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Posttranscriptional chemical modification of RNA bases is a widespread and physiologically relevant regulator of RNA
maturation, stability, and function. While modifications are best characterized in short, noncoding RNAs such as tRNAs,
growing evidence indicates that mRNAs and long noncoding RNAs (lncRNAs) are likewise modified. Here, we apply our high-
throughput annotation of modified ribonucleotides (HAMR) pipeline to identify and classify modifications that affect Watson-
Crick base pairing at three different levels of the Arabidopsis thaliana transcriptome (polyadenylated, small, and degrading
RNAs). We find this type of modifications primarily within uncapped, degrading mRNAs and lncRNAs, suggesting they are the
cause or consequence of RNA turnover. Additionally, modifications within stable mRNAs tend to occur in alternatively spliced
introns, suggesting they regulate splicing. Furthermore, these modifications target mRNAs with coherent functions, including
stress responses. Thus, our comprehensive analysis across multiple RNA classes yields insights into the functions of
covalent RNA modifications in plant transcriptomes.

INTRODUCTION

Across prokaryotes and eukaryotes, RNA chemical modification is
both widespread and physiologically relevant. While modifications
are best characterized in noncoding tRNAs and rRNAs, mRNAs
have also been found to contain N6-methyladenosine (m6A)
(Horowitz et al., 1984; Dominissini et al., 2012; Meyer et al., 2012),
5-methylcytosine (m5C) (Squires et al., 2012), inosine (I) (Li et al.,
2009;Wulff et al., 2011), and pseudouridine (Y) (Carlile et al., 2014;
Schwartz et al., 2014b). Additionally, there is a growing body of
evidence to support the functional significance of RNA mod-
ifications within mRNAs. For instance, in mouse (Mus musculus),
spliceosome assembly disruption and changes in mRNA locali-
zation were observed upon knockdown of the oxidative deme-
thylase ALKBH5, which removes methyl groups from RNA (Zheng
etal., 2013). Furthermore, thepresenceofcertainmethylatedbases
in human cell lines anticorrelates with mRNA stability (Schwartz
etal.,2014a).However,codingandnoncodingRNAslikelyshare the
same modifying enzymes (Lee, Kim, and Kim, 2014), and specifi-
cally testing the function of mRNA modification through genetic
ablation of these proteins is difficult. Thus, the functional con-
sequences of most mRNA modifications are still unclear.

The best characterized mRNA modification to date is m6A,
which is enriched around the stop codon, suggesting interplay
with the translation and degradation machinery (Meyer et al.,
2012). This mark is also enriched at alternatively spliced introns
and over long exons (Dominissini et al., 2012), suggesting a role in
modulating splicing.Moreover, Ymodifications in tRNAs stabilize
secondary structures (Sundaram et al., 2000; Kierzek et al., 2014)
and may do the same in mRNAs in which they are incorpo-
rated (Carlile et al., 2014; Schwartz et al., 2014b). Similarly, as
tRNA modifications are known to direct cleavage of inter-
nally transcribed spacers, mRNA modifications could likewise
direct transcript cleavage and subsequent turnover (Hughes and
Ares, 1991;Kiss-Lászlóet al., 1996). Thus,chemicalmodifications
likely have widespread and varied effects across the eukaryotic
transcriptome. However, our knowledge of the mRNA modifica-
tion sites and their functional consequences is currently limited.
Here, we comprehensively identify mRNA modifications using

high-throughput annotation of modified ribonucleotides (HAMR)
(Ryvkin et al., 2013). HAMR exploits the tendency of certain
covalent RNA modifications, including those known to be com-
mon in tRNAs, to interfere with Watson-Crick base pairing and
cause reverse transcriptase (RT) to stall and/or misincorporate
nucleotides during reverse transcription. This in turn produces
a characteristic pattern of RT mistakes, which present in deep
sequencing as mismatches from the reference genome. Working
on this premise, HAMR tabulates high confidence (quality score
>30, error probability <1/1000) mismatches and tests for signifi-
cance by (1) ruling out that the changes are merely sequencing
error and (2) excluding single nucleotide polymorphisms (SNPs) or
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editing sites (Figure 1). To this end, we focus on modification-
induced errors that have a trinucleotide substitution pattern and
do not have a clear bias toward any single base misincorporation
in order to avoid SNPs and sites of RNA editing (Ryvkin et al.,
2013). These stringent filtering steps require high read coverage,
and as a result, HAMR is designed to minimize false positives at
the expense of likely missing a portion of the modified tran-
scriptome. Moreover, modifications such as m6A, which do not
significantlyaffect theWatson-Crickbase-pairingedge,will notbe
detected by HAMR. Nonetheless, this algorithm provides a high-
throughput, robust, and generalized in silico method to detect
RNA modifications that affect Watson-Crick base pairing in eu-
karyotic transcriptomes. Such HAMR-predicted modifications
include but are not limited to 3-methyl cytosine (m3C), 1-methyl
guanosine (m1G), and 1-methyl adenosine (m1A) (Ryvkin et al.,
2013). This algorithm also incorporates a validated (Ryvkin et al.,
2013) machine learning step into the analysis that allows pre-
diction of modification identity (e.g., m3C) based on the specific
trinucleotide substitution pattern that we observe at every
HAMR-predictedmodification site. This analytical approach is
basedonour previousobservation that each typeof covalentRNA
modification directs a distinct trinucleotide RT incorporation
pattern based on their differential base-pairing properties (Ryvkin
et al., 2013).

Here,weapply theHAMRanalysispipeline toRNAsequencing
data for the poly(A)+ and small portions of the transcriptome
(RNA-seq and smRNA-seq, respectively), as well as uncapped
anddegradingRNAsviaglobalmappingof uncappedandcleaved
transcripts (GMUCT) (Gregory et al., 2008; Willmann et al., 2014).
We identify, classify, and functionally characterize RNA mod-
ifications inArabidopsis thaliana and then test whether the results
generalize to human RNAs (Figure 1). In total, our results provide
a global viewofHAMR-predictedmodifications across eukaryotic
transcriptomes, allowing us to begin teasing apart their functional
significance in posttranscriptional regulation.

RESULTS AND DISCUSSION

Using HAMR to Predict RNA Modification Sites That Affect
the Watson-Crick Base-Pairing Edge throughout the
Arabidopsis Transcriptome

In general, uncapped fragments derived frommRNAs in eukaryotic
transcriptomes are generated by decapping or endonucleolytic
cleavage, and these RNA fragments are then rapidly recognized
and degraded by 59 to 39 (e.g., XRN4) (Gazzani et al., 2004) and 39
to 59 (e.g., exosome) (Chekanovaet al., 2007) exonucleases. Thus,
they represent thedegrading fractionof the transcriptome.Through
GMUCT (Gregory et al., 2008; Willmann et al., 2014), we surveyed
the polyadenylated, uncapped, degrading transcriptome of un-
opened Arabidopsis flower buds. We then paired these data with
datafromsmallRNAsequencing(smRNA-seq)andpoly(A)+-selected
RNA sequencing (RNA-seq) of this same tissue to identify HAMR-
predictedmodifications atmultiple levelsof theplant transcriptome
(Figure 1).

To do this, we ran the HAMR pipeline on the set of uniquely
mapping reads from these three RNA-seq approaches (see

Methods). From this analysis, we observed differing numbers of
HAMR-predictedmodifications for different classes of RNA at the
three different levels of the transcriptome. For instance, we found
that long noncoding RNAs (lncRNAs) and small nucleolar RNAs
(snoRNAs) contained the most HAMR-predicted modifications

Figure 1. Study Design to Comprehensively Identify Covalent, HAMR-
Predicted Modifications in the Arabidopsis Transcriptome.

smRNA, poly(A)+-selected RNA, and poly(A)+-selected GMUCT (Gregory
et al., 2008; Willmann et al., 2014) libraries were constructed in parallel.
GMUCTspecifically captures transcriptswithouta7-methylguanosinecap
(light-blue circles). The HAMR analysis pipeline was then run on the re-
sultingdatasets.Specifically, readsaremapped to their referencegenome,
and mismatches (red bases) for each base (bolded bases) are tabulated.
After two rounds of hypothesis testing, predicted modifications are then
classified, based on a training set of known tRNA modifications from
S. cerevisiae.
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within the GMUCT data set, while a few and none were identified
when analyzing the smRNA- andRNA-seq data sets, respectively
(Figure2A). These results suggest that theremaybea linkbetween
HAMR-predictedmodifications and degradation for lncRNAs and
snoRNAs. In contrast, HAMR-predicted modifications in micro-
RNAs (miRNAs) were most abundant within smRNA-seq com-
pared with GMUCT and RNA-seq data sets (Figure 2A). Among
mRNAs, we observed an average of 5368 HAMR-predicted
modifications in two replicates of GMUCT data. In contrast, an
averageofonly 58modificationswasobserved in two replicatesof
smRNA-seq and 27 in four replicates of RNA-seqdata (Figure 2B).
Thus, we observed a strong enrichment of HAMR-predicted
modifications within degrading mRNAs compared with stable,
poly(A)+ mRNAs (hereafter stable mRNAs) and mRNA-derived
smRNAs (Figure 2B). Interestingly, this strong enrichment of
modifications within uncapped, degrading mRNAs compared
with stable mRNAs or mRNA-derived smRNAs was also seen
using the same threeRNAsequencingdata types from twohuman
cell lines (ENCODEProject Consortium, 2012; Huelga et al., 2012;
Willmann, Berkowitz, and Gregory, 2014) (Supplemental Figures
1A and 1B), suggesting that our observations generalize to other
eukaryotic organisms.

Since the statistical power of HAMRdepends upon sequencing
depth (Ryvkin et al., 2013), we took several approaches to ensure
that our observed differences in HAMR-predicted modifications
were not artifacts of varying sequencing coverage of tran-
scriptome nucleotides, spurious read mapping, or differential
processing of sequencing reads that are a consequence of the
differential library preparations necessary for each sequencing
technique. To first test that potential differences in sequencing
coverage of transcriptome nucleotides between libraries was not
leading to the differential identification of HAMR-predicted mod-
ifications, we downsampled all libraries to equal numbers of
uniquelymapping reads.We then looked at total sequencing read
coverage of each nucleotide of the Arabidopsis transcriptome.
From this analysis, we found that different libraries displayed
varying distributions of read coverage, notably with GMUCT and
RNA-seq skewed toward higher read coverage, with GMUCT
havinga fewnucleotides that hadextremelyhigh readdepth,while
smRNA-seqshowed loweroverall coverage (Supplemental Figure
2A). This suggests that GMUCT could havemore RNA bases with
sufficient read coverage for HAMR to call a modification site
(HAMR-accessible bases) than smRNA and to a lesser extent
RNA-seq. From this analysis, we also found that for all three
sequencing approaches, the minimum coverage at a HAMR-
predicted modification site was 50 reads covering that base
(Supplemental Figure 2A, black dashed line), so we defined
HAMR-accessible bases as those with at least this level of depth.
We then normalized total modification number to total HAMR-
accessible bases for the data sets from all three sequencing
approaches and found that mRNAs still have an average of 1207
HAMR-predicted modifications per million accessible bases in
GMUCT, compared with 602 in smRNA-seq and 15 in RNA-seq
(Supplemental Figure2B). This jump in thenumberofsmRNA-seq-
predicted modifications suggests that mRNA-derived smRNAs
may have more modifications that are simply not called by the
HAMR pipeline due to the generally low levels of small RNA
processing from mRNAs (Supplemental Figure 2A). Since this

normalization might not fully control for the proportion of nu-
cleotides that have very high read depth in GMUCT experiments
comparedwith both RNA- and smRNA-seq (Supplemental Figure
2A, right-hand side of the graph), we also defined a set of different
coverage thresholds (1000, 500,250, and100 reads), abovewhich
modifications were ignored (Supplemental Figure 2C). Again, the
major trends in numbers of modifications were not altered, even
when setting the upper thresholds to relatively low numbers of
sequencing reads (e.g., 100 reads) (Supplemental Figure 2C). This
discrepancy in HAMR-predicted modifications between the dif-
ferent sequencing approaches was also still observed even after
combining this upper limit thresholding with normalization to
HAMR-accessible bases (Supplemental Figure 2D). In total,
these results indicate that the overall differences in HAMR-
predicted modifications between the three RNA-seq approaches
are not a consequence of differential sequencing depth at RNA
nucleotides.
We had previously demonstrated that HAMR results were

consistent across an array of high-throughput sequence read
mapping software programs even when analyzing the highly
repetitive human transcriptome (Ryvkin et al., 2013). However,
certain high-throughput sequence read mapping software may
produce spurious uniquely mapping reads without exhaustively
searching for matches across the whole transcriptome. There-
fore, althoughArabidopsismRNAsdonotgenerally contain large
amounts of repetitive sequence, we still controlled for this
possibility by repeating our analysis on repeat-masked (A.F.A.
Smit, R. Hubley, and P. Green, 2013; RepeatMasker Open-4.0,
http://www.repeatmasker.org) data and observed no change to
the number of HAMR-predicted modifications for GMUCT or
RNA-seq and only a slight reduction in the number of mod-
ifications on smRNAs (Supplemental Figures 2E and 2F, repeat-
masked data). Finally, the different types of RNA-seq libraries
weresubjected todifferent adaptor trimmingstrategiesbasedon
the relation between sequencing read size (50 nucleotide reads)
and expected fragment size (see Methods). To address this, we
ran the uniform strategy of concatenating all reads (reads with
and without adapter trimming) for all three library types. Once
again, treating all libraries the same and analyzing all reads
together did not alter the observed trends in differential modi-
fication calls between the three different sequencing libraries
(Supplemental Figures2Eand2F, all concatenateddata). In total,
these control analyses verify that uncapped, degrading mRNAs
are strongly enriched for RNA modifications that affect the
Watson-Crick base-pairing edge compared with stable mRNAs
or mRNA-derived smRNAs.

Validation of HAMR-Predicted Modification Sites in the
Arabidopsis Transcriptome

Many of the covalent modifications within yeast (Saccharomyces
cerevisiae) tRNAs have been identified and characterized through
years of extensive research (Björk et al., 1987; Grosjean et al.,
1997; Hopper and Phizicky, 2003; El Yacoubi et al., 2012;
Machnicka et al., 2013). For this reason, the machine learning
algorithm that HAMR uses to classify the type of modification
occurring at each predicted site uses the substitution patterns
from a yeast smRNA-seq data set at known tRNA modification
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sites as its training set (Ryvkin et al., 2013). Furthermore, through
homology comparisons of yeast tRNAs to those from other or-
ganisms, the orthologous modification sites can be identified
(Ryvkin et al., 2013). Therefore, as a positive control verifying that
HAMR was detecting bona fide modification sites in the Arabi-
dopsis transcriptome, we derived “known” Arabidopsis tRNA
modification sites as those with extensive homology to known
modified sites in S. cerevisiae. Specifically, the yeast data were
compiled from the Modomics database (Dunin-Horkawicz et al.,
2006) and aligned to Arabidopsis tRNAs. Modifications within
regions of homology were mapped from yeast to Arabidopsis
using a custom pipeline incorporating tRNAscan (Lowe and
Eddy, 1997) and LocARNA (Will et al., 2007) (see Methods)
(Supplemental Files 1 and 2). As tRNA loci are highly duplicated,
we then filtered our two smRNA-seq data sets to allow multi-
mapping reads that align exclusively to tRNAs (see Methods).
Additionally, we cannot unambiguously determine modifications

at specific tRNA loci, so we performed all analyses at the level of
tRNA family consensus sequences. After running HAMR on two
replicates of smRNA-seq,we observed that 23 of 48 (48%) and 24
of 52 (46%) of predicted modification sites correspond to these
well-defined modification sites. This level of overlap between
HAMR-predicted and known modification sites is significantly (P
value <1 3 1027, Fisher’s exact test) higher than random sam-
pling alone (;11% success rate) (Supplemental Figure 3A). To
ensure these results are not specific to our library preparation, we
also analyzed a species- and tissue-matched smRNA data set
generated by another group (Li et al., 2015) and observed com-
parable levels of known modification sites identified in tRNAs (P
value <1 3 1027, Fisher’s exact test) (Supplemental Figure 3B).
Finally,we tested the truepositive rate versus the false positive rate
at various threshold settings (receiver operating characteristic) for
HAMR identification of these known tRNA modification sites (see
Methods), which confirmed the ability of HAMR to identify known

Figure 2. HAMR-Predicted Modifications in Arabidopsis Mark Uncapped and Alternative Spliced Transcripts.

(A) and (B) Total number of modifications predicted in (A) noncoding RNAs (lncRNAs [blue bars], miRNAs [magenta bars], and snoRNAs [green bars]) and
coding mRNAs are plotted for each data set (B).
(C) Relative transcript location of predicted modifications in mRNAs. Modifications that lie outside of mRNAs are excluded from this analysis.
(D) Localization of modifications to alternative versus constitutive introns. Enrichment was calculated with a Fisher’s exact test. Asterisks
denote P value <1 3 10212. Analysis was performed using transcriptome annotations from TAIR10 (solid bars) or AtRTD (hatched bars) (Zhang
et al., 2015).
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modification sites in Arabidopsis tRNAs (area under curve = 69.87)
(Supplemental Figures 3C and 3D). Thus, HAMR identifies a sig-
nificant number of tRNA modification sites in the Arabidopsis
transcriptome with known homology to yeast, demonstrating its
predictive power for studying these covalent additions to plant
RNA.

HAMR takes advantage of the propensity of RT to mis-
incorporate nucleotides at modification sites that affect the
Watson-Crick base-pairing edge. However, another conse-
quence of RT encountering such a modification is to stall or
terminate elongation and fall off the template (Foley et al., 2015).
For this reason, such blocks to RT extension have been used for
previous identification of covalent modifications to tRNA mole-
cules (Woodson et al., 1993; Talkish et al., 2014). Therefore, to
further validate HAMR-predicted modification sites in Arabi-
dopsis mRNAs, we tested whether these specific nucleotide
positions coincide with RT stalls that were recently identified in
the control samples for dimethyl sulfate (DMS) sequencing
(Structure-seq) experiments (Ding et al., 2014). Unlike our RNA-
seq data, these Structure-seq libraries are not fragmented, and
they unambiguously define RT stalls as the very 59 nucleotide of
their sequencing reads (Ding et al., 2014). Importantly, these
Structure-seq control data sets measure RT extension inhibition
in the absence of DMS treatment, which indicates they are un-
related to the addition of exogenous DMS adducts and are
specifically measuring blocks to normal RT extension by the
presence of an RNA modification that affects the Watson-Crick
base pairing edge. Using this approach, we found that HAMR-
predicted modification sites in the degrading fraction of mRNAs
identified by GMUCT significantly coincide with RT extension
inhibition sites (all P values <1 3 10220, Fisher’s exact test)
(Supplemental Figure4A) andoverlapwith agreater number ofRT
stalls per site (all P values <1 3 10239, Wilcoxon rank sum test)
(Supplemental Figure 4B), as measured in the DMS control ex-
periments compared with a background of all mRNA bases. In
total, these findings provide strong evidence that HAMR detects
bona fide modification sites in Arabidopsis mRNAs and that this
class of covalent additions is enriched in the degrading fraction of
these molecules.

Characterization of the HAMR-Predicted Modifications in
the Arabidopsis Transcriptome

Tobetter understand thepotential functionsofHAMR-predicted
RNA modifications, we determined whether they were enriched
in any particular regions of Arabidopsis mRNAmolecules. From
this analysis, we found thatmodifications called usingHAMRon
Arabidopsis GMUCT data tended to localize within the coding
sequence and 39 untranslated region (UTR), whereas HAMR-
predicted modifications from the RNA-seq data sets were
almost exclusively localized to introns (Figure 2C). Regarding
the human transcriptome, we found that these results for the
GMUCTandRNA-seqdata sets areentirely recapitulated inboth
HEK293T (human embryonic kidney cells) and HeLa cell lines
(Supplemental Figure 5A). Furthermore, modifications in
mRNAs called by HAMR using the HEK293T and HeLa smRNA-
seq data set aremostly found inmRNA introns, where themajority
of human miRNA stem-loop precursors are known to reside

(Supplemental Figure 5A). In contrast, modification sites in
Arabidopsis mRNAs identified by HAMR using smRNA-seq
data display no real bias toward any specific mRNA region
(Figure 2C), consistent with the relative paucity of miRNA
precursors residing in Arabidopsis introns or other mRNA
sequences.
Intriguingly, a closer inspection of all of HAMR-predicted

modification sites in stablemRNAs identifiedusing theRNA-seq
data sets from both Arabidopsis and human revealed that these
covalent additions are significantly enriched (all P values <1 3
10212, Fisher’s exact test) in or near introns annotated as being
alternatively spliced (Figure 2D; Supplemental Figure 5B).
Analysis of an expanded Arabidopsis transcriptome annotation
(atRTD) (Zhang et al., 2015) yields comparable results (Figure
2D). Furthermore, seven modification sites identified with both
RNA-seq replicates 1 and 2 lie within the splice donor site (first
six nucleotides) of introns within AT1G43710, AT4G19110,
AT4G25080, and AT4G38510 (Figure 3A). It is worth noting that
even those that are currently annotated as constitutively spliced
introns are most likely novel retained intron events given that
they can be captured by a poly(A)+-selected RNA-seq ap-
proach. In support of this idea, over 50%of theHAMR-predicted
modification sites lie within the Arabidopsis ribosomal protein
L3 gene (AT1G43170), which has nine annotated isoforms and
a known retained intron event within the 39 UTR, as well as
a novel retained intron in the 59 UTR identified by our analysis
here (Figure 3A). Similar examples exist for other transcriptswith
modifications predicted by HAMR using the RNA-seq data
(Figure 3A) but are less common for transcripts with mod-
ifications predicted by analyzing data from the GMUCT ap-
proach (Figure 3B).
Wealsoobservedasignificantenrichment (Pvalue→0,Fisher’s

exact test) of HAMR-predicted modifications identified in human
stable mRNAs using the human RNA-seq data within introns that
were annotated to be alternatively spliced (ENCODE Project
Consortium, 2012; Huelga et al., 2012). However, this bias was
either much less common or was not observed for HAMR-
predicted modifications identified using the smRNA-seq data
from the two different cell lines for this analysis (Supplemental
Figure5B). In total, ourfindings forHAMR-predictedmodifications
identified in both Arabidopsis and human stable mRNAs using
RNA-seq data suggests a role for this class of modifications in the
regulation of alternative splicing. This hypothesis is further sup-
ported by the fact that most of these modification sites are
proximal to the splice donor/acceptor sites of these alternatively
spliced introns (Figures 3C to 3E; Supplemental Figures 5C to 5E),
withsome lyingdirectlywithindonorsitesequences. In total, these
results reveal that modifications in uncapped, degrading mRNAs
are prevalent in the coding sequence and 39 UTR, while those in
stable transcripts are associated with specific alternative splicing
events in both plants and humans. It is noteworthy that another
RNA chemical modification, m6A, has also been found to cluster
near specific alternatively spliced exons and introns (Dominissini
etal., 2012). Taken together, thiscombinationoffindingssuggests
that in general, RNA modifications in stable mRNAs may play
a significant role in regulating the processes of alternative splicing
in eukaryotic transcriptomes. This hypothesis will require further
testing.
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Figure 3. HAMR-Predicted Modifications Mark Various Transcriptome Features.

(A) HAMRmodifications predicted in three specific Arabidopsis transcripts with HAMR-predicted modifications identified by analyzing GMUCT data sets
(uncapped RNAs).
(B)FivespecificArabidopsis transcriptswithHAMR-predictedmodifications identifiedbyanalyzing theRNA-seqdatasets (stablemRNAs). Forboth (A)and
(B), the vertical dashed, black lines indicate the relative position of each modification. The thickness of the lines indicates the number of modifications
clustered at the specified positions, with thicker and thinner lines indicating more or fewer, respectively. In plus strand transcripts, relative position
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Uncapped and Stable mRNAs Contain Different Proportions
of Specific RNA Modifications

Asdescribedabove, theHAMRanalysispipeline includesastep to
determine the actual modification at each predicted site based on
a machine learning approach where known modification sites in
yeast tRNAs are used as the training set (Ryvkin et al., 2013). As
a first test that this approach could identify the actualmodification
at predicted sites in Arabidopsis, we tested if the classifier would
call the correct identity at “known” modification sites as de-
termined by homology with yeast tRNAs (Supplemental Figures
3A and 3B). From this analysis, we found that the HAMR modi-
ficationclassifiercorrectlypredicted theexactmodification typeat
;50% of these known modification sites in Arabidopsis tRNAs
(Supplemental Figure 3D and Supplemental Table 1). Therefore,
wewerecomfortable using this approach todetermine the identity
of the specific modifications predicted using the three different
RNA-seq approaches.

Using this machine learning-based classifier (Figure 1), we
identified a wide range of modification types in both noncoding
(Figure 4A) and coding RNAs (Figure 4B). Interestingly, the
modification types between different classes of RNAs (lncRNAs,
miRNAs, snoRNAs, and mRNAs) were quite distinct in their total
quantities, but in generalmostly consisted of the same few typesof
modifications. The most common types of modifications that
HAMRcoulddistinguishwerem3C,Y,m1A,m1G,dihydrouridylation
(D), N6-isopentenyladenosylation (i6A), and threonylcarbamoyla-
denosylation (t6A). In lncRNAs, D and Y sites were only identified
for HAMR-predicted modification sites found with GMUCT data
(Figure 4A), while m1G, i6A/t6A, m3C, and m1A sites were found
using bothGMUCT and smRNA-seq data. InmiRNAs,we revealed
that Y, m1A, i6A/ t6A, and m2G are only observed in smRNA-seq
data,but themodificationsites identifiedwith theGMUCTdatawere
classified mostly as m1G or D (Figure 4A). For snoRNAs, we un-
covered only a single predicted m3C site in both replicates. Con-
versely, HAMR-predicted modification sites for the GMUCT data
sets were a mix of m1A, i6A/t6A, D, Y, and m3C (Figure 3A). In total,
these results reveal that different collections of modifications that
affect Watson-Crick base pairing are found in noncoding RNAs,
including lncRNAs, that have been processed into smRNAs
compared with those that are uncapped.

In coding mRNAs, we found that the identified modifications
included previously characterized adenosine methylation (m1A)
andYsites (Squires et al., 2012;Carlile et al., 2014; Schwartz et al.,
2014b), as well as novel cytosine (m3C) and guanosine methyl-
ation (m1G), dihydrouridylation (D), N6- isopentenyladenosylation
(i6A), and threonylcarbamoyladenosylation (t6A) (Figure 4B;
Supplemental Figure 6). As in noncoding RNAs, the distribution of
thesemodification types is distinct between stable RNA, smRNA,
and uncapped, degrading transcripts. For instance,m3Candm1G

modifications tend to be much more common in stable RNAs
and mRNA-derived smRNAs, respectively, compared with the
overall distribution of these covalent additions in uncapped, de-
grading transcripts identified by GMUCT in both Arabidopsis and
human data (Figure 3B; Supplemental Figure 6). Conversely,
uncapped, degrading mRNAs as identified by HAMR analysis of
GMUCT data demonstrate much higher levels of D and i6A /t6A
compared with stable mRNAs and mRNA-derived smRNAs in
both plants and humans (Figure 4B; Supplemental Figure 6),
suggesting that these modifications may be the cause or con-
sequence of protein-coding transcript turnover in eukaryotic
transcriptomes. In total, these results reveal that the different
collections of transcripts in eukaryotic transcriptomes aremarked
by distinct distributions of covalent modifications that affect the
Watson-Crick base pairing edge.
To experimentally validate both HAMR and the machine

learning-based prediction of modification identity, we performed
m3C RNA immunoprecipitations on RNAs predicted to contain
this modification alongside negative controls with no predicted
m3C. Using RT-qPCR on fractions of RNAs immunoprecipitated
(IP) with either an antibody specific for m3C or an IgG control, we
measured the abundance of two mRNAs predicted to contain
m3C using the RNA-seq data, five mRNAs predicted using the
GMUCT data, and six mRNAs that were not predicted to contain
such modification sites in any of the HAMR analyses (Figure 4C).
We normalized RT-qPCRmeasurements in the two IP fractions to
tRNA-ala (anticodon:AGC), which is known to be devoid ofm3C in
all other eukaryotic organisms and which HAMR does not predict
to contain m3C in Arabidopsis (Supplemental Files 1 and 2). Thus,
this RNA serves as the most confident negative control locus for
our analyses. We found that six of the seven transcripts tested
(86%) were significantly (all P values < 0.01, Student’s t test)
enriched in the m3C fractions compared with the nonspecific
antibody control (Figure 4C). Notably, one of these transcripts
(AT4G25080) contained a predicted m3C site within the splice
donor sequences (Figure 3A). For the one mRNA (AT2G15580)
that was predicted to contain an m3C site but that was not vali-
dated by this approach, this result could be a consequence of an
incorrect modification site call (part of the 5% false discovery rate
[FDR]) or misclassification by the machine learning approach of
the HAMR pipeline. Regardless, 86% of the predicted m3C sites
could be experimentally validated, providing evidence for the
robustness of the identification and classification of modification
sites by theHAMRapproach (Figure 4C). For theputative negative
control loci (those predicted not to contain anm3C site), we found
that all of theseRNAshadsimilar or significantly (all P values<0.01,
Student’s t test) lower levels in them3C IP fractions compared with
the IgG control (Figure 4C). These results support the HAMR
prediction that these loci truly lack an m3C modification site. In
total, these results indicate that, in general, HAMR identified and

Figure 3. (continued).

0 indicates the very 59 end. Inminus strand transcripts, relative position 0 indicates the39 end.All knownsplice variants of these seven transcripts are shown
in these figures.
(C) to (E) Relative position of intronic HAMR-predicted modification sites from analyzing GMUCT (C), RNA-seq (D), and smRNA-seq (E) data sets plotted
across the length-normalized average of all annotated TAIR10 introns.
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Figure 4. HAMR Predicts a Variety of Known and Novel Modification Types in the Arabidopsis Transcriptome.

(A) and (B) Distribution of the predicted identity of HAMRmodifications in noncoding RNAs (A) and coding RNAs (B), as determined by nearest-neighbor
classification using a training set of known tRNA modifications from S. cerevisiae.
(C) Immunoprecipitations of transcripts predicted to contain m3C modifications. RT-qPCR analysis of two transcripts (AT1G43170 and AT4G25080)
predicted to contain m3C based upon RNA-seq data, five transcripts (AT1G04410, AT1G15220, AT1G28330, AT2G15580, and AT3G15353) predicted to
contain m3C based upon GMUCT, and six transcripts/tRNA families (tRNA-Arg [anticodon: AGT], tRNA-Trp [anticodon: CCA], AT1G66850, AT3G20865,
AT4G31070, and AT5G39420) not predicted to contain m3C. The RT-qPCR data for all transcripts was normalized to tRNA-ala (anticodon:AGC), which is
well known to not containm3C in any other organism,making it themost reliable negative control. Fold enrichment over an IgGnonspecific antibody control
(y axis) is plotted for each transcript. RT-qPCRs were performed on two biological and three technical replicates. Error bars indicate 6 SE of the mean.
P values were calculated with a Student’s t test, as previously described (Ryvkin et al., 2013). Asterisk denotes P value < 0.05.
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classified bona fide covalent modification sites that affect the
Watson-Crick base-pairing edge within the Arabidopsis and hu-
man (Ryvkin et al., 2013) transcriptomes and that these mod-
ifications are enriched within degrading mRNAs.

The Proportion of Uncapped Transcripts and Number of
HAMR-Predicted Modifications Positively Correlate for
Arabidopsis mRNAs

We found that uncapped, degrading transcripts as interrogated by
GMUCT were the most enriched class of transcripts for HAMR-
predicted covalent modifications within our analyses (Figure 2B;
Supplemental Figure1). Therefore,wewanted to testwhether these
Watson-Crick base-pairing edge affecting modifications correlate
with the proportion of steady state transcripts in an uncapped state
(proportion uncapped) (Figure 5A; Supplemental Figure 7A), as
measured by GMUCT reads (steady state uncapped population)
normalized to RNA-seq reads (steady state total transcript pop-
ulation). We previously used this measure as an approximation of
theoverallpercentageof transcripts thatareundergoing turnover (Li
et al., 2012). Using this approach, we observed a monotonic in-
crease in the total levels of transcripts that are found in the un-
cappedand likelydegrading fractionof transcriptsas thenumberof
predicted modification sites in mRNAs increases (Figure 5A). In-
terestingly, themajorityof thesestepwise increasesweresignificant
(all P values < 0.01, Wilcoxon rank sum test), and comparison of all
transcripts containing HAMR-predicted modifications to all tran-
scripts that are not identified as containing these modifications
also yields highly significant differences (P→ 0,Wilcoxon rank sum
test). Furthermore, we observed the same trends across two in-
dependent replicates of GMUCT and RNA-seq (Figure 5A). Similar
trends were also observed in human (HEK293T and HeLa) cells,
though not all stepwise comparisons reached detectable signifi-
cance in our analyses (Supplemental Figure 7A).

Interestingly, modified lncRNAs and snoRNAs, but not miRNAs,
likewise showed a similar trend, where transcripts with HAMR-
predictedmodifications had a higher proportion of their populations
in the uncapped, degrading proportion of the transcriptome com-
pared with those without these covalent additions, although not at
detectable significance. However, this lack of significance is most
likely a consequence of the low numbers of detected modification
sites in these classes of RNAs (Figures 2B and 5B). In summary,
these findings reveal that higher levels of HAMR-predicted covalent
modifications in mRNAs in both plants and humans correlate with
increased proportions of those transcripts in the uncapped, de-
grading fraction of transcripts as measured by GMUCT. In total,
these findings suggest that covalent RNA modifications that affect
theWatson-Crick base-pairing edge are a cause or consequenceof
RNA turnover in eukaryotic transcriptomes.

Since GMUCT maps the precise position of RNA cleavage
events in detected transcripts, we then sought to determine
whether the predicted modified positions within mRNAs were in
close proximity to specific cleavage events. We tested this be-
cause such a finding would suggest that these modifications
could be the signal for an RNA cleaving enzyme to initiate the
degradation process. To test this idea, we examined the 50 nu-
cleotides up- and downstream of HAMR-predicted modification
sites (Figure 5C). This analysis revealed no specific peak or pattern

in GMUCT cleavage signal in this 100-bp window surrounding
HAMR-predicted modification sites (Figure 5C). These results
suggest modification-associated uncapping and RNA turnover
does not require a specific cleavage event related to the site of
covalent addition but is either a consequence of the degradation
process and/or induces the turnover of these transcripts by normal
59-to-39and39-to-59exonucleolyticmechanisms. Intriguingly,seven
transcripts containing HAMR-predicted modifications in the
GMUCTdata setsoverlappedwith the set of 33 transcripts recently
found to undergo nonsense-mediated decay in an alternative
splicing-dependent manner (Kalyna et al., 2012), suggesting non-
sense-mediated decay might be one such turnover mechanism.
In contrast, HAMR-predicted modification sites in the human
(HEK293T and HeLa) cells showed a small peak in average GMUCT
cleavage signal directly upstream (Supplemental Figure 7B) of
HAMR-predictedmodification sites, suggesting that amechanismof
modification-induced cleavage may be active in humans. Thus,
HAMR-predictedmodificationsmay functiondifferently inplants and
humans. However, this hypothesis will require future testing.

Stress-Responsive mRNAs Are Enriched for RNA
Modifications That Affect the Watson-Crick Base-
Pairing Edge

Our finding that HAMR-predicted covalent modifications were
enriched in degrading mRNAs as identified by GMUCT (Figure 5)
suggested the intriguing possibility that this could be a mecha-
nism for regulating the levels of mRNAs encoding proteins with
common cellular functions. To test this hypothesis, we searched
for overrepresented Gene Ontology (GO) terms among the col-
lection of modified mRNAs identified using the GMUCT data.
To reduce any bias in reporting GO terms for this collection of
mRNAs, we identified all GO terms within three branches of the
“biological process” and “molecular function” roots, as de-
termined by a depth first search (Vandivier et al., 2013). From this
analysis, we observed a significant (FDR < 0.05) enrichment for
transcripts encoding ribosomal proteins for both Arabidopsis and
human uncapped transcripts identified by GMUCT (Figure 6;
Supplemental Figure 8). Additionally, for Arabidopsis uncapped,
degrading transcripts containing HAMR-predictedmodifications,
we also observed a significant (FDR < 0.05) enrichment of tran-
scripts encoding proteins involved in photosynthesis, as well as
a variety of biotic and abiotic stress response terms, including
“defense response,” “response to water,” “response to cold,”
“response to heat,” “response to radiation,” and “response to
oxidative stress” (Figure 6A). Relatedly, for human uncapped,
degrading transcripts containing HAMR-predicted modifications
identified by GMUCT, we found significant (FDR < 0.05) enrich-
ment of transcripts encoding proteins involved in “cell death” and
“cell cycle” (Supplemental Figure 8A). Conversely, we did not
observe any measurable enrichment for the transcripts with
HAMR-predicted modifications in our smRNA-seq and RNA-seq
data sets, which is likely a consequence of the low levels of these
covalent additions identified byHAMRanalysis of data from these
approaches. In total, the overrepresentation of certain biological
functions such as stress responses and cell cycle among un-
capped transcripts with HAMR-predictedmodifications but not in
stable mRNAs or mRNA-derived smRNAs suggests that addition
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Figure 5. Arabidopsis RNAs with HAMR-Predicted Modifications Have Higher Levels of Uncapped Transcripts.

(A) and (B)Distribution of proportion uncapped (total GMUCT reads per transcript normalized to total RNA-seq reads) per transcript for codingmRNAs (A)
and a representative replicate for noncoding RNAs (B). P values were calculated with a Wilcoxon rank sum test; one asterisk denotes P value < 0.01, two
asterisks denotes P value < 0.001, and three asterisks denotes P value <1 3 1025. Only a single miRNA was predicted to contain a modification using
GMUCT data, so it is represented as a single line.
(C)AveragedGMUCTcoverage profiles 50 bpup- anddownstreamof all predictedmRNAmodification sites, normalized toRNA-seq read abundance. Red
dots indicate the position of the predictedmodification and are plottedwithin 50 bp up- and downstream flanking regions. Modificationswithin 50 bp of the
mRNA 59 or 39 ends were given correspondingly shorter flanking regions.
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of modifications that affect the Watson-Crick base-pairing edge
targets specificsetsof transcripts for degradation tomaintain their
proper levels in the cell. This hypothesiswill require further testing.

In conclusion, we present evidence that covalent modifications
of mRNA bases that affect the Watson-Crick base-pairing edge
are strongly enriched in uncapped, degrading mRNAs in both
Arabidopsis and two human cell lines and are usually foundwithin
exonic portions of these transcripts. In contrast, the identified
modifications in stable mRNAs tend to occur in alternatively
spliced introns of protein-coding transcripts and often accumu-
late in or near the splice donor and acceptor sites. Together, these
results suggest a potential role for HAMR-predictedmodifications
in modulating specific alternative splicing events. Moreover, we
found that specific HAMR-predicted modifications tend to occur
in stable mRNAs (e.g., m3C), whereas others tend to label un-
capped, degrading transcripts (e.g., i6A). These results suggest

that certain classes of chemical modifications mark transcripts
that are being degraded in eukaryotic transcriptomes. However,
whether this is a cause or consequence of the RNA degradation
process requires further investigation. Finally, we found that
mRNA modifications mark transcripts that encode proteins with
specific functions,manyofwhich are involved in stress responses
in both Arabidopsis and humans. These results suggest that
modifications mark these classes of mRNA molecules for deg-
radation to maintain them as mostly unstable during normal de-
velopment, aswasprofiled in our experiments here. However, this
hypothesis will require future testing during specific stress re-
sponses in both Arabidopsis and humans. In total, our study
provides a resource for studying mRNA chemical modifications
that affect the Watson-Crick base-pairing edge and identifies
a potentially novel mechanism for initiating and/or maintaining
mRNA degradation in eukaryotic transcriptomes.

Figure 6. Arabidopsis Transcripts with HAMR-Predicted Modifications Encode Proteins with Coherent Functions.

Biological process (A) and molecular function (B) GO terms are reported if they are significantly enriched (FDR < 0.05) over a background of all “HAMR-
accessible transcripts”with at least 100 uniquely mapping reads. Analyses were performed using the DAVID package (Huang et al., 2009). Terms are only
reported if they are separated from their ancestor termbynomore than twoparents, asdeterminedbyadepth first searchaspreviouslydescribed (Vandivier
et al., 2013). Lack of color denotes lack of significance.
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METHODS

Plant Materials

Immature flower bud clusters from the Columbia (Col-0) ecotype of Ara-
bidopsis thaliana grown under 16-h-light/8-h-dark cycles using 2800 lu-
men, 4100K fluorescent light bulbs at 22°C were used for all experiments
and analyses described in this study.

Human Materials

HeLa and HEK293T cells were seeded in 15-cm standard Corning tissue
culture dishes (Sigma-Aldrich) and grown to 90% confluence (;18 million
cells) in DMEMmedium (Life Technologies) supplementedwith L-glutamine,
4.5g/L D-glucose, 10%fetal bovineserum (AtlantaBiologics), andPen/Strep
(Fisher Scientific).

RNA Extraction

For Arabidopsis, bud tissue was ground with a mortar and pestle under
liquid nitrogen. For human cell lines, cells were scraped, pelleted, and
homogenized. For both Arabidopsis and human cell lines, RNA was
extracted usingQiazol (Qiagen) and further purifiedwith themiRNeasymini
kit (Qiagen) per the manufacturer’s protocol.

Library Preparation and Sequencing

RNA-seq, smRNA-seq, and GMUCT libraries were constructed as pre-
viouslydescribed (Gregoryet al., 2008;Li et al., 2012;Willmannetal., 2014).
Both RNA-seq and GMUCT libraries were subjected to two rounds of poly
(A)+ selection using oligo(dT) Dynabeads (Thermo Fisher Scientific). All
libraries were ligated to TruSeq smRNA adaptors (Illumina) and were se-
quencedonan IlluminaHiSequation2000 (Illumina) using the 50-bp single-
end sequencingapproach. All sequencingwasperformedaccording to the
manufacturer’s instructions.

Previously Published Data Sets

Human RNA-seq data for HeLa cells were downloaded from the ENCODE
CaltechRNA-seq compendium (GeneExpressionOmnibus [GEO] accession
numberGSM958739) (ENCODEProjectConsortium,2012).HumanRNA-seq
data for HEK293T cells were downloaded from GEO accession GSE34995
(Huelga et al., 2012). Human GMUCT data were downloaded from GEO
accession GSE47121 (Willmann et al., 2014). Additional plant smRNA-seq
data were downloaded from GEO accession GSE57215 (Li et al., 2015).
RT stalling data (Structure-seq) were downloaded from SRA accession
SRP027216 (Ding et al., 2014).

Genome Annotation

All analyses in plantswere performed using the TAIR10 genome assembly,
and all analyses in humans were performed using the UCSC hg19 RefSeq
assembly. Alternative and constitutive introns were identified using the
TAIR10 transcriptome annotation, as well as the AtRTD alternate tran-
scriptome annotation (https://ics.hutton.ac.uk/atRTD/) (Zhang et al.,
2015). Repeat-subtracted genomes (repeat-masked) for TAIR10 were
produced with the RepeatMasker package (A.F.A. Smit, R. Hubley, and P.
Green, 2013; RepeatMasker Open-4.0, http://www.repeatmasker.org).

Read Processing and Alignment

Read processing and alignment were performed as previously described
(Li et al., 2012) with slight modifications. Briefly, sequencing reads were
first trimmed to remove 39 sequencing adapters. For libraries where the

expected range of insert lengths are all less than the read length (i.e.,
smRNA-seq libraries), only trimmed reads were retained. For libraries
where the expected range of insert lengths are all greater than the read
length (i.e., RNA-seq libraries), only untrimmed reads were retained. For
libraries where the expected range of insert lengths includes insert lengths
of both classes (i.e., GMUCT libraries), trimmedand untrimmed readswere
concatenated andaligned together. Readswerealigned to theArabidopsis
genomeversion TAIR10or the humangenomeversion hg19.Only uniquely
mapping reads were allowed, except for tRNA analyses (see below).

tRNA Read Processing and Alignment

tRNA amino acid-anticodon families were annotated with tRNAscan (Lowe
and Eddy, 1997). For each amino acid-anticodon family of tRNAs, a con-
sensus sequencewas constructed throughmultiple alignment of all lociwith
LocARNA (Will et al., 2007) and selection of themost abundant nucleotide at
each aligned position. Any consensus nucleotides with biallelic SNPs were
retained since HAMR will filter these in hypothesis testing, while a few rare
triallelic SNPs were excluded since these could potentially lead to HAMR
artifacts. smRNA readswere first aligned to theArabidopsisgenomeversion
TAIR10, allowing multimappers. Reads that mapped exclusively to tRNAs
were retained. This subset of reads was then remapped to the tRNA con-
sensus sequence set. Downstream analyses were performed using con-
sensus coordinates, as described previously (Ryvkin et al., 2013).

HAMR

HAMRwasperformedas previously described (Ryvkin et al., 2013). For each
set of mapped reads, deviations from the reference sequence (mismatches)
with a quality score >30 (error rate <0.001) are tabulated for each base in
either the Arabidopsis genome version TAIR10, human genome version
hg19,orTAIR10 tRNAconsensussequenceset.Eachbasewithmismatches
was tested for significant enrichment of mismatches using a binomial dis-
tribution, with the conservative assumption that the sequencing error rate is
0.01.Bases thatpassthisfilterare thentestedagainst thenullhypothesis that
the genotype is biallelic. Each possible biallelic genotype is tested, again
using a binomial distribution. Significant deviation from all possible biallelic
genotypes is used as evidence of modification, as modification-induced
errors should be semirandom and not have a clear bias toward any single
base substitution, as would be true with SNPs or RNA editing (Ryvkin et al.,
2013). Each predicted modified base was then classified using nearest-
neighbor machine learning, as described previously (Ryvkin et al., 2013).
Known tRNA modifications in Saccharomyces cerevisiae (from the
MODOMICS database) (Dunin-Horkawicz et al., 2006) were used pre-
viously (Ryvkin et al., 2013) to construct the training set.

Definition of HAMR-Accessible Bases and Transcripts

In Arabidopsis, theminimumbase coverage at anobservedmodification in
either GMUCT, smRNA-seq, or RNA-seq was always 50 reads per base
(503). Thus, any base with at least 503 coverage was designated as
HAMR-accessible. For comparison, the minimum coverage for humans,
though not included in any analyses, was 103. The minimum number of
uniquely mapping reads to call a transcript as modified was 100 for Ara-
bidopsis and 10 for humans. Thus, transcripts with at least 100 or 10
uniquely mapping reads were designated as HAMR-accessible in Arabi-
dopsis and humans, respectively.

RNA Immunoprecipitation

Total RNA was immunoprecipitated with 10 mg of an undiluted IgG non-
specific control antibody (Cell Signaling) or an anti-3-methylcytosine (m3C)
antibody (Active Motif). Forty microliters of Dynabeads Protein A (Thermo
Fisher Scientific) were washed with 13 Dulbecco’s phosphate-buffered
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saline (DPBS; Thermo Fisher Scientific) and coupled to the 10 mg of an-
tibody inDPBSby rockingat room temperature for 1h.Beadswerewashed
again twicewithDPBS. FivemicrogramsofRNAwasdenatured at 70°C for
5 min, placed on ice for 3 min, and then incubated with the bead-linked
antibodies in IP buffer (140mMNaCl, 0.05% [v/v] Triton X-100, and 10mM
Tris, all fromultrapure,RNase-free stocksdissolved inDEPC-treatedwater
and filter sterilized at 0.22 mM). Bead/RNA mix was rocked at 4°C for 2 h.
Bound RNA was washed three times in IP buffer and then eluted in Trizol
(Thermo Fisher Scientific), precipitated, and washed.

RT-qPCR

Primers were designed using PrimerBlast (http://www.ncbi.nlm.nih.gov/
tools/primer-blast/). tRNA primers were designed against tRNA family
consensus sequences. Primer sequences are listed in Supplemental Table
2. RNA was reverse transcribed using random hexamers and then pre-
amplifiedwithSsoAdvancedPreAmpSupermix (Bio-RadLaboratories) per
the manufacturer’s protocol using a mix of all primers listed above.
Quantitative PCR was performed using SYBR Green 2X master mix
(Thermo Fisher Scientific) in a StepOnemachine (Thermo Fisher Scientific)
on two biological and three technical replicates.

GO Enrichment

GO enrichment analyses of transcripts with predicted modifications was
performed using the DAVID online tool (Huang et al., 2009) as previously
described (Vandivier et al., 2013). All HAMR-accessible transcripts (i.e.,
those with comparable coverage tomodified transcripts) were used as the
background set for this analysis.

Statistical Analyses

All statistical analyses were performed using the R software package
(http://www.r-project.org/), including P values for all hypothesis testing.
See figure legends for specific statistical tests used to assess significance.

Accession Numbers

All smRNA-seq, RNA-seq, and GMUCT data generated for this study were
deposited in the GEO under accession number GSE66224. Additionally,
HAMR-predictedmodifications are available under the sameGEOaccession
or at http://gregorylab.bio.upenn.edu/HAMR_degradome/. Sequence data
forgenesmentioned in thisarticlecanbefoundintheGenBank/EMBLlibraries
under accession numbers NM_100321 for AT1G04410; NM_202105 and
NM_101390 for AT1G15220; NM_179390, NM_102599, NM_001160906,
and NM_179389 for AT1G28330; NM_202237, NM_103469,
NM_001036069, NM_001084202, and NM_103496 for AT1G43170;
NM_105356 forAT1G66850; NM_127119 forAT2G15580; NM_112401 for
AT3G15353; NM_112978 for AT3G20865; NM_118030, NM_179076, and
NM_001084939 for AT4G19110; NM_179108, NM_118640, NM_179107,
and NM_001125580 for AT4G25080; NM_119257 for AT4G31070;
NM_120012, NM_001036731, NM_001036730, and NM_202978 for
AT4G38510; and NM_123304 for AT5G39420.

Supplemental Data

Supplemental Figure 1. HAMR-predicted modifications in two human
cell lines.

Supplemental Figure 2. Differences in the number of HAMR-predicted
modifications are not artifacts of differences in library preparation,
overall size, or transcriptome coverage.

Supplemental Figure 3. HAMR captures a large proportion of known
tRNA modification sites in the Arabidopsis transcriptome.

Supplemental Figure 4. Sites of HAMR-predicted modifications are
enriched in reverse transcriptase stalls.

Supplemental Figure 5. HAMR-predicted modifications in two human
cell lines mark uncapped and alternatively spliced transcripts.

Supplemental Figure 6. HAMR predicts a variety of known and novel
modification types in the human transcriptome.

Supplemental Figure 7. Human RNAs with HAMR-predicted mod-
ifications have higher levels of uncapped transcripts.

Supplemental Figure 8. Human transcripts with HAMR-predicted
modifications encode proteins with coherent functions.

Supplemental Table 1. HAMR correctly classifies a portion of
homology-based predicted tRNA locus modification sites.

Supplemental Table 2. Primer sequences used for RT-qPCR.

Supplemental File 1. Homology-based prediction of Arabidopsis
tRNA family modification sites.

Supplemental File 2. Homology-based prediction of Arabidopsis
tRNA locus modification sites.
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