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Abstract

Catadioptric sensors are devices which utilize mirrors and lenses to form a projection onto the image
plane of a camera. Central catadioptric sensors are the class of these devices having a single effective
viewpoint. In this paper, we propose a unifying model for the projective geometry induced by these
devices and we study its properties as well as its practical implications. We show that a central cata-
dioptric projection is equivalent to a two-step mapping via the sphere. The second step is equivalent to a
stereographic projection in the case of parabolic mirrors. Conventional lens-based perspective cameras
are also central catadioptric devices with a virtual planar mirror and are, thus, covered by the unifying
model. We prove that for each catadioptric projection there exists a dual catadioptric projection based on
the duality between points and line images (conics). It turns out that planar and parabolic mirrors build a
dual catadioptric projection pair. As a practical example we describe a procedure to estimate focal length
and image center from a single view of lines in arbitrary position for a parabolic catadioptric system.
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1 Introduction

A catadioptric instrument is an optical system combining reflective (catoptric) and refractive (dioptric) ele-
ments (Hecht & Zajac, 1997). Catadioptric combinations have been extensively used in telescopes in order
to focus light from the stars onto the eye of the observer. The focal properties of mirrors with a conic profile
were discovered by the ancient Greek geometer Diocles (Toomer, 1976) and concave mirrors have been
extensively used for light concentration for energy purposes. To enhance the illumination of a scene such
concave mirrors appear also in primitive organisms like deep-sea ostracodes (Land, 1981).

Catadioptric systems have been combined with cameras in order to increase the field of view (Rees,
1971, as cited by Nayar) for television applications. After 20 years catadioptric devices were introduced in
robotics (Yagi et al., 1994) also to increase the field of view. Nayar (1997) gave the first formal treatment of
catadioptric systems with a single viewpoint in the context of computer vision. Visual sensors with a very
big, close to hemi-spherical field of view, are called omnidirectional or panoramic. They are used in many
application areas, including navigation, surveillance, and visualization. For a broad coverage of the field the
reader is referred to an extensive review by Yagi (1999) as well as to the proceedings of the Workshop for
Omnidirectional vision (Daniilidis, 2000) and to an upcoming book (Benosman & Kang, 2000).

In nature, most species with lateral eye placement possess an almost spherical field of view. In pho-
tography and machine vision, wide-angle field of view can be achieved with pure dioptric elements like
fish-eye lenses (Shah & Aggarwal, 1996). Fish-eye lenses suffer from distortions for which explicit models
have not been well-studied. Omnidirectional sensing can be realized also with a rotating camera (Shum &
Szeliski, 2000). Rotating cameras are not suitable for dynamic scenes because they cannot cover actions
in all directions simultaneously. The highest spatial resolution is given with a cluster of cameras pointing
outwards (Swaminathan & Nayar, 2000). However, it is technically difficult to achieve a single effective
viewpoint with a cluster of cameras.

Here we describe only omnidirectional work involving catadioptric sensors. We believe that the use
of reflective components enables more degrees of freedom in the design of the sensor’s geometric and
optical properties. We classify the catadioptric systems in two groups, central and non-central, based on
the uniqueness of an effective viewpoint; those having a single effective viewpoint are central catadioptric
sensors. Non-central systems based on spherical (Bogner, 1995; Hong et al., 1991) or conical mirrors
(Zheng & Tsuji, 1992) violate the single viewpoint constraint. Other non-central catadioptric systems are
the mirror preserving ratios of elevations of points from a ground plane (Chahl & Srinivasan, 1997) or the
mirror (Hicks & Bajcsy, 2000) which rectifies planes perpendicular to the optical axis.

Uniqueness of an effective viewpoint is desirable because it allows the mapping of any part of the scene
to a perspective plane without parallax. In this sense, a central catadioptric system has the same effect as a
rotating camera. Furthermore, easily modified multiple view algorithms can be applied for reconstruction
(Taylor, 2000; Sturm, 2000). Nayar (1999) gave an extensive treatment of central catadioptric systems
whose geometry can also be found in (Svoboda et al., 1998; Bruckstein & Richardson, 2000). Such systems
are extensively used now for visualization (Boult, 1998; Onoe et al., 1998) and navigation (Winters et al.,
2000; Leonardis & Jogan, 2000; Benosman et al., 2000). Nayar (Nayar & Peri, 1999) proved that folding
mirrors with a conic profile can also yield a single effective viewpoint and a more compact mount. A folded
catadioptric system consisting of two parabolic mirrors attached on a glass block has been designed by
Greguss (Greguss, 1985) and used for surveillance in (Zhu et al., 2000). Pyramidal multi-faceted mirrors
mounted above clusters of cameras can simultaneously achieve high-resolution and one effective viewpoint
(Nalwa, 1996; Majumder et al., 1999).

Our work deals with the geometric properties of central catadioptric sensors and is related to the work
(Svoboda et al., 1998; Nene & Nayar, 1998) where it is shown that lines project onto conic sections. Re-
garding calibration, a two-view algorithm not related to our approach has been proposed by Kang (2000).
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Regarding geometry, we use well-known facts from the mappings of the projective plane to the sphere. In
computer graphics and vision, such mappings have been explicitly used in the context of oriented projec-
tive geometry as described by Stolfi (1991) and applied in (Laveau & Faugeras, 1996; Pajdla et al., 1998;
Hartley, 2000).

Our motivation to study central catadioptric cameras is to understand the geometric properties of the
mappings realized with these sensors. The fact that we are able to choose the parameters of a quadric mir-
ror surface and appropriately mount the camera implicitly encodes information which should be exploited
during image interpretation.

In this paper we show that there is an equivalence between any central catadioptric projection and a
composite mapping through the sphere. This mapping consists of the projection of a point from the center
onto the sphere and a subsequent projection from a point on the axis of the sphere onto a plane perpendicular
to that axis. The position of the point on the axis depends on the shape of the mirror. When the point lies
between the north-pole and the center the composite mapping is equivalent to a projection induced by a
hyperbolic mirror and a perspective camera. The extrema of this interval yield the following interesting
cases:

1. An orthographic camera with a parabolic mirror which is equivalent to the projection on the sphere
with a subsequent projection from the north pole to the plane through the equator. This latter projec-
tion is well known as the stereographic projection and is a conformal mapping.

2. A perspective camera combined with a planar mirror which can be modeled as a projection on the
sphere with a subsequent projection from the center to the plane tangent at the south-pole.

In the course of proving this equivalence we have also been able to establish a unifying formula covering all
of the cases above.

Once proven, the equivalence paves a ground for building up a geometry based on the intermediate
representation on the sphere. It is well known that point-line duality of the projective plane maps to the
point-great circle duality on the sphere. Through the equivalence it is trivial to observe that lines in space
project onto great circles on the sphere and subsequently onto conic sections on the plane. Thus, line images
(great circles on the sphere and conic sections on the catadioptric plane) are dual to points (poles of great
circles). The new fact we prove in this paper is that there is also a duality between catadioptric projections
and hence also mirror shapes: If a mirror shapes projects a line in space to a conic, there exists a dual shape
s0 which projects the normal of the plane containing the line to the foci of the conic. It turns out that the
parabolic catadioptric projection is dual to the perspective projection: the parabolic projection of a line is a
circle whose center is the perspective projection of the normal of the plane containing the line.

The first practical implication of the proved equivalence is the intrinsic calibration of a catadioptric
system. We assume that the unknown parameters are the combined focal length of the camera and the mirror,
the eccentricity of the conic section of the mirror, and the image center. By enumerating the constraints
given by the line images (lines in perspective, circles in parabolic, conics in hyperbolic and elliptic cases)
we explain how we are able to calibrate from a single view of arbitrary lines in the parabolic, hyperbolic,
and elliptic cases but not in the case of a conventional perspective camera. We outline an algorithm for the
parabolic case and apply it on a commercially available catadioptric camera.

In the next section we provide a purely geometric proof of the equivalence of parabolic projection and
stereographic projection of the projective plane when represented as a sphere. In section 3 we prove the gen-
eralization of the equivalence to all central catadioptric systems. We present the novel duality relationships
in section 4. Finally we conclude with the implications on calibration.

3



F1

F2

lens

mirror

CCD/
image plane

image
points

parabola’s

focus

focus

infinite
1

parabolic

F

P

�

�

d

Figure 1: On the left is a diagram showing the configuration of a typical parabolic catadioptric sensor. A
parabolic mirror is placed in front of a camera approximating an orthographically projecting lens (one whose
focus is at infinity). The right diagram is a further abstraction of the left and shows that a ray of light incident
with the focus of the parabola is reflected to a ray of light parallel to the parabola’s axis.

2 A Geometric Introduction

Let us begin with the parabolic case. In the time of Apollonius, the Greek astronomer Diocles was asked
by Zenodorus, “how to find a mirror surface such that when it is placed facing the sun the rays reflected
from it meet a point and thus cause burning,” (Toomer, 1976). Diocles responded that such a surface is
the parabola. Computer vision practitioners are typically not interested in burning but in seeing. A convex,
reflective parabolic mirror placed above and parallel to the axis of an orthographically projecting camera
results in a sensor with a single effective viewpoint at the focus of the parabola. It is therefore equivalent to
a purely rotating perspective camera. A ray of light incident with the focus of the parabola is reflected by
the mirror to a ray of light parallel to its axis (see Figure 1). Thus, every point in the image is in one-to-one
correspondence with a ray originating at the focus.

In the process of developing a calibration algorithm for these devices (Geyer & Daniilidis, 1999), we
discovered that the projections of lines are a certain class of circles. The class is defined by the property
that each and every one of these circles intersects a single circle, the fronto-parallel horizon, antipodally
— except for this single circle which is itself a member of this class. Upon further reflection we recalled
stereographic projection of the sphere and its property that it projects circles, great or small, on the sphere
to circles in the plane. In particular, it sends great circles, all of which intersect the equator antipodally, to
circles which intersect the projection of the equator antipodally. The sphere is just one representation of the
projective plane, in which, lines in space project to great circles. It is therefore natural to suspect that these
two projections are somehow equivalent.

We now go about proving the equivalence of parabolic projection and stereographic projection of the
projective plane. The parabolic mirror is a regular paraboloid and because the one-to-one mapping is pre-
served in a plane through the paraboloid’s axis, we need only consider a cross-section of the paraboloid.

Let us assume the existence of a parabolap with focusF and directrixd. The directrix and the focus
define the parabola: all points on the parabola are equidistant to the directrix and the focus. Let` be
perpendicular to the axis ofp and throughF . Consider the following definition of the projectionQ of a
pointP , reflected by the parabola, to the line`.
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Figure 2: Left: diagram corresponding to Definition 1. Right: diagram corresponding to Definition 2.

Definition 1. Q is the projection of the pointR to the line`, whereR is the intersection of the parabola
and the rayFP .

We now give an alternative definition. Let a circle have centerF and radius equal to twice the focal
length of the parabola. The circle and parabola intersect twice on the line` and the directrix is tangent to the
circle. LetN be the point diametrically opposite to the intersection of the circle with the directrix, this is
the north pole of the circle. We claim the following definition is also equivalent. This definition is the basis
for our generalization to arbitrary catadioptric projections.

Definition 2. Q0 is the projection of the pointR0 to the line` from the pointN , whereR0 is the intersection
of the rayFP and the circle.

The first step of definition 2 is to project points to the circle from its center. This is equivalent to the
projection from the projective plane to the projective line, which is represented as a circle here. The second
step is the two dimensional equivalent of stereographic projection — project from the “north pole” of the
circle to a line perpendicular to the axis of the circle. We prove the following lemma.

Lemma 1. The parabolic projections of a pointP , given in Definitions 1 and 2, respectively yield points
Q andQ0 which are coincident.

Proof: Choose a pointP in the plane. Intersecting the rayFP with the circle we obtainR0; intersecting
with the parabola we obtainR. LetQ0 be the projection ofR0 from the pointN to the line` perpendicular
to the axisNF atF . LetQ be the orthographic projection ofR to the line`. Let Y be the intersection of
the directrix and the circle. Finally letC be the intersection of the linesRQ andNQ0, and letX be the
intersection of the linesRQ andd, the directrix. To prove that the projections are equivalent we need to
show thatQ equalsQ0. We do so by first showing thatjCXj equalsjQXj. This would imply thatQ = C,
sinceQ andC lie on the same line; and therefore also thatQ = Q0, sinceC is on the linè andQ0 is defined
to be the intersection ofNR0 with `.

Assume thatQ is not equal toQ0 and thatQ is not equal toC (if Q is equal toC thenQ, Q0 andC are
equal as discussed above); see figure 3. By the definition of the parabola the pointR is equidistant to the
directrix and the focus. Therefore the triangleFRX is isosceles. BecauseR0 andN lie on a circle whose
center isF , the triangleR0FN is isosceles. This triangle is similar toR0RC because the parabola’s axis
is parallel toRX. Since bothR0RC andFRX are isosceles,R0C must be parallel toFX, and thusjCXj
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Figure 3: A proof by contradiction. Assume that the pointsQ andQ0 are not equal. The diagram is
intentionally drawn incorrectly ; the parabola is drawn as a hyperbola so thatQ andQ0 do not coincide.

equalsjR0F j. ThenjCXj, jFY j, jR0F j, andjQ0Xj are all equal. In particularjCXj = jQ0Xj, butC and
Q0 lie on the line above the directrix, and therefore above the pointX in the figure. If they lie on the same
side of a line with respect to some point and have the same distance to this point then they must be the same
point. But this is a contradiction because we assumed that the points were not equal. �

Discussion. The two definitions above can easily be extended to three dimensions, and so may the lemma
be extended, and thus projection by a parabolic mirror is equivalent to projection to the sphere followed
by stereographic projection. We now wish to know if there is a generalization. Recall that perspective
projection may also be obtained via a projection of a sphere; first project to the sphere from the center,
second, project from the center to the image plane. The separation into two steps is unnecessary because
the projections are both from the same point. But notice that the first step is the same as in the equivalent
parabolic projection via the sphere. The difference in the second steps are only the point on the sphere’s axis
from which to project to the image plane. What is the effect of changing the point of projection to a point that
is neither the north pole, nor the sphere center? Is it possible to model hyperbolic mirrors by appropriately
choosing this second projection center? The answer is yes; if we choose an appropriate point on the axis,
between the north pole and the sphere’s center, we obtain a projection equivalent to a hyperbolic projection,
as well as an elliptic projection where the ellipse’s eccentricity is the reciprocal of the hyperbola’s.

Is there any advantage to this representation? We claim that there is. First, it is a unifying representation
in that it includes perspective, parabolic, hyperbolic, and elliptic projections. Additionally, the sphere is a
standard representation of the projective plane; this proves that there is a simple mapping, in fact a central
projection, from a standard representation of the projective plane to a projective plane induced by any
central catadioptric projection. With this representation it is easy to determine the projections of lines,
and also leads to the discovery of a novel duality relationship. Without this model it is not clear (to us) that
parabolic projection is conformal, which is trivially implied by its equivalence with stereographic projection.
We would hope that this representation leads to a greater understanding of and less hesitation in using
catadioptric devices (due to the perceived additional complexity of curved intermediary reflective surfaces).

In the next section, we prove and explore the generalization. We develop the general theory in the
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context of projective geometry. We use homogeneous coordinates and constructively utilize the relevant
Euclidean property, namely that a ray incident with one focus is reflected to a ray incident with the second.

Finally, we add that we are not the first to discover a relationship between stereographic projection and
the parabola. During a revision of our paper we discovered the work of Penrose and Rindler (1984) in which
they imagine a point and the movement of a plane in space. At timet = 0, the point emits a flash of light
isotropically, and at the same instant, the plane starts moving toward the point at the speed of light. The
locus of points traced out by the intersection of the plane and the sphere of light emanating from the point
is a paraboloid whose focus is the light source. They prove that a given point on the ever expanding sphere
meets the plane at the same point where it would have been projected stereographically from the unit sphere.

3 Central Catadioptric Projections

In this section we prove the extension of the equivalence to arbitrary catadioptric projections and a map sim-
ilar to stereographic projection. Before proving this extension we introduce quadratic projections (which
serves as a context in which we provide a proof). We prove the equivalence for a two-dimensional catadiop-
tric projection in Lemma 1. The lemma immediately yields an extension to three dimensions with which
we obtain the main result in Theorem 1 as well as several corollaries. We then discuss the nature of the
images of points and lines and how they create catadioptric projective planes. Throughout this paper we
assume that mirrors are ideal, the cameras satisfy the pinhole camera model, and both are properly aligned
with respect to one another. We only consider non-degenerate catadioptric configurations, namely planar,
parabolic, hyperbolic and elliptic cases. Neither of the degenerate cases, the conic and spherical cases, are
of practical use as single effective viewpoint sensors. As shown in (Baker & Nayar, 1998) these are theonly
catadioptric devices with a single effective viewpoint.

Catadioptric projections are a subset of a general type of projection. In a central catadioptric projection,
a point is first projected to a conic from one of the foci and then this point is projected to an image plane
from the second focus (see Figure 4). We could instead choose different points from which to project and
different surfaces to intersect but these configurations may not induce optical projections which coincide
with the abstract projections. Note that in the previous section, we found a surface, namely the sphere,
and a pair of points, the sphere center and its north pole, which gave a projection equivalent to an optical
projection, namely parabolic projection.

We define a general mapping which consists of a composition of two projections. The first projection
is to a quadric or conic from a point. The second projection is to a plane or line from a second point. We
call these quadratic projections. In the definition below we restrict ourselves to two dimensions, but it may
be easily extended to three or an arbitrary number of finite dimensions. We use the notationA _B to mean
the line joining pointsA andB, andl ^m to mean the point lying on both linesl andm. For notational
convenience we have overloaded these operators to include quadratics, so thatl_ q, wherel is a line and say
q is a conic, to mean the two points of intersection of the line with the conic. Finally, when the intersection
is a pair, we distribute over other applications of_ and^, i.e.A_ (l^ q) is the pair(A_P1; A_P2), where
P1;2 are points obtained from the intersection ofl andq.

Definition of a quadratic projection. Let c be a conic, letA andB be two arbitrary points, and let̀
be any line not containingB. Choose a pointP . The intersection of a line and a quadric is two, possibly
imaginary, points, so letR1 andR2 be the intersection ofc with AP , imaginary or not. ThenR1 is one of
the projections of the pointP to the conicc, R2 is the second. Now project theRi’s to the line` from point
B. LetQi be the intersection ofBRi with `. TheQi’s are the quadratic projections of the pointP to the line
`. We call this mapq(c;A;B; `) : P2 ! �` where�` is the projective line induced on the line` in which
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Figure 4: In general a conic reflects any ray of light incident with one of its foci (hereF1) to a ray of light
incident with its other focus (F2). Central catadioptric devices utilize this property and achieve a single
effective viewpoint at one of the foci of a conic (F1).

points such asQ1 andQ2 are identified. We may write the map as

P
q(c;A;B;`)�! (((P _A) ^ c) _B) ^ ` :

In the three dimensional case, the conic becomes a quadric surface and` is replaced by a plane, inducing
a projective plane. Note that any mapq(c;A;B; `) has a single effective viewpoint atA, at least in the sense
that only rays throughA are intersected withc; this, however, may not correspond to an optical projection,
where the angle of incidence withc is equal to the angle of reflection.

A subset of the quadratic projections are catadioptric projections which not only have a single effective
viewpoint but also in which the angle of incidence withc is equal to the angle of reflection. This occurs
when the two points of projection are the foci of the conic.

Definition of a catadioptric projection via quadratic projections. Let c be a conic whose foci areF1
andF2, whereF1 is finite andF2 might lie on the line at infinity. Let̀ be a line perpendicular1 toF1F2 but
not containingF2. A catadioptric projection is the quadratic projectionq(c; F1; F2; `).

Catadioptric projections may similarly be extended to three dimensions. Note that in the case wherec is
a degenerate line conic having two fociF1;2 whose perpendicular bisector is the line conic, and` coincides
with the line conic, thenq(c; F1; F2; `) is perspective projection with viewpointF1 and focal length12F1F2.
Whenc is a parabola,F1 its finite focus,F2 its focus on the line at infinity, and̀the line perpendicular to
the axis ofc and throughF1, thenq(c; F1; F2; `) is the parabolic projection defined in Definitions 1 and 2.

Given a catadioptric projection with parameters(c; F1; F2; `), what is the set of parameters(c0; A;B; `0)
yielding equivalent quadratic projections? We do not attempt to answer this question in general, however

1We do not consider the case where` is not perpendicular toF1F2; in such a case, the projection differs from the one defined
above only by a line homography (or by a plane homography in the three dimensional extension).
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we answer a constrained form of the question. Are there parameters(c0; A;B; `0), wherec0 is a unit-radius
circle centered atA, B is some point, and̀0 k `, which yield equivalent projections? It is clear that in order
for the projections to be the same they must have the same single effective viewpoint, and thereforeA = F1.
Hence, we wish to find̀0 andB such that

q(c; F1; F2; `) = q(c0; F1; B; `
0) ;

wherec0 is a circle centered atF1 with unit radius. For example, in section 2 we showed that ifc is a
parabola,F1 is the focus,F2 is the point at infinity lying on the axis of the parabola, i.e. the parabola’s
infinite focus and the focal point of an orthographic projection, and` is perpendicular to the axis atF1, then

q(c; F1; F2; `) = q(c0; F1; N; `) ;

wherec0 is a circle centered atF1 and whose radius is equal to twice the focal length of the parabola, and
whereN is the point on the circle diametrically opposite the point tangent to the directrix (the circle and
directrix are tangent). We give then the following lemma.

Lemma 2. Let q(c; F1; F2; `) be a catadioptric projection,Fi are the foci ofc and` is the image line.
There exists a unit circlec0 centered atF1, a pointB, and a linè 0, `0 k `, such that

q(c; F1; F2; `) = q(c0; F1; B; `
0) ;

up to translation from̀0 to `.

Proof: We prove the lemma by first deriving the formula for the catadioptric projectionq(c; F1; F2; `),
then deriving the spherical projection formulaq(c0; F1; B; `0), equating them and solving for the position
of B, and the position of the intersection of`0 with the y-axis. We see that the parameters`0 andB are
independent of the choice of the point to project.

Step 1: Derivation of q(c; F1; F2; `). We assume without loss of generality thatF1 = (0; 0; 1) and that the
quadratic form ofc, in terms of its eccentricity� and a scaling parameter� > 0, is as follows:

Q�;� =

0@4 0 0
0 4� 4�2 �4��
0 �4�� �4�2

1A :

ThenF1 andF2 = (0;�2�; ��1(�2 � 1)) are the foci ofc whose latus rectum is2�. Recall that the latus
rectum is the length of the line segment created by the two points of intersection of the conicc and line`.
Also assume that they-intercept of the linè is �, so that the line has coordinates[0; 1;��]. Note that this
parameterization includes perspective projection with planar mirror in the limit as�!1 as long as we set
� = 2f��1(�2 � 1) and� = �3f , and divideQ�;� by 1� �2.

We now find the projectionq(c; F1; F2; `) of P . First, the pointsR1 andR2 in (P _ F1) ^ c, being the
intersection of a line and a conic, may be expressed as

Ri = F1 + �iP ;

for some�1; �2 2 C , where these�i are roots of a quadratic equation. We obtain the quadratic equation from
the condition thatRi lies on the conic,

0 = RiQ�;�R
T
i

= (F1 + �iP )Q�;�(F1 + �iP )T

= F1Q�;�F
T
1 + 2�iF1Q�;�P

T + �2i PQ�;�P
T :
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Therefore,

�i =
�2F1Q�;�P

T + (�1)i
q

4(F1Q�;�P T )2 � 4(PQ�;�P T )(F1Q�;�F
T
1 )

2PQ�;�P T

=
�

(�1)i
p
x2 + y2 � �y � �w

;

whenP = (x; y; w) (no z since we are considering the projection restricted to the plane). So the points

Ri = F1 + �iP

= F1 +
1

(�1)i
p
x2 + y2 � �y � w

P

=

0BBB@
�x

(�1)i
p

x2+y2��y��w
�y

(�1)i
p

x2+y2��y��w
1 + �w

(�1)i
p

x2+y2��y��w

1CCCA
T

:

Next we project theRi to the line` = [0; 1;��] from the pointF2. This transformation is expressed as the
matrix

T�;�;� =

0@�2��+ �(1� �2) 0
0 1� �2

0 �2��

1A :

The projected pointsQi are then given by projective line coordinates

Qi = RiT�;�;�

=
�
x(2��� �(1� �2));�(1 + �2)y � 2(�1)i�

p
x2 + y2

�
; (1)

andq(c; F1; F2; `) = fQ1; Q2g.
Step 2: Derivation ofq(c0; A;B; `). Now find the spherical projection, or in the cross-section, the projection
to the circle. Letc0 be the unit circle centered atF1. The pointsR0i, which are the intersections of the line
F1P with this circle, may be found without difficulty due to the simplicity of the circle, all that is necessary
is a normalization. In particular

R0i =
�
x; y; (�1)i

p
x2 + y2

�
:

Now we must determine the projection of the pointsR0i to the image linè 0. The projection is just a
perspective transformation from the unknown pointB. By symmetry the pointB lies on the lineF1F2,
we therefore parameterizeB with l, writing B = (0; l; 1). Then the matrix projecting a point to the line
`0 = [0; 1;�m] fromB may be expressed as

Ul;m =

0@l �m 0
0 �1
0 l

1A :

Thus,

Q0
i = R0iUl;m

=
�
(l �m)x;�y + l(�1)i

p
x2 + y2

�
(2)
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so thatq(c0; F1; B; `) = fQ0
1; Q

0
2g.

Step 3: For whatB and `0 is q(c; F1; F2; `) = q(c0; F1; B; `0)? If l andm can be chosen independently of
x, y, andw such that equations (1) and (2) are equal (up to a scale, remember that we work in homogeneous
coordinates), then we have shown that the two projections are equivalent. This is indeed the case, and if we
choose

l =
2�

1 + �2
;

m =
�� �(��+ 2�� 2)

1 + �2
;

then substituting in (2) gives 
(2��� �+ �2�)x

1 + �2
; 0;�y +

2(�1)i�
p
x2 + y2

1 + �2

!
:

Multiply this by 1 + �2 and we obtain�
x(2��� (1� �2)�; 0;�(1 + �2)y + 2(�1)i�

p
x2 + y2

�
;

which is the same as (1). Therefore

q(c; F1; F2; `) = q(c0; F1; B; `
0)

= q

�
�(F1; 1); F1;

�
0;

2�

1 + �2
; 1

�
;

�
0; 1;��� �(��+ 2�� 2)

1 + �2

��
;

up to scale. �

Extension to three dimensions. We can now extend the definition to three dimensions. We assume thatc
is rotationally symmetric about thez-axis having only two fociF1 andF2 with coordinates(0; 0; 0; 1) and
(0; 0;�2�; ��1(�2 � 1)), and thatp is the plane[0; 0; 1;��]. Then,

q(c; F1; F2; p) = q

�
�(F1; 1); F1;

�
0; 0;

2�

1 + �2
; 1

�
;

�
0; 0; 1;�� � �(��+ 2�� 2)

1 + �2

��
;

up to scale, where�(F1; 1) is the sphere centered atF1 with a radius of1.

Definition of a spherical projection. A spherical projection is the composition of central projection to
the unit sphere followed by projection from a point on some axis of the sphere a distancel from the sphere’s
center to a plane perpendicular to the axis a distancem below the center and is represented by the quadratic
projection

sl;m = q(�(A; 1); A; (0; 0; l; 1); [0; 0; 1; m]) ;

note that we have changed the sign ofm.

Lemma 2, and its extension to three dimensions, is the main contribution of this paper. It shows that there
exists a pointB such that the projection through the sphere is equivalent with the given catadioptric projec-
tion. Having now defined a spherical projection, we summarize the specific results in the following theorem
in terms of spherical projections. The theorem uses the pointB constructed in the lemma. Afterwards we
give corollaries which follow immediately from the theorem.
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Figure 5: (Referring to the figure of the previous page.) The different catadioptric projections and the
corresponding positions of the second projection center on the axis of the sphere in the equivalent projection.
In the elliptic and hyperbolic cases (top and second to bottom) the corresponding point lies between the north
pole and the center of the sphere. In the parabolic case, the second projection point is the north pole; in the
perspective case the center is the second projection center, which is obtained in the limit as the eccentricity
goes to infinity. The graph in the second column shows the height of the second projection center as a
function of eccentricity. Note that for a given height between the north pole and the center there is an elliptic
mirror and a hyperbolic mirror equivalent to the projection induced with this point as the second projection
point.

Theorem 1. Projective Equivalence. All non-degenerate central catadioptric projections are equivalent
to a central projection of the spherical representation of the projective plane to a plane. All such projections
can be represented with the single mapsl;m, where the parameterl is a function of the eccentricity of the
conic andm is a function of both its scale and eccentricity. Unless stated otherwise,� = 0 and� = 2p. We
enumerate the possible cases in parallel with Figure (5):

1. 0 < � < 1. Elliptic projection is equivalent to the composition of normalization to the unit sphere and
central projection:

q(c; F1; F2; p) = s 2�

1+�2
;
2�(2p�1)

1+�2
;

wherec is an ellipse of eccentricity� whose latus rectum is4p, and foci areF1 = (0; 0; 0; 1) and
F2 = (0; 0; 4p�; �2 � 1), and wherep = [0; 0; 1; 0].

2. � = 1. Parabolic projection is equivalent to the composition of normalization to the unit sphere
followed by stereographic projection:

q(c; F1; F2; p) = s1;2p�1 ;

wherec is a parabola whose latus rectum is4p, and foci areF1 = (0; 0; 0; 1) andF2 = (0; 0; 1; 0),
and wherep = [0; 0; 1; 0].

3. � > 1. Hyperbolic projection is equivalent to the composition of normalization to the sphere followed
by central projection:

q(c; F1; F2; p) = s 2�

1+�2
;
2�(2p�1)

1+�2
;

wherec is a hyperbola whose latus rectum is4p, and foci areF1 = (0; 0; 0; 1) andF2 = (0; 0; 4p�; �2�
1), and wherep = [0; 0; 1; 0].

4. �!1, � = 2f��1(�2� 1), � = �3f . Perspective projection with focal lengthf in front of a planar
mirror a distance of2f from the focus is equivalent to normalization to the sphere followed by central
projection:

q(c; F1; F2; p) = s0;f

wherec is the degenerate conic consisting of the single line[0; 0; 1; 2f ] (with a multiplicity of two)
having fociF1 = (0; 0; 0; 1) andF2 = (0; 0;�4f; 1), and wherep = [0; 0; 1; 3f ].

13



Corollaries.

1. Parabolic projection is conformal. The angles between great circles on the spherical representation of
the projective plane are preserved in the parabolic projective plane. For example, the horizons of two
perpendicular planes are two orthogonal circles. This is because stereographic projection is conformal
(Needham, 1997).

2. Conformal maps on the sphere project to conformal maps in the parabolic projective plane. In par-
ticular, pure rotations of space preserve the angles between great circles, and thus rotations of space
preserve angles in the parabolic projective plane.

3. Catadioptric projections with reciprocal eccentricities are projectively equivalent; such projections
have the same representation, for if� = �0�1, then

l0 =
2�0

1 + �02
=

21
�

1 +
�
1
�

�2 =
2�

1 + �2
= l :

This implies that any elliptic catadioptric device is projectively equivalent to a hyperbolic projec-
tion. We therefore need only consider one of these cases, and we arbitrarily choose to refer to such
projections as hyperbolic.

3.1 Point Images

The sphere, in which antipodal points are identified, is just one representation ofP2; Stolfi (Stolfi, 1991)
calls this the spherical model or representation. The “points” ofP2 in this representation are the antipodal
point pairs, and the “lines” in this representation are the great circles. Any two non-identical lines — great
circles — intersect in a point pair. There is a single line joining any two non-identical point pairs. The plane
adjoined with the line at infinity is another representation in which the “points” are the single points of the
plane and the line at infinity; this is the so called “straight model”. Homogeneous coordinates, the analytic
model, are yet another representation in which the “points” are rays through the origin inR3 . These are all
interrelated and equivalent, and for example the straight model is obtained from the spherical one by central
projection from the center of the sphere.

The straight model is a natural model for studying perspective cameras but not so natural for studying
general catadioptric cameras. Now that we have shown that catadioptric projections are obtained from the
spherical model by a central projection, it is only natural to study a different representation, one obtained
by central projection from a point on the axis of the sphere. The question is this: What geometric structures
which preserve the incidence relationships ofP2 are induced by such a central projection?

For example, as we just noted, the straight model is obtained from the spherical one by central projection
from the sphere’s center to a plane tangent to the sphere. The lines of the straight model are just that, lines
in the plane. However, in order to preserve the axioms of projective geometry, we needed to add the line at
infinity so that two parallel lines “intersect”, as required by the axioms.

In a model obtained by central projection from some other point we need to define the “points” and the
“lines” that make up the representation. Then we need to add the necessary structure to satisfy the axioms.
In this section we consider the projections of points; in the next we determine the projections of lines. Lastly,
we summarize the structure of these new representations, thecatadioptric projective planes.

We will let the projective planes induced by the catadioptric projections consist of point pairs corre-
sponding to points inP2 and subsets of these point pairs corresponding to lines ofP2 which are actually
conic sections. The representation of a single point in a pair is in homogenous coordinates (with one excep-
tion in the parabolic case), but the homogeneous coordinates are only a setting, inadequate to fully describe
the representation given in the catadioptric projective planes.

14



First the parabolic case. Prior to defining the points of the parabolic projective plane, we examine some
of the properties of stereographic projection. In this case there is a one-to-one mapping between the sphere,
minus the north pole, and the Euclidean plane. Points below the equator are mapped to points within the
projection of the equator, i.e. the fronto-parallel horizon. Points above are sent to points outside this circle.
The north pole does not have a projection in homogeneous coordinates, since the projection formula gives
the point(0; 0; 0). These are not valid homogenous coordinates. Since we will want every “point” to consist
of a pair, in order that the parabolic projective plane be complete, we add this additional point. Because the
projection of no other point is degenerate, i.e. mapped to(0; 0; 0), this is the label we give it. Thus the range
is not justP2, butP2 [ (0; 0; 0).

The “points” of the parabolic projective plane thus consist of the projections of the antipodal point pairs
of S2. Every point within the projection of the equator is paired with a point outside. The projection of the
south pole is paired with the point(0; 0; 0), corresponding to the north pole.

The hyperbolic case is more complicated. In this case as we have seen, the second center of projection
is between the north pole and the center. Points on the sphere at a height below this second projection
center are in one-to-one mapping with points of the plane. Points on the sphere at exactly the same height
as the projection point are mapped to the line at infinity. Points on the sphere above the projection point
are also in one-to-one correspondence with points of the plane. Thus the projection is not injective as it is
in the parabolic case; it is actually a double covering. This is somewhat problematic; a solution is to keep
two copies of the plane, one for the points above and one for the points below the point of projection, see
figure 6. In practice, this is not necessary because the points lying above the projection point are points that
would be reflected by the lower sheet of the two sheets of the hyperboloid. However, the lower sheet is not
used when designing catadioptric sensors because this is where the camera is placed.

P1

P2
P3

Q1

Q2 Q3

B

F1

Figure 6: Points below the pointB are projected to the lower copy of the plane; points above the pointB are
projected to the upper copy of the plane. Points at the same height asB are projected to the line at infinity.
Notice that the imagesQ1 andQ2 are near each other but are respectively projected from pointsP1 andP2
which are not near each other.

3.2 Line Images

It is now trivial to see that the image of a line in the general case is a conic: First the projection of a line
in space to the sphere is great circle. There is a cone through the second center of projection and this great
circle as in Figure 7. The intersection of this cone with the image plane is the line image and is obviously a
conic.
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Figure 7: The projection of a line to the sphere is a great circle; the projection of the great circle is obtained
from the intersection of the image plane with a cone containing the great circle and whose vertex is the point
of projection.

One special line image is the fronto-parallel horizon. This is the image of the equator. In the parabolic
and hyperbolic cases it is clearly a circle centered at the image center with a radius dependent on the eccen-
tricity and focal length. In the perspective case, the fronto-parallel horizon is the line at infinity. Thus, one
of the effects of a catadioptric projection is bringing in from infinity the line at infinity. We will see later
that this enables a calibration from lines.

The intersection of any great circle with the equator are two points antipodal on the equator. The pro-
jections of these two points are, in the hyperbolic and parabolic cases, two points antipodal on the fronto-
parallel horizon. Thus, the intersection of any line image and the fronto-parallel horizon are two points
antipodal on the fronto-parallel horizon.

Now we find an explicit formula for the quadratic form of a line image. We must first derive the quadratic
form of the cone through the second projection center and the great circle. We then intersect that cone with
the image plane to obtain the line image.

A cone is a special case of a quadric. In general a quadric is a set of points satisfying

PQP T =
�
x y z w

�0BB@
a b c d
b e f g
c f h i
d g i j

1CCA
0BB@
x
y
z
w

1CCA = 0:

We need to find the entries ofQ given the unit normal̂n = (nx; ny; nz) of the plane containing the great
circle. We assume that̂n 6= (0; 0; 1). To find the entries we first work in a coordinate system(x0; y0; z0; w0)
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where the planez0 = 0 contains the great circle; this is achieved by a rotationR. Specifically, if

R =

 
\(p�n)�n

T dp�nT n̂T 0
0 0 0 1

!
=

0BBBB@
nxnzp
1�n2z

� nyp
1�n2z

nx 0
nynzp
1�n2z

nxp
1�n2z

ny 0

�
p

1� n2z 0 nz 0
0 0 0 1

1CCCCA ;

wherep = (0; 0; 1) and x̂ denotes the normalized vectorx=jjxjj. We need to findQ0 such that the points
whereP 0Q0P 0T = 0 is a cone whose vertex is the point

(l
p

1� n2z; 0; lnz)

and contains the circle �
x0

w0

�2

+

�
y0

w0

�2

= 1; z0 = 0 :

First, the coefficients ofx0 andy0 in x02 + y02 � 1 = 0 must equal the coefficients in

(x0; y0; 0; 1)Q0(x0; y0; 0; 1)T = 0:

So,
a = 1; 2b = 0; 2d = 0;
e = 1; 2g = 0; j = �1:

Moreover, the kernel of matrixQ0 is the cone vertex:

Q0((l
p

1� n2z; 0; lnz)
T = 0:

This fact yields four more constraints:

l
p

1� n2z + clnz = 0

flnz = 0

cl
p

1� n2z + hlnz + i = 0

ilnz � 1 = 0:

Solving for the remaining parametersc; f; h andi we obtain:

Q0 =

0BBBB@
1 0

p
1�n2z
nz

0

0 1 0 0p
1�n2z
nz

0
1� 1

l2
�n2z

n2z

1
lnz

0 0 1
lnz

�1

1CCCCA :

Then
Q = RQ0RT :
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We wish to intersect the cone with the planez = �m, so,

0 =
�
x y �m 1

�
RQ0RT

0BB@
x
y
�m
1

1CCA

=
�
x y 1

�0@1 0 0 0
0 1 0 0
0 0 �m 1

1ARQ0RT

0BB@
1 0 0
0 1 0
0 0 �m
0 0 1

1CCA
0@xy
1

1A

=
�
x y 1

�
Cn̂

0@xy
1

1A = 0 :

We can expandCn̂,

Cn̂ =

0@1 0 0 0
0 1 0 0
0 0 �m 1

1ARQ0RT

0BB@
1 0 0
0 1 0
0 0 �m
0 0 1

1CCA
=

 
�l

2
n
2

y
n
2

z
� n

2

x
(l2 + n

2

z
� 1) nxny(l

2
� 1)(n2

z
� 1) nxnz(l +m)(n2

z
� 1)

nxny(l
2
� 1)(n2

z
� 1) �l

2
n
2

x
n
2

z
� n

2

y
(l2 + n

2

z
� 1) nynz(l +m)(n2

z
� 1)

nxnz(l +m)(n2
z
� 1) nynz(l +m)(n2

z
� 1) �n

2

z
(l +m)2(n2

z
� 1)

!

The conicCn̂ has the properties

fi =
�
(l +m)nx; (l +m)ny; (�1)i

p
1� l2 � nz

�
(3)

a =

���� l(l +m)nz
l2 � n2x � n2y

����
b =

������ l +mq
l2 � n2x � n2y

������ ;
wherefi=0;1 are the foci,a is the minor axis, andb is the major axis; we derive these in the appendix. Notice
that the foci are collinear with the image center, and thus the major axis contains the image center.

3.3 Catadioptric Projective Planes

A catadioptric projective plane is the image of the standard projective plane, represented on the sphere,
by a central projection from a point on the axis between the north pole and the sphere’s center. In theS2

representation, the points of the standard projective plane are the pairs of antipodal points:

� = f(�x;�y;�z)
���x2 + y2 + z2 = 1g ;

and the lines are the set of great circles

� = f[�nx;�ny;�nz]
���n2x + n2y + n2z = 1g;

18



where
[nx; ny; nz] = f(x; y; z) 2 �

���xnx + yny + znz = 0g ;
is a single great circle. ThereforeP2 is defined by the pair(�;�). We project from the point on the axis
using the functionsl;m, obtaining a projective plane�l;m = (sl;m(�); sl;m(�)), which we call acatadioptric
projective plane.

On the sphere all of the axioms necessary for a projective plane are satisfied, as long as antipodal points
are identified. The catadioptric projective planes also satisfy these axioms with the understanding that in
hyperbolic cases there are two copies of the plane, and that the “points” are always pairs of points, sometimes
one pair having points in each of the two copies of the plane, sometimes only in the same copy.

4 Duality

In standard projective geometry there is a one to one correspondence with points and lines of a projective
plane. On the sphere, a representation of the projective plane, the correspondence is between a great circle
and its poles. We write the dual great circle of a pointP as ~P and the dual point of a great circle` as ~̀.

An example of their usage is in the following. Suppose we have two pointsP1 andP2 on the sphere and
we wish to determine the great circle` between them. We take the dual great circles of the two points,~P1
and ~P2. They must intersect in a pair of points which are antipodal and represented byQ. Taking the dual
Q gives the very great circle through the two original points, that is` = ~Q. This is because the dual great
circle ~P of any pointP on the great circle is a great circle containing the pointQ. So intersecting any two
yields the pointQ.

We callP1_P2 the great circle between pointsP1 andP2 and`1^ `2 the intersection of the great circles
`1 and`2. We express the fact above in the equations

P1 _ P2 = ~̂P1 ^ ~P2 ;

`1 ^ `2 = ~̀̂
1 _ ~̀

2 :

The operatorŝ and_ can be used on the catadioptric projective plane as well, in particular we define for
pointsP1, P2 and lines (conics)̀1, `2 on a catadioptric plane,

P1 _ P2 = sl;m

�
s�1l;m(P1) _ s�1l;m(P2)

�
`1 ^ `2 = sl;m

�
s�1l;m(`1) ^ s�1l;m(`2)

�
Is there such a relationship embedded within the catadioptric projective plane? What properties do the sets
of projections of great circles all containing a given pointP have? We have seen that the image of a line
under catadioptric projection is a conic. We will see that foci of coincident line images lie on a conic which
is the projection of the great circle perpendicular to them all; though it is not projected by the same point.

Consider the projection of a point by the mapsl;m,�
(l +m)x; (l +m)y;�z + l(�1)i

p
x2 + y2 + z2

�
and the foci of a line image,�

(l +m)nx; (l +m)ny;�nz + (�1)i
p

1� l2
�
:

They look remarkably similar, especially considering thatn2x + n2y + n2z = 1. Remembering the point-line
duality, the foci look like the projection of the dual point of the great circle, i.e. its normal.
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Lemma 3. Let ` be a line of a catadioptric projective plane�l;m which is the projection of a great circle
whose normal iŝn. The foci pair of̀ is the projection of the point̂n by sl0;m0 wherel0 andm0 satisfy

l +m = l0 +m0 ;

l2 + l02 = 1 :

Proof: The foci of the line are�
(l +m)nx; (l +m)ny;�nz + (�1)i

p
1� l2

�
:

If

l0 =
p

1� l2 ;

m0 = l +m�
p

1� l2

then the foci can be rewritten�
(l0 +m0)nx; (l

0 +m0)ny;�nz + (�1)il0
q
n2x + n2y + n2z

�
:

This is projection of the point(nx; ny; nz; 1) by sl0;m0 . Conversely, if a pointP is projected to a point pair
in a catadioptric projective plane�l;m, this point pair is the foci pair of a line image of a projective plane
�p1�l2;l+m�

p
1�l2 . �

Lemma 4. Let f`kg be a set of line images all of which intersect a pointP , i.e. for allk, P 2 `k. Then
the locus of foci of the line images lie on a conicc whose foci are the same as the points inP (see figure 8).

`1

`2

P P
F1

F2

G1
G2C

Figure 8: The two ellipses̀1 and`2 are projections of two lines in space containing the pointP . Their foci
F1, F2, andG1, G2 respectively lie on a hyperbola containing the foci ofall ellipses throughP . The foci of
this hyperbola are the points inP . The pointC is the image center.
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Proof: Assume thatP is the projection of the point̂n = (nx; ny; nz) on the sphere. Also assume that the
lines`k are images of great circles whose plane’s normals arem̂k. Because of rotational symmetry, we may
assume without loss of generality thatny = 0. This implies that for some�k that

f[m̂k]g = f[�nz sin �k; cos �k; nx sin �k]g :

Then the foci of thèk are,

fki =
�
(l +m)nz sin �k; (l +m) cos �k; (�1)i

p
1� l2 � nx sin �k

�
:

But these are the pair of points in the projection ofm̂k by

sp1�l2;l+m�
p
1�l2 :

Therefore this point is in the image of the linen̂ by this same projection. Its foci are

fi =
�
(l +m)nx; 0; (�1)il � nz

�
;

which is the projection of̂n by sl;m. �

We use Lemmas 3 and 4 to prove the following duality theorem.

Theorem 2. Duality. If �l;m = (�1;�1) and�l0;m0 = (�2;�2) are two catadioptric planes such that

l2 + l02 = 1 and l +m = l0 +m0;

then fl;m, which gives the foci of a line image in the context of some catadioptric plane�l;m, maps as
follows,

fl;m : �1 ! �2 ;

fl0;m0 : �2 ! �1 ;

and their inverse mappings exist. In addition, incidence relationships are preserved byfl;m:

P1 _ P2 = f�1l;m

�
f�1l0;m0(P1) ^ f�1l0;m0(P2)

�
;

`1 ^ `2 = fl;m
�
fl0;m0(`1) _ fl0;m0(`2)

�
;

whereP1; P2 2 �1 and`1; `2 2 �2.
We call the projective planes,�l;m and�l0;m0 , dual catadioptric projective planes.

Proof: We have already shown the first part of the theorem in Lemma 3. It only remains to show that
incidence relationships are preserved. This follows from Lemma 4 and the fact that incidence relationships
are already known to be preserved on the sphere by the mapping taking antipodal points to great circles and
vice versa. �
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Corollaries.

1. Perspective projection (l = 0) is dual to parabolic projection (l0 = 1). This means that the parabolic
projection of a line is a circle whose center (the foci collapse to a single point) is the perspective
projection of the normal of the plane containing the line. It also implies that the parabolic projection
of a pair of antipodal points are two points whose perpendicular bisector is the projection of the great
circle dual to the antipodal point pair.

2. A catadioptric projection with a mirror of eccentricity� is dual to a catadioptric projection with mir-

ror eccentricities
��� 1��1+�

��� and
��� 1+�1��

��� (one is a hyperbolic projection; the other is an equivalent elliptic

projection).

3. A catadioptric projection with eccentricity�1 +
p
2 is self-dual (l = 1p

2
). In this case the foci of a

projected great circle are exactly the projections of the dual points.

5 Practical Implications: Calibration

The presented unifying theory of catadioptric projections enables a direct and natural insight into the in-
variances of these projections. The perspective projection is a degenerate case of a catadioptric projection,
in the sense that antipodal points on the sphere are projected to single points, whereas in the parabolic and
hyperbolic cases antipodal points are projected to two different points. In this section, we show that it is
possible to calibrate a catadioptric sensor with as few as two lines.

If we assume that CCD-mount and lens do not induce radial distortion and satisfy the pin-hole model (for
a hyperbolic configuration) or the orthographic model (for a parabolic system), then the intrinsic parameters
of a general catadioptric projection are the eccentricity of the mirror, the combined focal length of the
mirror and camera, the image center, and any skew and aspect ratio induced by the sensor. It is the task
of calibration to estimate these parameters. We examine the possibility or impossibility of calibrating from
lines in a single frame. We have previously demonstrated a calibration algorithm for the parabolic case
(Geyer & Daniilidis, 1999) whose input is at least two sets of parallel lines. At the end of this section we
show a more general (arbitrary sets of lines) and simplified algorithm.

First, let us gain some intuition into why it is possible to calibrate non-perspective catadioptric sensors
from lines. We examine the perspective case first. Assuming that aspect ratio is one and skew is zero, there
are three intrinsic parameters, namely the image center and focal length. The image of a line in space is
a line in the image plane, and any given line may be uniquely determined by two points. From any image
line it is possible only to determine the orientation of the plane containing the line in space and the focal
point; the orientation of this plane can be parameterized by two parameters. Givenn lines, how many
constraints are there and how many unknowns? If for somen the number of constraints exceeds the number
of unknowns, then we have a hope of obtaining the unknowns, and thus calibrate the sensor. However,
for every line added we gain two more constraints and two more unknowns; we are always short by three
equations. Therefore self-calibrationfrom lines, without any metric information, and in one frame is not
possible in the perspective case.

What about the parabolic case? There are a total of three unknowns, focal length and image center
(alone giving two unknowns). The projection of any line is a circle, and which is completely specified by
as few as three points, therefore three constraints. The orientation of the plane containing the line gives two
unknowns. So, for every line that we obtain we reduce the number of unknowns by one. If there are three
lines, we have9 constraints and9 unknowns, and thus we can perform self-calibration with only three lines.

Finally the hyperbolic case. There are four unknowns (eccentricity, focal length and image center) and
each line adds two for orientation. The projection of a line is a conic which may be specified by five points.
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Thus when we have two lines we have8 unknowns and10 constraints. So, with only two lines the system is
over-determined, but nevertheless we can still perform a calibration.

We give here a simple and compact algorithm for calibrating the parabolic projection. It is based on
the fact that a sphere, whose equator is a circle in the image plane, contains the point(cx; cy; 2f), where
(cx; cy; 0) is assumed to be the image center, though initially unknown. This is by symmetry, since the image
circle intersects the fronto-parallel plane at points a distance2f from the image center. Thus the intersection
of at least three spheres so-constructed produces the points(cx; cy;�2f), giving us both image center and
focal length simultaneously (see Figure 9).

In the presence of noise, the intersection is not defined for more than three spheres, yet we may minimize
the distance from a point to all of the spheres, i.e. find the point(cx; cy; f) such that

nX
i=1

�
(dix � cx)

2 + (diy � cy)
2 + 4f2 � r2i

�2
(4)

is a minimum over all points. Here(dix; d
i
y) is the center of thei-th image circle, andri is its radius. The

intersection is not defined for fewer than three spheres, since the intersection of two spheres gives only the
circle within which the point lies, but not the point itself.

Figure 9: Left: Sphere whose equator is a line image which contains the point(cx; cy; 2f). The circle in the
image plane is the fronto-parallel horizon. Right: Intersection of three such spheres to determine this point.

In the parabolic case it is also possible to calibrate the skew and aspect ratio. Non-unit aspect ratio and
skew transform a parabolic image so that the images of lines are ellipses with the same aspect ratio. There
is a single linear transformation,modulo scale, which transforms this distorted image to one in which line
images are again circles. To find this unique transformation, we minimize over the quotient space of possible
representative transformations the residuals of circles fitted to transformed points which are known to lie on
line images.

We next describe an experiment (see figure 10) in which we have taken an image of a small812
00 �

1100 calibration target with a folded catadioptric camera. We fit circles to the grid points and perform a
calibration. Then we estimate the normal of the plane containing the grid and then project to a plane parallel
to the plane of the grid, i.e. a rectification. Rectification is described in (Geyer & Daniilidis, 1999) and can
be achieved with only affine knowledge. Given two sets of parallel lines their two double vanishing points
define a circle on the catadioptric image. The center of this circle is the projection of the normal of the
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plane spanned by the two directions up to the known focal length. In the rectification, we see that to a good
approximation lines have been mapped to lines, and also that angles are preserved.

Figure 10: Left: Original image taken by a folded catadioptric camera. Middle: Circles fitted to points
captured from the grid. Notice that the lines of the grid are parallel and thus their projections, circles,
intersect in the image at vanishing points. Using these line images we perform a calibration and rectification,
i.e. finding the normal of the plane containing the grid. Right: A reprojection to a plane parallel to the grid.

6 Conclusion

In this paper, we presented a novel theory on the geometry of central catadioptric systems. We proved that
every such projection can be modeled with the projection of the sphere to a horizontal plane from a point
on the vertical axis of the sphere. Hence, any catadioptric projection is equivalent to a central projection of
the spherical representation of the projective plane. Using this equivalence we observe that images of lines
in space are mapped to great circles on the sphere and to conic sections on the catadioptric image plane. We
show that each mirror shape has its dual and that dual projections map poles of great circles on the sphere
to the foci of the conic sections corresponding to the great circles of the poles.

The first practical implication concerns the determination of the image center, the effective focal length,
and the mirror eccentricity from a single view of line images. The perspective case proves to be the only
one not providing the sufficient constraints for such a calibration.

Our ongoing work addresses multiple uncalibrated catadioptric views with possibly varying camera
parameters. We mention here the parabolic case as an example. We proved in this paper the equivalence
of the parabolic case to the projection on the sphere followed by a stereographic projection. Stereographic
projection is a conformal mapping: the angle between two great circles on the sphere is equal to the angle
between their images. We are going to analyze such constraints in multiple views and give the sufficient
conditions on translation directions and rotation axes for the recovery of camera parameters, motion, and
structure.
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Appendix 1

We would like to derive the properties of the conic whose quadratic form is,
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We wish to put the conic into a normal form in which we can obtain the major and minor axes as well as the
location of the foci. First we apply the rotation matrix
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obtaining
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Application of the matrix

T =

0B@ 1 0 0
0 1 0
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2
y(l

2+n2z�1)
0 1
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centers the conic at the origin, and we have
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Normalizing and substitutingn2z = 1� n2x � n2y, we have
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Thus the major axis

a =

���� l(l +m)nz
�l2 + nx + n2y

���� ;
and minor axis

b =
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������ :
Now to find the foci. An ellipse with quadratic form0@a�2 0 0

0 b�2 0
0 0 �1

1A ;
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has eccentricity
q

1� b2

a2
and foci at(�a�; 0; 1). A hyperbola with quadratic form0@a�2 0 0

0 �b�2 0
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1A ;

has eccentricity
q

1 + b2

a2
and foci at(�a�; 0; 1). Therefore a conic with quadratic form0@� 0 0

0 � 0
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1A
has foci at(

p
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Now translate and rotate back to the original coordinate system and we find that the foci ofCn̂ are
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