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Abstract

Estimating CLV Using Aggregated Data: The Tuscan Lifestyles Case Revisited

The Tuscan Lifestyles case (Mason 2003) offers a simple twist on the standard view of how to
value a newly acquired customer, highlighting how standard retention-based approaches to the
calculation of expected CLV are useless in a noncontractual setting. Using the data presented in
the case, it is a simple exercise to compute an estimate of “expected five-year CLV”. However,
if we wish to arrive at an estimate of CLV that includes the customer’s “life” beyond five years
or are interested in, say, sorting out the purchasing process (while “alive”) from the attrition
process, we need to use a formal model of buying behavior.

To tackle this problem, we utilize the Pareto/NBD model developed by Schmittlein, Morrison
and Colombo (1987). However, existing analytical results do not allow us to estimate the model
parameters using the data summaries presented in the case. We therefore derive an expression
that enables us to do this. The resulting parameter estimates and subsequent calculations offer
useful insights that could not have been obtained without the formal model. For instance,
we were able to decompose the lifetime value into four factors, namely purchasing while active,
dropout, surge in sales in the first year and monetary value of the average purchase. We observed
a kind of “triple jeopardy” in that the more valuable cohort proved to be better on the three
most critical factors.

Keywords: customer lifetime value, Pareto/NBD.



1 Introduction

Most standard introductions to the notion of customer lifetime value (CLV) center around a

formula similar to

CLV =
T∑

t=0

m
rt

(1 + d)t
(1)

(where m is the net cash-flow per period, r is the retention rate, d is the discount rate, and

T is the time horizon for calculation) and claim that it can be a useful starting point for the

calculation of lifetime value.

However, such an expression is useless in many business settings, particularly those that can

be viewed as noncontractual. A defining characteristic of a noncontractual setting is that the

time at which a customer becomes inactive is unobserved by the firm; customers do not notify

the firm “when they stop being a customer. Instead they just silently attrite” (Mason 2003, p.

55). (This is in contrast to a contractual setting, where the time at which the customer becomes

inactive is observed (e.g., when the customer fails to renew his or her subscription, or contacts

the firm to cancel his or her contract).) As the point in time at which the customer disappears

is not observed, we cannot meaningfully utilize notions such as “retention rates” and therefore

formulae along the lines of (1) are not appropriate.

One example of a noncontractual business setting is presented in the Tuscan Lifestyles case

(Mason 2003). This case provides a summary of repeat buying behavior for a group of 7,953 new

customers over a five-year period beginning immediately after their first-ever purchase. These

data are presented in Table 1; we have five annual histograms for two groups of customers — the

first comprising 4,657 customers with an initial purchase below $50 and the second comprising

3,296 customers with an initial purchase greater than or equal to $50. (Note that the “years”

do not refer to calendar time, but reflect time since initial purchase.) The task in the case is to

compute the value of a new Tuscan Lifestyles customer (i.e., estimate CLV).

Using these data, we can easily arrive at an estimate of “expected five-year CLV”. But what

about the customer’s “life” beyond five years? And what if we wish to know more than just

the mean purchase rate? For instance, suppose we are interested in sorting out the purchasing

process (while “alive”) from the attrition process? We feel that any serious examination of CLV
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< $50 Cohort ≥ $50 Cohort

Year Year
# Orders 1 2 3 4 5 # Orders 1 2 3 4 5

0 611 2739 3687 3730 3837 0 421 1643 2430 2535 2673
1 3508 1441 671 661 626 1 2354 1120 562 548 463
2 416 332 207 185 141 2 397 354 214 151 120
3 94 100 68 56 38 3 91 121 53 37 30
4 21 30 19 14 10 4 20 37 27 20 7
5 7 9 1 9 3 5 6 12 6 3 2
6 3 2 2 6 5 5 2 2 1
7 1 1 7 1 3 1
8 1 2 8 1
9 1 9 1
10 1 10
11 11
12 12
13 13 1

Table 1: Tuscan Lifestyles data: Number of purchases per year (not including initial
purchase) for each of two cohorts grouped by size of initial purchase.

should consider such questions. Unfortunately they cannot be answered using these data alone.

This situation is not unique; other researchers (e.g., Berger et al. 2003) have performed similar

analyses and therefore face similar limitations.

Therefore, instead of using relatively simple “accounting” methods to tally up the past value

of each customer segment, we need a formal model to capture the underlying purchase patterns

and then project them out to future periods. This is where a stochastic model of customer

behavior comes in. Such a model posits latent probabilistic processes which are presumed to

underlie the observable behavior of each customer. In the CLV setting, we need to develop a

probabilistic model that takes into account three distinct (but possibly interrelated) processes:

(1) the purchase frequency of a customer while active, (2) the attrition in the customer base over

time, and (3) the monetary value of the purchases. Such a model can be fit using recorded data

for the early activity of the customer base and future purchases can then be predicted. While the

model is initially conceptualized at the individual-customer level, it is then aggregated across a

population of heterogeneous customers and estimated using data at the segment level or across

the entire customer base (while still recognizing the underlying sources of heterogeneity).

In this paper we invoke the Pareto/NBD framework (Schmittlein et al. 1987), a parsimonious

model of repeat buying behavior in a noncontractual setting that provides excellent predictive
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power using limited summary information about each customer. However, in its original form,

the parameters of the Pareto/NBD cannot be be estimated using aggregated data of the form

given in Table 1. In Section 2, we derive an expression that enables us to estimate the model

parameters using such data. We then fit the model to the data (Section 3) and examine the

question “what is a new Tuscan Lifestyles customer worth?” (Section 4).

2 Model Development

The Pareto/NBD model is a powerful stochastic model of purchasing in a noncontractual setting.

It starts by assuming that a customer’s relationship with the firm has two phases: he or she is

“alive” for an unobserved period of time, then becomes permanently inactive. While alive, the

customer is assumed to purchase “randomly” around his or her mean transaction rate. As such,

a customer’s sequence of purchases can appear to be somewhat lumpy/uneven at times, even

though the unobserved buying rate is constant. The unobserved time at which the customer

becomes permanently inactive is also the outcome of a probabilistic process governed by a

dropout rate specific to the customer. We assume that customers are heterogeneous: both the

transaction rates and dropout rates vary from person to person.

More formally, the assumptions of the model are

i. Customers go through two stages in their “lifetime” with a specific firm: they are “alive”

for some period of time, then become permanently inactive.

ii. While alive, the number of transactions made by a customer follows a Poisson process with

transaction rate λ.

iii. A customer’s unobserved “lifetime” of length ω (after which he is viewed as being perma-

nently inactive) is exponentially distributed with dropout rate μ.

iv. Heterogeneity in transaction rates across customers follows a gamma distribution with

shape parameter r and scale parameter α.

v. Heterogeneity in dropout rates across customers follows a gamma distribution with shape

parameter s and scale parameter β.
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vi. The transaction rate λ and the dropout rate μ vary independently across customers.

Given these assumptions, it possible to derive expressions for expected purchasing, mean

(or median) lifetime, expected CLV, and so on. In order to compute these quantities, we need

to know the values of the four model parameters: r, α (which characterize the distribution of

transactions rates across the customer base) and s, β (which characterize the distribution of

dropout rates across the customer base).

If we start by assuming that we know the exact timing of all the transactions associated with

each customer, it turns out that we can estimate the four model parameters using a likelihood

function that only requires “recency” (the time of the last purchase) and “frequency” (how many

purchases occurred in a given time period) information for each customer. However, in many

situations we do not have access to such data; for example, we may only have summaries such

as those given in Table 1. The problem with such a data structure is that any longitudinal

information about an individual customer is lost. Suppose someone made two repeat purchases

in year one; we do not know how many purchases they made in years 2–5. Does this mean we

cannot apply the Pareto/NBD model?

If we reflect on the above model assumptions, we see that they tell a “story” about customer

behavior that is not at all related to the nature of the data that might be available to estimate

the model parameters. (This is the hallmark of a stochastic model — tell the story first, then

deal with data issues later.)

Let the random variable X(t, t + 1) denote the number of transactions observed in the time

interval (t, t + 1]. (Referring back to the < $50 group in Table 1, we see that X(0, 1) = 0

for 611 people, X(1, 2) = 1 for 1441 people, and so on.) If we can derive an expression for

P (X(t, t + 1) = x) as implied by the Pareto/NBD model assumptions, we can then use it as a

means of estimating the four model parameters given the data in Table 1.

Suppose we know an individual’s unobserved latent characteristics λ and μ. For x > 0, there

are two ways x purchases could have occurred in the interval (t, t + 1]:

i. the individual was alive at t and remained alive through the whole interval, making x

purchases during this interval, or
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ii. the individual was alive at t but died at some point ω (< t + 1), making x purchases in

the interval (t, ω].

For the case of x = 0 there is an additional reason as to why no purchases could have occurred in

the interval (t, t+1]: the individual was “dead” at t. Given model assumptions (ii) and (iii), we

can derive the following expression for the probability of observing x purchases in the interval

(t, t + 1], conditional on λ and μ:

P (X(t, t + 1) = x | λ, μ) = δx=0

[
1 − e−μt

]
+

λxe−λe−μ(t+1)

x!

+
( λ

λ + μ

)x( μ

λ + μ

)
e−μt

−
( λ

λ + μ

)x( μ

λ + μ

)
e−λe−μ(t+1)

x∑
i=0

[(λ + μ)]i

i!
, (2)

where δx=0 equals 1 if x = 0, 0 otherwise.

In reality, we never know an individual’s latent characteristics; we therefore remove the

conditioning on λ and μ by taking into account the distributions of the transaction and dropout

rates, giving us:

P (X(t, t + 1) = x | r, α, s, β)

= δx=0

[
1 −

( β

β + t

)s
]

+
Γ(r + x)
Γ(r)x!

( α

α + 1

)r( 1
α + 1

)x( β

β + t + 1

)s

+ αrβs B(r + x, s + 1)
B(r, s)

{
B1 −

x∑
i=0

1
iB(r + s, i)

B2

}
(3)

where

B1 =

⎧⎪⎪⎨
⎪⎪⎩

2F1
(
r + s, s + 1; r + s + x + 1; α−(β+t)

α

)/
αr+s if α ≥ β + t

2F1
(
r + s, r + x; r + s + x + 1; β+t−α

β+t

)/
(β + t)r+s if α ≤ β + t

(4)

B2 =

⎧⎪⎪⎨
⎪⎪⎩

2F1
(
r + s + i, s + 1; r + s + x + 1; α−(β+t)

α+1

)/
(α + 1)r+s+i if α ≥ β + t

2F1
(
r + s + i, r + x; r + s + x + 1; β+t−α

β+t+1

)/
(β + t + 1)r+s+i if α ≤ β + t

(5)

and 2F1(·) is the Gaussian hypergeometric function. (See Fader et al. (2006) for a comprehensive
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technical appendix that provides a step-by-step derivation of (2)–(5).)

Given data summaries of the form presented in Table 1, we can estimate the four Pareto/NBD

model parameters via the method of maximum likelihood in the following manner. Suppose we

have a sample of T period-specific histograms that give us the distribution of the number of

purchases across a fixed set of customers in each period (of equal length). Let nx,t be the number

of people who made x purchases in the tth period. (Referring back to the < $50 group in Table 1,

T = 5, n0,1 = 611, n1,2 = 1441, and so on.) The sample log-likelihood function is given by

LL(r, α, s, β) =
T−1∑
t=0

∞∑
x=0

nx,t ln
[
P (X(t, t + 1) = x | r, α, s, β)

]
. (6)

This can be maximized using standard numerical optimization routines.

3 Model Estimation Results

We first applied the basic model to the data in Table 1. Using (6), we obtained the maximum

likelihood estimates of the model parameters for each of the two cohorts of customers. We then

generated the purchase histograms for the first five years exactly as given and compared these

generated histograms to the original data. Looking closely at the raw data (Table 1), we can

see that there is a large number of customers making one purchase in the first year (for both

cohorts). This number then drops sharply in the second year, after which it declines smoothly.

On the other hand, the numbers of customers making more than one purchase do not show any

sharp variations. While the Pareto/NBD model is very flexible, it is not sufficiently flexible to

capture this year 1 aberration — not only did it miss the spike at x = 1 in year one, but in an

attempt to capture this surge in the first year, the predictions for the later years were off as well.

Many researchers would be tempted to propose a more complicated story of buyer behavior

in order to accommodate this aberration. However, inspired by Fader and Hardie (2002), we

accommodate this year 1 deviation simply by adding a “spike” in the probability of making one

repeat purchase in the first year. (In the absence of adequate knowledge of the true, underlying

data generation process, one can ex post consider the characteristics of the collected data that

might have led to such patterns. For instance, Tuscan Lifestyles might have offered a coupon
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to its new buyers that would expire one year after their initial purchases.)

More formally, we add a single parameter for each group of customers to address this problem.

We assume that, within the first year after making the initial purchase, a “hard-core” fraction π

of the customers in the cohort make exactly one repeat purchase that year, with the remaining

fraction 1 − π purchasing according to the basic Pareto/NBD process.

Under this augmented model, the probability that a customer makes x purchases in the

(t + 1)th period is

P (X(t, t + 1) = x | r, α, s, β, π)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π + (1 − π)PPNBD(X(t, t + 1) = x) if t = 0 and x = 1

(1 − π)PPNBD(X(t, t + 1) = x) if t = 0 and x �= 1

PPNBD(X(t, t + 1) = x) if t > 0

(7)

where PPNBD(·) is the basic Pareto/NBD probability given in (3). (From here on, we will only

use this “Pareto/NBD with spike” model for the results and analysis that follow.) Applying

the maximum likelihood estimation procedure in the same manner as for the basic Pareto/NBD

model, we obtain the parameter estimates for each group as reported in Table 2.

Cohort r α s β π

< $50 32.83 37.21 12.13 37.74 0.63
≥ $50 148.11 142.07 29.00 98.26 0.57

Table 2: Parameter estimates by cohort

These parameters can be interpreted by plotting the various mixing distributions that they

characterize. Figure 1 shows how the transaction rates (λ) and the dropout rates (μ) vary across

the members of each cohort. The high values of r and α indicate that there is relatively little

heterogeneity in the underlying transaction rate λ. Similarly, the high values of s and β indicate

that there is little heterogeneity in the underlying dropout rate μ. Nevertheless, there are some

noteworthy differences across the two groups. It is clear that the transaction rates tend to be

higher for the ≥ $50 group, albeit with a lower variance. The dropout rates are much closer

across the two groups, but they tend to be slightly higher for the < $50 group. Finally, the

7



π parameters indicate that a hard-core of roughly 60% of the customers make just one repeat

purchase in the first year, and this proportion is about the same for each group.
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Figure 1: Heterogeneity in transaction and dropout rates for the two cohorts

These “stories” about the underlying behavioral tendencies within each segment seem to be

plausible (and managerially interesting). Looking at the raw data alone provides no intuition

about the interplay between the flow of transactions for active customers and the differences in

dropout tendencies both within and across each of the customer groups.

Even stronger support for the model is offered in Figure 2, which presents a side-by-side

plot of the actual and fitted values for each group. It is quite remarkable to see how well a five-

parameter model can capture the different shapes that can be seen within each set of histograms.

More importantly, the model seems to do an excellent job of following the systematic “shift

towards zero” as each group of customers slows down its collective level of purchasing over

time. This is clear evidence that a substantial degree of customer dropout is taking place,

and therefore confirms the need for the two different behavioral processes at the heart of the

Pareto/NBD model.

Another way of summarizing model fit is to compare the predicted average annual number

of transactions per customer (E[X(t, t+1)]) with the observed averages (as computed using the

data in Table 1. Defining the random variable X(t) as the number of transactions occurring in

the interval (0, t], we know from Schmittlein et al. (1987) that

E[X(t) | r, α, s, β] =
rβ

α(s − 1)

[
1 −

(
β

β + t

)s−1
]

. (8)
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≥ $50 Cohort
Year 1 Year 2 Year 3 Year 4 Year 5

0 1 2 3 4 5 6 7+

0

1500
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0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+

< $50 Cohort
Year 1 Year 2 Year 3 Year 4 Year 5

0 1 2 3 4 5 6 7+

0
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0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+

Figure 2: Comparing the the actual (solid bar) and predicted (clear bar) distributions
of the number of transactions per year, by cohort

Clearly E[X(t, t + 1)] = E[X(t + 1)] − E[X(t)], so

E[X(t, t + 1) | r, α, s, β] =
rβ

α(s − 1)

[(
β

β + t

)s−1

−
(

β

β + t + 1

)s−1
]

. (9)

For the five-parameter model (i.e., the basic Pareto/NBD model augmented with a “spike” at

x = 1 for the first year), we have

E[X(t, t + 1) | r, α, s, β, π] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π + (1 − π)
rβ

α(s − 1)

[
1 −

(
β

β + 1

)s−1
]

if t = 0

rβ

α(s − 1)

[(
β

β + t

)s−1

−
(

β

β + t + 1

)s−1
]

if t > 0

(10)

These annual averages are plotted in Figure 3. While there are some modest deviations,

the overall fit is good. Furthermore, these annual deviations tend to cancel out. For the

< $50 cohort, the actual average number of transactions across the five years is 2.39, while

the model estimate is 2.40; for the ≥ $50 cohort, both the actual and predicted average number

of transactions across the five years is 2.80.
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Figure 3: Plots of predicted versus actual average annual number of transactions per
customer, by cohort

One additional validation exercise is to determine how robust the model is when we limit the

number of histograms used to estimate it. Such a task also serves as a type of “holdout test” to

see if it is appropriate to project the behavioral patterns beyond the observed sample. Instead

of using all five years of data to estimate the model, we re-estimate the model using only the

first three years of data. We wish to see how well we can predict the histograms for years 4 and

5 despite the fact that no data from those years were used for parameter estimation. Figure 4

offers a comparison of the model predictions for this limited specification and the actual values

for years 4 and 5. The close correspondence of these histograms provides strong evidence of the

model’s capabilities. This is a tough test for any model, especially one that is calibrated on such

limited amounts of data.

≥ $50 Cohort< $50 Cohort
Year 4 Year 5 Year 4 Year 5

0 1 2 3 4 5 6 7+

0

2000

4000

0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+

0

1500

3000

0 1 2 3 4 5 6 7+

Figure 4: Plots of the predicted transaction distributions for years 4 and 5 (given parame-
ters estimated using the first three years of data) against the actual histograms

Having established the validity of our modeling approach, we now turn to the question that

motivated the Mason (2003) case in the first place.
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4 What is a New Tuscan Lifestyles Customer Worth?

The Pareto/NBD model enables us to predict the expected transaction stream for a new cus-

tomer. However, to assess the expected lifetime value for a customer, we also need to predict

the monetary amount associated with each purchase. Following Fader et al. (2005), if we can

assume that the monetary value of each transaction is independent of the underlying transaction

process — something we have to do given the nature of the data given in the Tuscan Lifestyles

case — the value per transaction (revenue per transaction × contribution margin) can be fac-

tored out and we can focus on forecasting the “flow” of future transactions, discounted to yield

a present value. We call this quantity “discounted expected transactions”, or DET; it is the

effective number of repeat transactions that a customer will make, discounted back to the time

of acquisition. In other words, a transaction that occurs, say, 10 years in the future, is only

worth a fraction of a transaction at time zero. DET is the sum of these “fractional transactions”

and therefore captures both the overall number of them as well as their spread over time.

This number of discounted expected transactions can then be rescaled by a value “multiplier”

to yield an overall estimate of expected lifetime value:

E(CLV ) = margin × E(revenue/transaction) × DET (11)

Fader et al. (2005) present an expression for DET as implied by the Pareto/NBD model.

However, we cannot use it in this setting because of the modification to the basic model to

accommodate the more-than-expected number of people making just one repeat purchase in the

first year. We can therefore compute DET in the following manner:

DET =
∞∑

t=0

E[X(t, t + 1)]
(1 + d)t+0.5 , (12)

where d is the annual discount factor and E[X(t, t + 1)] is computed using the expression given

in (10). As the transactions can occur at any point in time during the year, we discount them

as if, on average, they occur in the middle of the year. Note that this expression for DET does

not include the initial transaction that signals the start of the customer’s relationship with the

firm. (If we wish to include this transaction — which we would need to do if we wish to set an

upper bound for acquisition spend — we simply add 1 to our estimate of DET.)
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It is easy to develop stochastic models to capture the random variation in revenue/transaction

over time (Fader et al. 2005), but it would be difficult to reliably estimate such a model given

the limited data on monetary value in the Tuscan Lifestyles case. Since the two groups were

defined on the basis of initial expenditure, this removes much of the cross-sectional variation in

revenue/transaction. Thus it is more appropriate to assume a constant level for the purchase

amounts within each group of customers. The data in the case (Mason 2003, Exhibit 3) indicate

that the mean spending level across the five years for the < $50 group is (32.09+41.78+51.05+

52.43+53.63)/5 = $46.20 per transaction while for the ≥ $50 group it is (93.46+74.02+67.75+

67.12 + 78.26)/5 = $76.12. Finally, we follow the case and use a fixed margin of 42% for every

transaction, and a discount factor of 10% for our CLV calculations.

Using (10) and (12), we find that DET equals 2.36 for the < $50 group and 2.77 for the ≥ $50

group. (In evaluating (12), we terminate the series at 100 years, which effectively represents

infinity.) It follows that our estimate of expected CLV for the < $50 group is $46 while the

expected CLV for a randomly-chosen member of the ≥ $50 group is almost double this value,

at $89. Clearly, a customer who makes a high-value first purchase with Tuscan Lifestyles is

more valuable in the long run compared to a customer who makes a low-value first purchase;

the lone data-point of the value of the first purchase is reasonably discriminating in determining

a customer’s future worth. Most of this difference is due to the fact that the average order size

is 65% higher for the ≥ $50 cohort; in contrast, DET for the ≥ $50 cohort is only 17% higher

than the corresponding number for the < $50 cohort.

The equivalent five-year DET numbers using the annual averages computed using the data

in Table 1 are 2.04 and 2.39, resulting in “five year lifetime value” estimates of $40 and $76,

respectively. Because of the truncation at the end of five years, these numbers underestimate

the true expected lifetime value by 14%.

Some analysts may be willing to live with a 14% error for the sake of analytical simplicity.

However, we cannot be sure that the underestimation will always be so low. More importantly,

however, all we would get is an estimate of expected five-year CLV; we would have no ability

to understand why we observe inter-cohort differences in DET, let alone gain any sense of the

other diagnostics associated with the Pareto/NBD model.
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Referring back to Figure 1, the between-cohort differences in the distributions of the dropout

rates are smaller than those for the transaction rates. While the mean (β/(s − 1)) and median

(β(21/s − 1)) lifetimes are slightly higher for the ≥ $50 cohort (3.5 and 2.4 years versus 3.4 and

2.2 years), the differences in the survival curves (Figure 5, left side) are negligible. Thus the

differences in DET are driven by differences in the transaction rates. We note that the mean of

the transaction rate distribution is 0.88 (purchases per annum) for the < $50 cohort and 1.04

for the ≥ $50 cohort. This difference is reflected the plots of expected cumulative transactions

(undiscounted), given on the right side of Figure 5.
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Figure 5: Plots of the percentage number of customers still alive and the expected cu-
mulative number of transaction for years 1–25, by cohort

As a final illustration of the value-added associated with the use of a stochastic model of

buyer behavior, let us consider the question of variability in CLV (or DET). To explore this, we

simulate purchase sequences for each customer, which are then discounted to give “discounted

transaction” numbers. The between-customer distribution of this quantity is reported in Figure 6

for both cohorts. This figure shows how the discounted transactions are spread around the

expected DET for each cohort; taking a simple sum of these numbers yields the average DET

for each cohort, as reported above. We note that while the variance in transaction rates is lower

for the ≥ $50 cohort (Figure 1), the variance in the discounted number of transactions is actually

higher for this cohort (2.67 versus 2.14 for the ≥ $50 cohort).

If we had sufficient data to estimate a stochastic model for revenue/transaction, we could

augment our estimates of expected CLV by the full distribution of CLV across the customer

base (and associated summary statistics).
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Figure 6: Distribution of discounted number of transactions per customer, by cohort

5 Discussion and Conclusions

The Tuscan Lifestyles case offers a simple new twist on the standard view of how to value a newly

acquired customer, highlighting how standard retention-based approaches to the calculation of

expected CLV are useless in a noncontractual setting. It is a simple exercise to use the data

presented in the case to arrive at an estimate of “expected five-year CLV”. However, if we wish

to arrive at an estimate that includes the customer’s “life” beyond five years or are interested in,

say, sorting out the purchasing process (while “alive”) from the attrition process, we need to use

a formal model of buying behavior. While the Pareto/NBD model is a natural starting point,

existing results do not allow us to estimate the model parameters using the data summaries

presented in the case. A key contribution of this paper is the derivation of an expression that

enables us to do this.

Our estimated parameters and subsequent calculations offer useful insights that could not

have been obtained without the formal model. For instance, we were able to decompose the

expected CLV into four factors, namely purchasing while active, dropout, surge in sales in the

first year and monetary value of the average purchase. We observed a kind of “triple jeopardy”

in that the more valuable cohort proved to be better on the three most critical factors (i.e., all

but the first-year sales surge). This observation by itself deserves additional study, and may be

the basis for an interesting “empirical generalization” about CLV differences across groups.
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It is easy to see how these insights and projections can be of use to the management of

Tuscan Lifestyles (and many other firms that face similar issues). Besides being able to judge

the economic efficiency of different kinds of acquisition strategies, the model presented here

can help managers determine better ways to define cohorts — does it make the most sense to

divide customers on the basis of initial expenditure, or would other kinds of splits yield more

dramatic differences between groups of customers? These differences should be gauged not only

in terms of overall expected CLV for each group but also in terms of the Pareto/NBD model

components. Maybe a certain kind of split can lead to a greater degree of homogeneity in each

group’s transaction rates and/or dropout rates, thereby reducing some uncertainty about their

future behavior and making it easier to target members of each group. There are clearly many

substantive benefits that arise from this kind of analysis.

From a methodological standpoint, the move from detailed transaction data to histograms

raises other questions as well. How about data structures that lie somewhere in between these

two extremes? For instance, it is easy to imagine firms maintaining “interval-censored” data,

i.e., period-by-period counts for each customer. Some ideas about how to develop models using

this kind of data structure are explored by Fader and Hardie (2005). Other questions relate

to the length of the “window” for the censoring process (e.g., quarterly histograms vs. yearly

histograms) and the number of histograms needed to obtain stable parameter estimates. All in

all, there are many promising research opportunities to be pursued down this path.

Although these methodological questions may be straying pretty far from the original issues

raised in the Tuscan Lifestyles case, they provide proof of the healthy links that exist between

well-formed managerial questions and appropriately constructed empirical models. New devel-

opments in one area frequently open up new possibilities in the other area, to the benefit of

everyone on both sides. We see Tuscan Lifestyles as the beginning of such a dialogue, and we

look forward to continuing the conversation.
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