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We investigate the effect of the experimentally observed Jahn-Teller distortion of the oxygen octahedra in
LaTiO3 on the magnetic exchange. We present a localized model for the effective hopping between nearest-
neighbor Ti ions and the intrasite Coulomb interactions, based on a nondegenerate orbital ground state due to
the static crystal field. The latter corresponds to an orbital order which has recently been confirmed experi-
mentally. Using perturbation theory we calculate, in addition to the Heisenberg coupling, antisymmetric
(Dzyaloshinskii-Moriya and symmetric anisotropy terms of the superexchange spin Hamiltonian, which are
caused by the spin-orbit interaction. Employing this spin Hamiltonian, we deduce that at low temperatures the
spins have predominantly a G-type antiferromagnetic ordering along the crystallogasgkis; accompanied
by a weak ferromagnetic moment along thaxis and by a weak A-type antiferromagnetic moment along the
b axis. The first two components are found to be in good agreement with experiment.
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I. INTRODUCTION excellent agreement with the estimate of the crystal-field
splitting according to Ref. § Consequentlythe orbital order
In the 1970s the orthorhombic perovskite Lafi@as at low temperatures is not induced by the superexchange.
considered as a typical example of an antiferromagnetic MotRather, the orbital degree of freedom is frozen by the crystal
insulator (Ty=146 K).! The ground state of the Ti ion is field The scenario of suppressed orbital fluctuations has also
trivalent with a single electron in th&:shell. This compound been confirmed by a recent LDA+DMFTlocal qgnsny
has attracted attention when an ordered magnetic moment 8PProximation+ dynamical mean-field theonstudy.” The
0.45-0.46; was reported3 This value is surprisingly assumption of Ref. 11 that the crystal-field splitting, the

small for a single electron with quenched orbital moment, foruperexchange, and the spin-orbit coupling are all of the
which one would have expected:d. In LaTiOs, this value same order is inconsistent with the photoelectron spectros-

. copy of Ref. 7. In addition, a higher value, O/, of the
may be reduced by about 15.6% due to quantum fluctuation ! o
of the three-dimensional3D) Heisenberg modél,and by Srdered moment has been recently repoftathking the dis

about further 14% due to the on-site spin-orbit coupliimg g?gjg)cgvgﬁtgvrﬁgnefxpenment and  thedyhich gives

conjunction with the crystal field, as will follow from our The Jahn-Teller effect in LaTigis caused by the twisting
calculations, leading to an overall estimate of 04 of the Ti-O bonds with respect to each otltee., by differ-

An attempt to explain the unexpected finding of a smallences between the 0-O bond lengthather than by differ-
ordered magnetic moment has neglected the Jahn-Teller dignces between the Ti-O bond lengths. The nondegenerate
tortion of the oxygen octahedra in LaTj@nd assumed that ground-state orbital due to crystal-field calculations given in
the symmetry of the unit cell is strictly cubic. In such a Ref. 6 is consistent with the orbital order found in NMR
situation thet,, ground state of the Ti ion is threefold degen- measurements of the Td3juadrupole momer The pres-
erate and the orbital moment is unquenched. Hence it wasnce of orbital order at low temperatures has also been con-
proposed to consider LaTgas an orbital liquid in order to cluded from measurements of the dielectric properties and
explain the reduction of the ordered moment by orbitalthe dynamical conductivit}? Furthermore, an orbital contri-

fluctuations> bution to the specific heat, which is predicted by the orbital-
However, recent experiments give a strong indication ofliquid model, has not been found in experiméht.
the importance of the Jahn-Teller distortion in Lagi@nd Hence from the recent experiments it must be concluded

in particular enable one, using recent structural data, to estthat the orbital-liquid model is inappropriate for LaHO
mate the splitting it induces in thg, levels: There is a Moreover, it has been proven, by exact symmetry arguments,
crystal-field gap of about 0.24 eV between the nondegenetthat due to a hidden symmetry the superexchange Hamil-
ate ground state and the next excited I1évV&his value has tonian used in Ref. 5 cannot reproduce the observed mag-
been confirmed by a study of photoelectron spectroscopynetic order of LaTiQ.1>16

and is at least one order of magnitude higher than any super- Another model to explain the magnetic properties of
exchange energy in LaTi® (A comparison of the optical LaTiO; proposed the lifting of the,, degeneracy by the
conductivity and of Raman data shows that the lowest orbita¢rystal field resulting from the eight La ions which surround
excitation is centered at about 0.25 &\This value is in  each TiQ octahedron—assuming undistorted octahedra, i.e.,
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neglecting the Jahn-Teller effe€tThis model predicts a re- z
alistic nondegenerate ground-state orbital for each T? ion
and yields plausible values for the Heisenberg couplings be-
tween nearest-neighbor Ti iof%.

However, there are two points missing in the calculations
of Ref. 17.(i) The crystal field due to the eight nearest La
ions, which gives a nearly equidistant splitting scheme be-
tween the three,, orbitals, is only a first approximation of
the full crystal field due to all the ions of the solid. It is
preferable to treat the electrostatic crystal field more accu-
rately, employing the Madelung sum. Such a treatment
shows that the Jahn-Teller effect leads to a nondegeniggate
ground-state orbital and two quasidegenerate excited
orbitals® (i) Terms of the exchange Hamiltonian which
break the spin-rotational invariance and cause the magnetic
order have not been considered. Hence the origin of the ob-
served magnetic order is not fully understood so far.

In the present paper we improve the model of Ref. 17 in
several respects: we investigate a model for the magnetism
of LaTiO3, which starts from a point-charge calculation of
the static crystal field for the Ti ions via a full Madelung sum  FIG. 1. The crystallographic structure of LaFOThe ten Ti
over the crystalas was already discussed in Ref. Baking  ions, which constitute the 12 inequivalent nearest-neighbor Ti-Ti
into account the recent structural low-temperature data andonds are enumerated. For simplicity, oxygen octahedra are only
using a Slater-Koster parametrization of the Ti-O hoppingshown around four Ti sites. La ions from two layers are shown as
we calculate an effective hopping matrix between ther- small spheres. For example, the sites 2 and 6 are crystallographi-
bitals of nearest-neighbor Ti ions. Treating this Ti-Ti hop- cally equivalent but the bond 61 emerges from the 12 bond by a
ping and the on-site spin-orbit coupling as perturbations, wélide reflection, so that the effective hopping matrix for the bond 16
calculate the Superexchange Coup“ng between the nondegéﬁ_diﬁerent than that of the 12-bond: It is the transposed one, see
erate crystal-field ground states of thé*Tions. In treating  1able V.
the TP* ions, which appear as intermediate states of the ex-
change processes, we take into account the full on-site Couderaction on each site reduces the moment by about 14%. We
lomb correlations in terms of Slater integrals and diagonalizealso find that the covalent field, due to the hybridization,
the Coulomb Hamiltonian together with the crystal-field one.gives rise to spin 0 as well as spin 1?Tistates. For the
The spin-orbit coupling gives rise to antisymmetric and sym-parameters which we use, we find that the covalent crystal
metric anisotropies of the spin Hamiltonian. We calculate thdield causes a reduction of the ordered magnetic moment by
isotropic part of the exchange coupling and both kinds of theabout 0.5%. Since the moment is affected by other factors
anisotropies to leading orders. Using our exchange Hamilte.g., quantum fluctuationsand since the inclusion of all
tonian, we determine the classical ground state which givethese factors in the present calculation is rather complicated,
the directions of the spins in the ordered phase. This groundie chose to concentrate here on the magnetic structure in the
state spin structure is the main result of our paper. The exground state, and to leave the discussion of the moment’s
perimental data reveal a G-type antiferromagnetic ordemagnitude to future work. The fact that our model repro-
along the crystallographia axis, which is accompanied by a duces the observed magnetic structure gives further confir-
small ferromagnetic moment along taeaxis® Our calcula- mation that LaTiQ is not described by an orbital liquid
tion reproduces this order. In addition, we find a smallmodel.

A-type moment along thé axis, which has not yet been Section Il concludes with a detailed comparison of our
detected experimentally. model with other calculations for LaTiJdSec. Il B. Section

In the next section we present the details of our modellll is devoted to the perturbation expansion yielding the mi-
We include in this section a description of the orbital groundcroscopic spin Hamiltonian. Section IV discusses the macro-
state resulting from our picture and the model Hamiltonianscopic magnetic Hamiltonian and the resulting magnetic or-
which is based on i(Secs. Il A and Il B. We then go on to der of the classical ground state. It includes as well a detailed
discuss certain effects that exist in LaEiGut are not in- comparison with existing experimental data. Finally, we
cluded in the perturbation calculation of the superexchangesummarize our results in Sec. V.

The first concerns the Ti-O hybridization, or in other words,

the effect of the covalent crystal fiel@ec. Il Q. This hy-

bridization leads to a mixture of the 3fiand Tf* in the Il. THE MODEL

ground state. In particular we show in Sec. Il C that our
neglect of this hybridization does not affect severely the ba-
sic assumptions of our model. We next discuss the magnitude The unit cell of LaTiQ contains four Ti ions, see Fig. 1
of the ordered magnetic mome(8ec. Il D. As we show, a and Table I. The structural data, from Ref.(aken atT
combination of the static crystal field and the spin-orbit in-=8 K), are given in Table Il. This crystal has the symmetry

A. The crystal field

144412-2



MAGNETIC STRUCTURE OF THE JAHN-TELLER.

TABLE |. The parametrization of the unit celspace group
Pbnm), modulo the lattice constangb,c.

La (XresYres 114, (112 Xgg, 112 +yRe, 114),
(—Xre: ~Yre: 314, (1/2+Xge, 1/2~Yre, 3/4)
Ti (0,1/2,0,(1/2,0,0, (0,1/2,1/2, (1/2,0,1/2
01 (Xo1,Yo1,114), (1/12-X01,112+yqq1,114),
(—X01,7Y01,3/4), (1/2+X01,1/2-Y01,3/4)
02 (X02:Y02:202), (X02,Yo02,1/12-257),

(=02, ~Yo2:~Z02), (—X02, Y02, 1/2+20)),
(1/12-X02,112+Y02,202),
(1/2_X02, 1/2+y02, 1/2_202),
(L/24X02, L12=Y02,~202),
(1/2+X02, 1/2_y02, 1/2+202)

of the space grouPbnm(No. 62 in Ref. 18. The symme-
tries of this space group are listed in Table Ill. Given the
position of one La, Ti, O1, and O2 ion ea(dee Table), the

positions of all other ions in the unit cell follow from the
space-group symmetries. In order to use these symmetri

conveniently, we employ in our calculation the orthorhombic

orthonorma¥® basis for the Tid orbitals

xy),[229),y2),|x2), X2 - y?), (1)

where thex, y, andz axes correspond to the crystallographic
a, b, andc axes. In a cubic perovskite, the first two orbitals
would correspond to they orbitals and the three others to
the t,, orbitals.[Note that the pseudocubic basis for ttie
orbitals, which is frequently used, is obtained from EL).
upon rotating thex andy axes by 45° around thedirection]
Using the structural data listed in Table Il, we have cal-

culated the spectrum and the eigenstates for the Ti ion lo3

cated at(0,1/2,Q (number 1 in the figune employing a
point-charge calculation of the static crystal-field Hamil-
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TABLE lll. The symmetries of the space grotgbnm

Inversion centers Ti sites and centersabfplanar Ti

plaquettes, i.(0,0,0, (1/2,1/2,0, etc.
z=%1/4
x=+1/4, translation by(0,1/2,0

Through the inversion centers, along the
Z axis, rotation by 180°

Mirror planes
Glide planes
Screw axes

Table 1V, this orbital is approximately given by
|0y = 0.77Qy2) + 0.636x* — y?). (2

This state has approximately the’Ztructure in the co-
ordinate system in which thg and z axes are rotated by
+56° around thex axis® The relative sign of the linear com-
bination alternates between neighboraidgplanes according
to the mirror planes atz=1/4, etc. In the pseudospin
languagée?! we have ferro-orbital order in thab planes and
canted antiferro-orbital order between the planes. We note
that this ground state is in perfect agreement with

ég(perimenﬁz The ground state cited in Refs. 12 and 17 is

given, to a good approximation, by

NN I
10>—\/;|y2>- \/glz62 ¥.
-~ ——

0.816

3)

0.577

It practically coincides with our ground state,
[<00")|?=99.06 % . (4)

The ground state0) [see Eq.(2)] of the crystal field,
which is occupied at each Ti site by a single electron, is the
starting point of our model. The perturbative calculation out-
lined below is employed in order to evaluate the magnetic
superexchange coupling between Ti ions in this state.

tonian. This calculation uses the full Madelung sum over the

crystal (which is evaluated as an Ewald sum, see Appendix

A). It requires the second momexit?), and the fourth mo-
ment, (r*), of the effective ionic radius of the Tion. We
have used the value§2)=0.530 & and (r%=0.554 .20

The results of the crystal-field calculation, which are listed in

Table 1V, exhibit a typical Jahn-Tellep, splitting scheme,

B. The Hamiltonian

As in many superexchange calculations, we perform a
perturbative expansion in the hopping matrix elements, aim-

TABLE IV. The static crystal field for B* (site 1): Spectrum
and eigenstates in the orthorhombic basis fordimbitals, see Eq.

where a nondegenerate ground state is clearly separated frqf) and the following comment therfThe eigenenergies; and the

the two quasidegenerate excited states.

matrix W(1) used in conjunction with Eq.C6) are defined by the

The orbital order in the ground state, due to the statiGpectrum and the coordinates of the eigenstates, respectively, as

crystal field, is shown in Fig. 2. As seen from the first row in

TABLE II. The structural parameters @at=8 K, from Ref. 5.

a 5.6435 A Xo1 0.0813
b 5.5885 A Yo1 0.4940

7.9006 A X02 0.7092
XRE 0.9930 Yoz 0.2943
YRe 0.0491 Z00 0.0428

given in this table, where the first row &¥(1) is the coordinate
vector of the ground state, €}c.

-0.468 eV  (-0.035, 0016, 0.770, -0.035, 0.636
-0.259 eV  (-0.052, -0.397, 0.088, 0.911, -0.049
-0.239eV  (-0.407, 0035 -0.587, 0.086, 0.693
0.452 eV (0.853, 0.315, -0.197, 0.221,  0.290
0515eV  (-0.319, 0.861, 0.123, 0.336, -0.169
Basis xy), |22, ly2), X2,  [¥°-y?)
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z the Ti ions is divalenttwo d electrons on the same sitand
the other is four-valentan emptyd shell. In the ground

\u\ state ofH® ., which belongs to the Pt sector, both Ti ions
g J are in the one-particle ground statehbﬂn, modulo spin up

or down on each site. This leads to a fourfold degeneracy of

the ground state of the cluster. The complet& Bector has
100 basis state@nade up of five orbital and two spin states
on each of the two sit¢sThe T?* sector has 90 basis states
L] (30 spin-triplet states and 15 spin-singlet states of the doubly
L g S occupiedd shell and a factor of 2 because each of the Tiions
[ can be doubly occupied while the other has an entbty
shel).

In order to calculate the spectrum &f,, we applyHS
L on the T#* sector, and both' andHS, on the T#* sector.
L J\ﬁ HE s parametrized in terms of the Slater integrjsand

F,,22 and the effective Ti-Ti charge-transfer enetdy. This
& energy is the difference between the fourfold degenerate
JN ground state of the clustéwhich is the lowest level of the
Ti%* sectoj and the lowest level of the i sector(where

FIG. 2. The orbital order of the Ti ions in the ground st Hf, and HE,, are diagonalized simultaneouslye useF,

(2)], resulting from the calculated crystal fielthe energy scale of =8F4/5=8.3 eV from an atomic Hartree-Fock calculatin,

the superexchange, which could in principle also affect the orbitaRnd U=3.5 eV from the analysis of the photoemission

degree of freedom, is about one order of magnitude smaller than ttepectra and first-principles calculatioffs.

crystal-field gap. The order is ferro-orbital in thab planes and The perturbation part of the Hamiltonia¥,,, consists of

canted antiferro-orbital between the planes. an effective Ti-Ti tunneling termki%n, and the on-site spin-
orbit interaction,H>®

mn
ing to obtain an effective magnetic Hamiltonian which con- wn s
nects only between the unperturbed crystal field ground Vinn=Hmnt Hinpe (6)
states, which amount to the two spin states of the electron on ) L , )
each T# ion. The lowest order nontrivial contribution to this 1€ t_unnellng_ Hamiltonian is given in terms_qf an effective
effective Hamiltonian comes from terms which are of NOPPING Matrixty, between then and then Ti ions,
second-order in the effective Ti-Ti hopping, or equivalently i
fourth-order in the Ti-O hopping. The next higher order of Hion= > 2 thdh, i, + H.C., (7)
the exchange process would be of sixth order in the Ti-O ij oo
hopping. This order is reduced by a fact@4/5.52=0.19
compared to the fourth order in the Ti-O hoppi@ging the
larger value of the two Slater-Koster parametevgg,=
—-2.4 eV, and the Ti-O charge-transfer enerdy;=5.5 eV,
see below: In practice, the lowest order contributions can be
pictured by the virtual states which arise when an electron Hym=N 2 s, (8)
starts in the ground state on Ti ian, hops to a neighboring k=m,n
Ti ion n via the intermediate oxygen ion, and then hops back )
to m. Since this procedure involves only two Ti iofieaving yvherelk deno_tes th? ang_ular momentum operator of the T
all the other Ti ions in their ground stajeshe actual calcu- on at thek site, s its spm_ operato§,7 and the spin-orbit
lation can be dondwithout losing any informationon a coupling strength. We use=18 meV:

two-site cluster, consisting of the two nearest-neighbor TineiT Eebogqrrmgigt ish?rﬁ)sé?gtegr?/?aeiiebgiwe:: ig’xowplﬁ:ﬂe;t'
ions, denoted byn andn. 9 yg

The unperturbed Hamiltonian acting on such a cluster i&earest to both of them. Ld’:ﬁ. be the hopping matrix .ele—
ment of an electron in thp orbital « on the oxygen ion into

X

Whered:mu (dmis) Creategdestroy$ an electron with spinr

in the ith eigenorbital ofH' at site numbem (see Table
IV). The spin-orbit coupling is given by

given by thei state of the Ti ion located ah. The effective hopping
_ ycf between the Ti ions is then given b
H(r)nn_ Hﬁ"ln"' H(r:nn' (5) 9 y
where H is the static crystal field an#iS,, describes the ti = _LE tefde =g (9)
intra-ionic Coulomb correlations of a doubly occupied M A MM

shell. The perturbation calculation requires a selected set of

eigenstates and the corresponding eigenenergiéﬁgfln Here, A is the charge-transfer energy, which is required to
our case, the eigenstates span a Hilbert space which consigtst an electron from an O ion on a Ti ion, aadlenotes one
of two sectors. In the first, termed the3Tisector, both Ti  of the threep orbitals on the oxygefin orthorhombic coor-
ions are trivalent. In the second, called thé*Bector, one of dinates,
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TABLE V. The effective Ti-Ti hopping matrices for the

PHYSICAL REVIEW B 71, 144412(2005

TABLE VI. Model parameters of the calculation.

eigenorbitals of the crystal field from Table 1V; values are given in

eV. The rows and the columns are ordered beginning with the
ground state of the crystal fielghdex 0, continuing with the first
excited statéindex 1), etc.t;3is symmetric due to the mirror plane

at z=1/4. As the natrices are given in terms of the crystal-field
eigenbasis, the dependence of the hopping matrices on the bonds is
particularly simple[In contrast, had we used the orthorhombic ba-
sis (1), additional minus signs would have appeared in several

Momenta of the effective ionic radius for 3
(r%=0.530 &, (r%=0.554 &
Slater integrals for Fi*
F,=8F,/5=8.3 eV
Spin-orbit parameter

A=18 meV
Slater-Koster parameters
Vpdo=—2.4 €V, Vy4,=1.3 eV
Effective charge-transfer energi€B-Ti, Ti-O)
Ue=3.5 eV,Ag4=5.5 eV

entries]

Planar

il it e it _.
t1o= 6= tos= g5 = 134 = t35= 147= g7

-0.198 -0.155 -0.052 -0.022 0.016
0.109 0.133 0.022 -0.089 0.135
=(-0.114 0.167 -0.188 -0.098 0.193
-0.021 0.088 -0.235 0.579 -0.710
0.010 -0.019 -0.003 0.089 -0.121

crystal-field ground states in and between the planes are of
the same order of magnitude, i.e., rought§~[ty. In
strictly cubic symmetry, those are equake Appendix B
The rotation of the oxygen octahedra around ¢hexis, the
tilting, and the distortion cause some difference betw&gh
and|t%y.

For convenience, we present in Table VI an overview of

Interplanar ! h
the parameters used in our calculation.

137 t2e= oo™ lao C. The Ti-O hybridization

Our model does not include the covalent contribution to
the crystal field, arising from hybridization between the
Ti-3d and O-2 states. This mechanism mixes excited states
of the static crystal field into the ¥ ground state, i.e., there
is an admixture of B" states accompanied by an admixture
of holes on the oxygen sites.

Following Ref. 24, we now estimate the effect of the
hybridization. When that hybridization is absent, the effec-
10, [y),|2) (10) tive parametell 4 defines the energy difference between the

Y112 ground state of the ¥ sector and the lowest state of theéTi
(We neglect changes in this basis which are due to the cryst&ector in a two-site cluster consisting of two Ti ions. When
field, since the crystal field splitting is expected to be smalthe pd hybridization is present, these two typesbtates
compared to the Ti-O charge-transfer energy. correspond to two bands, from which twad hybridized

Using the structural data from Table Il, together with el- bands evolve according to the covalent crystal field. These
ementary geometric considerations, the Ti-O hopping matrijybridized bands have, in general, considerable dispersion:
elements can be expressed in terms of the Slater-Koster paheir peak-to-peak separation, which is seen in the combined
rametersV,g, andV,,.2° We use the value¥,,,=-2.4 eV,  photoemission and inverse photoemission spectra, is given
Vpir=1.3 €V, andA4=5.5 eV1724in conjunction with Eq. by the band gajty,,=1.6 eV, and the distance between the
(9), to compute the effective hopping matrices pertaining tdband edges is given by the optical gag,=0.2 eV, which is
the unit cell. The results are listed in Table V, which alsoexperimentally observed as the Mott gap. The mean band-
gives the symmetry properties of the hopping matrices bewidth between the twopd hybridized bands is theiw
tween different Ti-Ti bonds. The four inequivalent Ti sites of =Egay~Eop=1.4 €V.
the unit cell form 12 nearest-neighbor Ti-Ti bonds which are  Since the bands are rather dispersive, the question arises
inequivalent, i.e., they do not evolve from each other bywhether a localized picture is suitable to describe, even ap-
Bravais translations. These bonds connect the ten Ti iongroximately, the LaTiQ@ system. In order to study this point,
indicated in Fig. 1. By the symmetry operations of the spacave have analyzed the covalent crystal field of a cluster con-
groupPbnm the eight effective hopping matrices between Tisisting of a single Ti ion, and the six oxygen ions predomi-
ions belonging to the sanab plane and the four matrices for nantly hybridized with i(the calculation has been carried out
Ti-Ti bonds along thec direction, respectively, can be ex- for Ti number 1 in Fig. 1 This is accomplished by diago-
pressed by a single matrix each. For example, all 12 hoppingalizing the Hamiltonian
matrices are given by the two matrices for the Ti-Ti bonds — Hycf 4 e 4 tun
mn=12 (planay and mn=13 (interplana}, respectively. Hoa=H"+ H 4 Hpg 1D

Despite the different orbital ordering within tiad planes  for a TiOg cluster. HereH®" describes the static crystal field,
and between them, the hopping amplitudes between thHEC is the Coulomb interaction, aridgg‘ is the pd tunneling,

0.178 0.047 -0.143 0.010 0.0
0.047 0.244 0.072 0.135 0.22
=/-0.143 0.072 0.146 -0.008 -0.0%7
0.010 0.135 -0.008 -0.112 -0.312
0.020 0.224 -0.057 -0.312 -0.8)2
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TABLE VII. The combined static and covalent crystal fields for the TP* states we use are an appropriate starting point for the
Ti®* (site 1: Spectrum and eigenstates in the orthorhombic basis fosuperexchange calculation. However, it is possible that cal-

the d orbitals. The covalent contribution is calculated for a iO culations for other quantities may yield larger differences.
cluster. The full eigenstates are linear combinations 8t States

and T?* states(accompanied by @ hole on one of the oxygen )
siteg. Here, only the T* parts of the five lowest eigenstates are D. The magnetic moment

shown, corresponding to the statd$) of Eq. (13). The 14% reduction of the magnetic moment, alluded to in
Sec. | above, is obtained upon diagonalizing togelHﬁF,
~0.665eV  (-0.029, 0.020, 0.778, -0.023, 0.627 andH forasingle T#* ion. The reduction in the magnetic
~0.442 eV (0.087, -0.382, 0203, 0.874, -0.04 moment due to the not fuIIy quenched orl_aital moment. is
_0431eV  (-0.393, -0.091, —-0.549 0.284 0.675 gshmated as follows. The spin along a certain sgzlgcted direc-
' ' ' ' tion does not commute withi>S, and therefore it is not a
0.739 ev (0.856, 0323, -0211,  0.173,  0.297 good gquantum number for the combined Hamiltonka],
0799ev  (-0.323, 0861, 0092, 0354, -0.344 ,pso Hopever, the eigenstates of this combined Hamil-
Basis xy), 122, ly2), X2, X*-y?)  tonian are symmetric or antisymmetric with respect to time
reversal. This leads to five Kramers doublets for the single
Ti®* ion. Since the ordered magnetic moment is mainly of
Htplg‘: > ?ﬁdligpnaa‘* H.c., (12)  the G-type, e_md is oriented a]ong theaxis® we use those
Niao doublets to find the expectation values of the angular mo-
mentum. By choosing the largest possible polarization of the
magnetic moment along theaxis out of all the linear com-

Eglr?gf Itrrl];h_?i_aﬂorr]l?:)ltali,nglvsr: IﬂtuE(?e(slqc) Ashlg thi?] cz;l;ulﬁ\_- binations of the ground-state doublet, we find the expectation
o ppIng amp » thed hopping amp value(lx+2s)ug=0.86ug. This effect is not included in our

tudesty,, are expressz_ad in terms of the Slater-Koster Ioaramf)erturbation calculation of the magnetic exchange. However

etersVyy, andVyq,, using the structural data of Ref. 6. The ) '

entire space of the basis states of the lauster consists of it does explain partially why the observed ordered moment

. ; ) ; long thex axis is reduced with respect tqud.
a Ti** sector where the orbitals are all occupied, and a®Ti a : e .
sector where there ispa hole in one of tpgorbitals. The The Ti-O hybridization hardly affects the magnetic mo-

. o ment. For the parameters used here, the admixture of spin 0
eigenstates of the Hamiltonida1) have the form and spin 1 Ti* states in the ground state of the covalent
) = \"”2_—nd|dl> " \f"nd——1|d2>, (13) crystal field yields a reduction of the ordered m_agnetic mo-
ment by about 0.5%. As stated in the Introduction, our cal-
whereny is the occupation number of the dishell(1<ny  culations below do not contain the renormalizations of the
<2), |d) is a state with a single electron in tideshell and moment’s magnitude. From now on we concentrate on find-
fully occupiedp shells on the surrounding oxygen ions, anding the magnetic structure in the ground state.
|d?) is a state with two electrons in theeshell and a hole in
the p shell of one of the oxygen ions. We find that in the
ground stateny=1.343, i.e., there is @ hole on one of the
neighboring oxygens with probability of 34.3% It is instructive at this point to dwell on several differ-
This calculation allows for the analysis of the eigenstatences between our model and three other calculations, re-
of the combined static and covalent crystal fields. Projectingoorted in Refs. 10, 17, and 26.
the five lowest eigenstates onto thé*Tsector(which corre- (i) As mentioned above, Ref. 17 takes into account the
sponds to the statéd!)), gives to a very good approximation crystal field due to the neighboring La ions only. In addition,
the same eigenstates as for the static crystal field alone, corthe intra-ionic Coulomb correlations are approximated ac-
pare Table VII with Table IV. This finding explains why, cording to the Kanamori scheme, which ignores the splitting
despite the admixture of ' stategd?), the agreement with of the spin-triplet states. As opposed to this calculation, we
the experiment of Ref. 12 remains perfect, as evidenced itake into account the crystal field for both the*Tand the
Eq. (4). Indeed, this experiment measures th& Part, |d*), Ti%* configurations, and employ the full intra-ionic Coulomb
of the combined static and covalent crystal field, and appareorrelations for the latter. The last point is particularly im-
ently is not sensitive to the T1 admixture|d?). Table VIl portant: The spin-triplet states as intermediaté* Ttates
also shows that thig, splitting remains almost the same as in cause a ferromagnetic coupling while the spin-singlet states
the absence of the covalent contribution, whereas the dignduce an antiferromagnetic coupling, leading to a competi-
tance between thg, ande, energies is enhanced. tion between ferromagnetic and antiferromagnetic contribu-
Since it is extremely complicated to include in the mag-tions to the magnetic exchange. On the other hand, we omit
netic superexchange calculation the hopping betweepdhe the smallpp hybridization between the oxygen states, which
hybridized states, our calculations below contain only thewas included in the calculation of Ref. 17.
hopping between the Ti states. The results listed in Table (i) The LDA+DMFT calculatiod® gives a ground state
VII, which show that the projections of the eigenstates of the[denoted herg0”)) whose projection on the experimentally
combined static and covalent crystal fields onto th¥& $ec-  deduced ground state, E@), is [(0’|0")[?=87.8%, whereas
tor are almost the same as in the static-only case, ensure thae find 99.06%, see Eq4). An even larger difference,

wherep,,, destroys an electron on timth oxygen site with

E. Comparison with other models
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(which is partially explained by the difference in the ground-  TABLE VIIl. Symmetries of the effective spin Hamiltonian due
state orbitalsis found between the nearest-neighbor hoppingo the space group. The relations among the anisotropic couplings
amplitudes, coupling the Ti ions in that ground state: Theare abbreviated as follows+, +, +)1,=(=, +, +);6 Mmeans Dy,
values cited in Ref. 10 are about half of the ones we use?(~Dis Di6 Die), €tc. Due to the mirror plane=1/4, theinter-

with the in-plane amplitude being slightly smaller than thePlane Moriya vectors have vanishirgcomponents and the inter-
interplane one. plane symmetric anisotropies have vanishyizgandxz entries. The

(iii ) A recent calculation of the crystal field at room tem- transformation of the symmetric anisotropies is characterized by the

perature, including the covalency contribution and the spin®ff-diagonal coefficientsAr,, Any, Ar) whereas the diagonal co-

orbit coupling?ﬁ has yielded basically the sang, splitting efficients are invariant in and between the planes, respectively.
scheme as ourggiven in Table VI), whereas the spacing

between the,,; and ey states turned out to be bigger than in Heisenberg couplings

our calculation, about 0.9 eV. Analogously to the way we

determined the reduction of the magnetic moment due to the J127 3167 J25= Jo5= J34= Jag= Ja7= Ja7,

spin-orbit coupling in Sec. Il D, the ground state found in J13=J24=J39= 10

Ref. 26 has entangled spin-up and spin-down states, i.e., the

orbital part is not separable from the spin part. The ground Moriya vectors

state is given there in the fashion which has the largest pos=

sible magnetic polarization along the quantization axis. De- (+,+, H)1o=(=, +, H)16=(+,=,)25=(=, =, es

noting the spin-up part of this ground state [B), it turns =(=, =, H)aa=(+,=, H)zg=(=, +,2)a7=(+, + , g7,

out that the squared overlap with the experimentally deter- (+,+,013=(+,=,024=(=,—,039=(—, +,0)410

mined orbital is|{0" |0")[2=92.47%. In Ref. 26 the reduction

of the G-type moment due to the crystal field and the spin- Symmetric anisotropies

orbit coupling is found to be 9.5%, whereas we find 14%, see

Sec. Il D. (+,+,H)1=(+,—,D16=(+,=, o5=(+, +, H)e5
We will continue the comparison with other models when =(=, =, H)za=(=, *+,)3g=(=, +,Va7=(=,—, Pgn

we discuss results of our calculation in Sec. IV. (0,0,4)13=(0,0,9,4=(0,0, H)35=(0,0,9 410

Ill. THE EFFECTIVE SPIN HAMILTONIAN

Our aim is to obtain from the full Hamiltoniart,,, and consequently the effective spin Hamiltoni@mitting
=H2 +Vn, an effective spin Hamiltoniarh,,, which acts ~ constant termstakes the form
within the Hilbert space of the fourfold degenerate ground —c . )
state of the unperturbed Hamiltonit), . Nin= S - Ao S S
In general, an operator which acts in the ground-statavhere A, {(=A},) is the 3x3 superexchange matrix. This
space of the two Ti ions located at sitesandn, consists of matrix may be decomposed into a symmetric part and an
linear combinations of the following terms: antisymmetric one. The three components of the latter con-
+ + stitute the Moriya vectoD,,,(=—D,,,). Extracting further the
dmogr'ndnotr;dnoond”ﬂam’ (14) isotropic part ofA,, i.e., the Heisenberg coupling,,, the

+ effective spin Hamiltonian is cast into the form

where, as beforedno% (dno,,n) creategdestroy$ an electron .
in the crystal-field ground state at site of spin component N = JmnSm* S+ Dimn* (S X S) + Sy A S (18)
o, Since there is a single electron at each Ti site, the creg|

a_tion a_nd annihilation operators can be written in terms o pace-group symmetries, all three types of magnetic cou-
site spin-1/2 operators, plings belonging to the eight planar Ti-Ti bonds may be
dxmdnoi = dgoidnm =S, obtained from those of a single bond, and so is the case for
the four interplanar bonds, see Table VIII.
1 1 The various magnetic couplings appearing in 8@ are
dﬁmdnm:§+aﬁ, dgmdnmzﬁ—sﬁ. (15)  obtained by perturbation theory to leading order\ip,
namely, to second order in the hoppityg, and to first and
Any operator acting within the ground-state space of theécond order in the spin-orbit couplirigcaled by\). In or-
two Ti ions can be represented in terms of the 16 operator$ler to accomplish this calculation, we introduce the projec-

ere, A, represents the symmetric anisotropy. Due to the

tion operatorP?, onto the ground-state ¢1°,, and the com-
1 (constan, bined resolvent and projection operafy, onto the excited
states. The formal expressions for the terms we need are
Sk (single-ion termy, compiled in Appendix C, following Ref. 27. In terms of these
projection operators, the various terms appearing in(Es).
S (intersite spin couplings (16)  acquire the following structure. The Heisenberg isotropic ex-

) S change, to leading order in the Ti-Ti hopping, is
wherek=m,n and «, 8=x,Y,z Since the Hamiltonian is in-

—_p0 t t 0
variant under time reversal, there are no single-ion terms, IS+ Sh = PrdHmnSneHmaPmi: (19
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The second term in E18) is the Dzyaloshinskii-Moriya TABLE IX. The calculated single-bond spin couplings
antisymmetric anisotropic exchange interaction, which ariseg€V). The Moriya vectors are given including the correcti@yg,,
from second-order processes in the tunneling Hamiltoniarivhich are of order\?. The symmetric anisotropies are given as
and first-order processes in the spin-orbit coupling, A= (A A A and AST=(AY A Ay for the diagonal

and off-diagonal entries, respectively.

Dmn ) (Sm X Sn) = P%nHtmurrjnSmnHtmugSﬂnHﬁ?nP%n
Heisenberg couplings

+ PO HE S Hr S HinPR,. (20) 9 corPns
J1,=24.616,1,3=19.416

In fact, there are additional terms in this order, in which there
appear two T4* resolvents, e.gP% HY'S, H® S, HuPO Moriva vectors
These are smaller than the ones we keep, by an additional Y
factor of =A/U.=0.059, whereA ;=0.208 eV is the gap D1,=(3.254,-1.273,-1.286D,3=(-2.886,0.543,D
between the ground state of the single-particle crystal field
and the first excited state, see Table IV. Following Ref. 28,
we denote the vecto®,,, which refer to the microscopic
single-bond couplings of the spins, as the Moriya vectors. A%,=(0.188,0.066,0.037 A%=(-0.039,-0.218,-0.190
The macroscopic antisymmetric anisotropic couplings be- A%9=(-0.035,-0.111,-0.088A%3=(0,0,-0.074
tween the sublattice magnetizations of the classical ground
state (discussed in the next sectioare referred to as the
Dzyaloshinskii vectors. They are related to the Moriya vec- IV. THE CLASSICAL GROUND STATE
tors but are not necessarily the same.

Finally, processes which are second-order in both the tun-

Symmetric anisotropies

A. The magnetic order of the classical ground state

neling and the spin-orbit interaction, yield The single-bond spin Hamiltonian, E(LY), is the basis
for the magnetic Hamiltonian, from which the magnetic or-
S ASySat Dl (SmX Sn) der of the classical ground state follows. To construct the
0 1% wn wn © 0 latter, the entire Ti lattice is decomposed into four sublat-
= PoneHmnSmtH mnSmsH mnSmeHmnPrn tices. Namely, each magnetic unit cell includes four Ti ions,
+ PO HOG HSOG Hlng  Htunp0 just as the crystallographic unit cell. The four sublattices are
g‘” eSS mn g‘” hence enumerated according to the numbers of the four Ti
+ P HmnSnH G- SnrH o Ponn ions per unit cell shown in Fig. Gsublatticei =1 corresponds
1 to Ti ion 1 and its Bravais translations, gtcAssigning a
- EPﬂmH;"nﬁanmonPg]nH‘m”ﬂsmHtm”ﬂPOmn fixed magnetization(per sit¢ to all the spins within each

sublattice,M;, one sums over all bonds which couple the

four sublattices, to obtain th@acroscopianagnetic Hamil-

1
- EPOmnHtmup]SmnHtmuﬂpganrsnon HRP2 . (2D tonian in the form

These terms give rise to the symmetric anisotropigs as Hy = 2 (1M - M+ D:? (M X M) +M; - Ty - My,
well as to correction®/., of order\?, to the Moriya vec- .

tors. We have again omitted terms including tw@*Tiesol- (22)
vents.

As was shown in Ref. 28, a systematic description of thewhereij runs over the sublattice pairs 12, 13, 24, and 34 of
magnetic anisotropies due to the spin-orbit interaction refig. 1. This summation procedure gives rise to the macro-
quires both the first and the second order processesThe  scopic magnetic couplings;j; is the macroscopic isotropic
technical reason being that the expectation value of the cross)upling,DiEj’ are the Dzyaloshinskii vectofto leading order
product in the second term of E¢L8) is, in fact, also of in the spin-orbit coupling\), which are the macroscopic an-
order\, so that altogether the Dzyaloshinskii-Moriya inter- tisymmetric anisotropies, and; are the macroscopic sym-
action is at least second order in the spin-orbit coupling. As anetric anisotropy tensoréof order A\?). The relations be-
result, although the antisymmetric Dzyaloshinskii-Moriya in- tween those macroscopic couplings and the microscopic
teraction alone gives rise to spin-canting, when taken tosingle-bond couplings are listed in Table X. The inter-
gether with the symmetric anisotropy, the system may, undetelations among the macroscopic couplings, which are dic-
specific conditions, still preserve rotational invariance of thetated by the symmetries of the space group, are contained in
spins. Table XI, together with our calculated values of the macro-

The detailed calculation of the various terms appearing irscopic coupling constants.

Eqgs.(19—(21) is lengthy, albeit straightforward. More details ~ Our next task is to minimized,, and find the various
are given in Appendix C. The values we obtain, using thesublattice magnetizations. Given the similarities between the
parameters cited above, are listed in Table IX. A comparisofi ions, we next assume that all four vectdvg have the
with spin-wave measurements is given at the end of the folsame magnitudes, denoted by, but differ in their direc-
lowing section. tions. Since Eq(22) is quadratic inM, the minimization will
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TABLE X. The macroscopic couplings of the sublattice magne- TABLE XII. All types of magnetic order which are allowed by
tizations in terms of the microscopic single-bond spin couplingsthe space groufbnm There are four possibilities, denoted kY
For instance, we havke,=J;, but 1,3=J;3/2. This is because the x& z° andZ. They are allowed because the ordered state can be
coordination number of a Ti ion is 4 in the planes and 2 between theymmetric or antisymmetric according to the glide plard. /4 and
planes. the mirror planez=1/4, respectively. The order in LaTigds of the
first type. HereG, denotes G-type antiferromagnetic moment along
X, Ay denotes A-type antiferromagnetic moment alongand F,
denotes ferromagnetic moment alog The other possibilities
involve also C-type ordering, e.gG, for the z components of
the magnetic moments. The magnetizatidhg of the sublattices
are given in terms of My, (+,+,+);=(-,+,+), means

Isotropic couplings

— 1
115=312, 113=3d13

Dzyaloshinskii vectors M, =(-M%,M%, M2), etc.
D _ D_1

D1=(0,D%,, D)), Di5=3D13 1.x8,2 2.x8, 72 3.8, 4.5 7
Macroscopic symmetric anisotropies (+,+,4) (+,+,4) (+,+,4) (+,+,4)
=(=,+,4); =(+,-,7)2 =(=,+,4)2 =(+,-,7)2

d _ad od_(payz 1

F]_Z_A12’ Flz_(Alz,OIO), F13_ 2A13 :(_l_v+)3 :(_l_v+)3 :(+l + v_)3 :(+| + 1_)3
=(+,—,4)4 =(=,+,7)s =(=,+,7)a =(+,—, )4

only be able to yield the directions of these vectors, and noG,A/F, AG,C, C.FyA, F.C,G,

the value ofM. Thus the main result of our paper concerns
the magnetic structureof the ground state, as reflected by
these directions. As discussed in Sec. Il D, the actual valuliceé magnetizations of the classical ground state, as listed in
of M depends on many factors which are beyond the Scopﬁable X3 Having checked each of these possibilities, we
of the present paper. In fact, this value will be further re-have concluded that the lowest energy is found for the first
duced byquantum fluctuationswhich arise from the zero Possibility in this table. Using this symmetry, it is then pos-
point motion of the spin waves around our classical groundsible to express all four vectors in terms of two angleand
state. ¥, see Table XIIl. The actual minimization finally yields the
To simplify the finding of the moments’ directions, we use angles listed in Table XIlI, and the corresponding magnetic
group theory. According to the space groBbnmsymme-  structure is shown in Fig. 3. This magnetic structure repre-
tries, there are four possibilities for the symmetry of sublat-sents the main result of our paper. This classical magnetic
ground state has the following symmetry: Theomponents
TABLE XI. Symmetries of the magnetic Hamiltonian due to the Of the magnetizations order antiferromagnetically, in a
space group and the values of the macroscopic magnetic couplings-type structurgwhere the four sublattices actually reduce
in meV. The symmetry relations for the anisotropic couplings areto two). The y components order antiferromagnetically as
abbreviated as in Table VIII. Due to the glide planes, the Dzy-
aloshinskii vectors of the planar bonds have vanishingpmpo- TABLE XIII. The structure of the magnetic ordéthe first pos-
nents, and the respective symmetric anisotropies have vanighing sibility of Table XII) [characterized by the sublattice magnetizations
and xy entries. Because of the mirror planes, the DzyaloshinskiiM, in the classical ground state, in terms of the canting angles
vectors of the interplanar bonds have vanishingpmponents and and ¢ (each of these angles is proportional Xo the spin-orbit
the respective symmetric anisotropies have vanisgingndxzen-  parametey, the calculated canting angles, and the resulting abolute
tries. In the calculation of the classical magnetic ground state thregalues of the ordered momernsormalized toM).
coefficients of the macroscopic symmetric anisotropies are takeg
into account(see text

X components: G-type
-M{=M3=M}%=-M}=M cos¢ cos?

Isotropic couplings

115= 134, 113= 124 y components: A-type
|12: 24616,| 13= 9.708 _M{: _M¥: M%: MX: M sin [} cosY
Dzyaloshinskii vectors z components: ferromagnetic

Mi=M37=M%=M’=M sin &
(01 +, +)12: (01_1 +)34' (+l + 10)13: (+!_10)24! ! 2 3 4
D _ _ _ D_(_

DP,=(0,-1.273,-1.286 D2,=(~1.589,0.271,D Canting angles

. . . . ¢=1.42°,9=0.80°
Macroscopic symmetric anisotropies

(+,0,015=(=,0,034 (0,0, 4)13=(0,0,9)24, Ordered moments
X%=0.188,"%=—0.020,["%=~0.037 M =(+0.9996, +0.0248,0.014M

144412-9



SCHMITZ et al. PHYSICAL REVIEW B 71, 144412(2005

< different magnitudes of the canting angles, which cause the
ferromagnetic order to dominate.

One should note that by using naively the procedure out-
lined above to obtain the energy of the classical magnetic
ground state, one obtains in the energy nonsystematic contri-
butions up to fourth order in the spin-orbit coupling To
exemplify this point, we consider the expectation value of
;; Hu, expressed in terms of the anglesand 9, and, by the
- Ly o symmetries of the sublattice couplings, in terms of the cou-

\ plings between the sublattice bonijs 12 and 13,

3 1
K.Y ©
| ‘ (Hy) =[A\%] = 2(11,+ 1,9c08 ¢ cog o
L*& [)\2]+2(|12_|13)S|r|2(PC0§ '&"’ 2(|1z+ |13)SII’1219
4B # +4(DDY + DYY)cose cosd sin 9

+4DYZ cose sin ¢ cog
- 2%+ I¥)cog ¢ cog &

[A3:] - 4D%5 sin ¢ cos® sin 9 — 4% cos ¢ sin ¢ cog &
|

A%:]+ 2T - TYY)sir? ¢ cog & + 225+ ['32)sir? &
- 215 sin ¢ cos ¥ sin 9. (23

FIG. 3. The magnetic order of the Ti ions in the classical ground
state of the effective spin Hamiltonian of the lattice. The ions areln this equation we have ignored the overall facMF,
enumerated according to the sublattice to which they belongxThe which does not affect the minimization. The leading orders
components of the spins order antiferromagnetically in the G-typgyf the terms are indicated in the square brackets. The non-
configuration, they components order antiferromagnetically in the systematic contributions of fourth order lnare due to the
A-type one, and the components order ferromagnetically. Couplingsr{%, F>1’>3’, I‘ﬁ, Fﬁ, pl/é (which are all of orden?

well, but in an A-type structure. Finally, tiecomponents of ~Put are multlpl|edz by sifid, sir’ ¢, and sind Sine which
the magnetizations order ferromagnetically. Due to the domi@re also of ordex?), and thex? correction ofD73 (which is
nating Heisenberg coupling, one observes that the magnetiBultiplied by sini sin ¢). Those contributions have beer-
structure of the classical ground state is predominantifudedfrom our calculation of the canting angles. On the
G_type_ The easy direction a|ong thaxis and the Canting Othel’ hand, we dO |nC|Ude n the m|n|m|zat|0n<®‘fM> terms
angles(both proportional to the spin-orbit coupling result ~ up to the third order in\. This implies a systematic deriva-
from the anisotropic couplings of the model. Those break thdion of the canting angles to first order in this couplitghe
rotational invariance of the magnetizations, and also causelassical ground-state energy has been found consistently,
the small deviations from the pure G-type structure. term by term, to second order i Although I'}; and '3

This complex ground state magnetic structure may comhave been calculated only up to orderand consequently,
plicate the analysis of the magnitudl different spin com- we do not have the complete third-order term, this is of little
ponents may renormalize differently due to the various facimportance when the canting angles are determined, since
tors listed in Sec. Il D and to quantum fluctuations. Howeverthose couplings appear only with cdsand cosp, and there-
since the order is predominantly G-type, we expect that ifore just cause an energy shift {H),).) Note also that al-
will be possible to estimate the actual value Mf using  though the Dzyaloshinskii and Moriya vectors first appear in
mainly thex component. linear order in\ and the symmetric anisotropy coefficients in

Our magnetic structure is fully consistent with the experi-quadratic orderboth kinds of anisotropielsave to be consid-
mental one, as reported in Ref. 6. This experim@mtcon-  ered as they cause terms which contribute in the same order
trast to the one reported in Ref) Beveals that the G-type of \ to the classical ground-state enefgy.
structure is indeed along thedirection, while the ferromag- It is interesting to compare our results with experiment. In
netic moment is along the direction. Moreover, since the particular,4=0.80° agrees with the value reported in Ref. 3,
experiment of Ref. 6 is not sensitive to a small moment0.85°.(Reference 14 reports the value 1.5° from a theoretical
along they axis?® our small A-type antiferromagnetic order estimate. Note thad is defined here with respect to tlab
along this direction does not contradict the data. We emphaslane) This canting angle causes the weak ferromagnetic
size again that symmetry allows for such ordering, given thenoment along the direction, of order 0.01¥I1. TakingM of
G-type order along and the ferromagnetic order alomg order Jug, this value agrees with the experimental one,
Indeed, in the YTIQ system, which has the same spacewithin the uncertainty of the measurements which is caused
group as LaTiQ, such order has been detectdut with by twinning of the crystat*
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Recently, an attempt has been made to analyze the relaomparison with the data requires the full spin-wave calcu-
tion between the anisotropy of the spin couplings and thdation, we do not attempt here any fine-tuning of the model
paramagnetic  susceptibility, which also has someuarameters. For the purpose of the present paper, it suffices
anisotropy’® In this work the anisotropy of the spin cou- that the calculated Heisenberg couplings are consistent with
plings is taken into account by postulating phenomenologithe experimental value, within the uncertainties of our model
cally anxyzmodel, which couples neighboring Ti spins and parameters.
corresponds in our calculation to the coefficieA,, from Our calculation predicts somewhat different values for the
Table IX. A model susceptibility, which results from tlkgz  in-plane Heisenberg coupling,,, and the out-of-plane one,
coupling via a molecular-field approximatiotand from  Jq3 yielding the ratios=J;3/J;,=79%. Such an anisotropy
single-ion as well as from covalence effectis calculated may be detected by comparing with the spin-wave disper-
and then fitted with a couple of free parameters onto thesion, e(q), at selected pointg=(0,0,7) andq=(,0,0), in
measured susceptibility. As we have shown in this sectionthe Brillouin zone of an effective cubic lattice of a unit lat-
the  antisymmetric and  off-diagonal ~ symmetric tice constant. When only this anisotropy is taken into ac-
anisotropies—in the particular case of Eg3), components count, then linear spin-wave theory gives
of the Dzyaloshinskii vectors aridi¥—can have at least the | > >
same conceptional importance for the magnetic properties of ~ €(d) = J12V(2 + 6) = (cosq + cosqy + §cosq,). (24)
LaTiO; as thex_yzanisot_ropies. Alternafcively sppken, in 9€n- Wwith our calculateds, we find €(0,0,m)/ e(sr,0,0=94%,
eral thexyzanisotropy is not the dominant anisotropy. This \y.e 1 within the experimental error bar of about 10% for the
basic argument is not restricted to the low-temperature Casgpin-wave energies, from which the equality of the Heisen-

which is accompanied by the magnetic order and which W%erg couplings on all bonds has been dedi@edence the

inyestiggte in th'e present paper, but f.efers also to the unde(é\pproximaté isotropy of the spin-wave spectrum due to
lying spin couplings which influence high-temperature PrOP-Ref. 8. which has been used as an argument to support the

:!’#es like tge paramﬁgnetlc su3(|:ept|b|lﬁt1yherea]§, r?.gl.’ the  orpital-liquid staté® is also consistent with our model, leav-
ifference between the structural parameters of the low- ang, e choice between the models to other factors.

h|gh—temperature case m_|ght cor.reSpond_ to more or eSS “The calculation of Ref. 17 yielded a different value for the
sllght differences of the spin-coupling coefflqlents and of theHeisenberg coupling ratiay=106%, i.e., a larger coupling
orbital grqund state In_th_e way 9f an extension of Ref. 26, along thec axis. This discrepancy can be traced back to our
the question Whe'gher |_t is possible to include also the Othe&ifferent crystal-field spectrum. In our case, the hopping am-
Flitude between the crystal-field ground states on neighbor-
'ing Ti ions is about 10% smaller for the bond 13 than for 12,
see Table V. This is a geometric effect which follows from
the structural daté.
From a fit to the observed spin-wave gap, of order
=3.3 meV, in conjunction with a spin model includisglely
The magnetic order in the classical ground state is th@ntisymmetric anisotropies, a value@f1.1 meV has been
common starting point for a spin-wave calculation. In thededuced for the magnitude of the Moriya vect®i#e obtain
case of the spin Hamiltonian pertaining to Lai®&q.(18),  higher magnitudes for the Moriya vectors. However, a full
one expects a rich spin-wave spectrum. This calculation igpin-wave expansion based on the Hamiltonia8) indi-
currently being undertaken, and will be presentedcates that the spin-wave gap is in fact dominated by the
elsewheré? Nevertheless, our results above may be roughlysymmetric anisotropies rather than by the antisymmetric
compared with the existing spin-wave data. To this end, weynes®? It is the canting of the ordered spins with respect to
ignore the antisymmetric and the symmetric anisotropies andach other which is dominated by the Dzyaloshinskii vectors.
hence assume an isotropic classical Néel gtatewhich the
spin-wave spectrum is gapless V. SUMMARY
Inelastic neutron scattering has yielded the same value,
J=15.5 meV, for thesingle-bondHeisenberg coupling for We have presented a detailed analysis of the magnetic
both the Ti-Ti bonds in theb planes and those in-between order pertaining to the LaTiQsystem. The starting point of
the plane$. This value has been confirmed by the evaluationour calculation is the T@ orbital configuration which results
of Raman spectré Were we to average our calculated val- from the static crystal field that includes the Jahn-Teller dis-
ues over the six bonds of each Ti ion, we would have ob+tortion, and which gives rise to orbital ordering as shown in
tained a value which is 32% higher. This rather modest disFig. 2. This orbital structure agrees well with NMR measure-
crepancy can be easily removed by fine-tuning the modeents, and the crystal-field gap that we obtain is in good
parameters. For example, this discrepancy can be removedjreement with photoelectron and Raman spectroscopies.
by using the value\4=6.6 eV (as estimated from an LDA This orbital ordering rules out the orbital-liquid pictarier
+DMFT calculation based on the recent structural #atar ~ LaTiOz, which ignores the Jahn-Teller-liké,, splitting
by using a smaller value for the Slater-Koster parametersscheme and the resulting nondegenerate orbital ground state.
Vpar=—2.2 eV (keeping the ratio between those parameters Employing a perturbation expansion of this nondegener-
fixed, Vpg,=1.2 €V) instead of -2.4 eV,or any other com- ate ground state in the effective hopping between neighbor-
bined reduction of both of these parameters. Since a detailddg Ti-ions, and in the on-site spin-orbit coupling, we have

tibility and to compare this susceptibility to experiment
might be interesting.

B. Comparison with spin-wave data

144412-11
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derived an effective spin Hamiltonian. It includes, in addition ! q

to the Heisenberg isotropic interaction between nearest- V(r)=- ez —n (A1)
neighbor Ti-ions, the antisymmetric Dzyaloshinskii-Moriya in 1 +aq-r]

coupling, and the symmetric anisotropic coupling. Thes%herer:(x y,2) is a point on the Ti ion No. 1, whose center
three interactions conspire together to yield the magnetic or ', .\ - - as,th,e origin. In EGAL), | are the Br:';\vais transla-
der, given in Table XlII and shown in Fig. 3. By minimizing ! :

the magnetic energy of the classical ground state, we fountlons’an are the basis vectors of the unit cell, aggiare the
. ST e ’ . i int ch . Th i h I
that the magnetic order is primarily that of a G-type antifer- orresponding point charges. The prime on the sum symbo

romaanet. with the ordered moment alona the crvstall indicates that the ion at the origihsa,,=0, is omitted. This
omagnet, w € ordere oment along the crystalioy, converges very slowly. One therefore uses the Ewald
graphica axis, accompanied by a weak ferromagnetic mo

¢ al h < Th i fion is i q ‘summatioR® (see also Ref. 37where the sum(Al) is
ment ‘along Mec axis. IS_configuration 1S In 9oo mapped onto two sums which converge much better, and

agreement with the experimental findings. In addition, W€, hich can be computed to high accuracy. Using the Ewald

have found that there is a small A-type moment of the spi : : :
components along thb axis, which (although not yet de- r‘:cs(;Jrnr:]matlon, the Madelung potential can be expressed in the

tected in experimeitis allowed by the symmetry of the

system. The structure is not sensitive to reasonable changes AT 2402, _
in the parameters of the model. This is a nontrivial result, V(')=-€> vz MEHOTY e 9%
since by the space-group symmetries of LaJi®ee Table g70 Ved n
XIl') it could have been oriented along theor the z axes. ! q q
We find that the in-plane Heisenberg coupling energy is -e>, —— erfdG|l +a,—r|) + et erf(Gr).
about 27% higher than that pertaining to the coupling be- in [1+a=r] r
tweenab planes. By using these values in a spin-wave theory (A2)

for the Heisenberg couplings, we show that both couplings ) . )
are consistenfwithin the error barswith the isotropic spin- Here g are the vectors of the reciprocal Bravais lattice,
wave dispersion measured by inelastic neutron scatt@ringWhose basis vectors ar€2w/a,0,0), (0,2w/b,0), and

The detailed calculation of the spin-wave dispersion, which0,0,27/c), Ve=abcis the volume of the unit cell, anG is

is based on the magnetic order in the classical ground statg, frequency cutoff. The value of(r) is of course indepen-

will provide a further check of our results. This calculation is dent of G. This cutoff is chosen such that the sum over the
currently being performed. Of particular importance in thisreal-space lattice and the one over the reciprocal lattice can
respect are the zone-center gayhich has been found ex- be stopped after about the same number of sites, when the
perimentally to be about 3 mé\and the experimentally de- required numerical precision is reached. In ), erf and
tected almost cubic isotropy of the dispersion in the entireerfc are the error functions
Brillouin zone. Our preliminary spin-wave results reproduce

z
the;e two features. This is an in(_jependent ch_eck of the rc_ali— erf(z) = 1 - erfdz) = i_ et (A3)
ability of our model, since even if the magnetic structure is Vardo
reproduced correctly, this does not necessarily mean that the ] ) ] N
magnetic excitations agree with experiment. The Ewald construction requires the neutrality condition

Our method seems to be particularly suitable to describe
the ferromagnetic Mott insulator YTi{Oas well. Preliminary > a,=0, (A4)
n

calculations(to be presented elsewhegiadeed indicate fer-

romagnetic couplings in thab planes®? Since the covalent \which is fulfilled in our case.

pd hybridization in this system is as strong as in Laji@ In order to find the spectrum and the eigenstates of the

will be of much interest to compare the classical magnetictatic crystal field, we have replaced the potential) by the

Hamiltonians of the two systems, and the ensuing Spin'WaVBseudopotentians(r), which is its Taylor expansion includ-

spectra. ing the second and fourth ordersiin These are the Taylor
orders which have nontrivial matrix elements with respect to
the d orbitals3® For instance, the secor{tburth) Taylor or-
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(A5)

The potentialV,{r) is a harmonic function, invariant under
inversion of the coordinates. The diagonalization of the ma-
trix (y|Vodr)|y'), wherey andy’ denote the orthorhombid
orbitals, gives the results listed in Table IV for the static
The Madelung sum for the Coulomb potential in the crystal field. This calculation requires the second and fourth
point-charge model is given by moments of the effective ionic radius, defined by

APPENDIX A: THE EWALD SUMMATION
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APPENDIX C: THE EXPLICIT CALCULATION
f fANr#Mdr=(r", n=2,4, (AB) OF THE EXCHANGE COUPLINGS

Here we document the technical details of the perturba-
tion calculation that yields the effective spin Hamiltonian.
APPENDIX B: THE HOPPING AMPLITUDES BETWEEN Our formal derivations are based on the results of Ref. 27,

THE CRYSTAL-FIELD GROUND STATES and for the sake of completeness we reproduce them here.
With P° being the projection operator onto the ground state
of the zero-order Hamiltonian, an8l being the combined
fesolvent and projection operator onto the excited states we
%éve(omitting the indicesnn for brevity) P°VSVP for the
second order,

wheref(r) denotes the radial part of theorbitals!®

As is mentioned in the text, the effective Ti-Ti hopping
matrix elements between the crystal-field ground states in th
ab planes are of the same order of magnitude as those b
tween planes, i.e|t99 ~[t%9. This is a somewhat surprising
result in view of the fact that there is ferro-orbital order in
the planes anécanted antiferro-orbital order between them. 1 1
However, as we show here, in strictly cubic symmetry one POVSVSVER- =PO/SVPOV PP - = PO/ POV VPP,
has|t%)=[t%Y. The deviations from cubic symmetry cause the 2 2
slight difference between these two hopping amplitudes. (C)

Let us hence consider the cubic case, and employ the
coordinate system’, y’, z in which the Ti sites 1 and 2 are for the third order, and
on thex’' axis (see Fig. 1; these coordinates are rotated by
45° compared to the orthorhombic one$he crystal-field 1 1
ground states are now linear combinations of the three de—POVSVSVSV(P' QPOVSVWVSQ VPP - EPOVSZ VPVSVP

generate,, orbitals

1 1
ly'2),|x'2),|x"y"). (B1) - EPOVPOVSV;%VPO - EPOVSZVSVFQVPO
The hopping amplitudes are proportional to the overlap of 1 1
the two pertaining orbitals. Let us consider for simplicity the — ZPOYPOVSV/SVE - ZPOY/SV Y POV PP
base orbitals according to E(B), i.e., 2 2
1 1
1)=[2)= %(w “X'D + Xy, + SPVSVEVPVEO + CPVRVRVSVE, (2
\“\‘
1 for the fourth order(Note thatP°vP’=0 in our case.
13y =—=(-ly'2+[x'2 +|x'y")), (B2) As explained in Sec. Il, we consider a cluster of two
V3 nearest-neighbor Ti ions. The Hamiltonian of this cluster,
where 1, 2, and 3 denote the relevant Ti idase Fig. 1 given in Egs.(5) and(6), is expressed in terms of the opera-

The effective Ti-Ti hopping that we consider is mediated!ors di, (d,) Which create(destroy an electron in the
by the oxygens located between the Ti ions. Then, in strictlyrystal-field eigenorbital with spin component, on the Ti
cubic symmetry, for each pair of Ti ions, one of the thtge 10N located at sitéx. However, it is more convenient to treat
orbitals cannot hybridize. This “inactiveness” of one of thethe two-electron stateéwhich appear in the intermediate
orbital$ is a direct consequence of the cubic symmetry, as i$tages of the perturbation expansiesing the orthorhombic
portrayed in Fig. 4, and is the source of peculiar hidderPasis, Eq.(1). We denote the operators pertaining to this
symmetries in the cubic Hamiltonidf® In our example, basis bycl,,, (ci,,), wherey enumerates the orthorhombic
the orbital|y’z) is inactive for the 12-bond, while for the orbitals. The first part of this Appendix is devoted to the
bond 13 the inactive orbital ||g’y’> According to the effect transformation of the Hamiltonian between the two schemes,
of the intermediate oxygen ions, for the bond 12 the® and the diagonalization of the two-electron states. In the sec-
hoppmg maitrix between th@g orbitals has 0n|y two nonzero ond part, we summarize the detailed gxpressions_ of the vari-
entries (see also Ref. 5 These are identicakx’zH|x'z) ous terms resulting from the perturbation expansion.
=(X'y'|H|x'y’)=:t (H denotes the crystal HamiltoniarFor
the 13-bond the,, hopping matrix has the two nonzero 1. The Hamiltonian

entries(y’ZH|y’2y=(x'Z|H|x'2)=t. Consequently, ) ) _ S
Denoting the matrix of the crystal-field Hamiltonian in the

orthorhombic basis by/(k), we have

1 2
9= (UHI2 = Z(- (<2 + (XY DH(- X2 +x'y) = 2,
1 2 HCf = kE V’}/l'yZ(k)Cl}’lO'Ck'}’zU' (C3)
5= (1HI3) = S(y'd - (XDH(-Iy'D +[x'2) == 2t,

(B3) The matriced/(k) are real and symmetric. We next introduce
the (unitary and real matrix W(k) which diagonalizes the
corresponding tdt99=[t?9. crystal-field Hamiltonian, bringing it to the form

144412-13
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w

N T Y
<

(b) SR

y!

Q

FIG. 4. In cubic symmetry, there is ortg, orbital per each Ti-O-Ti bond, which cannot participate in the hopping between the Ti and
the O ions because of the parity of the @-@bitals. This is shown in panelg)—(c), for each of the thregy, orbitals, respectivelya The
hopping between the orbitalg’z) at the Ti sites 1 and 2 is not possible, since on the intermediate oxygen site therp @ital with a
parity that would allow such hopping. For the same reason, an electron cannot hop frprortsital [x’), which is shown between the Ti
sites 1 and 2, to any of thg; orbitals of the Ti sites. On the other hand, the hopping between the oilyizist the Ti sites 1 and 3, which
is mediated by the orbitay’) on the intermediate oxygen site, is possilfle.Analogously to the cas@), the hopping between the orbitals
|x"y’) at the Ti sites 1 and 3 is not permitted, because on the intermediate oxygen site there is no approgritik Likewise, an electron
cannot hop from the orbital|2), which is shown between the Ti sites 1 and 3, to any otgherbitals of the Ti sites. Théallowed hopping
between the orbitalf’y’) at the Ti sites 1 and 2 is mediated by the orbjjd) on the intermediate oxygen sit@&) The hopping between
the orbitalgx’z) at the Ti sites 1 and 2 is mediated by the orbjigalon the intermediate oxygen site. The hopping between the orbita)s
at the Ti sites 1 and 3 is mediated by the orbji@} on the intermediate oxygen site.

(©

144412-14



MAGNETIC STRUCTURE OF THE JAHN-TELLER. PHYSICAL REVIEW B 71, 144412(2005

Hf =D Ed dy.,, C4 , ) 1
%t:r oo ( ) \Ir%/y (k;O'O' ) = E(CE‘)’UCEVU’ + Cl)’a’cl}"o’)

whereE; are the crystal-field eigenvalues, listed in Table IV.
These single-particle energies are shifted so Egpat0 eV,
E,=0.209 eV, etc. The relations between the operatiyrs

T 1 ! 1 ’
andc,,,, are hence given by VY (k;o0') = \/;(CEWCEW, - Clyo"cly’o) =vY "k o0"),
dli(r = E Vviy(k)cl'y(r’ Cly(r = 2 W—yi(k)dlig—v (CS)
Y |

==k o0"),

VY(k;o0') =cf cf (C9)

kyo'*
such that
Altogether, there are 10 triplets and 15 singl@tsthe ¢’ =

W(K)V(KW(K) = E, (C6) —o secto). Enumerating the triplet states in the following

with E=diagE;. The diagonalizing matrix pertaining to site order,

1, W(1), is given in Table IV. All otheM/(k) andV(k) follow 1) =W3% [2)=¥33 [3)=wi [4=w2 |5=v3
from the symmetry properties of the unit cell, and are given

by i ) 6)=w |7)=w2 |8y =v |9=wH |10=T3,
-+ + - 4 (C10
-+ + -+ the Coulomb Hamiltonian in the triplet sectdd;=U%, has
w2 =- + + - + |ewy), the following nonzero matrix elements,
-+ + - 4+ (Upg1=(Upgg=A-8B,
-+ + - +
- - (Ur)2,2=(Ur)3 3= (Up)s 5= (Ur)g 6= (Ur)g 9= A~ 5B,
+ - - + -
(Upaa=(Up77=A+B, (Up)yo10=A+4B,
- + + - +
V@2)=| - + - ® V(1), (U1)23=(U)s6=3B,
+ - - + - —
-+ o+ - 4 (U1)2,4=(U1)3,4= = (U7)s 7=~ (U1)s 7= 3BV3,
+ o+ - - 4 (Ur)g,20=—6B. (C1y
+ o+ - — 4 Here,A, B, andC are the Racah parameters, given by com-
binations of the Slater integrals, and F,,
wW@l=|+ + - - + |eWQ),
b - o A=A - 2, B=—F,-—F, C=-—F
=R aae BTaghe T e O e
+ + - - +
_ - (C12
+ + - -+ The parametef, is determined such that upon diagonalizing
+ o+ - - + simultaneously the Coulomb Hamiltonian and the crystal-
N : field one, the lowest state has the enelthy as explained in
V(3)= * @ V(D), (C7) Sec. Il B. Enumerating the singlets in the order
For - -4 D=L [2=¥Z [3=vF [H=v [5=w,

where the notatioa=b® c should be interpreted as products [6) = V&, [7)=¥g, [8)=W¥ [9)=vE, [10=w{,
of the respective matrix element; =by;c;;.

a. The Coulomb HamiltoniarThe Coulomb Hamiltonian, 1D =923 |12=7Z [13=VvE [14=v2,
in the orthorhombic basis, is given by
|15) = w24, (C13
1 S

_ + + L i

HC—E kz U71727374Ckylo'lckyzozck’}/gtfgck'm(fl' (CY) the Coulomb Hamiltonian in the singlet sector becomes
7102
Y172Y3Y4 USl 0 0
— —1t

In order to specify its matrix elements in thel?3sector Us=| 0 Ug 0 =U; (C14

(taken from Ref. 2Rwe construct the tripqut\I’%yl) and the 0 0 Usg

singlet(\lfgyr) two-particle states in the orthorhombic basis, where the nonzero matrix elementsl§; are
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(Us)11= (Us)22= (Usi)3 3= (Us)s a= (Ugi)s 5
=A+4B+3C, (Ug)ss=A+2C,

(Us))12=(Ug)25=4B+C, (Ug)13=(Us)14=(Usz s
=(Us)s5=(Ug)s5=3B+C,

(Us1)23=(Ug)24=B+C, (Ug)y5=C
(Us)z 6=~ (Usp)ge=— B\,
the matrixUg is

(C15

A+ 4B+ 2C 0 0
Ug= 0 A+B+2C 2B\3 |,
0 2BV3 A+2C

and the nonzero matrix elementsd§; are

(Uss)1,1= (Ugs)22= (Usgg)gs= (Usg)s 5= A+ 4B + 3C,
(Us)z 3= (Ugg)gs=A+3B+2C,

(Uss)12=-(Us)s5=3B, (Ug)13=~(Uss)23=(Ussas
= (Ug)s 6= - B\3. (C16)

b. The spin-orbit HamiltonianWritten in the orthorhom-
bic basis, the spin-orbit Hamiltonian is
A
— a a f
HSO_ E E, Lyy’agg’ckyacky’ﬁ'v (Cl?)
ayy

koo’

wherea takes the valueg, y, andz, ¢ are the Pauli matri-

ces, ancL‘;y, represent théHermitian angular momentum
matrices, whose nonzero matrix elements are
Lia=L3s=—i, L53= i3,
L31/,3: - L¥,5= i L¥,4: =i \5,
Lis=2i, L3,4=i. (C19

Transformed into the crystal-field eigenstates, the spin-orbit

Hamiltonian takes the form

HSO:%E L% (Ko o Oiir o, (C19
oo
with
E Wi (LS W4, (K). (C20
Note that the relatlori_w,:—Lf;,y7 implies that Li‘fi,(k):

-L7 (k).

17,1

c. The diagonalization of the two-electron stat¥ghen
there are two electrons on the same Ti i@ sitek), their
state is described bdrli(,dlw,. Using Egs(C5) and(C9), we

rewrite this state in terms of the singlet and triplet states,

PHYSICAL REVIEW B 71, 144412(2005

it = ClyoCryr o Wh (KW (K) = WE (KW, (K)

X{\Pg’/(k;aa') Oyy + \/7[\1’ (k oo’)

+ WY (k;00")](1 - 577,)} : (c21)

where we have omitted for brevity the summation notations.
Adopting the enumeration conventions Eq¥10 and
(C13), this state can be cast conveniently into the form

10 15
i, 0 Kjo’ = 2 wr(k;ij) Wik oo') + Elwg(k ij) ek, o0').
u=

(C22)

Here we have introduced the ten-dimensional veaster
whose components are

wr(k;ij) = \/g[VVis(k)ij'z(k) — Wio(K)Ws(K),

Wis(K)Wi3(K) Wis(K),
Wig(K)W1(K) Wi4(K),
Wi, (K)Wij3(K) = i2(K),
Wis(K)W,4(K) Wis(K),
Wiz (K)W,3(k) = 11(K),
Wio(K)Wi4(K) Wia(K),
Wiz(K)Wj1(k) = W1 (K)W;2(K),
Wis(K)Wj4(K) = Wi4(K)W;3(K),
Wis(K)Wj1(k) = Wi1(K)W;s(K)]

= Wia(k)
= Wiy (K)
Wis(k)W,
= Wia(k)
Wia(k)W,
= Wis(K)

(C23
and the 15-dimensional vector,

ws(K;ij) = [Wis(k)Wis(k), Wiz (k)
Wis(K)W3(K), Wia(K)

Wa(k),
V\/j4(k)aWil(k)le(k)],

(C29

for the entriesu=1,...,5, and

1
we(kiij) = \E[Wis(k)wjz(k) + Win(kWig(K),

Wis(K)W1(K) + W1 (K)Wis(K),
Wis(K)Wi4(K) + Wia(K)W3(K),
Wi (K)Wj1(K) + Wi (K)Wa(K),
Wi (K)Wj1(K) + Wi (K)W4(K),
Wis(K)Wi3(K) + Wi3(K)Wis(K),
Wia(K)W,3(K) + Wig(K)Wi,(K),
Wis(K)W1(K) + W1 (K)W;3(K),

Wis(K)Wi4(K) + Wi4(K)Ws5(K),
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crystal-field one. We have already written the Coulomb
Hamiltonian matrix in terms of the triplets and the singlets.
for the entriesu=6, ..., 15. The next step is to express the crystal-field Hamiltonian in
In order to obtain the two-states energies, we need to diterms of those. Omitting for brevity the site indéx the
agonalize simultaneously the Coulomb Hamiltonian and therystal-field Hamiltonian matrix in the triplet sector is

Wia(K)Wia(K) + Wia(K)W;o(K)], (C25

V22 + V55 V23 0 - V35 V24 0 - V45 - V15 0 V12
V23 V33 + V55 0 V25 V34 V15 0 0 - V45 V13
0 0 Vll + V44 0 - V15 - V34 - V12 V24 - V13 V45
— V35 Vas 0 Va2 + Va3 0 Vio Va4 Vis — Vo 0
V= Vo Va4 ~Vis 0 Vag+ Vss 0 Vas 0 V35 Vig v
0 V15 - V34 V12 0 Vll + V33 0 - V23 - Vl4 - V35
= Vs 0 —Vi2 Va4 Vas 0 Voo +Vyy Viq Va3 0
—Vis 0 Va4 Vis 0 — Va3 Vig VitV 0 Vas
0 — Vs Vi3 Va4 Vzs Vi Va3 0 Va3 +Vyy 0
L V12 V13 V45 0 V14 - V35 0 V25 0 Vll + V55_
(C26)
|
We are now in position to find the resolvent operator in the X-'}(,u,,u,’) = x_kr(,u'”u)_ (C29

triplet sector. Denoting b the (unitary and realmatrix that

diagonalizes the triplet part ¢1°"+H¢, and byE the corre- Turning now to the singlet sector, we first find the crystal-

field Hamiltonian matrix of the singlets,

sponding eigenenergies, we have
1 ,
A Vikioo) = 2 X, WY (o), (C27)
v Va Ve Vg
where 1A€ is the resolvent operatdrand Ve=| VY Ve Ve =V, (C30)
10 t t
, By(p, )Bt(M M) Vg Vg Vs
Xi(up)== X =S EER==(C28)
H1=1 Er
One notes that sincB(u,u')=Bl(u', 1), the matricesxt
satisfy where
|
B — ] B = ]
2V55 0 O 0 0 \‘" 2V25 \‘" 2V15 0 0
0 2V, 0 0 0 2V 0 0 V2vy,
0 0 2Vi3 0 O 0 0 V2vy, O
VSJ_: , V52= — ,
0 0 0 2Vy O 0 0 V2Vy O
0 0 0 0 2V, O V2Vis 0 \2v,
—
VEV25 v 2V25 0 0 0 V22 + V55 VlZ 0 V15
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0 \‘”EVSS 0 0 \’EV45 0
0 0 \“‘EV23 0 0 \"EV24
Vo = 0 \3”2V35 \/EV23 \’Evlg 0 0
= \,“”EV]E 0 O 0 \J"EV45 \’EV24 ’
\'EV]A 0 0 \“"EV13 0 0
i 0 Voz Vs 0 Vos Vs 1
Vi1+ Vss 0 Vs Vgs Viz 0 Va5 Vi O
Vg = 0 Va3+ Vs 0 v Ve=|Viz Vus Vou Vig Vzs Vo3|,
Va5 0 Vi1+Vyp, Vos 0 Viz Vo3 0 Vyy
Vll + V44 O O V34 V15 V12
0 Vaz+Vss  Vos Vs Va4 0
0 V Voo + V. V 0 V.
Vg = 25 22F Va3 12 34 (C31)
Va4 Vis Vi Vi1t Va3 0 0
Vis Va4 0 0 Vst Vss Va5
i Vi 0 Va4 0 Vs Voo +Vyy
|
Then we introduce th€l5x 15) matrix C that diagonalizes N2k o0’

H+H¢ of the singlets and the corresponding eigenenergies
E£. Analogously to Eq(C28), it is convenient here to define
as well

_ § Ciept ) Cil e, ')

\/7V\/'171(k)V\/'272(k)(dkl o k| 20’ k| 107 dklz(r)

Uqumwwmw W, (WY, (]

k ’ p
Xa(pe, ") - = , (C32 k'l d
M= S + , o
which satisfies dklladk| S W (Kiigip). (C36)
k Nk A similar calculation holds for the singlets. We therefore may
Xl ") = X', ). (C33 write
Analogously to Eq(C27) we have
A5dk,(,d§i,g, =2Zii" i) dl 0y 0 (C37)
Agwswtnf> 2 X (K o0”).  (C39)
w with

Collecting the results above, the intermediate two-particle
states of the perturbation expansion are now given in the

form Zdii’

10
= 2 WAk )X ()P (K; o0
pup'=1
15
+ > WA XS 1) PE (K007,

r—

=1

+
(Tdkja'

dkl

(C39

The final step involves transforming badk- and ¥ g into the
d operators. Consider, for examphf with u'=vy;7y,. Us-
ing Egs.(C5 and (C9), we find (omitting the summation
notations for brevity

Also, sincews(
one has

144412-18
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We note that si

10
> Wk )X, WA (K i)
pup'=1
15
+ > WK )X )W (K;iqi) .
pp'=1
(C39
ince th¥'s are symmetric, it follows that
Z, (i’

iap) = Zy(igisii ). (C39

K;ii")=wa(k;i’'i) andwi(k;ii")=—-wi(k;i'i),
Z (i’

igig) = Z(i"15i501). (C40
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2. Perturbation expansion

&L= 2IN E LEm)[t1°7, (i4i;0i)t%2

Our formal expressions of the various terms in the pertur-

bation expanS|on Eq$19—21) above involve the projec- I(:.S '

tion operator®?, andS,,=(1-P%,)/AE. Here we give their : o 0 ;
explicit expressions in terms of the quantities derived in the + 0 Zn(i10; 01)t502] = L(n)[tioZe(i10; 0i2) 2,
first part of this Appendix. + thl,g.zn(lloillz)tﬂﬂ}- (C49)

The projector onto the unperturbed ground-state space is
c. The symmetric anisotropies, and th& correction of
= E S LA ) (o)< s (C41)  the Moriya vectors These terms are of second orderhn
o and have a more complicated structure. In order to present

where|0) denotes the vacuum state. Similarly, the prOJectorthem in a concised fashion, we write the left-hand side of Eq.

onto the T#* sector of the excited states is (21) in the form
Pﬁm: E dmllo' niyo’ |0><O|dn|20 I’T'Illu' (C42) Sm ’ As ’ Sﬂ + Df’ﬂﬂ ’ (Sm X Sﬂ)
|1|2(¢00) =3 . Sn St > EC Bi,it,D1eBa,
apl !
It follows that the resolvent operator appliedl?ﬂpm is given i(fo) -
by i'(#0)
1o t C49
A_gpl - 2 Ei + EI dmll(r niyo’ |O><O|dn|2(r’dmll(r ( )
Joot L whereJ/,andD/  are thex? corrections of the Heisenberg
i1i2(#00) couplings and the Moriya vectors, respectively. In E249
(C43 | enumerates the 4 spin invariants, such that
In a similar way, the projector onto the *Tisector of the |9B(1) = |2B(9) = + -5 )
excited states is mrD) =i 1(2) = S+ S~ 3 S
1 L ap ¥
Pan= > > | D Wk o0")|0X0[WE (k; oo”) Iin(3) = BapSim - S +Ey €apy(Sm X S))7,
koo' L m=1
- |26(4) = 1P2(3 C50
+ 3 Wk 00 )OO E Kioo') |, (Cad k) = I3 (€50
n=l wheree, g, is the totally antisymmetric tensor. It remains to
which gives upon applying the resolvent operator, list the coefficients appearing in EGC49). These are given
by
g mn_ 2 {2 X, YWY (k; 7o) | OXO[ W4T (K; 00 \2 1
Ton== Iy Z AL+ L[]
’ o 1
+ 2 XY YW (k;aa'>|0><o|wg*<k;aa')]. oo
!

(C49 Ca(i,i”,1) = 222 La(m)LE (M0, (i 1; 0i )t} 12
Hence the combined resolvent and projection operator onto i1iz

the excited states is F107 (i711:0ip)t12 — 1197, (1,011, iy

1
Smn= 1z (Pt P (C45) = tina(i203i Mt

Collecting these results, and expressing the products of . 5 0 o
in terms of the ground-state spin operatfsse Eqs(15)], Can(i,i",2) ==\ 2 > LML (M)GAZ(i 113120192
one obtains the magnetic exchange couplings. These are 12
listed below. it i

a. The Heisenberg coupling§hese are given by +timZn(i10;0i)t 2] .2 > Lisn)Lg, (n)

i10 0i i s - 400 )
%‘,[tlrzm(ulo ;01,192 + £1197 (i,0; 0i,)t22]. K17, (140:01 )t 2 + 1297, i 121, )102]
(C47) Lo MILG, (Wt Zn(i10;i )t 2

b. The Moriya vectorsThese are given to first order in the o

spin-orbit coupling, +th Zn(i1051"i)t2 ] 1
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CAi,i",3) = )\22{ O(m)L n)[t'l' Z,n(i40;ii )02 CeB(i,i",4) = - 2, {2 (m)LOI,(n)[t'l' Z,n(i40;ii )02
iqip iaiz
+1197 (i"i3;1,0)th2 ] + LE(m)LS, (m) +1297 (i"i3;1,0)th2 ] + LE(n)LS ()
i,0 0i i10 i"i i10 i"iy, 410 0|2
X[G20Z(i10;1 i) t2 + §297,(i10; 0 )ty 2]} X[tihrZm(110; 0ip)t 2 + tiZn(i1051 i)t rJ}
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