
AN EXPERT SYSTEMS APPROACH
TO REALTIME, ACTIVE MANAGEMENT

OF A TARGET RESOURCE

David A. Klein
MS-CIS-85-40

Department Of Computer and Information Science
Moore School

University of Pennsylvania
Philadelphia, PA 19104

September 1985

Acknowledgements: This research was supported in part by DARPA grants NO001 4-85-K-0018
and NO001 4-85-K-0807, NSF grants DCR-86-07156, DCR8501482, MCS8219196-CER,
MCS-82-07294, 1 R01 -HL-29985-01, U.S. Army grants DAA6-29-84-K-0061, DAAB07-84-K-F077, U.S.
Air Force grant 82-NM-299, Al Center grants NSF-MCS-83-05221, U.S. Army Research office grant ARO-
DAA29-84-9-0027, Lord Corporation, RCA and Digital Equipment Corporation.

ABSTRACT

The application of experts systems techniques to process control domains represents a potential ap-

proach to managing the increasing complexity and dynamics which characterizes ~nany process con-

trol environments. This thesis reports on one such application in a complex, multi-agent environment,

with an eye toward generalization to other process control domains.

The application concerns the autoination of large computing syste~ns operation. The requirement for

high availability, high performance, computing systeins has created a denland for fast, consistent,

expert quality response to operational problenls, and effective, flexible automation of computer op-

erations would satisfy this demand while improving the productivity of operations. However, like

nlany process control environments, the computer operations environment is characterized by high

complexity and frequent change, rendering it difficult to autonlate operations in traditional procedural

software. These are among the characteristics which motivate an expert systems approach to auto-

mation.

JESQ, the focus of this thesis, is a realtiine expert systeln which contin~~ously monitors the level of

operating systein queue space in a large con~puting systein and takes corrective action as queue space

diminishes. JESQ is one of several expert systems which conlprise a system called Yorktown Expert

System/MVS Manager (YES/MVS). YES/MVS automates many tasks in the domain of cotnputer

operations, and is among the first expert systems designed for continuous execution in realtime. The

expert system is currently running at the TBM Thoinas J. Watson Research Center, and has received

a favorable response from operations staff.

The thesis concentrates on several related issues. The requirements which distinguish continuous

realtime expert syste~ns that exert active control over their environinents from more conventional

session-oriented expert systems are identified, and strategies for meeting these requirenlents are de-

scribed. An alternative methoclology for inanaging large computing installations is presented. The

problems of developing and testing a realtime expert systein in an industrial environment are de-

scribed.

TABLE OF CONTENTS
. 1 Introduction . 1

. 2 . Problenl Characterization and Approach 5
. 2.1 Problenls in Computer Operations Management 5

. 2.2 Automation of Conlputer Operations 8
. 2.3 An Expert Systems Approach 11

. 2.4 Review of Realti~lte Expert Systeins 13
. 2.5 Domain Overview: JES Queue Space Management 17

. 2.6 Abstract Donlain Characterization 19
. 2.7 I~npleinentation Requirements and Strategies 22

2.8 Summary . 28
. 3 . Expert System Architecture 30

. 3.1 Level of User Modelling 30
. 3.2 Production Systems Architecture 32

. 3.3 JESQ Knowledge Base Organization 37
. 3.4 JESQ Mechanisms and Detailed Design Issues 41

. 3.5 JESQ Demonstration Trace 50
. 3.6 Tile Expert Systenl in its Environ~nent 65

. 4 . JESQ Development Methodology 68
. 4.1 Knowledge Acquisition 68

. 4.2 Testing and Knowledge Base Refinement 70
. 4.3 Forinal Evaluation 72

. 5 . Critical Review and Alternative Approaches 74
5.1 Limitiations of JESQ . 74

. 5.2 A Theory of JES Queue Space Management 82
5.3 Alternative Approaches and Research Directions . 89

. 6 . Summary and Concli~sions 91
7 . References . 95

1. INTRODUCTION

The application of experts systems techniques to process control domains represents a potential ap-

proach to managing the increasing complexity and dynamics which characterizes many process con-

trol environments. Expert systems may be of potential value as high-level supervisors in current

computer-controlled systems which employ rigid, predetermined control sequences [I] (e.g., auto-

mated nlanufacturing systems), and in domains which currently require human operators to monitor

and control sonle process on a continuous basis (e.g., power generation plants, refineries). This thesis

reports on the application of expert systenls techniques in a continuous, realtime, process control

domain where currently both coinputers and huilian operators represent active agents which impact

the environment: the domain of computer operations.

The requirement for high availability, high performance, computing systems has created a demand for

fast, consistent, expert quality response to operational problems. Effective, flexible automation of

ccmputer operations would satisfy this denland while improving the productivity of operations.

However, like many process control environments, the operations environment is characterized by

high complexity and frequent change, rendering it difficult to automate operations in traditional pro-

cedural software. Yorktown Expert System/MVS Manager (YES/MVS) offers a preliminary sol-

ution through the use of expert systems techniques, providing a basis for autonlation which is

powerful enough to acconimodate the con~plexity of large system operation, yet flexible enough to

endure frequent modifications as requirements change.

YES/MVS is an experimental expert system which assists in the realtime operation of a large IJ3M

Multiple Virtual Storage (MVS) Job Entry Subsystem 111 (JES3) system (henceforth referred to as

the target system). YES/MVS emulates a human operator, receiving nlessages which would normally

appear at an operator's console, subinitting queries and analyzing replies to ascertain the status of the

target system, and submitting active colnmands to MVS and its subsystems to perform operational

tasks.

YES/MVS addresses both routine actions taken in operating the target systeln and spontaneous

proble~ils which would nonnally be handled by an operator. These include various MVS-detected

hardware errors, the depletion of operating systein queue space, problems of transmission between

computers installed at the same site, abnormal termination of subsystems, and others. YES/MVS is

organized as several logically distinct expert systems, each encoding the expertise required to perform

operational tasks in one of these problem domains. In some sense, this decomposition of the oper-

ations managenlent domain into discrete problem donlains is artificial, motivated by the

circumscription of perspective required to produce high-performance expert systems, by effective

project organization, and by the goal of modular knowledge encoding. For example, hardware errors,

channel-to-channel link problems, and output processing problems all impact JES queue space, but

these are addressed by separate expert systems in YES/MVS.

The expert systeln that deals nlostly with output processing bottlenecks and associated devices as they

impact JES queue space is called JESQ, and is the work of the author. JESQ continuously mocitors

the status of operating system queue space, taking corrective action as queue space decreases. Op-

erations management is concerned with nlonitoring the remaining available queue space because its

depletion requires restarting the system, potentially inconveniencing all systeiil users for a substantial

period of time. JESQ runs regularly at the IBM Yorktown Conlputing Center and has received a fa-

vorable response from the operations staff. The systeln runs in advisory mode (gives advice for op-

erator review) during the clay, and fully authorized (submitting active coinmands to the target system)

at night. JESQ is of interest from the perspectives of both management and conlputer science. In

particular, this thesis provides the following contributions:

An alternative methodology for managing large computing installations is suggested. Employing

a computer program as the priniary executing agent of operational policy should create an en-

vironment characterized by timeliness of policy maintenance, fast and consistent execution of

policy, knowledge-intensive operational decision-making, data-intensive operational decision-

making, decreased labor requirements, greater installation-wide awareness of policy, decreased

2

dependence on specific personnel, and ease of policy testing and enhancement. Such an envi-

ronlnent would facilitate the achievenlent of colnputing installation's goals, increasing the

availability and perforlnance of existing co~ilputing resources, pronioting the productivity of

operations staff, reducing labor costs, and providing a partial solution to the probleln of high

turnover in operations personnel. While this work concentrates on the doniain of colnputer op-

erations, siniilar benefits may potentially be realized in other process control domains through

the elliployn~ent of expert systems techniques.

General issues that arise in the construction of active, realtiine expert systenls (as contrasted

with more traditional session-oriented expert systems) are identified, and strategies and mech-

anisms for dealing with some of these in the queue space management domain are described.

JESQ and other YES/MVS domain expert systems are ainong the first which operate contin-

uously in realtime and exert active control over the environnlents they monitor. Many of the

methods enlployed in JESQ which accomplish realtime, active control may potentially be appli-

cable in other process control expert systenls domains. An abstract probleni description is in-

cluded in the thesis to facilitate the identification of donlains which are similar to the doniain of

queue space management.

One fully-implemented architecture which integrates decision-making and acting in a realtime,

multi-agent environnient that is sufficiently colnplex to discourage explicit niodelling of all

interactions is described. An alternative architecture is outlined and contrasted with the existing

implementation.

An account of the methodology under which JESQ was developed is provided, supplelnenting

the relatively sparse case data on the construction of expert systems in industrial environments.

Of particular interest, the difficulties of testing an expert system in a complex, realtime envi-

ronment are illuminated.

The thesis is organized as follows. Section 2 exanlines the doinain froill several perspectives. A gen-

eral description of problenls in coinputer operations nlanageinent illunlinates the motivation for au-

toinating operations. Subsequent sections describe the difficulty of autonlation in a dynanlic

environlnent where problenl resolution relies on complex, loosely structured heuristic strate,' ales, mo-

tivating an expert systems approach. A review of realtime expert systems follows, creating a context

in which to consider JESQ. Next, the JES queue space managenlent domain is described in detail,

followed by a more abstract description that provides a basis for coinparison with other domains.

Section 2 concludes with a discussion that contrasts the iinple~nentation require~nents and strategies

of JESQ with those of nlore conventional consultative expert systems. Section 3 describes the ar-

chitecture of JESQ. The first subsection justifies the level of user nlodelling impleinented in JESQ in

the context of the operations management hierarchy. Following is a simplified review of the pro-

duction systems architecture, the skeletal fratnework in which JESQ is implemented. Next, an over-

view of the organization of JESQ's knowledge base is presented, followed by a description of the key

mechanist~ls i~nplemented and their underlying design motivations. With the needed background

provided, the following section depicts a detailed execution trace of JESQ resolving a JES queue

space problem. Finally, JESQ's position within the YES/MVS architecture and operations environ-

ment is described. Section 4 identifies some of the challenges of developing JESQ, including a dis-

cussion of knowledge acquisition, testing and knowledge base refinement, and requirements for

formal evaluation. Section 5 is a critical review of JESQ, describing an alternative architecture and

directions for further research. Section 6 su~n~narizes the ideas presented. Section 7 contains refer-

ences.

2. PROBLEM CHARACTERIZATION AND APPROACH

This section introduces the focal issues of this thesis from several perspectives. Section 2.1 outlines

the motivation for this work, illuminating the difficulties of managing large computing installations

by standard methods. Section 2.2 suggests automating operations as a solution to niany of these dif-

ficulties while identifying the probleii~s of using traditional prograrliniing techniques in an environ-

ment characterized by complexity, ad-hoc methods, and frequent change. Section 2.3 argues that

employing expert systems technology renders autoniation feasible in such an environment. Section

2.4 provides an overview of the few expert systems that have been developed for continuous realtime

operation, creating a context in which to consider the focal operations problem domain of this thesis

-- JES queue space management -- in section 2.5. Section 2.6 gives an abstract characterization of

the queue space management domain, providing a basis for identifying similar problem domains.

Section 2.7 contrasts the iinplementation requirements for autoination in this active, realtiine donlain

with those of more traditional session-oriented expert systems, and outlines associated iniplementa-

tion strategies. A sunililary of the ideas presented appears in section 2.8.

2.1 PROBLEMS IN COMPUTER OPERATIONS MANAGEMENT

Large computer installations are continuously monitored by a team of computer operators. Operators

concurrently perform many routine tasks including mounting machine-readable tapes, loading print-

ers wit11 paper, answering phones, and actively nionitoring the condition of the computer system.

Operators additionally watch a number of consoles for a variety of messages that may be volunteered

by the computer system, responding to the problems indicated by such niessages as they arise. Prob-

lem resolution usually involves submitting queries to the computer systenl in order to ascertain the

status of key system resources, consulting voluniinous systeiil doctnnentation, and manipulating sys-

tem parameters via the subniission of corrective commands. In some cases, the operator may consult

systems programmers, systems engineers, or other sources of expertise, although operator action is

frequently required in a thneframe that prohibits consultation.

While each of the operator's potential actions is conceptually silnple and easily performed, his job is

nonetheless co~nplex in that a significant breadth of knowledge is required to perfor111 the full range

of operator responsibilities. Operations managers typically develop standards and procedures to re-

duce this complexity, providing preconceived responses to anticipated problelns and "cook book

recipes" for routine operations. The goal of such standardization is to allow the installation to be

managed as a typical production process, where data is the raw material input to the process and

satisfactory system services represent the conlnlodity produced.

In practice, this management philosophy is difficult to implement because the operations environment

is so dynamic. With hardware and software evolving rapidly, new conlponents are frequently intro-

duced into the operations environment. Modifications to existing colnponents are also common. Even

installations with relatively static hardware and software configurations are nonetheless faced with

managing telnporarily altered environlnents when key subsystems experience problenls or workload

deviates significantly from the norm. Naturally, the dynamic nature of the environment renders it

difficult to keep operational procedures current.

Where operational procedures lag behind the environn~ents to which they pertain, operators exper-

illlent and develop ad-hoc solutions to systenl management problems. Particularly effective solutions

are discussed among the operators and become part of the installation's "operational folklore". Un-

like formal procedures, tilese operational rules of thumb are not documented and distributed, and

thus, are not perforined consistently by all operators. Consequently, they cannot be subjected to

periodic nlanagenlent review, nor are they inlmediately intelligible to systelns progra~nniers who later

examine the effects of operator actions in addressing system problems. Of course, this periodic mi-

gration from standardization to "folklorization" does not impact the installation immediately.

Rather, management slowly loses control of operations. Until this becomes apparent, ad-hoc problenl

resolution may actually be encouraged by nlanagenlent in favor of reviewing and updating operational

policy. The result is a solnewhat personal approach to problem solving that varies froin operator to

operator and increases the installation's dependance on specific personnel.

While standardization is necessary in any complex production environment, high turnover in oper-

ations staff makes such nlanagement controls particularly important. A long training period is re-

quired to produce a skilled operator at a given installation. Even the training of newly-hired

experienced operators can represent a significant cost to the installation, since operators' responsi-

bilities vary across installations with managenlent policy, with the particular systems installed at a site,

and with workload characteristics. The problem of operator turnover is exacerbated by the common

management practice of pro~noting the best operators to systems programmers.

Thus, computer operations is characterized by complexity and dynamics (with regard to both the

tecl~nical environment and its personnel), rendering it difficult to manage computer installations by

standard methods.

The donlain of JES queue space management exemplifies this difficulty. JES queue space is a com-

mon resource (disk storage) in IBM environments for the staging of computer jobs before, during and

after execution. Jobs are normally deleted from the queue space once output has been completed to

a printer, a transmission line, or other output medium. Operations management is concerned with

monitoring the remaining available queue space because its depletion requires restarting the system,

potentially inconveniencing all system users for a substantial period of time.

To maintain queue space when it becomes dangerously low, operators employ a "bag of tricks" which

includes, for example, speeding up the printing of coinpleted jobs via the manipulation of system pa-

rameters, dumping large print jobs to tape, and refusing new jobs. While queue space manageluent

methods might at one time have been uniformly employed by operations staff at the installation where

JESQ was cleveloped, personal space management strategies have evolved with new releases of JES,

with changing workloads, and with new hardware configurations. That is, each operator executes his

or her favorite rules of thunlb to free queue space. Since up-to-date procedures no longer exist, the

computing center depends on the most experienced operators to handle queue space problems. Be-

cause these operators do not resolve queue space proble~tts uniformly, however, systenis progranlnlers

cannot readily deduce the cause of a queue space incident: one operator searches the on-line job

queue for a huge dataset; another concentrates on expediting output processing. The installation

cannot easily review problem situations because there is no longer a standard approach to queue

space problelii resolution. More importantly, a queue space problem can exist for hours because no

single operator holds the entire bag of tricks.

The shortage of skilled operators, the increasing coliiplexity and speed requirements of the operator's

job, and the dynamic nature of the installation call for niore powerful operations tnanagelnent tools.

En particular, tools are needed to ease the workload of the operator, to provide fast, consistent re-

actions to installation problems, to decrease the installation's dependence on specific personnel, to

provide a basis for enforcing installation ~~~anageiilent policy, and to provide for the orderly inte-

gration of new policy with old.

2.2 AUTOMATION OF COMPUTER OPERATIONS

Many computer operations management proble~ns could be elilninated by automating operational

procedures in software. In particular, automated operations wodd offer the following advantages

over manual operations:

Imposed Timeliness of Policy Maintenance: Because the program would serve as the primary ex-

ecuting agent of operational policy, management would be encouraged to keep it up to date.

Allowing policy to lag behind the environntent would no longer represent a feasible strategy,

since policy would be directly executed and the role of huntan operators as ad-hoc problem

solvers would be diminished. The notion that policy need not be deployed to all operators im-

mediately with each tiiodification would also encourage timely policy maintenance, in that int-

plenlentation of new policy would be simplified. That is, the processes of "run book" (a book

of operational standards and procedures) revision and operator retraining would be reduced to

8

a modification in the auto~nated operator program. Thus, the introduction of the automated op-

erator program would alter the structure of work in the operations environment such that timely

'maintenance of operational policy would be encouraged.

Speed: Actions not requiring manual intervention would be executed at machine speeds rather

than at human speeds.

Knowledge-intensire Decision-making: Icleally, the colnputer program would represent an

installation-wide fusion of operations knowledge. Thus, the program could potentially contain

more knowledge than any single individual at that installation.

Data-intensiw Decfiion-making: Decisions could be based upon volumes of system data not

easily organized or comprehended by a htunan operator.

Tirelessness: An automated operator would perform repetitive tasks without taking breaks.

Decreased Marlpower Requirements: Human operators would be needed only to handle excep-

tional incidents, to perform manual tasks, and to monitor the automated operations program.

A Tool for Operator Training: Augmented with friendly interfaces, the autoniated operator could

be used as a training tool to keep the remaining (human) operators and other installation per-

sonnel apprised of current policy.

Consistency: Reactions to incidents would be consistent, and in precise accordance with adopted

policy. This would facilitate the review and development of policy by both managenlent (the

designers of policy) and troubleshooters (the reviewers of operator actions in probleni situ-

ations).

Decreased Dependence on Specific Personnel: Procedures would be encoded in a program rather

than in the "private knowledge stores" of the most experienced operators.

Policy Tesfing and Enhancement: Policies recorded on paper for reference by human operators

are subject to individual interpretation. In contrast, a prograln which encodes such procedures

would be applied directly (without an interpretive component in between) so that the effects of

new policy could be better isolated for analysis.

The potential advantages are obvious, and established techniques of control theory have already been

applied to siillilar problenl domains that are highly constrained and amenable to analytic treatment

[I]. However, the domain of operations (the queue space management domain in particular) is not

well fornlalized and is sufficiently complex to defy single-pass development of an automatecl system.

Queue space maintenance, for example, is accoinplished via loosely structured heuristic methods

rather than highly for~iialized techniques, and these are subject to frequent change as the installation

evolves.

These domain characteristics would render it difficult to inlplement and maintain an automated op-

erations program written in a conventional procedural programming language. Procedural forrnalisnls

would require that the progranuner anticipate and write code to handle all perinutations and combi-

nations of potential operational events, an impractical task given the complexity of the operations

environment. Since program control constructs are tightly coupled with the domain knowledge en-

coded in procedural programs, niaintaining a procedural autoniated operator program would be dif-

ficult. In addition, review of operational policy (the program) would be iinpractical without the aid

of a programlner under the procedural framework. These are among the reasons why such Icnowledge

should not be enlbedcled in the operating system itself.

What is required, then, is a tool for automating operations that can acconlmodate the complexity,

dynamics, and lack of forinalization which characterizes the operations environment. In particular,

the tool must provide for:

Incremental development: Because the knowledge to be captured is coniplex and difficult to or-

ganize and communicate, the automated operator must be developecl incrementally. The com-

plexity and breadth of the knowledge that must be encoded prohibits the colnpletion of the

10

automated operator in a single iteration, requiring the capability to increnlentally add and mod-

ify operational policies.

Ease of ongoing maintenance: Since installation policy will change frequently to reflect envi-

ronmental modifications, the need for ongoing maintenance requires miniil~al dependence be-

tween the chunks of knowledge encoded in the program. Ideally, we want to be able to remove

and add management policies as units. That is, to the extent possible, a management policy

should map directly into a set of isolated progranlming constructs. The collection of such con-

structs would constitute the installation's operational policy. The installation's operational pol-

icy, then, would reside in one location, recorded in a uniform format which facilitates ongoing

maintenance.

Understandability: Installation policy must be accessible to those involved in n~nning the instal-

lation. Thus, the programming constructs that represent policy must be understandable to op-

erations personnel.

Some expert systems formalisms --production systems in particular -- encompass these characteristics.

2.3 AN EXPERT SYSTEMS APPROACH

Expert systems or knowledge-based systems are a product of research in the field of artificial intelligence

which have recently demonstrated value in solving practical problems [2]. This relatively new soft-

ware technology has already been applied to a wide variety of useful (but still experimental) appli-

cations. These include fields as diverse as niedical diagnosis [3], mineral exploration [4], and cl~emical

analysis [5] .

"Broadly speaking, an expert system is a computer program that uses explicitly represented know-

ledge and computational inference proceclures to solve problems normally requiring significant human

expertise" [6]. The development of an expert system involves extracting knowledge of a probleiil

dorilain from human experts and encoding their expertise in a knowledge base. In the production

11

systems formalism, the knowledge base is a declarative structure composed of IF ... THEN rules,

where the antecedent (IF part) of a rule describes the conditions under which the actions in its con-

sequent (THEN part) should be executed. In JESQ, the antecedents refer to the state of the system

being controlled and the consequents list the appropriate actions corresponding to that state. (This

is an oversinlplified description of the syste~ti architecture which is further discussed in section 3).

For example, Figure 1 depicts the Englisl~ equivalent of a policy rule in JESQ's knowledge base.

IF remain ing JES queue space i s low;
and t h e r e i s a 3211 p r i n t e r i n t h e c o n f i g u r a t i o n ;
and t h a t 3211 i s a c t i v e ;
and t h a t 3211 i s s e t t o p r i n t o n l y smal l jobs;
and t h e r e a r e few smal l jobs t o p r i n t (t h e p r i n t e r i s about t o i d l e) ;
and t h e r e a r e l a r g e jobs w a i t i n g t o p r i n t ;
THEN

submit t o the t a r g e t system t h a t command which increases
t he 3211 's l i n e l i m i t , a l l o w i n g t h e l a r g e jobs t o p r i n t ,

thereby f r e e i n g queue space.

F i g u r e 1 : JESQ P o l i c y Ru le (E n g l i s h ~ ~ u i v a l e n t)

Since no rule explicitly "calls" another 171, nlodularity of knowledge encoding is encouraged, allowing

the addition and deletion of operational policies (rules) with mini~lial global con~putational impact as

compared with the equivalent procedural program. This quality of expert systems facilitates incre-

mental developnrent, ongoing modification, and understandability. Mapping each statement of policy

into a set of n~ le s where possible, policies can be added and deleted more easily than in procedural

software as the installation evolves.

Of course, some organizational changes would be required to accolnniodate an expert systems ap-

proach to operations management. In particular, a knowledge base maintenance function would re-

place t11at of run book maintenance. Ideally, one person (perhaps a systems programmer) would

coordinate the lnodification and testing of the knowledge base to reflect new and modified manage-

ment policies, creating a control point for integrating en~erging operational folklore with existing

policy. While the cost of maintaining the knowledge base inight exceed that of the run book (the

knowledge base is undoubtedly less flexible than its paper counterpart), achieving the ilnprovelilents

in management control, system reliability and availability, and installation staff productivity poten-

tially provided by automating operations with expert systelns would more than offset this cost.

2.4 REVIEW OF REALTIME EXPERT SYSTEMS

Most expert systems applications to date are session-oriented, assuming a static external world for the

duration of a session. Only a few expert systems have been developed in donlains where realtime

continuoils execution is required, and these do not generally exert any active control over their envi-

ronments. Rather, such systenis alert human operators to potential or actual problem situations in the

environments they monitor. Most of the systems have only been tested in simulated environments.

Some exainples are discussed below. The final system discussed exerts active control over its envi-

ronment, but its authors have not labelled it an expert system.

Realtime Sensor-Based Diagnosis of Machine Faults

PDS [8] performs realtime detection aqd diagnosis of malfunctions in ~ilachine processes driven by

data received front sensors. PDS is a forward-chaining (i.e., data driven forward reasoning rather than

goal driven backward reasoning) rule-based system iinple~nented in SRL [9]. The system alerts hu-

man operators (e.g., triggers an alarm) when a problem is detected. The novelty of PDS lies in its

ability to reason about and deal with spurious sensor readings and sensor degradation, iinplelnenting

techniques which Fox calls retrospective analqsis and meta-diagnosis as solutions to these problems.

Real time Air Traffic Control Simulation

Wesson's work [lo] combines planning techniques wit11 discrete simulation to perform the task of the

air traffic controller. The purpose of the system is to create in realtime a minimal sequence of aircraft

com~nands which guarantees a specified time period free from aircraft conflicts. Decisions are based

on knowledge of the current state of the world and aircraft intentions, simulating forward in time to

13

observe how expected results confornl to a global strategy. Planned actions are generated by event-

response pairs that are renliniscent of the production systems formalism, although these are embed-

ded in procedural (PASCAL) code "for efficiency and generality". The system has been tested with

si~nulated test cases.

Realtime Diagnosis and Treatment of Nuclear Reactor Accidents

REACTOR [I 11 is an expert systein which assists operators in the diagnosis and treatment of nuclear

reactor accidents. The system inonitors a nuclear reactor facility, detects deviations from normal op-

erating conditions, determines the significance of the situation, and recoillmends an appropriate re-

sponse.

REACTOR'S knowledge base contains function-oriented knowledge and ewnt-oriented knowledge.

Function-oriented knowledge concerns the configuration of the reactor system and the relationships

between its components in performing a given function. Event-oriented knowledge describes the ex-

pected behavior of the reactor under known accident conditions in the form of production rules. The

systein reasons forward from known facts until a conclusion can be reached. If not enough inforlua-

tion is available to reach a conclusion, the systein reasons backward to determine what inforination

it needs to know and then queries plant instrilnlents to fill the gaps in its knowledge. If an accident

cannot be diagnosed using the event-oriented approach, the function-oriented strategy is used, em-

ploying a tree of paths which can be used to provide a given safety function (the response tree).

REACTOR is implemented in LISP and FORTRAN, and has been tested with a reactor simulator.

REACTOR advises a human operator, but maintains no active control over the reactor facility.

Realtime Alarm Analysis in Chemical Process Plants

FALCON [I21 identifies the probable causes of disturbances in chenlical process plants, enlploying

knowledge of the inunediate effects induced by a fault in a given coinponent and knowledge of how

disturbances in the inputs of a normal conlponent will propagate to disti~rbances in the outputs. The

monitor module in FALCON tests sensor data against prespecified ranges of acceptability to identify

a disturbance. Upon detection of a disturbance, the fault analyzer module reasons about probable

causes.

Two versions of the fault analyzer have been developed. The first version reasons directly from ob-

served data, employing a forward-chaining rule-based fortnalis~n inlplenlented in LISP. The second

version exanlines an explicit model of the process to find possible causes of a disturbance, reporting

and explaining those which are most likely. This nlodel is represented in a network of: local disturb-

ances caused by faults in individual components, propagation descriptions, and exceptions to the

normal diagnosis process.

FALCON in.forn~s human operators of detected faults and answers their queries about its analysis,

but takes no corrective action on its own. It has been tested against a simulator.

Realtime Ventilator Management in the Intensive Care Unit

VM [13] interprets on-line physiological data used to manage post-surgical patients receiving me-

chanical breathing assistance in the intensive care unit. The systenl detects possible lneasurernent er-

rors, recognizes untoward events in the patient/machine systenl and recotl~il~ends corrective action,

sumnlarizes the patient's physiological status, suggests adjusttnents to the patient's therapy, and

maintains a set of patient-specific expectations over time. A set of production rules encodes clinical

interpretation knowledge obtained froin ~lledical experts. A forward-chaining version of the MYCIN

interpreter [3] is enlployed to accoinn~odate the data-driven problem domain. Data is obtained from

patient nlonitoring sensors in the intensive care unit.

15

Realtime Control of a Manufacturing Cell

Work at Carnegie-Mellon University's Robotics Institute and Westinghouse Corporation [14] in-

volves the construction of a flexible manufacturing cell for open-die forging (swaging). Data is pro-

vided to the supervisory system by swaging cell sensors, although questionable readings are not

scrutinized by the system.

A forward-chaining production systelns architecture drives the Inovenlent of robots which perform

the swaging task. The antecedents of rules describe the conditions under which a robot action is ap-

propriate and the consequents give a procedure for performing that action. Processing errors are ac-

counted for to solne extent in that a given action will not be executed unless the required

preconditions have been satisfied. However, inspection and diagnosis of the actual parts produced

is performed in a post-processing mode (i.e., not in realtime). The eventual goal of this work is "to

instrument the machines so that the operations can be carried out in a fully unmannnd sequence while

still correcting for errors".

Summary

A handful of expert systenls which operate continuously in realtinle have been developed in a diverse

set of domains. In general, these systen~s monitor processes in their environinents and alert a 111unan

operator to potential and actual problen~s. The approaches einployed include encoding event-

response pairs, simulation under explicit inodels of environmental processes, planning based upon

state variables and environn~ental agent intentions, and co~nbinations of these. In general, these ex-

pert systems do not exert active control over resources and have been tested in simulated environ-

ments.

With this brief review of realtime expert systems provided, the following section describes the donlain

of prhnary interest in this thesis.

2.5 DOMAIN OVERVIEW: JES QUEUE SPACE MANAGEMENT

JES queue space is a common resource (disk storage) in IBM systein environments for the staging

of computer jobs before, during and after execution. Jobs are nornlally deleted fro111 the queue space

once output has been co~npleted to a printer, a transmission line, or other output medium. JES queue

space is also used by JES itself as a scratch area for executing its functions. In addition, JES n~aintains

batch job output for online viewing (via BM's Time Sharing Option (TSO) software) in the JES

queue space area.

Operations management is concerned with nlonitoring the remaining available queue space because

its depletion requires restarting the system, potentially inconveniencing all system users for a sub-

stantial period of time. Of course, the problem coold be eliminated by employing the "brute force"

strategy of allocating more and more disk storage to JES as needed (although this allocation is fixed

at system startup time). However, this trade-off of effective space management for additional phys-

ical storage is generally regarded as suboptimal, and represents an expensive temporary "fix" in the

absence of identifiable increases in system workload.

The operator may take several protective and corrective actions when queue space begins to diminish,

and these nlay be described in ternls of three general goals:

Protect Remaining Queue Space: The operator must protect the space that remains when

dangerously low (e.g., 5%). For example, the operator may vary the main processor offline,

blocking the initiation of additional jobs which could generate output on the queue.

Free Queue Space: The operator can manip~~late various devices and operating system paraine-

ters to free queue space. For example, the operator nlay run D J (for Dump Job) to copy large

jobs from the queue to tape. Jobs are reinstated on the queue when space improves following

17

conversations with their owners, provided that the jobs are truly needed. Alternatively, the op-

erator lnay change parameter settings on printers to allow jobs with special characteristics (e.g.,

special paper or security requirements) to print. The operator may also change the tnaxi~llu~n

line count li~nits on printers set to favor slnall jobs in cases where large jobs are waiting and snlall

jobs will soon all be printed. The operator can additionally reroute large jobs destined for slow

printers to faster printers with a relatively light load.

Since space-freeing actions may be time-critical when queue space is dangerously low, the op-

erator may allocate resources in preparation for these actions well in advance of their execution,

often before their specific use is identified. For example, DJ requires that a tape be mounted

and the DJ job itself be initiated before any jobs can be copied to tape using this facility. Simi-

larly, the printing of special forms often (depending on current printer settings) requires a

microcode change (floppy disk insertion) on the printer and a paper change. Ideally, the opera-

tor performs such set-up actions as soon as a potential incident is identified, even though they

may be in vain. Of course, the environnlent must be restored to its original state once a queue

space problem has been resolved.

Diagnose and Eliminate the Cause(s) of Queue Space Depletion: In some cases, there exists a di-

rect cause-effect relationship between the actions of an environmental agent (e.g., user, opera-

tor, device) and a queue space problem. For example, a printer might not be operational, or a

user may be storing a million-line dump on the queue. In such cases, the operator must correct

the problem as well as restore the queue to an acceptable state in a reasonable aillount of time.

While this description iinposes some order on the space management process, again, there is no

standard methodology for managing JES queue space. Rather, each operator performs some subset

of these actions according to his or her breadth of knowledge and style. Note that some judgement

is required on the part of the operator in choosing among competing actions. For example, output

stored for online (TSO) viek~~ing can be purged from the queue by using DJ, by requesting action from

the user himself, by printing the job, or even by deleting the job. The techniques eiiiployed are in-

herently heuristic in nature.

2.6 ABSTRACI' DOMAIN CHARACTERIZATION

The need to continuously monitor and actively maintain the level of a critical resource in real time

arises in several coniplex real-world domains. Obvious examples include controlling temperature in

an enclosed area, maintaining the electrical output of a power plant, and controlling the humidity level

in a greenhouse.

It therefore is useful to generalize from the description in section 2.5 so that domains which are sim-

ilar to the space management domain can be more readily identified and some of the techniques em-

ployed in building JESQ can be implemented in similar systems.

The JES queue space domain encompasses the following abstract characteristics:

There exists a target resourcp whiclt need be continuously monirored and maivtained. For example,

JES queue space is monitored periodically by a huinan operator.

There exkts an identifiable goal state for the target resource. That is, a notion of an acceptable

level of the target resource can be forniulated. For example, the goal state for the operating

systeni queue is 2596 or more space left.

There exists a gauge by which the state of the target resource can be repeated[v measured. In the

queue space domain, the gauge is a response to an operating systenl query which gives the

aniount of space left on the queue, expressed as a percentage.

The state of the target resource ir a function of the behavior of sewral active agents (humans and

resources) in the environment. For example, excessive output generated by executing jobs, offline

printers, and inappropriate parameter settings on output devices all contribute to queue space

depletion. Operator actions, cooperative user actions, and normal processing of output all con-

19

tribute to queue space renewal. Once installed, the expert systeitl itself is an important agent in

this multi-agent environment.

m e target resource can be restored to the goal state via the application of abstract operators. This

is just to state that the relationship between the actions of agents and the state of the target re-

source is goal-oriented rather than random. Agents can execute plans to restore the target re-

source to its goal state. Agents can cooperatively execute subplans to achieve the goal state.

The states of some environmental agents can be ascertained from sensors upon request, while the

states of others cannot. For example, the names of jobs queued for a particular printer and the

status of the main processor under the operating system can be derived from responses to op-

erating system queries. Printer paper jams, the operator's availability to file confidential output,

and a user's plans for a large dataset in held status are examples of environmental agent states

which cannot be ascertained directly from sensors.

The environment is sufficient& comples to discourage explicit modelling of all interactiorzs. The

complexity of a multiple-CPU operations environment running hundreds of system software

modules under the direction of hundreds of batch and online users and several human operators

prohibits explicit modelling of all interactions between resources that inay affect JES queue

space. This characteristic prohibits diagnostic approaches such as those used in REACTOR and

FALCON.

Actions must sometimes be performed in a timeflame that prohibits the satisfaction of the associated

preconditions. Some actions have preconditions, requiring that setup actions be performed (e.g.,

mounting a tape for DJ). In some cases, an action inust be performed inlmediately upon recog-

nition of its triggering context, allowing virtually no time to satisfy the preconditions for that

action (e.g., starting DJ with 1% space left on the JES queue).

There is an unpredictable temporal delay betwen the initiation of an action and its execution. For

example, a coillmand submitted to the operating systen~ may be enqueued (depending on mes-

20

sage traffic), paging delays might occur, or cotnillands of higher priority inay be subinitted by

other operators. In the degenerate case, a co~n~nand may be lost in transmission so that the

"delay" is infinite.

The effectiiwness of actions cannot be preci3e;ely computed at the time of their submission. For ex-

ample, while raising the line count limit on a printer will allow larger jobs to print, the eventual

effect on JES queue space is not entirely clear. Even though the line counts of jobs queued for

that printer are known at the instant the line limit is raised, new jobs can complete and be printed

on that printer at any moment. Jobs queued for other printers could be routed to the manipu-

lated printer as well. In the negative case, the conllnand which raises the line limit could fail,

producing no result at all.

Potential actions may compete for resources. For example, the operator inay choose between

printing special forms on a particular printer and routing a normal-form job to that same printer.

Some actions are performed over a temporal interval, while others are initiated at a point in time.

F'or example, the operator inay notify a user to take action on a held job and subsequently

transfer that job to tape over some temporal interval. In contrast, the operator may initiate the

rerouting of a large job to a print on a faster printer at a point in time.

Operation of the environment is characterized by competing qualitatiw objectiws. For example,

cmcelling large jobs will free queue space but this action will anger the affected users. Alterna-

tively, allowing queue space to remain at a low level will degrade performance, angering the re-

maining users. Dunlping the large jobs to tape will tie up a tape drive, possibly causing executing

jobs to wait for a free drive. Also, dumping a job to tape is more labor-intensive than cancelling

the job, and the operator may desire the quickest solution so that he can attend to other space-

freeing tasks.

In summary, the environi~ient is characterized by competing objectives and actions in a multi-agent

environment which is sufficiently complex to discourage explicit modelling of all interactions. An

expert system in such a domain must be robust, accommodating unexpected state changes at any time

and lost or unreliable data. The following section considers these characteristics in the context of

inlpleiiientation requirements for JESQ.

2.7 IMPLEMENTATION REQUIREMENTS AND STRATEGIES

The construction of an expert systeni which operates continuously in realtiine and exerts active con-

trol in a multi-agent environment encompasses requirements not nornially addressed in session-

oriented consultation systems. The following sections identify some of the issues that distinguish

JESQ from session-oriented systems, outlining strategies for accommodating some of these differ-

ences.

Approximating a Timely and Consistent Incomplete Model of the World

In many session-oriented expert systems, primitive facts about the world are assumed true until ex-

plicitly negated. A richer scl~enie is required for maintaining a model of the world in an expert system

which actively solicits frequently changing information in a realtime multi-agent environment. Prini-

itive assertions may be rendered inconsistent with the real world at any time by the actions of envi-

ronmental agents both known and unknown to JESQ, and by JESQ itself. Periodic reassertion of

priiiiitive facts is required in both cases:

1. JESQ cannot know of changes in the world effected by other environinental agents immediately.

Assuming that we cannot require all agents to notify the expert systeni when an action is taken,

(i.e., values for state variables are not volunteered by all relevant environmental conlponents as

in many process control applications) it is necessary to query the state of world periodically in

order to detect such changes.

2. One might assume that the expert system could at least reflect the effects of its own actions in

its internal model of the world. However, periodic reassertion of facts about portions of the

world affected by expert system actions is nonetheless required here as well: (1) Tlle action may

fail due to the state of soine variable that is missing fro111 JESQ's internal model of the world,

(2) There may be a significant time lag between the initiation of the action by the expert syste~n

and the effect of that action on the world, and (3) The effects of the action's successful exe-

cution cannot be precisely computed in advance, since state variables may have changed since

the time of action initiation. Thus, JESQ does not update its internal nod el of the environ~nent

to reflect the anticipated effects of its actions until such effects are verified by operating system

responses. JESQ does, however, mark those state variables that are expected to change as a re-

sult of its own actions as "unreliable". Unreliable state variables are disqualified fro111 consid-

eration in making operational inferences until fresh values for them are supplied by subsequent

operating system responses.

Thus, in both cases it is required that the JESQ actively solicit data from sensors on a periodic basis.

Of course, this strategy does not guarantee the reliability of target system state data, since it is po,-

sible that this data is outdated by the time it reaches the expert system, regardless of the interval over

which such data is requested. For example, JESQ may receive data regarding the status of a printer

a microsecond before its status is changed. JESQ therefore must make decisions based on an ap-

proxinlation of the state of the world.

The world nlodel maintenance strategy employed in JESQ involves periodically reasserting all primi-

tive facts which are not voltlnteered by sensors, and siinply capturing the few facts that are automat-

ically provided. The interval of query submission varies by device according to operator's estimates

of the duration of information reliability. In some cases, the interval is adjusted dynanlically during

execution. Whenever JESQ submits an action command that is expected to change the status of re-

soilrces represented in its internal partial model of the environnlent, JESQ labels those portions of the

model as unreliable. Unreliable state variables are ignored in the decision making process until they

are reassigned values provided by responses to JESQ's subsequent queries of those variables.

Note that approxi~nating a ti~nely nlodel of the world is more difficult for a human operator than for

JESQ. Human linlitations render it difficult to keep track of all relevant state variables and to submit

queries with JESQ's frequency.

Repeating Failed Paths of Execution

Expert systems that assunle a static and closed world can einploy backtracking algorithms which

pnine failed paths of reasoning, disqualifying them from further consideration. In contrast, the

strategy in JESQ incorporates the notion that its environment is too coinplex to nlodel in its entirety,

and compensates for the effects of unknown environmental agent actions on relevant state variables

by implementing the notion that an unsuccessful attempt to perfor111 an action may succeed on the

next try for reasons beyond its knowledge sources. That is, JESQ encodes the notion that actions

which fail under a given set of conditions may later succeed under the "same" conditions (as recorded

in its internal model of the environment), since the set of conditions considered is assumed to be in-

complete.

Knowledge About Temporal Requirements For Execution

The designers of session-oriented expert systems generally need not be concerned about the

timefranles in which the advice provided by such systems is formulated. Of course, every system in-

corporates some assu~nptions of this nature (e.g., consaltative systems are restricted to en~ploying in-

ference ~nechanisi~~s which execute within the ten~poral limits of a user's patience), but they are not

central inlplenlentation considerations. In contrast, the design of an expert system that decluces and

performs actions in realtime must incorporate approximate knowledge about both its own processing

24

speed and the speed of agents in its environment. Tenlporal estimates of concern in designing JESQ

included:

the approxiinate time required for self-initiated actions to take effect in the real world;

the approximate time required for the completion of setup tasks which satisfy preconditions for

potential expert systenl actions;

the approxiinate time reqdred for human operators and other agents in the environment to

complete tasks requiring ~nanual intervention;

the approximate time required for querying the state of the target resource and other resources

in the environment which impact it;

the approxin~ate time reqdred for collecting responses to queries;

the approximate time required for reducing priinitive assertions to lzigli-level synlbolic as-

sertions; and

the approximate time required for deducing appropriate actions from pri~nitive and high-level

assertions.

As discussed in section 2.6, these speeds cannot be precisely computed.

Scheduling the Creation of Primitive Assertions Over Time

Most session-oriented expert systems need not represent the notion of internally scheduled process-

ing over specific temporal intervals. While these systen~s dynainically schedule the execution of sat-

isfied rules, such scheduling is usually not perfornled in the context of an explicit representation of

time. In contrast, JESQ intist schedule its own future events in terms of relative temporal intervals.

For example, periodic queries are triggered by the timed creation of priinitive assertions (e.g., "it's

time for another queue space query''). Another example, JESQ warns users that their datasets may

25

be removed in 10 ininutes in the absence of explicit action on their part, and specifies the creation

of a primitive assertion that those 10 minutes have passed so that it can remove such datasets if they

still exist at the time this assertion appears in its internal memory.

Satisfying the Preconditions of Goal-Oriented Actions in Advance

"Timeless" systeins can einploy backward-chaining to determine preconditions for goal-oriented

actions or conclusions, instantiating subgoals that satisfy preconditions at the time such principle

goals are generated. In contrast, there are situations in the queue space donlain that require precon-

ditions for goal-oriented actions to be satisfied well in advance of principle goal generation. This is

because sonie setup actions consu~ne too iiluch time to allow for the successful restoration of the JES

queue to its goal state. For example, if a printer must be loaded with special forins to print large jobs

at a time wh 3 the space remaining on the queue is extremely low (say, 3%), queue space inay be

exhausted by the tiine the f o r m have been loaded. Instead, JESQ would reset the fornls at, say 1096,

in anticipation of the critical condition, possibly before such special form output has even been gen-

erated on the JES queue. Thus, setup actions are performed by JESQ before the target resource re-

aches a critical level (if possible), even though the associated goals lnay never be generated.

Monitoring Expert System Support Facilities

Session-oriented expert systenis need not reason about or account for the disappearance of the user.

Since such systenis do not explicitly reason about their own execution time or the timeliness of their

facts, they niay wait "inclefinitely" for input from the user without consequence. In contrast, an ac-

tive, realtiine expert system nlust inonitor not only the resources in its target environment (the appli-

cation), but also its own support facilities. For example, the system must monitor the status of the

target system interface and report its failure to the operator. In the absence of this capability, the

human operator would be unaware, for example, that routine tnonitoring of JES queue space was not

being successfully perforllled by the expert system.

Actions That Do Nothing

A realtitlie expert systenl must have a notion of "doing nothing" or idling, since there will be tilnes

when it simply has nothing to do but wait until it is appropriate to reexallline the state of the target

resource. Idling in this context is defined to be an action that changes nothing in the real environment

or in the internal inodel of the target syste~n (except for recording the passage of time). This action

must be interruptible by the receipt of data from the target system (e.g., a response to a query about

an environ~nental resource) and by an internally scheduled event (e.g., query the target resource in

five minutes).

Garbage Collection

The issue of garbage collection can be ignored in session-oriented consirltation systems which do not

generate enough garbage in a single session to exceed reasonable space allocations. (In this context,

the tern1 garbage includes tokens which are no longer needed by the expert system (e.g., goals that

have already been satisfied) and excludes low level entities (e.g., pointers) that are created and

maintained by underlying interpreters which are transparent to the expert system). In contrast, space

requirements are infinite for any continuous realti~ne expert systenl that does not do garbage col-

lection and generates at least one token on a periodic basis. In particular, the following tokens must

be deleted in JESQ:

primitive assertions that have expired due to age;

prililitive assertions that are assumed irnreliable following the execution of expert systenl

actions;

a goals pertaining to actions that have already been perfornied by another resource in the envi-

ronment;

a goals pertaining to actions that have already been perforlned by the expert systeni itself; and

a conflicting priinitive assertions collected over different teniporal intervals.

Unlike systems w1.1ich collect garbage as a function of remaining space, JESQ must delete tokens on

the basis of their semantics, since it is the presence/absence of tokens which trigger inferences in the

systeni. Garbage collection is a general requirement for realtinie expert systems that are intended to

run indefinitely.

Accommodating Predetermined Inputs and Outputs

Consultative expert systems receive input fro111 and submit output (advice) to a human being. With

a cognitive conlponent participating in the formulation of input and the interpretation of output, the

choice of semantics a rd grain size for both inputs and outputs is a relatively flexible one. That is, the

consultative framework provides the knowledge engineer with the flexibility to distribute the required

donlain reasoning between the user and the expert systeni as needed.

In contrast, JESQ is a performer, an active agent that receives input from environmental resources

and directly manipulates them. This limits the semantics and grain size of expert system input and

output to the those dictated by the resources in the environment. In general, inputs and outputs are

more detailed and precise in JESQ's domain than those typical of consultative systems. They are

low-level data (i.e., operating system responses and commands) rather than high-level opinions.

2.8 SUMMARY

JESQ and other YES/MVS donlain expert systenis represent a technical solution to a management

problem. The hypothesis is that effectively managing a portion of the computer installation's activities

28

with expert systerns provides the benefits of automation in spite of the lack of formalization, the

complexity, and the dynalnics that characterize the operations environment. This hypothesis inay be

extended to other process control domains.

However, the inlplenlentation of a continuous, realtinle expert system that exerts active control over

a real (as opposed to "toy") multi-agent environment is a relatively novel undertaking, introducing

require~nents not usually addressed in typical session-oriented consultative expert systems.

3. EXPERT SYSTEM ARCHITECTURE

This section describes the architecture of JESQ. Section 3.1 justifies the level of user modelling im-

plemented, and outlines design objectives. Section 3.2 provides an overview of production systems,

the skeletal franlework in which JESQ is implemented, to allow the unfamiliar reader to understand

the sections that follow. Section 3.3 describes the global organization of JESQ's knowledge base. A

description of individual mechanisms in JESQ follows in section 3.4. Section 3.5 provides a detailed

trace of JESQ's execution as it solves a JES queue space problem. Section 3.6 describes JESQ's po-

sition within the YES/MVS architecture and the operations environment.

3.1 LEVEL OF USER MODELLING

As discussed in section 2, the nature of the operations environnlent requires that an automated op-

erator facility be easy to modify to reflect changing installation requirements and policies, and that

the encoded policies be understandable to those involved in running the installation. These require-

ments have i~nplications for the appropriate level of user modelling to implement in JESQ. This sec-

tion exaillines the alternatives in the context of the operations management hierarchy, conclucling that

a surface level specification of the desired behavior best suits the requirements of the application.

A Framework for Analysis

The level of user modelling required can be analyzed in terins of the version of the installation man-

agement hierarchy depicted in figure 2. Modelling actions at the lowest level of the computer opera-

tor, the knowledge base encodes surface behavior as in the installation run book. Ideally, the

colnpnter operator follows procedures designed by the operations manager, responding to the condi-

tions anticipated by perfor~ning pre-established sets of actions.

Modelling at the next level of the operations manager would involve an explicit representation of

interactions in t l ~ e operations environment, and representations for the se~nantics of "problems",

"routine work", "the installation director's objectives", etc., cuhninating in the development of a

knowledge base that encodes the principles by wl~ich inanagers fol-mulafe policy. The resulting code

would output the surface behavior specification at the first level (the operator level). This prograln

could be run in batch inode and the resulting policy description executed in realtime. Alternatively,

these two levels could be co~nbined in a system that lnonitors the target system, formulates policies,

and executes thein in realtime.

At the next level in the hierarchy, the operations director provides general guidelines for fom~ulating

operational policy. These guidelines include rules such as "Maximize throughput during prime shift"

and "Give the Speech Group the best service where possible". Producing output at this level would

involve representing higher level objectives such as "Allocate co~llputing resources to groups involved

in hot research areas" and "Take a utilitarian approach to resource allocation where other groups are

concerned".

...
I OPERAT l ONS D I RECTOR (GU I DEL I NES FOR POL l C Y FORMULAT I ON) ,, ...
1 OPERATIONS MANAGER (POLICY FORMULATION)
... I

I COMPUTER OPERATOR (POLICY EXECUTION) I
.......................................

F i g u r e 2 : Operat ions Management H ie ra r chy

Of course, this conceptual frameworl< can be extended indefinitely, although the rules become pro-

gressively more elusive and knowledge-intensive as we ascend the hierarchy. In some sense, the

knowledge required at each level subsumes that of the levels subordinate to it. But these issues are

beyond the scope of this thesis, and are presented here only to create a context for justifying the level

of user nlodelling implemented in JESQ.

JESQ Models Surface Behavior

JESQ encodes knowledge of conlputer operations at the first level, that of the coinputer operator.

Supposing that an industrial-strength facility that also encompasses knowledge at the second or higher

levels could be developed at all, it can be assumed that the average installation could not effectively

maintain such an abstract facility.

Combining levels is also discouraged in view of functional requirements and of the nature of the

probleni domain. As discussed in section 2, the operations environment is too conlplex to explicitly

model, so encoding both policy forniulation and execution knowledge does not represent a promising

approach. Also, since the imposition of consistency is anlong the principle purposes of policy insti-

tution, it seems undesirable to forniulate policies "on the fly" as a function of current values for state

variables.

JESQ is therefore an automated operator, (rather than an automated operations manager or director)

that directly executes operational policy. In effect, the goal of JESQ is to encode a portion of the run

book and directly execute it. Within this context, the general goal of JESQ is to allow the installation

to map policies into independent sets of rules wherever possible. This architecture is encouraged by

the expert systeni shell upon which JESQ is built, and this tool is reviewed in the next section.

3.2 PRODUCTION SYSTEMS ARCHITECTURE

JESQ is ilnplemented in a modified version of OPS5 [15], a general production system in~pleniented

in various dialects of LISP and in BLISS at Carnegie-Mellon University. OPS5 is intended as a tool

for building applications in cognitive psychology, expert systems, and artificial intelligence [15].

Notable OPS-based expert systenls include ACE [16], R1 [17], and XSEL [IS]. While it was neces-

sary to augment OPS5 with primitives for continuous realtinle operation [19], its data-driven infer-

ence nlechanisni provided the basic framework required for the JESQ application and for others in

the YES/MVS doniain. The parpose of this section is to provide a simplified overview of OPS5 that

enables the reader to understand the ilnpleinentation details described in the sections that follow.

There are essentially three coniponents to the architecture of OPS5:

1. Working Memory: is a global database, typically containing an abstract representation of the

state of the problem domain;

2. Production Memory: houses a set of IF ... THEN rules that encode problem doniain expertise,

expressed in ternls of the doinain representation in Working Memory;

3. The Recognize/Act Cycle: repeatedly applies the rules residing in Production Menlory depending

on the contents of Working Menlory at any given moment.

The following sections describe these coniponents in more detail.

Working Memory

Working Memory (WM) maintains the state of the problenl domain and of the problem solving

process. In JESQ, WM contains an abstract nlodel of some of the coinponents in the operations en-

viron~nent that impact JES queue space. JESQ's goals (e.g., reset the printer when queue space is

restored) also reside in WM, along with housekeeping and control information.

WM is cornposed of working memory elements (wme). While OPS5 supports a few types of wines,

attribute-value wmes are the most prevalent in JESQ. An attribute-value wlne is coinposed of an ar-

bitrary class name and a set of attribute-value pairs. The attribute-value pairs express relations rele-

vant to the wlne class. For example, figure 3 depicts a wine froin JESQ pertaining to the class

printer-status. Attribute names are prefixed with the symbol , and their values iinnlediately follow,

forming the attribute-value pairs. The attribute-value pairs in figure 3 indicate that printer PRT4 is

currently Available, is loaded with CONFlDential forms, is c~~rrently printing job nutliber 1234, and

will not print any job that exceeds 30000 lines in length.

(p r i n t e r - s t a t u s
l a d d r e s s PRT4
- s t a t u s AV
l f o r m s CONF l D
l c u r r e n t - j o b 1234
l l i n e - l i m i t 30000)

F i g u r e 3 : Sample JESQ Working Memory Element

An arbitrary number of printer-status wmes may concurrently reside in WM, each representing the

status of a different printer (as identified by the -address attribute) in the environment.

In JESQ, such state variable bvmes are updated periodically froin responses to queries of the target

system. These wmes appear in the antecedents of rules in Production Meinory that make operational

decisions based on the state of the target system. WM is highly dynamic, representing the state of the

target system froin inoillent to moment.

Production Memory

Production Me-nory (PM) is composed of IF ... THEN rules (or productions) that encode problenl

domain expertise. In JESQ, n~les encode the problem-solving knowledge of operators, operations

managers, systems programmers, and others involved in the management of JES queue space. PM is

also called the knowledge base or rule base.

OPS5 productions consist of a left hand side (LHS) and a right hand side (RHS). The LHS is the

antecedent of the nile and is coinposed of condition elements. The condition elenlents are essentially

templates for matching against the contents of WM, and these can be coded at the desired level of

abstraction. OPS5 provides constructs for specifying various match criteria (e.g., predicates, disj-

unctions, conjunctions) on wine values. Condition elements can also be negated. A LHS is consid-

ered to be satisfied when (1) there exist working iilemory elements that match all the non-negated

condition elements, and (2) there exist no working nleinory elements that match the negated condi-

tion elements.

The RHS is the consequent of the rule and is composed of actions that are to be executed when the

LHS is satisfied. Typical actions in JESQ include creating, modifying, and deleting wines in WM,

submitting queries to the target system, sending messages to the operator, and perfornling computa-

tions. It is also possible to call other programs fro111 the RHS.

As an example, consider the silnplified JESQ procluction in figure 4. The production is enclosed in

parentheses. The symbol p identifies the construct as a production. The name of the production is

release-large-held-jobs. The constructs that appear between the name and the symbol --> constitute

the rule's LHS. It's condition ele~llents are processing-mode (symbolically indicating a range of space

left) and wtr-queue-repb (identifying the name of a job on the JES queue, the number of lines of

output for that job, and whether or not it is being held). The match criteria specified include: (1) there

is a queue space problein (poke, solve, or panic mode, discussed in section 3.3), and (2) there exists

a held job that exceeds 30000 lines. The remaining constructs constitute the rule's RHS. The first

action, (remow 2), removes the wme that ~natches the second condition element in the LHS (i.e., the

wtr-queue-reply) from WM. The second action transnlits a conl~nand to the target system that re-

leases the job in question (i.e., the job specified in the wme that matches the seconJ condition ele-

ment). Here, is an unrestricted variable that will match any value associated with -job-id

attribute.

Thus, this rule encodes the policy that all jobs with voli~minous output that are being held on the

queue should be released when a queue space problem exists. This will free the job for printing, DJ,

or other fate that will, in turn, result in additional free queue space.

(p release-large-held- jobs
(process i ng-mode

mode << poke solve panic >>)
(wtr-queue-reply

print-lines > 30000
1 job-id <job>
1 held? Y)

-->
(remove 2)
(call remote-make release-held-job

job- i d <job>)

Figure 4: Sample JESQ Product ion (s impl if ied)

Note that the rule is a declaratiw construct. In effect, the n ~ l e is a demon that will become active

when its conditions are satisfied. Ideally, all program control resides in the interpreter's recognize-act

cycle, although this is not always possible. (This is further discussed in section 5).

Recognize-Act Cycle

The recognize-act cycle controls the application of n ~ l e s in PM, depending on the contents of WM.

The cycle is transparent to the knowledge engineer. Ideally, the knowledge engineer need only encode

knowledge of the problem domain in PM rules and implement an appropriate representation of the

domain in WM. A simplified version of the OPS5 recognize-act cycle consists of three steps and a

branch (see [15] for a co~nplete discussion):

1. Match: Match the condition elements in the LHS of each rule against the current contents of

WM. If no LHS are satisfied, stop. If one or inole (the usual case) LHS are satisfied, continue.

2. Conflict Resolution: Given the satisfied rules and their associated wnies from step 1, select one

to apply using general problem-solving heuristics. Ln particular, eliminate trivial infinite loops

by prohibiting the repeated triggering of a rule by the same set of wmes, give preference to rules

that match the most recently created wmes, and to those rules that specify the most LHS tests.

3. Act: Execute the actions of the rule selected in step 2. The actions typically change WM (adding,

deleting, or ~nodifying wmes), so that on the next iteration of the cycle, a different set of LHS

is satisfied.

4. Go to step 1.

JESQ and other YES/MVS domain expert systems employ a modified version of this cycle, including

a step that reduces the input to conflict resolution according to prespecified rule groupings (see sec-

tion 3), and a step that picks up messages from the target system. The resulting cycle is as follows:

1. Match

2. Conflict Set Reduction by priority (rule group)

36

3. (OPSS) Conflict Resolution

4. Act

5 . Pickup target system messages

6. Go to step 1.

This too is an oversimplified description. Several other inodifications have also been implemented,

including a function that causes the systein to idle (rather than stop) when no LHS are satisfied. See

1191 for iillplementation details.

With the necessary background provided, the next section describes the JESQ knowledge base.

3.3 JESQ KNOWLEDGE BASE ORGANIZATION

The organization of JESQ's knowledge base reflects an objective to achieve a simple representation

that provides for mapping the elements of queue space management policy into generic classes of

rules. To accomplish this, rules in JESQ are grouped along two orthogonal dimensions: by function

(e.g., query submission, information collection) and by probleln severity (as a function of space left

on the queue). That is, each rule is labelled as belonging to functional group (by its task condition

element) and as being applicable in sonle range of space left (by its processing-mode condition ele-

ment). This architecture is intended to standardize the method by which the knowledge base is

maintained. That is, the process of adding a new policy to the knowledge base can usually be ac-

complished by adding the appropriate nlles to each of the functional rule groups and specifying the

level of problem severity under which the policy may be applied. In short, the process of augmenting

JESQ with a new policy is intended to be algoritl~mic. This architecture is further described in the

following sections.

Rule Grouping by Function

JESQ rules are grouped into functional classes. The computational consequences of this grouping

scheme have to do with the relative priorities of individual rules in the context of the conflict resol-

ution step of the recognize-act cycle. Each functional rule group has been assigned a priority, and that

priority is used to determine which rule will be invoked when rules froin more than one group are

concurrently satisfied in a given iteration of the cycle. In effect, resolving rule application conflicts

wit11 this mechanism serves to augment the existing OPS5 conflict resolution algorithm. The set of

satisfied rules is first reduced to contain only those of the same functional group, and the resulting set

is resolved (by OPS5 conflict resolution) on the basis of recency of information and specificity of

LHS conditions.

JESQ includes the following functional rule groups. All rule groups work cooperatively to support the

Knowledge-Based Action group. This last group encodes operational policy at its highest level.

System Initialization and Control: This group contains rules that create the abstract internal

model of the target system environment. These rules are general rather than configuration-

specific. The model building rules are triggered by wmes derived froin the dataset that describes

the installation's configuration to the target MVS operating system, making JESQ more trans-

portable to other installations. Rules in this group also implement meta-level control of rule

groups as a function of the severity of the queue space problem at hand, as described in the next

section. This rule group also suppresses certain actions when specified by the operator.

Wait: This group contains one rule which causes JESQ to wait until an interrupt is generated by

either the receipt of a target system message or by an internally scheduled event.

Periodic Query Submission and Timeout Ha~zdling: This group controls the periodic querying of

target system resource states. Query intervals are based on estiinates of the reliability over time

of the inforination being captured. These intervals are adjusted dynamically by the expert system

as it executes, based on the severity of the problem at hand and on the expert system's know-

ledge of its own actions. For example, JES queue space is nlonitored every five minutes in the

nornlal case and every 50 seconds when a problem is detected, since JESQ's actions will usually

free space qidckly in a problein situation. Rules are also included to resubmit queries that have

been lost in transnlission (i.e., tinled out).

Information Collection and Data Reduction/Expa~zsion: This group includes rules that collect

target system inessages and update JESQ's internal inodel accordingly. Portions of this abstract

nlodel appear in the LHS of the Knowledge-Based Action rules that itlake deductions and take

action. Some rules in this group map a single response wine into a single internal nlodel wine.

(Target system responses are translated to wme fonnat by MCCF, a supporting facility de-

scribed in section 3.6). Other rules perfonn data reduction, manipulating nlultiple response

wines to produce a single suininary wine that is referenced by the Knowledge-Based Action

rules. Still other rules perform data expansion, supplying attributes with values that are only

implied by target systenl responses.

Miscellaneous Cleanup and Response Collision Collectiolz: This rule group deletes target system

responses and expert system-generated goals from WM. Rules in this group also delete asyn-

chronously arriving responses to duplicate queries that have been delayed by failing or sluggish

target systenl resources.

Knowledge-Based Action: All rules in the above described groups exist to support the

Knowledge-Based Action rules which encode queue space itlanagelnent policy. The policies en-

coded mirror those described in the Donlain Overview. In particular, rules are included to pro-

tect the remaining queue space, to set up for future actions, to reset target system paraineters

when space returns to acceptable levels, to free queue space when a problenl exists, and to alert

the operator to potential probleins that cannot be further diagnosed without additional infor-

mation. These rules are further decolnposed into three subgroups of varying priority: low-, me-

dium-, and high -priority-kno wledge-based-actions.

Priorities have been assigned to functional rule groups as follows. In general, infornlation collection

rules dominate all others, guaranteeing that expert systeln actions reflect the ~llost recent target sys-

tell1 inforn~ation available. System control rules have the next highest priority, since these partition

knowledge-based actions and their supporting processes. The three groups of knowledge-based

actions have the next highest set of priorities. Cleanup rules donlinate in lieu of the applicability of

the rule groups described thus far, allowing the query submission rules of next lower priority to fire

upon the retlioval of old responses. Naturally, the idle action is of lowest priority. Some examples of

rules in these groups appear in section 3.4.

Rule Grouping by Problem Severity

Groups of rules are enabled/disabled dynamically during expert systeal execution according to the

severity of the queue space problem at hand. For exanlple, a drastic action such as varying the main

processor offline is appropriate when only 3% of the queue space remains, but not when 10% re-

mains. To implement this knowledge, thresholds of space left are mapped to five syn~bolic processing

modes (NORMAL, WATCH, POKE, SOLVE, and PANIC), each associated with range of space left

on the JES queue. Some actions are limited to a single processing inode (e.g., varying the main

processor offline). Other actions span nlultiple processing modes (e.g., raising the line liinit on a

printer).

The processing nlode scheme implements meta-level control, suppressing sets of actions as a function

of problenl severity (i.e., space left on the queue). (In reality, transitions fro111 mode to mode are

lllore co~nplex than this description migbt imply. A discussion of this mechanism is included in the

following section).

3.4 JESQ MECHANISMS AND DETAILED DESIGN ISSUES

This section illuminates some of the mechanis~ns that i~nplelnent the functions described in the last

section.

Initialization

JESQ is initiated by the appearance of wmes in WM with class name task. A task wnle exists for each

functional rule group, identifying that group to the underlying priority mechanism (see [19] for de-

tails). The rule shown in figure 5 (condensed for brevity) creates a base set of wmes, triggering the

execution of rules which submit initial queries, create the internal model of the target system, and

perfor111 other initialization tasks. Thus, this rule is the first in a series of boot-strapping rules.

Referring to figure 5, wmes such as jes-q-space, sysl (the main processor), and dj-job (the job that

perforlns the transfer of jobs from the JES queue to tape) are portions of the abstract model of the

target system. Values for the attributes of these wnles are later derived fro111 rzsponses to queries of

the target system. The periodic-quey wme is essentially a table entry that is referenced by the query

sublnission rules, providing the interval between queries of the indicated type. This interval is dy-

namically adjusted by JESQ at execution time, depending on the state of the problem-solving process.

(p i n i t i a l i z a t i o n
(t a s k

l t a s k - i d system-contro l)
-->

(make process i ng-mode
lmode norma 1)

(make j e ~ - ~ - s p a c e)
(make s y s l)
(make d j- j o b)
(make per i o d i c-query

T y p e jes-q-space
l i n t e r v a l 5
'uni t m in)

F i g u r e 5: I n i t i a l i z a t i o n Ru le

Since JESQ nlay be initiated at any time, nothing is assunled about the state of the target systenl at

initialization time. Initialization queries are sublilitted to request values for systeln parameters that

vary by shift, by probleni state, and other conditions.

Table-Driven Target System Model Creation

Associated with each relevant component in the installation hardware configuration are a set of wrnes

that niaintain the pertinent cl~aracteristics of that component in JESQ's internal model of the target

system. For example, for each printer in the environment (as indicated by wnles derived from the file

that describes the configt~ration to the operating system) JESQ maintains a printer-status wnie (for

recording the status of the printer from nlolnent to moment), aprinfer-queue wlne (for recording line

totals of the jobs queued for the printer), and others. Figure G depicts an abbreviated version of the

rule that creates these entities. Upon detection of a printer wine created by the configuration de-

scription program, this rule makes the needed wnles in WM. Sinlilar rules exist to create wnles asso-

ciated with other devices in the environment.

(p make-pr i n t e r - e n t i t i es
(t a s k

l t a s k - i d sys tem-con t ro l)
(p r i n t e r
1 address < p r i n t e r >)

-->
(make p r i n t e r - s t a t u s
1 r e l i a b l e ? no

address < p r i n t e r >
-, s t a t u s none
1 forms none
1 c u r r e n t - j o b none
1 1 ine-1 i m i t none)

(make p r in te r -queue
r e l i a b l e ? no
address < p r i n t e r >
conf i d - 1 i nes none

-, a l d - l i n e s none
onepar t- 1 i nes none

1 s h o r t - l i n e s none
1 c o n f i d s - l i n e s none
-, t o t a l - l i n e s none
1 s m a l l - j o b - l i n e s none

medium-job none
b i g - j o b none)

F i g u r e 6: Table-Dr iven P r i n t e r Model C rea t i on

Note that these rules are table-driwn [20], executing for each conceptual table entry created by the

configuration description program. For example, the rule shown in figure G will fire for each occur-

rence of the printer wme in WM, so that the rule base need not be changed with the introduction of

new printers in the environment (although a configuration change may result in ~nodification of the

associated operational policy). Rather, this change is isolated to the configuration description pro-

gram.

Rule Group Control

As discussed in section 3.3 , the proce,rsing-mode wnie implements meta-level control of rule groups,

enabling/disabling sets of rules as a function of space left on the JES queue. A condition element that

matches the processing-mode wine appears in the LHS of all rules in JESQ that are problenl state

dependent.

In general, processing mode transitions are a function of static, mutually-exclusive range specifica-

tions. However, consicler the case where the queue space remaining fluctuates within a few percent-

age points on the boundary of the definition of two processing modes. (Fluctuation within a few

percent is common; queue space jmnps by leaps and bounds only when significant actions are taken

by some environmental agent). Since an action initiated in one mode may be terminated in its

boundary mode, it is unacceptable to perform such actions when queue space is fluctuating on the

boundary of their definition. To illustrate, consider the case where the remaining queue space fluc-

tuates between 18% and 20%. In terms of the absolute ranges by which processing mode is defined,

JESQ would be fluctuating between poke (1596-1996) and watch (20%-24%) modes. In poke

mode, JESQ raises the limit on the 321 1 printer (conditions permitting), allowing larger jobs to print.

In watch mode, this line limit is reset to its original value, since queue space is at a more comfortable

level. Were a mechanism not included to prevent it, JESQ would set and reset the line limit repeatedly

as space left fluctuated between watch and poke modes. Clearly, this could aot be called "intelligent"

behavior.

To avoid this potential problem, JESQ i~nple~nents a sort of histirisis curve to prevent frequent proc-

essing mode changes on the boundary of their definition. Downward transitions are performed as a

function of absolute ranges. Transitions from modes to non-upward-adjacent modes are similarly

performed. However, the transition from a mode to its upward-adjacent node requires the achieve-

ment of a percentage of space left that exceeds its defined lower bound. This is illustrated in figures 7

and 8.

The rule in figure 7 effects a transition from any mode other than poke (i.e., normal, solve, or panic)

to watch mode (the <<double angle brackets>> imple~nent a disjunction). The range used here is

2096-2496. As described, the rule in figure 8 effects a transition froin poke 111ode to watch mode,

requiring the achievement of at least 22% (not 20%) space left. This implelnentation would prohibit

the fluctuation between modes that would cause the unintelligent manipulation of the n~odel 321 1

printer in the example situation described above.

(p s e t - to-watch-mode-from-non-upward-ad jacent-modes
(t a s k

i t a s k - i d system-contro l)
(processing-mode

lmode << normal s o l v e pan i c >>)
(jes-q-space

l p e r c e n t - l e f t (>= 20 <= 24 3)
-->

(mod i fy 2
m o d e watch)

1

F i g u r e 7: Process ing Mode T r a n s i t i o n From a Non-upward-adjacent Mode

(p set-to-watch-mode-f rom-poke-mode
(t a s k

'task- i d system-contro l)
(processing-mode

m o d e poke)
(jes-q-space

l p e r c e n t - l e f t >= 22 <= 24 1)
- ->

(mod i fy 2
m o d e watch)

1

F i g u r e 8: Process i n g Mode Trans i t i on From an Upward-adjacent Mode

Of course, it is theoretically possible to produce such "unintelligent" behavior despite this inech-

anism. For instance, queue space might have fluctuated between 18% and 22 % in the example situ-

ation, allowing the behavior that this lnechanism is intended to prevent. However, the ranges coded

are based on operators' empirical observations, and failure of the nlechanisnl should rarely occur.

Again, this is because fluctuation in space left is characterized by a certain "locality".

Periodic Action Control

Periodic actions are colnn~on in the operations environment. An obvious example, JESQ must peri-

odically query the status of JES queue space. The rule that accomplishes this is shown in figure 9. The

periodic-query wine gives the interval of query subinission (e.g., 5 minutes), and is always present in

WM. The query-request wnle is the token that actually triggers the rule, provided that the response

(jes-q-reply) to the last query is not still in WM (note the application of negated condition elements)

45

waiting to be processed (by an infonnation collection rule). When the rule is invoked, the call to

remote-make sends the queue space query to the target system, and the call to timed-make specifies

the reappearance of the qtiey-request token in the interval specified by the periodic-query wine.

Finally, the (remole 3) action deletes the query-request wlne that triggered the rule this time.

(p send-jes-space-query
(t a s k

T a s k - i d query-submission)
(per i o d i c-query

T y p e jes-q-space
l i n t e r v a l < i v >
l u n i t <un>)

(query- request i t y p e jes-q-space)
- (j e s - q - r e p l y)

-->
(ca 1 1 remote-make jes-queue-space-query)
(c a l l timed-make query-request

l t pe jes-q-space (i n < i v> <un>))
(remove 3

1
r

F i g u r e 9: P e r i o d i c A c t i o n Cont ro l

Thus, this rule is periodically invoked without end, once each time the query-request token appears.

In general, each periodic action in JESQ is iinpBe~nented in an isolated rule that employs this mech-

Response Timeout Handling

Responses to queries of the target system can be !ost enroute to JESQ. In such cases, the facility that

passes responses to JESQ (MCCF) sends instead the time-out inessage (wme) of the programmer's

choice. The choice in this case is a token that triggers the resubmission of the lost query. While the

query-request wme serves this purpose, the rule it triggers (figure 9) provides for the re-creation (via

timed-make) of the same token at a later time, causing additional queries to be generated. Since this

is unacceptable, an additional rule is coded (figure 10) that merely resubinits the query, without

specifying the future generation of additional tokens.

(p send-isolated-jes-space-query
(t a s k

l t a s k - i d query-submission)
(i so la ted-query - reques t i t y p e jes-q-space)

(ca 1 1 remote-make jes-queue-space-query)
(r emove 2

1

F i g u r e 10: Response Timeout Hand l ing

The time-out token isolatedquery-request triggers this rule once and is renloved from WM.

Abstract Model Update

Responses to queries received from the target system are reflected in the appropriate portions of

JESQ's internal model of the environment and deleted. Figure 11 depicts the rule that updates the

jes-q-space wme to reflect the percentage of space left specified by the jes-q-replqt response to the last

JES queue space query.

(p es-q-space-update i t ask
l t a s k - i d in fo rmat i on -co l l e c t i on)

(j es -q - rep l y ' pe rcen t - l e f t Cpl>)
(jes-q-space)

-->
(remove 2)
(mod i fy 3

l p e r c e n t - l e f t <p l>)
1

F i g u r e 11: A b s t r a c t Model Update

Siinilar rules exist to maintain other portions of JESQ's internal model.

Accounting for Manual Operator Action

JESQ generates goals for itself to reset environnlental parameters that it has manipulated to free

queue space over the course of solving a problem. It is necessary to generate explicit goals in order

to distinguish between JESQ's having altered the parameter and the operator's having done so.

Should the operator have altered the parameter manually, it is inappropriate for JESQ to restore it to

47

its usual value, since the reasons for the operator's action are beyond JESQ's knowledge sources

(otherwise, JESQ itself would have altered the parameter). For example, JESQ disables the main

processor in panic mode to prevent the initiation of additional jobs that might generate output on the

JES queue. In this case, JESQ generates (goal -type vary-sysl-back-online) to trigger the inverse action

once space has improved (i.e., normal, watch, poke, or solve inode has been achieved). However,

were the human operator to disable the main processor under conditions of normal queue space, say,

for hardware maintenance, it would obviously be inappropriate for JESQ to at~tomatically enable it.

Thus, JESQ records its own actions in cases where reset actions are appropriate once queue space

has improved.

Now consider the case where JESQ has disabled the main processor in a problein state, the problem

has been resolved, but the operator has enabled the main processor himself. In this case, JESQ inust

remove its goal to avoid subsequent confusion and to free space in WM. The rule that accomplishes

this appears in figure 12.

(p account - fo r -opera to r :a 1 ready-var ied-sys 1 -on 1 i ne
(t a s k

t a s k - i d c leanup)
(process i ng-mode

mode << normal watch poke s o l v e >>)
(sys 1

s t a t u s ONLINE)
(goa 1

i t y p e vary-sys 1 -back-on 1 i ne)
- - >

(remove 4)
1

F i g u r e 12: Account ing f o r Manual Operator A c t i o n

This rule removes the goal to re-enable the main processor, provided that: (I) the JES queue is not

in a panic state (processing-mode), (2) the main processor has already been enabled (is ONLINE),

and (3) the goal to do so still exists in WM.

Idle Control

JESQ idles when no "substantive rules" in its knowledge base are applicable. The idle state may be

interrupted by the receipt of a target systeln lnessage or by an internally scheduled event. This is im-

plemented as shown in figure 13.
(p wait

(task
T a s k - i d wait)

- - >
(modify 1)
(call ops-wait)

1

Figure 13: Idle Control

The wait task has the lowest priority in the knowledge base. When no other rules are satisfied, the idle

function, ops-wait, is invoked. Recalling fro111 section 3.2 that the OPS5 interpreter will only once

execute a given rule in conjunction with a given set of wines, the (modify I) action is needed to renew

the wait task wine so that the system can again idle when no other rules are satisfied. Otnission of the

m o d 0 action would allow JESQ to idle only once over the course of its execution.

Having described the architecture of JESQ and the OPS5 language, the next section depicts an OPS5

trace of JESQ as it solves a JES queue space problem.

3.5 JESQ DEMONSTRATION TRACE

This section provides a demonstration of JESQ solving a queue space problem.

Instructions for Reading the Trace

The trace shown here is output by the modified OPS5 interpreter, and is never seen by the computer

operator. Wmes of interest have been displayed between rule firings in the following demonstration,

and these are depicted as in previous sections, along with their time tags which are assigned by the

interpreter for purposes of identification. The firing of any single nile is indicated by a line of inter-

preter output of the form:

a . b c

where'a = the number o f r u l e s t h a t have f i r e d t h u s f a r

b = the name o f the r u l e f i r e d

c = the t ime tags o f the wmes bound t o the r u l e ' s LHS

The operator sees only the screen images labelled as such in the demonstration that follows. A hi-

erarchical collection of screens is provided to the operator. The TOP LEVEL screen contains one

descriptive line of text per JESQ action or suggestion. For most actions, a detailed screen is provided

which may be accessed by positioning the cursor at the 111essage of interest on the TOP LEVEL

screen and pressing a key on the terminal. The detailed screen provides a description of the current

situation, a corrective operating system cotnmand or manual action to be executed, and an explana-

tion regarding its appropriateness. For brevity, only one such detaiIed screen is shown in the fol-

lowing demonstration.

Demonstration

Upon initiating JESQ, initialization rules are fired which create portions of the internal ~ t ~ o d e l of the

environment:

1. J M : I N I T I A L I Z A T I O N 7
2 . JM:MAKE-PRINTER-ENTIT IES 7 1 9
3 . JM:MAKE-PRINTER-ENTIT IES 7 1 8
4. JM:MAKE-TAPE-DRIVE-ENTIT IES 7 1 7
5. JM:MAKE-TAPE-DRIVE-ENTIT IES 7 1 6
6. JM:MAKE-TAPE-DRIVE-ENTIT IES 7 1 5

For example, for each tape drive (as indicated by the tape-driw wme) in the environment, a tape-

driw-status wlne is created with null values for attributes:

1 7 : (TAPE-DRIVE -ADDRESS 2 8 2)
1 6 : (T A P E - D R I V E l A D D R E S S 2 8 1)
1 5 : (TAPE-DR I V E TADDRESS 280)

I

42: (TAPE-DRIVE-STATUS - R E L I A B L E ? NO TADDRESS 2 8 1 1 S T A T U S NONE
)

These wllles then trigger the sublnission of initial queries regarding relevant entities in the environ-

ment:

7. JM:SEND-PRINTER-STATUS-QUERY 2 22 3 5 1 0
PRINTER-STATUS-QUERY P R T l
8. JM:SEND-PRINTER-STATUS-QUERY 2 2 2 3 0 1 0
PRINTER-STATUS-QUERY P R T 4
9. JM:SEND-DJ-STATUS-QUERY 2 1 0 2 8
DJ-STATUS-QUERY
1 0 . JM:SEND-SYS1-STATUS-QUERY 2 1 0 2 7
SYS1-STATUS-QUERY
1 1 . JM:SEND-JES-SPACE-QUERY 2 2 0 2 5 1 0
JES-QUEUE-SPACE-QUERY

Responses are translated to wnle format by MCCF (see section 3.6) and placed in WM:

5 1 : (PRINTER-STATUS-REPLY 1MESSAGE- ID I A ~ 8 5 6 2 TADDRESS P R T 4 1 s
TATUS AV 1FORMS l P A R T 1 L I N E - L I M I T NONE -CURRENT-JOB NONE)
5 0 : (PRINTER-STATUS-REPLY 1MESSAGE- ID I A T 8 5 6 2 TADDRESS P R T l 1 s
TATUS OFF 1FORMS l P A R T 1 L I NE-L I M I T 3 0 0 0 0 1CURRENT-JOB NONE)

These responses typically supply values for the attributes of internal model wmes:

3 4 : (PRINTER-STATUS l R E L I A B L E ? NO TADDRESS P R T l 1 S T A T U S NONE
1FORMS NONE 1 L I N E - L I M I T NONE 1CURRENT-JOB NONE)

29: (PRINTER-STATUS l R E L I A B L E ? NO TADDRESS P R T ~ 1 S T A T U S NONE
1FORMS NONE T L I N E - L I M I T NONE X U R R E N T - J O B NONE)

The receipt of such responses trigger infornlation collection rules that update the corresponding

portions of the internal model. Below, the receipt of a PRINTER-STATUS-REPLY wme for each

printer triggers the execution of rules which update the corresponding PRINTER-STATUS wines:

1 2 . JM:PRINTER-STATUS-UPDATE 8 5 1 2 9
1 3 . JM: PR I NTER-STATUS-UPDATE 8 50 3 4

57: (PR I NTER-STATUS 'REL I A B L E ? YES 'ADDRESS P R T l TSTATUS OFF
'FORMS 1 PART T L I NE-L I M I T 3 0 0 0 0 'CURRENT-JOB NONE)

54: (PRINTER-STATUS T R E L I A B L E ? YES TADDRESS P R T ~ 'STATUS AV
TFORMS 1 PART 'L I NE-L I M I T NONE 7CURRENT- JOB NONE)

Similarly, the response to the query regarding the DJ job (which allows the copying of jobs frotn the

queue to tape) arrives, triggering the corresponding information collection rule, and the DJ-JOB w ~ n e

is updated to reflect that the DJ job is currently inactive:

1 4 . JM: DJ-STATUS-UPDATE : FROM-QUERY: DJ-NOT-FOUND 8 1 4 58

6 0 : (D J - J O B 'STATUS I N A C T I V E)

Next, the response to the query regarding the status of the main processor (SYSl) arrives, and the

SYSl wine is updated to reflect that the main processor is currently online:

1 5 . JM:SYS1-STATUS-UPDATE:FROM-QUERY 8 1 3 62

Finally, the response to the query regarding the status of JES queue space arrives, and the

JES-Q-SPACE wlne is updated to reflect that 72% of total space reinains free:

1 6 . JM: JES-Q-SPACE-UPDATE 8 66 1 2

69: (JES-Q-SPACE 1PERCENT-LEFT 7 2)

This is the nonnal situation. JESQ will now wait until it is time to subinit another set of queries:

1 7 . JM:WAIT 1

That time arrives in the trace below, and another set of routine queries is generated:

1 8 . JM:SEND-PRINTER-STATUS-QUERY 2 2 2 7 3 1 0
PRINTER-STATUS-QUERY P R T 4
1 9 . JM:SEND-JES-SPACE-QUERY 2 2 0 75 1 0
JES-QUEUE-SPACE-QUERY
2 0 . JM:SEND-PRINTER-STATUS-QUERY 2 2 2 7 2 1 0
PRINTER-STATUS-QUERY PRT1

The JES queue space query response arrives, and this triggers two rules: JESQ's internal model of the

environ~nent is updated to reflect that now only 3% space left renuins on the queue, and JESQ sets

itself to panic mode:

21. JM:JES-Q-SPACE-UPDATE 8 7 8 69
22. JM: SET-TO-PAN I C-MODE-FROM-NORMAL 7 1 1 8 1

This triggers JESQ's first corrective action. JESQ varies the main processor offline to block the initi-

ation of additional jobs that may create output on the JES queue:

23. JM:VARY-SYS1-OFFLINE 6 83 64 85 1 0

The operator receives his first message on the TOP LEVEL screen:

YESiMVS TOP LEVEL Pending: 0 --- --->

VARY SYS1 OFFLINE

PFOl PF02 PF03 Pi04 PF05 PF06 PF07 PF08 PF09 PFlO P F l l PFl2
U.I. EXIT WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

The operator can display the associated detailed screen as previously described:

YES/MVS AUTHORIZE Pending: 0
--- --->

TOP-LEVEL MSG: VARY SYSl OFFLINE

SITUATION: JES queue space i s a t t he panic l e v e l . SYSl
i s onl ine, a l lowing add i t i ona l jobs t o be
i n i t i a t e d and f u r t h e r deplete the remaining
space. The system w i l l crash i f more output
i s generated.

EXPLANATION: SYSl must be va r i ed o f f l i n e i n order t o
p ro tec t t he 1 i t t l e space t h a t remains.
Press U-DO, I-DID, o r NO-DO.

MVS COMMAND: 8 f vary sys1 ,o f f l i ne

PFOl PF02 PF03 PF04 PF05 PF06 PF07 PF08 PF09 PFlO P F l l PF12
EXIT U-DO 1-010 NO-DO ERRST HOME

There are two modes of operation. In "advisory mode", the operator authorizes expert system actions

on a command by command basis via terininal keys (U-DO, I-DID, NO-DO) on the detailed screen

shown above. In "authorized mode", actions not requiring manual intervention are taken automat-

ically, so the screens shown represent recent expert system actions. Of course, actions requiring

manual intervention (e.g., mounting a tape) are always advised regardless of the lnode of execution.

Upon varying the main processor offline, JESQ receives a response from the operating system which

triggers a rule that updates the SYSl wme. JESQ also generates a GOAL wme for itself to vary the

main processor back online once the state of the JES queue has improved:

24. JM: SYS 1 -STATUS-UPDATE : FROM-VARY 8 64 88

87: (GOAL 1TYPE VARY-SYSI-BACK-ONL I NE)

Next, JESQ adjusts the JES queue space query interval (causing queries to be submitted more often),

since its actions should cause rapid changes in queue space status:

25. JM: SET-FAST-JES-QUERY- INTERVAL 5 84 20

JESQ then notices that a printer is offIine in the inidst of a queue space problem, prohibiting jobs

from printing and being deleted from the queue. Of course, JESQ could vary the printer online au-

tomatically, but an operator could be changing paper or performing some other task that renders it

dangerous to do so. Instead, JESQ sends a message to the operator's console, alerting him to the

offline printer condition:

26. JM:OFFLINE-PRINTER-CHECK 4 83 18 57 10

YES/MVS TOP LEVEL Pend ing : 0
--- --->

VARY SYSl OFFLINE
INVESTIGATE OFFLINE 3211 PRINTER: PRTl

PFOl PF02 PF03 PF04 PF05 PF06 PF07 PF08 PF09 PFlO P F l l PF12
U . I . EX IT WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

Next, JESQ submits a batch of queries that support other problem-state knowledge-based actions.

In particular, JESQ searches for a tape drive on which to start DJ, requests a list of the jobs queued

for printers in the environment, and a list of the jobs that are being held on the queue by online ter-

minal users:

27. JM:SEND-TAPE-DRIVE-STATUS-QUERY 2 8 3 2 1 4 3 6 0 1 0
TAPE-DRIVE-STATUS-QUERY 2 8 0
28. JM:SEND-TAPE-DRIVE-STATUS-QUERY 2 8 3 2 1 4 1 60 1 0
TAPE-DR IVE-STATUS-QUERY 2 8 1
29. JM:SEND-TAPE-DRIVE-STATUS-QUERY 2 8 3 2 1 3 9 60 1 0
TAPE-DR I VE-STATUS-QUERY 2 8 2
3 0 . JM:SEND-PRINTER-QUEUE-QUERY 2 8 3 2 3 37 1 0
PRINTER-QUEUE-QUERY P R T l
3 1 . JM:SEND-PRINTER-QUEUE-QUERY 2 8 3 23 3 2 1 0
PR I NTER-QUEUE-QUERY P R T ~
32. JM:SEND-HOLD-QUEUE-STATUS-QUERY 2 83 2 4 2 6 1 0
HOLD-QUEUE-STATUS-QUERY

The list of jobs (set of wmes) queued for the 3211 printer (PRT1) happen to arrive first, one wine

for each job:

1 0 3 : (wTR-QUEUE-REPLY 'MESSAGE-ID I A T 8 1 3 1 1 D E V I C E P R T l 1 J O B - I D
3 0 0 0 1FORMS l P A R T 'DEVICE-TYPE PRT l H E L D ? N 1 P R I N T - L I N E S 4 0

0 0 0 1
1 0 2 : (wTR-QUEUE-REPLY 1MESSAGE- ID I A T 8 1 3 1 1 D E V I C E P R T l 1 J O B - I D

2 0 0 0 1FORMS l P A R T 1 D E V I C E - T Y P E PRT l H E L D ? N 'PRINT-L INES 1 0
0 1
1 0 1 : (wTR-QUEUE-REPLY 1MESSAGE- ID l A T 8 1 3 1 1 D E V I C E P R T l 1 J O B - I D

1 0 0 0 1FORMS 1PART 1 D E V I C E - T Y P E PRT -HELD? N 1 P R I N T - L I N E S 1 0
0 1

These responses are then analyzed by a group of rules that compute line totals by printed-forill,

classify the jobs by size, and produce a summary wnle for the queue. Meanwhile, the operator has

varied the 3211 printer online, and the response is captured by JESQ, triggering the update of the

PRINTER-STATUS wlne as well:

3 3 . JM:RECORD-MEDIUM-JOBS 9 103 38
34. JM:COUNT-ONEPART-LINES 9 106 108
35. JM:COUNT-TOTAL-LINES 9 110 112
36. JM:COUNT-ONEPART-LINES 9 102 116
37. JM:COUNT-SMALL-JOB-LINES 9 118 120
38. JM:COUNT-TOTAL-L I NES 9 122 124
39. JM: COUNT-ONEPART-L I NES 9 101 128
40. JM:COUNT-SMALL-JOB-LINES 9 130 132
41. JM:COUNT-TOTAL-LINES 9 134 136
42. JM: CLEANUP-WTR-QUEUE-REPLY: COUNTED-JOBS 9 138
43. JM:CLEANUP-WTR-QUEUE-REPLY:COUNTED-JOBS 9 126
44. JM: CLEANUP-WTR-QUEUE-REPLY: COUNTED-JOBS 9 11 4
45. JM: PR I NTER-QUEUE-UPDATE 9 140 36
46. JM: PR I NTER-STATUS-UPDATE 8 104 57

Referring to the internal model wlues shown below, the situation is as follows: JES queue space is

low, the 3211 printer is set to print only jobs not exceeding 30000 lines (-LINE-LIMIT 30000), the

printer is about to idle with this setting (?SMALL-JOB-LINES 200), and there is at least one job

which exceeds this limit (-MEDIUM-JOB 3000) waiting to print:

150: (PRINTER-STATUS lRELIABLE? YES ?ADDRESS PRT1 %TATUS AC
TFORMS 1PART 1 L I NE-L IM I T 30000 XURRENT-JOB 1234)

147: (PRINTER-QUEUE TRELIABLE? Y E S TADDRESS PRT1 TCONFID-LINES
0 1ALD-LINES 0 TONEPART-LINES 4 0 2 0 ~ 1 1SHORT-LINES 0 1CONFIDS

-LINES 0 1MEDIUM-JOB 3000 1BIG-JOB NONE 1SMALL-JOB-LINES 200
TTOTAL-L I NES 40200)

Upon recognition of this situation, JESQ increases the line limit to allow job 3000 (and possibly

others) to print, freeing queue space:

47. JM: INCREASE-321 1-MAXLINES 6 83 18 150 147 10

And the operator receives a high level message on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --->

VARY SYSl OFFLINE
INVESTIGATE OFFLINE 3 2 1 1 PRINTER: PRTl
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER PRTl TO 9 9 9 9 9

PFOl PF02 PF03 PF04 PF05 PF06 PF07 P F 0 8 PF09 P F l O P F l l PF12
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

As in the case of the main processor, JESQ also generates a goal to reset this line limit once queue

space improves:

155: (GOAL ? T Y P E R E S E T - 3 2 1 1 - M A X L I N E S TADDRESS PRTI)
8 7 : (GOAL TTYPE VARY-SYS1-BACK-ONL I NE)

Of course, raising the line limit will not solw the queue space problem (a 40000 line job did not bring

queue space down to 3%). Rather, this action will merely buy time while JESQ continues to search

for the real culprit.

Next, the response to the query regarding the status of the model 3500 printer arrives. This printer

is shared between the target system and other systems in the environment. Upon recognition that the

printer is allocated to another system, JESQ snatclles the printer in case a use for it is found during

the remainder of the problem solving process:

48. JM: PR I NTER-STATUS-UPDATE 8 1 5 6 54
49. JM:RESERVE-THE-3800-FOR-LATER-ACTION 5 83 1 9 1 5 9 1 0

As usual, the operator receives a message on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --->

VARY SYSl OFFLINE
INVESTIGATE OFFLINE 3 2 1 1 PRINTER: P R T l
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER PRTl TO 9 9 9 9 9
DRAIN PRT4 AND ALLOCATE I T TO THE M SYSTEM

PFOl P F O i PF03 PF04 PF05 PF06 PF07 PF08 PF09 P F l O P F l l PF12
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

Next, responses to tape drive queries begin to arrive, triggering rules that update the corresponding

portion of JESQ's internal model of the environment:

5 0 . JM:TAPE-DR IVE-STATUS-UPDATE 8 1 6 4 4 0
5 1 . JM:TAPE-DR IVE-STATUS-UPDATE 8 1 6 3 4 2
52. JM:TAPE-DR I VE-STATUS-UPDATE 8 1 6 2 44

Tape drives 281 and 282 are unavailable (-STATUS OFF), but drive 280 is available (-STATUS

AV) to start DJ:

1 7 3 : (TAPE-DR I vE-STATUS -REL I ABLE? YES TADDRESS 2 8 0 l S T A T U S AV
1
I

1 7 0 : (TAPE-DRIVE-STATUS l R E L I A B L E ? YES TADDRESS 2 8 1 -STATUS OF
F 1
1 6 7 : (TAPE-DR IVE-STATUS 7 R E L I ABLE? YES TADDRESS 2 8 2 1 S T A T U S OF
F 1

With this information, JESQ initiates the DJ job so that large jobs on the JES queue can be quickly

copied to tape when discovered:

5 3 . JM: START-DJ-JOB 5 8 3 1 7 3 6 0 1 0

The operator receives a message on the expert system console:

YESiMVS TOP LEVEL P e n d i n g : 0 --- --->

VARY S Y S l OFFLINE
INVESTIGATE OFFLINE 3 2 1 1 PRINTER: PRTl
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER P R T l TO 9 9 9 9 9
DRAIN PRT4 AND ALLOCATE I T TO THE M SYSTEM
START DJ ON TAPE DRIVE 2 8 0

P F O l PF02 PF03 PF04 PFO5 PF06 PF07 P F 0 8 PF09 PF lO P F l l PF12
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

Upon initiating DJ, JESQ receives a response from the operating system and updates its internal

model:

54. JM: DJ-STATUS-UPDATE : FROM-START 8 60 177

To illustrate another capability, assume that the operator himself submits a JES queue space query

to see how JESQ is doing. JESQ will also capture this response in an attempt to use the most recent

information. Referring to the trace below, it seems that raising the 3211 line liinit has freed a few

percentage points of JES queue space, so that JESQ can now operate in solve mode:

55. JM:JES-Q-SPACE-UPDATE 8 181 81
56. JM:SET-TO-SOLVE-MODE-FROM-PANIC 7 83 184

184: (JES-Q-SPACE 1PERCENT-LEFT 8)

Since 83'0 space left is sufficient to resume job initiation, JESQ varies the inain processor back online:

57. JM:VARY-SYS1-BACK-ONLINE 6 186 90 87 10

And the operator receives a message on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --->

VARY S Y S l O F F L I N E
INVESTIGATE O F F L I N E 3 2 1 1 PRINTER: P R T l
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER P R T l TO 99999
D R A I N PRT4 AND ALLOCATE I T TO THE M SYSTEM
START D J ON TAPE D R I V E 2 8 0
VARY S Y S l BACK ONLINE

P F O l P F 0 2 P F 0 3 P F 0 4 P F 0 5 P F 0 6 P F 0 7 P F 0 8 P F 0 9 P F l O P F l l P F 1 2
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

The operating system confirms the action, and JESQ uses this response to update its internal model

accordingly:

58. JM:SYSl-STATUS-UPDATE:FROM-VARY 8 90 188

And now the culprit emerges. The response to the query of the datasets held for online viewing ar-

rives, and one such dataset is responsible for problem. An inconsiderate user is storing a million-line

dump on the JES queue:

192: (HOLD-QUEUE-STATUS-REPLY 7MESSAGE-ID 1 A ~ 8 1 3 1 WSERDAVE
JOB-ID 5555 1PRINT-LINES 1000000)

Were JESQ still operating in panic mode, this dmnp would immediately be copied to tape (recall that

DJ has already been initiated). However, in solve mode, JESQ sends a message to the online user

requesting the removal of the dataset and notifying hini that failure to do so within ten minutes will

resuIt in the removal of his dump:

59. JM: REQUEST-USER-ACT I ON-ON-HOLD-QUEUE-JOBS 5 186 179 192 10

Again, the operator receives a message on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --->

VARY S Y S l OFFLINE
INVESTIGATE OFFLINE 3 2 1 1 PRINTER: P R T l
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER P R T l TO 99999
DRAIN PRT4 AND ALLOCATE I T TO THE M SYSTEM
START D J ON TAPE DRIVE 2 8 0
VARY SYSl BACK ONLINE
REQUEST ACTION FROM USER DAVE ON TSO HOLD JOB 5 5 5 5

PFOl PF02 PF03 PF04 PF05 PF06 PF07 PFO8 PF09 P F l O P F l l PF12
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

In the meanwhile, JESQ submits another batch of queries and perfornls model maintenance actions:

6 0 . JM:TAPE-DRIVE-STATUS-INVALIDATI0N:DJ-ACTIVE 3 179 1 7 0
6 1 . JM:TAPE-DR IVE-STATUS- I N V A L I D A T I O N : D J - A C T 3 1 7 9 1 6 7
6 2 . JM:SEND-HOLD-QUEUE-STATUS-QUERY 2 1 8 6 2 4 2 0 2 1 0
HOLD-QUEUE-STATUS-QUERY
6 3 . JM:SEND-PRINTER-QUEUE-QUERY 2 186 2 3 2 0 1 1 0
PR I NTER-QUEUE-QUERY P R T 4
64. JM:SEND-PRINTER-QUEUE-QUERY 2 1 8 6 2 3 200 1 0
PRINTER-QUEUE-QUERY F R T l
65. JM:SEND-PRINTER-STATUS-QUERY 2 2 2 1 9 6 1 0
PRINTER-STATUS-QUERY PRT1
66. JM:SEND-JES-SPACE-QUERY 2 94 1 9 5 1 0
JES-QUEUE-SPACE-QUERY
67. JM: SEND-PR I NTER-STATUS-QUERY 2 2 2 1 9 4 1 0
PRINTER-STATUS-QUERY P R T ~

Upon passage of the 10 nlinutes allotted to the user and receipt of the last online job queue response,

JESQ notes that the dump is still on the JES queue, and copies the dutnp to tape, removing it from

the queue:

2 1 4 : (HOLD-QUEUE-STATUS-REPLY 'MESSAGE- I D 1 ~ ~ 8 1 3 1 'USER DAVE
JOB- I D 5555 1 P R I N T - L INES 1 0 0 0 0 0 0)

Again, the operator receives a lllessage on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --- >

VARY SYSl OFFLINE
INVESTIGATE OFFLINE 3 2 1 1 PRINTER: PRTl
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER PRTl TO 99999
DRAIN PRT4 AND ALLOCATE I T TO THE M SYSTEM
START D J ON TAPE DRIVE 2 8 0
VARY SYSl BACK ONLINE
REQUEST ACTION FROM USER DAVE ON TSO HOLD JOB 5 5 5 5
D J TSO HOLD QUEUE JOB 5 5 5 5

PFOl PF02 PF03 PF04 PF05 PFO6 PF07 PFO8 PF09 P F l O P F l l PF12
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

The response to the latest JES queue space query arrives, indicating that the problem has been solved.

JESQ returns to normal mode processing:

69. JM: JES-Q-SPACE-UPDATE 8 218 I84
70. JM:SET-TO-NORMAL-MODE-FROM-OTHER 7 186 221

Recall, however, that JESQ has altered a number of parameters in both the external environment and

its own internal memory. Upon recognition that queue space is back to normal and of the goals cre-

ated at the time of corrective action, JESQ resets the appropriate parameters.

SYSl was varied offline, but had already been varied back online when solve mode was achieved.

However, JESQ speeded up its own queries of the status of the JES queue, and now resets the query

interval:

71. JM: SET-NORMAL- JES-QUERY- INTERVAL 5 224 94

Similarly, JESQ terminates DJ, freeing a tape drive:

7 2 . JM:TERMINATE-DJ-JOB 4 223 179 176 10

And the operator receives a message on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --- >

VARY S Y S l OFFL INE
INVESTIGATE O F F L I N E 3 2 1 1 PRINTER: P R T l
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER P R T l TO 9 9 9 9 9
D R A I N PRT4 AND ALLOCATE I T TO THE M SYSTEM
START D J ON TAPE D R I V E 2 8 0
VARY S Y S l BACK ONLINE
REQUEST ACTION FROM USER DAVE ON TSO HOLD JOB 5 5 5 5
D J TSO HOLD QUEUE JOB 5 5 5 5
CANCEL D J

P F O l P F 0 2 P F 0 3 P F 0 4 P F 0 5 P F 0 6 P F 0 7 P F 0 8 P F 0 9 P F l O P F l l P F 1 2
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

The operating system confirms that DJ has been cancelled, and JESQ updates its internal model to

reflect this:

73. JM: DJ-STATUS-UPDATE : FROM-TERM I NATE 8 179 229

DJ is intended as a facility for temporarily storing JES queue datasets, and the owning users may wish

their datasets to be restored. Of course, JESQ could automatically restore the datasets from tape to

the JES queue, but this could potentially result in an infinite loop, repeatedly moving the datasets

from the queue to tape and back. The operator frequently calls the user once the problem has been

resolved to investigate the importance of the dataset, and copies it back to the queue if appropriate.

Since JESQ may copy jobs to tape automatically (in "authorized nlodef') it must additionally list such

jobs for the operator so that he can investigate the situation. Thus, JESQ displays the names of the

jobs copied (in this case only one) upon recognition that queue space is nornlal and that DJ is no

longer running:

74. JM:D lSPLAY-DJED-JOBS 5 223 231 217 10

And the operator receives a message on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --->

VARY S Y S l OFFLINE
INVESTIGATE OFFLINE 3 2 1 1 PRINTER: PRTl
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER P R T l TO 9 9 9 9 9
DRAIN PRT4 AND ALLOCATE I T TO THE M SYSTEM
START D J ON TAPE DRIVE 2 8 0
VARY SYSl BACK ONLINE
REQUEST ACTION FROM USER DAVE ON TSO HOLD JOB 5 5 5 5
D J TSO HOLD QUEUE JOB 5 5 5 5
CANCEL DJ
YOU MAY WANT TO BRING BACK PREVIOUSLY DJED JOB: 5 5 5 5

PFOl PF02 PF03 PF04 P F 0 5 PF06 PF07 PFO8 PF09 P F l O P F l l PF12
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

Next, the response to the previous query of the status of the 3211 printer arrives. JESQ recognizes

that it has reset the inaximuill line limit on this printer and that queue space has returned to normal.

The internal model is updated upon receipt of the printer status response, triggering the rule that re-

sets the line limit:

75. JM: PR I NTER-STATUS-UPDATE 8 234 152
76. JM:RESET-3211-VAXLINES 4 223 155 237 10

And the operator receives a message on the expert system console:

YES/MVS TOP LEVEL P e n d i n g : 0 --- --->

VARY S Y S l OFFLINE
INVESTIGATE OFFLINE 3 2 1 1 PRINTER: PRTl
INCREASE MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER P R T l TO 9 9 9 9 9
DRAIN PRT4 AND ALLOCATE I T TO THE M SYSTEM
START D J ON TAPE DRIVE 2 8 0
VARY SYSl BACK ONLINE
REQUEST ACTION FROM USER DAVE ON TSO HOLD JOB 5 5 5 5
D J TSO HOLD QUEUE JOB 5 5 5 5
CANCEL D J
YOU MAY WANT TO BRING BACK PREVIOUSLY DJED JOB: 5 5 5 5
RESET MAXIMUM L I N E L I M I T ON 3 2 1 1 PRINTER P R T l TO 3 0 0 0 0

PFOl PF02 PF03 PF04 P F 0 5 PF06 PF07 PFO8 PF09 P F l O P F l l PF12
U . I . E X I T WRKNG SELCT DONE BACK FWD RFRSH ERRST HOME

With the queue space problem resolvecl, and environinental parameters reset to their original values,

JESQ waits ...
77. JM:WAIT 71

... and returns to its normal monitoring cycle:

78. JM:SEND-JES-SPACE-QUERY 2 227 243 10
JES-QUEUE-SPACE-QUERY

This trace demonstrates JESQ's ability to:

protect the target systeni from disaster (e.g., vary the main processor offline),

setup for emergency processing (e.g., start DJ, allocate the 3500 printer),

keep records for the operator not lnaintained by the target system (e.g., list of jobs copied to

tape),

buy time in solving a problem (e.g., increasing the 321 1 tnaxilnt~ni line limit),

take corrective actions that reflect concern for user satisfaction (e.g., giving the user ten i~linutes

to take action before removing his dataset), and

alert the operator to problenls involving state variables beyond its sensing resGurces (e.g., the

offline 32 1 1 printer).

3.6 THE EXPERT SYSTEM IN ITS ENVIRONMENT

This section briefly describes the expert system's position within the overall configuration of the op-

erations environment as shown in figure 14.

--------------- I CCOP on VM I
I T a r g e t System I - - - - - - - - - I (message and command I --------------- 1 t r a f f i c c o o r d i n a t i o n) I

I
I
I

I YES/MVS I i I YES/MVS I 1 JESQ and o t h e r 1
I Operator I - - - - - - - I D i s p l a y] - - - - - - I YES/MVS ~ o m a i n l
I Console I ! I Cont ro l I I Expert Sys terns 1

F i g u r e 14: E x p e r t Systems i n Operat ions Envi ronment

In order to insulate the expert systein from problenls in the target system that it controls, the expert

systeln is nln on a separate processor. The requirement that operational expertise be available in the

event of target systein probleins is ainong the primary factors that discourage iiiiple~nentation of such

expertise in the target operating systeln itself.

YES/MVS runs in three virtual machines under IBM's VM/SP operating system:

1. The MVS Communications Control Facility (MCCF) Virtual Machine provides the communi-

cations interface between the expert system virtual machine and the target MVS system. MCCF

controls the receipt of lnessages froin MVS and the for~natting of co~niliands specified by the

expert system. IBM Yorktown's Centralized Coalputer Operation Project (CCOP) [21] is used

to capture message strean~s and to submit commands. MCCF effectively insulates the expert

systeln fro111 the format of MVS and JES inessages/cominands, passing/receiving the equivalent

information to/from the expert virtual inachine in OPS5 wme format. This alleviates the

knowledge engineer froin concern about parsing messages and extracting internal character

strings, insulates the expert systein from changing conl~lland fornlats as new operating system

releases are installed, and makes the expert systeln code more readable. Message parsing and

con~niand building are accomplished via a table-driven nlatch and translate capability in MCCF.

2. The Operator Display Virtual Machine provides the conlnlunications interface between the hu-

man operator and the expert system machine. This siiirilarly relieves the expert system lnachine

of parsing operator input, formatting display screens, and examining tables that indicate whether

conlnlands are authorized for automatic submission to the target systeln or may only be advised.

3. The Eqer t System Virtual Machine executes the rules in the knowledge base, receiving niessages

and subnlitting commands via the MCCF virtual machine. The expert systenl also sends text to

and receives responses from the operator via the Operator Display machine. All of the logically

distinct expert systems mentioned in section 1 are executed in this single virtual machine.

This separation of functions provides for the self-containment of the knowledge base, so that opera-

tional policies (i.e., rules) are more easily read and modified.

4. JESQ DEVELOPMENT METHODOLOGY

The development of JESQ is described here to augment the data on the development of expert sys-

tems in industrial environments. While literature that describes such projects (e.g., [22]) is beginning

to emerge, it is currently sparse. The develop~nent of JESQ is interesting in this regard fro111 both

organizational and teclmical points of view:

Organizational Challenges: YES/MVS as a whole represents an obvious threat to operations

staff. Yet the knowledge engineering process requires significant time, effort, patience, and in-

terest on the part of the experts involved. While the perceived threat from expert systems re-

presents a potential problem for any knowledge engineering effort, this is more of an obstacle

in the problem donlains of non-unionized non-professionals. Unlike the real-world domains to

which expert systems have generally been applied, automated operations poses a realistic danger

to those elnployed in computer operations, especially the operators then~selves.

Technical Challenges: YES/MVS is among the first expert systems that executes contini~ously

in realtime and exerts active control over tile environment it monitors. The implications of these

characteristics go beyond the architectural issues discussed thus far, affecting testing methodol-

ogy as well.

The following sections describe the development of JESQ in detail.

4.1 KNOWLEDGE ACQUISITION

The priniary knowledge sources for JESQ inclttded an operations expert dedicated full-time to the

YES/MVS project, MVS operators and operations managers, resident systelus progralnmers, system

manuals, and operator console traces of responses to actual problems.

The b d k of the JESQ knowledge base was derived from informal interviews with the primary expert

and operations staff. After first studying MVS manuals to learn basic concepts and vocabulary, the

68

author held a series of long and intensive meetings with the priinary expert, culminating in the for-

mulation of a conceptual fratnework for managing JES queue space.

The author then approached several operators on different shifts individually, gaining additional

space iilanageillent strategies and reviewing the strategies already collected. Systems programmers

were consulted in cases where operators could not offer a justification for their actions beyond their

specification in installation procedures. Where operators offered conflicting viewpoints, operations

managers (possessing a Inore global perspective) provided additional clarification.

Next, the author procluced a functional document detailing a comprehensive strategy for managing

JES queue space. This document was distributed to the knowledge sources consulted, requesting

feedback regarding oinissions and inisinterpretations. This served the dual purpose of correcting the

author's n~isconceptions while generating interest among the operations staff by further involving

each of them in the project. Gathering the feedback of several operators also served to uncover con-

siderations and additional strategies that had not surfaced in previous disctrssions. In general, oper-

ators seemed more interested in the notion that their personal problem resolution strategies would

potentially be implemented throughout IBM than fearful that their skills would be devalued by auto-

mation. In part, this was due to their confidence in IBM's policy of retraining employees whose skills

have become obsolete.

A period of intensive observation followed. The author spent several nights on the "bridge" watching

the operators perform their tasks in a real setting and examined traces of operator actions when in-

cidents occurred. These activities, too, unearthed several details that the experts had omitted or not

emphasized. A comlnon theine in expert systems development is that experts often onlit or only

briefly discuss knowledge that is entirely opaque to the knowledge engineer. In part, this is what

motivates an architecture that facilitates incremental development.

A prototype systeln was developed to verify that the spirit of the probletn had been captured. Fol-

lowing verification of the prototype by the experts, a long period of iterative information gathering,

testing, and debugging con~menced. Information gathering took the form of additional discussions

and "rule walkthrus" with the operations staff. Of course, testing against the live target systein under

operator supervision provided the richest environment for knowledge refinement.

4.2 TESTING AND KNOWLEDGE BASE REFINEMENT

A conlbination of techniques were enlployed to test JESQ. The ideal would have been to construct

an MVS sinlulator against which to test JESQ, but the complexity and dynan~ics of the MVS envi-

ronment prohibited this approach. Thus, it was necessary that the real environment serve as the pri-

mary testing ground for JESQ.

Trivial logic bugs and syntax errors were removed in a "timeless" environment by loading JESQ with

fabricated target system responses to mock actions. A "random sabotage" scheine was einployed in

the real environment under which the JES queue was saturated with jobs of various characteristics

(each recognized by different rules in the knowledge base) and key devices %ere disabled. A "con-

trolled sabotage" scheme was also employed, involving the manipidation of specific resources to

trigger specific rules that would not normally be invoked in the majority of problem situations.

Testing in the real environment presented several challenges. Cominunication difficulties presented

a problem in that target MVS systein messages were soinetiines lost in transmission. Of course, a

human operator experiences the same problem.

Testing costs presented another difficulty. For example, JESQ may trigger the printing of a large

mock duinp during testing. While this action would be appropriate in an actual crisis, the con~puting

center was naturally reluctant to absorb the cost of printing such a duinp for testing purposes.

Balancing testing objectives with service degradation introduced another testing consideration. While

tests involving gross sabotage of the target system were performed off shift, some number of users

were nonetheless affected.

Reminiscent of operating systein testing, it was often difficult to duplicate the conditions under which

a bug had previously been uncovered in order to test its subsequent correction. Recall, however, that

70

portions of the target system are explicitly represented in JESQ (in working memory), as are the

conditions that trigger JESQ action (in the antecedents of the rules). Thus, some of these conditions

were easily identified. Of course, the difficulty arose in those cases where an action repeatedly failed

due to target syste111 behavior that had not been explicitly modelled in JESQ.

Another problem concerned the ability to distinguish between operator objections to JESQ actions

that could be attributed to style rather than substance. Again, one of the nlotivations behind JESQ

is to standardize operator activities and make this style-substance distinction once and for all, leaving

it recorded in the knowledge base. To the extent that individual style clouds the evaluation of JESQ's

performance, it may be viewed as a testing difficulty. Of course, separating style from substance is

general problenl for knowledge engineering and is not particular to JESQ.

A significant problein concerned testing an automated facility in an "advisoryf' mode. As described,

the expert system can (as controlled by software switches that may be reset by the operator) either

take actic s auto~natically or can give advice to the operator on how to handle situations. However,

there exist significant differences between fully autonlated execution and advisory executioil from the

expert system's perspective. For example, handling high volunles of queries, responses, and actions

are among the principle advantages of automation, yet testing in advisory mode discourages the out-

put of high volumes of advice. Also, the semantics of ignored advice are ambiguous, failing to dis-

tinguish between erroneous advice and a busy operator. A related issue, since JESQ may offer

recommendations faster than a human operator can execute them, such recommendations may expire

by the time the operator carries them out. Multiple recoin~nendations regarding the same entity may

accumulate on the operator's screen over time, creating confusion regarding which advice is appro-

priate.

While testing a realtime active expert systein has not been trivial, the author has tested most actions

encoded in the knowledge base and has produced the desired behavior as defined by the operators

observing the tests. Of course, such informal testing lacks the rigor of a fornlal evaluation, which is

discussed in the next section.

4.3 FORMAL EVALUATION

JESQ runs regularly at the IBM Yorktown Computing Center and has received a favorable response

froin the operations staff. The system runs in advisory nlode during the day, and fully authorized at

night. While not enough data has been collected under experimental conditions to report the results

of a fornlal evaluation, the requirements for such an evaluation are outlined in this section.

A formal evaluation of JESQ lnrrst measure the criteria of interest to each of the affected groups at

the installation. These criteria vary by group as follows:

Operations Management will be most interested in the improvenlent in target systenl availability

and perfonnance resulting froin automating queue space management. The flexibility with

which installation policy is reviewed and mcLlfied is also of prinlary importance to this group.

In addition, management will be concerned the availability and performance of the expert

system itself.

Operations Personnel will focus on the performance of the expert system at the action level. Pa-

rameters to measure inclucle the correctness and tiineliness of space management actions, and

their sequence of execution. Operators will also be concerned with the hunlan engineering as-

pects of JESQ, particularly its ability to clearly identify the context in which actions have been

perforined or advised.

System Programmers will be concerned with the understandability and modifiability of the JESQ

knowledge base and their ability to test it. Regarding their role as the correctors of systeiil

problems, systenls programmers will also be concerned with JESQ's consistency of action, and

incident report uniformity and content.

Performance Analysts and Capacity Planners will be sinlilarly concerned with consistency of

action, and incident reporting uniforlnity and content.

72

Ideally, this data would be collected from several sites running JESQ, channeled to a central collection

point, and collectively analyzed.

5. CRITICAL REVIEW AND ALTERNATIVE APPROACHES

The current iinpleinentation of JESQ successfully resolves JES queue space problelns under test

conditions in the real environment, and sl~ould provide the siinplicity of representation required for

continued review and maintenance of the knowledge base. However, suboptinlalities in JESQ can be

identified. Sotne of these are particular to the application while others more reflect the liinitations of

current expert systems technology. An exainination of the problems in JESQ in light of the require-

ments for ongoing maintenance, and the identification of generic types of knowledge inherent in

realtiine active process inonitoring tasks together suggest the developinent of a language for process

monitoring expert systems.

5.1 LIMITATIONS OF JESQ

This section describes a set of related shortco~nings in JESQ, focussing on issues of prograin control

and knowledge representation, and their suitability in the context of the require~nents of the applica-

tion.

Granularity of Knowledge Representation

JESQ is intended to approximate the level of description found in an installation run book. JESQ's

obvious limitation in this regard is that it encodes not only high level policy descriptions, but specifi-

cations for query subinission, response collection, and data inaniptilation as well, all in the saine re-

presentational fralnework (production rules). Most run books are not written at this level of detail,

but knowledge of when to solicit information, what inforination to solicit, and how to solicit that in-

forination inust be encoded somewhere in JESQ.

Of course, once the infornlation gathering structure has been built (i.e., n~ le s have been coded to so-

licit, collect, and maintain the required information), natural loolcing policy rules can be added to and

74

deleted fro111 the Knowledge-Based Action rule group without modifying other portions of the

knowledge base in most cases. In those other cases where a policy that relies on information not al-

ready maintained by existing rules must be added to the Knowledge-Based Action group, JESQ's rule

group classification scheme facilitates the identification of the rules needed to support the newly-

added policy (i.e., every condition is supported by a query submission rule, a response collection rule,

etc.). However, specifying supporting processes at the same level of representation as high-level pol-

icies can be viewed as something of a linlitation in that they really represent two different kinds of

knowledge. Declarative rules are most naturally employed in JESQ to encode knowledge of what to

do under a specified set of conditions, whereas descriptions of processes that support the verification

of such conditions and of the steps by which the associated action is performed inore express know-

ledge of how to do something. For example, the policy nlIe of Figure 4 (section 3.2) in soale sense

expresses what to do: IF there exists a queue space problem AND there exists a job in hold status

which exceeds 30000 lines THEN release the job. How to do this may be expressed as: submit queries

regarding the status of JES queue space and of the job queue and collect the associated responses,

update JESQ's internal model accordingly, and finally, submit the cornilland that will result in the

release of the job, provided that the mentioned conditions are satisfied.

JESQ could be improved in this regard by providing progra~nnling constructs which allow for the

separation of knowledge about what froin knowledge about how. One way to accomplish this sepa-

ration would be to introduce the notion of action procedures which specify the subn~ission of queries

and collection (and manipulation) of responses required to verify the conditions under which a po-

tential action is appropriate, and the sequence of steps required to accoinplish that action. Such action

procedures could then be einbedcled in a planner that schedules potential actions on the basis of their

anticipated utility in solving the problem at hand.

Eligibility Knowledge, Modularity, and Local Intelligence

Again, our premise is that we want the installation to think of JESQ (with regard to execution and

maintenance) as an automated run book, rather than a computer program. While JESQ is designed

wit11 the objective of mapping operational policies into isolated sets of rules, its maintainers will still,

however, be unable to disregard considerations of program control. That is, JESQ is a computer

program, not a run book, althougl~ its architecture is motivated by an attempt to blur this distinction,

and does so with a reasonable degree of success.

JESQ's knowledge base is not devoid of control constructs, in part, because the knowledge-

application heuristics built into the OPS5 inference engine do not closely mirror those of human op-

erators who "apply knowledge" in the JES queue space domain. A general expert system building

tool, OPS5 strives to implell~ent general (domain-independent) problem-solving heuristics, omitting

an isolated structure in which to store what we might call action eligibility knowledge in the context

of process control applications. For example, knowledge that an action sl~ould only be attenlpted n

times over a particular teinporal interval would be classified as eligibility knowledge. There is no

place to store such knowledge in OPS5 other than in the LHS of rules, and we would like to encode

only descriptions of operational events in the LHS, since the recognition of such events and their as-

sociated actions are what the experts consider to be their expertise. Eligibility knowledge is regarded

more as "common sense" knowledge in this domain. For example, it would not occur to an experi-

enced operator to explain to a novice that it would be inappropriate to attempt a given action every

few microseconds. Creating a separate location in JESQ to house eligibility knowledge would serve

to illuminate the presence of such knowledge for knowledge base maintainers, while allowing the

encoding of event-response pairs that onlit such eligibility knowledge fro111 their LI-IS.

Thus, the problem in this area is that selecting instantiations (i.e., n ~ l e s and the wn~es that match their

LHS) on the basis of recency of information and specificity of conditions is of limited value in the

JESQ domain, omitting criteria like "absolute successful execution limit" and "minimu~n intervals

between attelnpted executionsf' for selecting potential operational actions. Augmenting the algorithiil

with the capability to resolve rule conflicts across functional groups (see section 3.3) results in a

knowledge application strategy that more closely conforms to the requirements of action selection in

the queue space management domain (implementing selection heuristics such as "delete old responses

before subinitting queries that will generate fresh ones"), but is still too general to allow installation

policy makers to add event-response pairs to JESQ without considering their effects in the global

context of the system's execution. That is, where the inlpletnented conflict resolution criteria fail to

capture knowledge-application requirements, control inechanistns must be coded in the rules them-

selves. In part, the goal of knowledge nlodularity and independence is achieved to the degree that

such control mechanisaa are minimized. That is, we want the ability to add policies (event-response

pair rules) in a local fashion, and explicitly specify knowledge about when such policies are to be in-

voked to the interpreter in such a way that this knowledge is isolated fronl the event-response pairs

that are naturally expressed in production rules. In lieu of this capability, the knowledge engineer is

forced to achieve a balance between (1) modularity and uniformity of knowledge representation and

(2) perforinance degradation clue to the omission of explicit control knowledge in the rules.

The cost of the modularity achieved i ~ , JESQ is a certain "local intelligence". The decoupling of query

submission, response collection, garbage collection, and knowledge-based command subittission,

coupled with the o~nission of action eligibility knowledge in JESQ results in suboptimal (though ac-

ceptable) performance in some cases. For example, the firing of a rule that submits an effective cor-

rective co~nmand may be delayed by the asynchronous submission of queries that illtiinately supply

the state variables required to trigger that rule. In the spectral case, a rule that submits a corrective

command may be fired "too many1' times over a temporal interval due to tne synchronous arrival of

multiple response wmes which trigger that rule. Of course, these proble~ns could be eliminated by

encoding absolate firing limits or firing liinits over temporal intervals in the rules themselves, but,

again, we want to isolate such "common senset' knowledge froin the event-response pairs that rep-

resent operational policies.

These behaviors should not be viewed as problems for JESQ, but suboptimalities. In the case of de-

layed rule firings, the delays are short since queries are submitted often. Multiple rule firings as de-

scribed only occur on occasion, and there is virtually no cost to submitting a corrective coinnland to

the target system that ultimately fails (perhaps due to the effects of the last colninand si~bmitted)

above that of the additional query traffic and operating syste~n processing. In fact, the experts (op-

erators) exhibit both these behaviors. On the other hand, this architecture actually prolnotes JESQ's

perfonnance under sonle circumstances, since the system does not wait to complete an action before

attempting another, potentially resulting in the conlpletion of several actions over a shorter interval

of time than would be possible if query submission, response collection, and coin~nand subn~ission

were serially scheduled. Nonetheless, this scheme does sacrifice understandability of behavior, and

econol~ly of cominunications and operating systein resources for sin~plicity and uniformity of repre-

sentation.

Global Planning and Focus of Attention

In general, actions are opportunistically invoked outside the context of specific si~bgoals in the current

inlplementation of JESQ. JESQ's lnodel of the world largely consists of snapshots of resource states,

omitting historical data regarding its recent actions (goals for reset actions being the exception).

Policy rules are executed whenever an anticipated event is recognized by the inatch process as indi-

cated by such snapshots.

This "flat" architecture is suboptimal, in that a shift of focus is often desirable over the course of the

problem solving process. For example, if the operator is unable to solve a queue space problem over

sonle tenlporal interval, it may be appropriate for him/her to focus (for a short time) on actions that

inay potentially increase queue space by just a few percentage points in an effort to buy time before

resunling the search for the primary causes of the problem at hand. Of course, rules that buy time in

problem solving are included in the current implementation, but are not explicitly identified as such.

Consequently, the current inlplementation cannot explicitly reason about its own focus. Rather, rules

7 8

are invoked whenever their conditions are satisfied, be they "time-buying" rdes, "problem-finding"

rules, or rules that reflect other high level goals.

An architecture which better reflects operator behavior wouId encode a nlore hierarchical view of the

problem solving process in the queue space lnanagement domain, incorporating a goal-directed

planning scheine that is driven by the recent history of JESQ's actions. This would probably improve

JESQ's perforlnance while rendering JESQ's behavior over the course of the problem resoli~tion

process lnore intelligible to operations staff.

Calling for Outside Help

The undirected firing of nlles robs JESQ of the ability to call for outside help, a coil~~llon shortcoming

of expert systems. Since JESQ's internal inodel of the target system is a collection of snapshots rather

than histories, JESQ does not encode the notion that it has tried every trick in its knowledge base at

least once ~vithout success. The capability to call for outside help wotild serve the dual purpose of

instructing :he operator to consult an external source (e.g., systems programmer) at the appropriate

time, while helping to identify olnitted knowledge in cases where the operator is actually able to solve

the problem hilnself after JESQ has "given up". A representation is needed that allows JESQ to be-

have is if it knows when it does not know how to solve a problem.

Desirability Knowledge and Depth of Reasoning

JESQ employs the added priority conflict resolution mechanism (see sections 3.2 and 3.3) to resolve

conflicts between lnultiple policies (Knowledge-Based Action rules) that are simultaneously applica-

ble (as well as to resolve conflicts across functional rille groups). One of three priority classes (low,

medium, high) is associated with each policy rule. Once these priorities have been coded, however,

their underlying justification is lost, and this, to some extent, ilnpedes both perforinance and effective

79

knowledge base maintenance. The generic factors (in the JESQ domain) that underlay the selection

of an action's priority include:

a anticipated impact on queue space resulting fro111 s~~ccessful execution of the action;

a how convenient the action is for the human operator to perform;

a how resource intensive the action is to perform;

a the anticipated level of user satisfaction resulting fro111 successful execution of the action;

a the "track record" of the action over the cuniulative history of its execution;

a the anticipated speed with which the action is executed by the operating system or human op-

erator;

a the general availability of the resources required (conditions under which the action is appro-

priate) to perforin the action;

a the probability of acquiring tne necessary resources (setting up the necessary conditions) if they

are found to be unavailable; and

the "recent" success of the action.

Formulating priorities for new Knowledge-Based Action rilles is non-trivial, for these factors are not

explicitly represented in JESQ, and future nlaintainers will not be forced to consider them, nor are

any two nlaintainers likely to conibine these factors in exactly the same way to arrive at the appro-

priate priorities. Moreover, the priority schenle places too muc11 compi~tational inlportance on a single

heuristically justified number. In effect, the semantics of all the above-listed factors have been bun-

dled into a single symbol.

What is needed, then, is a representation that allows us to retain the objective of encoding surface

behavior in event-response pairs, while also alIowing the representation and employnient of the fac-

tors that underlay the selection of event-response pairs when more than one are applicable. That is,

80

we want the capability to encode and use desirabili~ knowledge in resolving conflicts anlong com-

peting actions that could potentially satisfy the same goal. Desirability knowledge is different from

eligibility knowledge. While eligibility knowledge is used to disqualify potential actions on the basis

of recent history, desirability knowledge is used to select among competing actions that have already

been deemed eligible. Informally, eligible means "might be a good thing to try now" where desir-

ability means "might be the best thing to try of those that might be good to try now".

Again, to keep this discussion in perspective, the potentially suboptimal assignment of priorities to

potential actions in the current implenlentation is not really a problem in a practical sense, since JESQ

continuously "recovers" from its previous behaviors by attempting different actions as opportunities

arise. For example, if the appropriate priorities for two actions are mistakenly reversed, the less im-

portant action may be initiated a few seconds before the more important one. In most cases, this

represents a trivial flaw in JESQ's perfomlance.

Summary

Several problems of representation and control in JESQ were identified, although these do not rep-

resent practical concerns in light of JESQ's performance requirements. These proble~ns are largely

due to the inability to naturally encode different generic types of knowledge in the chosen "flat rep-

resentation", and to failure to embed the operational policy descriptions in a more global planning

framework. In the next section, an alternative architecture is outlined which could potentially elimi-

nate many of these problems. The hope is that these ideas can be extended to support realtinle proc-

ess monitoring tasks in general, leading to the development of a general expert systems language for

realtime process coiitrol tasks.

A THEORY OF JES QUEUE SPACE MANAGEMENT

Ideally, JESQ would iliiplenlent a theoy of qileue space management, circumscribing the task within

a franlework that abstractly captures its generic components and forces the installation to conceptu-

alize and colnrntlnicate policies to JESQ in terms of those components. That is, JESQ should supply

distinct knowledge stores for the different types of knowledge identified in section 5.1, and provide

for the declarative specification of this knowledge, free fro111 progra~nming considerations. In this

ideal world, management wotlld truly be providing JESQ with policy data rather than the declarative

programming constructs (rules) that approximate such data. That is, given that the implemented the-

ory fully paranleterized all potential policies, installation nianagelnent would conie to think in JESQ

in writing new policies, much in the way that PASCAL progralnnlers think in PASCAL in writing new

programs. The crucial difference, of course, is that "thinking in PASCAL" involves pondering loops,

variables, and other prograni~ning constructs, whereas we would like "thinking in JESQ" to involve

pondering queries, actions, and space freeing strategies, free fro111 progra~nming considerations. In

this context, a weakness of many current expert system shells is that knowledge base niaintenance

involves thinking about both the domain concepts represented by programming constructs and their

computational role in the chosen programming paradigm.

The architecture of the "queue space theory system" would inciude an inference engine that reflects

the heuristics of action selection in the queue space management domain, and internal nod el main-

tenance facilities that are tightly coupled with the actions they support. Policy descriptions would be

linked to nigh level goals, and coiilpeting actions explicitly identified within this context. Such an

architectnrt is outlined below, allhough no part of it has been implemented and no clainls are made

as to its completeness. This scheme might prove to be generally applicable to monitoring task do-

mains, althougl~ this claim cannot be supported in lieu of implementing the schenie in several sucll

domains. The architecture is outli,led here primarily to clarify the "ideal" put forth, to show how

sonle of the weaknesses outlined in the previous section might be eliminated, and to lay the founda-

tion for further work.

Representation

In the hypothetical framework, event-response pairs are enlbedded in action-procedures along with

their supporting processes. An action-procedure consists of primitive actions such as:

query-the-status-of-environinental-resource-x,

collect-and-analyze-query-response-set-x, and

submit-action-command-x

where x depends on the action-procedure at hand. The mission of an action-procedure is to deter-

mine if the conditions under wlich an action is appropriate are satisfied, and, if so, to execute the

prii~iitive actions that comprise the action intended.

Action-procedures are, in turn, grouped in terms of domain-dependent goals. In the queue space

management domain, these include:

Protect remaining space: For example, vary the main processor offline, preventing additional

queue space depletion.

Remove space clearing barriers: For example, reset parameters on printers to print special forins

that are backed up on the queue.

Remole large jobs: Search for and either cancel, print, direct user attention to, or DJ large jobs.

Buy time: Print or otherwise clear smaller jobs fro111 the queue periodically while searching for

the real problem.

Set up for problem resolution: Perforni setup actions for potential space clearing actions. For

example, start DJ and raise the line linlits on printers.

Restore environment: Reset environlnental parameters that were manipulated during the problem

solving process. For example, terminate DJ and reset the line lilnits on printers.

Call for help: Notify the operator that JESQ has exhausted its knowledge base at least once and

request his/l~er help.

Monitor: Measure the space remaining on the JES queue and reconsider the appropriateness of

the current goal.

Thus, goals abstractly represent groups of competing event-response pairs, and such pairs are em-

bedded in procedures which sublnit the required queries, collect the associated responses, and submit

the appropriate action command(s), provided that action preconditions are satisfiecl.

Control

Goals are instantiated by rules that examine the recent history of JESQ's activity at the goal level.

For example, the rules of Figure 15 might be included in the goal instantiation n ~ l e set:

IF processing-mode = panic;
and remove-space-clearing-barriers has been executed 3 or more times

over the last 20 minutes;
THEN instantiate buy-time

IF processing-mode = panic;
and remove-space-clearing-barriers has been executed 3 or more times

over the last 30 minutes;
and buy-time has been executed over the last 10 minutes;
THEN instantiate call-for-help.

Figure 15: Goal Instantiation Rules

The current goal dictates the action-procedures that can potentially be instantiated and executed

(although action-procedures can span multiple goals). An action-procedure linked to the current goal

is considered to be a candidate for instantiation if it is eligible. Attributes that can render an action-

procedure ineligible include: the action-procedure has already reached its absolute-successful-

execution-limit or execution-limit-over-a-temporal-interval, or the

iiiininiu~i~-intervals-between-attempted-exections has not yet passed. Action eligibility is expressed

solely in terms of problem severity and triggering conditions in the current ilnplelnentation of JESQ.

84

In the hypothetical implementation, triggering conditions are not confirmed (i.e., queries are not

submitted) until an action-procedure is selected as eligible and desirable on the basis of its context in

recent history and its relationship to goals.

Eligible action-procedures are instantiated on the basis of desirabili~. In the current inlpleinentation

of JESQ, desirability is impleinented by conflict set reduction by priority and by the OPS5 conflict

resolution algorithm. That is, competing policies with satisfied conditions are resolved in accordance

with the priority attached to the policy, the recency of the information that drives the eligibility of the

action, and the nunlber of conditions that need be satisfied to render the action eligible. In the hy-

pothetical framework, action desirability is expressed in terms of the semantics of "desirability" in the

queue space management domain (as listed in the previous section). The factors underlaying

action-procedure selection are explicitly represented and assigned values at a coarse enough grain size

(say, LOW, MEDIUM, and HIGH), to approximate an isomorphism between their meaning to an

operations policy maker and their role in the algoritllm used to compute desirability. The objective

here is to provide few enough choices for values so that such values can be assigned locally (i.e.,

without comparing with other values in making the assignment).

Desirability is not computed numerically, but rather, symbolicaIly, again, in terms meaningful to the

administrator. The basic idea may be informally stated as follows: A coininon set of factors underlays

the selection of all actions. Depending on the severity of the problem at hand, these factors will vary

in relative importance. The most desirable of a set of actions that satisfy the same goal is that action

whicl.1, depending on the severity of the problein at hand, meets or exceeds the specified requireinents

for underlying selection factors. If no actions qualify given these requirements, then some reqaire-

lnents are relaxed. The specific factors for which requirements are relaxed, as well as the rate at wl~ich

they are relaxed, will vary with the severity of the problem at hand.

Under this scheme, a friendly lront end maps user responses (LOW, MEDIUM, HIGH) into an

Action Selection Template for each action, providing values for each of the criteria underlying its se-

lection as shown in figure 16. Some values are updated (learned?) (e.g., track record) with each ex-

ecution, while others remain static as originally coded (e.g., operator convenience). Initial guesses are

provided for "learned" factors.

ACTION SELECTION TEMPLATE
ACTTON-ID: djla-job

a n t i c i p a t e d impact
ope ra to r convenience
resource conse rva t i on
user s a t i s f a c t i o n
t r a c k r e c o r d
speed o f a c t i o n
genera l a v a i l a b i l i t y o f necessary resources
p r o b a b i l i t y o f a c q u i r i n g necessary resources
recen t success

ACTION - SELECTION - TEMPLATE - END;

H IGH
LOW
LOW
MED l UM
H l G H
LOW
H l G H
HlGH
H l GH

F i g u r e 16: A c t i o n S e l e c t i o n Template f o r d j - a - j o b

The importance of each of the Action Selection Template criteria varies with the severity of the

problem at hand (processing mode). For example, user satisfaction is of prime consideration when

space is not at a critical level, but is of less ilnportance in a panic situation. Speed of action is more

important in panic mode than in poke mode, etc. For each processing mode, the user si~nilarly defines

(via some friendly front end) a sequence of action-independent Selection Criteria Relaxation Tem-

plates as shown in figure 17.

PROCESSING-MODE: pan i c
RELAXATION TEMPLATE 1 o f 8

a n t i c i p a t e d impact
ope ra to r convenience
resource conserva t ion
user s a t i s f a c t i o n
t r a c k r e c o r d
speed o f a c t i on
genera l a v a i l a b i l i t y o f necessary resources
p r o b a b i l i t y o f a c q u i r i n g necessary resources
recen t success

RELAXATION - TEMPLATE - END;

H l GH
H l G H
H I G H
H I G H
H IGH
H I G H
HlGH
H IGH
H l G H

F i g u r e 17: C r i t e r i a Re laxa t i on Template #1 f o r Panic Mode

Each Relaxation Template in the sequence lists each of the factors that underlay the selection of

competing actions and its associated lower bound (where LOW < MEDIUM < HIGH) for matching

against Action Selection Teinplates in choosing among actions linked to the current goal. In effect,

the full sequence of Relaxation Tenlplates specifies (1) which criteria are to be relaxed in choosing

among competing actions and (2) the rate at which criteria are relaxed.

The action selection algorithm attempts to match each tenlplate in the Relaxation Sequence against

the Action Selection Tenlplates associated with action-proceclures linked to the current goal until a

match on all lower bounds (or better) is found. Thus, the first Relaxation Template relaxes no cri-

teria: A search for an action (Selection Template) of HIGH anticipated impact, HIGH operator

convenience, etc. is performed. If none is found, the next Relaxation Template (presumably specify-

ing LOW or MEDIUM for at least one criterion as a lower bound) is invoked and the atten~pted

match is repeated. The search continues until a nlatch is found. Presumably, the last Te~ilplate

specifies LOW as the lower bound for all criteria, guaranteeing a match.

This schenle not only captures information that would be lost in the current implenientation, but ad-

ditionally relieves the knowledge base maintainer of performing the unstructured task of priority as-

signment. Moreover, the conlputational importance of any single encoded synlbol is diminished. The

intent is that no single criterion be terribly important in the action selection algorithm and that the

grain size of the values assigned to selection criteria be coarse enough to have meaning in isolation.

Thus, potential actions are selected on the basis of eligibility under the current goal, and competing

actions are resolved on the basis of desirability.

Unlike the production systenls implementation under which one action is instantiated and executed

at a time (i.e., a rule is fired), the hypothetical system instantiates as nlany action-procedures as are

judged to produce a noticeable effect on the status of queue space and executes the resulting plan.

Thus, the relationship between planning and execution under the hypothetical scheme may be in-

for~nally stated as: "Plan (instantiate action-procedures) under the assumption that all potential

actions selected will encompass conditions that may be satisfied by explicit setup actions or will al-

ready be satisfied and will successfully execute. Then examine these conditions via sensor readings

(queries), attempt to satisfy them if necessary, and take action accordingly. Finally, examine the state

of the target resource to see the results and replan from there". (See [23] for a general discussion

of the relationship between planning and execution. McDernlott's notion is quite different). Corre-

sponding to the last step in this description, the last action-procedure instantiated is always reassess.

Reassess triggers a query of the state of JES queue space and returns control to the top-level goal

instantiation rules. If the state of the queue is much the same (within predefined thresholds) as the last

assessment, the action-procedure instantiation process is performed again using the current goal. A

new set of action-procedures will usually be eligible and the previously instantiated set ineligible be-

cause of eligibility criteria such as minimu~~i-intervals-between-atte~~~pted-executions. Should the

state of the JES queue differ from the last assessment, a new goal is instantiated which then drives

action-procedure instantiation. If no action-procedures are eligible under the current goal, it is re-

moved and a new one is instantiated (possibly Call for help). This does not disrupt the continuity of

action eligibility data (e.g., execution-limit-over-a-temporal-interval), because this data is maintained

at the action level and is independent of the current goal.

Sum~narizing the key features of the hypothetical framework, the control cycle is driven by the con-

tinuous examination of recent problem solving history, instantiating new high-level goals when ap-

propriate. The system's intent to execute an action is in accordance with the current goal and

explicitly represented constraints over temporal intervals (i.e., eligibility knowledge). Competing

actions are resolved on the basis of explicitly represented domain-specific factors (i.e., desirability

knowledge). The submission of queries that examine action-specific conditions is limited to potential

actions that have already been instantiated on the basis of eligibility and desirability.

This scheme inore resembles a "theory of space management" than the current architecture, provid-

ing a global framework for selecting and coordinating actions that (to soine extent) mirrors the

heuristics of action selection in the domain. In effect, the hypothetical framework embeds the event-

response pairs of the current architecture in a planner that is driven by domain-specific scheduling

heuristics. Since some degree of uniformity is provided across all actions, this frainework is also ad-

vantageous in that it could be used to support a limitecl form of automated knowledge acquisition and

explanation generation. Explicit representation of the factors that underlay action selection could

also inlprove JESQ's potential usage as a training tool, providing a basis for answering coniparative

8 8

user queries of the fornl "Why is action .u preferable to action y in this situation?", with responses of

the fonn "Because user satisfaction is HIGH for action x and LOW for action y, although operator

convenience is ...'I. Hypothesizing that the implemented theory is complete, n e w requiring alodifi-

cations, management would illerely have to fill in the domain knowledge. That is, the implemented

theory would force inanage~nent to describe policy in terins of the theory, supplying policy data rather

than declarative programming constnrcts that iinpleinent policy in the context of a more general in-

terpreter's execution.

Again, this framework is incompletely specified, and problenls would undoubtedly surface upon be-

ginning implementation. The framework has been presented here to provide a rough sketch of what

we might set out to accomplish in pursuit of the goal of developing a language for encoding policies

and associated knowledge for process control tasks, specifically for the queue space management

domain. The next section addresses the potential utility of attenlpting to develop such a language froill

both the short and long term perspectives, and outlines alternative approaches to its construction.

5.3 ALTERNATIVE APPROACHES AND RESEARCH DIRECTIONS

The preceding section outlined the design of a "theory of queue space managementt' as an alternative

to the current JESQ architecture. The hypothetical framework provides for the natural encoding of

the different types of knowledge that coinprise queue space management (and hopefully other mon-

itoring tasks), going beyond the flat representation of the proclirction systems architecture. This sec-

tion addresses the questions of (1) the utility of inlplementing the described alternative, and (2) how

to proceed in doing so.

In response to the first question, we must first recognize the potential costs of prematurely imple-

menting the described "theory" beyond that of the obvious costs of development. The danger here

is that omissions in the implemented theory would culminate in the very probleills that motivated the

construction of such a theory: "Hacks" would creep into the domain knowledge representation to

compensate for omissions in the theory itself. This might not seen1 so bad at first glance, since this

problem characterizes the current implementation. However, under the new architecture we nlight

be worse off than before. Since the hypothetical coniputational for~nalisnl is more complicated than

the original architecture, it would become nlore difficult to "hack" the desired behavior when this

behavior could not be achieved via the implemented representation. Thus, in the short term, a

straightforward architecture based on a simple, general tool such as OPS5 probably represents the

most reasonable approach. The current JESQ architecture satisfactorily performs its intended task,

provides for the natural expression of event-response pairs, and yet is based on a simple enough

progra~niiiing fornlalisnl to allow one to "hack" the desired behavior in exceptional circumstances.

From a research point of view, however, we want to formalize the problem solving process and

produce as general took as possible. Thus the longer tern1 perspective on this first question suggests

the developnlent of a language specifically designed for realtime process control expert systems.

Generalizing from the objectives of the "queue space management theory system", the goal is to

identify the different types of knowledge that comprise intelligent process control and to develop

representations that ultitnately allow system users to specify the elements of a particular pr~cess in

simple declarative statements. This raises the second question put forth, that of how to proceed in

building such a system, and there are at least two approaches to consider: (1) We can impIenlent very

general theories, attempt to apply them in several process control domains, and expand the theories

as new requirements are uncovered; or (2) We can implement nlore specific theories of particular

domains in isolation and then step back to identify the abstract commonalities aniong then1 with an

eye toward the development of more general systems that subsume these commonalities.

It might be valuable to view process control expert systeins as a subclass of expert systems united by

common requirements (some of which are described in section 2.7) and proceed in both directions.

A prelin~inary in-depth exanlination of many potential application doniains and of traditional process

control applications would be helpful in establishing the appropriate course of investigation.

6. SUMMARY AND CONCLUSIONS

The application of experts systeliis techniques to process control donlains represents a potential ap-

proach to managing the increasing complexity and dynamics that characterizes many process control

environments. Expert systeins niay be of potential value as high-level supervisors in current

computer-controlled systelns that enlploy rigid, predetermined control sequences, and in domains

which currently require human operators to monitor and control sonle process on a continuous basis.

This thesis reported on the application of expert systelns techniques to the doniain of coinputer op-

erations.

The requirement for high availability, high performance, computing systelns has created a demand for

fast, consistent, expert quality response to operational problems. Effective, flexible automation of

computer operations would satisfy this demand while improving the productivity of operations.

However, the operations environment is characterized by high colnplexity and continuous change,

rendering it difficult to automate operations in traditional procedural software. This situation is ex-

emplified by the donlain of JES queue space management, the focus of this thesis, and probably

generalizes to niany process control domains.

The techniques of expert systems provide a basis for automating operations despite the complexity,

the lack of formalization, and the dynamics that characterize the operations environment. In partic-

ular, the modularity of knowledge encoding encouraged by the production systems architecture pro-

vides for the increiiiental development, ongoing modification, and readability required for autoniating

operations.

An experimental prototype expert system called YES/MVS has been developed and installed at

IBlvl's Thomas J. Watson Research Center. YES/MVS encodes knowledge of operations in several

domains in logically distinct expert systems, including JESQ, an expert systern that actively manages

operating systenl queue space continuously in realtime. The design and testing of continuous realtime

expert systeins encolnpasses requirenlents not normally addressed in session-oriented consultative

expert systems, particularly with regard to prograni control and the n~aintenance of an internal model

91

of the environment that is consistent with the actual state of the world. YES/MVS is anlong the first

expert systerns that operates continuously in realtiine and exerts active control over its environment,

and is also anlong the only such systeins that have been operated and tested under real conditions.

JESQ runs regularly at the IBM Yorktown Cotnputing Center and has been infor~nally approved by

operations staff. The system runs in advisory mode (gives advice for operator review) during prime

shift, and fully authorized (actually submitting con~inands to the target system) at night.

JESQ models the surface behavior of the operator, encoding operational policies in discrete know-

ledge base rules where possible. JESQ represents a fusion of the heuristic knowledge of several op-

erators at the Yorktown Computing Center, and, to a lesser extent, encodes the knowledge of

operations managers and systeins progranlmers as well. JESQ represents an attempt to establish a

central repository for queue space management policy that gets executed directly rather than by hu-

man operators. The hypothesis is that automating computer operations with expert systems tech-

niques can potentially increase the availability and performance of existing con~puting resources,

promote the productivity of operations staff, reduce operational labor requirements, and provide a

partial solution to tl,e problem of high turnover in operations personnel while providing a manage-

ment tool for enforcing and reviewing policy that offers better managenlent control through stand-

ardization.

More generally, this thesis provides the following contributions:

8 An alternative metl~odology for managing large computing installations was suggested.

8 General issues that arise in the construction of active, realtime expert systeins (as contrasted

with more traditional session-oriented expert systems) were identified, and strategies and

mechanisms for dealing with sonie of these in the queue space lnanagernent donlain were de-

scribed. Many of the methods einployed in JESQ to accon~plish realtime, active control may be

applicable in other process control expert systems domains. An abstract problenl description

was provided to facilitate the identification of domains that are similar to the doinain of queue

space management.

One fully-implemented architecture which integrates decision-making and acting in a realtime,

multi-agent environnlent that is sufficiently con~plex to discourage explicit modelling of all

interactions was described.

An account of the ~nethodology under which JESQ was developed was provided, supplementing

the relatively sparse case data on the construction of expert systems in industrial environments.

Of particular interest, the difficulties of testing an expert system in a complex, realti~ne envi-

ronnlent were illuminated.

This work is intended to serve as an existence proof, establishing the feasibility of employing expert

systems techniques in process control environments. The current ilnple~nentation of JESQ success-

fully resolves JES queue space problems under test conditions in the real environment, and should

provide the simplicity of representation required for continued review and maintenance of the

knowledge base. However, it does not inlplelnent a conlprehensive "theory of queue space manage-

ment" that need only be parameterized. Rather, JESQ is collection of declarative progranlnling

constructs that conforms lnore closely to the for~nat of an installation run book than its procedural-

code equivalent.

Sonle elements of an alternative approach that approxiiliates a "theory of JES queue space nianage-

ment" were presented, under which the event-response rules in JESQ were ernbedded in a more

global fra~nework that better captures the semantics of space managenlent action scheduling than the

general shell in which JESQ is implemented. This served as a vehicle for illuminating some of JESQ's

shortconlings (although none of these represent serious flaws in ternls of its required performance)

and raised qt~estions about both short and long tern) directions in realtime process control expert

systelns research.

While JESQ and other expert systems within YES/MVS have established the feasibility of automat-

ing operations using expert systenls techniques, Inore research is required to produce a franiework

that provides for the encoding of process control specifications that are free of prograrn control con-

structs. Perhaps the construction of several such applications will illominate their inlportant com-

93

monalities, leading to the development of a general tool. However, the continued application and

adaptation of a preconceived general tool across several related domains also represents a feasible

approach.

7. REFERENCES

[I] De Jong, K., "Intelligent Control: Integrating A1 and Control Theory", IEEE 1953 Conference
on Trends in Applications, 1953.

[2] Hong, S.J., "Knowledge Engineering in Industry", Proceedings of Japan Systems Science S'm-
posium, 1954.

[3] Shortliffe, E.H., Computer-Based Medical Consultations: MYCIN, Elsevier, N.Y., 1976.
[4] Duda, R.O., Gaschnig, J., Hart, P.E., Konolige, K., Reboh, R., Barrett, P., and Slocum, J.,

"Development of the PROSPECTOR Consultation System for Mineral Exploration", Final
report, SRI projects 5521 and 6415, SRI International, Inc., 1975.

[5] Buchanan, B.G., and Feigenbaum, E.A., "DENDRAL and Meta-DENDRAL: Their Applica-
tions Dimension", Journal of Artificial Intelligence 11, 1978.

[6] Duda, R.O., and Reboh, R., "A1 and Decision Making: The Prospector Experience", Pro-
ceedings of the NYU Symposium: Artificial Intelligence Applications for Busilzess, 1953.

[7] Barr, A. and Feigenbaum, E.A., eds., The Handbook of Artificial Intelligence, William
Kaufman, Inc., 1982.

[S] Fox, M.S., Lowenfeld, S., and Kleinosky, P., "Techniques for Sensor-based Diagnosis", Pro-
ceedings, IJCAI-83, 1953.

[9] Wright, J.M., ancl Fox, M.S., "SRL/l.5 User Manual", Robotics Institute, Carnegie-Mellon
University, 1952.

[lo] Wesson, R.B., "Planning in the World of the Air Traffic Controller", Proceedings of IJCAI-5,
1977.

[I l l Nelson, W.R., "REACTOR: An Expert System for Diagnosis and Treatment of Nuclear Re-
actor Accidents", Proceedings of AAAI-8-7, 1982.

[12] Chester, D., Lamb, D., Dhurjati, P., "Rule Based Computer Alarnl Analysis in Chemical
Process Plants", IEEE Micro-Delcon '54: Proceedings, the Delaware Bay Computer
Conference, 1984.

[13] Fagan, L.M., "VM: Representing Time-Dependent Relations in A Medical Setting", PhD
Thesis, Stanford University, 1980.

1141 Wright, P.K., Bourne, D.A., Colyer, J.P., Schatz, G.S., Isasi, J.A.E., "AFlexible Manufactur-
ing Cell for Swaging", Mechanical Engineering, 1982.

[15] Forgy, C.L., "OPS5 User's Manual", CMU-CS-81-135, Dept. of Computer Science,
Carnegie-Mellon University, 1951.

[16] Versonder, G.T., Stolfo, S.J., Zielinski, J.E., Miller, F.D., and Copp D.H., "ACE: An Expert
System for Telephone Cable Maintenance", Proceedings of IJCAI-83, 1953.

[17] McDermott, J., "Rl: A Rule Based Configurer of Computer Systems", Artificial Intelligence
19, 1952.

[18] McDennott, J., "XSEL: A Computer Sales Person's Assistant", Machine Intelligence 10, J. E.
Hayes, D. Michie, and Y-H Pao, eds., J. Wiley and Sons, New York, 1982.

[19] Griesmer, J.H., Hong, S.J., Karnaugh, M., Kastner, J.K., Schor, M.I., Ennis, R.L., Klein, D.A.,
Milliken, K.R., Van Woerkom, H.M., "YES/MvS: A Continuous Real Tirne Expert System",
Proceedings of AAAI-54, 1984.

[20] Pasik, A. and Schor, M., "Table Driven Rules in Expert Systems", SIGART Newsletter, No.
87, 1954.

[21] Guido, A.A, "Unattended Automated DP Center Operation: Is It Achievable?", European
GUIDE Proceedings, 1983.

[22] Hayes-Roth, F., Waterman, D.A., Lenat, D.B., eds., Building Expert Systems, Addison-Wesley,
1953.

[23] McDermott, D., "Planning and Acting", Cognitive Science 2 , 1975.

