 
  
 
 
 
 
  
   

 
  

 
 
 
 
  
 
 
 
 
 
 
  
   

 
 

 
 
 
  

 
 
  
 
 
 
 
 
 
 
  

 
 
 
 
   

 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  
 
 
 
  
  

 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
  
 
  
 
 
 

     

      

                 
                
              
                   
                
                  
                  
                 
              

                 

                  

                 

                 

  

  

 



200 

 

 

Supp. Figure 4-6. Top ten most important variables in RFC from 16S rRNA V4 analysis for 

all Cameroonians with and without ANTS parasites (left), and relative abundances of RFC 

taxa visualized between positive and negative Cameroonians (right) 

 

Supp. Figure 4-7. Shotgun sequencing diversity metrics across Cameroonian populations. 

A) Simpson Index across all populations and B) Shannon index across all populations.  
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Supp. Figure 4-8. Comparison of the most abundant 15 taxa proportions in shotgun 

sequencing and 16S rRNA amplicon sequencing within each Cameroonian population  

 

 

Supp. Figure 4-9. Viral annotation from shotgun metagenomic data 

A) Taxonomy and proportion of viral reads in ANTS positive and negative subgroupings of 

each Cameroonian population. B) Taxonomy and proportion of bacteriophage reads in 

ANTS positive and negative subgroupings of each Cameroonian population. 
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Supp. Figure 4-10. Bray-Curtis dissimilarity of prokaryotic microbiomes shaded by ANTS 

positive status for A) All Cameroonian populations and B) in Bantu only.  
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Supplemental Figure 11. Top ten most significant taxa in RFCs on shotgun data for A) 

Subsistence for all Cameroonians B) ANTS infection (positive/negative) in all 

Cameroonians and C) ANTS infection (positive/negative) in Bantu only. 
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Supp. Figure 4-12. Top ten most significant taxa in RFCs on shotgun data for IL-5 
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Supp. Figure 4-13. Lactose metabolism pathways contingent on host lactase phenotype. If 

humans produce the lactase enzyme after weaning, they can metabolize lactose sugar from 

dairy. This phenotype is called lactase persistence (LP). In LP individuals (top of the dashed 

line), the disaccharide lactose will be cleaved by the lactase enzyme into monosaccharides 

glucose and galactose at the brush-border of the small intestine. Glucose and galactose are 

transferred into absorptive enterocytes, where they then move through the intestinal lumen, 

across the epithelium and enter the host bloodstream for further metabolism. If humans 

cease producing the lactase enzyme after weaning, they are not capable of breaking down 

lactose sugar in the small intestine. This phenotype is called lactase non-persistence (LNP) 

(bottom of dashed line). In this case, ingested lactose will pass through the small intestine 

and enter the large intestine. Bacteria who possess the LAC operon are capable of 

producing the enzyme β-galactosidase. Host colonic bacteria producing β-galactosidases are 

also capable of catabolizing lactose into glucose and galactose. The fermentation products of 

this reaction can produce a series of intermediate (e.g., succinate, lactate, and formate) and 

end-product metabolites (butyrate, propionate, acetate, gases CO2, H2, and CH4). 
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Supp. Figure 4-14. Correlation plots between cytokine values and pathogen variables of 

interest. Negative correlations are displayed in red and positive correlations are shown in 

blue. Color intensity and the circle size are proportional to correlation coefficients. A) 

Correlation plot of ANTS infection (“ants_binary”) with cytokines. B) Correlation plot of 

ANTS counts (“Total_ANTS”) with cytokines. C) Correlation plot of HIV status (“HIV”) 

with cytokines. D: Top ten most significant taxa in regression RFCs on shotgun data for IL-

5 cytokine values.  
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Supp. Figure 4-15. Principal Coordinates Analysis (PCoA) on A) unweighted and B) 

weighted bacterial UniFrac distances, shaded by HIV status. Data points colored by 

Cameroon subsistence groups, with filled squares denoting HIV positive individuals, for A: 

Unweighted, or bacterial presence/absence, PCoA and B: Weighted, or bacterial 

abundance, PCoA 
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Supp. Figure 4-16. Bacterial alpha diversity metrics across populations and HIV status, 

with dots representing individual samples  
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4.8.2. Supplemental tables and files 

Supplemental Tables: 

All supplemental tables are attached in the Digital Supplement named 

SupplementalTables_Ch4.xlsx. 

Supp. Table 4-1. Metadata. 

Supp. Table 4-2. Co-occurrence statistical analysis. 

Supp. Table 4-3. Correlation plots with correlation coefficients and Spearman’s 

nonparametric rank-based correlation test p-values for metadata variables. 

Supp. Table 4-4. Unweighted Adonis (PERMANOVA) statistical tests on 16S bacterial 

data. 

Supp. Table 4-5. Weighted Adonis (PERMANOVA) statistical tests on 16S bacterial 

data. 

Supp. Table 4-6. Bacterial 16S rRNA and shotgun sequencing classification and 

regression RFCs on metadata variables with model accuracy, individual taxa values in 

model importance, and taxa names. 

Supp. Table 4-7. Pathway maps from shotgun data for taxa identified in RFC analysis 

on ANTS status. 

Supp. Table 4-8. Correlation plots with correlation coefficients and Spearman’s 

nonparametric rank-based correlation test p-values for ANTS infection (positive or 

negative, “ANTS binary”) and cytokine values 

Supp. Table 4-9. Correlation plots with correlation coefficients and Spearman’s 

nonparametric rank-based correlation test p-values for total ANTS (counts of ANTS 

parasites) and cytokine values 

Supp. Table 4-10. Correlation plots with correlation coefficients and Spearman’s 

nonparametric rank-based correlation test p-values for HIV status (positive or 

negative) and cytokine values. 

Supp. Table 4-11. Odds ratios. 
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Supp. Table 4-12. Organismal source and details of V4 positive control synthetic DNA 

sequences. 

Supp. Table 4-13. Details on primers and probes used to target different parasites in 

qPCR. 

Supp. Table 4-14. Metrics from the HiSeq machine following the shotgun sequencing 

run. 

Supp. Table 4-15. Quality scores on fastq files (forward and reverse reads) across 

nucleotide reads for samples sequenced in shotgun analysis. 

Supp. Table 4-16. Reads per sample across different phases of preprocessing, including 

those that matched to the human reference sequence, which were removed from 

analysis. 
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5. Conclusions and Future Directions  

In this thesis, I characterized gut microbiome variation across diverse, rural African 

populations in three countries and spanning multiple subsistence practices. Chapter 2 

provided a background on the complex factors associated with gut microbiome 

composition across global populations, and then contextualized this background within 

the evolutionary history and contemporary health of traditional sub-Saharan Africans. 

Chapters 3 and 4 tested a multitude of these factors, including pathogens, host genetics 

and physiology, and geography, for association with the human gut microbiome. 

Importantly, the same experimental and analytic pipeline was used in each study across 

multiple populations, and the full spectrum of microbiota was interrogated in 

Cameroonians.   

In Chapter 3, 16S amplicon sequencing showed that African and U.S. gut microbiomes 

primarily differed in Bacteroidaceae and Prevotellaceae abundances and their higher 

overall diversity. However, there was a group of Botswana Bantu who were 

Bacteroidaceae high, even after controlling for age, sex, and sampling site. Overall, the 

Bantu had higher BMI than other populations tested in Tanzania and Botswana, but BMI 

did not explain the differences in the Bacteroides-high group. Botswanans had an 

enrichment of bacterial genes implicated in the degradation of xenobiotics and industrial 

pollutants. I speculated that the differences seen in these Bantu may be reflective of 

subsistence transitions and “soft” measures of industrialization that remain to be 

measured, such as increased proximity through travel to urban areas and increased 

exposure to chemicals and clinical care.  
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I found sex specific differences and a high amount of diversity in hunter-gatherer 

microbiomes, who possessed high amounts of fiber-degrading Treponema bacteria. 

Surprisingly, there were no significant differences between pastoralists and 

agropastoralists gut microbiomes, as had been originally hypothesized. Instead, some of 

the starkest differences between Botswanan and Tanzanian microbiomes stemmed from 

geography- that is, Botswanans and Tanzanians had gut microbiomes that were more 

similar to populations within their own country than populations outside their country, 

regardless of subsistence. Concordantly, the presence or absence of bacterial taxa was 

strongly associated with geography- meaning that Botswanans and Tanzanians tended to 

be colonized by the microbiota of their local geography. However, the abundance of a 

bacterial taxon was strongly associated with both geography and host genetics, which 

indicated that once established in the gut, the abundance of a taxon may be a heritable 

trait. 

In Chapter 4, I paired metagenomic sequencing, amplicon sequencing, a multitude of 

tests for pathogens, and anthropometrics to interrogate the gut microbiomes of 

Cameroonian hunter-gatherers, agropastoralists, and pastoralists with comparative 

populations from the U.S. Although blood parasitemia and HIV were considered in initial 

analyses, neither had as significant an impact on gut microbiome composition as ANTS 

parasite infection. After the gut microbiome differences associated with Cameroon versus 

the U.S. (again being a difference in Prevotellaceae and Bacteroidaceae abundance), one 

of the most statistically robust correlation between the microbiome and any of our tested 

variables was with gastroenteric parasites. In particular, a significantly co-occurring suite 
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of soil-transmitted helminths, the “ANTS” group, could be predicted with high accuracy 

using gut microbiome composition from both amplicon and shotgun sequences using 

supervised machine-learning methods. Th2 and Th1 responses varied among the sampled 

individuals, but the cytokine IL-5 was positively correlated with ANTS infection. RFC 

models implicated overlapping taxa as being highly predictive of both IL-5 levels and 

multiple ANTS categories. Whether or not these associated microbial taxa were present 

prior to infection, were introduced by the parasite, or were induced because of the 

parasite (from its own microbiota), remains an open question. The Cameroonian 

populations were sampled in the dry season through the beginning of the rainy season, 

when parasite rates increase. Thus, the infection rates and microbial correlations 

discussing in this research may underrepresent the maximum annual incidence and the 

extent of their co-association. . Longitudinally sampling the same individuals across 

multiple timepoints will help address these questions and will substantiate the effects of 

long-term inter-individual variation within the gut microbiomes of parasitized 

individuals.   

Future directions 

This research centered around amplicon and shotgun sequencing of human gut 

microbiota. Amplicon sequencing is both more cost effective and scalable; however, it 

affords little in the way of fully analyzing and categorizing genome function without 

having to resort to imputation methods, and has no way to discern lateral gene transfer or 

mutation within an amplicon sequence. Although more costly, whole genome shotgun 

sequencing methods allow the sequencing of partial to full genomes across domains of 
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life within a sample, and as such, can be useful for sequencing and annotating whole 

microbial genomes. As the cost of shotgun sequencing continues to decrease, the volume 

of studies favoring this technology instead of amplicon sequencing is bound to rise. 

Increasingly, shotgun metagenomics methods are paired with other ‘-omics technologies, 

including host metabolomics, microbial metabolomics (sometimes called meta-

metabolomics), and RNA-seq to develop an integrated understanding of total organismal 

interactions. One promising area is the use of techniques that amplify virus like particles 

within fecal DNA to yield greater viral detection on sequencing runs. Limited virome 

work has been done in Cameroon and none, as of this writing, has specifically focused on 

the human gut virome in response to industrialization and subsistence changes, or the 

virome’s associations with gastroenteric parasites. Such integrated studies have, and will 

likely continue, to change our understanding of the essential role that microbes play in 

the biology of humans.  

Furthermore, the application of novel methods to classify unknown sequences, of which 

we had many in our African populations, will expand the pangenome of contemporary 

human-associated commensal and pathogenic gut microbes (Pasolli et al., 2019). 

Improvement in next-generation sequencing and computational methods may yield 

insights into ancient human microbiota from even older timescales than can presently be 

queried, using diverse samples such as fossilized coprolites, preserved tissue (Maixner et 

al., 2016), and mineralized microbial calculus from teeth (Warinner et al., 2014). 

Integrating ancient microbiome sequencing with that of contemporary groups would 

allow the testing of hypotheses about gut microbiome evolutionary changes, including 
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timing of industrialization changes over human history, and the extent that such changes 

are globally ubiquitous.  

These integrated research studies have not yet described the endogenous gastroenteric 

human parasite microbiome, or investigated to what extent parasite microbiota may 

contribute to pathogenicity or immune response in the host. It’s unknown whether 

gastroenteric parasites themselves directly stimulate host immune responses or indirectly 

signal host immune responses through gut microbiota. If the latter, antihelminthic/anti-

parasitic treatments could be developed that target the gut microbiome as an intermediate 

step in the interruption of the parasite life cycle. Recently, the “Parasite Microbiome 

Project” was proposed to research the role of microbiota in host-parasite dynamics 

(Dheilly et al., 2017). Hopefully, projects such as these will act as a clarion call for 

research groups to develop comparable analyses across model and human systems, and 

for national agencies and foundations to prioritize the funding of these proposals.  

There is some evidence to indicate that traditional populations immigrating to the U.S. 

lose their microbial diversity almost immediately, and that this reduction in diversity is 

associated with a rise in obesity (Vangay et al., 2018). This microbial diversity, once lost, 

may not be regained in successive generations (Sonnenburg et al., 2016). Although 

overlooked in many studies of microbial diversity, the loss of both pathogenic and 

commensal eukaryotes has uncertain implications for human health. We found that gut 

microbiome composition could be used to predict commensal and pathogenic Entamoeba 

together with more accuracy than either group separately. Eukaryotes such as Blastocystis 

remain relatively unexplored in their relationship to human microbiota.  
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Finally, efforts to preserve human microbial diversity from global populations through 

biobanking initiatives are likely to gain widespread traction in the coming decade. These 

already exist within universities and some private companies, and may soon include 

traditional populations (Bello et al., 2018). Infrastructure building in industrializing 

countries, obtaining informed consent, and the returning of results to research participants 

are just the beginning of the responsibility scientists have to their research participants. 

The issue of who may own the commercial products made from traditional microbiome 

strains is ethically fraught, particularly since many traditional populations are 

marginalized, resource-poor, and may not fully understand the long-term implications of 

contributing a biobank specimen to a commercial enterprise. However, when traditional 

groups are studied, it is of critical importance to bring the voices of these communities 

into collaboration as active, informed participants in the research process, so that 

responsible research outcomes can be generated.  
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