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I. INTRODUCTION

It is well known that the “energy” of a broad resonance
depends on the details of the definition. For example, for
the ground state (g.s.) of 15F, two definitions that are widely
used provide values that are different by about 150–200 keV
[1] (theoretically) and 160–180 keV [2,3] (experimentally).
Tests of the isobaric multiplet mass equation (IMME) seek to
determine the absence or presence of a d term in the mass
equation

M(Tz) = a + bTz + cT 2
z

( + dT 3
z

)
. (1)

This d term should be absent if the charge-dependent
Hamiltonian contains only isoscalar, isovector, and isotensor
terms. For a T = 3/2 quartet, as involves 15F, the mass of
the most proton-rich member enters the expression for d

with a coefficient of 1/6, i.e., changing the mass of 15F by
160 keV would change the value of a possible d coefficient by
26 keV—larger than most values of d heretofore extracted [4].
Of the completely measured isospin quartets, only in A = 9
is there convincing evidence of the need for a nonzero value
of d : χ2/n = 10.2 for d = 0, and the fit with d �= 0 gives
d = 5.5(18) [4]. The possibility [5] of a large nonzero value
of d for A = 33 appears to have gone away [6]. So, does
the IMME favor one definition of resonance energy over
another? Can we use the properties of nearby narrow(er)
states to better determine the mass of 15F? We have previously
used the known masses [7,8] of the 0+, T = 2 states in 16C,
16N, 16O, and 16Ne (the state is not known in 16F) and a
simple model [9] to estimate the s2/d2 ratio in those states,
assuming isospin invariance. This procedure uses as input
the energies [7,10] of the relevant 1/2+ and 5/2+, T = 3/2
core states with A = 15. At that time, the 15O 1/2+, T = 3/2
state was not known and the 15F (g.s.) energy was poorly
determined.

Three definitions of the position of a resonance are in
common use. They are (a) the energy at which the ap-
propriate cross section peaks, (b) the energy at which the
nuclear phase shift has the value δ = π/2, and (c) the energy
at which the magnitude of the internal wave function or the
derivative of the phase shift dδ/dE is a maximum. Peters et al.
[2] give results for all three definitions for both 1/2+ and 5/2+
(Table I), Goldberg, et al. [3] quote results of two definitions
for the 1/2+ resonance and state that the 5/2+ does not depend
on the definition (also borne out in the numbers of Ref. [2]).
Reference [2] states that the uncertainty in the 5/2+ energy

is mostly due to uncertainty in the absolute calibration. They
do not give an uncertainty in the width. Reference [3] states
that the uncertainty in �(5/2+) is mainly due to the fact that
it is large and interferes with the 1/2+ state. Their value of
�(1/2+) = 0.7 MeV, with no uncertainty, comes not from
the experiment, but from the behavior of the wave function
calculated in a potential well. The FWHM of their 1/2+ cross
section is 1.2 MeV, which they state arises from interference
with Coulomb and potential scattering. They quote an absolute
energy calibration uncertainty of ±15 keV. Their quoted
resolution is about 25 keV near the 5/2+ resonance and
about 75 keV just below the 1/2+. Both papers compare
the measured cross section with cross sections calculated in
a potential model, with spectroscopic factors of unity. We
know S < 1 for both from 14C(d, p) [11] and theoretical
considerations.

The third and most recent elastic experiment [12] used
R-matrix analysis. Even though their data are shifted by
about 150–200 keV from the earlier work, their derived 5/2+
energy is nearly identical to the others. Another experiment
[13] used the transfer reaction 16O(14N,15C)15F. Their cross
section is considerably larger (factor of 3–4) for the 5/2+
than for the 1/2+ state. The larger cross section and the
narrower peak provide smaller uncertainties for the 5/2+
state than for the g.s. Nevertheless, within these uncertainties,
the 1/2+ parameters agree with those from elastic scattering.
The relevant experimental results [2,3,12–15] are summarized
in Table II. We look first at the 5/2+ state, for which the various
definitions of resonance energy (Table I) virtually agree. Then,
we consider the 1/2+ state.

II. ANALYSIS

A. A = 15, T = 3/2

Isospin mixing can be important for T = 3/2 states in Tz =
±1/2 nuclei. As we outline in the Appendix, we conclude that
some mixing is present here, but not of sufficient magnitude
to bother our analysis. So, we make no further mention of it.

B. 5/2+

The mass excesses of the lowest 5/2+T = 3/2 states for
A = 15 are listed in the fourth column of Table III. The
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TABLE I. Energies (MeV) in 15F, relative to 14O+p, for
different definitions of resonance energy.

Definition: σ = max δ = π/2 � = max

Goldberg et al. 1/2+ — 1.45+.16
−.10 1.29+.08

−.06

Peters et al. 1/2+ 1.51 1.47 1.29
5/2+ 2.853 2.87 2.85

Calculated (Ref. [1]) 1/2+ — 1.39–1.51 1.19–1.36a

aMaximum of dδ/dE.

known masses of this state in 15C, 15N, and 15O allow
the computation of the mass of 15F (5/2+) if we assume
d = 0. The result is a mass excess of 18.081(46) MeV
[Ep = 2.785(46) MeV], where the uncertainty comes from
propagating the uncertainties in the other masses. The differ-
ence of experimental minus IMME (d = 0) results are listed
in the last column of Table II for the various 15F experiments.
The first number in parentheses is the quoted experimental
uncertainty, and the second number is the uncertainty in the
energy computed with the IMME. All of the experiments
agree with the IMME and with each other, frequently to
much better than the uncertainties. It would thus appear
that we are far from any serious test of IMME with the
5/2+ quartet. We do, however, note an oddity concerning the
widths.

The 5/2+ widths and spectroscopic factors for all four
nuclei are also summarized in Table III. Table IV compares
the earliest and most recent widths for 15F (5/2+). Table III
also lists the single-particle widths for the unbound cases.
The last column is the spectroscopic factor from 14C(d, p)
[11] for 15C and from the expression C2S = �exp/�sp

for the others, where C2 = 1/3, 2/3, and 1 for 15N, 15O,
and 15F, respectively. A similar comparison is made in
Table IV.

As stated above, Peters et al. do not quote an uncertainty
on the 5/2+ width, but it is probably similar to those of the
other two elastic experiments, both of which are 60 keV.

A simple average of the width from the three elastic
experiments is 322(35) keV (Table IV), a value that presents
a problem, as we now discuss. In a much earlier experiment,
using the reaction 20Ne(3He,8Li), Benenson et al. [14] quote a
5/2+ width of 240(30) keV, which they state is the result of a
Gaussian fit after correcting for an experimental resolution of
210(20) keV. If we understand them correctly, the implication
is that the total measured width was 320(10) keV We find that
fitting with the convolution of a Gaussian resolution function
and a Breit-Wigner shape—as required for a state with
natural width—would then have resulted in a Breit-Wigner
width of 180(30) keV, which is even smaller than their
published value, which was already significantly smaller than
the widths from elastic scattering [2,3,12]. The difference
between this width and the average from elastic scattering is
140(46) keV—roughly a 3σ difference. This feature is relevant
because of the resulting spectroscopic factors, summarized
in Tables III and IV. Benenson et al. state that their width of
240(30) keV gives a spectroscopic factor of 0.92(12), so that a
width of 180(30) keV would correspond to S = 0.69(10), not
very different from the value of 0.69 from 14C(d, p)—which
we used in our earlier analysis [1]. With our sp width of
250 keV, this 180-keV “measured” width gives S = 0.72(10).
For the 5/2+, T = 3/2 states in 15N and 15O, the measured
widths [10,16] (Table III) also correspond to similar values of
S. All the widths determined from elastic scattering (and the
resulting S ′s) are significantly larger. If we assign a 20% uncer-
tainty to the S value from (d, p), then the average for the first
three nuclei is 0.73(6), which is more than 4σ from the average
of 1.34(12) for 15F. This S cannot exceed unity, on very firm
grounds, but we see that it does in 15F with the quoted widths.
Is it possible that the resolution width has not been properly
accounted for in those experiments? It is unlikely that the
problem lies with the other nuclei for two reasons: (1) they all
agree on the value of S, and (2) it is the 15F value that exceeds
the sum-rule limit. We note that the width of 135(15 keV) [14]
for15O(5/2+, T = 3/2) from 17O( p, t) is also from a Gaussian
fit, where, of course, a Breit-Wigner shape is more appropriate.
A Gaussian of width 135 keV plus some background
closely resembles a Breit-Wigner shape of width 150 keV.

TABLE II. Energies and widths (MeV) of lowest 5/2+ and 1/2+ states in 15F.

Reference 1/2+ 5/2+

Ep
a � Ep

a � Exp–IMME (keV)b

Exp 14 1.6(2) < 0.9 2.8(2) 0.24(3) 15(200(46))
15 1.37(18) 0.8(3) 2.67(10) 0.5(2) −115(100(46))
2 1.51(15) 1.2 2.853(45) 0.34 70(45(46))

13 1.56(13) 0.6+.8
−.4 2.80(5) 0.38(10) 15(50(46))

3 1.45 +0.16
−0.10 0.7 2.795(45) 0.32(6) 10(45(46))

12 1.23(5) 0.50–0.84 2.810(20)c 0.30(6) 25(20(46))
Calc 1 1.39–1.51 ∼0.80 2.785(46)d See text

aEnergy relative to 14O+p. (Ep = mass excess – 15.296 MeV).
bFirst number in parentheses is experimental uncertainty, and second one is uncertainty in IMME calculation (arising from uncertainties in the
other masses).
cBut curve is about 150–200 keV lower than data of Peters et al.
dThis is the IMME value, with d = 0 (present).
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TABLE III. Mass excesses (ME) and widths (both in keV) and spectroscopic factors of lowest 5/2+, T = 3/2 states in
A = 15 nuclei.

Nucleus ME (g.s.)a Ex(5/2+)b ME (5/2+) Width Sd

Expb spc

15C 9873.1(8) 740.0(15) 10613.1(17) – – 0.69e

15N 101.4380(7) 12522(8) 12623(8) 58(4) 230 0.76(5)
15O 2855.6(5) 12255(13) 15111(13) 135(15) 270 0.75(8)
15F Ep = 2795–2853f Ep + 15296f 320(35)g 250 1.28(14)

335(30)h 1.34(12)

aReference [7].
bReference [10].
cSingle-particle width calculated in potential model (r0, a = 1.25, 0.65 fm) with depth adjusted to put resonance at its
experimental energy (see Table II).
dFrom �exp = C2S�sp, where C2 = 1/3, 2/3, and 1 for 15N, 15O, and 15F, respectively.
eFrom 14C(d, p) [11].
fSee text and Table II.
gFrom Refs. [2,3,12].
hAverage of four most recent values (Table II).

We expect a Breit-Wigner fit to the (p, t) data would result in
a width of 150 keV, but that is only one σ from the published
value.

C. 15F (1/2+) and 15O(1/2+, T = 3/2)

Mass excesses of the lowest 1/2+T = 3/2 states in A =
15 nuclei are listed in Table V, along with widths and
spectroscopic factors. Even if we assume d = 0, we cannot
compute the mass of 15F(g.s.) from the IMME because the
1/2+, T = 3/2 state in 15O is not known. An early candidate
[16] at Ex = 10.938(3) MeV is almost certainly T = 1/2.
It has a large decay branch (� = 39 keV) to the g.s. of
14N, a decay that is isospin forbidden for a T = 3/2 state.
Furthermore, the width of 60 keV for (isospin-allowed) decay

TABLE IV. Widths (keV) and spectroscopic factors for 15F(5/2+).

Source Width S = �exp/�sp

Benenson et al. Gaussiana 240(30) 0.92(12)e

Benenson et al. BWb 180(30) 0.69(10)f or 0.72(10)g

elastic 14O+pc 322(35) 1.29(14)
single particled 250 1.0h

aFrom the reaction 20Ne(3He,8Li) (Gaussian fit).
bOur convolution of Breit-Wigner and Gaussian (see text).
cAverage of three experiments.
dComputed at Ep = 2.8 MeV, in a Woods-Saxon potential with
r0, a = 1.25, 0.65 fm.
eQuoted in Ref. [14].
fUsing �sp from Ref. [14].
gUsing our �sp.
hTheoretical (rigorous) upper limit.

to the 0+, T = 1 state of 14N is a small fraction (�10%) of
the width expected for that decay (see table and text below).
However, we can use the IMME to derive the connection
between the masses of 15O(1/2+, T = 3/2) and 15F (g.s.)
for any value of d. This relationship is plotted in Fig. 1 for
d = 0 and 10 keV. Also plotted there as horizontal lines are
the two “experimental” values from Goldberg et al. (values of
Peters et al. are nearly identical)—the solid line for δ = π/2,
the dashed line for the peak in the wave function. We see
that without further information, the IMME does not allow a
preference for one definition over the other. We return to this
point later.

A = 15, T = 3/2
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FIG. 1. (Color online) Steeper upward sloping lines exhibit the
IMME relationship between masses of 15F(g.s.) and 15O(1/2+, T =
3/2) for d = 0 and d = 10 keV. Horizontal lines are at the 15F values
of Ref. [3] for δ = π/2 (solid) and wave-function maximum (dashed).
Shallower sloping solid line gives the relationship between the 15F
and 15O∗ masses if 16C, 16O∗, and 16Ne all have the same s2 fraction.
Dashed lines with this slope represent a 40 keV model uncertainty.
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TABLE V. Mass excesses (ME) (keV) and widths (MeV) and spectroscopic factors of
lowest 1/2+, T = 3/2 states in A = 15 nuclei.

Nucleus ME (g.s.)a Ex(1/2+)b ME (1/2+) Width Sd

Expb spc

15C 9873.1(8) 0 9873.1(8) – – 0.88e

15N 101.4380(7) 11615(4) 11716(4) 0.401(6) ∼1.6 ∼0.75
15O 2855.6(5) unknown — unknown ∼1.2 —
15F — — see text and Table II 0.2-1.4f ∼0.8 See text

aReference [7].
bReference [10].
cCalculated in potential model (r0, a = 1.25, 0.65 fm).
dFrom �exp = C2S�sp, where C2 = 1/3, 2/3, and 1 for 15N, 15O, and 15F, respectively.
eFrom 14C(d, p) [11].
fFrom Refs. [2,3,12,13].

D. 0+T = 2 in A = 16

We turn now to the lowest 0+, T = 2 state in A = 16 nuclei.
This state is not known in 16F, but with four masses known
(Table VI) it is possible to investigate the possible presence
of a nonzero d coefficient. The result is d = 4.6(28) keV.
With this value of d, the IMME value for the mass ex-
cess of the 0+, T = 2 state in 16F is 20.789(21) MeV
(Ex = 10.109 MeV). If, alternatively, we assume d = 0, the
problem is overdetermined, but we can perform a fit to find
the mass of 16F that minimizes χ2. The result is a mass
excess of 20.761(13) MeV. As mentioned earlier, we used the
known masses of A = 16, T = 2, and A = 15, T = 3/2 states
to estimate the s2 fraction (assumed independent of Tz) in the
lowest 0+, T = 2 state [9]. The results ranged from 0.39 in 16N
to 0.50 in 16Ne , with a large uncertainty in the latter because
of large uncertainties in the 15O and 15F masses. (In that paper,
we used the IMME masses for 15O∗ and 16F∗.) Here, we take a
slightly different approach. We assume, as before, that β2, the
fraction of s2, is the same in 16C, 16Ne, and the 0+, T = 2 state
of 16O, but leave its value un-specified. The known masses of
those three A = 16 states and the T = 3/2 states in 15C and
15N allow the derivation of another relationship between the
masses (assumed unknown) of 15O(1/2+, T = 3/2) and 15F
(g.s.). This relationship is also plotted in Fig. 1, where we have
used a model uncertainty of ±40 keV. If the model is valid,
the masses of 15O(T = 3/2) and 15F are then constrained to
lie at the intersection of these lines with the lines from the
IMME (if we have d = 0–10 keV). This area is shaded in
the figure. We conclude that the values of 15O∗ and 15F mass
that satisfy the IMME with d = 0 or 5(5) keV also meet the
requirement of simultaneously fitting the 16C, 16O∗ and 16Ne
masses with a single value of the s2 fraction. This value, for
the d = 0 masses, is 0.43(4), to be compared with the values
of 0.39 and 0.45 in Ref. [9] for 16C, 16N, and 16O. The results
for the midpoint of the allowed range for d = 5(5) keV in
Fig. 1 (with uncertainties) are

ME(15O(1/2+, T = 3/2)) = 13.992(37)MeV,

ME(15F(g.s.)) = 16.632(45) MeV; Ep = 1.336(45) MeV.

For d = 0, the results are 13.975(33) and 16.652(40) MeV.
The shaded area almost touches the two 15F (g.s.) values from
the two resonance definitions.

With our potential model [1] , the g.s. mass of 15C led
to a 15F(g.s.) =14O+p 2s1/2 resonance energy of 1.19 or
1.39 MeV with the two definitions of resonance energy.
The addition of configuration mixing increased this energy
because the 2s1/2 sp part has the smallest computed Coulomb
energy. The allowed range, while still requiring a spectroscopic
factor of 0.88, was (Fig. 2) 1.19–1.36 and 1.39–1.51 MeV.
The results of the current analysis significantly narrow the
allowed range, as can be seen in Fig. 2, where we also
show the experimental results of Goldberg et al. Comput-
ing the sp width for the new allowed range of energies
results in 0.86(8) and 0.81(8) MeV, for d = 0 and 5(5)
keV, respectively. With a spectroscopic factor of 0.88, the
expected 15F(g.s.) width is then 0.76(8) or 0.71(7), where most
of the uncertainty arises from the uncertainty in resonance
energy.

As stated above, these results require a value of β2 =
0.43(4). This value of β2and the A = 15 masses al-
low us to compute the mass excess of 16F(0+, T = 2) =
20.742(16) MeV (Ex = 10.062 MeV). This value is

TABLE VI. Energies (keV) of lowest 0+, T = 2 states in A = 16
nuclei.

Nucleus Mass excess (g.s.)a Ex(0+)b Mass excess (0+)

16C 13694(4) 0 13694(4)
16N 5683.7(2.6) 9928(7) 15611.7(7.5)
16O -4737.0014(1) 22721(3) 17984(3)
16F 10680(8) unknown —c

16Ne 23996(20) 0 23996(20)

aReference [7].
bReference [10].
cIMME predicts a mass excess of 20.761(13) MeV if d16 = 0, and
20.789(20) MeV with d16 = 4.6(28) keV.
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15F = 14O + p
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FIG. 2. Schematic representa-
tion of the energy of 15F(g.s.) cal-
culated in Ref. [1], measured in
Ref. [3], and from present analysis.

TABLE VII. Expected energies and widths (both in MeV) of 15O(1/2+, T = 3/2),
15F(g.s.), and 16F(0+, T = 2). (Requires s2 fraction to be 0.43(4) in A = 16.)

15O 15F 16F

Ex �a,b Ep �a Ex

Fit with d15 = 0 11.119(33) ∼ 0.70 1.356(40) 0.76(8) 10.062((16)
Fit with d15 = 5(5) keV 11.136(37) ∼ 0.70 1.336(45) 0.71(7) —

aCalculated for S = 0.88.
bFor proton decay to 0+, T = 1 state of 14N.

TABLE VIII. Candidates for isospin mixing in 15N and 15O (Ex in MeV, widths in keV).
Information from Ref. [7] and work cited therein.

Nucl J π T Ex � �n �p �α

15N 1/2+ 1/2 11.4376(7) 41.4(11) 23-35 6.8–11 <0.3
3/2 11.615(4) 405(6) 4.0(2) 401(6) <0.3

5/2+ 1/2 12.493(4) 40(5) 28–37 0.3–0.5 5.5–9
3/2 12.522(8) 58(4) — 80 —

15O 5/2+ 1/2 12.129(15) 200(50) — 200(50) —
3/2 12.255(13) 135(15) — 135(15)a —

aDecay to 0+, T = 1 level of 14N.
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reasonably close to the prediction of Ex = 10.08(2) in Ref.
[15]. The old IMME result was Ex = 10.093(13) MeV.
Expected properties of 15O(1/2+, T = 3/2) and 15F (gs) are
listed in Table VII.

III. CONCLUSION

Combining information from the lowest A = 15, T = 3/2
and A = 16, 0+, T = 2 states, we have obtained simultaneous
constraints on the mass excess of 15O(1/2+, T = 3/2), 15F
(g.s.), and 16F(0+, T = 2). The required fraction of s2 in
the A = 16 0+ states is 0.43(4). Results are summarized in
Table VII. We have also pointed out a problem with the
15F(5/2+) width.
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APPENDIX A: EFFECTS OF POSSIBLE ISOSPIN MIXING

Before embarking on the analysis, we considered the
possibility of isospin mixing and the effects such mixing might
have on our results. Isospin mixing is always a concern in the
“interior” nuclei of an isospin multiplet. For example, in Tz =
±1/2 nuclei, the lowest T = 3/2 states frequently have very
near neighbors with T = 1/2 and the same Jπ . Such is the case
here. In 15N, both 1/2+ and 5/2+T = 3/2 states lie very close
to T = 1/2 states, as do the 5/2+ states in 15O (indicated in
Table VIII). Our primary concern is the possibility of an energy
shift of the T = 3/2 states caused by T mixing. Changes in
the (allowed) proton widths of the T = 3/2 states will be very
small here. Of course, any neutron or alpha width for the
T = 3/2 states is an indication of isospin mixing. And, for
15O, p decay of the T = 3/2 state to the 14N(g.s.) would be a
signature of T mixing. Thus, from the value of �n = 4 keV for
the 1/2+, T = 3/2 state in 15N, the 1/2+ states seem clearly
to be mixed. The entire profile of the T = 1/2 state lies fully
within the envelope of the T = 3/2 state—the energy splitting
is 177 keV and the width of the T = 3/2 state is 400 keV.
The 5/2+, T = 3/2 state has no discernible neutron or alpha
width in 15N and no alpha or g.s. proton width in 15O, so any
mixing there is very small. Because the two 5/2+ states in 15N
are so close together [	E = 29(9) keV], any energy shift of
the 5/2+T = 3/2 state is negligible. For the 1/2+ states, we
estimate that the mixing inferred from the neutron widths could
have shifted the T = 3/2 state upward by 5–18 keV. With real
mixing, summed strengths are preserved. If we use the values

of Table 15.12 of Ref. [10] for neutron widths of the two
1/2+ states, viz. 4.0(2) keV for the upper state and 34.6(9)
keV for the lower, then because the T = 3/2 state had
no neutron width before mixing, the square of the mixing
amplitude is given by ε2 = 4.0/38.6 = 0.104(6). This amount
of mixing implies each of the two states has shifted by
18 keV. As mentioned in the Introduction, we are dealing
with a 150–200 keV difference in the central value of the
energy of 15F(g.s.) and spreads of a few hundred keV about
those central values. Furthermore, our final uncertainties in
the relevant energies are in the range 33–45 keV. So, for
our present purposes, we eschew any further consideration
of isospin mixing. But, in the future, if combined uncer-
tainties approach 10–20 keV, then it will be necessary to
deal with such mixing in these nuclei—at least for the
1/2+ states.

APPENDIX B: INDEPENDENCE FROM THE IMME

Solving for the three unknown masses and the s2 fraction,
β2, is straightforward without recourse to the IMME. Consider
this four-step procedure:

(i) Given the known masses of 16C(g.s.), 16N(0+, T = 2),
and the 1/2+ and 5/2+T = 3/2 states of 15C and 15N, it
is a simple matter to compute β2 (assumed to be equal
in 16C and 16N∗). As stated in Ref. [9], the result is
β2 = 0.39.

(ii) Adding the known masses of 16O(0+, T = 2) and
15O(5/2+, T = 3/2), the unknown mass 15O(1/2+, T =
3/2) can be computed as a function of β2, and, in
particular, for β2 = 0.39 (above) or 0.43 (text).

(iii) The known masses of 16Ne(g.s.) and 15F(5/2+), in
conjunction with a value of β2, can be used to compute
the mass of 15F(1/2+) (assumed unknown for present
purposes).

(iv) With all these masses and β2, the mass of 16F(0+, T = 2)
can then be computed.

Note that nowhere in this procedure is there any reference
to the IMME. Doing the analysis this way, the arithmetic is
simple, but the uncertainties compound in a way that is difficult
to untangle.

Thus, we chose the route of combining these steps above,
leaving the value of β2 unspecified (but assumed equal in all
five 0+, T = 2 states). The result is a “best” value of β2 =
0.43(4) and values of the three unknown masses, with their
uncertainties. The model is such that the masses will satisfy
the IMME, with d = 0. Allowing d to differ from zero allows
a slightly wider range for the masses, and hence slightly larger
uncertainties. But, nowhere did we impose a requirement that
d must have some specific value.
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