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We describe an atomistic method for computing the viscosity of highly viscous liquids based on
activated state kinetics. A basin-filling algorithm allowing the system to climb out of deep energy
minima through a series of activation and relaxation is proposed and first benchmarked on the
problem of adatom diffusion on a metal surface. It is then used to generate transition state pathway
trajectories in the potential energy landscape of a binary Lennard-Jones system. Analysis of a
sampled trajectory shows the system moves from one deep minimum to another by a process that
involves high activation energy and the crossing of many local minima and saddle points. To use the
trajectory data to compute the viscosity we derive a Markov Network model within the Green—Kubo
formalism and show that it is capable of producing the temperature dependence in the low-viscosity
regime described by molecular dynamics simulation, and in the high-viscosity regime
(10°-10'? Pas) shown by experiments on fragile glass-forming liquids. We also derive a
mean-field-like description involving a coarse-grained temperature-dependent activation barrier, and
show it can account qualitatively for the fragile behavior. From the standpoint of molecular studies
of transport phenomena this work provides access to long relaxation time processes beyond the
reach of current molecular dynamics capabilities. In a companion paper we report a similar study of
silica, a representative strong liquid. A comparison of the two systems gives insight into the
fundamental difference between strong and fragile temperature variations. © 2009 American

Institute of Physics. [DOI: 10.1063/1.3139006]

I. INTRODUCTION

The viscosity of a liquid is a measure of shear stress
relaxation, being a product of the shear modulus and a struc-
tural relaxations time. When viscosity increases strongly
with lowering temperature, the behavior is attributed to a
rapidly increasing relaxation time, the onset of slow dynam-
ics. Two challenges arise in connection with this ubiquitous
phenomenon. One is conceptual—slow dynamics has impli-
cations for the fundamental understanding of the glass tran-
sition. The other is computational—how can one calculate
the viscosity directly from knowledge of molecular structure
and intermolecular interaction. This work addresses the latter
challenge by proposing a method to compute the viscosity
over a range of values where atomistic methods have not
been able to reach to date. As may be expected, our results
also have implications for the slow dynamics of supercooled
liquids.

Many liquids, upon undercooling, exhibit a super-
Arrhenius shear viscosity behavior over a narrow tempera-
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ture range, a characteristic known as fragility.1 The fragile
behavior of viscosity is a problem of considerable interest to
molecular-level calculations that attempt to sample the un-
derlying potential energy surface (PES).> While the minima
of the PES (inherent structure)4 and saddle points can be
found by various numerical plrocedures,3 no method yet ex-
ists that can compute the viscosity behavior over the range
from 10 to 10'? Pas.

In this work we describe a sampling algorithm for com-
plex PES which allows the system to climb out of an arbi-
trary series of potential wells following a minimum energy
path. Laio and Parrinello showed how one can apply energy
penalty functions to activate the system to constantly explore
new regions of phase space, and used this procedure in con-
junction with molecular dynamics (MD) to study molecular
reactions’ and structural phase transitions.® We have coupled
this algorithm of activation through energy penalty function
with static relaxation to study the transition state pathways
(TSPs) of supercooled liquids, after first testing its effective-
ness in reproducing the activation barriers for adatom and
adcluster diffusion on metal surfaces.” For a systematic ap-
plication of the TSP trajectory we reformulate the Green—
Kubo expression for the shear viscosity to use a Markov
Network model to describe the kinetics of hopping between

© 2009 American Institute of Physics
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local energy minima. We also discuss an approach to extract
an effective activation barrier from an analysis of the TSP
trajectory sampled which can be used, in the heuristic spirit
of transition state theory, to describe the temperature varia-
tion of the shear viscosity of highly viscous liquids. For both
formulations we obtain results for the binary Lennard-Jones
(BLJ) model® that can qualitatively account for the observed
features of fragile liquids. In a companion paper we report a
similar study of silica, known for its representative strong
liquid behavior in viscosity. Taken together, the results reveal
how the difference between strong and fragile glass formers
can be traced to the roughness of the PES, thus providing
quantitative computational support for the usefulness of the
landscape perspective.g’ 10

Il. INHERENT STRUCTURE AND QUENCH
PROBABILITY

We denote the potential energy of an N-particle system
as ®(r), where r=(r|,rs,...,ry) is a 3N-dimensional vector
specifying the system configuration. The 3N-dimensional
PES consists of a number of local minima (potential wells)
superimposed on deeper and wider energy undulations (ba-
sins). The minima and basins are surrounded by saddle
points (barriers) as special energies for the system to be ac-
tivated out of or into the various potential wells.™!! The ®
hypersurface has a multitude of local minima, which can be
described as a discrete set «, {a}=(a), a,,...). The mapping
of the 3N-dimensional continuum to the discrete of minima
{a} was introduced by Stillinger and Weber,'? it is imple-
mented by direct energy minimization (“quenching”) from
any point in configuration space along a steepest descent
path to the nearest local minimum.

Although the inherent structure approach represents a
way to partition the PES into a set of local energy minima
{a}, the information contained in {a} alone is not sufficient
to perform calculation of all physical properties. For ex-
ample, it does not give any information about the barriers
between the minima.”> On the other hand the method de-
scribed in this work does take advantage of the information
available. We consider the specific model of a BLJ system.8
We use a periodic simulation cell of 100 particles with A:B
ratio of 80:20, and reduced density of 1.2 interacting with
Vop(r)=4e,d(0,p/ 1)~ (04p/r)°], where a,Be{A,B}.The
parameters of the potential are given as g44=1.0, g43=1.5,
epp=0.5, 044=1.0, 045=0.8, and o5=0.88. All radius cut-
offs are taken to be 2.504,. Using this cutoff radius and the
density, we have not observed significant box size effects on
the computed mean square displacement curves for systems
with 100 and 500 particles.

Figure 1 shows the energy spectra {E(a)} generated by
taking constant-volume MD simulations at several tempera-
tures 7 and performing energy minimization at various
points along each trajectory. Each quench produces a local
minimum energy and a corresponding system configuration.
We see the values of the local minima span a wide energy
range at high T (T=5.0) which decreases somewhat at an
intermediate temperature 7=0.5. Below this value the local
minima are strongly clustered in a very narrow energy range,
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FIG. 1. (Color) Range of local minimum energies (inherent structure)
sampled by steepest descent quench of constant-7 MD trajectories at several
temperatures. 10 000 quenches are performed at intervals of 10 000 MD
steps. T, is 0.37 in reduced unit.

implying the onset of limited atomic displacements in the
system.lo The clustering of inherent structure energy there-
fore is characteristic of slow dynamics which already can be
inferred from a study of {a} by MD.

The existence of a characteristic temperature below
which the clustering of {E(a)} is a qualitative aspect of su-
percooled liquids relevant to the present work. To develop
this concept further one can define the quench probability
f(E|T) as a statistical distribution of inherent structure en-
ergy at a given T."* Figure 2(a) shows several such distribu-
tions for the present BLJ model, while Fig. 2(b) shows the
temperature variation of average inherent structure energy, a

behavior we have already noted in Fig. 1. Through E(T) one
can discuss the effects of cooling rate.'™!" Figure 2(b) is
significant in our argument to obtain a temperature-

dependent activation barrier because one can regard E(T) as
an effective well depth of the PES; as we will see in Sec. IV
its variation with 7 provides a mapping between the depth of
an energy minimum and the temperature at which the PES
trajectory is being sampled.

lll. BASIN FILLING ALGORITHM

We have implemented a method to lift the system out of
any potential well by a series of activation-relaxation steps.
Our algorithm is a modification of that introduced by Laio
and Parrinello® for escaping from free-energy minima, a
method which has been called metadynamics.6 Consider
starting the process with the system in a selected local mini-
mum E,_;, with corresponding atomic configuration at r;,.
From this initial state the activation step drives the system
away from its current configuration by imposing a prescribed
energy penalty function (specified below), followed by a re-
laxation step to allow the system to settle into a new energy-
minimized configuration in the presence of the penalty func-
tion. This process enables the system to start climbing out of
its initial local minimum state E;,. At the end of each
activation-relaxation sequence, the system will find itself in a
new relaxed atom configuration with a new energy. This pro-
cess of activation relaxation is repeated until the system finds
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FIG. 2. (Color online) (a) Quench probability at different temperature.
Curve for 7=0.5 is constructed from the data shown in Fig. 1, which is then
used to determine the other curves by quench probability scaling (Ref. 14).

(b) Variation of average local minimum energy E(T) with temperature cal-
culated from results such as those shown in (a). Note E(7) is constant at

high temperature, but decreases sharply below T~2T,. T, is 0.37 in reduced
unit.

itself in a new local minimum which satisfies the condition
(e) described below. With this new local minimum and the
corresponding system configuration one can backtrack along
the minimization path to deduce the saddle point E 4 and its
conﬁguration The sequence of starting frorn an initial local
minimum E( , to cross a saddle point Eqad to reach a nearby
local m1n1mum E('+1) can be repeated to generate a trajectory
I'(Epin> Esaq) = (EgiEiiéEngg()j -+). Figure 3 depicts
such a process for three local minima and two saddle points.

The algorithm for the basin-filling method thus can be
specified as follows.

(a) Select an initial local minimum E[(Tln)n (can choose an
inherent structure energy from {a}) and corresponding
system configuration, say T ine

(b) Activation step—apply a penalty function ¢;(r)
=W exp[—(r— r(l) )2/ 207], such that total system en-
ergy becomes <I>p ®+p. W and o are prescribed con-
stants which determine the strength and the penalty and
spatial extent of the activation, respectively.

(c) Relaxation step—minimize CIDE, to obtain new energy
and configuration r(z)n

(d) Repeat (b) and (c) with DI=D ]+, Po=D]+¢hs.,..
until a new local m1n1mum is 1dent1ﬁed as speaﬁed
in (e).
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FIG. 3. (Color online) Schematic illustration explaining the basin-filling
method. Dashed and solid lines indicate original PES and penalty potential,
respectively. Penalty functions push the system out of a local minimum to a
neighboring minimum by crossing the lowest saddle barrier.

(e) Confirm the samphng of a new local minimum Emm
and configuration r by checking to ensure that both
a®/ar(ry)=0 and ¢p(z§1) 0 are satisfied.

(f) Backtrack the minimization path to identify the saddle
point and its energy E,4.

(g) Repeat processes from (b) to (f) until sufficiently large
configurational space has been sampled.

Notice that when the penalty functions are added to the
system, as long as the system has not climbed out of the
well, there will be a difference between @, and ®. When the
system does escape from the well and goes into a new mini-
mum, one cannot tell from looking at <I)p and @ alone, but
their difference should be essentially zero. One needs to
check after every relaxation to see if the two conditions listed
in (e) are satisfied. If they are both satisfied, this means the
system is indeed in a new minimum. If not, that means the
system has not escaped. The two conditions are necessary
and sufficient, while the vanishing of the difference between
®, and P is necessary but not sufficient. We do not specify
the search direction as in the dimer method.” By keeping all
the Gaussian penalty functions imposed during the simula-
tion, we eliminate frequent recrossing of small barriers,
which is a significant advantage of the history-penalized
basin-filling methods.>'> However this type of methods
could suffer from poor scaling with system size or number of
particles participating in the activation and relaxation. In
principle, it may seem that the number of penalty functions
needed to perform adequate sampling could grow exponen-
tially with the configuration space dimension. We have found
this is not the case in the filling of glassy basins because the
volume of configuration space to be sampled is much smaller
than that of the entire system. The reduction arises from the
particles being effectively constrained to their local atomic
positions. For a crystal where each atom occupies (x%)> of
the configuration space, the volume to be sampled is (x%)3".
From the Lindemann criterion for melting,](’ an estimate of
x% 1is approximately 0.13 for face-center-cubic crystals. For
the BLJ liquid the range of atomic mobility may be obtained
from the mean square displacement determined by MD
simulation.® The mean square displacement shows quadratic
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dependence on time at short times which corresponds to
short-time ballistic motion of particles. At intermediate
times, the mean square displacement levels off to a plateau
over several decades because the particle is trapped in the
cage formed by the neighboring particles that surround it.
Once the system gets out from this cage the mean square
displacement starts to increase again. From Ref. 16, one can
estimate the size of the cage to be (r*()) ~0.1. We therefore
chose 02=0.1 corresponding to the estimated cage size. Us-
ing penalty functions with o estimated in this manner we
found that about 2000 penalty functions are sufficient to fill
the lowest minimum found in the inherent structure analysis
using simulation cells containing 100 and 256 particles. The
local minimum well is known to have a volume that depends
on the energy, the volume becoming exponentially large as
the energy is lowered.!” Therefore, o needs to be modified
according to the energy region of PES sampled (smaller o
for high @ and larger o for low ®) in order to escape a single
local minimum. On the other hand we are not interested in
activation process for escaping from each local minimum but
in escaping from a broad collection of several minima (the
basin or cage). Our experience shows that a compromise is to
choose a fixed value of o to be the estimated size of the cage.

We should emphasize that in our method the system
moves in the energy space ®, which is the sum of the origi-
nal potential and the penalties that have been applied up to
that point. Since the corresponding system configurations at
any stage of the activation and relaxation step is known, we
can always display the trajectory track in ®-space. The dis-
tinction between ® and @, is essential to understanding the
results of our algorithm. With the energy landscape sampling
proceeding under the dynamics governed by ®,, we may
consider our method to be based on so-called
metadynamics.5 Moreover, the sampled trajectory consisting
of local minima and saddle points will be displayed only in
®-space so it is meaningful to compare our results with those
obtained using other methods such as hyperdynamics or
adaptive kinetic Monte Carlo. This point is further discussed
in Appendixes A and B where we discuss benchmarking the
results of the basin-filling method.

A typical trajectory generated by the algorithm just de-
scribed, applied to a system of 100 particles interacting
through the BLJ potentiad8 with periodic boundary condition,
is shown in Fig. 4, using a value of W=1.0 and ¢2=0.1 in
reduced units. The sampling started in a low-energy mini-
mum denoted by (a). The energy and corresponding atomic
configurations at this state were obtained from an inherent
structure calculation at 7=0.5 (see Fig. 1). One sees a num-
ber of general features of this PES trajectory, particularly the
irregular and appreciable fluctuations between local minima
and saddle points. This particular trajectory shows two deep
minima (basins), marked as (a) and (b), which are well sepa-
rated along the trajectory. The overall appearance of the tra-
jectory is one of roughness.

One can ask about the extent to which the sampled tra-
jectory depends on the initial local minimum. Suppose one
does not start at such a deep minimum, what changes can be
expected in the sampling? Figure 5 shows two other trajec-
tories which started at local minima with higher energies
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FIG. 4. (Color online) Trajectory generated from basin filling sampling.
Activation barrier between minimum i and j g;; is defined by smallest saddle
point between them. 7, is 0.37 in reduced unit.

than state (a) in Fig. 4. Qualitatively speaking, the trajecto-
ries connecting basins in higher energy region with more
shallow well depths tend to have smaller fluctuations.

Our interest lies primarily in quantifying the connectiv-
ity of the local minima through the saddle points. This infor-
mation is embedded in any trajectory describing the hopping
from one major basin to another. Figure 6 is a way of dis-
playing the topological connectivity in a tree structure, the
so-called disconnectivity graph.13 In this figure each local
minimum is represented by an end point of the vertical line
and a saddle point by a vertex point, the results being taken
from Fig. 4. The lower tip of a vertical line indicates value of
that local minimum, and vertical lines end at vertex points to
connect to other minima. We see that the connection between
deep minima a and b requires high activation energy at point
v and involves many steps (intermediate saddles). On the
other hand, local minima which are less deep can connect at
lower vertex points.

The overall appearance of Fig. 6 is consistent with our
observation that the trajectory in Fig. 4 has a relatively com-
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FIG. 5. (Color) Basin filling sampling trajectories calculated from high
(blue), intermediate (green), and low (red) energy minimum as initial con-
figuration. 7, is 0.37 in reduced unit.
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FIG. 6. (Color) Tree diagram connecting sampled minima and saddle points
generated from the trajectory data of Fig. 4. Deep minima a and b are
connected only through a high energy saddle y. T, is 0.37 in reduced unit.

plex connectivity topology. We will return to discuss this
point further in connection with a companion paper on the
connectivity structure of fragile versus strong liquids.

IV. COMPUTING VISCOSITY VIA TRANSITION STATE
PATHWAY SAMPLING: NETWORK MODEL

In statistical mechanics thermal transport coefficients of
fluids are generally expressed as integrals of time correlation
functions in linear response theory (Green—Kubo
formalism)."" The shear viscosity #z is given by a time
integral

[

7(T) = Y

il (X (00 (0))dr, (1)
B

where V denote the volume of the simulation cell maintained
at temperature 7, and the shear stress tensor is

1 1
a”‘y=‘—/lzmjvjvjy EE er,Vj], (2)
J i#

where F is the force between two atoms i and j, r is the
position vector, and v is the velocity. x and y are two normal
directions. There should be (o)=0 for an ergodic liquid. In
a finite-length numerical calculation, however, we enforce
the above constraint by subtracting off the mean stress: o
—0V—(co"), so o in (1) stands for stress fluctuation
around the mean. For simplicity we will suppress the super-
script xy and introduce the time-dependent stress autocorre-
lation function S(r)=(o(r)a(0)). Because in dense gases and
normal liquids S(¢) decays on the microscopic time scale of
molecular collisions, it can be readily evaluated by MD
simulation.'® This situation will be considered further in Sec.
V. In the supercooled regime the relevant dynamics is system
activation over deep energy minima. Then S(7) no longer
decays on the time scale of intermolecular collisions and MD
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becomes ineffective. To overcome this difficulty we resort to
activated state kinetics, provided by the TSP trajectories dis-
cussed in Sec. III. In this section we describe two formula-
tions which make use of the TSP trajectory data to calculate
viscosity in the (1-10'> Pas) range. Although differing in
appearance, they are related in that one represents a simpli-
fication of the other.

A. Network model

We follow the Green—Kubo formalism but analyze S(r)
by treating basin hopping as a random walk on a Markov
network of nodes.”’ We imagine the system is able to sample
a number of deep minima within the timescale of the calcu-
lation so the average macroscopic properties such as viscos-
ity can take on steady state values. We also assume the acti-
vation barriers for hopping are sufficiently high compared to
kgT, and the energy dissipation sufficiently efficient that after
each hop the system loses memory of its previous history.
Under these conditions we may take the hopping rate from
nodes i to j to be given by transition state theory,

aij =V, exp(_ Qt]/kBT) ’ (3)

where v, is a characteristic attempt frequency and Q;; is the
activation energy for transition from node i to node j. One

can show? that in this model the stress correlation function
becomes

(olt+ Do) = 3 Pogi(7), @)

where P; is probability the system is on node i, o; is the
shear stress if the system is on node i (so-called inherent
stress), and g;(7) is the average value of the shear stress at
time 7 given that the system has hopped to node i at time ¢
=0. Taking advantage of the assumed Markov nature of the
hopping process, an integral equation can be set up for g;(7)
and solved without approximation,

g,-(T):f dT’si(T')Eaijgj(T— )+ 570, (5)
0 Jj

where s;(t)=exp(—a;t) is the probability that the system will
stay at node i during time #, and a;=2a;; is rate at which the
system will leave node i. To calculate the viscosity we need
only the time integral of the correlation function, as indicated
in Eq. (1). The result is (further details are given in Ref. 20)
+
p1y= oS g AO=0T 0 ©
BT i

where A(w) is the matrix (A);= 6;—a;;/ (w+a;), and o is a
vector with (o);=0;. Equation (6) gives the viscosity in
terms of the nodal activation energy Q;;, the energy of the
nodes, E; for determining P;=exp(-E;/kzT)/Zexp(
—E;/kgT), and the stress if trapped in basin i,

0;= <O'Xy>basin i (7)

with ¢ from Eq. (2). Consider the special case of a two-
state model, where P\=P,=1/2, oy=—0,=0,, and aj;p,=ay;
=, exp(—=Q/kgT). Then Eq. (6) reduces to
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n=ogv," exp(Q/kgT). (8)

B. Single path approximation

Equation (8) has the form of an expression that has been
widely used to correlate experimental data on viscosity,21

(1) = 5y exp[ Q(T)/kpT]. )

Equation (9) was first used by Andrade as a two-parameter
formula to describe liquids, the prefactor 7, and the activa-

tion barrier Q were treated as fitting constants.”' In contrast
we adopt Eq. (9) as a temperature-dependent relation be-
tween the viscosity and an effective activation barrier to be
extracted from appropriate TSP trajectory data. The analysis

which we will carry out to obtain Q(T) is discussed in detail
in Appendix B.
In our work Eq. (9) thus becomes a method to calculate

7(T). Because of the way we extract Q(T), it will be called
the single path approximation (SPA) (see Appendix B).
Henceforth we regard Egs. (6) and (9) as two complementary
formulations. They are predictive in that no experimental
input is used in their evaluations. On the other hand, in order
to compare the numerical results with MD simulations or
experimental data, as we will discuss in Secs. V and VI, a
normalization is required because transition state theory has
been assumed in the formulations. The normalization
amounts to choosing a value for v, in Eq. (3), or 7, in Eq.
9).

From our derivation of the Network model, Eq. (9)
emerges as an approximation where viscous relaxation can
be described by a single effective barrier. It can be seen in

Appendix B that Q(T) has a thermodynamic component aris-
ing from the temperature variation of the average inherent
structure energy, as discussed in Sec. II, as well as a kinetics
component associated with the activation barrier analysis
discussed in Appendix B.

The connection between the Network model and SPA is
clearly brought out by Eq. (8) which shows the former re-
duces to the latter when there is only one activation path. In
other words, SPA is a simplification of the Network model by
ignoring all the correlations (coupling effects) among the dif-
ferent activation paths. One can think of another way to cor-
rect the SPA formulation, namely, entropy effects.”** This
may be implemented by modifying the activation barrier
O(T) in Eq. (9) to introduce a degeneracy factor G(7) in the
form of an Adam—Gibbs relationship,24

(1) = 19y exp[Q(T){kpT log G(T)}], (10)

with G(T) being estimated from the density of states G(E))
distribution of the BLJ model given by Heuer.”* The effect of
this correction will be discussed along with the detailed
implementation of Eq. (6).*

We will test our viscosity formulations in two ways. The
first is to compare results with Green-Kubo MD, which is
feasible only at low-viscosity values (Sec. V). Nonetheless,
this is worthwhile because it constitutes a consistent bench-
mark where the same interatomic interaction model is used.

J. Chem. Phys. 130, 224504 (2009)
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FIG. 7. (Color) Comparison of the shear viscosity calculated using the Net-
work model (solid curve) and SPA formulation (dashed curve) with results
obtained by MD simulation (crosses). All results are expressed in reduced
units appropriate to the BLJ interatomic potential. Larger systems (2048
atoms) were used for the MD simulations.

The second test is to compare results with experimental data
in the intermediate to high-viscosity range (1—10'> Pas)
(Sec. VI). In this comparison we need to keep in mind that
our results are obtained using the BLJ model potential which
does not necessarily describe any real liquid.

V. VISCOSITY AT HIGH TEMPERATURES:
COMPARISON WITH MOLECULAR DYNAMICS

At temperatures near the normal liquid range the viscos-
ity values are low enough for conventional MD to be effec-
tive in determining 7(7T) from Eq. (1). We have performed
standard MD simulations using a periodic cubic simulation
cell containing 500-2048 atoms. After equilibration is at-
tained, typically in 100 000 time steps, the simulation is al-
lowed to proceed for a buffer period of 10 000 iterations
without any temperature control. The stress autocorrelation
function is then averaged over 2000 sets in the NVE en-
semble and 8-12 independent runs.

Figure 7 shows the MD results with the viscosity and the
temperature expressed in reduced units appropriate to the
BLJ potential (see Sec. IT). In implementing Eq. (6) we take
each local minimum given by the TSP trajectory in Fig. 4 to
be the energy of a node, and the transition frequency a;; in
Eq. (3) is then specified by the activation barrier g;; as la-
beled in Fig. 4. In implementing Eq. (9) we take the effective

activation barrier Q(T) determined in Appendix B (see Fig.
15). To set the Network model and SPA results in the form
for comparison with MD we choose to normalize the viscosi-
ties at 7=1. Figure 7 shows the Network model matches well
with the MD data. We regard this as the most important
result of our benchmarking, a confirmation that our formula-
tion of the Green—Kubo formalism to incorporate activated
state kinetics indeed captures the temperature variation of the
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viscosity determined by MD (in the region where the latter is
expected to be valid). Additionally the SPA formulation de-
scribes a viscosity increase with lower temperature that is too
strong compared to the MD and the Network model. This
can be understood as a direct consequence of our activation

barrier analysis (Appendix B) where Q(T) is obtained as an
upper-bound estimate. We can therefore attribute the differ-
ence between the Network model and SPA results as the
effects of activation path coupling which are treated in the
former but not in the latter. These observations, seen in the
low-viscosity region, should also hold in the high-viscosity
region where we next test our formulations against experi-
mental data on fragile liquids.

VL. VISCOSITY OF VISCOUS LIQUIDS:
CALCULATIONS AND EXPERIMENTS

In comparing the Network model and SPA results with
experimental data we adopt a different normalization from
the preceding comparison with MD. Recall that the normal-
ization amounts to assigning a numerical value to the fre-
quency v, in Eq. (3), or the prefactor 7, in Eq. (9). Given
that the experimental data for a number of fragile liquids all
extrapolate at high temperature to a viscosity of 107 Pas
(see Fig. 8 below) it seems appropriate to use this value as
the high temperature limit in normalizing the Network model
and SPA results. In Fig. 8 the two theoretical results for 7(7T)
are now shown in absolute units along with a collection of
experimental measurements on fragile liquids,25 with tem-
perature scaled in 7, the glass transition temperature defined
operationally as 7(T,)= 10'? Pas. For the experimental data
the T, of each liquid is of course known, while for the two
theoretical curves we use the 7|, value of 0.37 in reduced unit
given by Eq. (6).20 Since there are no viscosity calculations
giving results anywhere near 10'> Pas for the BL] model
(or any interatomic potential for that matter), there is no way
to directly validate our value of T,. On the other hand, the
mode-coupling theory temperature 7. for the BLJ model has
been estimated to be T, C=O.435.8 This gives a value for the
ratio T./T,~ 1.3, consistent with what is considered to be a
general rule of thumb.?

In comparing the Network model and SPA with experi-
mental data on fragile liquids we are primarily interested in
understanding the characteristic non-Arrhenius behavior of
these liquids. Since the SPA formulation is simpler and more
physically transparent, we consider its results first, as shown
in Fig. 8(a). We see Eq. (9), with a temperature-dependent
effective activation barrier determined in Appendix B, de-
scribes the “fragile” behavior exhibited by the data points in
a qualitatively similar manner. It provides a smooth transi-
tion from a modest increase with decreasing temperature in
the low-viscosity range to a strong increase through the high-
viscosity range. On the other hand, in a more quantitative
sense the SPA results clearly lie on the high side of the band
of measured viscosities. We believe the lack of quantitative
agreement is not surprising because the activation barrier
O(T) is expected a priori to be an upper-bound estimate
along with ignoring coupling effects. Based on this reasoning
we would expect the Network model formulation to provide
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FIG. 8. (Color online) Experimental test of calculated viscosity for a BLJ
potential model using the Network model [Eq. (6)] and SPA formulation
[Eq. (9)]. (a) Comparison of SPA (dashed curve) with experimental data
(Ref. 25) indicated by various symbols. (b) Comparison of Network model
(solid curve) with experimental data (now shown as a band), along with SPA
(dashed curve). For the calculated results 7, is 0.37 in reduced unit.

a correction in the direction of the experimental data. The
implementation of Eq. (6) using the TSP trajectory discussed
in Sec. III is not straightforward in that we have found the
evaluation of the A(w) matrix is sensitive to the sampling
robustness of the trajectory; a full discussion of this analysis
will be reported in a companion publication.20 Here Fig. 8(b)
shows the calculated values of 7(7) down to a temperature
where 7~ 10'" Pas. The agreement between the Network
model and experiments is considered quite satisfactory given
the ambiguity in the correspondence between any of the frag-
ile liquids and the BLJ interatomic potential model. The
model is seen to indeed describe a more pronounced fragile
behavior similar to that indicated by the band of experimen-
tal data. From the standpoint of molecular studies of trans-
port phenomena, our results demonstrate a way to go beyond
the capabilities of MD simulation. In a follow-up study on
molten silica, known to be a strong liquid, additional com-
parisons between simulation results and experiments will
provide a further test of our two formulations.”®
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FIG. 9. (Color) Largest atomic displacements (indicated by arrows) associ-
ated with selected activation events as indicated on the TSP trajectory, (a)
low-energy activation, (b) intermediate-energy activation, (c) high energy
activation. Larger circles denote particle A, the majority species, and smaller
circles denote particle B.

VII. DISCUSSION

An advantage of an atomistic method is that one can use
appropriate interatomic interaction potentials to study differ-
ent physical systems. Another significant advantage is the
availability of atomic configurations which potentially can
give insight into mechanisms of activation and relaxation.
For the TSP trajectory shown in Fig. 4 we could look at the
atomic displacements at any point along the trajectory. We
discuss briefly such a result to show that details of the system
behavior at the microscopic level can be obtained to correlate
with macroscopic-level behavior in terms of the viscosity.
The changes in atomic displacements (arrows) associated
with three selected barrier climbing events are shown in Fig.
9. One sees that low-Q activation involves only a few atoms,
while at higher Q, chainlike collective displacements can be
seen, and at even higher Q rearrangements return to a more
chaotic fashion. While these limited snapshots are by no
means definitive, they appear to be consistent with recent
investigations of the mechanisms of hopping between
metabasins.”"**

Information of this kind, when combined with topo-
graphical features of the TSP trajectory discussed in Fig. 6,
could lead to broader understanding of the kinetics of slow
system evolution. More work in this direction would be
worthwhile.

In summary, we propose a TSP trajectory sampling al-
gorithm to be used in conjunction with two complementary
methods of calculating the viscosity of highly viscous lig-
uids. Of paramount concern throughout this work is the va-
lidity of our basin-filling algorithm, the activation barrier
analysis, and the formulations to calculate viscosity in the
high-viscosity range. We have addressed these concerns at
three stages in presenting our results. We have benchmarked

J. Chem. Phys. 130, 224504 (2009)

the algorithm by applying it to the problem of adatom diffu-
sion on a metal surface, discussed in Sec. III with details
given in Appendix A. Regarding the two formulations for
computing the viscosity, the Network model and SPA, we
first compared to MD simulations in the low-viscosity re-
gion, as shown in Fig. 7. Then we compared to experimental
data in the high-viscosity region, as shown in Fig. 8. In both
cases the Network model is found to be quite accurate, while
SPA is able to account for the characteristic fragile scaling
behavior in a qualitative manner. Additionally the coarse-

grained temperature-dependent activation barrier Q(7) has
been tested against experimental results in Fig. 16.

Because this work is the first of a four-part study aimed
at calculating liquid viscosity in the range (1-10'? Pas),
there are further results to report. Part 2 is a parallel study
applying the approach described here to a potential model for
silica, a system with measured viscosity that follows closely
an Arrhenius behavior.” It turns out that the combination of
the two studies allows further interpretations of the nature of
fragility behavior in supercooled liquids. Part 3 is a full ex-
position of the Network model study and examination of its
relation to the SPA formulation, including corrections for en-
tropic effects.” Part 4 is devoted to detailed comparison of
the present activated kinetics approach to calculating viscos-
ity with the traditional MD approach and showing in the
process that a crossover from strong to fragile behavior can
occur in the low-viscosity range.29 Taken together, our find-
ings suggest that fragility, with its fundamental connection to
current understanding of the dynamics of glass
transition,' "' is a universal manifestation of all systems
undergoing slow deformational changes. We believe there is
no qualitative distinction between strong versus fragile
liquids—even the so-called strong liquids should show a
fragile-to-strong transition, although at high temperature and
over a smaller range. Such a point of view has been raised
from the perspective of spatial scales in glassy systems.31
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APPENDIX A: BENCHMARKING BASIN
FILLING ALGORITHM

A suitable test problem to validate our sampling method
is atomic diffusion on a metal surface® for which results are
available from previous simulation studies.” ™ We choose a
standard model*® consisting of six Al (001) layers, each with
50 atoms, and one Al adatom. With two bottom layers kept
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TABLE I. Calculated activation barrier Q and number of Gaussian penalty
functions used to escape from initial energy minimum for different combi-
nations of Gaussian width o2 and height W.

o2 w 0
(A?) (eV) (eV) n,
1.0 0.01 0.43 148
0.8 0.2 0.55 8
0.6 0.1 0.25 12
0.6 0.01 0.235 104
0.6 0.005 0.229 215

fixed, the simulation cell has 3N=603 degrees of freedom.
Interatomic interactions are described by an Embedded Atom
Method (EAM) potentiall.37 Table I shows the calculated ac-
tivation barriers and the corresponding number of penalty
functions needed to locate the saddle point for several com-
binations of (02, W) values. One sees that larger activation
volume allows the adatom to escape from the initial mini-
mum in fewer steps and generally overestimates the barrier,
whereas lower activation energy gives more accurate barriers
but requiring more steps. Even though the atomic configura-
tions at each saddle point differ slightly, in all cases activa-
tion occurs through the knock-out mechanism found by
Feibelman®’ and depicted in Fig. 10(a). The activation bar-
rier sampled by using 215 Gaussian penalty functions with
0=0.6 A% and W=0.005 eV is 0.229 eV. This may be com-
pared to 0.227 eV given by the dimer method’ by conducting
10° searches and comparing the activation energy of each
saddle point obtained. In contrast, the present result is ob-
tained in a single run.

The effectiveness in saddle point determination is further
illustrated by considering the diffusion of a cluster of ada-

Initial Saddle Final

It It 't
“tT IFf IT I
" "t TE.JC
“T “rls) )

" FE T LR .
‘e 3 € I'F I
3 3 I'E .

(a) Activation energy = 0.229 eV

"E"a»
L L L A
» P,

(c) Activation energy = 0.604 eV

FIG. 10. (a) Activation of Al adatom on (100) surface. Adatom A knocks out
atom B in the first layer and taking its position. (b) Activation of Pt adatom
island on (111) surface when only atom A is penalized. (c) All seven atoms
in the island and top three surface layers are penalized.
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FIG. 11. (Color online) Scatter plot of values of g extracted from the
trajectory shown in Fig. 4. A point is shown for each E;” that has a value E;
and all the Ej' that can be connected by an activation energy ;. Because
points on top of each other do not show up, the number of k states that can
be connected is not displayed in this plot.

toms where the activation mechanism could not be easily
anticipated by intuition. We again choose a standard model
consisting of six Pt(111) layers, with 56 atoms per layer, and
a 7-adatom cluster.’® Three bottom layers are fixed so the
number of degrees of freedom is 3N=525. Interatomic inter-
actions are in the form of Morse potential with parameters
chosen to reproduce the diffusion barrier on Pt surfaces.*®
This case offers an opportunity to illustrate another feature of
the algorithm, the flexibility to activate any subspace of the
full 3N+1-D space. For example, if we decide to activate a
single corner atom in the adcluster, 3N=3, we would find an
activation energy of 1.695 eV, as shown in Fig. 10(b). On the
other hand, applying penalty functions to the top three layers
and the cluster, with 3N=525, we obtained a much lower
activation barrier of 0.604 eV, with cluster migration process
shown in Fig. 10(c). In the second case the process involved
63 penalty functions with 6?=1.0 A2 and W=0.05 eV. For
both cases the activation barriers agree with the results given
by the dimer method, 1.693 eV (Ref. 36) and 0.601 eV,
respectively.

APPENDIX B: ACTIVATION BARRIER
DETERMINATION

We have developed a statistical analysis of the connec-
tivity among the local minima by focusing on the activation
energy qj indicated in Fig. 4. Our purpose is to extract an
effective (coarse-grained) activation barrier in the sense of
transition state theory, a quantity that describes how struc-
tural relaxation in the system varies with temperature. As
illustrated in Fig. 4 the activation energy g is the amount of
energy required to connect an arbitrary pair of local minima
J and k. Its value Q=g is not unique because there can be
different pairs of minima connected by the same value of
activation energy. The degeneracy holds also for the energy
of a local minimum; there can be a number of Ex(x?m all having
the same value, say E;. By considering all possible ways of
connecting a pair of local minima, we can generate from Fig.
4 the following scatter plot. On the x-axis we label the en-
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FIG. 12. (Color online) Distributions of number of local minima k that the
system can reach with activation energy Q starting in local minima j with
energy E;. Four distributions are shown corresponding to energies E; shown
in Fig. 13. The E; values for the distributions 1, 2, 3, and 4 are —20.4,
—20.5, —20.6, and —20.9kBTg, respectively. T, is 0.37 in reduced unit.

ergy of the initial local minimum j for a given j. On the
y-axis we plot the value of gj, for a given k. This gives one
point on the plot. Now imagine we repeat this process for all
the j’s and k’s in Fig. 4. The result is then the scatter plot,
Fig. 11. There are points in the plot that occur more than
once, but one cannot see this. What one can see is the outline
of the points. Along the x-axis the highest value of Egﬂn
corresponds to the smallest value of a local minimum (most
shallow well). At this E; value the activation energies g are
spread over a narrow range of low values. At the opposite
end of the E; values (deepest well), the range of g, is much
greater. Figure 11 does not show which points are degenerate
and what is the degeneracy. This information, the density of
points (number of j’s and k’s), is more readily seen from a
density of states or density distribution plot, Fig. 12.

Let n(Q|E;) be the number of local minima k that can be
connected to E; with activation energy Q. If we let Q be a
variable, then n(Q|E;) can be regarded as a distribution in Q
for various values of E;. For the sake of illustration we con-
sider four discrete values of E;. Figure 12 shows the four
distributions, with high and low values of E; (shallow and
deep potential well) indicated by 1 and 4, respectively, and
the intermediate values denoted by 2 and 3.

Notice that the distributions are sharply peaked at the
two ends of the E; range. For high E; the peak (high density
of states) occurs at low Q values, while for low E; the peak is
at high Q values. If we take the Q values at the maximum of
the distributions, and cross plot these Q’s against the corre-
sponding values of E;, we would obtain the four points
shown in Fig. 13. Thus the statistical analysis of our trajec-
tory data shows two kinds of connectivity. Following the
high density of states one can trace out a curve showing that
one can hop between shallow wells at low activation, and
between deep wells at high activation, see Fig. 13.

Connecting the four points in Fig. 13 gives a relation
between an activation barrier and the depth of the potential
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FIG. 13. (Color online) Q-E; cross plot for four discrete values of E;. See
text for explanation. T, is 0.37 in reduced unit.

well. Because the Q values in Fig. 13 correspond to the
maximum in n(Q|E;), the relation also implies a large num-
ber of intermediate steps are involved in the activation pro-
cess. In other words, using this relation to describe the varia-
tion of activation energy with well depth is appropriate for a
highly cooperative process, one involving many degrees of
freedom in the system (collective rather than individual).
One can consider other parts of the cross plot. For example,
at low Q and low E;, one finds configurations much different
from the high Q and low E; point in Fig. 13 (see Fig. 14
below). Carrying out the same analysis described in Figs. 12
and 13 for all the E; values from different sampling trajecto-
ries, we obtain the three-dimensional plot shown in Fig. 14.
We have chosen the initial configurations of the samplings
from the inherent structures database generated in Sec. II.
The inherent structures with different energies are selected to
cover the range of quench probability calculation in Fig.
2(b).

Figure 14 depicts the variation of the activation barrier Q
with the value of the initial local minimum (well depth,
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FIG. 14. (Color) Density distribution of Q for different E; (color coded). T,
is 0.37 in reduced unit.
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FIG. 15. (Color online) Temperature variation of the coarse-grained activa-

tion barrier Q(T) obtained by combining the high density path shown in Fig.
14 with the average inherent structure shown in Fig. 2(b). T, is 0.37 in
reduced unit.

higher energy means shallower well). For shallow wells Q is
low in value and insensitive to well depth variation. As the
well becomes deeper, Q increases in value and is sensitive to
well depth variation. Taking the “ridge” path in Fig. 14 as a
characteristic relation between Q and E;, we introduce a
coarse graining and mapping procedure to deduce a

temperature-dependent effective activation barrier (7).
Coarse graining here means we replace Q by an effective

barrier Q with the same dependence on E;, and replace E; by
the average inherent structure energy E(a). Mapping means

we write Q(E)=0(T), and the barrier is now associated with
the temperature at which initial inherent structure configura-
tion for the basin-filling sampling is generated. The result of
this procedure is shown in Fig. 15.

We see that Q(T) is constant at high T but rises sharply
as T decreases below a characteristic value. What we have
observed in Fig. 14 is even more accentuated. The increase
in activation has two contributions. From Fig. 14 we have
seen that the activation energy rises when the local minimum
decreases to a certain value. The nature of this increase is
activated state kinetics. From Fig. 2 we see that a decreases
sharply with 7 below 7~ 0.6. The nature of this decrease is
thermodynamic (inherent structure scaling with tempera-
ture).

Being a coarse-grain quantity, Q(7) can be compared to
temperature dependence of activation barriers extracted from
experiments. Such results have been obtained by fitting vis-
cosity data on a number of fragile glass-forming liquids to a
formula with three constants.”® We have used the same for-

mula to fit our Q(T) result given in Fig. 15, thereby deter-
mining the values of the three constants (7%, B, and E., in
Ref. 39). This particular way of representing our calculations
is shown (solid curve) in Fig. 16. Also shown for comparison
are the actual experimental data (symbols, line drawn
through the data is to guide the eye). At high temperatures
the barrier is constant at a low value, implying little activa-
tion is needed to explore the PES landscape. Beyond the

plateau region, Q(T) rises sharply. Since the binary LJ model
is not meant to describe quantitatively any of the liquids in
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FIG. 16. (Color online) Experimental test of the coarse-grained temperature-
dependent activation barrier of Fig. 15 (solid curve) against scaled activation
barriers derived from viscosity measurements (various symbols) (Ref. 39).
Except for scaling the axes no adjustable parameters are involved in the
comparison.

the data, only a qualitative comparison of the overall behav-
ior of the activation barrier is meaningful. Figure 16 may be
regarded as a first experimental test of our approach to com-
puting viscosity of supercooled liquids, starting with the
basin-filling method and ending with the determination of
the effective activation barrier for structural relaxation, Secs.
II-IV. It is clear that there is an agreement between the pre-
dicted result and those derived from experiments. Moreover,
the difference brought out by the comparison can be under-

stood as a consequence of our upper-bound estimate of Q(7).
In other words the predicted behavior is expected to show
generally stronger activation than the experiments.
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