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Abstract—For a group of constant-speed ground robots, a is also shown that the formation equilibria of the multi-agent
simple control law is designed to stabilize the motion of the group system are generalized polygons. In contrast to [8] our control
into a balanced circular formation using a consensus approach. It law is a nonlinear function of the bearing angles and as a result

is shown that the measurements of the bearing angles between the t ¢ different set of stabl libri
robots are sufficient for reaching a balanced circular formation. OUr SyStém converges 1o a dilierent set ot stable equilibria.

We consider two different scenarios that the connectivity graph  Verification of the theory through multi-robot experiments
of the system is either a complete graph or a ring. Collision demonstrated the effectiveness of the bearing-only control law

avoidance capabilities are added to the team members and thetg achieve the desired formation. Of course in reality any
effectiveness of the control laws are demonstrated on a group of foymation control requires collision avoidance, and indeed
mobile robots. . . .
collision avoidance cannot be done without range. In order
to improve the experimental results, we provided inter-agent
collision avoidance properties to the team members. What we
Inspired by the social aggregation phenomena in birds aghlow in this work is that the two tasks of formation-keeping
fish [1]-[3], researchers in robotics and control theory hawhd collision-avoidance can be done with decoupled additive
been developing tools, methods and algorithms for distrikerms in the control law, where the terms for keeping circular
uted motion coordination of multi-vehicle systems. Two maiformation depends only on the bearing parameters.
collective motions that are observed in nature pesgallel The outline of the paper is as follows. First we provide
motion and circular motion [4]. One can interpret stabilizing some background information on graph theory and polygons
the circular formation as an example a€tivity consensuys that we are going to use throughout the paper. In Section Il
that is, individuals are “moving around” together. Stabilizingve derive the bearing-only controller that stabilizes a group of
the parallel formation is another form of activity consensus imobile agents into a balanced circular formation. In Section
which individuals “move off” together [5]. IV collision avoidance capabilities are added to the control
The circular formation is a circular relative equilibrium inlaws. The derived controllers are tested on real robots and the
which all the agents travel around the same circle. This kind @kperimental results are presented in Section V.
behavior is observed in fish schooling, a well studied topic in
ecology and evolutionary biology [3]. THelancedformation Il. BACKGROUND
is an interesting family of equilibrium states where the agentsin this section we briefly review a number of important
are evenly spaced on a circular trajectory, and the geometishcepts that we use in this paper.
center of the agents is fixed. At the equilibrium, the relative
headings and the relative distances of the agents determineAnd>raph Theory
shape of the formation [6]. An (undirected) graplz consists of a vertex se¥, and
The primary contribution of this work is the presentatiomn edge sef, where an edge is an unordered pair of distinct
of a simple control law for achieving a balanced circulavertices inG. If z,y € V, and (z,y) € &, thenz andy are
formation that only requires visual sensing such as bearisgid to be adjacent, or neighbors and we denote this by writing
angles,i.e., the input is in terms of quantities that do not: ~ y. The number of neighbors of each vertex is its valence.
require communication among nearest neighbors. In contraspath of lengthr from vertexz to vertexy is a sequence
with the work of Paleyet al. [5], Sepulchreet al. [6], and of r + 1 distinct vertices starting withc and ending withy
Moshtaghet al. [7], where it is assumed that each agent hasich that consecutive vertices are adjacent. If there is a path
access to the values of its neighbors’ positions and velocitiegtween any two vertices of a grafh thenG is said to be
we design distributed control laws that use only visual clug®nnected.
from nearest neighbors to achieve motion coordination. The adjacency matrid(G) = [a,;] of an (undirected) graph
In [8]-[10] circular formations of a multi-vehicle systemG is a symmetric matrix with rows and columns indexed by
under cyclic pursuit is studied. The proposed strategy fise vertices ofG, such thata;; = 1 if vertex ¢ and vertex;
distributed and relatively simple because each agent needsute neighbors and,; = 0, otherwise. We also assume that
measure the relative information from only one other agent.dt; = 0 for all <. The valence matrixD(G), of a graphG

I. INTRODUCTION



is a diagonal matrix with rows and columns indexed)hyin Definition 3.1 (Connectivity Graph): The  connectivity

which the (i, 7)-entry is the valence of verteix graph G = {V, £} is a graph consisting of:
The symmetric singular matrix defined as: . a set of verticed’ indexed by the set of mobile agents;
L(G) = D(G) — A(G) . asetof edge€ = {(4,5) | 4, € V, andi ~ j};

The edge sef represents the links among the agents, and
is called the Laplacian ofs. The Laplacian matrix capturesthe neighborhood of agetitis defined by
many topological properties of the graph. The Lapladiais
a positive semidefinite M-matrix (a matrix whose off-diagonal Ni = {jli~ g} CH{1,...,n}\{i}.
entries are all nonpositive) and the algebraic multiplicity of
its zero eigenvaluei.g., the dimension of its kernel) is equal .
to the number of connected components in the graph.riFheWh'Ch all the agents travel around the same circle. At the

dimensional eigenvector associated with the zero eigenva uilibrium, the relative headings and the relative distances
is the vector of onest,, — [1 17 of the agents determine the shape of the formation. We are
n — Ity .

Given an orientation of the edges of a graph, we can deﬁ'wéerested inbalancedcircular formations as defined by:

the incidence matrix of the graph to be a matiik with o . .
rows indexed by vertices and columns indexed by edges withP€finition 3.2 (Balanced Circular Formation): The = set
entries ofl representing the source of a directed edge and ©f €auilibrium states where the agents are evenly spaced on a
representing the sink. The Laplacian matfiG) of graphG c_|rculz_ir trajectory, and the gepmetnc cente_r of the agents is
is represented in terms of its incidence matrixas- BBT fixed is called the balanced circular formation.

independent of the orientation of the edges.

A circular formation is a circular relative equilibrium in

A. Kinematic Model for Mobile Robots

B. Regular Polygons Letr; represent the position of agenandv; be its velocity
Let d < n be a positive integer and defipe= n/d. Lety; vector. The dynamics of each unit-speed agent is given by:
be a point on the unit circle. LeR, be a clockwise rotation

by the anglen = 27/p. The generalized regular polygofip} o= v
is given by the pointg;,; = R,y;, and edges between points Vi = w; vf
iandi + 1 [11]. vi o= —wv (1)

Whend = 1 the polygon{p} is called an ordinary regular
polygon and its edges do not intersectdlf> 1 andn and Wwherev; is the unit vector perpendicular to the velocity vector
d are coprime, then the edges intersect and the polygon isra The orthogonal paifv;,v;} forms a body frame for
star. If n andd have a common factdr> 1, then the polygon agenti (See Figure 1). We represent the stack vector of all
consists of traversals of the same polygon with /1} vertices the velocities byv = [v1, ..., vI]T € R?nx! |
and edges. Ifd = n the polygon{n/n} corresponds to all The control input for each agent is the angular velocity
points at the same location. #f = n/2 (with n even), then Since it is assumed that the agents move with constant unit
the polygon consists of two end points and a line betwespeed, the force applied to each agent must be perpendicular to
them, with points corresponding to an even index on one eitsl velocity vectorj.e., the force on each agent isggroscopic
and points corresponding to an odd index on the other.  force and it does not change its speed (and hence its kinetic
energy). Thusw; serves as a steering control [12] for each
agent. In the following we design distributed control law

The Kronecker product, denoted Iy, is an operation on for achieving a balanced formation.
two matrices of arbitrary size resulting in a block matrix Alf Let c; represent the position of the center of thth circle
is anm xn matrix andB is ap x ¢ matrix, then the Kronecker with radius 1/w,, as shown in Figure 1, thus
productA ® B is amp x ng block matrix. If A, B, C and D
are matrices of such size that one can form the matrix products Ci=1r;+ (1/wo)viL .
AC and BD, then (A ® B)(C ® D) = AC ® BD. This is
called the mixed-product property. Also the following propert

C. Kronecker Product

he shape controls for driving agents to a circular formation

holds (A4 ® BT — AT  BT. epend on the s_,hape \{a}rie_lbla%- = v; —v; and ri; =
(4® B) © r; —r;. The relative equilibria of the balanced formation are

I1l. CIRCULAR FORMATIONS OFPLANAR ROBOTS characterized byy"!" v, = 0, and¢; = ¢, € R2 for all
Consider a group of unit-speed planar agents. Each agefit< {1,...,n}, wherec, is the fixed geometric center of the

is capable of sensing information from its neighbors. THaIENtS. _

neighborhood set of agent.\;, is the set of agents that can 1 he control input for each agent has two components:
be “seen” by ageni. The precise meaning of “seeing” will

be cleared later. The size of the neighborhood depends on
the characteristics of the sensors. The neighboring relationSﬂT.Hib constant angu|ar Ve|oci&y0 takes the agents into a circu-
between agents can be conveniently described by a graphjar motion, and; puts the agents into a balanced formation. In

W; = Wy + Uy
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Fig. 1. Center of the circular trajectory is definedaas= r; + (1/wo)vi-.  Fig. 2. By a change of coordinatg = w,(r; —c;) = —v;- the problem of
generating circular motion in the plane reduces to the problem of balancing
the agents on a circle.

order to desigrn; we express the system inratating frame

which greatly simplifies the analysis. By a change of variab‘%| — 1 is reached when all the position vectors are aligned

2; = wo(r; — ¢;) = —vi (state synchronized). Note that the balancing input (3) can be

. ' .. bounded above by a function of vectpr
the problem reduces to balancing the agents on a unit circle

n
L . . : 2 1
as shown in F|gur9 2. The new coqrdmate system is rotatin -k Z P *"EZ <25, >
with angular velocityw,. The dynamics in the rotating frame oyl || = |z
o JeN: : = 1%,
is given by n
K

7 = Vi < T2l > <2V >

. . j=1

v, = —-zyu;, it=1,....n (2) -

” , . , = —— <p,Vi> (4)
The new position vector; is a unit vector, however its speed |Z|maz

|z, is not constant anymore, and it is proportional:tpwhich where|z|,.. = max{|z;|, (i,j) € £}, and we have used the
goes to zero as the group reaches a balanced formation. fact thatv; | z;.

Let us definez;; = z; —z; andq;; = z;;/|z;;| as the unit  Now consider the following Lyapunov function
vector along the relative position vectey;. We note that at n 1
the balanced equilibrium the velocity of each agent must be w(z) = =|p|* = —2z'1172 (5)
perpendicular tog; = Zje/\f' q.;, which is a vector along o o 2 2n ) )
the average of the relative position vectors that are incident4@ich 1S minimized for the balanced formation. Given the
agenti. Thus, the quantity v;,q; > vanishes at the balanceddradient ofw(z):

equilibrium. Hence we propose the following control law for ow(z) 1 1175), — 1 1Ty —
the balanced formation: oz; E( 2)i = no 2°P
U= —K < Vi, qQ >= —k Z <vi,qij > , k>0, (3) the time derivative ofv(z) becomes
JEN: " dw(z) -
B. Complete-Graph Topology w(z) = Z S oz, H 7T Z <PVi > U
Suppose the underlying connectivity graph is a complete = n =
graph. We have the following theorem for reaching the bal- < R Z <p,vi>2 <0 (6)
anced circular formation in a group of mobile planar agents |2l maa im1
with a complete-graph connectivity. where we have used (4).

) ) ) A simple application of LaSalle’s invariance principle over
Theorem 3.3: Consider a system of agents with kine- 1o configuration space which is amtorus and therefore
matics (2). Given a complete connectivity grah and compact reveals that all trajectories starting in anywhere on
applying control law (3), the:-agent system (almost) globallyhe 1,-torus converge to the largest invariant sets Ain =
asymptotically converges to a balanced circular formation 85, | w(z) = 0}. This set is characterized by p,v; >= 0,

defined in Definition 3.2. . for all i € {1,...,n}. Therefore the equilibria are given by
Proof: Let us define vectop that points towards the eitherp = 0, orp L v; forall i € {1,....n}. p = 0O
geometric center of the group: is the global minimum ofw(z) and is asymptotically stable.
1< 1., . At the equilibrium we haveu; = 0 for all € {1,...,n}
p= Zzi - 51 z, 1=1,®L€R : and as a result the geometric center remains fixed because
i=1

p = Zi U; Vi = 0.
The minimum|p| = 0 is reached when the position vectors The critical points given by | v; correspond to a set of
z; are in a balanced position (splay state); and the maximuwranfigurations thatn. agents are at antipodal position from the



othern — m agents, wherd < m < n/2. The instability of [cosf; sin6;]7. Thenv; = [—sin6; cos6;]T, and (9) is

these equilibria is proved by showing that if we perturb thequivalent to

system at those equilibria, the system moves away from them

andw(z) will be decreasing. [ ] > sin(0; —0;) =0, Vie{l,...,n}. (10)
Remark 3.4: The Laplacian matrix of a complete graph JEN;

equals toL, = I, — (1/n)1,1%. Thus, one can see that

minimizing w(z) in (5)( is/ e)quivalent to maximizing” L.z Let = [61,...,6:]". Then (10) becomes

with L, = L. ® I,. The maximum is achieved when all the Bsin(BT) = 0 (11)

agents are evenly spaced around the circle. ’

_ where B € R™*¢ is the incidence matrix ofz"""¢, where
C. Ring Topology e = |£|. For G"9, n = ¢ and B is a circulant matrix that

Next we consider the situation that the connectivity graptflisfiesB1. = 0. Let ¢ = B*6. Then the equilibria of
has a ring topology. We denote this graph wii"s. We have System (11) are characterized by
the following theorem for the balanced circular formations of )
a group of mobile agents with ring topology. sing = ale (12)
17'¢p = mn. (13)

Theorem 3.5: Consider a system of agents with kinemat- - . .
ics (2). Suppose the connectivity graph has the ring topolo §Ct0r¢ satisfies equation (12) it » {0, ™ u Go} f_or_ all .
G""9 and each agent applies the balancing control law (3 €{L....e} and¢, € (0,2m). Equation (13) is satisfied if
Let ¢, be the angle to which the relative headings convergg? = (m/e)m for m €N.

then if ¢, € (r/2,37/2) the balanced equilibrium is locally N€xt we prove the (local) exponential stability of the
exponentially stable relative equilibria,i.e., the balanced state. For the proof of the

. : : . tial stability of the equilibriurp = ¢,1. we consider
Proof: Let L, be the Laplacian matrix of a graph with SxPonentiat st .
a ring topology, andl, — L, © I,. Input (3) can be written the linearization of system (11) about. The Jacobian of

pa _ . T g . .
in terms of the Laplacian of the connectivity graph: systemd = xBsin(B70) at the equilibrium is
J = kBdiag( cos ¢o) BT =  cos ¢, BBT

= |5 = where diag cos ¢,) is an e x e matrix with cos¢, as its
K diagonal elements. Sinee> 0, the linearized syster = J@
< Zi T Z5Vi> is exponentially stable i, € (1/2,37/2).
- As a result at the equilibrium the final configuration for
< (Lyz)i,vi >, k>0 (7) G"n9 is either a star polygon (for odd), or a line (forn
even) with odd-indexed agents on one side and even-indexed
where(L,z); € R? is the subvector of L,z associated with agents on the other side. This can be seen by noting that for

u; = K i~ Zj, Vi >

|Z|mam JEN:

|Z|mam

the it" agent. Now consider the function a {n/d} polygon, the angle between the connected nodes is
2nd/n. Thus, the stable equilibria given lay, € (7/2,37/2)
s(z) = }zTETz correspond to polygons witlh € (n/4,3n/4). [ ]
2 For example, forn = 5, the stable polygons aré5/3}

that is maximized for the balanced formation, and this mafnd{5/4} which are the same polygons with reverse ordering
imum exists because(z) is bounded from above. Using theof the nodes. Simulations suggest that the largest region of

dynamics (2) and input (3) we have that attraction forn even belongs to a polygofn/d} with d =
n/2, and astar polygon{n/d} with d = (n+1)/2 for n odd.
. o _0s(z) . O - These results are observed in experiments with real robots as
5(z) = z_:l < Oz 2 >= z_; < (Lr2)i, Vi > ui demonstrated in Section V.

< (Lyz);,vi >2>0 (8) D. Bearing-based control law

M:

>

|2l ma £ _ : o _
T =1 In this section, we write input (3) in terms of a parameter

Thus s(z) monotonically increases along the trajectories dfat is measurable using a simple visual system. Similar
system (2) with input (3), and converges to equilibria corré@ttempt was done in [13] to obtain vision-based control laws

sponding to for flocking of a group of nonholonomic agents. Let =
B [z; y;]T be the location of agenitin a fixed world frame, and
< (Lyz);,v; >=0, Vie{l,...,n}. (9) v; = [#; 9" be its velocity vector. The heading or orientation

of agent: is then given by
Let us characterize the set of equilibria given by (9). We

represent the unit vectar; in the rotating frame byz; = 0, = atany;, ;) . (14)
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Fig. 4. Aurtificial potential functionf;;, and the norm of its gradient;;.

Fig. 3. Bearing angle3;; is measured as the angle between the velocity
vector (along body:-axis) and vector; ;, which connects the two neighboring

agents. control law from this artificial potential function results in
simple steering behaviors known asparationand cohesion
Héat govern how each agent maneuvers based on the relative
position of its neighbors. The global minimum of this function
is where all the agents are at the desired distances.
z; = wcosb; It was shown in [15] that only if the underlying proximity

U = wvsiné; graph is a spanning tree, the formation stabilizes at a state
0 = w (15) where the potential function is at the global minimum, and

! ! all the agents are at the desired distances. Whereas, in the
where w; is the angular velocity of agent and v is the general case, the multi-agent system reaches a stable state
constant linear velocity (assuming= 1 in this section). Let where the potential energy of the system is minimized (a local
Bi; be the relative angle between ageih&ndj as measured minimum). Next we formally define the notion of potential
in the local coordinate frame of agentThe bearing anglg;; function used in this paper.
is defined as (see Figure 3): The potential functiory;;(|r;;|) is a symmetric function of

By = atandy, — ;i — ;) — b; . (16) ?Sefg;lsot\?vr;caréij l;; between agentsandj, and is defined

The only visual parameter that is required for generating Definition 4.1 (Potential Function): Potential f;; is a dif-
a balanced circular formation is theearing angle g;;. It is  ferentiable, nonnegative function of the distamcg| between
remarkable that we can generate interesting global patteagents: and j such that,
using only a single measurement of the bearing angle. Note, fij — oo as|r;;| — 0.
that the inner product of two vectors is independent from the, fi; attains its unique minimum when agentand j are
coordinate system in which they are expressed. Thus, given |ocated at a desired distance.
v; = [1 0]" andq;; = [cos 3;; sinB;;]" in the body frame  This definition ensures that minimization of the inter-agent
of agent:, the control input for a balanced circular formatiorhotential functions leads to the desired cohesion and separation

Given the above definitions, dynamic model (1) becomes t
unicycle model:

can be written as: in the group. Agent’s total potential is given by
Wi=Wwe— K Y <Vidij >=w,—k Y cosfi, (17) fi=>" fillrsl) - (18)
JEN; JEN; Jen:
wherex > 0. Input (17) is the desired bearing-only control The requirements forf;; given in Definition 4.1 support
Input. a large class of functions. Similar potential functions as the
IV. BALANCED CIRCULAR FORMATION WiTH CoLLision  following are used in both [15] and [16]:
AVOIDANCE do
fij = 7 +1log|ry;l ,

The central contribution of this work is providing a simple - i1

bearmg—only control .Iaw f(.)r reaching a balanced C'rcyl%heredo is the desired distance between the gdair). This
formation. Of course in reality any formation control requires, : : .
hoice of f;; provides anattractive force when an agent is

collision avoidance, and indeed collision avoidance cannot Be . .
moving away from the group, andrapulsiveforce when two

done without range. What we show here is that the two tasks . ) .

i o . agents get too close to each other. The gradient of this function

can be done with decoupled additive terms in the control law; .

. . IS’ given by

where the term for circular formation depends only on bearing.
To ensure collision avoidance and cohesion of the formatlQp,

an inter-agent potential function [14], [15] is defined. A ¥

rij (1 do
= _ _ i = poiqi; (19
o= ] <rij| fz‘j|2> #llrisl)is = pisis - (19)



where q;; is the unit-length bearing vector between agént Robots: We use a series of small form-factor robots called
and its neighborj. See Figure 4 for the plots of the potentiaBcarab[17]. The Scarabis a 20 x 13.5 x 22.Z2m? indoor
function f;;, and the norm of its gradient;; = |V, fi;|. ground platform with a mass &fkg. EachScarabis equipped

The control input for balanced formations must have amith a differential drive axle placed at the center of the
additional components; that controls the spacing betweerlength of the robot with a 21 cm wheel base (See Figure 5).
the agentsc,; steers the agents to avoid collisions or pulEach Scarabis equipped with an onboard computer, power
them together if they are separating too far apart. For theanagement system and wireless communication. Each robot
inserted force to be gyroscopic, it must be perpendicular i® actuated by stepper motors that allows us to model it as
the velocity vectow; and alongv;-. The force is proportional a point robot with unicycle kinematics (15) for its velocity
to the negative gradient of the potential functifn Thus, as range. The linear velocity of each robot is bounded.2tn /s.
a result the spacing control must have the form Each robot is able to rotate about its center of mass at speeds
below1.5 rad/s. Typical angular velocities resulting from the

Qi = —hs <V, Vnfi>, k>0 (20) " control law were belowd.5 rad/s.
Note that sincer;; = r; — r; we have Software: Every robot is running identical modularized
software with well defined interfaces connecting modules via
Ve fi= Ve, fi=—= Y Ve, fij=— Y 1ijdij - the Player robot architecture system [18], which consists of
JEN: JEN: libraries that provide access to communication and interface
Finally, we have the following proposition for reaching thdunctionality. ThePlayer also provides a close collaboration
balanced circular formation with collision avoidance: with the three-dimensional physics-based simulation environ-

mentGazebo Gazeboprovides the powerful ability to transi-
Proposition 4.2: Consider a system af agents with dy- tion transparently from code running on simulated hardware
namics (1) and applying the control input to real hardware.
Infrastructure: In the experiments, visibility of the robot’s
Wi = Wot Uit (1) set of neighbors is the main issue. Using omnidirectional
= W, — Kp Z < Vi, Qi > +ks Z Hij < vf,qij >  cameras seems to be a natural solution. However, in order to
JEN; JEN; reduce the on-board computation, a tracking system consisting
wherer;, > 0 and k., > 0. Given thatG remains connected, of LED markers on the robots and eight overhead cameras is

the n-agent system asymptotically reaches the balanced sglesigned. This ground-truth verification system can locate and

mation, and collisions between the interconnected agents &&CK the robots with position error of approximatelycm
avoided. and an orientation error df°. The overhead tracking system

allows control algorithms to assume pose is known in a global
V. EXPERIMENTS reference frame. The process and measurement models fuse

In this section we show the results of experimental tests ft¢cal odometry information and tracking information from the
two important cases: (a) the Comp|ete-graph t0p0|ogy and Gﬁmera system. Each robot |0ca”y estimates its pose based on
the ring topology. But first, let us describe the experimentf1€ globally available tracking system data and local motion,
testbed. using an extended Kalman filter. We process global overhead

tracking information but hide the global state of the system
A. Experimental Testbed Components from each robot, providing only the current state of the robot

The experimental testbed consists of many compones well as the positions of each robot’'s set of neighbors. In
that are interfaced together to create the total system. In thés way, we use the tracking system in lieu of an inter-robot
discussion that follows, we present the robots, software aseinsor implementation.
infrastructure of the testbed.

In all the experiments the neighborhood relations,, the
connectivity graphs, are fixed and undirected. Each robot
computes the bearing angles with respect to its neighbors
from equation (16), and applies the vision-based control input
(17). The conclusions for each set of experiments are drawn
from significant number of successful trials that supported the
effectiveness of the designed controller. The results of the
experiments are provided in the following subsections.

B. Complete-Graph Topology

First we applied the bearing-only control law (17) to a

group ofn = 5 robots without considering collision avoidance
Fig. 5. Scarabis a small robot with a differential drive axil. LED markers@among the agents. In Figures 6 (a) through 6 (d) snapshots
are placed on top of eacBcarabfor tracking and ground-truth verification. from the actual experiment are shown, and in Figures 6 (e)
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Fig. 6. FiveScarabsform a circular formation starting with a complete-graph topology. (a) At #tme0 robots starts at random positions and orientations.
(b) t = 2 sec. (c)t = 11 sec. (d) Att = 25 sec. the robots reach a stable balanced configuration around a circle with radius of 1m. Figures (e) through (h)
show the actual trajectories of the robots and their connectivity graph at the times specified above. Figure 6(h) shows that the final configuration is a regula

polygon.
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Fig. 8. FiveScarabsform a circular formation starting with a complete-graph topology while avoiding collisiong. £ap sec. (b)t = 8 sec. (c)t = 20
sec. (d) Att = 36 sec. the robots reach a stable balanced configuration around a circle with radius of 1m. Figures (a) through (d) show the actual trajectories
of the robots and their connectivity graph at the times specified above.

10
15
06
1
04]
02 05|
> 0 > 0
02 -05
-04 o
-06
15

08 -06 -04 -02 0 02 04 06 08 1 15
X

(@) (b) (c) (d)

Fig. 9. FiveScarabsform a circular formation starting with a ring topology while avoiding collisions.#(a} 0 sec. (b)t = 16 sec. (c)t = 40 sec. (d)
At t = 80 sec. the robots reach a stable balanced configuration, which is the star pdfygdh around a circle with radius of 1m. Figures (a) through (d)
show the actual trajectories of the robots and their connectivity graph at the times specified above.

through 6 (h) the corresponding trajectories, generated fromSince there was no collision avoidance implemented in the
overhead tracking information, are demonstrated. Note that fxperiments of Figure 6 the robots could become undesirably
the complete-graph topology the ordering of the robots in tltdose to one another as it can be seen in Fig. 6 (b). However,
final configuration is not unique, and it depends on the initibly applying control input (21) no collisions occur among the

positions. robots as they reach the equilibrium. The actual trajectories



(@) without collision avoidance using basic visual sensors on a robot, this control input could
be considered a vision-based input. The results show how
we can generate interestirgdobal patterns using onlyocal
information, and without knowing a global reference frame.
To improve the experimental results, we added collision avoid-
S e T e e T ance capabilities to our control input for balanced formations.
50 100 150 200 250 300 350 400 450 500 In future we would like to implement the proposed control
(b) With collision avoidance algorithm on robots with vision sensors. If the robot-mounted
T visual sensor for bearing measurements is a camera with a
limited field of view, the underlying connectivity graph will
1 be adirectedgraph. The study of circular formations with a
directed graph is an ongoing work.
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