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Free drainage of aqueous foams: Container shape effects
on capillarity and vertical gradients
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PACS. 82.70.Rr — Aerosols and foams.
PACS. 47.60.+i — Flows in ducts, channels, nozzles, and conduits.
PACS. 47.55.Mh — Flows through porous media.

Abstract. — The standard drainage equation applies only to foam columns of constant cross-
sectional area. Here, we generalize to include the effects of arbitrary container shape and
develop an exact solution for an exponential, “Eiffel Tower”, sample. This geometry largely
eliminates vertical wetness gradients, and hence capillary effects, and should permit a clean test
of dissipation mechanisms. Agreement with experiment is not achieved at late times, however,
highlighting the importance of both boundary conditions and coarsening.

Introduction. — Free drainage is the unavoidable fate of aqueous foams under Earth’s
gravity [1,2]. Because of the density mismatch between gas and liquid, the bubbles rise
and collect at the top, while the liquid falls through the random network of plateau borders
and accumulates at the bottom. This behavior can be understood in general terms via a
nonlinear partial differential “drainage equation” that expresses liquid conservation as flow
proceeds in response to gravity, capillary, and viscous forces [3-5]. However, in spite of its
obvious importance for applications, and its apparent simplicity, the problem of free drainage
in foams is not well understood yet [6]. One reason is that analytic predictions of the full
time dependence cannot be achieved unless capillary terms, the most egregious nonlinearity,
are dropped from the drainage equation [7]. This cannot be a valid approximation for short
columns, at late times, or even at early times for dry foams [6]. Another reason is that
the mechanism of viscous dissipation is not clearly established; shear flow may occur within
the plateau borders at which three films meet [3], or only within the vertices at which four
plateau borders meet [8]. Only recently have experiments been carried out systematically
as a function of uniform initial liquid fraction and sample height [6]. Even then it was not
possible to isolate and identify the individual effects of capillarity, dissipation, and potentially
coarsening, because of their strong nonlinear couplings.

In this paper we attack the free-drainage problem with an experiment designed to min-
imize capillary effects and, thereby, to isolate and identify dissipation mechanisms. This is
accomplished by altering the sample geometry in such a way that drainage may proceed with-
out vertical gradients in liquid fraction. Since the standard drainage equation applies only to
straight columns of constant cross-section, we begin by generalizing to account for arbitrary
container shape. We then develop an exact solution for special containers that flare out ex-
ponentially towards the bottom, much like the Eiffel tower. At each height, we predict, more
liquid can be passed down than received from above, so that the foam becomes uniformly
drier with time. Finally, we compare with experiments using specially constructed “Fiffel
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towers” of two different flaring lengths. At early times we find good agreement; at later times,
however, discrepancies arise due to neglect of both boundary conditions and coarsening.

Generalized drainage equation. — The basic goal of all free-drainage models is to deter-
mine the time evolution of the liquid content vs. depth, z, into the foam. For fairly dry foams,
the liquid is distributed within three distinct structures: the flat soap films that separate two
neighboring bubbles; the long Plateau Borders (PBs), of scalloped-triangular cross-section,
at which three soap films meet; and the scalloped-tetrahedral vertices at which four PBs
meet [1-3]. Ignoring numerical factors, the liquid fraction is thus ¢ ~ (R?l + Rr? + r3)/R3,
where R is the sphere-equivalent bubble radius, r is the radius of curvature of both the PBs
and vertices, and [ is the thickness of the soap films. Since | < r < R typically holds, one
gets € ~ (r/R)?, meaning that the liquid resides almost exclusively in the random network of
PBs. Within one PB, the flow speed may be deduced by the balance of gravity, viscosity and

capillarity:
lec € Oe

The value of m is set by the nature of viscous dissipation, being 1 if shear flow is primarily
in the plateau borders [3] and 1/2 if primarily in the vertices [8]. The two quantities that
carry all dimensions are a maximum characteristic flow speed, ug, and a capillary rise scale, &,
set, respectively, by the competition between dissipation and capillary forces against gravity.
These must scale as ug ~ pgR?/n and ¢ ~ 7/pgR; the precise numerical coefficients depend
on details of the film/PB/vertex geometry and the dissipation mechanism, but are not well
known [6]. And finally, e = 1 — 0.635 is a critical liquid fraction where the bubbles become
randomly close-packed spheres. This way of writing the flow speed emphasizes the role of
capillarity through the gradient term. According to eq. (1), for any dissipation mechanism
and for any sample geometry of height h, free drainage eventually stops and u — 0 when
the liquid fraction reaches a final capillary profile of (z) = e./[1 + (h — 2)/2£]? [9-12]; note
that at the bottom e(h) = &; and &/(92/9z)|p, = . Thus £ may be defined operationally as
the extrapolation length of the equilibrium capillary profile. And similarly, if the boundary is
drier than e., eq. (1) implies a larger extrapolation length is required for a no-flow boundary
condition: 5/(85/82 |boundary 5\/ €c/5|boundary

Assuming that the flow is only downwards (in the 42z direction) according to eq. (1), it
is straighforward to write a drainage equation for the behavior of (z,t) applicable for any
container shape. We simply require conservation for the total amount of liquid at depth z,
which is proportional to the product of liquid fraction, €, and the cross-sectional area, A(z),
of the container at z. After separating out the derivatives of A, then dividing by A, the
continuity equation becomes

ot 0z A dz (2)

[% + 8(%)} + [E%} =0,
where w is given by eq.( 1). The first term in brackets represents the usual drainage equation.
The dA/dz term represents the effects of container shape. It is straightforward to modify
egs. (1)-(2) for three-dimensional problems, such as lateral flow in free drainage or radial flow
in a spinning container. To our knowledge, the only prior investigation into container shape
is ref. [10], where the total liquid content was compared with that in the remaining capillary
profile to determine whether or not leakage could occur; dynamics were not considered.

Uniform column predictions. — For a column with constant cross-section, the complete
free-drainage problem may be solved only if the capillary term is dropped [13]. In this ap-
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proximation, the liquid fraction decreases from an initial value of €q according to [6]

Hym, 2 <ot .
e(z,t) =¢ (/v ’ = with v = ug(m + 1)e". 3
0= - olm+ 1)c5 Q
There is thus a drying front that travels from the top of the sample downwards at constant
speed v. Below it, the foam maintains the same initial wetness as liquid leaks out at a constant
rate. Once the front hits the bottom of the sample, the rate of drainage progressively decreases
until no liquid remains. The amount of drained liquid vs. time may be found by integration:

mLH(vt/h), vt < h,

V() Vs = { (4)

1— o (hfot)/™, vt >h,

where the final value V; equals the total amount of liquid within the sample at time zero.

Eiffel tower predictions. — Even though approximation is necessary for a uniform column,
exact analytic solution of the drainage equation can be achieved if the container shape flares
out exponentially towards the bottom, like the Eiffel tower. For A(z) = Agexplz/z], it is
simple to verify that a solution of eq. (2) exists where the capillary term, de/9z, vanishes and
where the liquid fraction thus decreases uniformly across the entire height of the sample:

e(z,t) = eo(1 4 t/tg) V™, with ty = 2o/ (uogmell®). (5)
The corresponding volume of drained liquid is simply
V()/Vi=1—(1+t/tg)~ /™. (6)

At short times, both e(z,t) and V(t) vary linearly with ¢. At long times, they exhibit power
law asymptotes with an exponent that depends on dissipation mechanism. Note that neither
eq. (3) nor eq. (5) satisfies an extrapolation or ¢ — ¢, boundary condition at the bottom,
z = h. Therefore, these predictions neglect a possible delay in onset of leakage at short times
and the final wetness profile at long times. Such capillary effects may be especially important
for dry foams and short columns, but can be handled only by numerical solution.

Ezperiments. — Foams are produced using a turbulent mixing technique described earlier
[6]. Tt rapidly provides large volumes of foam, enough to fill our tanks in less than 1 minute,
with any initial liquid fraction desired in the range 3% < ¢ < 45%. Here the gas is Ny, and the
liquid is water with 0.4% a-olefinsulfonate by weight. The bubble size distribution is slightly
polydisperse with an average diameter of about 110 um, independent of 3. The polydisersity
does not noticeably change with either drainage or coarsening. Also as before [6], the viscous
flow speed and capillary length scales are, respectively, of order ug = 0.05 cm/s and £ ~ 4 cm.
At time zero such foams are flowed directly into one of three different containers, all with
the same thickness of 1.25 ¢cm and the same height of h = 70 cm. The first is rectangular,
for reference, with a constant width of 25 cm. The other two have the same 25 cm width at
the bottom, but flare out exponentially from a smaller width at the top according to either
zop = 25 or 46 cm. These “Eiffel towers” can also be inverted for additional shape variation
(though egs. (5)-(6) apply only for zg > 0).

The importance of container shape may be demonstrated by differences in drainage curve
data, V(t)/Vs vs. t, for foams with the same initial liquid fraction of 9 = 0.36 (close to
gc). The results in fig. 1(a) show that drainage is initially most rapid in the Eiffel tower with
zo = 25 cmy; it is initially slowest when this tank is inverted. For zg = 46 cm the shape variation
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Fig. 1 — Drainage curves of a foam with 9 = 0.36, for a rectangular tank and two Eiffel towers (zo =
25 and 46 c¢m) in both upright and inverted configurations.

is more gentle, and differences are correspondingly reduced; results in fig.1(b) for both upright
and inverted configurations are closer to those for the rectangular tank. At late times the final
drainage behavior V (t)/V; — 1 is fastest, surprisingly, in the inverted Eiffel tower. One might
have thought that the upright configuration should drain more rapidly, because at the bottom
there is both more liquid at time zero and more PBs connected in parallel. While this may
help at short times, the inverted configuration ultimately wins because the draining liquid is
channelled into progressively fewer and fewer PBs, which then become thicker and allow liquid
to pass through with even less viscous resistance. In fact, we observe that the wetness can even
exceed e, over an extended region near the bottom, as is evident from a rapid turbulent-like
seething of the bubbles. It is amusing to demonstrate this phenomenon by vigorously shaking
soapy water in a flask and allowing it to drain in either upright or inverted configurations.
Before comparing drainage curves with eqs. (4) and (6), we first investigate whether there
exists a domain of validity where neither wetness gradients nor coarsening are important.
This is done by uniformly illuminating the sample and measuring the diffusely transmitted
light vs. position with a CCD camera. This signal increases monotonically as the bubbles
become drier via drainage, or larger via coarsening, though the precise calibration is not yet
known. Results at several foam ages are shown in fig. 2 for different container shapes and
initial degrees of wetness. For a wet foam in the rectangular tank, fig. 2(a), we can see the
expected free-drainage behavior. Namely, a dryness front propagates downward while the rest
of the foam maintains the same initial wetness; capillarity serves to round the front and to
create the final wetness gradient. For a wet foam in the zg = 25 cm Eiffel tower, fig. 2(b),
by contrast, we observe that the initial decrease in liquid content is uniform across the entire
height of the sample. In accord with the prediction of eq. (5), there are no wetness gradients.
At longer times, however, a z-dependent capillary profile eventually develops, beginning first
at the bottom of the tank where €(h) = ¢, is always maintained. For the zy = 46 cm Eiffel
tower, transmission data (not shown) reveal a drying front at the top and a uniform drying at
the bottom. This hybrid behavior arises because the height is not great enough compared to
2z so that the width at the top becomes small; Eiffel towers must not be truncated if egs. (5)-
(6) are to apply. For the dry foams, figs. 2(c)-(d), we observe qualitatively different behavior.
Here, the total initial volume of liquid in the foam (proportional to either egh or £9zp) is not
great compared to that needed for the final capillary profile (¢.£). Thus, the liquid can leak
out only as coarsening proceeds and the capillary length decreases in inverse proportion to the
average bubble size. In both rectangular and exponential tanks, the liquid content decreases
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Fig. 2 — Evolution of diffusely transmitted light (arbitrary units) vs. depth for four different cases:
wet €9 = 0.36 and dry €9 = 0.06 foams in rectangular and zp = 25 cm Eiffel tower tanks, as labeled.
In each plot, the curves at which 1/2 and 3/4 of all liquid has drained are highlighted. The arrow
indicates the direction of time. In minutes, the specific time sequences are (a) 0.5, 3.25, 5, 7.25, 9.5,
11, 12.5, 13.25, 14, 15, 17.75, 20, 24.25, 27, 29.75; (b) 0.5, 3.25, 5, 7.5, 9.5, 12, 14, 15.75, 17, 19, 23.25,
27, 31; (c) 0.5, 3.5, 4.75, 6, 7.75, 8.5, 9.5, 10.25, 11, 12, 13.75, 15.75, 18, 20.25, 22.5, 24, 27, 32; and
(d) 0.5, 2.25, 6, 7.25, 8.75, 9.75, 12, 13.5, 15, 20.5, 23.75, 31.

uniformly at short times, becoming slightly drier at the top and bottom, respectively, before
developing a recognizable capillary profile.

According to fig. 2, quantitative comparison of the drainage curves with analytic predic-
tions may only be made for the wet ¢g = 0.36 foam at short times in the rectangular and
zo = 25 cm Eiffel tower tanks. Equations (4) and (6) predict that V(¢)/V; should initially
grow in proportion to time with slopes of ugel*/h and upel" /2o, respectively. As can be seen
by the dashed lines in fig. 3(a)-(b), the volume of drained liquid indeed grows linearly at short
times, with slopes of 1/(20 min) and 1/(12 min), respectively. The ratio of these slopes is
0.6, which is somewhat larger than the expectation z9/h = 0.4. One possible source for this
discrepancy is that the clear division of the foam microstructure into films + plateau borders
+ vertices, as assumed in the drainage equations, is valid only for rather dry foams ¢ < 0.1 [5].

At longer times, we may investigate the breakdown of theory by plotting the full predictions
using the initial slopes already extracted and quoted above. These comparisons are shown in
fig. 3 for both m = 1 (PB dissipation) and m = 1/2 (vertex dissipation). Noticeable deviation
sets in by the time V' (¢)/Vt rises to 1/2, which corresponds reasonably well with the onset of
a capillary profile in the diffuse transmission data of fig. 2. This effect could be captured by
numerical solution of the drainage equation using the proper boundary conditions. However,
capillarity pushes liquid from wetter to drier regions and should hence slow down the leakage;
therefore, it cannot fully account for our drainage curve data, which rise faster than expected
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Fig. 3 — Drainage curves for wet foams, €9 = 0.36, in rectangular and zop = 25 cm Eiffel tower tanks,
as labeled. Dashed lines show the initial linear behavior; the dotted and solid curves continue from
the linear growth according to the full predictions with, respectively, m = 1/2 for vertex-dominated
dissipation and m = 1 for PBs-dominated dissipation.

towards complete drainage at late times. This behavior, we believe, is due to coarsening. As
the foam drains, there is less liquid between neighboring bubbles and the rate of gas migration
thus increases. As the average bubble size grows, the viscous flow speed increases according to
eq. (1) and the rate of drainage thus increases even further. This scenario is revealed simply
by visual inspection of surface bubbles vs. time: in the middle of the tank, the average bubble
size grows to about 1 mm after 30 minutes. It can also be seen in the relatively large change
in diffuse transmission, fig. (2), at late times after about 3/4 of the liquid has drained; there,
the light transmission increases more because the average bubble size is growing rather than
because the liquid content is decreasing. Coarsening also explains two other features of our
drainage curves. First, the onset of discrepancy is not as severe for the straight column since
the lower portion maintains its wetness longer and hence coarsens more slowly. Second, the
final approach V(t)/V; — 1 is achieved via evolution of the capillary profile by coarsening,
and is hence almost identical for both tanks (the remaining liquid is proportional to £.£ and
decays as 1/R ~ 1/+/t according to the usual [14] growth law).

Conclusions and perspectives. — We have proposed a generalized version of the drainage
equation that accounts for arbitrary container shapes. For the special case of free drainage
in an exponential “Eiffel Tower”, we have solved it analytically neglecting only capillarity in
the boundary conditions. By contrast with a straight column, there is no drying front and
vertical gradients are suppressed at early times. Experiments confirm this picture and provide
time scales for the initial growth that are in good accord with those for rectangular columns.
However, at late times and for dry foams, serious discrepancies arise due to the neglect of
capillarity and coarsening. The former may be handled by numerically implementing the
proper boundary conditions. It may be possible to handle the latter via the bubble-size
dependence of u in eq. (1). Since it is unavoidable that foams coarsen more rapidly as they
become drier, this is important for an understanding of the free-drainage problem in general.
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