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Abstract— For a group of constant-speed ground robots, a
simple control law is designed to stabilize the motion of the group
into a balanced circular formation using a consensus approach. It
is shown that the measurements of the bearing angles between the
robots are sufficient for reaching a balanced circular formation.
We consider two different scenarios that the connectivity graph
of the system is either a complete graph or a ring. Collision
avoidance capabilities are added to the team members and the
effectiveness of the control laws are demonstrated on a group of
mobile robots.

I. I NTRODUCTION

Inspired by the social aggregation phenomena in birds and
fish [1]–[3], researchers in robotics and control theory have
been developing tools, methods and algorithms for distrib-
uted motion coordination of multi-vehicle systems. Two main
collective motions that are observed in nature areparallel
motion and circular motion [4]. One can interpret stabilizing
the circular formation as an example ofactivity consensus,
that is, individuals are “moving around” together. Stabilizing
the parallel formation is another form of activity consensus in
which individuals “move off” together [5].

The circular formation is a circular relative equilibrium in
which all the agents travel around the same circle. This kind of
behavior is observed in fish schooling, a well studied topic in
ecology and evolutionary biology [3]. Thebalancedformation
is an interesting family of equilibrium states where the agents
are evenly spaced on a circular trajectory, and the geometric
center of the agents is fixed. At the equilibrium, the relative
headings and the relative distances of the agents determine the
shape of the formation [6].

The primary contribution of this work is the presentation
of a simple control law for achieving a balanced circular
formation that only requires visual sensing such as bearing
angles, i.e., the input is in terms of quantities that do not
require communication among nearest neighbors. In contrast
with the work of Paleyet al. [5], Sepulchreet al. [6], and
Moshtaghet al. [7], where it is assumed that each agent has
access to the values of its neighbors’ positions and velocities,
we design distributed control laws that use only visual clues
from nearest neighbors to achieve motion coordination.

In [8]–[10] circular formations of a multi-vehicle system
under cyclic pursuit is studied. The proposed strategy is
distributed and relatively simple because each agent needs to
measure the relative information from only one other agent. It

is also shown that the formation equilibria of the multi-agent
system are generalized polygons. In contrast to [8] our control
law is a nonlinear function of the bearing angles and as a result
our system converges to a different set of stable equilibria.

Verification of the theory through multi-robot experiments
demonstrated the effectiveness of the bearing-only control law
to achieve the desired formation. Of course in reality any
formation control requires collision avoidance, and indeed
collision avoidance cannot be done without range. In order
to improve the experimental results, we provided inter-agent
collision avoidance properties to the team members. What we
show in this work is that the two tasks of formation-keeping
and collision-avoidance can be done with decoupled additive
terms in the control law, where the terms for keeping circular
formation depends only on the bearing parameters.

The outline of the paper is as follows. First we provide
some background information on graph theory and polygons
that we are going to use throughout the paper. In Section III
we derive the bearing-only controller that stabilizes a group of
mobile agents into a balanced circular formation. In Section
IV collision avoidance capabilities are added to the control
laws. The derived controllers are tested on real robots and the
experimental results are presented in Section V.

II. BACKGROUND

In this section we briefly review a number of important
concepts that we use in this paper.

A. Graph Theory

An (undirected) graphG consists of a vertex set,V, and
an edge setE , where an edge is an unordered pair of distinct
vertices inG. If x, y ∈ V, and (x, y) ∈ E , thenx and y are
said to be adjacent, or neighbors and we denote this by writing
x ∼ y. The number of neighbors of each vertex is its valence.
A path of lengthr from vertexx to vertexy is a sequence
of r + 1 distinct vertices starting withx and ending withy
such that consecutive vertices are adjacent. If there is a path
between any two vertices of a graphG, thenG is said to be
connected.

The adjacency matrixA(G) = [aij ] of an (undirected) graph
G is a symmetric matrix with rows and columns indexed by
the vertices ofG, such thataij = 1 if vertex i and vertexj
are neighbors andaij = 0, otherwise. We also assume that
aii = 0 for all i. The valence matrix,D(G), of a graphG



is a diagonal matrix with rows and columns indexed byV, in
which the(i, i)-entry is the valence of vertexi.

The symmetric singular matrix defined as:

L(G) = D(G)−A(G)

is called the Laplacian ofG. The Laplacian matrix captures
many topological properties of the graph. The LaplacianL is
a positive semidefinite M-matrix (a matrix whose off-diagonal
entries are all nonpositive) and the algebraic multiplicity of
its zero eigenvalue (i.e., the dimension of its kernel) is equal
to the number of connected components in the graph. Then-
dimensional eigenvector associated with the zero eigenvalue
is the vector of ones,1n = [1, . . . , 1]T .

Given an orientation of the edges of a graph, we can define
the incidence matrix of the graph to be a matrixB with
rows indexed by vertices and columns indexed by edges with
entries of1 representing the source of a directed edge and−1
representing the sink. The Laplacian matrixL(G) of graphG
is represented in terms of its incidence matrix asL = BBT

independent of the orientation of the edges.

B. Regular Polygons

Let d < n be a positive integer and definep = n/d. Let y1

be a point on the unit circle. LetRα be a clockwise rotation
by the angleα = 2π/p. Thegeneralized regular polygon{p}
is given by the pointsyi+1 = Rαyi, and edges between points
i and i + 1 [11].

Whend = 1 the polygon{p} is called an ordinary regular
polygon and its edges do not intersect. Ifd > 1 and n and
d are coprime, then the edges intersect and the polygon is a
star. If n andd have a common factorl > 1, then the polygon
consists ofl traversals of the same polygon with{n/l} vertices
and edges. Ifd = n the polygon{n/n} corresponds to all
points at the same location. Ifd = n/2 (with n even), then
the polygon consists of two end points and a line between
them, with points corresponding to an even index on one end
and points corresponding to an odd index on the other.

C. Kronecker Product

The Kronecker product, denoted by⊗, is an operation on
two matrices of arbitrary size resulting in a block matrix. IfA
is anm×n matrix andB is ap×q matrix, then the Kronecker
productA⊗B is a mp×nq block matrix. If A, B, C andD
are matrices of such size that one can form the matrix products
AC and BD, then (A ⊗ B)(C ⊗ D) = AC ⊗ BD. This is
called the mixed-product property. Also the following property
holds (A⊗B)T = AT ⊗BT .

III. C IRCULAR FORMATIONS OFPLANAR ROBOTS

Consider a group ofn unit-speed planar agents. Each agent
is capable of sensing information from its neighbors. The
neighborhood set of agenti, Ni, is the set of agents that can
be “seen” by agenti. The precise meaning of “seeing” will
be cleared later. The size of the neighborhood depends on
the characteristics of the sensors. The neighboring relationship
between agents can be conveniently described by a graph.

Definition 3.1 (Connectivity Graph): The connectivity
graphG = {V, E} is a graph consisting of:

• a set of verticesV indexed by the set of mobile agents;
• a set of edgesE = {(i, j) | i, j ∈ V, and i ∼ j};
The edge setE represents the links among the agents, and

the neighborhood of agenti is defined by

Ni
.= {j|i ∼ j} ⊆ {1, . . . , n}\{i}.

A circular formation is a circular relative equilibrium in
which all the agents travel around the same circle. At the
equilibrium, the relative headings and the relative distances
of the agents determine the shape of the formation. We are
interested inbalancedcircular formations as defined by:

Definition 3.2 (Balanced Circular Formation): The set
of equilibrium states where the agents are evenly spaced on a
circular trajectory, and the geometric center of the agents is
fixed is called the balanced circular formation.

A. Kinematic Model for Mobile Robots

Let ri represent the position of agenti, andvi be its velocity
vector. The dynamics of each unit-speed agent is given by:

ṙi = vi

v̇i = ωi v⊥i
v̇⊥i = −ωivi (1)

wherev⊥i is the unit vector perpendicular to the velocity vector
vi. The orthogonal pair{vi,v⊥i } forms a body frame for
agenti (See Figure 1). We represent the stack vector of all
the velocities byv = [vT

1 , . . . ,vT
n ]T ∈ R2n×1 .

The control input for each agent is the angular velocityωi.
Since it is assumed that the agents move with constant unit
speed, the force applied to each agent must be perpendicular to
its velocity vector,i.e., the force on each agent is agyroscopic
force, and it does not change its speed (and hence its kinetic
energy). Thus,ωi serves as a steering control [12] for each
agent. In the following we design adistributed control law
for achieving a balanced formation.

Let ci represent the position of the center of thei-th circle
with radius1/ωo, as shown in Figure 1, thus

ci = ri + (1/ωo)v⊥i .

The shape controls for driving agents to a circular formation
depend on the shape variablesvij = vj − vi and rij =
rj − ri. The relative equilibria of the balanced formation are
characterized by

∑n
i=1 vi = 0, and ci = co ∈ R2 for all

i ∈ {1, . . . , n}, whereco is the fixed geometric center of the
agents.

The control input for each agent has two components:

ωi = ωo + ui

The constant angular velocityωo takes the agents into a circu-
lar motion, andui puts the agents into a balanced formation. In
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Fig. 1. Center of the circular trajectory is defined asci = ri + (1/ω0)v⊥i .

order to designui we express the system in arotating frame,
which greatly simplifies the analysis. By a change of variable

zi = ωo(ri − ci) = −v⊥i

the problem reduces to balancing the agents on a unit circle
as shown in Figure 2. The new coordinate system is rotating
with angular velocityωo. The dynamics in the rotating frame
is given by

żi = viui

v̇i = −ziui , i = 1, . . . , n (2)

The new position vectorzi is a unit vector, however its speed
|żi| is not constant anymore, and it is proportional toui, which
goes to zero as the group reaches a balanced formation.

Let us definezij = zj − zi andqij = zij/|zij | as the unit
vector along the relative position vectorzij . We note that at
the balanced equilibrium the velocity of each agent must be
perpendicular tōqi =

∑
j∈Ni

qij , which is a vector along
the average of the relative position vectors that are incident to
agenti. Thus, the quantity< vi, q̄i > vanishes at the balanced
equilibrium. Hence we propose the following control law for
the balanced formation:

ui = −κ < vi, q̄i >= −κ
∑

j∈Ni

< vi,qij > , κ > 0. (3)

B. Complete-Graph Topology

Suppose the underlying connectivity graph is a complete
graph. We have the following theorem for reaching the bal-
anced circular formation in a group of mobile planar agents
with a complete-graph connectivity.

Theorem 3.3: Consider a system ofn agents with kine-
matics (2). Given a complete connectivity graphG, and
applying control law (3), then-agent system (almost) globally
asymptotically converges to a balanced circular formation as
defined in Definition 3.2.

Proof: Let us define vectorp that points towards the
geometric center of the group:

p =
1
n

n∑

i=1

zi =
1
n
1T z , 1 = 1n ⊗ I2 ∈ R2n×2 .

The minimum|p| = 0 is reached when the position vectors
zi are in a balanced position (splay state); and the maximum

zizj
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qij
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Fig. 2. By a change of coordinatezi = ωo(ri−ci) = −v⊥i the problem of
generating circular motion in the plane reduces to the problem of balancing
the agents on a circle.

|p| = 1 is reached when all the position vectors are aligned
(state synchronized). Note that the balancing input (3) can be
bounded above by a function of vectorp:

ui = −κ
∑

j∈Ni

<
zij

|zij | ,vi >= −κ

n∑

j=1

1
|zij | < zj ,vi >

≤ − κ

|z|max

n∑

j=1

< zj ,vi >

= − nκ

|z|max
< p,vi > (4)

where|z|max = max{|zij |, (i, j) ∈ E}, and we have used the
fact thatvi ⊥ zi.

Now consider the following Lyapunov function

w(z) =
n

2
|p|2 =

1
2n

zT 11T z (5)

which is minimized for the balanced formation. Given the
gradient ofw(z):

∂w(z)
∂zi

=
1
n

(11T z)i =
1
n
1T z = p

the time derivative ofw(z) becomes

ẇ(z) =
n∑

i=1

<
∂w(z)
∂zi

, żi >=
n∑

i=1

< p,vi > ui

≤ − nκ

|z|max

n∑

i=1

< p,vi >2 ≤ 0 (6)

where we have used (4).
A simple application of LaSalle’s invariance principle over

the configuration space which is ann-torus and therefore
compact reveals that all trajectories starting in anywhere on
the n-torus converge to the largest invariant sets inE =
{z | ẇ(z) = 0}. This set is characterized by< p,vi >= 0,
for all i ∈ {1, . . . , n}. Therefore the equilibria are given by
either p = 0, or p ⊥ vi for all i ∈ {1, . . . , n}. p = 0
is the global minimum ofw(z) and is asymptotically stable.
At the equilibrium we haveui = 0 for all i ∈ {1, . . . , n}
and as a result the geometric center remains fixed because
ṗ =

∑
i uivi = 0.

The critical points given byp ⊥ vi correspond to a set of
configurations thatm agents are at antipodal position from the



other n −m agents, where1 ≤ m < n/2. The instability of
these equilibria is proved by showing that if we perturb the
system at those equilibria, the system moves away from them
andw(z) will be decreasing.

Remark 3.4: The Laplacian matrix of a complete graph
equals toLc = In − (1/n)1n1T

n . Thus, one can see that
minimizing w(z) in (5) is equivalent to maximizingzT L̄cz
with L̄c = Lc ⊗ I2. The maximum is achieved when all the
agents are evenly spaced around the circle.

C. Ring Topology

Next we consider the situation that the connectivity graph
has a ring topology. We denote this graph withGring. We have
the following theorem for the balanced circular formations of
a group of mobile agents with ring topology.

Theorem 3.5: Consider a system ofn agents with kinemat-
ics (2). Suppose the connectivity graph has the ring topology
Gring and each agent applies the balancing control law (3).
Let φo be the angle to which the relative headings converge,
then if φo ∈ (π/2, 3π/2) the balanced equilibrium is locally
exponentially stable.

Proof: Let Lr be the Laplacian matrix of a graph with
a ring topology, and̄Lr = Lr ⊗ I2. Input (3) can be written
in terms of the Laplacian of the connectivity graph:

ui = κ
∑

j∈Ni

1
|zij | < zi − zj ,vi >

≥ κ

|z|max

∑

j∈Ni

< zi − zj ,vi >

=
κ

|z|max
< (L̄rz)i,vi >, κ > 0 (7)

where(L̄rz)i ∈ R2 is the subvector ofL̄rz associated with
the ith agent. Now consider the function

s(z) =
1
2
zT L̄rz

that is maximized for the balanced formation, and this max-
imum exists becauses(z) is bounded from above. Using the
dynamics (2) and input (3) we have that

ṡ(z) =
n∑

i=1

<
∂s(z)
∂zi

, żi >=
n∑

i=1

< (L̄rz)i,vi > ui

≥ |z|max

n∑

i=1

< (L̄rz)i,vi >2≥ 0 (8)

Thus s(z) monotonically increases along the trajectories of
system (2) with input (3), and converges to equilibria corre-
sponding to

< (L̄rz)i,vi >= 0, ∀i ∈ {1, . . . , n} . (9)

Let us characterize the set of equilibria given by (9). We
represent the unit vectorzi in the rotating frame byzi =

[cos θi sin θi]T . Then vi = [− sin θi cos θi]T , and (9) is
equivalent to

∑

j∈Ni

sin(θi − θj) = 0, ∀i ∈ {1, . . . , n} . (10)

Let θ = [θ1, . . . , θn]T . Then (10) becomes

B sin(BT θ) = 0 , (11)

where B ∈ Rn×e is the incidence matrix ofGring, where
e = |E|. For Gring, n = e and B is a circulant matrix that
satisfiesB1e = 0. Let φ = BT θ. Then the equilibria of
system (11) are characterized by

sin φ = α1e (12)

1T
e φ = mπ . (13)

Vector φ satisfies equation (12) iffφk = {φo, π − φo} for all
k ∈ {1, . . . , e} andφo ∈ (0, 2π). Equation (13) is satisfied if
φo = (m/e)π for m ∈ N.

Next we prove the (local) exponential stability of the
relative equilibria,i.e., the balanced state. For the proof of the
exponential stability of the equilibriumφ = φo1e we consider
the linearization of system (11) aboutφo. The Jacobian of
systemθ̇ = κB sin(BT θ) at the equilibrium is

J = κBdiag
(
cosφo

)
BT = κ cosφoBBT

where diag
(
cosφo

)
is an e × e matrix with cosφo as its

diagonal elements. Sinceκ > 0, the linearized systeṁθ = Jθ
is exponentially stable ifφo ∈ (π/2, 3π/2).

As a result at the equilibrium the final configuration for
Gring is either a star polygon (forn odd), or a line (forn
even) with odd-indexed agents on one side and even-indexed
agents on the other side. This can be seen by noting that for
a {n/d} polygon, the angle between the connected nodes is
2πd/n. Thus, the stable equilibria given byφo ∈ (π/2, 3π/2)
correspond to polygons withd ∈ (n/4, 3n/4).

For example, forn = 5, the stable polygons are{5/3}
and{5/4} which are the same polygons with reverse ordering
of the nodes. Simulations suggest that the largest region of
attraction forn even belongs to a polygon{n/d} with d =
n/2, and astar polygon{n/d} with d = (n±1)/2 for n odd.
These results are observed in experiments with real robots as
demonstrated in Section V.

D. Bearing-based control law

In this section, we write input (3) in terms of a parameter
that is measurable using a simple visual system. Similar
attempt was done in [13] to obtain vision-based control laws
for flocking of a group of nonholonomic agents. Letri =
[xi yi]T be the location of agenti in a fixed world frame, and
vi = [ẋi ẏi]T be its velocity vector. The heading or orientation
of agenti is then given by

θi = atan2(ẏi, ẋi) . (14)
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Fig. 3. Bearing angleβij is measured as the angle between the velocity
vector (along bodyx-axis) and vectorrij , which connects the two neighboring
agents.

Given the above definitions, dynamic model (1) becomes the
unicycle model:

ẋi = v cos θi

ẏi = v sin θi

θ̇i = ωi (15)

where ωi is the angular velocity of agenti, and v is the
constant linear velocity (assumingv = 1 in this section). Let
βij be the relative angle between agentsi and j as measured
in the local coordinate frame of agenti. The bearing angleβij

is defined as (see Figure 3):

βij
.= atan2(yi − yj , xi − xj)− θi . (16)

The only visual parameter that is required for generating
a balanced circular formation is thebearing angle, βij . It is
remarkable that we can generate interesting global patterns
using only a single measurement of the bearing angle. Note
that the inner product of two vectors is independent from the
coordinate system in which they are expressed. Thus, given
vi = [1 0]T and qij = [cos βij sin βij ]T in the body frame
of agenti, the control input for a balanced circular formation
can be written as:

ωi = ωo − κ
∑

j∈Ni

< vi,qij >= ωo − κ
∑

j∈Ni

cos βij , (17)

whereκ > 0. Input (17) is the desired bearing-only control
input.

IV. BALANCED CIRCULAR FORMATION WITH COLLISION

AVOIDANCE

The central contribution of this work is providing a simple
bearing-only control law for reaching a balanced circular
formation. Of course in reality any formation control requires
collision avoidance, and indeed collision avoidance cannot be
done without range. What we show here is that the two tasks
can be done with decoupled additive terms in the control law,
where the term for circular formation depends only on bearing.

To ensure collision avoidance and cohesion of the formation,
an inter-agent potential function [14], [15] is defined. A
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Fig. 4. Artificial potential functionfij , and the norm of its gradientµij .

control law from this artificial potential function results in
simple steering behaviors known asseparationand cohesion
that govern how each agent maneuvers based on the relative
position of its neighbors. The global minimum of this function
is where all the agents are at the desired distances.

It was shown in [15] that only if the underlying proximity
graph is a spanning tree, the formation stabilizes at a state
where the potential function is at the global minimum, and
all the agents are at the desired distances. Whereas, in the
general case, the multi-agent system reaches a stable state
where the potential energy of the system is minimized (a local
minimum). Next we formally define the notion of potential
function used in this paper.

The potential functionfij(|rij |) is a symmetric function of
the distance|rij | = lij between agentsi andj, and is defined
as follows [15]:

Definition 4.1 (Potential Function): Potentialfij is a dif-
ferentiable, nonnegative function of the distance|rij | between
agentsi and j such that,

• fij →∞ as |rij | → 0.
• fij attains its unique minimum when agentsi and j are

located at a desired distance.
This definition ensures that minimization of the inter-agent

potential functions leads to the desired cohesion and separation
in the group. Agenti’s total potential is given by

fi =
∑

j∈Ni

fij(|rij |) . (18)

The requirements forfij given in Definition 4.1 support
a large class of functions. Similar potential functions as the
following are used in both [15] and [16]:

fij =
d0

|rij | + log |rij | ,

whered0 is the desired distance between the pair(i, j). This
choice of fij provides anattractive force when an agent is
moving away from the group, and arepulsiveforce when two
agents get too close to each other. The gradient of this function
is given by

∇rij fij =
rij

|rij |
(

1
|rij |−

d0

|rij |2
)

= µ(|rij |)qij = µijqij (19)



whereqij is the unit-length bearing vector between agenti
and its neighborj. See Figure 4 for the plots of the potential
function fij , and the norm of its gradientµij = |∇rij

fij |.
The control input for balanced formations must have an

additional componentsαi that controls the spacing between
the agents.αi steers the agents to avoid collisions or pull
them together if they are separating too far apart. For the
inserted force to be gyroscopic, it must be perpendicular to
the velocity vectorvi and alongv⊥i . The force is proportional
to the negative gradient of the potential functionfi. Thus, as
a result the spacing control must have the form

αi = −κs < v⊥i ,∇ri
fi >, κs > 0 . (20)

Note that sincerij = rj − ri we have

∇ri
fi = −∇rij

fi = −
∑

j∈Ni

∇rij
fij = −

∑

j∈Ni

µijqij .

Finally, we have the following proposition for reaching the
balanced circular formation with collision avoidance:

Proposition 4.2: Consider a system ofn agents with dy-
namics (1) and applying the control input

ωi = ωo + ui + αi (21)

= ωo − κb

∑

j∈Ni

< vi,qij > +κs

∑

j∈Ni

µij < v⊥i ,qij >

whereκb > 0 and κs > 0. Given thatG remains connected,
the n-agent system asymptotically reaches the balanced for-
mation, and collisions between the interconnected agents are
avoided.

V. EXPERIMENTS

In this section we show the results of experimental tests for
two important cases: (a) the complete-graph topology and (b)
the ring topology. But first, let us describe the experimental
testbed.

A. Experimental Testbed Components

The experimental testbed consists of many components
that are interfaced together to create the total system. In the
discussion that follows, we present the robots, software and
infrastructure of the testbed.

Fig. 5. Scarabis a small robot with a differential drive axil. LED markers
are placed on top of eachScarabfor tracking and ground-truth verification.

Robots: We use a series of small form-factor robots called
Scarab [17]. The Scarab is a 20 x 13.5 x 22.2cm3 indoor
ground platform with a mass of8 kg. EachScarabis equipped
with a differential drive axle placed at the center of the
length of the robot with a 21 cm wheel base (See Figure 5).
Each Scarab is equipped with an onboard computer, power
management system and wireless communication. Each robot
is actuated by stepper motors that allows us to model it as
a point robot with unicycle kinematics (15) for its velocity
range. The linear velocity of each robot is bounded at0.2 m/s.
Each robot is able to rotate about its center of mass at speeds
below1.5 rad/s. Typical angular velocities resulting from the
control law were below0.5 rad/s.

Software: Every robot is running identical modularized
software with well defined interfaces connecting modules via
the Player robot architecture system [18], which consists of
libraries that provide access to communication and interface
functionality. ThePlayer also provides a close collaboration
with the three-dimensional physics-based simulation environ-
mentGazebo. Gazeboprovides the powerful ability to transi-
tion transparently from code running on simulated hardware
to real hardware.

Infrastructure: In the experiments, visibility of the robot’s
set of neighbors is the main issue. Using omnidirectional
cameras seems to be a natural solution. However, in order to
reduce the on-board computation, a tracking system consisting
of LED markers on the robots and eight overhead cameras is
designed. This ground-truth verification system can locate and
track the robots with position error of approximately2 cm
and an orientation error of5◦. The overhead tracking system
allows control algorithms to assume pose is known in a global
reference frame. The process and measurement models fuse
local odometry information and tracking information from the
camera system. Each robot locally estimates its pose based on
the globally available tracking system data and local motion,
using an extended Kalman filter. We process global overhead
tracking information but hide the global state of the system
from each robot, providing only the current state of the robot
as well as the positions of each robot’s set of neighbors. In
this way, we use the tracking system in lieu of an inter-robot
sensor implementation.

In all the experiments the neighborhood relations,i.e., the
connectivity graphs, are fixed and undirected. Each robot
computes the bearing angles with respect to its neighbors
from equation (16), and applies the vision-based control input
(17). The conclusions for each set of experiments are drawn
from significant number of successful trials that supported the
effectiveness of the designed controller. The results of the
experiments are provided in the following subsections.

B. Complete-Graph Topology

First we applied the bearing-only control law (17) to a
group ofn = 5 robots without considering collision avoidance
among the agents. In Figures 6 (a) through 6 (d) snapshots
from the actual experiment are shown, and in Figures 6 (e)
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Fig. 6. FiveScarabsform a circular formation starting with a complete-graph topology. (a) At timet = 0 robots starts at random positions and orientations.
(b) t = 2 sec. (c)t = 11 sec. (d) Att = 25 sec. the robots reach a stable balanced configuration around a circle with radius of 1m. Figures (e) through (h)
show the actual trajectories of the robots and their connectivity graph at the times specified above. Figure 6(h) shows that the final configuration is a regular
polygon.
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Fig. 8. FiveScarabsform a circular formation starting with a complete-graph topology while avoiding collisions. (a)t = 0 sec. (b)t = 8 sec. (c)t = 20
sec. (d) Att = 36 sec. the robots reach a stable balanced configuration around a circle with radius of 1m. Figures (a) through (d) show the actual trajectories
of the robots and their connectivity graph at the times specified above.
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Fig. 9. FiveScarabsform a circular formation starting with a ring topology while avoiding collisions. (a)t = 0 sec. (b)t = 16 sec. (c)t = 40 sec. (d)
At t = 80 sec. the robots reach a stable balanced configuration, which is the star polygon{5/3}, around a circle with radius of 1m. Figures (a) through (d)
show the actual trajectories of the robots and their connectivity graph at the times specified above.

through 6 (h) the corresponding trajectories, generated from
overhead tracking information, are demonstrated. Note that for
the complete-graph topology the ordering of the robots in the
final configuration is not unique, and it depends on the initial
positions.

Since there was no collision avoidance implemented in the
experiments of Figure 6 the robots could become undesirably
close to one another as it can be seen in Fig. 6 (b). However,
by applying control input (21) no collisions occur among the
robots as they reach the equilibrium. The actual trajectories
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Fig. 7. Comparison of the values of the 5-agent system’s potential energy
while robots are applying (a) control input (17) and (b) control input (21)
with collision avoidance.

of n = 5 robots for this scenario are shown in Figure 8.
The comparison of the potential energies of the system with
and without αi term (20) are presented in Figure 7. The
potential energy of the system is computed fromf =

∑n
i=1 fi

wherefi is given by (18). The peak in Fig. 7 (a) corresponds
to the configuration observed in Fig. 6 (b) where robots
become too close to each other. By using the control input
(21) the potential energy of the5-agent system monotonically
decreases (see Fig. 7 (b)) and the system stabilizes on a state
that the potential energy of the entire system is minimized.

C. Ring Topology

If every robot can only “sense” two other robots in the
group, the topology of the connectivity graph will be a ring
topology. Since the connectivity graph is assumed fixed, the
agents need to be numbered during the experiments. Forn
even, the largest region of attraction is an{n/d} polygon with
d = n/2, which is not physically possible, because it requires
that robots with even indices to stay on one side of a line
segment and robots with odd indices to stay at the other side.
For n odd, both simulations and experiment suggest that the
largest region of attraction belong to star polygon{n/d} with
d = (n±1)/2, therefore, there are only two possible ordering
of the robots in the final circular formation. Figure 9 shows
that in our experiment the robots are stabilized to the star
polygon{5/3}.

Remark 5.1: When the communication graph is a fixed,
directed graph with a ring topology, where agenti could only
see agent(i + 1)/mod(n), then then-agent system would
behave like a team of robots in cyclic pursuit [9].

VI. CONCLUSIONS

We developed a control input for balanced circular for-
mations of a group of ground robots that required only the
measurements of the bearing angles with respect to the set of
neighbors. Since the bearing angles could be simply measured

using basic visual sensors on a robot, this control input could
be considered a vision-based input. The results show how
we can generate interestingglobal patterns using onlylocal
information, and without knowing a global reference frame.
To improve the experimental results, we added collision avoid-
ance capabilities to our control input for balanced formations.

In future we would like to implement the proposed control
algorithm on robots with vision sensors. If the robot-mounted
visual sensor for bearing measurements is a camera with a
limited field of view, the underlying connectivity graph will
be adirectedgraph. The study of circular formations with a
directed graph is an ongoing work.
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