
Experimental Study of Issues in End-to-End QoS

MS-CIS-94-08
DISTRIBUTED SYSTEMS LAB 76

Klara Nahrstedt
Jonathan Smith

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

February 1994

Experimental Study of Issues in End-to-End QoS

Klara Nahrstedt and Jonathan Smith'
Distributed System Laboratory
Computer Science Department

University of Pennsylvania
e-mail: klara@aurora.cis .upenn.edu

Abstract

Quality of Service (QoS) guarantees for 'delay sensitive' networked applications must be
end-to-end. This paper presents an experimental study of this class of applications where the
endpoints are computer workstations. The experiments show that operating system effects
dominate any jitter in the network.

Our conclusion is that QoS provision by the workstation operating system is as important for
maintaining end-to-end guarantees as is network QoS. In local-area settings, operating system
influences may be more challenging for end-to-end QoS than network influences. The important
influence variables are the degree of multiprocessing, the employed transport protocol (e.g. UDP
or TCP), and the priorities assigned to processes.

1 Introduction

One of the important forms of information networks carry is "delay sensitive multimedia" traffic.
The information is carried between end-points using delay-bounded communication protocols. Such
protocols and their architecture have been of great interest in the computer networking community

[31, 121 , [GI.
The other element in delay-sensitive networking is the behavior of the endpoints. This is the

focus of our paper. The endpoints of future networks, except for the most trivial, will contain
a processor, and should be flexible enough to offer some customization. This customization will
take the form of "Quality of Service" (QoS) specifications for the applications, which must then be
translated into appropriate sets of endpoint behaviors and network customizations.

1. I Problem Description

Consider, for example, an application requiring video services. Such an application must make
certain demands of the network, such as an allocated bandwidth, and perhaps some specification of
the burst characteristics of the application traffic. These demands will change significantly in the
case, e.g., where variable bit rate characteristics are induced on the video by coding schemes such as
MPEG, which also serve t o reduce the average bandwidth required. But the software infrastructure
supporting the application, such as an operating system scheduler, must be integrated into the
model of the endpoint in order t o periodically schedule the application when data arrives or is t o

*This work was supported by the National Science Foundation and the Advanced Research Projects Agency under
Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives. Additional support
was provided by Bell Communications Research under Project DAWN, by an IBM Faculty Development Award, and
by Hewlett-Packard.

be sent. Control of this scheduling is crucial to providing QoS in an end-to-end fashion; it appears
that some features of "real-time" operating systems (0s) must be available for application desiring
use of the deterministic delay capabilities.

Section 2 details our experiments and the results. Section 3 describes the implications of the
experiments. Section 4 concludes the paper and offers ideas for future work.

1.2 Related Work

Related work to our research is done in two areas. One area is guaranteed services and predictability
in the networks, and the other area looks at real-time operating systems and their predictability.

a Real-Time Communication in Networks

Real-time communication in networks has been studied in the Tenet group at Berkeley. Ferrari
et al. devised an establishment scheme for real-time channels [17] where processing and
queuing delays in the networks are discussed in terms of deterministic and statistical bounds.
The bounding of delays in an internetwork for real-time communication is an important
assumption for guaranteed services [9].

In order t o establish real-time channels in the networks, we need predictions of the behavior of
the shared medium, in this case the network. Therefore, analysis of different scheduling and
queuing mechanisms at the network interfaces and switches, and the delay bounds, introduced
by the scheduling (multiplexing) and queuing algorithms, are part of the knowledge which
the services such as admission service need to predict what kind of guarantees can be made
by the network [9], [13].

Resource scheduling for guaranteed services in switches was studied by Lazar et al. at
Columbia University [18], [7] . There is extensive research work done on computing delay
bounds under different multiplexing and queuing algorithms such as Cruz's method for com-
puting delay bounds under FCFS multiplexing [ll], [12], or Parekh and Gallager's method
for computing delay bounds under weighted fair queuing [8].

Admission service, as one of the services, estimates the available shared resources and gives
the permission or denies requests for resources, is studied at different levels in the networks.
Admission control at the cell level is presented in [7], [lo] . In [4] the call admission problem at
the packet level is discussed. The end-to-end delay of the traditional voice traffic is analyzed
using FCFS queuing in the network switch model.

a Real-Time Support in Operating Systems

Real-time operating system research provides different mechanisms for real-time support t o
the application developers. Recent foci have included real-time thread models (e.g. Real-Time
Mach) and scheduling mechanisms of the processor (e.g. Integrated Time-Driven Scheduler)
[I], fine granularity of timers and clock interfaces (e.g. POSIX 1003.4, AIX 3.1, SVR4 UNIX).
Further, there are operating systems like FORMULA, which provide user primitives for coor-
dinating timing requests from the applications [19]. Scheduling primitives were implemented
in FORMULA for the Computer Music Performance.

Unfortunately, there are too few links between these two areas and even fewer links among
all three areas - real-time applications, networks, and OS. There are partial experimental results
where OS performance and relation between application and OS are shown. In [5] it is shown
that having real-time support in SVR4 UNIX is not sufficient to have good performance for local

video applications. For example, some priority-induced pathologies with respect t o X windows
were presented in [5] (e.g. video didn't get displayed if X server had higher priority than the video
application.)

2 Experimental Analysis of AIX OS Real-Time Support for 'Delay-
sensitive' Networked Applications

We performed our experiments using IBM RS/6000 workstations connected t o an Ethernet. These
workstations run the AIX operating system. In order t o study 'delay sensitive networked appli-
cations, it is important to analyze these workstations as endpoints with respect to (1) different
components in OS delay, and (1) relative contribution of OS delay versus network delay.

AIX Version 3.2 is a general purpose operating system which claims to provide some level of
real-time support through use of priorities and priority classes [14]:

a The kernel allows real-time applications to be executed within a user program. Since the
kernel is fully pre-emptible, the context switch time between user processes is shorter than in
traditional UNIX systems (we measured over 60,000 getpido calls/second on a model 320).

a AIX allows assignment of fixed priority values to the application developer with minimal
interference from OS's own scheduling algorithm, i.e. the priority values are not altered by
the scheduler.

a The user subroutines offer the same timer resolution as the kernel services.

a The real-time performance of some critical programs may be improved by adding facilities t o
the kernel, or by coding part of the applications as a kernel eztension.

a AIX provides a locking mechanism for a task to lock its code and/or data into real memory,
so that it can guarantee predictable response to an interrupt.

For our experiments, we used fixed priorities for the applications. There are 128 (0-127) priority
levels for all processes. Generally, a real-time process will be assigned a fixed value between 0-40.
This property allows us to split the priority range into two classes: Real-Time priorities (RT) and
Non-Real-Time priorities (NRT). The tasks within NRT class obey the AIX scheduling algorithm,
which is round-robin by priority, where priorities are adjusted to provide good interactive response.

We prototyped simple networked applications with video/robotics data, ran different application
scenarios under different priorities and analyzed the delays at an endpoint.

2.1 Video Application

The first experiment involves a video application (Figure 1) where the sender is a video source
with sample rate of 5 frames/s uncompressed, and sample size of 136 KBytes. The receiver is an
X server displaying the video images.

2.1.1 Experimental Method

The video application is tested with three communication mechanisms: (1) IPC communication,
which represents UNIX-STREAM socket communication; (2) TCP/IP communication (XI1 pro-
tocol), which represents TCP/IP-STREAM communication; (3) UDP/IP communication, which

Sender Communication Receiver

Figure 1: Video Application

Video source ,
+ OS + Network

one host .
I

Video display

I Application Process X server I

I I
I Application Prncess I

I X Sewer I

L - - - - - - - - - - - - A
L - - - - - - - - - - - - - -1

hqstl - - - - - - - - - - - - - host 2- - - - - - - - - - - - - - - - - - - - - -
X server

8

I Application Process I I Application Process I
I

I I
I

IPC
I

I I
I I
I I
I I

Figure 2: Scenario 1

represents UDP/IP datagram socket communication . All application tasks of the video applica-
tion are implemented in one OS process.

The measurement metric is the delay between loading a video frame and displaying that frame
through the X server. This delay shows if the receiver can display the video frames at the same
rate the video frames are generated. The measured delay is equal to the the processing time of
XPutImage[lG] in case of IPC and TCP/IP communication between application client and X
server, and in case of UDP/IP we measure the time between sending the first byte of the video
frame at the sender side and display of the full video frame with XPutImage through IPC at the
receiver side. The video application runs under different scenarios with respect to the number of
applications/users.

1. Scenario 1 - single user/single application

Scenario 1 (Figure 2) shows one user running at the senderlreceiver and one application with
one medium (video). All application tasks and X server are tested in NRT as well as in RT
priority range.

2. Scenario 2 - single user/multiple applications

The setup in our second set of tests was made by adding a second video application (video
application 2 with IPC communication) at the receiver side to all cases in scenario 1. This
represents the situation when one user can run concurrently two video applications. The

IPC IPC

' use. 1
IPC IPC

~ - # - - - - - - - - - - - - - - - - - - .
I user2 , user 2

: user I I urer 1
I

' user2
I urer 2

, .. , .
I use. 1 ' user I

Figure 3: Scenario 4

video application 2 runs in NRT priority range and we measure the video application 1 and
X server in NRT as well as in RT priority range.

3. Scenario 3 - multiple users/single application

Scenario 3 adds to scenario 1 an additional user (user 2) at the receiver. The user 2 runs a
local video application (with IPC communication). Hence, we have two users at the receiver
sharing the CPU and X server to display the motion video. The user 2 runs the video
application in NRT priority range. We measure user 1's video application performance in
NRT as well as in RT priority range.

4. Scenario 4 - multiple users/multiple applications

Scenario 4 (Figure 3) merges the scenario 1, 2 and 3 plus we add an additional user to the
sender (for TCP/IP and UDP case). We measure the user 1's video application performance.

The results are presented using a b ~ x - ~ l o t l to illustrate the relative end-to-end delays and the
variance in these delays for some interesting cases. The summary of all measurements are shown
in Tables 1, 2, 3 and 4.

2.1.2 Results

We will discuss at first the results of each scenario and then across the different scenarios.

Results of Scenario 1 (Table 1)

'Boxplot provides much more information than an X-Y plot for this type of data. For a given x value, the box
defines the middle 50 percent of the data, the horizontal line inside the box is the median, and the bar a t the end
of the dashed Line marks the nearest value not beyond some standard range (in this case, 1.5*(inter-quartile range))
from the quartiles. Points outside these ranges are shown individually. Details of boxplot presentation can be found
[20]. We use them here because of the ability to visualize jitter from the vertical characteristics of the box.

Table 1: Measurements in Scenario 1

The Figure 4 shows the end-to-end delay and the variance in these delays for scenario 1 when
the application process (senderlreceiver) has a NRT (61) priority and X server has a NRT priority.

We observe three things. First, the TCPIIP and IPC communication using XI1 protocol, as
expected, are much lower in end-to-end delay (in IPC case the delays are [170-2001 ms, in TCPIIP
case the delays are [210-2201 ms), although the TCP/IP variant doesn't provide the required sample
rate t o display the video at the sample rate of 5 framesls.

Second, the UDP/IP case has a very high end-to-end delay (mean value 2800 ms) due to

IP C
TCP
UDP

a fragmentation of the video frame

RT
RT
RT

NRT
NRT
NRT

We used 4K fragments, hence the end-to-end delay of the video frame is 34*send operation
+ 34" network-end-to-end-delay + 34"receive operation + display with XPutImage (load of
the video frame from the video source is even not considered).

a additional copying to the display buffer

121.963
592.3741
2675.615

The received frame wasn't placed inimediately into the video screen buffer, as it is done in
XI1 when TCP/IP is used. Therefore, the display operation includes an additional IPC
communication.

a speed of UDP/IP protocol receiver

2.3447
340.698
10.2280

The UDP/IP receiver can't keep up with the speed of the sender, so artificial delay of 75 ms
between two consecutive fragments was introduced.

1.92
57.51
0.38

Third, the UDPIIP case exhibits more variation in the delay [2600-30001 ms. Especially, if we
compare the variation at the sender and receiver (Figure 5), we see huge variance at the receiver
caused not only by NRT priority of the application process (sender has also NRT priority and the
variance is small), but mainly it is caused by the performance of the X server.

Hence, we tuned the parameter 'application process priority' (at the sender/receiver side) and
set it to RT priority (priority = 1) as well as the 'X server process priority'.

The result of the application process priority assignment is that the mean value improves in
case of IPC communication, but not in case of TCP or UDP. The reason is that in case of TCP
and UDP the load of network plays a role. This means, even having RT priority of the application

End-to-End Delay in Scenario 1 without Priorities

LPC. TCP. UDP between load and display ot video frames

Figure 4: Scenario 1: Comparison of the time between load and display of video frames among all
three communication mechanisms (application priority=61, X server priority=61

Receiver / Sender Application Processes

Figure 5: Scenario 1: Comparison of the Processing Time for Video Frames at the Receiver and
Sender side (UDP/IP communication between Receiver and Sender) - Sender/Receiver Application
Processes have Priorities 61, X server has the Priority 61

Table 2: Measurements in Scenario 2, (1 user with 2 video applications)

IP C
TCP
UDP

doesn't help to improve the end-to-end delay. The end-to-end jitter did improve in some cases. For
example, UDP case improved the variance.

The result of tuning the 'X server priority' shows improvements in the mean value as well as
in jitter in case of IPC, and TCP (The lowest jitter in IPC case was achieved under application
process priority 1 and X server priority 3.). In case of UDP there is no improvement, on the con-
trary, the mean and jitter are higher. But over all the jitter in case of UDP is smaller than in TCP
case, which is cased by the retransmission of the TCP protocol under loaded network. Thus, the
X server priority doesn't produce stability either.

Results in Scenario 2 (Table 2)

NRT
NRT
NRT

The assignment of application process priority under X server running with NRT priority leads
to improvement of mean value as well as of jitter. The X server RT priority, running application
with RT priority, improves the mean value as well as the jitter in IPC case in comparison to any
other IPC cases in scenario 2, the same is true for TCP, but not for UDP. UDP has the best mean
value under the NRT priority for application process at the sender/receiver and X server having
RT priority, although the jitter is the higher.

Results in Scenario 3 (Table 3)

RT
RT
RT

The best performance for IPC communication in this scenario is when application process pri-
ority as well as X server priority are in RT range. For TCP case, the best performance is measured
when application process is in RT priority range and X server in NRT range. The worst perfor-
mance in case of TCP is when application process has NRT priority and X server the RT priority.
UDP case performs the best when application as well as X server are in RT priority range. The
worst performance in UDP case is when application runs in RT range and X server in NRT range.

Results in Scenario 4 (Table 4)

426.8241
790.3532
2660.821

The best performance for IPC communication is when application and X server were running
in RT range priorities. The worst performance for this type of communication is measured when

37.3131
888.2305
31.6459

8.74
112.38
1.189

Table 3: Measurements in Scenario 3 (2 users with each running 1 video application)

Table 4: Measurements Scenario 4

7.648
95.55
3.109

IP C
TCP
UDP

RT
RT
RT

NRT
NRT
NRT

608.7901
1198.43

2941.228

46.5663
1145.161
91.4583

application process has RT priority and X server a NRT priority. The same result is measured when
TCP communication is invoked. UDP case achieves the best result when application has the RT
priority and X server NRT priority. The worst mean and jitter are measured when both priorities
are NRT.

Results across Scenarios

The best performance (mean=112ms, max jitter=5.8ms) in case of IPC is achieved in scenario
1 when both application and X server have RT priorities, although the jitter is higher than in the
best case of scenarios 2, 3, 4. Scenario 1 is also the most predictable case. The worst performance
(mean=675.7457ms, jitter= 18.48ms) is in scenario 4 as expected.

The best performance in case of TCP is in scenario 3 when application process runs with RT
priority and X server with NRT priority (mean=560.43ms and jitter 135.135 ms). It shows that
the number of users at the workstation doesn't matter. The performance of TCP case depends on
the load of the network. The load changes and with it the performance of the end-to-end delay and
end-to-end jitter. The worst case again is in scenario 4 (mean=1486.067ms, and jitter=1358.044ms).

UDP case has the best performance in scenario 3 when both application and X server have RT
priorities (mean=2640.436 ms and jitter=8.7178ms). The worst case is in scenario 4 when both
application and X server had NRT priorities.

An interesting comparison is between scenario 2 and scenario 3. When application and X server
are in NRT priority range, the scenario 3 performs better than scenario 2. The reason is that the
OS scheduler allocates every user, each running one application, the same time slice and hence it
performs better in CPU utilization than when the user runs two applications concurrently. The
time in scenario 2 is not as well-balanced. Assigning priorities to the application/X server improves
the performance of scenario 2 versus scenario 3 in some cases (e.g. TCP case with RT priorities for
application and X server).

The most predictable case (as expected) is the single userlsingle application (scenario 1) al-
though it doesn't perform the best in all cases. The problem, we experience in scenarios 2, 3, and
4, is that adding a new application and/or user immediately results in unpredictable performance.
For example, if we have application and X server running with IPC in RT priority range, and we
add another video application with NRT priority (scenario 2 or 3), the mean value (for the video
display of the measured application with RT priority) jumps from 112 nis to 129.9682 ms (scenario
2) resp. 131.1341 ms (scenario 3). Therefore, the OS can't keep up the performance which we
had before. This behavior makes the OS actions very unpredictable when adding other application
and/or users t o the scenario 1.

2.2 Video/Robotics Application

The second experiment involves a video/robotics application where the sender side includes in one
application video source with 5 frames/second uncompressed, and sample size of 136 KBytes, and
robotics source with sample rate 100 samples/second and sample size of 64 bytes. The receiver
application displays the video and passes the robotics data to a robotics program. The application
requirements for the robotics data are very strict, it means the sender has to send every 10 ms the
robotics data (they are arriving from the robot hand).

This application is tested with UDPJIP communication between the sender and the receiver.
The media are sent over two separate UDP/IP connections. The video frame is fragmented in 4KB
fragments. The interest in this application is the implementation of two media at the senderlreceiver
endpoint as one process which sendslreceives both media or as two processes where each process

One Process lrnplementat~on versus Two Processes

Figure 6: One Process Versus Two Processes Implementation

sendslreceives individual medium.
The measurement metric is the timeout delay at which the processing of the robotics data has

t o be signaled and performed at the sender. We tested only the sender rate control because there
is no other tool (e.g., X server) running which contributes to the interference.

The result, shown in Figure 6 , is that implementing sending operation of both niedia in one
process provides required determinism for rate control of robotics data. The implementation in
two processes introduces jitter due to the context-switching and copying operation of the image
fragment. I t means although the robotics process is signaled, the video process finishes the copying
operation and then context-switching occurs. This introduces additional jitter with respect t o the
processing of the robotics data.

3 Implications of the Results

There are several implications of the experiments:

OS contributions can be larger than network contributions in some scenarios, such as lightly
loaded LANs. Figure 7 shows the comparison of a lightly loaded LAN and the time to
display a video frame with IPC which is the minimal bound for a networked application to
display video. The OS is also liglztly loaded, it means except the video a(pp1ication no other
applicationluser are running (scenario 1).

Priorities affect the variance, but must be coordinated for multiprocess applications. For
example, the variance in scenario 1 for IPC case was the lowest when application process
had NRT priority and X process had RT priority. In scenarios 2,3,4 the lowest variance was
a,chieved when the measured application and X process had both RT priorities.

In case, we had T C P or UDP comn~unication protocols, the variance of UDP is generally
lower than T C P although the mean performance of TCP case is 2-3 times better than UDP.
The reason for UDP's improved variance is retransmission, used by T C P t o provide reliability

Lightly Loaded LAN versus Lightly Loaded 0s

Figure 7: Comparison between OS delays and network delays

in case of loaded network. For the UDP case, the lowest jitter was in cases when application
had RT priority and X server NRT priority (scenario 1'2'4).

a The architecture of the network protocols must be included in the orchestration of the end-
points. The measurements for TCP and UDP cases support this statement. As we see in
every scenario, not having the orchestration of the network protocols shows mean values of
end-to-end delays and jitter which can't be improved very much even when application and/or
X server had RT priorities.

a The results suggest that services providing guarantees must be able to:

- get real-time communications,

- control processor scheduling in some fashion,

- match resource allocations to application choices such as a transport protocol.

a The transport protocols at the end-points for transmission of 'delay sensitive' data have to
be simple with rate control mechanism and no retransmission. Hence, if data get lost, the
application has to deal with the loss and not the transport protocol. This implies that if the
transport protocol receiver can't keep up with sent data, it drops data and doesn't break, as
the UDP experience showed us. (We had to introduce 75 ms delay between two consecutive
fragments for flow control at the sender side because the receiver couldn't keep up with the
speed and failed.) The application has to be informed what is the receiver's rate, and based
on this information it has to deal with the losses.

a Further, the results suggest that in order to provide customized connections with guaran-
tees, the connection set up protocol needs new services which (1) provide distribution of the
application requirements to all other components of the communication system, (2) check
the system resources of OS and network, which implies the service knowledge of the current
resource status, (3) make a 'contract' for resource guarantees with system components.

4 Conclusions and Directions for Future Research

We can conclude that workstations can (today) provide partial capability for some interesting
QoS delivery. The challenges lie in a three directions. First, we should ensure that real-time
capabilities are available in workstation operating systems. Second, we should work on models of
interaction between the end-points and the network fabrics which are actually deployed, e.g., with
microcontrollers on each switch port. Third, we should continue t o explore the space of applications
to test and refine QoS provision.

References

[I] H. Tokuda, T. Nakajima, P. Rao, "Real-Time Mach: Towards a Predictable Real-Time Sys-
tem" Technical Report School of Computer Science, Carnegie Mellon University, Pittsburg,
PA, 1993

[2] L.Zhang, B. Braden, D. Estrin, S. Herzog, S. Janiin, "Resource Reservation Protocol", internet
Draft, October 1993

[3] C. J. Parris, D. Ferrari "A Dynamic Connection Management Scheme for Guaranteed Perfor-
mance Services in Packet-Switching Integrated Services Networks", Technical Report, October
1993

[4] D. Yates, J. Kurose, D. Towsley, M.G. Hluchyj, "On per-session end-to-end delay distribu-
tions and the call admission problem for real-time applications with QoS requirements", SIG-
C0MM793 Proceedings, September 1993, Ithaca, NY

[5] Jason Nieh, James G. Hanko, J . Duane Nortcutt, Gerard A. Wall "SVR4UNIX Scheduler
Unacceptable for Multimedia Applications", Proceedings from Workshop on OS for Digital
Audio and Video 93, November 1993, Lancaster, England

[6] J.M. Hyman, A.A. Lazar, G. Pacifici, "A Separation Principle between Scheduling and Ad-
mission Control for Broadband Switching", IEEE Journal on SAC, May 1993, Vol. 11, No.4,
pp.605-616

[7] J.M. Hyman, A.A. Lazar, G. Pacifici, "A Separation Principle between Scheduling and Ad-
mission Control for Broadband Switching", IEEE Journal on SAC, May 1993, Vol.11 Nr. 4,
pp.605-616

[8] A.K. Parekh, "A Generalized processor sharing approach to flow control in integrated services
networks", PhD thesis, MIT Cambridge, MA, February 1992

[9] D. Ferrari, "RealTime Commuizication in an Internetwork", Journal of High-Speed Networks,
Vol. 1, 1992, pp.79-103

[lo] S. Keshav, "Report on Workshop on QoS Issues in High-Speed Networks", Computer Com-
munication Review, October 1992, Vo1.22, No.5, pp.74-85

[ll] R.L. Cruz, "A calcu.lus for network delay, part I: Network elements in isolation", IEEE Trans-
actions on Information Theory, Vo1.37.) No. 1, January 1991, pp.114-131

[12] R.L. Cruz, "A calculus for network delay, part 11: Network analysis", IEEE Transactions on
Information Theory, Vo1.37.) No. 1, January 1991, pp.132-141

[13] K. W. Tindell, A. Burns, A. J. Wellings, "Guaranteeing Hard Real-Time End-to-End Com-
munication Deadlines", Technical Report Number RTRG/91/107, Department of Computer
Science, University of York, December 1991

[14] "AIX Version 3.1. RISC System/6000 as a Real-Time System", Technical Documentation Num-
ber 6624-3633-0, International Technical Support Center, Austin, Texas

[15] C. Topolcic, "Experimental Internet Stream Protocol, Version 2 (ST-11)", Technical Report
Number 1190 RFC-1190, October 1990

[16] Andrian Nye, "Xlib Programming Manual for Version 11, Release 4", O'ReiEly & Associates,
Inc., Volume One, 1990

[17] D. Ferrari, D.C. Verma, "A Scheme for Real-Time Channel Establishment in Wide-Area Net-
works", IEEE Journal on SAC, Vo1.8, Nr. 3, April 1990, pp. 368-379

[IS] A.A. Lazar, G.. Pacifici, J.S. White, "Real-Time Traffic Measurements on MAGNET-11", IEEE
Journal on SAC, Vo1.8, Nr. 3, April 1990, pp. 467-483

[19] David P. Anderson, Ron Kuivila "A System for Computer Music Performance", acm Trans-
actions on Computer Systems, Vo1.8, Nr.1, February 1990, pp.56-82

[20] Richard A. Becker, John M. Chambers, Allan R. Wilks, "The S Language", published by
Wadsworth 6 Brooks, California, 1988

