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Abstract 

Quality of Service (QoS) guarantees for 'delay sensitive' networked applications must be 
end-to-end. This paper presents an experimental study of this class of applications where the 
endpoints are computer workstations. The experiments show that operating system effects 
dominate any jitter in the network. 

Our conclusion is that QoS provision by the workstation operating system is as important for 
maintaining end-to-end guarantees as is network QoS. In local-area settings, operating system 
influences may be more challenging for end-to-end QoS than network influences. The important 
influence variables are the degree of multiprocessing, the employed transport protocol (e.g. UDP 
or TCP), and the priorities assigned to processes. 

1 Introduction 

One of the important forms of information networks carry is "delay sensitive multimedia" traffic. 
The information is carried between end-points using delay-bounded communication protocols. Such 
protocols and their architecture have been of great interest in the computer networking community 

[31, 121 , [GI. 
The other element in delay-sensitive networking is the behavior of the endpoints. This is the 

focus of our paper. The endpoints of future networks, except for the most trivial, will contain 
a processor, and should be flexible enough to  offer some customization. This customization will 
take the form of "Quality of Service" (QoS) specifications for the applications, which must then be 
translated into appropriate sets of endpoint behaviors and network customizations. 

1. I Problem Description 

Consider, for example, an application requiring video services. Such an application must make 
certain demands of the network, such as an allocated bandwidth, and perhaps some specification of 
the burst characteristics of the application traffic. These demands will change significantly in the 
case, e.g., where variable bit rate characteristics are induced on the video by coding schemes such as 
MPEG, which also serve t o  reduce the average bandwidth required. But the software infrastructure 
supporting the application, such as an  operating system scheduler, must be integrated into the 
model of the endpoint in order t o  periodically schedule the application when data  arrives or is t o  
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be sent. Control of this scheduling is crucial to providing QoS in  an end-to-end fashion; it appears 
that some features of "real-time" operating systems (0s) must be available for application desiring 
use of the deterministic delay capabilities. 

Section 2 details our experiments and the results. Section 3 describes the implications of the 
experiments. Section 4 concludes the paper and offers ideas for future work. 

1.2 Related Work 

Related work to  our research is done in two areas. One area is guaranteed services and predictability 
in the networks, and the other area looks at real-time operating systems and their predictability. 

a Real-Time Communication in Networks 

Real-time communication in networks has been studied in the Tenet group at Berkeley. Ferrari 
et al. devised an establishment scheme for real-time channels [17] where processing and 
queuing delays in the networks are discussed in terms of deterministic and statistical bounds. 
The bounding of delays in an internetwork for real-time communication is an important 
assumption for guaranteed services [9]. 

In order t o  establish real-time channels in the networks, we need predictions of the behavior of 
the shared medium, in this case the network. Therefore, analysis of different scheduling and 
queuing mechanisms at the network interfaces and switches, and the delay bounds, introduced 
by the scheduling (multiplexing) and queuing algorithms, are part of the knowledge which 
the services such as admission service need to  predict what kind of guarantees can be made 
by the network [9], [13]. 

Resource scheduling for guaranteed services in switches was studied by Lazar et al. at 
Columbia University [18], [7 ] .  There is extensive research work done on computing delay 
bounds under different multiplexing and queuing algorithms such as Cruz's method for com- 
puting delay bounds under FCFS multiplexing [ll], [12], or Parekh and Gallager's method 
for computing delay bounds under weighted fair queuing [8]. 

Admission service, as one of the services, estimates the available shared resources and gives 
the permission or denies requests for resources, is studied at different levels in the networks. 
Admission control at the cell level is presented in [7], [ lo] .  In [4] the call admission problem at 
the packet level is discussed. The end-to-end delay of the traditional voice traffic is analyzed 
using FCFS queuing in the network switch model. 

a Real-Time Support in Operating Systems 

Real-time operating system research provides different mechanisms for real-time support t o  
the application developers. Recent foci have included real-time thread models (e.g. Real-Time 
Mach) and scheduling mechanisms of the processor (e.g. Integrated Time-Driven Scheduler) 
[I], fine granularity of timers and clock interfaces (e.g. POSIX 1003.4, AIX 3.1, SVR4 UNIX). 
Further, there are operating systems like FORMULA, which provide user primitives for coor- 
dinating timing requests from the applications [19]. Scheduling primitives were implemented 
in FORMULA for the Computer Music Performance. 

Unfortunately, there are too few links between these two areas and even fewer links among 
all three areas - real-time applications, networks, and OS. There are partial experimental results 
where OS performance and relation between application and OS are shown. In [5] it is shown 
that having real-time support in SVR4 UNIX is not sufficient to  have good performance for local 



video applications. For example, some priority-induced pathologies with respect t o  X windows 
were presented in [5] (e.g. video didn't get displayed if X server had higher priority than the video 
application.) 

2 Experimental Analysis of AIX OS Real-Time Support for 'Delay- 
sensitive' Networked Applications 

We performed our experiments using IBM RS/6000 workstations connected t o  an Ethernet. These 
workstations run the AIX operating system. In order t o  study 'delay sensitive networked appli- 
cations, it is important to  analyze these workstations as endpoints with respect to  (1) different 
components in OS delay, and (1) relative contribution of OS delay versus network delay. 

AIX Version 3.2 is a general purpose operating system which claims to  provide some level of 
real-time support through use of priorities and priority classes [14]: 

a The kernel allows real-time applications to  be executed within a user program. Since the 
kernel is fully pre-emptible, the context switch time between user processes is shorter than in 
traditional UNIX systems (we measured over 60,000 getpido calls/second on a model 320). 

a AIX allows assignment of fixed priority values to  the application developer with minimal 
interference from OS's own scheduling algorithm, i.e. the priority values are not altered by 
the scheduler. 

a The user subroutines offer the same timer resolution as the kernel services. 

a The real-time performance of some critical programs may be improved by adding facilities t o  
the kernel, or by coding part of the applications as a kernel eztension. 

a AIX provides a locking mechanism for a task to lock its code and/or data into real memory, 
so that it can guarantee predictable response to  an interrupt. 

For our experiments, we used fixed priorities for the applications. There are 128 (0-127) priority 
levels for all processes. Generally, a real-time process will be assigned a fixed value between 0-40. 
This property allows us to  split the priority range into two classes: Real-Time priorities (RT) and 
Non-Real-Time priorities (NRT). The tasks within NRT class obey the AIX scheduling algorithm, 
which is round-robin by priority, where priorities are adjusted to provide good interactive response. 

We prototyped simple networked applications with video/robotics data, ran different application 
scenarios under different priorities and analyzed the delays at an endpoint. 

2.1 Video Application 

The first experiment involves a video application (Figure 1) where the sender is a video source 
with sample rate of 5 frames/s uncompressed, and sample size of 136 KBytes. The receiver is an 
X server displaying the video images. 

2.1.1 Experimental Method 

The video application is tested with three communication mechanisms: (1) IPC communication, 
which represents UNIX-STREAM socket communication; (2) TCP/IP communication (XI1 pro- 
tocol), which represents TCP/IP-STREAM communication; (3) UDP/IP communication, which 
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Figure 1: Video Application 
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Figure 2: Scenario 1 

represents UDP/IP datagram socket communication . All application tasks of the video applica- 
tion are implemented in one OS process. 

The measurement metric is the delay between loading a video frame and displaying that frame 
through the X server. This delay shows if the receiver can display the video frames at the same 
rate the video frames are generated. The measured delay is equal to the the processing time of 
XPutImage[lG] in case of IPC and TCP/IP communication between application client and X 
server, and in case of UDP/IP we measure the time between sending the first byte of the video 
frame at  the sender side and display of the full video frame with XPutImage through IPC at  the 
receiver side. The video application runs under different scenarios with respect to  the number of 
applications/users. 

1. Scenario 1 - single user/single application 

Scenario 1 (Figure 2) shows one user running at the senderlreceiver and one application with 
one medium (video). All application tasks and X server are tested in NRT as well as in RT 
priority range. 

2. Scenario 2 - single user/multiple applications 

The setup in our second set of tests was made by adding a second video application (video 
application 2 with IPC communication) at the receiver side to all cases in scenario 1. This 
represents the situation when one user can run concurrently two video applications. The 
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Figure 3: Scenario 4 

video application 2 runs in NRT priority range and we measure the video application 1 and 
X server in NRT as well as in RT priority range. 

3. Scenario 3 - multiple users/single application 

Scenario 3 adds to  scenario 1 an additional user (user 2) at the receiver. The user 2 runs a 
local video application (with IPC communication). Hence, we have two users at the receiver 
sharing the CPU and X server to  display the motion video. The user 2 runs the video 
application in NRT priority range. We measure user 1's video application performance in 
NRT as well as in RT priority range. 

4. Scenario 4 - multiple users/multiple applications 

Scenario 4 (Figure 3) merges the scenario 1, 2 and 3 plus we add an additional user to  the 
sender (for TCP/IP and UDP case). We measure the user 1's video application performance. 

The results are presented using a b ~ x - ~ l o t l  to illustrate the relative end-to-end delays and the 
variance in these delays for some interesting cases. The summary of all measurements are shown 
in Tables 1, 2, 3 and 4. 

2.1.2 Results 

We will discuss at first the results of each scenario and then across the different scenarios. 

Results of Scenario 1 (Table 1) 

'Boxplot provides much more information than an X-Y plot for this type of data. For a given x value, the box 
defines the middle 50 percent of the data, the horizontal line inside the box is the median, and the bar a t  the end 
of the dashed Line marks the nearest value not beyond some standard range (in this case, 1.5*(inter-quartile range)) 
from the quartiles. Points outside these ranges are shown individually. Details of boxplot presentation can be found 
[20]. We use them here because of the ability to visualize jitter from the vertical characteristics of the box. 



Table 1: Measurements in Scenario 1 

The Figure 4 shows the end-to-end delay and the variance in these delays for scenario 1 when 
the application process (senderlreceiver) has a NRT (61) priority and X server has a NRT priority. 

We observe three things. First, the TCPIIP and IPC communication using XI1  protocol, as 
expected, are much lower in end-to-end delay (in IPC case the delays are [170-2001 ms, in TCPIIP 
case the delays are [210-2201 ms), although the TCP/IP variant doesn't provide the required sample 
rate t o  display the video at the sample rate of 5 framesls. 

Second, the UDP/IP case has a very high end-to-end delay (mean value 2800 ms) due to  

IP  C 
TCP 
UDP 

a fragmentation of the video frame 

RT 
RT 
RT 

NRT 
NRT 
NRT 

We used 4K fragments, hence the end-to-end delay of the video frame is 34*send operation 
+ 34" network-end-to-end-delay + 34"receive operation + display with XPutImage (load of 
the video frame from the video source is even not considered). 

a additional copying to  the display buffer 

121.963 
592.3741 
2675.615 

The received frame wasn't placed inimediately into the video screen buffer, as it is done in 
XI1  when TCP/IP is used. Therefore, the display operation includes an additional IPC 
communication. 

a speed of UDP/IP protocol receiver 

2.3447 
340.698 
10.2280 

The UDP/IP receiver can't keep up with the speed of the sender, so artificial delay of 75 ms 
between two consecutive fragments was introduced. 

1.92 
57.51 
0.38 

Third, the UDPIIP case exhibits more variation in the delay [2600-30001 ms. Especially, if we 
compare the variation at the sender and receiver (Figure 5), we see huge variance at the receiver 
caused not only by NRT priority of the application process (sender has also NRT priority and the 
variance is small), but mainly it is caused by the performance of the X server. 

Hence, we tuned the parameter 'application process priority' (at the sender/receiver side) and 
set it to  RT priority (priority = 1) as well as the 'X server process priority'. 

The result of the application process priority assignment is that the mean value improves in 
case of IPC communication, but not in case of TCP or UDP. The reason is that in case of TCP 
and UDP the load of network plays a role. This means, even having RT priority of the application 



End-to-End Delay in Scenario 1 without Priorities 
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Figure 4: Scenario 1: Comparison of the time between load and display of video frames among all 
three communication mechanisms (application priority=61, X server priority=61 
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Figure 5: Scenario 1: Comparison of the Processing Time for Video Frames at the Receiver and 
Sender side (UDP/IP communication between Receiver and Sender ) - Sender/Receiver Application 
Processes have Priorities 61, X server has the Priority 61 



Table 2: Measurements in  Scenario 2, (1 user with 2 video applications) 

IP C 
TCP 
UDP 

doesn't help to  improve the end-to-end delay. The end-to-end jitter did improve in some cases. For 
example, UDP case improved the variance. 

The result of tuning the 'X server priority' shows improvements in the mean value as well as 
in jitter in case of IPC, and TCP (The lowest jitter in IPC case was achieved under application 
process priority 1 and X server priority 3.). In case of UDP there is no improvement, on the con- 
trary, the mean and jitter are higher. But over all the jitter in case of UDP is smaller than in TCP 
case, which is cased by the retransmission of the TCP protocol under loaded network. Thus, the 
X server priority doesn't produce stability either. 

Results in Scenario 2 (Table 2) 

NRT 
NRT 
NRT 

The assignment of application process priority under X server running with NRT priority leads 
to  improvement of mean value as well as of jitter. The X server RT priority, running application 
with RT priority, improves the mean value as well as the jitter in IPC case in comparison to  any 
other IPC cases in scenario 2, the same is true for TCP, but not for UDP. UDP has the best mean 
value under the NRT priority for application process at the sender/receiver and X server having 
RT priority, although the jitter is the higher. 

Results in Scenario 3 (Table 3) 

RT 
RT 
RT 

The best performance for IPC communication in this scenario is when application process pri- 
ority as well as X server priority are in RT range. For TCP case, the best performance is measured 
when application process is in RT priority range and X server in NRT range. The worst perfor- 
mance in case of TCP is when application process has NRT priority and X server the RT priority. 
UDP case performs the best when application as well as X server are in RT priority range. The 
worst performance in UDP case is when application runs in RT range and X server in NRT range. 

Results in Scenario 4 (Table 4) 

426.8241 
790.3532 
2660.821 

The best performance for IPC communication is when application and X server were running 
in RT range priorities. The worst performance for this type of communication is measured when 

37.3131 
888.2305 
31.6459 

8.74 
112.38 
1.189 



Table 3: Measurements in  Scenario 3 (2 users with each running 1 video application) 

Table 4: Measurements Scenario 4 

7.648 
95.55 
3.109 

IP C 
TCP 
UDP 

RT 
RT 
RT 

NRT 
NRT 
NRT 

608.7901 
1198.43 

2941.228 

46.5663 
1145.161 
91.4583 



application process has RT priority and X server a NRT priority. The same result is measured when 
TCP communication is invoked. UDP case achieves the best result when application has the RT 
priority and X server NRT priority. The worst mean and jitter are measured when both priorities 
are NRT. 

Results across Scenarios 

The best performance (mean=112ms, max jitter=5.8ms) in case of IPC is achieved in scenario 
1 when both application and X server have RT priorities, although the jitter is higher than in the 
best case of scenarios 2, 3, 4. Scenario 1 is also the most predictable case. The worst performance 
(mean=675.7457ms, jitter= 18.48ms) is in scenario 4 as expected. 

The best performance in case of TCP is in scenario 3 when application process runs with RT 
priority and X server with NRT priority (mean=560.43ms and jitter 135.135 ms). It shows that 
the number of users at the workstation doesn't matter. The performance of TCP  case depends on 
the load of the network. The load changes and with it the performance of the end-to-end delay and 
end-to-end jitter. The worst case again is in scenario 4 (mean=1486.067ms, and jitter=1358.044ms). 

UDP case has the best performance in scenario 3 when both application and X server have RT 
priorities (mean=2640.436 ms and jitter=8.7178ms). The worst case is in scenario 4 when both 
application and X server had NRT priorities. 

An interesting comparison is between scenario 2 and scenario 3. When application and X server 
are in NRT priority range, the scenario 3 performs better than scenario 2. The reason is that the 
OS scheduler allocates every user, each running one application, the same time slice and hence it 
performs better in CPU utilization than when the user runs two applications concurrently. The 
time in scenario 2 is not as well-balanced. Assigning priorities to the application/X server improves 
the performance of scenario 2 versus scenario 3 in some cases (e.g. TCP case with RT priorities for 
application and X server). 

The most predictable case (as expected) is the single userlsingle application (scenario 1) al- 
though it doesn't perform the best in all cases. The problem, we experience in scenarios 2, 3, and 
4, is that adding a new application and/or user immediately results in  unpredictable performance. 
For example, if we have application and X server running with IPC in RT priority range, and we 
add another video application with NRT priority (scenario 2 or 3), the mean value (for the video 
display of the measured application with RT priority) jumps from 112 nis to 129.9682 ms (scenario 
2) resp. 131.1341 ms (scenario 3). Therefore, the OS can't keep up the performance which we 
had before. This behavior makes the OS actions very unpredictable when adding other application 
and/or users t o  the scenario 1. 

2.2 Video/Robotics Application 

The second experiment involves a video/robotics application where the sender side includes in one 
application video source with 5 frames/second uncompressed, and sample size of 136 KBytes, and 
robotics source with sample rate 100 samples/second and sample size of 64 bytes. The receiver 
application displays the video and passes the robotics data to a robotics program. The application 
requirements for the robotics data are very strict, it means the sender has to  send every 10 ms the 
robotics data (they are arriving from the robot hand). 

This application is tested with UDPJIP communication between the sender and the receiver. 
The media are sent over two separate UDP/IP connections. The video frame is fragmented in 4KB 
fragments. The interest in this application is the implementation of two media at the senderlreceiver 
endpoint as one process which sendslreceives both media or as two processes where each process 



One Process lrnplementat~on versus Two Processes 

Figure 6: One Process Versus Two Processes Implementation 

sendslreceives individual medium. 
The measurement metric is the timeout delay at  which the processing of the robotics data  has 

t o  be signaled and performed at  the sender. We tested only the sender rate control because there 
is no other tool (e.g., X server) running which contributes to  the interference. 

The result, shown in Figure 6 ,  is that  implementing sending operation of both niedia in one 
process provides required determinism for rate control of robotics data. The implementation in 
two processes introduces jitter due to  the context-switching and copying operation of the image 
fragment. I t  means although the robotics process is signaled, the video process finishes the copying 
operation and then context-switching occurs. This introduces additional jitter with respect t o  the 
processing of the robotics data. 

3 Implications of the Results 

There are several implications of the experiments: 

OS contributions can be larger than network contributions in some scenarios, such as lightly 
loaded LANs. Figure 7 shows the comparison of a lightly loaded LAN and the time to  
display a video frame with IPC which is the minimal bound for a networked application to  
display video. The OS is also liglztly loaded, it means except the video a(pp1ication no other 
applicationluser are running (scenario 1). 

Priorities affect the variance, but must be coordinated for multiprocess applications. For 
example, the variance in scenario 1 for IPC case was the lowest when application process 
had NRT priority and X process had RT priority. In scenarios 2,3,4 the lowest variance was 
a,chieved when the measured application and X process had both RT priorities. 

In case, we had T C P  or UDP comn~unication protocols, the variance of UDP is generally 
lower than T C P  although the mean performance of TCP case is 2-3 times better than UDP. 
The reason for UDP's improved variance is retransmission, used by T C P  t o  provide reliability 



Lightly Loaded LAN versus Lightly Loaded 0s 

Figure 7: Comparison between OS delays and network delays 

in case of loaded network. For the UDP case, the lowest jitter was in cases when application 
had RT priority and X server NRT priority (scenario 1'2'4). 

a The architecture of the network protocols must be included in the orchestration of the end- 
points. The measurements for TCP and UDP cases support this statement. As we see in 
every scenario, not having the orchestration of the network protocols shows mean values of 
end-to-end delays and jitter which can't be improved very much even when application and/or 
X server had RT priorities. 

a The results suggest that services providing guarantees must be able to: 

- get real-time communications, 

- control processor scheduling in some fashion, 

- match resource allocations to application choices such as a transport protocol. 

a The transport protocols at the end-points for transmission of 'delay sensitive' data have to  
be simple with rate control mechanism and no retransmission. Hence, if data get lost, the 
application has to  deal with the loss and not the transport protocol. This implies that if the 
transport protocol receiver can't keep up with sent data, it drops data and doesn't break, as 
the UDP experience showed us. (We had to  introduce 75 ms delay between two consecutive 
fragments for flow control at the sender side because the receiver couldn't keep up with the 
speed and failed.) The application has to  be informed what is the receiver's rate, and based 
on this information it has to  deal with the losses. 

a Further, the results suggest that in order to  provide customized connections with guaran- 
tees, the connection set up protocol needs new services which (1) provide distribution of the 
application requirements to  all other components of the communication system, (2) check 
the system resources of OS and network, which implies the service knowledge of the current 
resource status, (3) make a 'contract' for resource guarantees with system components. 



4 Conclusions and Directions for Future Research 

We can conclude that  workstations can (today) provide partial capability for some interesting 
QoS delivery. The challenges lie in a three directions. First, we should ensure that  real-time 
capabilities are available in workstation operating systems. Second, we should work on models of 
interaction between the end-points and the network fabrics which are actually deployed, e.g., with 
microcontrollers on each switch port. Third, we should continue t o  explore the space of applications 
to  test and refine QoS provision. 
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