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We investigate the effect of the experimentally observed Jahn-Teller distortion of the oxygen octahedra in
LaTiO3 on the magnetic exchange. We present a localized model for the effective hopping between nearest-
neighbor Ti ions and the intrasite Coulomb interactions, based on a nondegenerate orbital ground state due to
the static crystal field. The latter corresponds to an orbital order which has recently been confirmed experi-
mentally. Using perturbation theory we calculate, in addition to the Heisenberg coupling, antisymmetric
sDzyaloshinskii-Moriyad and symmetric anisotropy terms of the superexchange spin Hamiltonian, which are
caused by the spin-orbit interaction. Employing this spin Hamiltonian, we deduce that at low temperatures the
spins have predominantly a G-type antiferromagnetic ordering along the crystallographica axis, accompanied
by a weak ferromagnetic moment along thec axis and by a weak A-type antiferromagnetic moment along the
b axis. The first two components are found to be in good agreement with experiment.
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I. INTRODUCTION

In the 1970s the orthorhombic perovskite LaTiO3 was
considered as a typical example of an antiferromagnetic Mott
insulator sTN=146 Kd.1 The ground state of the Ti ion is
trivalent with a single electron in thed shell. This compound
has attracted attention when an ordered magnetic moment of
0.45–0.46mB was reported.2,3 This value is surprisingly
small for a single electron with quenched orbital moment, for
which one would have expected 1mB. In LaTiO3, this value
may be reduced by about 15.6% due to quantum fluctuations
of the three-dimensionals3Dd Heisenberg model,4 and by
about further 14% due to the on-site spin-orbit couplingsin
conjunction with the crystal field, as will follow from our
calculationsd, leading to an overall estimate of 0.72mB.

An attempt to explain the unexpected finding of a small
ordered magnetic moment has neglected the Jahn-Teller dis-
tortion of the oxygen octahedra in LaTiO3 and assumed that
the symmetry of the unit cell is strictly cubic. In such a
situation thet2g ground state of the Ti ion is threefold degen-
erate and the orbital moment is unquenched. Hence it was
proposed to consider LaTiO3 as an orbital liquid in order to
explain the reduction of the ordered moment by orbital
fluctuations.5

However, recent experiments give a strong indication of
the importance of the Jahn-Teller distortion in LaTiO3, and
in particular enable one, using recent structural data, to esti-
mate the splitting it induces in thet2g levels: There is a
crystal-field gap of about 0.24 eV between the nondegener-
ate ground state and the next excited level.6 This value has
been confirmed by a study of photoelectron spectroscopy7

and is at least one order of magnitude higher than any super-
exchange energy in LaTiO3.

8 sA comparison of the optical
conductivity and of Raman data shows that the lowest orbital
excitation is centered at about 0.25 eV.9 This value is in

excellent agreement with the estimate of the crystal-field
splitting according to Ref. 6.d Consequently,the orbital order
at low temperatures is not induced by the superexchange.
Rather, the orbital degree of freedom is frozen by the crystal
field. The scenario of suppressed orbital fluctuations has also
been confirmed by a recent LDA+DMFTslocal density
approximation1 dynamical mean-field theoryd study.10 The
assumption of Ref. 11 that the crystal-field splitting, the
superexchange, and the spin-orbit coupling are all of the
same order is inconsistent with the photoelectron spectros-
copy of Ref. 7. In addition, a higher value, 0.57mB, of the
ordered moment has been recently reported,6 making the dis-
crepancy between experiment and theoryswhich gives
0.72mBd even smaller.

The Jahn-Teller effect in LaTiO3 is caused by the twisting
of the Ti-O bonds with respect to each othersi.e., by differ-
ences between the O-O bond lengthsd, rather than by differ-
ences between the Ti-O bond lengths. The nondegenerate
ground-state orbital due to crystal-field calculations given in
Ref. 6 is consistent with the orbital order found in NMR
measurements of the Ti-3d quadrupole moment.12 The pres-
ence of orbital order at low temperatures has also been con-
cluded from measurements of the dielectric properties and
the dynamical conductivity.13 Furthermore, an orbital contri-
bution to the specific heat, which is predicted by the orbital-
liquid model, has not been found in experiment.14

Hence from the recent experiments it must be concluded
that the orbital-liquid model is inappropriate for LaTiO3.
Moreover, it has been proven, by exact symmetry arguments,
that due to a hidden symmetry the superexchange Hamil-
tonian used in Ref. 5 cannot reproduce the observed mag-
netic order of LaTiO3.

15,16

Another model to explain the magnetic properties of
LaTiO3 proposed the lifting of thet2g degeneracy by the
crystal field resulting from the eight La ions which surround
each TiO6 octahedron—assuming undistorted octahedra, i.e.,
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neglecting the Jahn-Teller effect.17 This model predicts a re-
alistic nondegenerate ground-state orbital for each Ti ion8

and yields plausible values for the Heisenberg couplings be-
tween nearest-neighbor Ti ions.12

However, there are two points missing in the calculations
of Ref. 17.sid The crystal field due to the eight nearest La
ions, which gives a nearly equidistant splitting scheme be-
tween the threet2g orbitals, is only a first approximation of
the full crystal field due to all the ions of the solid. It is
preferable to treat the electrostatic crystal field more accu-
rately, employing the Madelung sum. Such a treatment
shows that the Jahn-Teller effect leads to a nondegeneratet2g
ground-state orbital and two quasidegenerate excited
orbitals.6 sii d Terms of the exchange Hamiltonian which
break the spin-rotational invariance and cause the magnetic
order have not been considered. Hence the origin of the ob-
served magnetic order is not fully understood so far.

In the present paper we improve the model of Ref. 17 in
several respects: we investigate a model for the magnetism
of LaTiO3, which starts from a point-charge calculation of
the static crystal field for the Ti ions via a full Madelung sum
over the crystalsas was already discussed in Ref. 6d. Taking
into account the recent structural low-temperature data and
using a Slater-Koster parametrization of the Ti-O hopping,
we calculate an effective hopping matrix between thed or-
bitals of nearest-neighbor Ti ions. Treating this Ti-Ti hop-
ping and the on-site spin-orbit coupling as perturbations, we
calculate the superexchange coupling between the nondegen-
erate crystal-field ground states of the Ti3+ ions. In treating
the Ti2+ ions, which appear as intermediate states of the ex-
change processes, we take into account the full on-site Cou-
lomb correlations in terms of Slater integrals and diagonalize
the Coulomb Hamiltonian together with the crystal-field one.
The spin-orbit coupling gives rise to antisymmetric and sym-
metric anisotropies of the spin Hamiltonian. We calculate the
isotropic part of the exchange coupling and both kinds of the
anisotropies to leading orders. Using our exchange Hamil-
tonian, we determine the classical ground state which gives
the directions of the spins in the ordered phase. This ground
state spin structure is the main result of our paper. The ex-
perimental data reveal a G-type antiferromagnetic order
along the crystallographica axis, which is accompanied by a
small ferromagnetic moment along thec axis.6 Our calcula-
tion reproduces this order. In addition, we find a small
A-type moment along theb axis, which has not yet been
detected experimentally.

In the next section we present the details of our model.
We include in this section a description of the orbital ground
state resulting from our picture and the model Hamiltonian
which is based on itsSecs. II A and II Bd. We then go on to
discuss certain effects that exist in LaTiO3, but are not in-
cluded in the perturbation calculation of the superexchange.
The first concerns the Ti-O hybridization, or in other words,
the effect of the covalent crystal fieldsSec. II Cd. This hy-
bridization leads to a mixture of the Ti3+ and Ti2+ in the
ground state. In particular we show in Sec. II C that our
neglect of this hybridization does not affect severely the ba-
sic assumptions of our model. We next discuss the magnitude
of the ordered magnetic momentsSec. II Dd. As we show, a
combination of the static crystal field and the spin-orbit in-

teraction on each site reduces the moment by about 14%. We
also find that the covalent field, due to the hybridization,
gives rise to spin 0 as well as spin 1 Ti2+ states. For the
parameters which we use, we find that the covalent crystal
field causes a reduction of the ordered magnetic moment by
about 0.5%. Since the moment is affected by other factors
se.g., quantum fluctuationsd, and since the inclusion of all
these factors in the present calculation is rather complicated,
we chose to concentrate here on the magnetic structure in the
ground state, and to leave the discussion of the moment’s
magnitude to future work. The fact that our model repro-
duces the observed magnetic structure gives further confir-
mation that LaTiO3 is not described by an orbital liquid
model.

Section II concludes with a detailed comparison of our
model with other calculations for LaTiO3 sSec. II Ed. Section
III is devoted to the perturbation expansion yielding the mi-
croscopic spin Hamiltonian. Section IV discusses the macro-
scopic magnetic Hamiltonian and the resulting magnetic or-
der of the classical ground state. It includes as well a detailed
comparison with existing experimental data. Finally, we
summarize our results in Sec. V.

II. THE MODEL

A. The crystal field

The unit cell of LaTiO3 contains four Ti ions, see Fig. 1
and Table I. The structural data, from Ref. 6staken atT
=8 Kd, are given in Table II. This crystal has the symmetry

FIG. 1. The crystallographic structure of LaTiO3. The ten Ti
ions, which constitute the 12 inequivalent nearest-neighbor Ti-Ti
bonds are enumerated. For simplicity, oxygen octahedra are only
shown around four Ti sites. La ions from two layers are shown as
small spheres. For example, the sites 2 and 6 are crystallographi-
cally equivalent but the bond 61 emerges from the 12 bond by a
glide reflection, so that the effective hopping matrix for the bond 16
is different than that of the 12-bond: It is the transposed one, see
Table V.
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of the space groupPbnmsNo. 62 in Ref. 18d. The symme-
tries of this space group are listed in Table III. Given the
position of one La, Ti, O1, and O2 ion eachssee Table Id, the
positions of all other ions in the unit cell follow from the
space-group symmetries. In order to use these symmetries
conveniently, we employ in our calculation the orthorhombic
orthonormal19 basis for the Ti-d orbitals

uxyl,u2z2l,uyzl,uxzl,ux2 − y2l, s1d

where thex, y, andz axes correspond to the crystallographic
a, b, andc axes. In a cubic perovskite, the first two orbitals
would correspond to theeg orbitals and the three others to
the t2g orbitals. fNote that the pseudocubic basis for thed
orbitals, which is frequently used, is obtained from Eq.s1d
upon rotating thex andy axes by 45° around thez direction.g

Using the structural data listed in Table II, we have cal-
culated the spectrum and the eigenstates for the Ti ion lo-
cated ats0,1/2,0d snumber 1 in the figured, employing a
point-charge calculation of the static crystal-field Hamil-
tonian. This calculation uses the full Madelung sum over the
crystal swhich is evaluated as an Ewald sum, see Appendix
Ad. It requires the second moment,kr2l, and the fourth mo-
ment, kr4l, of the effective ionic radius of the Ti3+-ion. We
have used the valueskr2l=0.530 Å2 and kr4l=0.554 Å4.20

The results of the crystal-field calculation, which are listed in
Table IV, exhibit a typical Jahn-Tellert2g splitting scheme,
where a nondegenerate ground state is clearly separated from
the two quasidegenerate excited states.

The orbital order in the ground state, due to the static
crystal field, is shown in Fig. 2. As seen from the first row in

Table IV, this orbital is approximately given by

u0l < 0.770uyzl ± 0.636ux2 − y2l. s2d

This state has approximately the 2z2 structure in the co-
ordinate system in which they and z axes are rotated by
±56° around thex axis.6 The relative sign of the linear com-
bination alternates between neighboringab planes according
to the mirror planes atz=1/4, etc. In the pseudospin
language,21 we have ferro-orbital order in theab planes and
canted antiferro-orbital order between the planes. We note
that this ground state is in perfect agreement with
experiment.12 The ground state cited in Refs. 12 and 17 is
given, to a good approximation, by

s3d

It practically coincides with our ground state,

uk0u08lu2 = 99.06 % . s4d

The ground stateu0l fsee Eq.s2dg of the crystal field,
which is occupied at each Ti site by a single electron, is the
starting point of our model. The perturbative calculation out-
lined below is employed in order to evaluate the magnetic
superexchange coupling between Ti ions in this state.

B. The Hamiltonian

As in many superexchange calculations, we perform a
perturbative expansion in the hopping matrix elements, aim-

TABLE II. The structural parameters atT=8 K, from Ref. 5.

a 5.6435 Å xO1 0.0813

b 5.5885 Å yO1 0.4940

c 7.9006 Å xO2 0.7092

xRE 0.9930 yO2 0.2943

yRE 0.0491 zO2 0.0428

TABLE III. The symmetries of the space groupPbnm.

Inversion centers Ti sites and centers ofab-planar Ti
plaquettes, i.e.,s0,0,0d, s1/2,1/2,0d, etc.

Mirror planes z= ±1/4

Glide planes x= ±1/4, translation bys0,1/2,0d
Screw axes Through the inversion centers, along the

z axis, rotation by 180°

TABLE IV. The static crystal field for Ti3+ ssite 1d: Spectrum
and eigenstates in the orthorhombic basis for thed orbitals, see Eq.
s1d and the following comment there.fThe eigenenergiesEi and the
matrix Ws1d used in conjunction with Eq.sC6d are defined by the
spectrum and the coordinates of the eigenstates, respectively, as
given in this table, where the first row ofWs1d is the coordinate
vector of the ground state, etc.g

−0.468 eV s−0.035, 0.016, 0.770, −0.035, 0.636d
−0.259 eV s−0.052, −0.397, 0.088, 0.911, −0.049d
−0.239 eV s−0.407, 0.035, −0.587, 0.086, 0.693d
0.452 eV s0.853, 0.315, −0.197, 0.221, 0.290d
0.515 eV s−0.319, 0.861, 0.123, 0.336, −0.169d
Basis uxyl, u2z2l, uyzl, uxzl, ux2−y2l

TABLE I. The parametrization of the unit cellsspace group
Pbnmd, modulo the lattice constantsa,b,c.

La sxRE,yRE,1/4d, s1/2−xRE,1/2+yRE,1/4d,
s−xRE,−yRE,3/4d, s1/2+xRE,1/2−yRE,3/4d

Ti s0,1/2,0d, s1/2,0,0d, s0,1/2,1/2d, s1/2,0,1/2d
O1 sxO1,yO1,1/4d, s1/2−xO1,1/2+yO1,1/4d,

s−xO1,−yO1,3/4d, s1/2+xO1,1/2−yO1,3/4d
O2 sxO2,yO2,zO2d, sxO2,yO2,1/2−zO2d,

s−xO2,−yO2,−zO2d, s−xO2,−yO2,1/2+zO2d,
s1/2−xO2,1/2+yO2,zO2d,

s1/2−xO2,1/2+yO2,1/2−zO2d,
s1/2+xO2,1/2−yO2,−zO2d,

s1/2+xO2,1/2−yO2,1/2+zO2d

MAGNETIC STRUCTURE OF THE JAHN-TELLER… PHYSICAL REVIEW B 71, 144412s2005d

144412-3



ing to obtain an effective magnetic Hamiltonian which con-
nects only between the unperturbed crystal field ground
states, which amount to the two spin states of the electron on
each Ti3+ ion. The lowest order nontrivial contribution to this
effective Hamiltonian comes from terms which are of
second-order in the effective Ti-Ti hopping, or equivalently
fourth-order in the Ti-O hopping. The next higher order of
the exchange process would be of sixth order in the Ti-O
hopping. This order is reduced by a factors2.4/5.5d2=0.19
compared to the fourth order in the Ti-O hoppingsusing the
larger value of the two Slater-Koster parameters,Vpds=
−2.4 eV, and the Ti-O charge-transfer energy,Deff=5.5 eV,
see belowd. In practice, the lowest order contributions can be
pictured by the virtual states which arise when an electron
starts in the ground state on Ti ionm, hops to a neighboring
Ti ion n via the intermediate oxygen ion, and then hops back
to m. Since this procedure involves only two Ti ionssleaving
all the other Ti ions in their ground statesd, the actual calcu-
lation can be doneswithout losing any informationd on a
two-site cluster, consisting of the two nearest-neighbor Ti
ions, denoted bym andn.

The unperturbed Hamiltonian acting on such a cluster is
given by

Hmn
0 = Hmn

cf + Hmn
c , s5d

whereHmn
cf is the static crystal field andHmn

c describes the
intra-ionic Coulomb correlations of a doubly occupiedd
shell. The perturbation calculation requires a selected set of
eigenstates and the corresponding eigenenergies ofHmn

0 . In
our case, the eigenstates span a Hilbert space which consists
of two sectors. In the first, termed the Ti3+ sector, both Ti
ions are trivalent. In the second, called the Ti2+ sector, one of

the Ti ions is divalentstwo d electrons on the same sited and
the other is four-valentsan emptyd shelld. In the ground
state ofHmn

0 , which belongs to the Ti3+ sector, both Ti ions
are in the one-particle ground state ofHmn

cf , modulo spin up
or down on each site. This leads to a fourfold degeneracy of
the ground state of the cluster. The complete Ti3+ sector has
100 basis statessmade up of five orbital and two spin states
on each of the two sitesd. The Ti2+ sector has 90 basis states
s30 spin-triplet states and 15 spin-singlet states of the doubly
occupiedd shell and a factor of 2 because each of the Ti ions
can be doubly occupied while the other has an emptyd
shelld.

In order to calculate the spectrum ofHmn
0 , we applyHmn

cf

on the Ti3+ sector, and bothHmn
cf andHmn

c on the Ti2+ sector.
Hmn

c is parametrized in terms of the Slater integralsF2 and
F4,

22 and the effective Ti-Ti charge-transfer energyUeff. This
energy is the difference between the fourfold degenerate
ground state of the clusterswhich is the lowest level of the
Ti3+ sectord and the lowest level of the Ti2+ sectorswhere
Hmn

cf and Hmn
c are diagonalized simultaneouslyd. We useF2

=8F4/5=8.3 eV from an atomic Hartree-Fock calculation,23

and Ueff=3.5 eV from the analysis of the photoemission
spectra and first-principles calculations.24

The perturbation part of the Hamiltonian,Vmn, consists of
an effective Ti-Ti tunneling term,Hmn

tun, and the on-site spin-
orbit interaction,Hmn

so ,

Vmn= Hmn
tun + Hmn

so . s6d

The tunneling Hamiltonian is given in terms of an effective
hopping matrix,tmn, between them and then Ti ions,

Hmn
tun = o

i j
o
s

tmn
ij dmis

† dnjs + H.c., s7d

wheredmis
† sdmisd createssdestroysd an electron with spins

in the ith eigenorbital ofHmn
cf at site numberm ssee Table

IV d. The spin-orbit coupling is given by

Hmn
so = l o

k=m,n
lk ·sk, s8d

where lk denotes the angular momentum operator of the Ti
ion at thek site, sk its spin operator, andl the spin-orbit
coupling strength. We usel=18 meV.17

The dominant hopping process between two nearest-
neighbor Ti ions is mediated via the oxygen ion which is
nearest to both of them. Lettm

ia be the hopping matrix ele-
ment of an electron in thep orbital a on the oxygen ion into
the i state of the Ti ion located atm. The effective hopping
between the Ti ions is then given by

tmn
ij = −

1

Deff
o
a

tm
iatn

ja = tnm
ji . s9d

Here,Deff is the charge-transfer energy, which is required to
put an electron from an O ion on a Ti ion, anda denotes one
of the threep orbitals on the oxygensin orthorhombic coor-
dinatesd,

FIG. 2. The orbital order of the Ti ions in the ground statefEq.
s2dg, resulting from the calculated crystal fieldsthe energy scale of
the superexchange, which could in principle also affect the orbital
degree of freedom, is about one order of magnitude smaller than the
crystal-field gapd. The order is ferro-orbital in theab planes and
canted antiferro-orbital between the planes.
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uxl,uyl,uzl. s10d

sWe neglect changes in this basis which are due to the crystal
field, since the crystal field splitting is expected to be small
compared to the Ti-O charge-transfer energy.d

Using the structural data from Table II, together with el-
ementary geometric considerations, the Ti-O hopping matrix
elements can be expressed in terms of the Slater-Koster pa-
rametersVpds andVpdp.25 We use the valuesVpds=−2.4 eV,
Vpdp=1.3 eV, andDeff=5.5 eV,17,24 in conjunction with Eq.
s9d, to compute the effective hopping matrices pertaining to
the unit cell. The results are listed in Table V, which also
gives the symmetry properties of the hopping matrices be-
tween different Ti-Ti bonds. The four inequivalent Ti sites of
the unit cell form 12 nearest-neighbor Ti-Ti bonds which are
inequivalent, i.e., they do not evolve from each other by
Bravais translations. These bonds connect the ten Ti ions
indicated in Fig. 1. By the symmetry operations of the space
groupPbnm, the eight effective hopping matrices between Ti
ions belonging to the sameab plane and the four matrices for
Ti-Ti bonds along thec direction, respectively, can be ex-
pressed by a single matrix each. For example, all 12 hopping
matrices are given by the two matrices for the Ti-Ti bonds
mn=12 splanard andmn=13 sinterplanard, respectively.

Despite the different orbital ordering within theab planes
and between them, the hopping amplitudes between the

crystal-field ground states in and between the planes are of
the same order of magnitude, i.e., roughlyut12

00u<ut13
00u. In

strictly cubic symmetry, those are equalssee Appendix Bd.
The rotation of the oxygen octahedra around thec axis, the
tilting, and the distortion cause some difference betweenut12

00u
and ut13

00u.
For convenience, we present in Table VI an overview of

the parameters used in our calculation.

C. The Ti-O hybridization

Our model does not include the covalent contribution to
the crystal field, arising from hybridization between the
Ti-3d and O-2p states. This mechanism mixes excited states
of the static crystal field into the Ti3+ ground state, i.e., there
is an admixture of Ti2+ states accompanied by an admixture
of holes on the oxygen sites.

Following Ref. 24, we now estimate the effect of thepd
hybridization. When that hybridization is absent, the effec-
tive parameterUeff defines the energy difference between the
ground state of the Ti3+ sector and the lowest state of the Ti2+

sector in a two-site cluster consisting of two Ti ions. When
the pd hybridization is present, these two types ofd states
correspond to two bands, from which twopd hybridized
bands evolve according to the covalent crystal field. These
hybridized bands have, in general, considerable dispersion:
Their peak-to-peak separation, which is seen in the combined
photoemission and inverse photoemission spectra, is given
by the band gapEgap=1.6 eV, and the distance between the
band edges is given by the optical gapEopt=0.2 eV, which is
experimentally observed as the Mott gap. The mean band-
width between the twopd hybridized bands is thenW
=Egap−Eopt=1.4 eV.

Since the bands are rather dispersive, the question arises
whether a localized picture is suitable to describe, even ap-
proximately, the LaTiO3 system. In order to study this point,
we have analyzed the covalent crystal field of a cluster con-
sisting of a single Ti ion, and the six oxygen ions predomi-
nantly hybridized with itsthe calculation has been carried out
for Ti number 1 in Fig. 1d. This is accomplished by diago-
nalizing the Hamiltonian

Hpd = Hcf + Hc + Hpd
tun s11d

for a TiO6 cluster. HereHcf describes the static crystal field,
Hc is the Coulomb interaction, andHpd

tun is thepd tunneling,

TABLE V. The effective Ti-Ti hopping matrices for thed
eigenorbitals of the crystal field from Table IV; values are given in
eV. The rows and the columns are ordered beginning with the
ground state of the crystal fieldsindex 0d, continuing with the first
excited statesindex 1d, etc.t13 is symmetric due to the mirror plane
at z=1/4. As the matrices are given in terms of the crystal-field
eigenbasis, the dependence of the hopping matrices on the bonds is
particularly simple.fIn contrast, had we used the orthorhombic ba-
sis s1d, additional minus signs would have appeared in several
entries.g

Planar

t12= t16
t = t25= t65

t = t34= t38
t = t47= t87

t

=f
−0.198 −0.155 −0.052 −0.022 0.016

0.109 0.133 0.022 −0.089 0.135

−0.114 0.167 −0.188 −0.098 0.193

−0.021 0.088 −0.235 0.579 −0.710

0.010 −0.019 −0.003 0.089 −0.121
g

Interplanar

t13= t24= t39= t410

=f
0.178 0.047 −0.143 0.010 0.020

0.047 0.244 0.072 0.135 0.224

−0.143 0.072 0.146 −0.008 −0.057

0.010 0.135 −0.008 −0.112 −0.312

0.020 0.224 −0.057 −0.312 −0.812
g

TABLE VI. Model parameters of the calculation.

Momenta of the effective ionic radius for Ti3+

kr2l=0.530 Å2, kr4l=0.554 Å4

Slater integrals for Ti2+

F2=8F4/5=8.3 eV

Spin-orbit parameter

l=18 meV

Slater-Koster parameters

Vpds=−2.4 eV,Vpdp=1.3 eV

Effective charge-transfer energiessTi-Ti, Ti-O d
Ueff=3.5 eV,Deff=5.5 eV
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Hpd
tun = o

nias

t̃1n
iad1is

† pnas + H.c., s12d

wherepnas destroys an electron on thenth oxygen site with
spin s in the a orbital, given in Eq.s10d. As in the calcula-
tion of the Ti-Ti hopping amplitudes, thepd hopping ampli-
tudes,t̃1n

ia , are expressed in terms of the Slater-Koster param-
etersVpds andVpdp, using the structural data of Ref. 6. The
entire space of the basis states of the TiO6 cluster consists of
a Ti3+ sector where thep orbitals are all occupied, and a Ti2+

sector where there is a hole in one of thep orbitals. The
eigenstates of the Hamiltonians11d have the form

ucl = Î2 − ndud1l + Înd − 1ud2l, s13d

wherend is the occupation number of the Ti-d shell s1ønd

ø2d, ud1l is a state with a single electron in thed shell and
fully occupiedp shells on the surrounding oxygen ions, and
ud2l is a state with two electrons in thed shell and a hole in
the p shell of one of the oxygen ions. We find that in the
ground statend=1.343, i.e., there is ap hole on one of the
neighboring oxygens with probability of 34.3%

This calculation allows for the analysis of the eigenstates
of the combined static and covalent crystal fields. Projecting
the five lowest eigenstates onto the Ti3+ sectorswhich corre-
sponds to the statesud1ld, gives to a very good approximation
the same eigenstates as for the static crystal field alone, com-
pare Table VII with Table IV. This finding explains why,
despite the admixture of Ti2+ statesud2l, the agreement with
the experiment of Ref. 12 remains perfect, as evidenced in
Eq. s4d. Indeed, this experiment measures the Ti3+ part, ud1l,
of the combined static and covalent crystal field, and appar-
ently is not sensitive to the Ti2+ admixture ud2l. Table VII
also shows that thet2g splitting remains almost the same as in
the absence of the covalent contribution, whereas the dis-
tance between thet2g andeg energies is enhanced.

Since it is extremely complicated to include in the mag-
netic superexchange calculation the hopping between thepd
hybridized states, our calculations below contain only the
hopping between the Ti3+ states. The results listed in Table
VII, which show that the projections of the eigenstates of the
combined static and covalent crystal fields onto the Ti3+ sec-
tor are almost the same as in the static-only case, ensure that

the Ti3+ states we use are an appropriate starting point for the
superexchange calculation. However, it is possible that cal-
culations for other quantities may yield larger differences.

D. The magnetic moment

The 14% reduction of the magnetic moment, alluded to in
Sec. I above, is obtained upon diagonalizing togetherHmn

cf

andHmn
so for a single Ti3+ ion. The reduction in the magnetic

moment due to the not fully quenched orbital moment is
estimated as follows. The spin along a certain selected direc-
tion does not commute withHmn

so and therefore it is not a
good quantum number for the combined HamiltonianHmn

cf

+Hmn
so . However, the eigenstates of this combined Hamil-

tonian are symmetric or antisymmetric with respect to time
reversal. This leads to five Kramers doublets for the single
Ti3+ ion. Since the ordered magnetic moment is mainly of
the G-type, and is oriented along thex axis,6 we use those
doublets to find the expectation values of the angular mo-
mentum. By choosing the largest possible polarization of the
magnetic moment along thex axis out of all the linear com-
binations of the ground-state doublet, we find the expectation
valueklk

x+2sk
xlmB=0.86mB. This effect is not included in our

perturbation calculation of the magnetic exchange. However,
it does explain partially why the observed ordered moment
along thex axis is reduced with respect to 1mB.

The Ti-O hybridization hardly affects the magnetic mo-
ment. For the parameters used here, the admixture of spin 0
and spin 1 Ti2+ states in the ground state of the covalent
crystal field yields a reduction of the ordered magnetic mo-
ment by about 0.5%. As stated in the Introduction, our cal-
culations below do not contain the renormalizations of the
moment’s magnitude. From now on we concentrate on find-
ing the magnetic structure in the ground state.

E. Comparison with other models

It is instructive at this point to dwell on several differ-
ences between our model and three other calculations, re-
ported in Refs. 10, 17, and 26.

sid As mentioned above, Ref. 17 takes into account the
crystal field due to the neighboring La ions only. In addition,
the intra-ionic Coulomb correlations are approximated ac-
cording to the Kanamori scheme, which ignores the splitting
of the spin-triplet states. As opposed to this calculation, we
take into account the crystal field for both the Ti3+ and the
Ti2+ configurations, and employ the full intra-ionic Coulomb
correlations for the latter. The last point is particularly im-
portant: The spin-triplet states as intermediate Ti2+ states
cause a ferromagnetic coupling while the spin-singlet states
induce an antiferromagnetic coupling, leading to a competi-
tion between ferromagnetic and antiferromagnetic contribu-
tions to the magnetic exchange. On the other hand, we omit
the smallpp hybridization between the oxygen states, which
was included in the calculation of Ref. 17.

sii d The LDA+DMFT calculation10 gives a ground state
sdenoted hereu09ld whose projection on the experimentally
deduced ground state, Eq.s3d, is uk08 u09lu2=87.8%, whereas
we find 99.06%, see Eq.s4d. An even larger difference,

TABLE VII. The combined static and covalent crystal fields for
Ti3+ ssite 1d: Spectrum and eigenstates in the orthorhombic basis for
the d orbitals. The covalent contribution is calculated for a TiO6

cluster. The full eigenstates are linear combinations of Ti3+ states
and Ti2+ statessaccompanied by ap hole on one of the oxygen
sitesd. Here, only the Ti3+ parts of the five lowest eigenstates are
shown, corresponding to the statesud1l of Eq. s13d.

−0.665 eV s−0.029, 0.020, 0.778, −0.023, 0.627d
−0.442 eV s0.087, −0.382, 0.203, 0.874, −0.204d
−0.431 eV s−0.393, −0.091, −0.549, 0.284, 0.675d
0.739 eV s0.856, 0.323, −0.211, 0.173, 0.297d
0.799 eV s−0.323, 0.861, 0.092, 0.354, −0.144d
Basis uxyl, u2z2l, uyzl, uxzl, ux2−y2l
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swhich is partially explained by the difference in the ground-
state orbitalsd is found between the nearest-neighbor hopping
amplitudes, coupling the Ti ions in that ground state: The
values cited in Ref. 10 are about half of the ones we use,
with the in-plane amplitude being slightly smaller than the
interplane one.

siii d A recent calculation of the crystal field at room tem-
perature, including the covalency contribution and the spin-
orbit coupling,26 has yielded basically the samet2g splitting
scheme as ourssgiven in Table VIId, whereas the spacing
between thet2g andeg states turned out to be bigger than in
our calculation, about 0.9 eV. Analogously to the way we
determined the reduction of the magnetic moment due to the
spin-orbit coupling in Sec. II D, the ground state found in
Ref. 26 has entangled spin-up and spin-down states, i.e., the
orbital part is not separable from the spin part. The ground
state is given there in the fashion which has the largest pos-
sible magnetic polarization along the quantization axis. De-
noting the spin-up part of this ground state byu0-l, it turns
out that the squared overlap with the experimentally deter-
mined orbital isuk08 u0-lu2=92.47%. In Ref. 26 the reduction
of the G-type moment due to the crystal field and the spin-
orbit coupling is found to be 9.5%, whereas we find 14%, see
Sec. II D.

We will continue the comparison with other models when
we discuss results of our calculation in Sec. IV.

III. THE EFFECTIVE SPIN HAMILTONIAN

Our aim is to obtain from the full Hamiltonian,Hmn
=Hmn

0 +Vmn, an effective spin Hamiltonian,hmn, which acts
within the Hilbert space of the fourfold degenerate ground
state of the unperturbed HamiltonianHmn

0 .
In general, an operator which acts in the ground-state

space of the two Ti ions located at sitesm andn, consists of
linear combinations of the following terms:

dm0sm8
† dn0sn8

† dn0sn
dm0sm

, s14d

where, as before,dn0sn

† sdn0sn
d createssdestroysd an electron

in the crystal-field ground state at siten, of spin component
sn. Since there is a single electron at each Ti site, the cre-
ation and annihilation operators can be written in terms of
site spin-1/2 operators,Sn,

dn0↑
† dn0↓ = Sn

+, dn0↓
† dn0↑ = Sn

−,

dn0↑
† dn0↑ =

1

2
+ Sn

z, dn0↓
† dn0↓ =

1

2
− Sn

z. s15d

Any operator acting within the ground-state space of the
two Ti ions can be represented in terms of the 16 operators

1 sconstantd,

Sk
a ssingle-ion termsd,

Sm
aSn

b sintersite spin couplingsd, s16d

wherek=m,n anda ,b=x,y,z. Since the Hamiltonian is in-
variant under time reversal, there are no single-ion terms,

and consequently the effective spin Hamiltoniansomitting
constant termsd takes the form

hmn= Sm ·Amn·Sn, s17d

where Amns=Anm
t d is the 333 superexchange matrix. This

matrix may be decomposed into a symmetric part and an
antisymmetric one. The three components of the latter con-
stitute the Moriya vectorDmns=−Dnmd. Extracting further the
isotropic part ofAmn, i.e., the Heisenberg couplingJmn, the
effective spin Hamiltonian is cast into the form

hmn= JmnSm ·Sn + Dmn· sSm 3 Snd + Sm ·Amn
s ·Sn. s18d

Here, Amn
s represents the symmetric anisotropy. Due to the

space-group symmetries, all three types of magnetic cou-
plings belonging to the eight planar Ti-Ti bonds may be
obtained from those of a single bond, and so is the case for
the four interplanar bonds, see Table VIII.

The various magnetic couplings appearing in Eq.s18d are
obtained by perturbation theory to leading order inVmn,
namely, to second order in the hoppingtmn and to first and
second order in the spin-orbit couplingsscaled byld. In or-
der to accomplish this calculation, we introduce the projec-
tion operatorPmn

0 onto the ground-state ofHmn
0 , and the com-

bined resolvent and projection operatorSmn onto the excited
states. The formal expressions for the terms we need are
compiled in Appendix C, following Ref. 27. In terms of these
projection operators, the various terms appearing in Eq.s18d
acquire the following structure. The Heisenberg isotropic ex-
change, to leading order in the Ti-Ti hopping, is

JmnSm ·Sn = Pmn
0 Hmn

tunSmnHmn
tunPmn

0 . s19d

TABLE VIII. Symmetries of the effective spin Hamiltonian due
to the space group. The relations among the anisotropic couplings
are abbreviated as follows.s+, + , +d12=s−, + , +d16 means D12

=s−D16
x ,D16

y ,D16
z d, etc. Due to the mirror planez=1/4, theinter-

plane Moriya vectors have vanishingz components and the inter-
plane symmetric anisotropies have vanishingyz andxz entries. The
transformation of the symmetric anisotropies is characterized by the
off-diagonal coefficientssAmn

yz ,Amn
xz ,Amn

xy d whereas the diagonal co-
efficients are invariant in and between the planes, respectively.

Heisenberg couplings

J12=J16=J25=J65=J34=J38=J47=J87,

J13=J24=J39=J410

Moriya vectors

s+, + , +d12=s−, + , +d16=s+,−,−d25=s−,−,−d65

=s−,−, +d34=s+,−, +d38=s−, + ,−d47=s+, + ,−d87,

s+, + ,0d13=s+,−,0d24=s−,−,0d39=s−, + ,0d410

Symmetric anisotropies

s+, + , +d12=s+,−,−d16=s+,−,−d25=s+, + , +d65

=s−,−, +d34=s−, + ,−d38=s−, + ,−d47=s−,−, +d87,

s0,0, +d13=s0,0,−d24=s0,0, +d39=s0,0,−d410
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The second term in Eq.s18d is the Dzyaloshinskii-Moriya
antisymmetric anisotropic exchange interaction, which arises
from second-order processes in the tunneling Hamiltonian,
and first-order processes in the spin-orbit coupling,

Dmn· sSm 3 Snd = Pmn
0 Hmn

tunSmnHmn
tunSmnHmn

so Pmn
0

+ Pmn
0 Hmn

so SmnHmn
tunSmnHmn

tunPmn
0 . s20d

In fact, there are additional terms in this order, in which there
appear two Ti2+ resolvents, e.g.,Pmn

0 Hmn
tunSmnHmn

so SmnHmn
tunPmn

0 .
These are smaller than the ones we keep, by an additional
factor of .Dcf /Ueff=0.059, whereDcf=0.208 eV is the gap
between the ground state of the single-particle crystal field
and the first excited state, see Table IV. Following Ref. 28,
we denote the vectorsDmn, which refer to the microscopic
single-bond couplings of the spins, as the Moriya vectors.
The macroscopic antisymmetric anisotropic couplings be-
tween the sublattice magnetizations of the classical ground
state sdiscussed in the next sectiond are referred to as the
Dzyaloshinskii vectors. They are related to the Moriya vec-
tors but are not necessarily the same.

Finally, processes which are second-order in both the tun-
neling and the spin-orbit interaction, yield

Sm ·Amn
s ·Sn + Dmn8 · sSm 3 Snd

= Pmn
0 Hmn

so SmnHmn
tunSmnHmn

tunSmnHmn
so Pmn

0

+ Pmn
0 Hmn

so SmnHmn
so SmnHmn

tunSmnHmn
tunPmn

0

+ Pmn
0 Hmn

tunSmnHmn
tunSmnHmn

so SmnHmn
so Pmn

0

−
1

2
Pmn

0 Hmn
so Smn

2 Hmn
so Pmn

0 Hmn
tunSmnHmn

tunPmn
0

−
1

2
Pmn

0 Hmn
tunSmnHmn

tunPmn
0 Hmn

so Smn
2 Hmn

so Pmn
0 . s21d

These terms give rise to the symmetric anisotropiesAmn
s , as

well as to correctionsDmn8 , of orderl2, to the Moriya vec-
tors. We have again omitted terms including two Ti2+ resol-
vents.

As was shown in Ref. 28, a systematic description of the
magnetic anisotropies due to the spin-orbit interaction re-
quires both the first and the second order processes inl. The
technical reason being that the expectation value of the cross
product in the second term of Eq.s18d is, in fact, also of
order l, so that altogether the Dzyaloshinskii-Moriya inter-
action is at least second order in the spin-orbit coupling. As a
result, although the antisymmetric Dzyaloshinskii-Moriya in-
teraction alone gives rise to spin-canting, when taken to-
gether with the symmetric anisotropy, the system may, under
specific conditions, still preserve rotational invariance of the
spins.

The detailed calculation of the various terms appearing in
Eqs.s19d–s21d is lengthy, albeit straightforward. More details
are given in Appendix C. The values we obtain, using the
parameters cited above, are listed in Table IX. A comparison
with spin-wave measurements is given at the end of the fol-
lowing section.

IV. THE CLASSICAL GROUND STATE

A. The magnetic order of the classical ground state

The single-bond spin Hamiltonian, Eq.s18d, is the basis
for the magnetic Hamiltonian, from which the magnetic or-
der of the classical ground state follows. To construct the
latter, the entire Ti lattice is decomposed into four sublat-
tices. Namely, each magnetic unit cell includes four Ti ions,
just as the crystallographic unit cell. The four sublattices are
hence enumerated according to the numbers of the four Ti
ions per unit cell shown in Fig. 1ssublatticei =1 corresponds
to Ti ion 1 and its Bravais translations, etc.d. Assigning a
fixed magnetizationsper sited to all the spins within each
sublattice,M i, one sums over all bonds which couple the
four sublattices, to obtain themacroscopicmagnetic Hamil-
tonian in the form

HM = o
i j

fI ijM i ·M j + Di j
D · sM i 3 M jd + M i · Gi j ·M jg,

s22d

wherei j runs over the sublattice pairs 12, 13, 24, and 34 of
Fig. 1. This summation procedure gives rise to the macro-
scopic magnetic couplings:I ij is the macroscopic isotropic
coupling,Di j

D are the Dzyaloshinskii vectorssto leading order
in the spin-orbit couplingld, which are the macroscopic an-
tisymmetric anisotropies, andGi j are the macroscopic sym-
metric anisotropy tensorssof order l2d. The relations be-
tween those macroscopic couplings and the microscopic
single-bond couplings are listed in Table X. The inter-
relations among the macroscopic couplings, which are dic-
tated by the symmetries of the space group, are contained in
Table XI, together with our calculated values of the macro-
scopic coupling constants.

Our next task is to minimizeHM and find the various
sublattice magnetizations. Given the similarities between the
Ti ions, we next assume that all four vectorsM i have the
same magnitudes, denoted byM, but differ in their direc-
tions. Since Eq.s22d is quadratic inM, the minimization will

TABLE IX. The calculated single-bond spin couplingssin
meVd. The Moriya vectors are given including the correctionsDmn8 ,
which are of orderl2. The symmetric anisotropies are given as
Amn

d =sAmn
xx ,Amn

yy ,Amn
zz d and Amn

od =sAmn
yz ,Amn

xz ,Amn
xy d for the diagonal

and off-diagonal entries, respectively.

Heisenberg couplings

J12=24.616,J13=19.416

Moriya vectors

D12=s3.254,−1.273,−1.286d, D13=s−2.886,0.543,0d

Symmetric anisotropies

A12
d =s0.188,0.066,0.037d, A13

d =s−0.039,−0.218,−0.190d,
A12

od=s−0.035,−0.111,−0.088d, A13
od=s0,0,−0.074d
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only be able to yield the directions of these vectors, and not
the value ofM. Thus the main result of our paper concerns
the magnetic structureof the ground state, as reflected by
these directions. As discussed in Sec. II D, the actual value
of M depends on many factors which are beyond the scope
of the present paper. In fact, this value will be further re-
duced byquantum fluctuations, which arise from the zero
point motion of the spin waves around our classical ground
state.

To simplify the finding of the moments’ directions, we use
group theory. According to the space groupPbnmsymme-
tries, there are four possibilities for the symmetry of sublat-

tice magnetizations of the classical ground state, as listed in
Table XII.3 Having checked each of these possibilities, we
have concluded that the lowest energy is found for the first
possibility in this table. Using this symmetry, it is then pos-
sible to express all four vectors in terms of two angles,w and
q, see Table XIII. The actual minimization finally yields the
angles listed in Table XIII, and the corresponding magnetic
structure is shown in Fig. 3. This magnetic structure repre-
sents the main result of our paper. This classical magnetic
ground state has the following symmetry: Thex components
of the magnetizations order antiferromagnetically, in a
G-type structureswhere the four sublattices actually reduce
to twod. The y components order antiferromagnetically as

TABLE X. The macroscopic couplings of the sublattice magne-
tizations in terms of the microscopic single-bond spin couplings.
For instance, we haveI12=J12 but I13=J13/2. This is because the
coordination number of a Ti ion is 4 in the planes and 2 between the
planes.

Isotropic couplings

I12=J12, I13= 1
2J13

Dzyaloshinskii vectors

D12
D =s0,D12

y ,D12
z d, D13

D = 1
2D13

Macroscopic symmetric anisotropies

G12
d =A12

d , G12
od=sA12

yz,0 ,0d, G13= 1
2A13

TABLE XI. Symmetries of the magnetic Hamiltonian due to the
space group and the values of the macroscopic magnetic couplings
in meV. The symmetry relations for the anisotropic couplings are
abbreviated as in Table VIII. Due to the glide planes, the Dzy-
aloshinskii vectors of the planar bonds have vanishingx compo-
nents, and the respective symmetric anisotropies have vanishingxz
and xy entries. Because of the mirror planes, the Dzyaloshinskii
vectors of the interplanar bonds have vanishingz components and
the respective symmetric anisotropies have vanishingyz andxz en-
tries. In the calculation of the classical magnetic ground state three
coefficients of the macroscopic symmetric anisotropies are taken
into accountssee textd.

Isotropic couplings

I12= I34, I13= I24,

I12=24.616,I13=9.708

Dzyaloshinskii vectors

s0, + , +d12=s0,−, +d34. s+, + ,0d13=s+,−,0d24,

D12
D =s0,−1.273,−1.286d, D13

D =s−1.589,0.271,0d

Macroscopic symmetric anisotropies

s+,0,0d12=s−,0,0d34, s0,0, +d13=s0,0,−d24,

G12
xx=0.188,G13

xx=−0.020,G13
xy=−0.037

TABLE XII. All types of magnetic order which are allowed by
the space groupPbnm. There are four possibilities, denoted byxs,
xa, zs, and za. They are allowed because the ordered state can be
symmetric or antisymmetric according to the glide planex=1/4 and
the mirror planez=1/4, respectively. The order in LaTiO3 is of the
first type. Here,Gx denotes G-type antiferromagnetic moment along
x, Ay denotes A-type antiferromagnetic moment alongy, and Fz

denotes ferromagnetic moment alongz. The other possibilities
involve also C-type ordering, e.g.,Cz for the z components of
the magnetic moments. The magnetizationsM k of the sublattices
are given in terms of M 1. s+, + , +d1=s−, + , +d2 means
M 1=s−M2

x ,M2
y ,M2

zd, etc.

1. xs,za 2. xa,za 3. xs,zs 4. xa,zs

s+, + , +d1 s+, + , +d1 s+, + , +d1 s+, + , +d1

=s−, + , +d2 =s+,−,−d2 =s−, + , +d2 =s+,−,−d2

=s−,−, +d3 =s−,−, +d3 =s+, + ,−d3 =s+, + ,−d3

=s+,−, +d4 =s−, + ,−d4 =s−, + ,−d4 =s+,−, +d4

GxAyFz AxGyCz CxFyAz FxCyGz

TABLE XIII. The structure of the magnetic ordersthe first pos-
sibility of Table XIId fcharacterized by the sublattice magnetizations
M k in the classical ground state, in terms of the canting anglesw
and q seach of these angles is proportional tol, the spin-orbit
parameterdg, the calculated canting angles, and the resulting abolute
values of the ordered momentssnormalized toMd.

x components: G-type

−M1
x=M2

x=M3
x=−M4

x=M cosw cosq

y components: A-type

−M1
y=−M2

y=M3
y=M4

y=M sinw cosq

z components: ferromagnetic

M1
z=M2

z=M3
z=M4

z=M sinq

Canting angles

w=1.42°,q=0.80°

Ordered moments

M =s±0.9996, ±0.0248,0.0140dM
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well, but in an A-type structure. Finally, thez components of
the magnetizations order ferromagnetically. Due to the domi-
nating Heisenberg coupling, one observes that the magnetic
structure of the classical ground state is predominantly
G-type. The easy direction along thex axis and the canting
anglessboth proportional to the spin-orbit couplingld result
from the anisotropic couplings of the model. Those break the
rotational invariance of the magnetizations, and also cause
the small deviations from the pure G-type structure.

This complex ground state magnetic structure may com-
plicate the analysis of the magnitudeM; different spin com-
ponents may renormalize differently due to the various fac-
tors listed in Sec. II D and to quantum fluctuations. However,
since the order is predominantly G-type, we expect that it
will be possible to estimate the actual value ofM using
mainly thex component.

Our magnetic structure is fully consistent with the experi-
mental one, as reported in Ref. 6. This experimentsin con-
trast to the one reported in Ref. 3d reveals that the G-type
structure is indeed along thex direction, while the ferromag-
netic moment is along thez direction. Moreover, since the
experiment of Ref. 6 is not sensitive to a small moment
along they axis,29 our small A-type antiferromagnetic order
along this direction does not contradict the data. We empha-
size again that symmetry allows for such ordering, given the
G-type order alongx and the ferromagnetic order alongz.
Indeed, in the YTiO3 system, which has the same space
group as LaTiO3, such order has been detected,30 but with

different magnitudes of the canting angles, which cause the
ferromagnetic order to dominate.

One should note that by using naively the procedure out-
lined above to obtain the energy of the classical magnetic
ground state, one obtains in the energy nonsystematic contri-
butions up to fourth order in the spin-orbit couplingl. To
exemplify this point, we consider the expectation value of
HM, expressed in terms of the anglesw and q, and, by the
symmetries of the sublattice couplings, in terms of the cou-
plings between the sublattice bondsi j =12 and 13,

kHMl = fl0:g − 2sI12 + I13dcos2 w cos2 q

fl2:g + 2sI12 − I13dsin2 w cos2 q + 2sI12 + I13dsin2 q

+ 4sD12
Dy + D13

Dydcosw cosq sinq

+ 4D12
Dz cosw sinw cos2 q

− 2sG12
xx + G13

xxdcos2 w cos2 q

fl3:g − 4D13
Dx sinw cosq sinq − 4G13

xy cosw sinw cos2 q

fl4:g + 2sG12
yy − G13

yydsin2 w cos2 q + 2sG12
zz + G13

zzdsin2 q

− 2G12
yz sinw cosq sinq. s23d

In this equation we have ignored the overall factorM2,
which does not affect the minimization. The leading orders
of the terms are indicated in the square brackets. The non-
systematic contributions of fourth order inl are due to the
couplingsG12

yy, G13
yy, G12

zz, G13
zz, G12

yz swhich are all of orderl2

but are multiplied by sin2 q, sin2 w, and sinq sinw which
are also of orderl2d, and thel2 correction ofD13

Dx swhich is
multiplied by sinq sinwd. Those contributions have beenex-
cluded from our calculation of the canting angles. On the
other hand, we do include in the minimization ofkHMl terms
up to the third order inl. This implies a systematic deriva-
tion of the canting angles to first order in this coupling.sThe
classical ground-state energy has been found consistently,
term by term, to second order inl. Although G12

xx and G13
xx

have been calculated only up to orderl2 and consequently,
we do not have the complete third-order term, this is of little
importance when the canting angles are determined, since
those couplings appear only with cosq and cosw, and there-
fore just cause an energy shift inkHMl.d Note also that al-
though the Dzyaloshinskii and Moriya vectors first appear in
linear order inl and the symmetric anisotropy coefficients in
quadratic order,both kinds of anisotropieshave to be consid-
ered as they cause terms which contribute in the same order
of l to the classical ground-state energy.28

It is interesting to compare our results with experiment. In
particular,q=0.80° agrees with the value reported in Ref. 3,
0.85°.sReference 14 reports the value 1.5° from a theoretical
estimate. Note thatq is defined here with respect to theab
plane.d This canting angle causes the weak ferromagnetic
moment along thez direction, of order 0.014M. TakingM of
order 1mB, this value agrees with the experimental one,
within the uncertainty of the measurements which is caused
by twinning of the crystal.31

FIG. 3. The magnetic order of the Ti ions in the classical ground
state of the effective spin Hamiltonian of the lattice. The ions are
enumerated according to the sublattice to which they belong. Thex
components of the spins order antiferromagnetically in the G-type
configuration, they components order antiferromagnetically in the
A-type one, and thez components order ferromagnetically.
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Recently, an attempt has been made to analyze the rela-
tion between the anisotropy of the spin couplings and the
paramagnetic susceptibility, which also has some
anisotropy.26 In this work the anisotropy of the spin cou-
plings is taken into account by postulating phenomenologi-
cally anxyzmodel, which couples neighboring Ti spins and
corresponds in our calculation to the coefficientsAmn

d from
Table IX. A model susceptibility, which results from thexyz
coupling via a molecular-field approximationsand from
single-ion as well as from covalence effectsd, is calculated
and then fitted with a couple of free parameters onto the
measured susceptibility. As we have shown in this section,
the antisymmetric and off-diagonal symmetric
anisotropies—in the particular case of Eq.s23d, components
of the Dzyaloshinskii vectors andG13

xy—can have at least the
same conceptional importance for the magnetic properties of
LaTiO3 as thexyzanisotropies. Alternatively spoken, in gen-
eral thexyz anisotropy is not the dominant anisotropy. This
basic argument is not restricted to the low-temperature case,
which is accompanied by the magnetic order and which we
investigate in the present paper, but refers also to the under-
lying spin couplings which influence high-temperature prop-
erties like the paramagnetic susceptibilityswhereas, e.g., the
difference between the structural parameters of the low- and
high-temperature case might correspond to more or less
slight differences of the spin-coupling coefficients and of the
orbital ground stated. In the way of an extension of Ref. 26,
the question whether it is possible to include also the other
thanxyzanisotropies via free parameters in a model suscep-
tibility and to compare this susceptibility to experiment,
might be interesting.

B. Comparison with spin-wave data

The magnetic order in the classical ground state is the
common starting point for a spin-wave calculation. In the
case of the spin Hamiltonian pertaining to LaTiO3, Eq. s18d,
one expects a rich spin-wave spectrum. This calculation is
currently being undertaken, and will be presented
elsewhere.32 Nevertheless, our results above may be roughly
compared with the existing spin-wave data. To this end, we
ignore the antisymmetric and the symmetric anisotropies and
hence assume an isotropic classical Néel statesfor which the
spin-wave spectrum is gaplessd.

Inelastic neutron scattering has yielded the same value,
J=15.5 meV, for thesingle-bondHeisenberg coupling for
both the Ti-Ti bonds in theab planes and those in-between
the planes.8 This value has been confirmed by the evaluation
of Raman spectra.33 Were we to average our calculated val-
ues over the six bonds of each Ti ion, we would have ob-
tained a value which is 32% higher. This rather modest dis-
crepancy can be easily removed by fine-tuning the model
parameters. For example, this discrepancy can be removed
by using the valueDeff=6.6 eV sas estimated from an LDA
+DMFT calculation based on the recent structural data34d, or
by using a smaller value for the Slater-Koster parameters,
Vpds=−2.2 eV skeeping the ratio between those parameters
fixed, Vpdp=1.2 eVd instead of −2.4 eV,7 or any other com-
bined reduction of both of these parameters. Since a detailed

comparison with the data requires the full spin-wave calcu-
lation, we do not attempt here any fine-tuning of the model
parameters. For the purpose of the present paper, it suffices
that the calculated Heisenberg couplings are consistent with
the experimental value, within the uncertainties of our model
parameters.

Our calculation predicts somewhat different values for the
in-plane Heisenberg coupling,J12, and the out-of-plane one,
J13, yielding the ratiod=J13/J12.79%. Such an anisotropy
may be detected by comparing with the spin-wave disper-
sion,esqd, at selected points,q=s0,0,pd andq=sp ,0 ,0d, in
the Brillouin zone of an effective cubic lattice of a unit lat-
tice constant. When only this anisotropy is taken into ac-
count, then linear spin-wave theory gives

esqd = J12
Îs2 + dd2 − scosqx + cosqy + d cosqzd2. s24d

With our calculatedd, we find es0,0,pd /esp ,0 ,0d=94%,
well within the experimental error bar of about 10% for the
spin-wave energies, from which the equality of the Heisen-
berg couplings on all bonds has been deduced.35 Hence the
sapproximated isotropy of the spin-wave spectrum due to
Ref. 8, which has been used as an argument to support the
orbital-liquid state,5 is also consistent with our model, leav-
ing the choice between the models to other factors.

The calculation of Ref. 17 yielded a different value for the
Heisenberg coupling ratio,d=106%, i.e., a larger coupling
along thec axis. This discrepancy can be traced back to our
different crystal-field spectrum. In our case, the hopping am-
plitude between the crystal-field ground states on neighbor-
ing Ti ions is about 10% smaller for the bond 13 than for 12,
see Table V. This is a geometric effect which follows from
the structural data.6

From a fit to the observed spin-wave gap, of orderD
=3.3 meV, in conjunction with a spin model includingsolely
antisymmetric anisotropies, a value ofD=1.1 meV has been
deduced for the magnitude of the Moriya vectors.8 We obtain
higher magnitudes for the Moriya vectors. However, a full
spin-wave expansion based on the Hamiltonians18d indi-
cates that the spin-wave gap is in fact dominated by the
symmetric anisotropies rather than by the antisymmetric
ones.32 It is the canting of the ordered spins with respect to
each other which is dominated by the Dzyaloshinskii vectors.

V. SUMMARY

We have presented a detailed analysis of the magnetic
order pertaining to the LaTiO3 system. The starting point of
our calculation is the Ti-d orbital configuration which results
from the static crystal field that includes the Jahn-Teller dis-
tortion, and which gives rise to orbital ordering as shown in
Fig. 2. This orbital structure agrees well with NMR measure-
ments, and the crystal-field gap that we obtain is in good
agreement with photoelectron and Raman spectroscopies.
This orbital ordering rules out the orbital-liquid picture5 for
LaTiO3, which ignores the Jahn-Teller-liket2g splitting
scheme and the resulting nondegenerate orbital ground state.

Employing a perturbation expansion of this nondegener-
ate ground state in the effective hopping between neighbor-
ing Ti-ions, and in the on-site spin-orbit coupling, we have
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derived an effective spin Hamiltonian. It includes, in addition
to the Heisenberg isotropic interaction between nearest-
neighbor Ti-ions, the antisymmetric Dzyaloshinskii-Moriya
coupling, and the symmetric anisotropic coupling. These
three interactions conspire together to yield the magnetic or-
der, given in Table XIII and shown in Fig. 3. By minimizing
the magnetic energy of the classical ground state, we found
that the magnetic order is primarily that of a G-type antifer-
romagnet, with the ordered moment along the crystallo-
graphica axis, accompanied by a weak ferromagnetic mo-
ment along thec axis. This configuration is in good
agreement with the experimental findings. In addition, we
have found that there is a small A-type moment of the spin
components along theb axis, which salthough not yet de-
tected in experimentd is allowed by the symmetry of the
system. The structure is not sensitive to reasonable changes
in the parameters of the model. This is a nontrivial result,
since by the space-group symmetries of LaTiO3 ssee Table
XII d it could have been oriented along they or thez axes.

We find that the in-plane Heisenberg coupling energy is
about 27% higher than that pertaining to the coupling be-
tweenab planes. By using these values in a spin-wave theory
for the Heisenberg couplings, we show that both couplings
are consistentswithin the error barsd with the isotropic spin-
wave dispersion measured by inelastic neutron scattering.8

The detailed calculation of the spin-wave dispersion, which
is based on the magnetic order in the classical ground state,
will provide a further check of our results. This calculation is
currently being performed. Of particular importance in this
respect are the zone-center gapswhich has been found ex-
perimentally to be about 3 meVd and the experimentally de-
tected almost cubic isotropy of the dispersion in the entire
Brillouin zone. Our preliminary spin-wave results reproduce
these two features. This is an independent check of the reli-
ability of our model, since even if the magnetic structure is
reproduced correctly, this does not necessarily mean that the
magnetic excitations agree with experiment.

Our method seems to be particularly suitable to describe
the ferromagnetic Mott insulator YTiO3 as well. Preliminary
calculationssto be presented elsewhered indeed indicate fer-
romagnetic couplings in theab planes.32 Since the covalent
pd hybridization in this system is as strong as in LaTiO3, it
will be of much interest to compare the classical magnetic
Hamiltonians of the two systems, and the ensuing spin-wave
spectra.
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APPENDIX A: THE EWALD SUMMATION

The Madelung sum for the Coulomb potential in the
point-charge model is given by

Vsr d = − eo
l,n

8 qn

ul + an − r u
, sA1d

wherer =sx,y,zd is a point on the Ti ion No. 1, whose center
is taken as the origin. In Eq.sA1d, l are the Bravais transla-
tions,an are the basis vectors of the unit cell, andqn are the
corresponding point charges. The prime on the sum symbol
indicates that the ion at the origin,l =an=0, is omitted. This
sum converges very slowly. One therefore uses the Ewald
summation36 ssee also Ref. 37d where the sumsA1d is
mapped onto two sums which converge much better, and
which can be computed to high accuracy. Using the Ewald
summation, the Madelung potential can be expressed in the
form

Vsr d = − eo
gÞ0

4p

Veg
2e−g2/4G2+ig·ro

n

qne
−ig·an

− eo
l,n

8 qn

ul + an − r u
erfcsGul + an − r ud + e

q1

r
erfsGrd.

sA2d

Here g are the vectors of the reciprocal Bravais lattice,
whose basis vectors ares2p /a,0 ,0d, s0,2p /b,0d, and
s0,0,2p /cd, Ve=abc is the volume of the unit cell, andG is
a frequency cutoff. The value ofVsr d is of course indepen-
dent ofG. This cutoff is chosen such that the sum over the
real-space lattice and the one over the reciprocal lattice can
be stopped after about the same number of sites, when the
required numerical precision is reached. In Eq.sA2d, erf and
erfc are the error functions

erfszd = 1 − erfcszd =
2

Îp
E

0

z

e−t2dt. sA3d

The Ewald construction requires the neutrality condition

o
n

qn = 0, sA4d

which is fulfilled in our case.
In order to find the spectrum and the eigenstates of the

static crystal field, we have replaced the potentialVsr d by the
pseudopotentialVpssr d, which is its Taylor expansion includ-
ing the second and fourth orders inr . These are the Taylor
orders which have nontrivial matrix elements with respect to
the d orbitals.38 For instance, the secondsfourthd Taylor or-
der includes also terms which are proportional toxy
sx3y,x2y2d. For the Taylor expansion we usesr = ur ud

1

r
erfsGrd =

2G
Îp

F1 −
sGrd2

3
+

sGrd4

10
+ ¯ G . sA5d

The potentialVpssr d is a harmonic function, invariant under
inversion of the coordinates. The diagonalization of the ma-
trix kguVpssr dug8l, whereg andg8 denote the orthorhombicd
orbitals, gives the results listed in Table IV for the static
crystal field. This calculation requires the second and fourth
moments of the effective ionic radius, defined by
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E f2srdr2+ndr = krnl, n = 2,4, sA6d

where fsrd denotes the radial part of thed orbitals.19

APPENDIX B: THE HOPPING AMPLITUDES BETWEEN
THE CRYSTAL-FIELD GROUND STATES

As is mentioned in the text, the effective Ti-Ti hopping
matrix elements between the crystal-field ground states in the
ab planes are of the same order of magnitude as those be-
tween planes, i.e.,ut12

00u<ut13
00u. This is a somewhat surprising

result in view of the fact that there is ferro-orbital order in
the planes andscantedd antiferro-orbital order between them.
However, as we show here, in strictly cubic symmetry one
hasut12

00u= ut13
00u. The deviations from cubic symmetry cause the

slight difference between these two hopping amplitudes.
Let us hence consider the cubic case, and employ the

coordinate systemx8, y8, z in which the Ti sites 1 and 2 are
on thex8 axis ssee Fig. 1; these coordinates are rotated by
45° compared to the orthorhombic onesd. The crystal-field
ground states are now linear combinations of the three de-
generatet2g orbitals

uy8zl,ux8zl,ux8y8l. sB1d

The hopping amplitudes are proportional to the overlap of
the two pertaining orbitals. Let us consider for simplicity the
base orbitals according to Eq.s3d, i.e.,

u1l = u2l =
1
Î3

suy8zl − ux8zl + ux8y8ld,

u3l =
1
Î3

s− uy8zl + ux8zl + ux8y8ld, sB2d

where 1, 2, and 3 denote the relevant Ti ionsssee Fig. 1d.
The effective Ti-Ti hopping that we consider is mediated

by the oxygens located between the Ti ions. Then, in strictly
cubic symmetry, for each pair of Ti ions, one of the threet2g
orbitals cannot hybridize. This “inactiveness” of one of the
orbitals5 is a direct consequence of the cubic symmetry, as is
portrayed in Fig. 4, and is the source of peculiar hidden
symmetries in the cubic Hamiltonian.15,16 In our example,
the orbital uy8zl is inactive for the 12-bond, while for the
bond 13 the inactive orbital isux8y8l. According to the effect
of the intermediate oxygen ions, for the bond 12 the 333
hopping matrix between thet2g orbitals has only two nonzero
entries ssee also Ref. 5d. These are identical,kx8zuHux8zl
=kx8y8uHux8y8l¬ t sH denotes the crystal Hamiltoniand. For
the 13–bond thet2g hopping matrix has the two nonzero
entriesky8zuHuy8zl=kx8zuHux8zl= t. Consequently,

t12
00 = k1uHu2l =

1

3
s− kx8zu + kx8y8udHs− ux8zl + ux8y8ld =

2

3
t,

t13
00 = k1uHu3l =

1

3
sky8zu − kx8zudHs− uy8zl + ux8zld = −

2

3
t,

sB3d

corresponding tout12
00u= ut13

00u.

APPENDIX C: THE EXPLICIT CALCULATION
OF THE EXCHANGE COUPLINGS

Here we document the technical details of the perturba-
tion calculation that yields the effective spin Hamiltonian.
Our formal derivations are based on the results of Ref. 27,
and for the sake of completeness we reproduce them here.
With P0 being the projection operator onto the ground state
of the zero-order Hamiltonian, andS being the combined
resolvent and projection operator onto the excited states we
havesomitting the indicesmn for brevityd P0VSVP0 for the
second order,

P0VSVSVP0 −
1

2
P0VS2VP0VP0 −

1

2
P0VP0VS2VP0,

sC1d

for the third order, and

P0VSVSVSVP0 −
1

2
P0VSVP0VS2VP0 −

1

2
P0VS2VP0VSVP0

−
1

2
P0VP0VSVS2VP0 −

1

2
P0VS2VSVP0VP0

−
1

2
P0VP0VS2VSVP0 −

1

2
P0VSVS2VP0VP0

+
1

2
P0VS3VP0VP0VP0 +

1

2
P0VP0VP0VS3VP0, sC2d

for the fourth order.sNote thatP0VP0=0 in our case.d
As explained in Sec. II, we consider a cluster of two

nearest-neighbor Ti ions. The Hamiltonian of this cluster,
given in Eqs.s5d ands6d, is expressed in terms of the opera-
tors dkis

† sdkisd which createsdestroyd an electron in the
crystal-field eigenorbitali with spin components, on the Ti
ion located at sitek. However, it is more convenient to treat
the two-electron statesswhich appear in the intermediate
stages of the perturbation expansiond using the orthorhombic
basis, Eq.s1d. We denote the operators pertaining to this
basis byckgs

† sckgsd, whereg enumerates the orthorhombic
orbitals. The first part of this Appendix is devoted to the
transformation of the Hamiltonian between the two schemes,
and the diagonalization of the two-electron states. In the sec-
ond part, we summarize the detailed expressions of the vari-
ous terms resulting from the perturbation expansion.

1. The Hamiltonian

Denoting the matrix of the crystal-field Hamiltonian in the
orthorhombic basis byVskd, we have

Hcf = o
kg1g2s

Vg1g2
skdckg1s

† ckg2s. sC3d

The matricesVskd are real and symmetric. We next introduce
the sunitary and reald matrix Wskd which diagonalizes the
crystal-field Hamiltonian, bringing it to the form
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FIG. 4. In cubic symmetry, there is onet2g orbital per each Ti-O-Ti bond, which cannot participate in the hopping between the Ti and
the O ions because of the parity of the O-2p orbitals. This is shown in panelssad–scd, for each of the threet2g orbitals, respectively.sad The
hopping between the orbitalsuy8zl at the Ti sites 1 and 2 is not possible, since on the intermediate oxygen site there is nop orbital with a
parity that would allow such hopping. For the same reason, an electron cannot hop from thep orbital ux8l, which is shown between the Ti
sites 1 and 2, to any of thet2g orbitals of the Ti sites. On the other hand, the hopping between the orbitalsuy8zl at the Ti sites 1 and 3, which
is mediated by the orbitaluy8l on the intermediate oxygen site, is possible.sbd Analogously to the casesad, the hopping between the orbitals
ux8y8l at the Ti sites 1 and 3 is not permitted, because on the intermediate oxygen site there is no appropriatep orbital. Likewise, an electron
cannot hop from thep orbital uzl, which is shown between the Ti sites 1 and 3, to any of thet2g orbitals of the Ti sites. Thesallowedd hopping
between the orbitalsux8y8l at the Ti sites 1 and 2 is mediated by the orbitaluy8l on the intermediate oxygen site.scd The hopping between
the orbitalsux8zl at the Ti sites 1 and 2 is mediated by the orbitaluzl on the intermediate oxygen site. The hopping between the orbitalsux8zl
at the Ti sites 1 and 3 is mediated by the orbitalux8l on the intermediate oxygen site.

SCHMITZ et al. PHYSICAL REVIEW B 71, 144412s2005d

144412-14



Hcf = o
kis

Eidkis
† dkis, sC4d

whereEi are the crystal-field eigenvalues, listed in Table IV.
These single-particle energies are shifted so thatE0=0 eV,
E1=0.209 eV, etc. The relations between the operatorsdkis

†

andckgs
† are hence given by

dkis
† = o

g

Wigskdckgs
† , ckgs

† = o
i

Wgi
t skddkis

† , sC5d

such that

WskdVskdWtskd = E, sC6d

with E=diagEi. The diagonalizing matrix pertaining to site
1, Ws1d, is given in Table IV. All otherWskd andVskd follow
from the symmetry properties of the unit cell, and are given
by

Ws2d =3
− + + − +

− + + − +

− + + − +

− + + − +

− + + − +
4 ^ Ws1d,

Vs2d =3
+ − − + −

− + + − +

− + + − +

+ − − + −

− + + − +
4 ^ Vs1d,

Ws3d =3
+ + − − +

+ + − − +

+ + − − +

+ + − − +

+ + − − +
4 ^ Ws1d,

Vs3d =3
+ + − − +

+ + − − +

− − + + −

− − + + −

+ + − − +
4 ^ Vs1d, sC7d

where the notationa=b^ c should be interpreted as products
of the respective matrix elements,aij =bijcij .

a. The Coulomb Hamiltonian. The Coulomb Hamiltonian,
in the orthorhombic basis, is given by

Hc =
1

2 o
ks1s2

g1g2g3g4

Ug1g2g3g4
ckg1s1

† ckg2s2

† ckg3s2
ckg4s1

. sC8d

In order to specify its matrix elements in the 3d2 sector

staken from Ref. 22d we construct the tripletsCT
gg8d and the

singlet sCS
gg8d two-particle states in the orthorhombic basis,

CT
gg8sk;ss8d =Î1

2
sckgs

† ckg8s8
† + ckgs8

† ckg8s
† d

= − CT
g8gsk;ss8d,

CS
gg8sk;ss8d =Î1

2
sckgs

† ckg8s8
† − ckgs8

† ckg8s
† d = CS

g8gsk;ss8d,

CS
ggsk;ss8d = ckgs

† ckgs8
† . sC9d

Altogether, there are 10 triplets and 15 singletssin the s8=
−s sectord. Enumerating the triplet states in the following
order,

u1l = CT
52, u2l = CT

53, u3l = CT
41, u4l = CT

23, u5l = CT
54,

u6l = CT
13, u7l = CT

24, u8l = CT
21, u9l = CT

34, u10l = CT
51,

sC10d

the Coulomb Hamiltonian in the triplet sector,UT=UT
t , has

the following nonzero matrix elements,

sUTd1,1= sUTd8,8= A − 8B,

sUTd2,2= sUTd3,3= sUTd5,5= sUTd6,6= sUTd9,9= A − 5B,

sUTd4,4= sUTd7,7= A + B, sUTd10,10= A + 4B,

sUTd2,3= sUTd5,6= 3B,

sUTd2,4= sUTd3,4= − sUTd5,7= − sUTd6,7= 3BÎ3,

sUTd9,10= − 6B. sC11d

Here,A, B, andC are the Racah parameters, given by com-
binations of the Slater integralsF2 andF4,

A = A0 −
49

441
F4, B =

1

49
F2 −

5

441
F4, C =

35

441
F4.

sC12d

The parameterA0 is determined such that upon diagonalizing
simultaneously the Coulomb Hamiltonian and the crystal-
field one, the lowest state has the energyUeff as explained in
Sec. II B. Enumerating the singlets in the order

u1l = CS
55, u2l = CS

22, u3l = CS
33, u4l = CS

44, u5l = CS
11,

u6l = CS
52, u7l = CS

51, u8l = CS
34, u9l = CS

21, u10l = CS
41,

u11l = CS
53, u12l = CS

23, u13l = CS
13, u14l = CS

54,

u15l = CS
24, sC13d

the Coulomb Hamiltonian in the singlet sector becomes

US= 3US1 0 0

0 US2 0

0 0 US3
4 = US

t , sC14d

where the nonzero matrix elements ofUS1 are
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sUS1d1,1= sUS1d2,2= sUS1d3,3= sUS1d4,4= sUS1d5,5

= A + 4B + 3C, sUS1d6,6= A + 2C,

sUS1d1,2= sUS1d2,5= 4B + C, sUS1d1,3= sUS1d1,4= sUS1d3,4

= sUS1d3,5= sUS1d4,5= 3B + C,

sUS1d2,3= sUS1d2,4= B + C, sUS1d1,5= C,

sUS1d3,6= − sUS1d4,6= − BÎ6, sC15d

the matrixUS2 is

US2 = 3A + 4B + 2C 0 0

0 A + B + 2C 2BÎ3

0 2BÎ3 A + 2C
4 ,

and the nonzero matrix elements ofUS3 are

sUS3d1,1= sUS3d2,2= sUS3d4,4= sUS3d5,5= A + 4B + 3C,

sUS3d3,3= sUS3d6,6= A + 3B + 2C,

sUS3d1,2= − sUS3d4,5= 3B, sUS3d1,3= − sUS3d2,3= sUS3d4,6

= sUS3d5,6= − BÎ3. sC16d

b. The spin-orbit Hamiltonian. Written in the orthorhom-
bic basis, the spin-orbit Hamiltonian is

Hso=
l

2 o
agg8

kss8

Lgg8
a

sss8
a ckgs

† ckg8s8, sC17d

wherea takes the valuesx, y, andz, sa are the Pauli matri-
ces, andLg,g8

a represent thesHermitiand angular momentum
matrices, whose nonzero matrix elements are

L1,4
x = L3,5

x = − i, L2,3
x = iÎ3,

L1,3
y = − L4,5

y = i, L2,4
y = − iÎ3,

L1,5
z = 2i, L3,4

z = i . sC18d

Transformed into the crystal-field eigenstates, the spin-orbit
Hamiltonian takes the form

Hso=
l

2 o
aii8

kss8

Li,i8
a skdsss8

a dkis
† dki8s8, sC19d

with

Li,i8
a skd = o

gg8

WigskdLg,g8
a Wg8i8

t skd. sC20d

Note that the relationLg,g8
a =−Lg8,g

a implies that Li,i8
a skd=

−Li8,i
a skd.
c. The diagonalization of the two-electron states. When

there are two electrons on the same Ti ionsat sitekd, their
state is described bydkis

† dkjs8
† . Using Eqs.sC5d andsC9d, we

rewrite this state in terms of the singlet and triplet states,

dkis
† dkjs8

† = ckgs
† ckg8s8

† WigskdWjg8skd = WigskdWjg8skd

3HCS
ggsk;ss8ddgg8 +Î1

2
fCT

gg8sk;ss8d

+ CS
gg8sk;ss8dgs1 − dgg8dJ , sC21d

where we have omitted for brevity the summation notations.
Adopting the enumeration conventions Eqs.sC10d and
sC13d, this state can be cast conveniently into the form

dkis
† dkjs8

† = o
m=1

10

wT
msk; i j dCT

msk;ss8d + o
m=1

15

wS
msk; i j dCS

msk;ss8d.

sC22d

Here we have introduced the ten-dimensional vectorwT,
whose components are

wTsk; i j d =Î1

2
fWi5skdWj2skd − Wi2skdWj5skd,

Wi5skdWj3skd − Wi3skdWj5skd,

Wi4skdWj1skd − Wi1skdWj4skd,

Wi2skdWj3skd − Wi3skdWj2skd,

Wi5skdWj4skd − Wi4skdWj5skd,

Wi1skdWj3skd − Wi3skdWj1skd,

Wi2skdWj4skd − Wi4skdWj2skd,

Wi2skdWj1skd − Wi1skdWj2skd,

Wi3skdWj4skd − Wi4skdWj3skd,

Wi5skdWj1skd − Wi1skdWj5skdg sC23d

and the 15-dimensional vectorwS,

wSsk; i j d = fWi5skdWj5skd,Wi2skdWj2skd,

Wi3skdWj3skd,Wi4skdWj4skd,Wi1skdWj1skdg,

sC24d

for the entriesm=1, . . . ,5, and

wSsk; i j d =Î1

2
fWi5skdWj2skd + Wi2skdWj5skd,

Wi5skdWj1skd + Wi1skdWj5skd,

Wi3skdWj4skd + Wi4skdWj3skd,

Wi2skdWj1skd + Wi1skdWj2skd,

Wi4skdWj1skd + Wi1skdWj4skd,

Wi5skdWj3skd + Wi3skdWj5skd,

Wi2skdWj3skd + Wi3skdWj2skd,

Wi3skdWj1skd + Wi1skdWj3skd,

Wi5skdWj4skd + Wi4skdWj5skd,
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Wi2skdWj4skd + Wi4skdWj2skdg, sC25d

for the entriesm=6, . . . ,15.
In order to obtain the two-states energies, we need to di-

agonalize simultaneously the Coulomb Hamiltonian and the

crystal-field one. We have already written the Coulomb
Hamiltonian matrix in terms of the triplets and the singlets.
The next step is to express the crystal-field Hamiltonian in
terms of those. Omitting for brevity the site indexk, the
crystal-field Hamiltonian matrix in the triplet sector is

VT = 3
V22 + V55 V23 0 − V35 V24 0 − V45 − V15 0 V12

V23 V33 + V55 0 V25 V34 V15 0 0 − V45 V13

0 0 V11 + V44 0 − V15 − V34 − V12 V24 − V13 V45

− V35 V25 0 V22 + V33 0 V12 V34 V13 − V24 0

V24 V34 − V15 0 V44 + V55 0 V25 0 V35 V14

0 V15 − V34 V12 0 V11 + V33 0 − V23 − V14 − V35

− V45 0 − V12 V34 V25 0 V22 + V44 V14 V23 0

− V15 0 V24 V13 0 − V23 V14 V11 + V22 0 V25

0 − V45 − V13 − V24 V35 − V14 V23 0 V33 + V44 0

V12 V13 V45 0 V14 − V35 0 V25 0 V11 + V55

4 = VT
t .

sC26d

We are now in position to find the resolvent operator in the
triplet sector. Denoting byB thesunitary and reald matrix that
diagonalizes the triplet part ofHcf+Hc, and byET

m the corre-
sponding eigenenergies, we have

1

DECT
msk;ss8d = o

m8

XT
ksm,m8dCT

m8sk;ss8d, sC27d

where 1/DE is the resolvent operator27 and

XT
ksm,m8d = − o

m1=1

10
Bksm,m1dBk

t sm1,m8d
ET

m1
. sC28d

One notes that sinceBksm ,m8d=Bk
t sm8 ,md, the matricesXT

k

satisfy

XT
ksm,m8d = XT

ksm8,md. sC29d

Turning now to the singlet sector, we first find the crystal-
field Hamiltonian matrix of the singlets,

VS= 3VS1 VS2 VS3

VS2
t VS4 VS5

VS3
t VS5

t VS6
4 = VS

t , sC30d

where

VS1 = 3
2V55 0 0 0 0 Î2V25

0 2V22 0 0 0 Î2V25

0 0 2V33 0 0 0

0 0 0 2V44 0 0

0 0 0 0 2V11 0

Î2V25
Î2V25 0 0 0 V22 + V55

4, VS2 = 3
Î2V15 0 0

0 0 Î2V12

0 Î2V34 0

0 Î2V34 0

Î2V15 0 Î2V12

V12 0 V15

4 ,
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VS3 = 3
0 Î2V35 0 0 Î2V45 0

0 0 Î2V23 0 0 Î2V24

0 Î2V35
Î2V23

Î2V13 0 0

Î2V15 0 0 0 Î2V45
Î2V24

Î2V14 0 0 Î2V13 0 0

0 V23 V35 0 V24 V45

4 ,

VS4 = 3V11 + V55 0 V25

0 V33 + V44 0

V25 0 V11 + V22
4, VS5 = 3V45 V13 0 V35 V14 0

V13 V45 V24 V14 V35 V23

V24 0 V13 V23 0 V14
4 ,

VS6 = 3
V11 + V44 0 0 V34 V15 V12

0 V33 + V55 V25 V15 V34 0

0 V25 V22 + V33 V12 0 V34

V34 V15 V12 V11 + V33 0 0

V15 V34 0 0 V44 + V55 V25

V12 0 V34 0 V25 V22 + V44

4 . sC31d

Then we introduce thes15315d matrix C that diagonalizes
Hcf+Hc of the singlets and the corresponding eigenenergies
ES

m. Analogously to Eq.sC28d, it is convenient here to define
as well

XS
ksm,m8d = − o

m1=1

15
Cksm,m1dCk

t sm1,m8d
ES

m1
, sC32d

which satisfies

XS
ksm,m8d = XS

ksm8,md. sC33d

Analogously to Eq.sC27d we have

1

DECS
msk;ss8d = o

m8

XS
ksm,m8dCS

m8sk;ss8d. sC34d

Collecting the results above, the intermediate two-particle
states of the perturbation expansion are now given in the
form

1

DEdkis
† dkjs8

† = o
mm8=1

10

wT
msk; i j dXT

ksm,m8dCT
m8sk;ss8d

+ o
mm8=1

15

wS
msk; i j dXS

ksm,m8dCS
m8sk;ss8d.

sC35d

The final step involves transforming backCT andCS into the

d operators. Consider, for example,CT
m8 with m8=g1g2. Us-

ing Eqs. sC5d and sC9d, we find somitting the summation
notations for brevityd

CT
g1g2sk;ss8d

=Î1

2
Wi1g1

skdWi2g2
skdsdki1s

† dki2s8
† + dki1s8

† dki2s
† d

= dki1s
† dki2s8

† Î1

2
fWi1g1

skdWi2g2
skd − Wi2g1

skdWi1g2
skdg

= dki1s
† dki2s8

† wT
m8sk; i1i2d. sC36d

A similar calculation holds for the singlets. We therefore may
write

1

DEdkis
† dki8s8

† = Zksii 8; i1i2ddki1s
† dki2s8

† , sC37d

with

Zksii 8; i1i2d = o
mm8=1

10

wT
msk; ii 8dXT

ksm,m8dwT
m8sk; i1i2d

+ o
mm8=1

15

wS
msk; ii 8dXS

ksm,m8dwS
m8sk; i1i2d.

sC38d

We note that since theX’s are symmetric, it follows that

Zksii 8; i1i2d = Zksi1i2; ii 8d. sC39d

Also, sincewS
msk; ii 8d=wS

msk; i8id and wT
msk; ii 8d=−wT

msk; i8id,
one has

Zksii 8; i1i2d = Zksi8i ; i2i1d. sC40d
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2. Perturbation expansion

Our formal expressions of the various terms in the pertur-
bation expansion, Eqs.s19d–s21d above, involve the projec-
tion operatorsPmn

0 andSmn=s1−Pmn
0 d /DE. Here we give their

explicit expressions in terms of the quantities derived in the
first part of this Appendix.

The projector onto the unperturbed ground-state space is

Pmn
0 = o

ss8

dm0s
† dn0s8

† u0lk0udn0s8dm0s, sC41d

where u0l denotes the vacuum state. Similarly, the projector
onto the Ti3+ sector of the excited states is

Pmn
1 = o

ss8
i1i2sÞ00d

dmi1s
† dni2s8

† u0lk0udni2s8dmi1s. sC42d

It follows that the resolvent operator applied toPmn
1 is given

by

1

DEPmn
1 = − o

ss8
i1i2sÞ00d

1

Ei1
+ Ei2

dmi1s
† dni2s8

† u0lk0udni2s8dmi1s.

sC43d

In a similar way, the projector onto the Ti2+ sector of the
excited states is

Pmn
2 =

1

2 o
kss8

Fo
m=1

10

CT
msk;ss8du0lk0uCT

m†sk;ss8d

+ o
m=1

15

CS
msk;ss8du0lk0uCS

m†sk;ss8dG , sC44d

which gives, upon applying the resolvent operator,

1

DEPmn
2 =

1

2 o
kss8

Fo
mm8

XT
ksm,m8dCT

m8sk;ss8du0lk0uCT
m†sk;ss8d

+ o
mm8

XS
ksm,m8dCS

m8sk;ss8du0lk0uCS
m†sk;ss8dG .

sC45d

Hence the combined resolvent and projection operator onto
the excited states is

Smn=
1

DE sPmn
1 + Pmn

2 d. sC46d

Collecting these results, and expressing the products ofd
in terms of the ground-state spin operatorsfsee Eqs.s15dg,
one obtains the magnetic exchange couplings. These are
listed below.

a. The Heisenberg couplings. These are given by

Jmn= − o
i1i2

ftmn
i10Zmsi10;0i2dtnm

0i2 + tnm
i10Znsi10;0i2dtmn

0i2g.

sC47d

b. The Moriya vectors. These are given to first order in the
spin-orbit coupling,

Dmn
a = 2il o

isÞ0d
i1i2

1

Ei
hLi0

a smdftmn
i10Zmsi1i ;0i2dtnm

0i2

+ tnm
i1i Znsi10;0i2dtmn

0i2g − Li0
a sndftmn

i10Zmsi10;0i2dtnm
ii 2

+ tnm
i10Znsi10;ii 2dtmn

0i2gj. sC48d

c. The symmetric anisotropies, and thel2 correction of
the Moriya vectors. These terms are of second order inl,
and have a more complicated structure. In order to present
them in a concised fashion, we write the left-hand side of Eq.
s21d in the form

Sm ·Amn
s ·Sn + Dmn8 · sSm 3 Snd

= Jmn8 Sm ·Sn + o
abl

isÞ0d

i8sÞ0d

1

EiEi8
Cmn

absi,i8,ldImn
absld,

sC49d

whereJmn8 andDmn8 are thel2 corrections of the Heisenberg
couplings and the Moriya vectors, respectively. In Eq.sC49d
l enumerates the 4 spin invariants, such that

Imn
abs1d = Sm

aSn
b, Imn

abs2d = Sm
aSn

b + Sm
bSn

a − dabSm ·Sn,

Imn
abs3d = dabSm ·Sn + o

g

eabgsSm 3 Sndg,

Imn
abs4d = Imn

bas3d, sC50d

whereeabg is the totally antisymmetric tensor. It remains to
list the coefficients appearing in Eq.sC49d. These are given
by

Jmn8 = − Jmn
l2

4 o
a

isÞ0d

1

Ei
2fuLi0

a smdu2 + uLi0
a sndu2g,

Cmn
absi,i8,1d = 2l2o

i1i2

Li0
a smdL0i8

b sndftmn
i10Zmsii 1;0i2dtnm

i8i2

+ tnm
i10Znsi8i1;0i2dtmn

ii 2 − tmn
i10Zmsi10;i2idtnm

i8i2

− tnm
i10Znsi10;i2i8dtmn

ii 2 g,

Cmn
absi,i8,2d = − l2o

i1i2

H1

2
Li0

a smdL0i8
b smdftmn

i10Zmsi8i1; i2idtnm
0i2

+ tnm
i1i8Znsi10;0i2dtmn

ii 2 g +
1

2
Li0

a sndL0i8
b snd

3ftmn
i1i Zmsi10;0i2dtnm

i8i2 + tnm
i10Znsii 1; i2i8dtmn

0i2g

− Li0
a smdL0i8

b sndftmn
i10Zmsi10;ii 2dtnm

i8i2

+ tnm
i10Znsi10;i8i2dtmn

ii 2 gJ ,
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Cmn
absi,i8,3d = − l2o

i1i2

H1

2
Li0

a smdL0i8
b sndftmn

i1i8Zmsi10;ii 2dtnm
0i2

+ tnm
i10Znsi8i1; i20dtmn

ii 2 g + Li0
a smdLi8i

b smd

3ftmn
i10Zmsi10;i8i2dtnm

0i2 + tnm
i10Znsi10;0i2dtmn

i8i2gJ ,

Cmn
absi,i8,4d = − l2o

i1i2

H1

2
Li0

b smdL0i8
a sndftmn

i1i8Zmsi10;ii 2dtnm
0i2

+ tnm
i10Znsi8i1; i20dtmn

ii 2 g + Li0
a sndLi8i

b snd

3ftmn
i10Zmsi10;0i2dtnm

i8i2 + tnm
i10Znsi10;i8i2dtmn

0i2gJ .

sC51d
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