Policy and Mechanism in Adaptive Protocols

llija Hadzi¢, William S. Marcus and Jonathan M. Smith
University of Pennsylvania and Bellcore *
ihadzic@ee.upenn.edu, wsm@bellcore.com, jms@cis.upenn.edu

Abstract

Adaptive protocols are protocols which automatically
adjust their behavior to runtime phenomena such as
traffic or link characteristics. For such protocols, the
behavioral adjustment is accomplished with some mech-
anism; the decision as to how much (if any) adjustment
is needed is made under control of a policy. Design and
implementation of policies has often proven more chal-
lenging than that of mechanisms.

We make three contributions in this paper. First, we
develop a rule of thumb for policy/mechanism separa-
tion and lay out a general set of challenges in policy
module design. Second, as an illustration, we have ana-
lyzed a Forward-Error Correcting Code (FEC) for ATM
supporting TCP/IP, and analytically identified a small
robust set of “tunable parameters” to delineate regions
where the code should be applied. Third, we exploited
the analytic results and policy /mechanism separation to
implement an adaptive protocol for network errors using
programmable hardware to obtain high performance.

Measurements of TCP/IP traffic over a 155 Mbps
ATM link augmented with two cooperating Pro-
grammable Protocol Processing Pipelines were made
with ttcp. The new policy module improves through-
put by up to 50% over an unaugmented TCP/IP in the
face of increasing bit error rates, and continue operation
into a range of bit error rates where an unmodified TCP
practically ceases to function.

1 Introduction

The complexity of networks and their traffic has been
an incentive for constant reexamination of protocols and
protocol architectures. Among the recent phenomena
motivating the study of adaptive protocols are the in-
creasing presence of wireless links in the Internet, as
well as the increasing range of traffic types such as
HTTP and streaming media. Traditional protocol ar-
chitectures have provided for adaptation in important
ways, such as TCP/IP’s congestion-control algorithms,

*This research was supported by DARPA under Contracts
#NCR95-20963 and #DABT63-95-C-0073, the AT&T Founda-
tion, the Hewlett-Packard Corporation, the Intel Corporation and
the Altera University Grants Program.

which adapt to the available bottleneck throughput.
TCP/IP’s algorithms provide illustrative examples of
policy and mechanism. The measurable parameters it
uses to detect IP packet loss are checksums, sequence
numbers and timers. The “congestion window” size re-
flects a policy decision in response to these phenomena.
However, the adaptation involves no restructuring of the
“protocol graph” which describes the protocol’s behav-
ior.

The performance of an adaptive protocol organized
as a policy controlling use of a mechanism depends on
three factors. First, the overhead introduced by a mech-
anism must be low enough that it improves performance
for a significant operating range of the protocol. Sec-
ond, and demonstrably more important, policy modules
must correctly identify opportunities for deployment of
mechanisms. Third, the time required to react to the
opportunity (i.e., deploy the mechanism) must be short
enough to ensure that the opportunity does not evapo-
rate. This third factor, for example, might suggest that,
for short fluctuations in network conditions, no action
be taken to avoid “thrashing” of the protocol graph. As
in the TCP example, the design of policy tends to be
more challenging than the choice of mechanism.

One proposal for adaptive protocols are the “Protocol
Boosters” proposed by Feldmeier, et al.[2, 20]. In this
model, functions are dynamically inserted and removed
from the protocol. This provides an attractive model
for analysis of policy, since the outcome of the policy is
simple: insert or remove the function. The goal of the
boosters work was to improve end-to-end performance
by appropriate runtime selection of functions. When
reframed in terms of policy and mechanism, a variety
of mechanisms have been demonstrated. However, the
inability to provide a convincing example of a policy
module has hindered claims that protocol boosters are a
viable means of dynamically adapting protocols to traf-
fic and link characteristics.

This paper provides a novel analysis of adaptive pro-
tocols using the Protocol Boosters model as a basis.
Since design of a policy module is dependent on both
the targeted application and the associated mechanism
module, we choose particular examples with which to
test our analysis. The targeted application is TCP/IP
throughput improvement in a noisy environment, and

the mechanism is forward error correction (FEC). FEC
has the interesting property that it trades an increase
in bandwidth use (for the redundant information in the
code) to achieve an overall increase in throughput (fewer
retransmissions, no mistaken congestion backoff, etc.).

In the next section, we quickly review previous work
in adaptive protocols and identify policy design as the
common challenge. Section 3 develops a general frame-
work to analyze policy modules. In section 4, we review
the mechanism (an FEC “booster”) and its implemen-
tation platform the Programmable Protocol Processing
Pipeline (P4) and illustrate the policy module design on
a case study. Section 5 shows the advantages offered to a
policy module by tunable parameters by demonstrating
them on the FEC policy module. Section 6 describes
and justifies our performance indicator, describes our
test setup, and gives our measured results. We outline
future work and conclude the paper in Section 7.

2 Previous Work

The benefit of adaptation in protocols is clear, for ex-
ample in the TCP /IP protocol’s adaptation to increases
and decreases in bottleneck bandwidth[11]. More ag-
gressive forms of protocol adaptation have been at-
tempted in the wireless domain[14, 4, 12] because the
complexity and variation of link behavior is high. In
[14], adaptation is performed on the basis of applica-
tion characteristics. The work reported in [6] showed
that link-layer adaptation can significantly improve per-
formance.

Adaptation in the structure of protocols was
achieved manually in the z-Kernel dynamic protocol
architecture[17], which compiled protocol modules or-
ganized into a protocol graph to produce an operational
protocol. The Protocol Boosters[2] architecture allows
the protocol graph to be dynamically reconstructed at
runtime. Perhaps more importantly from an analytic
point of view the boosters architecture provides a sim-
ple on/off model for use in analyzing policies. Active
Networks[3] can subsume protocol adaptation by offer-
ing end-user programmability of a network infrastruc-
ture, but are faced with the same policy issues we ad-
dress in this paper for the design of any specific solu-
tion. We note that protocol adaptation is not limited
to software-based architectures[8].

We reiterate that the major challenge for any adapta-
tion scheme is the policy decision, that is, when should
the protocol graph be reorganized. In a light-hearted
manner, “To boost or not to boost!”. In this work we
provide the common model for making policy decisions
and illustrate a proof of concept on a concrete example.

3 Policy Modules

Because policy strongly depends on the type of mecha-
nism it controls and the application it is targeted to, it
is not possible to define a general policy independently
of the associated mechanism module. It is however pos-
sible to identify design challenges that are common for
all policy modules. In this section we describe a com-
mon framework for implementing policy modules, and
move to the case study of an FEC booster and its policy
module in the following section.

At the highest level, the role of a policy module is
to monitor network conditions and decide to activate
or deactivate the mechanism. In general, tasks per-
formed by policy modules are measurements, decision
and synchronization. Submodules (illustrated in Figure
1) which perform these functions are called monitors,
decision submodules and signalling protocols.

. Decision
Poli cy Submodulg
Module
_ Signalling Remote
Monitor Protocol = 1 =
System

]

Mechanism Module

Figure 1: Substructure of a policy module

3.1 Measurements

When designing a monitor submodule, it is necessary
to identify a set of relevant measurable parameters that
will be used to detect a need for protocol adaptation.
These parameters can range from something as simple
as requests (i.e., messages) from the user or other policy
modules to measurable quantities such as checksum er-
rors, buffer utilization, signal-to-noise ratio (SNR) etc.
Measurements can be taken at different layers of a pro-
tocol stack and at multiple points in the network (i.e.,
measurements may be distributed).

3.2 Decisions

The second task involves making decisions based on
measurements and/or requests. Collected information
which can be of any nature is processed and transformed
into a result that represents a decision. The decision can
be to insert/remove a new functional element or to re-
main in the current state. In other words, a decision
submodule maps the output of a monitor to a three
element set: { insert, remove, continue }. A decision

submodule separates mechanism-specific parts from the
rest of a policy module. A decision submodule must be
aware of the time needed to instantiate the new func-
tional module. In the Protocol Boosters model, this
time may include module instantiation time for boost-
ers implemented as kernel loadable modules[16], device
downloading time for FPGA implemented boosters|§],
propagation time over a high latency network, etc. If
the event that would trigger the modification of a pro-
tocol graph is shorter than the mechanism instantiation
time, switching the module in would result in a mis-
match between current network conditions and proto-
col instantiation. This is obviously undesirable, and the
policy module should avoid reacting to such events. In
other words, some amount of inertia must be built into
a decision module.

3.3 Synchronization

In general, functions inserted into a protocol stack are
distributed over the network, and thus some form of sig-
nalling is necessary. The role of a signalling protocol is
twofold. Firstly, it must ensure that distributed func-
tions are activated synchronously to avoid mismatched
protocol stacks at transmitter and receiver.

The second function of a signalling protocol is to allow
distributed decisions. In the FEC example presented
in the next section, only the receiver has the informa-
tion about bit errors and therefore a monitor submodule
must be located at the receiver side. However, the trans-
mitter must mark the point at which the coding starts
so that the receiver can start decoding at the correct
point in time. Placing the decision submodule at the
transmitter side is impractical because it would be nec-
essary to constantly transfer measurements across the
network. A better solution is to place the decision sub-
module at the receiver and use the signalling protocol
to transfer decisions across the network. Decision infor-
mation may be sent only when the protocol state needs
to be changed, which will result in much less overhead
traffic.

4 Case Study: FEC Booster

In this section we illustrate a policy module design using
the example of an FEC booster described in [9].

4.1 Platform

Since a large group of protocol processing functions are
bit-oriented (e.g., checksum calculation, FEC, encryp-
tion, etc.), potential exists for speedups of orders of
magnitude if these functions are implemented in hard-
ware. Many other protocol processing functions are

packet-oriented (e.g., ARQ, flow and congestion con-
trol etc.) and thus amenable to software implementa-
tion. A dynamically reconfigurable hardware platform,
the Programmable Protocol Processing Pipeline (P4)[8]
has been designed to implement protocol functions in
hardware while maintaining software-like flexibility.

The architecture of the P4 is shown in Figure 2. The
P4 organizes a set of RAM based field-programmable
gate arrays (FPGAs) in a pipeline, with a switching
array selecting which devices are engaged in processing
a data stream. FPGAs allow protocol processing with
run-time reconfigurable hardware. Packets are received
by the input interface (IIF) processed by the system
and sent back into the network by the output interface
(OIF).

header fields forwarding

— | bypassFIFO

Switching Array

|
ATM I ATM
link 1 : link
| B|PE | B| PE |
|
A
V
Controller
= - - -= Control paths

——= Datapaths
Figure 2: P4 architecture

Each device (processing element, PE) has a FIFO
buffer (B) associated with it. A processing element
reads the data from its FIFO buffer, performs its pro-
cessing, and writes into the FIFO buffer associated with
the next device in the chain. Connection to the next de-
vice is achieved via the switching array. The switching
array can dynamically include or exclude processing el-
ements, or reorder them on an as-needed basis.

When needed, a protocol processing function (in the
form of an FPGA configuration) is added by down-
loading a free device, and inserting this device into the
pipeline chain. Unnecessary functions are switched out
of the processing chain and the device becomes free.

The P4 prototype uses ATM cells as a convenient
unit of processing. While the architecture is not ATM-
specific, ATM simplifies the hardware implementation
of processing algorithms and allows validation of per-
formance in 100+ Mbps operating regimes.

In the software running on the bus-attached

controller! each mechanism has the associated thread
that executes the protocol described in Section 4.5 and
inserts or removes the associated mechanism module.

4.2 A Forward Error Correction Mech-
anism

Forward error correction (FEC) is an example of a pro-
tocol processing function that might be dynamically
inserted or removed from a protocol stack. An FEC
coding algorithm can thus be viewed as a mechanism
module for an FEC protocol booster. Experiments
showed[9] that adding the FEC “as-needed”, improves
TCP throughput. An updated version of the experi-
mental results® is given in Figure 3.

10

N
N
N
®

10" \]
g‘ \
Fel \
E \
s — Unmodified TCP
g ~ ~ TCP with FEC .
3 ~ TCP with rate control N
=y
o 0 Optimal throughput N

10" v

\
\
\
-1
10 L L L
10 107 10° 10° 10"

BER
Figure 3: Mean value of measured TCP throughput

The graph shows the result for the R=1/2, constraint
length 3, convolutional code. Similar results have been
observed for the H(7,4) block code applied to every
group of four bits in the packet?.

The solid line presents the throughput without the P4
or with idle P4 in the datapath. The dash-and-dotted
line shows the TCP throughput with an inactive P4 and
rate control* at the transmitter.

Tn our experiments we use a PC running Linux as a controller.
If this was a production system, a PC would be replaced with an
embedded control system

2These results show remarkably close consistency with the
model developed in [10], and thus provides experimental confir-
mation of those results.

3For background on error correcting codes, see, e.g., [13]

4Rate control is necessary to reduce the bandwidth utilized
by a transmitter so that the P4 can insert packets generated by
the encoder. Rate control should theoretically introduce an idle
period of at least one packet length per each transmitted packet.
In our experiments, rate control introduced a throughput reduc-

Finally, the dashed line shows the measured through-
put with P4 running the FEC booster. It can be ob-
served that the major overhead of the FEC booster is
in the rate control. Because the FEC is implemented
in hardware, encoding and decoding do not impose sub-
stantial overhead (i.e. dashed and dashed-and-dotted
lines overlap for low bit error rate).

A nearly exponential drop-off in throughput for bit
error rates above 10~% occurs due to TCP’s conges-
tion control scheme. This is consistent with predictions
made by the theoretical model derived in [10]. Adding
FEC to the protocol on an as-needed basis improves
TCP throughput in a noisy environment and does not
modify the protocol stack when the bit error rate is
low. On the other hand, FEC requires extra bandwidth
which increases the probability of congestion. The con-
gestion probability dominates for low bit error rates
while the bit error probability dominates in the high
bit error rate region.

The goal of a policy module associated with the FEC
booster is to insert the mechanism (i.e. the encoder and
decoder) only where a reduction in bit errors from the
code actually pays off. For the case shown in Figure 3,
this is the region where bit error rate is greater than
10-8.

A generalization of this scheme uses multiple FEC
modules of different strength and coding schemes. Each
FEC scheme would perform best for a range of bit error
rates. The role of a policy module would be to match
the BER range to the FEC scheme.

4.3 BER Monitor

In our FEC booster implementation, the FPGA imple-
mented bit error monitor (BER monitor) measures the
number of corrupted packets inside a time window W.
For each packet, a moving average sum is calculated
(recursive version is used in implementation):

Ww-1
skl =Y rlk—i] =slk—1]+r[k] —rk—=W] (1)

=0

where s[k] is the output for the k-th packet, W is the
size of a moving average window, and r[k] indicates if
the packet is in error (r[k] = 1 for packet in error and
0 otherwise). Clearly, if we could identify bad packets,
the output of a BER monitor would be proportional to
packet error rate.

Determining if the packet has incurred an error is spe-
cific to the underlying network infrastructure. In non-
boosted mode, we perform the CRC check of the AAL-5

tion by roughly a factor of 1.5 (measured throughput was around
45Mb/s without rate control and around 30Mb/s with rate con-
trol). Since the workstation we used can not fully utilize the OC-3
pipe, a rate control factor less than 2 was acceptable.

unit in which the packet is encapsulated. If the network
is using early packet discard (EPD)[19], AAL-5 CRC
is the perfect indicator of bit errors since packets are
entirely dropped in the case of network congestion and
almost all CRC errors will be due to bit errors rather
than cell losses. Without EPD, CRC error can occur in
the case of a single cell loss due to network congestion.
In this case the BER monitor would make an assump-
tion contrary to the one made by TCP (TCP assumes
that all errors are due to congestion, while BER monitor
assumes that all errors are due to bit errors).

When the FEC booster is on, using CRC check af-
ter decoding, is an inaccurate criteria for determining
if the packet has encountered an error. Since many bit
errors are now corrected, passing the CRC check still
does not necessarily imply that the bit error rate is suf-
ficiently low to remove the FEC booster. A better indi-
cator is the decoder itself. Instead of returning a moving
average of CRC failures, the BER monitor in boosted
mode returns a moving average of the number of packets
which have been corrected by the decoder. In the case
of a convolutional code (i.e. Viterbi decoder on the re-
ceiver), a non-zero accumulated Hamming distance for
the selected path is a good indicator that the packet has
incurred an error[13]. For a block code, appearance of
non-zero syndromes can be used to detect packets with
bit errors.

4.4 Decision Submodule

Our policy module uses event counting to make its de-
cisions. Mapping measurements to a set of decisions®
is based on crossing certain thresholds in the number of
events. This principle is not limited to FEC and it can
be used in policy modules that control other types of
boosters. In all cases a fundamental design question is
how to determine thresholds at which a policy module
decides to activate or deactivate the booster. In this sec-
tion we describe the event counting decision submodule
and in Section 5 we develop and experimentally verify a
model which can be used to determine decision thresh-
olds for the FEC booster.

The decision submodule used in our implementation
is a software implemented error counter which polls the
BER monitor and reads s[k]. Alternatively, it can be
viewed as a state machine (see Figure 4). Initially, the
counter is set to zero (state machine is in its leftmost
state) and the module returns remove. If the value read
from the BER monitor is greater than zero, the counter
increments by this value (state machine advances to the
right). If the counter reaches its maximum (rightmost
state), insert is returned. Counter may not count above
its maximum nor below zero. Reading zero from the

5See the set defined in Section 3.2. Later, when we speak about
the implementation, we will refer to these elements by names used
in our source code: BOOSTER_ON, BOOSTER_OFF, BOOSTER_READY.

BER monitor, will decrement the counter by 1 (move
the state to the left). When the counter reaches zero, re-
move is returned. In all intermediate states of a counter,
the decision submodule returns continue meaning that
the current state should not be changed.

FEC - ON

FEC - OFF

Transitional states

Figure 4: State machine representation of a decision
submodule

4.5 Signalling Protocol

We have implemented a signalling protocol which allows
a policy module located at one point of the network to
inform remote policy modules about its decisions and
synchronously perform the transition to boosted mode.
We briefly describe the implementation of our signalling
protocol, of which details can be found in [7].

FEach mechanism module known to the system has
an associated control block and a supervisory thread
which executes the protocol described later in this sec-
tion. Driven by timeouts or signalling message arrivals,
it periodically wakes up and runs different decision sub-
module depending wether the mechanism is engaged of
not.

The decision submodule returns one of the decision
codes: BOOSTER_ON (insert the booster), BOOSTER READY
(remain in the current state), BOOSTER_OFF (remove the
booster).

Depending on a policy decision or the semantics of
a received signalling message, the booster updates its
state and if necessary sends a signalling message.

If a policy module determines that the booster should
remain in current state (BOOSTER_READY), no changes to
the protocol stack will be made. However, the system
will check if the devices on P4 are configured and if
necessary download the FPGA configurations from the
list in the control block. The purpose of this check is to
ensure that all devices are configured in a timely manner
so that the booster insertion is not stalled by slow device
downloading.

A supervisory thread is a finite state machine which
is different for booster and debooster. Its role in the
system is determined by a field in the control block.
The state transition diagram for a booster is shown in
Figure 5.

When the booster is not engaged, the supervi-
sory thread will be in IDLE state and no messages

BOOST
or policy decision

RUN
BOOST

IDLE STARTED

‘ policy decision
P

Figure 5: Booster state transition diagram

will be exchanged. If the policy module anticipates
that the booster might be needed soon (i.e., returns
BOOSTER_READY), devices on P4 board will be down-
loaded, but the booster will not be switched in and the
state will be unchanged. Also a PREPARE message will
be sent, to make the remote party aware of a local policy
decision. Transition to boosted mode (RUN_BOOST state)
can occur either as a result of the policy decision or on
demand via a signalling message (i.e. a remote policy
decision).

In the RUN_BOOST state, booster is active and begins
sending START messages to force the remote side to go
into boosted mode. Once the remote side acknowledges
the transition, there is no need to send further signalling
messages and the booster goes into RUN_BOOST_SILENT
mode. A booster is removed if the policy module de-
cides so (local policy decision) or if the ABORT message
is received (remote policy decision). In the former case,
booster must remain in TERMINATING state, and keep
sending ABORT messages to force the remote side to re-
move the debooster. Once the removal is acknowledged,
both sides will be in IDLE state and the booster will not
be engaged.

The debooster state transition diagram is shown in
Figure 6.

In the IDLE state, debooster also runs the policy mod-
ule which may decide that boosting is necessary. How-
ever, this will only result in sending the BOOST message
to the remote side (booster), and the transition will not
occur until START message is received.

Receiving a START message will result in the transition
to RUN_DEBOOST state and STARTED message will be sent
in response. When engaged, a debooster can be removed
due to a local or remote policy decision (i.e. receiving
the ABORT message). If the policy decision was local,
the thread will go into TERMINATING state where it will
periodically send ABORT message to inform the remote
party of its decision. A booster will acknowledge the
transition with IDLE message and booster and debooster

policy decision

Figure 6: Debooster state transition diagram

will be removed.

5 Tunable Parameters

Our policy module can be tuned to a particular er-
ror model with three parameters: moving average win-
dow size in packets (W), counter maximum (N) in er-
ror events, and the polling period (T') in seconds. In
this section, we develop models that can be used to
determine these parameters given the network condi-
tions. Our analysis assumes that bit errors are indepen-
dent random events (i.e. Bernoulli process) and in our
experiments bit errors are emulated using this model.
Though we recognize that different models should be
used for different types of links (e.g., terrestrial wire-
less link is modeled differently from a satellite link), the
error model discussion is out of the scope of this paper.

5.1 Moving Average Window Size, W

Moving average window size, determines the bit error
probability for which the FEC will be turned on or off
(i-e, critical BER). To statistically guarantee booster
insertion, the expectation E{s[k]} must be greater than
1/2. From the equation 1 and linearity of an E{.} op-
erator, the requirement can be written as:

w—-1
Bk} = Y B{rlk—il} > 5 @)

=0
By definition, 7[k] is a Bernoulli random variable and
its expectation equals the probability of a packet error
at time k. If the bit error rate changes slowly, we can
assume that the error probabilities for all 7[k] inside the
moving average window are almost equally distributed.
Given this assumption and the packet length of L bits,

condition (2) becomes:

1
W>72‘L‘Pbit (3)

The inequality (3) allows us to determine the W so
that the transition to boosted mode is guaranteed when
the bit error rate reaches Pp;. Similar inequality, with
the opposite sign, can be derived for the window size
that guarantees the transition from boosted to non-
boosted mode.

We have experimentally verified this result by varying
the window size W and observing behavior of the policy
module. Results for 1500 bytes packet size are plotted
in the Figure 7. It is important to note that when the
system is in boosted mode, the effective packet size is
3000 bytes, because the FEC encoder adds one extra cell
to each original cell: redundancy needed for bit error
corrections.

The figure compares the predicted critical bit error
rates with bit error rates for which the actual booster
insertion/removal has occurred (i.e, measured critical
BER). The left graph shows the probability of error
above which the FEC booster is inserted into the proto-
col stack as the function of W. The right graph shows
the critical BER for booster removal.

It is important to note that the equation (3) speci-
fies when the booster insertion is guaranteed. It is still
possible that the actual insertion occurs earlier which
is the reason for the differences between measured and
predicted critical BER. However, a good match in the
order of magnitude, validates the linear model of (3).

From the Figure 3, it can be observed that, in our
example, the critical point is at BER=10"%. It is also
desirable to provide a hysteresis to avoid unnecessary
switching between boosted and non-boosted mode when
the system is operating near the critical point. Small
fluctuations in bit error rate around the critical point
will be damped by the hysteresis. Given the above re-
sult and assuming a packet size of 1500 bytes (3000 in
boosted mode), we have chosen the window sizes of 512
for non-boosted mode and 768 for boosted mode which
results in the hysteresis loop placed between® 3 - 108
and 4-1078.

5.2 Counter Maximum, N

Counter maximum (N) provides the inertia of the sys-
tem and can be determined through a trade-off between
the system speed and robustness. Larger N prevents
switching the booster in or out when the average bit
error rate is near critical with occasional short intervals
between errored packets. On the other hand, system re-

6The left boundary of the loop should actually be below 10—,
but this would require at least three times larger moving average
window. Since the size of a shift register needed to implement
a moving average equals the size of a window, three times more
memory elements would be needed. Due to a limited size of the
FPGA devices we used and the amount of FPGA space needed
by a Viterbi decoder, 768 was the largest implementable window
size

action to bit error rate changes will be slower for larger
N. We show this trade off in the analysis to follow.

The policy module can be modeled as a Markov chain
shown in the Figure 8. The top subchain models transi-
tions from non-boosted to boosted mode, while the op-
posite transition is modeled with the bottom subchain.
States 0 = 0’ and N = N' represent bounds of the
counter. Two subchains are necessary because of differ-
ent transition probabilities in boosted and non-boosted
mode.

Transition probabilities P(s) and P'(s) represent the
probabilities that the BER monitor will read s for non-
boosted and boosted mode respectively. They are de-
fined as:

W=512,L=1500-8

W=768,L=3000-8
w
p(s) = (s) (Pt - L)* - (1 — Pyiy - L)W ¢

Since all the parameters necessary to fully describe a
Markov chain have been specified, it is a straight for-
ward mathematical task to find the steady state solution
vector [g;], where g; is the probability of being in state
i. Of special interest for this discussion is the behav-
ior of probabilities of being in state 0 and probability
of being in state N. We call these probabilities g emove
and @;nsert respectively, as they represent probabilities
of removing and inserting a booster into the protocol
stack. Figure 9 shows the behavior of ¢remove (dashed
line) and g;psert (solid line) for different values of N and
error probability around critical point. As expected for
error probability well below critical point g,emope dom-
inates while g;nser¢ is negligible and vice-versa. There
is also the uncertainty region in the vicinity of criti-
cal point where ¢remove aNd @insert are comparable. In
this area the system is most likely to oscillate between
boosted and non-boosted mode. It can be observed from
Figure 9 that for larger N uncertainty region becomes
narrower with the minor shift of the critical point to
the left. A desirable property is to have the uncertainty
region as narrow as possible, and the dominant effect of
the counter maximum value N is to control the width
of this region.

On the other hand, large counter maximum value will
make the system inert as more time will be needed to
make the transition. As discussed earlier in the paper,
some amount of inertia is necessary to filter out short
events that are likely to cause the system oscillation.
However, too much inertia will make the system too slow
and filter out some events that are otherwise addressable

1077 I T T T T 1
. -7 L Pmeasured o |
10 : _Popjfvedicted —+o
.1077 ON

BER

N W ks Ot O

-10-7

3-1077 -

.10—7 L
2.1077
5-1077
10—7 L

measured P
POFF .
Ppredzcted + -

OFF

200

400

600

800

1000

0 200

400

600

800

W{packets]

W(packets]

Booster isertion and removal probabilities

Figure 9:

05

0.5

05

P(0)

N=5

Figure 7: Predicted and measured critical bit error rates

line) as function of BER

by the booster. In the Figure 10 we have plotted gremove

o
w

o

N

o

Booster isertion and removal probabilities
o
- o

05

P

Booster insetion path

©

P (0

P(3)

P /
P : F’(lg 3’(0)

P (0) P (0)

Booster removal path

Figure 8: Markov model of a decision submodule

N=10

)

Steady state solutions:
switching the booster in (solid line) and out (dashed

Probabilities of

and @;nsert as the function of time and error probability
fixed to 10~7 (BER for which it is clear that the booster
should be switched in). The plots are shown for several
values of N and the influence of N to inertia is obvious.
In our example we have chosen N = 25 as a trade-off
between inertia and width of the uncertainty region.

5.3 Polling Period, T

Polling period (T') determines how often a processor
reads data from the BER monitor and runs the decision
submodule. The system will operate faster with shorter
polling period. Also the assumption about slowly chang-
ing bit error probability favors small 7. On the other
hand, too short polling interval may result in overlap-
ping moving average windows, which can have further
impact on the accuracy of models (i.e., Markov chain
model) we used to determine other tunable parameters.
A model that accurately describes the role of the polling
interval remains yet unclear and will be developed in our
future work. However, in our experiments, we observed
higher probability of booster oscillation with shorter T'
suggesting that there is a lower limit on the polling in-
terval. For OC-3 bit rate, we have empirically found
that for T = 150ms probability of oscillation is suf-

N=5 N=10

|
05) 05/
7 [I
o g
= RN
iy i
g 0 & 000 g 0 0 1000
29 29
[[
3 3
505 505
=4 I (= 1
S| °
c c
s | s |
8 Oo — 0 1000 3 00 T 1000
2 % £ R
g 1 g1
7} 0
o]
Q =]
o I o
05 05/
I I
\ \
[— 0l ———
500 1000 0 500 1000

Number of reads from BER monitor Number of reads from BER monitor
Figure 10: Transitional behavior: Probabilities of
switching the booster in (solid line) and out (dashed
line) as a function of time

ficiently small and that our models still give accurate
predictions.

6 Results and Discussion

In this section we begin by defining some performance
measures which allow us to segue from the analysis to
measurements of the implementation. We then describe
the testbed, and report the performance results.

6.1 Performance Measures

In this section we define measurable quantities which
can be used to characterize the performance of an FEC
booster mechanism module. Due to the instantiation
latency discussed in Section 3.2, a policy module takes
a finite time to adapt the protocol graph to new network
conditions. During this transitional period, the protocol
will not be matched to current network conditions, and
suboptimal performance will be observed.

We are interested in how far the measured throughput
deviates from the ideal. We define relative throughput
error:

e:{ Fon>E (5)
0 otherwise

where 77 is the measured TCP throughput with our
policy module controlling booster insertion and re-
moval. Relative throughput error compares the mea-
sured throughput with the optimal:

T.
é= 7 | mastetoa (6)

where T, is the duration of the connection.

Ideal throughput, £, would be achieved assuming an
ideal policy module that switches the booster in and out
infinitely fast and an ideal TCP protocol which opens up
the congestion window infinitely fast when the bit error
rate improves. This is the maximum possible through-
put, achievable only under the ideal and non-realistic
circumstances. However, since the basis for the calcu-
lation of £ is the experimental curve of Figure 3, mea-
surement errors can potentially result in small negative
value of e. The lower branch of equation (5) will round
negative errors up to zero.

Ideally, & would be zero; smaller values indicate bet-
ter performance of the policy module. Sources of error
are the finite time to switch between boosted and non-
boosted mode, the inability to track very fast changes
in the BER, errors in BER estimation, and the short
outages possible when the signalling cells are lost or
corrupted.

A second performance indicator, boost factor, is de-
fined as:

_ N—Nstatic
b= Nstatic
0

where 7] is the same measured throughput from equation
5. The boost factor compares the measured throughput
of the system with the policy module to the measured
throughput of a static implemented system.

The optimal throughput (£) represents the upper
limit for our policy module, while the 1544 represents
the baseline if the policy module was not operating.
Two baselines exist: (1) the throughput of unmodified
TCP; and (2) the throughput of FEC augmented TCP
without a policy module to dynamically insert and re-
move the FEC. The measured boost factor compared
with both bottom lines and the relative throughput er-
ror is a good indicator of how well the policy module
performs its task.

1N > Nstatic
. 7
otherwise (™)

6.2 Experimental Measurement Setup

The experimental setup is shown in Figure 11. The host
is a 300 Mhz Pentium II processor with 64 MB of 60ns
DRAM, 16KB of L1 cache, 256 KB of L2 cache and a
33Mhz PCI bus. It operates Linux 2.0.29 with support
for ATM[1] and uses a Fore Systems PCA200E ATM
adaptor[5] for the networking experiments. The device
driver was slightly modified to support the rate control
scheme mentioned in Section 4.2.

The logical ATM link operates at the SONET OC3c
rate of 155 Mps. In reality, the logical link consists of

several subsegments, starting from the transmit port of
the adaptor:

1. link to the Fore ASX-200 ATM switch
2. link to “encoder” P4 and link back to the switch

3. link to the Network Impairment Emulator[18] (it is
a VXI card in an HP 75000 Broadband Network
Analyzer and is used to emulate a noisy line by
inserting bit errors) and link back to the switch

4. link to “decoder” P4 and link back to the switch

5. link from the switch to the workstation adapter

Encoder rm _i
c Tx e .
?} ATM
2 | Rx Switch <
= Network
I mpai rment
P4 Emulator
Decoder

Figure 11: Experimental setup used in testing the FEC
booster

Throughput testing is done with ttcp. For conve-
nience, we used a single test machine with source and
sink running as two separate processes. The perfor-
mance impact on TCP/IP throughput of the policy
module in the P4 is independent of the PC’s perfor-
mance except for scaling.

6.3 Measured Results

We tested the performance of our policy module using
the ttcp throughput testing utility with very long data
streams (-n 100000). During the connection the net-
work impairment emulator kept the link error free for
time Ty and then switched to error mode and kept it for
time Ty after which the process repeated. The total du-
ration of a connection (T;) was always large compared
to Tp resulting in many transitions from error free to
error mode.

The BER in the errored intervals was fixed through-
out the ttcp measurement session; multiple measure-
ments were made for each BER. Conveniently, for this
test scenario, the integral of (6) depends on neither Tp
nor T, and can be written as:

E — Rgood + Rbad

- ®)

10

45,
40 -
35 -
30 -

R[Mb/s25
20
15
10 -
5 -
0 L
101

Rbaci <—
&+ -

10- 108 10-¢

10—4

Figure 12: Ideal TCP throughput: Calculated from
measured data under the assumption that the policy
and TCP react infinitely fast

where Ry,,4 is the throughput for the error free connec-
tion and no FEC in place and Rp4q is the throughput in
the error mode assuming that the FEC will be inserted
only for bit error rates above critical (see Figure 3). We
have measured Ry,0q and Rp.q for a wide range of bit
error rates. Rgooq is approximately 43.9Mb/s. Results
for Ryqq and the calculated £ are plotted in Figure 12.

We ran the ttcp tests using our policy module to con-
trol the FEC booster, and compared measured through-
put against the ideal. Figure 13 shows the relative error
(equation (5)) as the function of bit error rate for dif-
ferent values of Ty. We see that if the bit error rate
changes sufficiently slowly, the relative throughput er-
ror remains below 20% keeping the performance of the
policy module reasonably close to optimal.

70 T ||| T ||| T ||| T ||| T TT T TT T TT T TT T TT
60 TO =40s ©— —
so L To=20s + - X 1

To = 10s B—

10-8
BER

Figure 13: Relative throughput error

For smaller values of Tj, the interval where the proto-
col instantiation is mismatched to network conditions is
longer and the throughput error is larger. Factors that
drive the measured throughput away from optimal are
the finite time to instantiate the booster (i.e., inertia
of the decision module), finite time needed for the TCP
to open up the congestion window when the BER im-
proves, and bit errors in signalling messages that could

cause a temporary loss of synchronization between the
coder and decoder.

To estimate how much improvement in TCP through-
put is due to the protocol adaptation we measured the
TCP throughput of the system with the policy module
and calculated the boost factor defined by (7). Figure 14
shows the boost factor with respect to the throughput
of unmodified TCP protocol stack (i.e., the reference
throughput 7s¢q4ic was measured without FEC).

70 T II| T II| T II| T II| T TT T TT T TT T TT T TT
60 - Tp = 40s <©— K -
50 | To=20s + - |
To = 10s B 4
_ 40F T,=>5s5 -%X-- N _
(%) 0= 8
30 - W n
20 -
10 |- O —
(0 B g i
10-2 100 10 10%® 104
BER

Figure 14: Boost factor with respect to the throughput
of unmodified TCP protocol stack

For low bit error rates, improvement is near or equal
zero, because the booster is never engaged and the sys-
tem acts as unmodified TCP protocol. The improve-
ment rapidly grows with the bit error rate and becomes
practically infinite for BER > 10~%. In the BER re-
gion above 10~*, the unmodified TCP closes its conges-
tion window and almost completely stalls. The values
of Ty for which we performed our experiments (up to
40s) were insufficient to allow recovery when the link
returned to an error free state.

Figure 15 shows the boost factor with respect to the
throughput of a TCP protocol stack with FEC running
on the P4. To determine the reference throughput for
this case, we manually forced FEC booster insertion be-
fore the test session and ran the throughput test without
removing the booster.

Improvement occurs for both low and high bit error
rates. In the low BER regime the overhead of statically
instantiated FEC booster prevents the TCP from fully
opening the congestion window and the improvement
of about 30% is due to rate control at the transmitter.
For high bit error rates, the FEC improves the TCP
throughput when the link is in the error mode, but does
not take the advantage of error-free periods. For fast
changing bit error rates (e.g., Top = 5s), there is almost
no throughput improvement in the high BER region.
Here, the inertia of the decision submodule prevents the
booster from being removed during short fluctuations in
network conditions.

11

60 Ty = 40s ©— -
s L Ty=20s +-
T, = 10s &—
- 40 1= To =58 -%-- 7

10 -
0 vl ol il |'. \
10-12 1071 10-% 10°% 10~¢
BER

Figure 15: Boost factor with respect to the throughput
of TCP protocol stack with FEC on P4

7 Conclusions and Future Work

Adaptive protocols, and the approach of run-time pro-
tocol construction, such as that of Protocol Boosters,
can offer significant performance improvements. How-
ever, there are subtleties which must be addressed in
a realization, particularly in the design of the policy
module. In this paper, we used a particular example,
a policy for insertion and removal of an FEC from a
high-speed ATM path, to identify issues and provide a
case study moving from analysis to policy realization.
Our implementation of an FEC Protocol Booster in a
set of gate arrays included both mechanism and pol-
icy modules, and showed that both the mechanism and
the application specific elements of a policy module can
be isolated in two small submodules (the monitor and
decision submodules).

We exploited the on/off behavior of mechanisms in
the protocol boosters scheme to achieve a novel analysis
of policy performance. The analysis predicted that not
all of the changes in network conditions can be tracked,
due to the time to instantiate a booster and the network
propagation delay. This poses a limit to system agility
in the face of rapid network dynamics. We used the an-
alytic results to guide a set of experiments, which con-
firmed the model’s predictions about policy, and showed
an extensive range of operating conditions under which
a policy module can lead to performance increases.

The work conclusively demonstrates that an adaptive
protocol architecture can be effectively designed using
a policy/mechanism separation. Once the mechanism
(FEQ) is chosen, analysis of the mechanism in on/off
states results in a robust policy module. For appropri-
ate mechanisms and policies, hardware implementation
in gate arrays can lead to a system with an attractive
tradeoff of performance and flexibility. In particular,
TCP/IP throughput improved by up to 50% with in-
creasing BERs (up to 107%). For larger BERs where
TCP/IP becomes dysfunctional (e.g., 10~%) comparison

is unfair (but 4500+% does sound impressive!).

There are a number of interesting directions to pur-
sue in the future. First is an attempt to use our hard-
ware for an even more aggressive approach to adapta-
tion in network architectures such as active networks. In
this domain, we would try to selectively accelerate ac-
tive packets (such as ANTS Java capsules[21] or PLAN
packets[15]) with the hardware fastpath to achieve an
overall performance increase. Second is an attempt to
apply the programmable hardware to a domain more
likely to be encountered with high-speed networks than
high bit-error rates, which is security. IPSec offers a
number of opportunities where hardware acceleration
could make dramatic improvements in end-to-end per-
formance.

References

[1] ATM on Linux home page and source code. URL
http://lrcwww.epfl.ch/linux-atm/.

[2] D. C. Feldmeier, et. al. Protocol boosters. IEEE

JSAC Special Issue on Protocol Architectures for

the 21st Century, 16(3):437-444, April 1998.

D. L. Tennenhouse, et al. A Survey of Active Net-
work Research. TEEE Commaunications, 35(1):80—
86, January 1997.

[4] D.Duchamp. Issues in Wireless Mobile Computing.
In Proceedings of the 3rd Workshop on Workstation
Operating Systems, pages 2-10, April 1992.

Linux device driver for Fore PCA200 adap-
tor, home page and source code. URL
http://os.inf.tu-dresden.de/project/atm/.

H. Balakrishnan, et. al. A Comparison of Mecha-
nisms for Improving TCP Performance over Wire-
less Links. In Proceedings of ACM Sigcomm 96
Conference, pages 256—269, August 1996.

I. Hadzié. Signalling Protocol for P4 (SPP4), ver-
sion 1.0. Technical Report MS-CIS-98-20, Univer-
sity of Pennsylvania, CIS Department, 1998.

I. Hadzi¢ and J. M. Smith. P4: A Platform
for FPGA Implementation of Protocol Boosters.
In Field-Programmable Logic and Applications:
7th International Workshop, FPL’97, Proceedings,
LNCS, 1304, pages 438-447. Springer, September
1997.

I. Hadzi¢, J. M. Smith, and W. S. Marcus. On-
the-fly Programmable Hardware for Networks. In
Proceedings of IEEE Globecom 98, November 1998.

12

[10] J. Padhye et. al. Modeling tcp throughput: A sim-
ple model and its empirical validation. In Proceed-
ings of ACM Sigcomm 98, August 1998.

[11] V. Jacobson. Congestion avoidance and control.
In Proceedings of ACM Sigcomm 88 Conference,

August 1988.

[12] R. Katz. Adaptation and Mobility in Wireless In-
formation Systems. IEFEE Personal Communica-

tions, 1(1):6-17, 1994.

[13] S. Lin and D. J. Costello. Error Control Coding,
chapter 3, 10 and 11. Prentice-Hall, 1st edition,

1983.

[14] M. Satyanarayanan et. al. Application-Aware
Adaptation for Mobile Computing. Operating Sys-

tems Review, 29(1), January 1995.

[15] M. W. Hicks, et. al. PLAN: A Packet Language for
Active Networks. In Proceedings of the Third ACM
SIGPLAN International Conference on Functional

Programming Languages, pages 86-93. ACM, 1998.

[16] W.S. Marcus, A. J. McAuley, and T. Raleigh. Pro-
tocol Boosters: A Kernel-Level Implementation. In

Proceedings of IEEE Globecom, November 1998.

S. O’'Malley and L. L. Peterson. A Dynamic Net-
work Architecture. ACM Transactions on Com-
puter Systems, 10(2), May 1992.

[17]

[18] R. W. Dmitroca, et al. Emulating ATM Network
Impairments in the Laboratory. Hewlett-Packard

Journal, 48(2):45-50, April 1997.

[19] A.Romanow and S. Floyd. Dynamics of TCP Traf-
fic over ATM Networks. In Computer Communi-
cations Review, Proceedings of ACM Sigcomm 9/

Conference, volume 24, pages 79-88, October 1994.

[20] W. S. Marcus et. al. Protocol Boosters: Apply-
ing Programmability to Network Infrastructures.
IEEE Communications Magazine, 36(10):79-83,

October 1998.

[21] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse.
ANTS: A Toolkit for Building and Dynamically De-
ploying Network Protocols. In Proceedings of IEEE

Openarch’98, April 1998.

