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ABSTRACT

COMPUTATIONAL MODELING AND DESIGN OF

PROTEIN AND POLYMERIC NANO-ASSEMBLIES

Christopher D. Von Bargen

Je↵ery G. Saven

Advances in nanotechnology have the potential to utilize biological and polymeric systems

to address fundamental scientific and societal issues, including molecular electronics and

sensors, energy-relevant light harvesting, “green” catalysis, and environmental cleanup. In

many cases, synthesis and fabrication are well within grasp, but designing such systems re-

quires simultaneous consideration of large numbers of degrees of freedom including structure,

sequence, and functional properties. In the case of protein design, even simply considering

amino acid identity scales exponentially with the protein length. This work utilizes compu-

tational techniques to develop a fundamental, molecularly detailed chemical and physical

understanding to investigate and design such nano-assemblies. Throughout, we leverage a

probabilistic computational design approach to guide the identification of protein sequences

that fold to predetermined structures with targeted function. The statistical methodology

is encapsulated in a computational design platform, recently reconstructed with improve-

ments in speed and versatility, to estimate site-specific probabilities of residues through

the optimization of an e↵ective sequence free energy. This provides an information-rich

perspective on the space of possible sequences which is able to harness the incorporation

of new constraints that fit design objectives. The approach is applied to the design and

modeling of protein systems incorporating non-biological cofactors, namely (i) an aggre-

gation prone peptide assembly to bind uranyl and (ii) a protein construct to encapsulate

a zinc porphyrin derivative with unique photo-physical properties. Additionally, molecu-

lar dynamics simulations are used to investigate purely synthetic assemblies of (iii) highly

charged semiconducting polymers that wrap and disperse carbon nanotubes. Free energy
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calculations are used to explore the factors that lead to observed polymer-SWNT super-

structures, elucidating well-defined helical structures; for chiral derivatives, the simulations

corroborate a preference for helical handedness observed in TEM and AFM data. The tech-

niques detailed herein, demonstrate how advances in computational chemistry allot greater

control and specificity in the engineering of novel nano-materials and o↵er the potential to

greatly advance applications of these systems.
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(B), white space denotes coiled-coils that cannot find an orientation

of the GLU-uranyl super rotamer that satisfies a uranyl RMSD(ẑ)
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tiles indicate lattice energies above -30.0 kcal/mol; white tiles indi-

cate structures with atomic overlap between symmetric backbones.

Markers (white) are placed to correspond to choices made for each

of the sequences, which comprise the three main energy minima. . . 70
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1 Introduction

Current technology in nano-material engineering o↵ers a diversity of potential applications;

for example, carbon nanotubes for nanoscale electronics, polymer bio-nano matrices for wa-

ter purification, small organic molecules for photovoltaic devices, and proteins for biosen-

sors. Such materials promise the ability to address fundamental scientific questions while

tackling concerns germane to society. Yet understanding the details of these materials, and

in turn the design of new systems, is often met with enormous complexity. The task re-

quires simultaneous consideration of large numbers of degrees of freedom which can include

structure, composition, and functional properties. Protein design is the quintessential ex-

ample, wherein even simple sequence variability scales exponentially with protein length.

The following work encompasses theoretical and computational methods to model and de-

sign nano-scale polymeric systems, with an emphasis on understanding their well-defined

structures and spontaneous self-assembly.

1.1. Protein Engineering and Computational Protein Design

Novel protein assemblies can drive the advent of new nanotechnologies, either through the

redesign of naturally occurring proteins or the design of completely de novo structures. Re-

design of the common TIM-barrel structure to stabilize high energy reaction intermediates in

reactions1–4 underscores the ability to design catalysts for which no known natural enzyme

exists. Designing fluorophores into transfer proteins to mark binding of fatty acids show-

cases the creation of novel biosensors5. A variety of de novo proteins have been designed to

encapsulate synthetic nonbiological cofactors with interesting and unique nonlinear optical

responses or light induced electron transfer properties6–13, which provide promising frame-

works with which to develop materials. These designed proteins can provide insulation

between neighboring cofactors and serve as the means by which to direct organization into

the macro-scale structures required for optical communications applications or e�cient har-
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vesting of photo-generated charges required for organic photovoltaics. The many successes

of protein engineering and design stand at the forefront of nanotechnology.

Protein design seeks to identify a sequence, or set of sequences, that folds to a particular

structure which confers a targeted function14. It both promotes our knowledge of biological

processes and facilitates the engineering of novel proteins15. The determination of the

key physical and chemical features of a sequence that dictate native structures is often

di�cult to identify and isolate in natural proteins, despite the expanding set of protein

structures available16. Early design e↵orts utilized empirically derived knowledge of protein

secondary structural motifs and amino acid propensities for those motifs to select new

protein sequences with limited success – often less structurally defined than their natural

analogues17–22. The complexities associated with protein structure formation are well-

known: proteins have tens to thousands of amino acids, those residues can take on an

exponentially large number of conformations, and stabilizing forces are relatively weak

noncovalent interactions. Identification of a sequence alone requires traversal of the huge

sequence space; e.g., a modest 100-residue protein using the 20 natural amino acids can

have more than 10130 possible sequences. Furthermore, the pliancy of proteins often allows

similar structures and function between sequences with little similarity. The structure

and function of some sequences may be highly sensitive to mutation, thereby impeding

an evolutionary approach to potentially discover new proteins with targeted functionality.

While combinatorial protein experiments provide a means to exhaustively explore sequence

space, they are burdened by the vast complexity of the exponentially large number of

possible sequences23,24.

Tools developed from theoretical methods can directly address the inherent complexity of

designing and redesigning proteins. In order to address the large number of concerted in-

teractions within a targeted fold, these methods introduce simplifications that make the

sequence/structure search space more tractable. As such, the complexity reduction is gen-

erally determined by (1) the target protein structure, (2) admissible flexibility, (3) the
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sequence composition, and (4) energetic details. Targeted folds, chosen as to confer desired

functional properties, are usually defined by protein backbone atoms and constrained dur-

ing calculations. These structures can be extracted from existing x-ray crystal structures

or NMR ensembles25, assemblies of protein fragments26–28, simple elements from secondary

structures29–31, or through homology modeling32. To mitigate overly constraining per-

missible sequences within a target structure, methods have introduced minute backbone

flexibility by sampling neighboring configurations33–39. Conversely, the flexibility of side

chains is directly addressed in discretizing conformational states. Often these states are

classified on a rotameric basis (only varying side chain dihedrals). Rotamer libraries derive

states from structural databases to cohere with energetically favorable structures40, and

can be categorized in a variety of ways: e.g. backbone independent, secondary structure

dependent, and backbone dependent libraries40–47. Full conformational libraries (includ-

ing variation in bond lengths and bond angles) can be used, but such practice is reserved

for placement of small molecules48,49. While the sequence composition in design generally

consists of all 20 natural amino acids, restrictions can be applied where appropriate. Re-

gions of the target fold can be patterned, e.g. restricting buried positions to hydrophobic

residues50 to drive hydrophobic collapse51, excluding known helix disrupting residues from

helical regions, and fixing the identity of a residue required for metal binding. Conversely,

the sequence can be broadened to included additional monomer units including nonnatural

amino acids, or rotamers positioned with well defined water molecules52. Lastly, the choice

of energy function quantifies the sequence-structure consonance and modeling accuracy53,54.

Much design work borrows molecular mechanics force fields developed for molecular dynam-

ics simulations55–58. While such atomistic potentials are obtained from experimental data

and electronic structure calculations to account for the physical chemistry of interactions,

alternate potentials can be employed, including knowledge-based methods or coarse grain

energy functions59. Additionally, a hybridized approach can be taken to develop an opti-

mized force field60. Solvation in protein design is modeled implicitly, as an explicit represen-

tation is generally impractical. Implicit solvation models can be treated as solvent exposure

3



propensities based on local protein density36 or with detailed terms adopted from the gen-

eralized Born model61,62. A biasing against misfolded structures (negative design) can also

be introduced into physico-chemical potentials through an unfolded state, or ensemble of

states, represented as a set of reference energies. These can be obtained empirically as to

reconstruct established amino acid frequencies in nature, or calculated from model peptide

systems63–65.

Protein design methods can harness these elements in a variety of ways to arrive at a

sequence, though the techniques comprise two distinct camps of approach. Directed pro-

tein design is chiefly concerned with optimization procedures that select sequence identity

based upon estimating global energetic minima. Stochastic methods, including Monte Carlo

(MC) methods, sample sequences from a selected probability distribution as to escape local

barriers in the sequence landscape and improve sampling. MC employs an e↵ective tem-

perature to determine acceptance rates which in practice can be altered during the course

of sampling. MC techniques include simulated annealing63,66, quenching67, biasing meth-

ods68, and replica exchange algorithms69. While such stochastic techniques attempt to

converge upon a global minimum, they often require multiple independent calculations to

fully explore the sequence landscape. Alternatively, deterministic optimization techniques

are widely used, including genetic algorithms70, graph search (including A*71 and other

heuristic optimizations72), linear programming73, and pruning or elimination methods74.

Elimination methods (namely, dead-end elimination) iteratively prune unfavorable rotamers

not part of the optimal sequence until no further eliminations are possible. From the limited

set of states remaining, an exhaustive search is performed to identify a global minimum.

While elimination techniques are useful for small proteins and proteins with a limited num-

ber of amino acids/rotamers, computational time increases exponentially with the number

of residue variables and they perform poorly for large systems67. Consequently, improve-

ments have been suggested, including relaxing pruning criteria75, comparing clusters of

rotamers (generalized DEE)76, revised elimination with flagging criteria77, and placement

of constraining boxes to bound rotameric interactions78. Nonetheless, directed methods in
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general are limited by the size and number of sequences considered and require extensive

calculations to inform the space of possible or nearby sequences.

Conversely, probabilistic methods provide a direct estimate of sequence variability rather

than specific sequences. Such methods are able to access the immense sequence space and

able to characterize ensembles of sequences that may fold to a selected structure. With

a probabilistic approach, site-specific probabilities are estimated among the ensemble of

sequences as placed within a targeted folded structure. The method is a means of address-

ing the inherent uncertainties in computational protein design, namely approximations in

energy functions, discretization of rotameric states in the amino acids, and simplified solva-

tion models that are often employed. Instead of simply identifying global minima, the site-

specific probabilities act as a guide in design to identify the sensitivity of residue mutation

to the overall structure or functional properties. Such methods provide broad perspective

on the sequence-rotamer landscape. The formalism for such an approach is usually derived

from mean field theory79,80, which foregoes sequence enumeration to estimate probabilities

informed by local energetic interactions. Where mean field methods traditionally lower an

associated e↵ective temperature to identify low energy sequences, a probabilistic approach

seeks to maximize an entropy of sequence variability and utilize probability profiles to iden-

tify a consensus sequence36,65,81–83. It is this maximization of an e↵ective entropy that

is cardinal to the methodology. Probabilities are determined by optimizing an e↵ective

sequence-rotamer entropy, subject to constraints which can specify a variety of properties

(e.g. mean energy of all possible sequences or local site-specific residue composition). The

constraints are defined as average values, and are assumed to have minimal fluctuations

about their mean. The method permits large protein structures (>100 residues) to be

considered, with a time and space complexity bounded only by constraint dimensionality.

Moreover, the method can be reduced to a directed mean field approach in the limit of

lowering the e↵ective temperature significantly to arrive at a most probable sequence. Like-

wise, the calculated probabilities can be used to e�ciently bias MC trial sequences to arrive

at a low energy candidate84.
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This entropically based formalism has been applied to a variety of protein design work,

showcasing the advantages of identification of the diversity of neighboring sequences able

to satisfy targeted structure and function85. Due to the di�culty in isolating and purifying

membrane proteins, the probabilistic approach was used to target the redefinition of exte-

rior residues in the transmembrane domain to ease processing and solubility while retaining

the membrane protein structure and function. The designs of a water-soluble variant of

a bacterial potassium ion channel (KcsA) showed close agreement of the solution phase

(NMR) structure with that of the membrane-soluble wild type structure86, and the design

of a water soluble variant of a G-protein-coupled receptor exhibited comparable antagonist

a�nity as the native receptor87. Alternatively, these methods have been applied to de novo

protein design, namely in the context of encapsulation of the aforementioned nonbioloical

guest molecules (cofactors). Where natural proteins may not be su�cient for increasingly

complex macromolecular cofactors, probabilistic protein design is able to adeptly apply con-

straints to the sequence space of both oligomeric proteins as well as de novo single-chain

structures. Examples of such designs include a tetrahelical protein that selectively binds

multiple copies of a nonbiological diphenyl iron porphyrin (DPP-Fe)30, a A2B2 heterote-

tramer that selectively binds a nonbiological photoactivatable zinc porphyrin with correct

stoichiometry88, and single-chain helical proteins able to bind and encapsulate a variety

of di↵erent cofactors and chromophores13,89. Recently, this design approach was extended

to lattice systems targeting pre-specified crystal structures – a three-helix protein was de-

signed to form a polar crystal in the P6 space group, exhibiting sub-Å agreement between

the X-ray crystal structure and computation model90.

1.2. Polymer-Nanotube Assemblies

A variety of synthetic macromolecules composed of organic and organometallic polymer

assemblies have been key in developing new technologies involving liquid crystalline91,92

optoelectronic,93,94 and spintronic95 materials. Such polymeric systems feature polarizable,

hyperpolarizable, or low band gap building blocks94,96–99. For this reason, there is interest in
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integrating such polymers with other nanoscale semiconducting materials to evolve entirely

new classes of optoelectronic and spintronic materials. Semiconducting single-walled car-

bon nanotubes posses unique electro-optic properties and tunable valence and conduction

bands100, which make them prime for integration into hybrid nano-materials. Moreover,

much work has been done in the way of utilizing semiconducting polymers as nanotube sol-

ubilization agents101–106, including highly charged aryleneethynylene polymers which form

distinct, well-formed helical superstructures101,102,106.

Electron microscopy, atomic force microscopy, and spectroscopic methods can elucidate the

structures of polymer-nanotube complexes with limited resolution. Molecular dynamics sim-

ulations have a↵orded a means to gain a molecular-level understanding of superstructural

formation which will greatly advance the application and further design of these systems.

The use of simulations to provide insight into the structure, fluctuations, and energetics

of polymer-nanotube is well documented102,107–114,114–125, building an atomistic picture of

monomer interactions with the nanotube surface, conformation energetics preferences of the

polymer backbone, and exploring the di↵erent superstructures these assemblies adopt. Ad-

ditionally, relative free energies of polymer-nanotube superstructures have been calculated

from these molecular simulations126–128.

Obtaining free energy estimates from atomistic simulations can relate the precise details

of atomic interactions to structural biases at the macromolecular scale. Unfortunately,

such estimates are often di�cult to calculate from conformational fluctuations in molecu-

lar simulations due to rugged and complex energy landscapes129. Advances in the tech-

niques employing configurational averages over classical simulations130–133, including free

energy perturbation, non-equilibrium approaches applying exponential averaging of work es-

timates134, adaptive biasing force sampling135, thermodynamic integration136, and replica

exchange methods137, have become indispensable tools to providing accurate thermody-

namic estimates for macromolecular assemblies138. Joined with the time scales molecular

dynamics simulations can access with current advances in hardware, free energy techniques
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build molecularly detailed chemical and physical understanding of nanoscale assemblies, and

o↵er the potential to greatly advance applications of next-generation soft matter materials.

1.3. Overview of Thesis

This thesis details computational techniques to model and design nano-assemblies. The

majority of this work details and utilizes a probabilistic design approach to identify novel

protein sequences. The statistical methodology is detailed extensively, with an emphasis on

building a versatile and parallelized software suite (Chapter 2). Advances in the theory are

presented, including identifying entropically weighted residue probabilities, inclusion of new

constraints, and leveraging robust third party nonlinear optimization techniques to minimize

the sequence free energy. Choices for energy functions, conformational libraries, and an

elementary solvation model are validated in a series of benchmarking studies. Discussion of

the program architecture makes a point that the methodology is easily extendable to any

set of polymeric species as to include biological, nonnatural, and hybrid systems.

The probabilistic methodology is then applied to the de novo design of proteins which in-

corporate non-biological cofactors. Standing on the previous success designing a protein

trimer in a predetermined crystal structure, we target the design of an environmentally

relevant peptide trimer which aggregates in the presence of uranyl (Chapter 3). The work

summarizes identification of multiple binding sites in the trimer core and a sequence consis-

tent with packing in the P6 space group. Experimental results for selected sequences show

the peptides readily aggregate upon binding uranyl. The design strategy is then extended

to identify a single-chain protein which binds and orients a donor-bridge-acceptor electron

transfer chromophore (Chapter 4). Emphasizing de novo design principles, the work traces

out the identification of a coiled-coil motif with a hydrophobic core tailored to provide shape

complementarity to the cofactor. A residue o↵ering an explicitly positioned hydrogen bond

to the cofactor is engineered into the core, de novo loops threaded onto the sca↵old, and an

exterior sequence identified with an emphasis on a crystalline assembly.

8



The remaining work employs molecular dynamics simulations to examine the superstruc-

tures associated with synthetic polymers wrapped about single-walled carbon nanotubes.

The simple phenylene derivative of an amphiphilic, semiconducting poly-arylene ethylene

is investigated with a series of free energy calculations to explore factors that drive the for-

mation of well-defined helical motifs when non-covalently wrapping nanotubes (Chapter 5).

The e↵ects charged side chains of the polymer play in these structures is explored, includ-

ing water-mediated conformations that promote specific conformations. For more complex

derivatives of these semiconducting polymers, including those that utilize a binapthol com-

ponent in their repeat unit, dynamics simulations are employed to verify helical handedness

preferences dictated by polymer chirality (Chapter 6). All results are compared to the

modest sampling of TEM and AFM images to provide an experimental reference for the

simulations.
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2 Probabilistic Computational Protein Design

2.1. Introduction

We focus on developing a tool for computational protein design, with the goal of providing

a probabilistic approach to guide the identification of protein sequences and the properties

of sequences that fold to predetermined structures. As designing such sequences requires

simultaneous consideration of large numbers of degrees of freedom (including the structure,

sequence, and functional properties of the protein system), it harnesses a theoretical frame-

work for estimating site-specific probabilities of the amino acids among the ensemble of

sequences likely to be compatible with the target structure. Such a probabilistic approach

is partly motivated by the uncertainties associated with identifying sequences consistent

with targeted functions and structures, e.g., energy functions are approximate; side chain

conformations are treated discretely; backbone atoms are highly constrained; solvation is

treated using simplified models. The site-specific probabilities identify residues that toler-

ate variation without a↵ecting structure or other properties. As a result, such a method

provides a broad perspective on the space of possible sequences and yields information that

is useful in designing functional protein systems. To do so, an entropy based formalism is

applied which estimates residue probabilities directly; this is done through an e↵ective free

energy minimization subject to a set of sequence constraints on the ensemble.

This methodology has been expanded and our implementation reorganized. The following

both reviews and expands upon new contributions to the formalism. The overall theory

and implementation of this protein design methodology is presented, namely, the use of

statistical mechanics principles to create an e↵ective sequence-structure free energy object,

the application of an e↵ective temperature to identify low energy sequences, the utilization

of molecular force fields and rotamer libraries, and the choice of an optimization method

and toolkit for obtaining solutions of residue probabilities. Furthermore, the methodology
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is easily extendable to any molecular species with variable substituents. While we only

present analysis of the program for protein systems, the methodology holds for any any

general molecular ensemble, allowing the computational package to assess the variability

and design of any biological, nonnatural, or hybrid systems.

2.2. Probabilistic Theory

While the statistical theory of sequence ensembles has been detailed previously36,81–83, the

following section aims to summarize and review all theoretical contributions to the formalism

used herein. The theory aims to describe a probabilistic description of sequences that are

likely to fold to a given structure through the determination of ensemble probabilities; in

previous work this has targeted using the natural set of amino acids to determine protein

sequences for given folded states, but we note that the formalism is extendable to any set

of monomer moieties that assemble into a targeted polymer structure. Furthermore, the

generality of the method allows for the application of constraints upon the ensemble of

sequences, which is accounted for in the implementation of a probabilistic computational

design program.

The following equations establish a formalism for counting the number of states associated

with a particular polymer sca↵old through the maximization of an entropy function. The

ensemble of allowable polymer states is comprised of both monomer types and monomer

conformations (e.g., amino acids and associated side chain conformations). We define the

total sequence-state entropy, S, which quantifies the number of polymer states likely to

adopt a particular polymer sca↵old and is exactly analogous to the eponymous Boltzmann

equation

Eq. 2-1
S

kb
= ln(⌦seq)
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where kb is the Boltzmann constant, and ⌦seq is the total number of sequence-structure

microstates. For example, a protein having N residue positions with the possibility of all 20

amino acid identities at each position and only a single conformation per amino acid states

still possesses ⌦seq = 20N possible sequences. Similarly, we can describe the ensemble

of sequences as a discrete set of accessible polymer microstates, such that the ensemble

sequence entropy is given by the formula

Eq. 2-2
S

kb
= �

⌦
seqX

seq

Wseq lnWseq

where Wseq is the probability of a particular sequence-state. Monomer sites are assumed

to take on discrete monomer identities and conformational states at each position on that

polymer chain. As is done with mean field theories, we approximate the multivariable

probability Wseq by factorizing it into the joint probability of individual probabilities for

all subunits of that sequence.

Eq. 2-3 Wseq(c1(t1, n1); ...; cN (tN , nN )) =
NY

n

w(n,t,c)

where we introduce a compactified indexing scheme to denote the probability of conforma-

tional state c for monomer type t at the polymer site n, denoted c(t, n). The following

definitions reflect the computational implementation of the theory, where the indices can

be rolled into a single index i over all allowed combinations of c, t, and n.

Eq. 2-4 wc(t,n) ⌘ w(n,t,c) ⌘ wi and D =
NX

n

T
nX

t

C
ntX

c
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Here, N is the total number of variable site locations in the polymer chain, Tn is the total

number of monomer types allowed at site n, and Cnt is the total number of conformational

states of monomer type t at site n. This provides the total number of individual probabilities

present in the ensemble of sequences as D . It will become clear that this is the dimensionality

of the formalism, which is in general a significantly smaller number than ⌦seq; for the N

residue protein with 20N possible sequences, this reduces to 20 ·N individual probabilities.

Within this factorization approximation, we can then write the total sequence entropy as

Eq. 2-5
S

kb
= �

X

n

X

t

X

c

w(n,t,c) lnw(n,t,c) ⌘ �
DX

i

wi lnwi

As each site must be occupied, this constraint is imposed on all N sites so that all proba-

bilities across each n are appropriately normalized.

Eq. 2-6
T
nX

t

C
ntX

c

w(n,t,c) ⌘
T
nX

t

C
ntX

c

wi = 1 for all n

If we now maximize the sequence entropy subject to these normalization constraints, it

is clear that we then recover our original formulation of the Boltzmann entropy Eq. 2-1.

For such a solution, the probabilities of the individual conformers are independent of each

other; however, introducing a pairwise energy function (or any such quadratic or higher

order constraint) to the optimization couples the probabilities.

The energy function is defined using the mean field approach, which naturally arises from

the factorization approximation. The energy for a particular sequence microstate can be

written as a sum over each intra-monomer potential term and the sum over all pairwise

inter-monomer interactions in that sequence. Note that �(n,t,c;n0,t0,c0) for n = n0 is zero –
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that is, there are no interactions between states at the same site.

Eq. 2-7 Eseq =
NX

n

�(n,t,c) +
1

2

X

n 6=n0

�(n,t,c;n0,t0,c0)

where �i is the potential term for conformer i, �ij is the potential term between conformers

i and j in that sequence, and 1
2 avoids double counting (�ij = �ji). Furthermore, we define

�ii = 0, removing self pairwise energies. For the local energy at index (n, t, c) = i, we can

define

Eq. 2-8 ✏(ntc) ⌘ �(n,t,c) +
X

n0,t0,c0

�(n,t,c;n0,t0,c0)

or using the compactified notation,

Eq. 2-9 ✏i ⌘ �i +
X

j

�ij

In a mean field treatment, we would assume that the the value of ✏i can be replaced with

its mean value in the limit that fluctuations in energy about the mean due to variation in

the sequence are small.

Eq. 2-10 ✏(ntc) ⇡ h✏(ntc)i = �(n,t,c) +
X

n0,t0,c0

�(n,t,c;n0,t0,c0)wn0,t0,c0
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or using the compactified notation,

Eq. 2-11 ✏i ⇡ h✏ii = �i +
X

j

�ijwj

Similarly, we make the assumption that the fluctuations of the internal energy are small

about the average energy,

Eq. 2-12 hEi ⌘ U =
X

i

�iwi +
1

2

X

ij

�ijwiwj

Previous descriptions of this probabilistic approach to sequence design target an entropy

maximization subject to a series of constraints fk(w) held at fo
k , including an energetic

constraint at Eo,

max
S

kb
(w) subject to U(w)� Eo = 0

0  wi  1

for all n,
X

tc

wi � 1 = 0

fk(w)� fo
k = 0

Eq. 2-13

However, it is often useful to specify a desired e↵ective temperature (conjugate Lagrange

multiplier of the energy) at which to optimize the probability profiles. This has the advan-

tage of providing a means by which to compare energies across many related structures,

as one does when probing a sequence-structure energy landscape. Alternatively, it can be

viewed as a means of tuning the relative strength of the energetic contribution to the ef-
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fective free energy landscape. Simply, this is accomplished by either a maximization of

sequence entropy with an energetic function at a fixed Lagrange multiplier S
k
b

(w)��U(w),

or equivalently, a minimization of mean sequence free energy,

min F (w,�) = U(w)� 1

�
· S
kb

(w)

subject to 0  wi  1

for all n,
X

tc

wi � 1 = 0

fk(w)� fo
k = 0

Eq. 2-14

In practice, we solve the e↵ective free energy minimization problem with current nonlinear

optimization techniques. As in statistical thermodynamics, � corresponds to the conjugate

variable of energy and o↵ers the interpretation that its inverse is an e↵ective temperature,

� = 1
k
b

T , at the optimized free energy. In the case of high e↵ective temperature and corre-

spondingly high mean energy, many degenerate sequences exist causing increased variance

associated with sequence energy. In the limit that 1
k
b

� goes to infinity, all sequences are

equally likely. Conversely, at low e↵ective temperatures, the degeneracy is reduced and low

energy sequences are favored. In the limit that the e↵ective temperature goes to 0, the

probabilities go to either 0 or 1 choosing a single low energy sequence. In such a case with

only normalization constraints are imposed, this is exactly the optimization of the mean

field approach in Eq. 2-9 and Eq. 2-11.

A statistical thermodynamic quantity of particular interest to the formulation of the mean

field sequence energy is the rate of change for the mean sequence energy with respect to

change in the conjugate Lagrange multiplier, �; that is, the sequence heat capacity of the

16



system (see Appendix C for derivation). Cv is estimated as

Eq. 2-15 Cv = �kb�
2@U

@�
⇡ kb�

2
NX

n

2

4
X

tc

✏i
2wi �

 
X

tc

✏iwi

!2
3

5

2.2.1. Probability Profiles

From the individual probabilities, wi, obtained by solving Eq. 2-14 we also obtain reduced

quantities that do not depend explicitly upon the conformational state of a given monomer

type. The simplest is to define a simple aggregation of probabilities, w(n,t), of the same type

t, capturing the potential entropy associated with allowed states for that monomer. The

summation of probabilities over conformers of a given monomer type t at site n is given as

Eq. 2-16 w(n,t) =
C

ntX

c

wi =
C

ntX

c

w(n,t,c)

However, this relies on an accurate representation of the entropy associated with the various

monomer species allowed in a given ensemble. Often, it is useful to estimate the probability

of a given monomer type at a particular position independent of the number of allowed

conformational states. This both provides equality among type probabilities at high tem-

peratures, as well as emphasizes the most probable state at a site among all possible states.

We define an entropically-normalized type probability that is a function of the aggregated

type probability presented in Eq. 2-16.

Eq. 2-17 w̃(n,t) =
w(n,t) · exp(Snt

k
b

)

T
nP
t
w(n,t) · exp(Snt

k
b

)

for
Snt

kb
= �

C
ntX

c

wi

w(n,t)
ln

wi

w(n,t)
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2.2.2. Approximating the Unfolded State

In the particular instance of protein design, an estimate of nontarget conformations is in-

cluded. Explicitly sampling unfolded protein states is computationally prohibitive, given

the flexibility of protein structures and large inter-residue interaction fluctuations64. As is

commonly done, we approximate unfolded interactions by sampling discrete conformations

for amino acids threaded onto a “unfolded” structure to estimate energetic reference values.

As a means of crudely simulating variation in beta carbon interactions in neighboring back-

bone residues, the model peptide N-acetyl-X-N’-methylamide is chosen as this “unfolded”

structure, where X signifies the placement of a single amino acid.

Values are dependent only upon amino acid type t, and calculated as free energies of the

unfolded ensemble, �u,t, at a chosen unfolded temperature factor (�u).

Eq. 2-18 �u,t = � 1

�u
ln zu,t(�u)

where the unfolded ensemble partition function is defined as

Eq. 2-19 zu,t =
X

�, 

X

c

exp(��u · ✏(�, , t, c))

The partition function is estimated by miming unfolded states for each amino acid t by

evaluating energies ✏ across possible backbone configurations for each available residue con-

formation state. This translates to a sum over (i) a set of discretized model peptide states

(�, ) and (ii) the conformational states c available to the that residue t43,47. Tripeptide

states are selected as a systematic variation over backbone dihedrals � and  by 10� incre-

ments (�180� < � < 180�;�180� <  < 180�; 1,296 configurations) with all bond lengths,
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all bond angles, and the N-acetyl and N’-methylamide groups held fixed. Energies, ✏, are

calculated using identical components to the energetic coe�cients identified in Eq. 2-12

used to quantify interaction energies in the folded ensemble. The unfolded temperature

factor, �u, is chosen as a constant. �u can be chosen as � (Eq. 2-14), or an alternate value

such as �u ⇡ 1.69mol/kcal consistent with room temperature.

The coe�cients are used to formulate a mean unfolded free energy estimate in the context

of the target structure. To provide a contextualization for these free energies, we o↵set the

unfolded energies such that the unfolded free energy of glycine is zero. Note that while the

summation is across the entire folded ensemble, the unfolded free energies are dependent

upon only the amino acid type t and not the local position or conformation (n and c

respectively).

Eq. 2-20 hFui =
X

i

(�u,t � �u,GLY)wi

This then provides a means to rewrite the free energy objective function as a di↵erence in

free energies of the folded and unfolded states. In practice, this is the objective function

which is minimized during the calculations.

Eq. 2-21 �F = hFfi � hFui = hEi � 1

�

S

kb
� hFui

2.2.3. Lattice Approximation

We introduce the ability to perform a sequence design within the context of an arbitrary

infinite lattice. Previous work83 has detailed the calculation of a symmetric energy in the

context of M symmetrically related chains; we begin there and reduce those equations to
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the energy of a single asymmetric unit within an infinite lattice.

The symmetry approximation imposes the following restrictions on all symmetrically related

asymmetric units

1. The allowed monomer type probabilities on each unit (chain) are the identical, i.e.

wm
t = wt for all m units

2. Conformer probabilities at equivalent sites on di↵erent units are equivalent, i.e. wm
c =

wc for all m units

The approximation thus supposes that in lieu of designing all possible positions in the

lattice, we instead symmetrically link equivalent positions to reduce the computational cost

associated with a sequence free energy optimization. The total lattice energy, hElatticei, can

be written as the sum of all intramolecular energies associated with each asymmetric unit,

hEf i, with the sum of all intermolecular energies between all asymmetric units, hEai.

Eq. 2-22 hElatticei = hEf i+ hEai

For M asymmetric units in a lattice, the total intramolecular energy of all individual units

is

Eq. 2-23 hEf i =
MX

m

0

@
X

i

�mi wi +
1

2

X

i 6=j

�mijwiwj

1

A

where �mij denotes the interactions between conformers i and j on asymmetric unit m. We

assign the 1
2 to avoid the double counting caused by the equivalency of �ij = �ji. The form

of this energetic term is equivalent to the previous discussion of a mean field approximation
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in the energy of a system, namely Eq. 2-12. We denote the individual energy of each

asymmetric unit as hEm
aui. Furthermore, because the units are equivalent, that is hEm

aui =

hEn
aui, we remove the superscript and factor out the number of asymmetric units, M .

Eq. 2-24 hEf i =
MX

m

hEm
aui =

MX

m

hEaui = M · hEaui

The energy of interactions between each of the M asymmetric units is the defined by

all allowable interactions within the context of the symmetric approximation, and thus

quantifies the intermolecular interaction between an asymmetric unit and all neighboring

copies.

Eq. 2-25 hEai =
1

2

MX

m

MX

n

X

i

�mn
ii wi +

1

2

MX

m

MX

n

X

i 6=j

�mn
ij wiwj

where �mn
ii denotes the interactions between copies of conformer i between asymmetric units

m and n, and �mn
ij denotes the interactions between conformers i and j on the asymmetric

units m and n, respectively. We assign the 1
2 to both sums to avoid the double counting

caused by the equivalencies �mn
ii = �nmii and �mn

ij = �nmji in the respective terms.

As before, we aim to factor out the number of asymmetric units, M , to create an intensive

lattice energy. To do so, we assert that in the context of an infinite lattice, any two

asymmetric units, m and m0, have identical interactions amongst all n neighbors.

Eq. 2-26
NX

n

�mn
ij =

NX

n

�m
0n

ij
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such that

Eq. 2-27 hEai =
M

2

MX

m

X

i

�0mii wi +
M

2

MX

m

X

i 6=j

�0mij wiwj

We note that while the inversion of both pairs of indices provides equivalent interactions,

that is �mn
ij = �nmji , the inversion of only one pair of indices does not map to identical pairs

of conformers, �mn
ij 6= �mn

ji . As such, the summation is not further reduced by by 1
2 . By

design, the singly inverted pair should have a symmetric interaction as placed in an ideal

lattice, but do not qualify as double-counting. Returning to the expression for the lattice

energy, we obtain

Eq. 2-28

hElatticei = M ·

2

4
X

i

�mi wi +
1

2

X

i 6=j

�mijwiwj +
1

2

MX

m

X

i

�0mii wi +
1

2

MX

m

X

i 6=j

�0mij wiwj

3

5

which can be factored to take a form analogous to Eq. 2-12

Eq. 2-29

hElatticei ⌘ Ulattice = M ·

2

4
X

i

 
�i +

1

2

MX

m

�0mii

!
wi +

1

2

X

ij

 
�ij +

MX

m

�0mij

!
wiwj

3

5

2.3. Constraints

While the theory is able to address sequence variability, it is often useful to impose con-

straints on the calculations. Constraints can address design requirements, experimental

necessities, or aid in the selection of a sequence from diverse profiles. For example, where

highly interacting and buried sites are able to resolve well defined sequence choices, solvent
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exposed positions often boast di↵use distributions due to minimal interactions and the omis-

sion of an implicit solvent model. Constraints can take a variety of forms: physico-chemical

energy functions, most commonly adapted from potentials developed for molecular simula-

tions55–58; knowledge-based statistical functions, such as those used to quantify secondary

structure propensities; simple compositional restrictions based on residue counts. The fol-

lowing is a summary of several of the constraints that have been implemented, several of

which are used in later chapters.

2.3.1. Sequence Composition

The simplest way to impose a composition constraint is to specify the total occurrence of

a specified amino acid in the sequence. Naively, this means constraining the total number

of residues in the final sequence to a fixed value. More precisely, we formulate the total

composition of a residue type t⇤ across all sequences considered by writing the mean number

of that residue in the ensemble.

Eq. 2-30 f(w, t⇤)composition =
X

i

�t⇤ ·wi where �t⇤ =

8
><

>:

1 if i = (n, t⇤, c)

0 if i 6= (n, t⇤, c)

where the delta function picks out probabilities with indices that belong to the specified

type t⇤.

A more complex variant of this constraint is to consider the composition across the set of

amino acids. The sensitivity of the probabilistic calculations in the context of a molecular

mechanics force field has a tendency to over select for a single type of residue (in part due

to large side chain, more rotameric states, etc.). Imposing a required amount of diversity

among the more probable sequences can alleviate this, and is often necessary when consider-

ing experimental requirements on NMR chemical shift assignment or protein expression139.

An expression for sequence diversity can be obtained from an inverse participation ratio of
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the above defined residue composition.

Eq. 2-31 f(w)diversity =
TX

t

✓
f(w, t)composition

N

◆2

where we sum over all amino acid types in the ensemble, T . At one extreme, the diversity can

be constrained to its lower limit such that only one residue is permitted, i.e. a homopolymer

with f(w)diversity = 1. At the other, the largest diversity can specify equal likelihood among

the residues. For the natural 20 amino acids, the type composition produces a value of N
20 ,

and in turn f(w)diversity = 0.05. Often, the diversity constraint is applied such that it is

lowered (the sequence diversified) from the unconstrained diversity value within the function

limits described above.

2.3.2. Linear Sequence Properties

Constraints can be used to impose any variety of sequence properties dependent only upon

the residue type (that is, independent of the residue conformation). These are often useful

when targeting particular characteristics that must be met across a broad range of calcula-

tions. In the chapters to follow, such constraints are applied across a structural landscape

such that (i) all designs are valid in the context of these characteristics and (ii) comparison

across the landscape can be based purely upon the objective function or parts of it – namely,

the sequence free energy or the mean field energy.

These constraints can be generalized:

Eq. 2-32 f(w, t) =
X

i

✏t ·wi

recalling that the index i is a contraction of (n, t, c). The coe�cients ✏t depend only upon
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the monomer/residue type.

Mean Net Charge

Obtaining a mean net charge across the ensemble of sequences requires establishing coe�-

cients qt that reflect the charge of each amino acid. These can be obtained by specifying

the value, or can leverage the partial charges inherent to atomistic force fields by simply

summing across all atoms in a given conformer. This constraint can be imposed to enforce

charge neutrality, or place bounds on the overall charge of the sequence.

Eq. 2-33 f(w)Net Charge =
X

i

qt ·wi = 0

Mean Molar Absorptivity

Similarly, the mean molar absorptivity across sequences can be constrained to guarantee

most probable sequences bear residues which can be tracked via spectroscopic methods.

The molar extinction coe�cient of a protein is estimated in an additive way.

Eq. 2-34 ✏Protein =
X

t

✏t ·Nt

where for a protein in water measured at 280 nm, the coe�cients (in M�1.cm�1) are

✏TRP=5500, ✏TYR=1490, ✏CYS=125, and ✏=0 for all other residues. We express the con-
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straint as an ensemble average

Eq. 2-35 f(w)Extinction = h✏Proteini =
X

i

✏Ext,t ·wi

Mean Helix Propensity

Such constraints can be formulated in a variety of ways. Linear functions based on the

residue type along can leverage estimations of the protein pI140, an aggregation scale141,

or secondary structure propensities142–145. For example, the incorporation of the O’Neil-

DeGrado helix propensity scale146,147 can be formulated as a mean over sequences in the

following way

Eq. 2-36

f(w)Helix Propensity =
X

i

�n · ✏hp,t ·wi where �n =

8
><

>:

1 if n is a helical position

0 otherwise

such that ✏hp,t is obtained from the O’Neil-DeGrado helix propensity scale for type t given

that site n is at a helical position as picked out by the delta function �n. The constraint can

be used to promote the formation of secondary structures given in the target fold (sca↵old).

Values can be estimated from databased derived averages over similar structures (helical

regions); as the function form suggests, the value should scale linearly with the number of

helical positions.
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2.3.3. Environmental Exposure⇤

Adapting solvation models, either as an explicit or implicit addition148–151 to the pair-

wise energy model employed in the probabilistic approach is di�cult. While such mod-

els are commonplace in molecular dynamics simulations152–155, we instead derive a linear

knowledge-based constraint based on the overall solvent exposure of each residue. Coined as

the “environmental energy” in previous work36, the constraint estimates a protein density

score, interpreted as a potential, based upon statistical sampling of amino acid propensities

in regions of various C� density. The simple potential leverages the rationale that in native

folds, certain amino acids are common to dense regions of the protein (hydrophobic residues

in the core), while others are preferential to sparser areas (hydrophilic residues at surface

exposed positions).

The formulation of the environmental energy is identical to the linear constraints detailed

above. It is the mean value of the one-body coe�cients ✏env associated with the potential.

Eq. 2-37 f(w, t⇤)Environmental = hEEnvironmentali =
X

i

✏Env(t, ⇢)wi

Values for ✏env(t, ⇢) are dependent only upon the residue type t and a local C� density ⇢

within the protein sca↵old (backbone). They are statistically derived from a training set

of 423 protein crystal structures (PDBs), consisting of hydrolases, transferases, isomerases,

ligases, lyases, and oxidoreductases. Each of the structures is a single chain at least 40

residues in length with resolution  2Å. The maximum sequence identity between any

sequences within the set is kept below 30 % to void sampling bias. These coe�cients are

⇤Construction of updated potential and corresponding chain length correlation plot provided courtesy of
Krishna Vijayendran.
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constructed by sampling across all residues within these sequences as defined by

Eq. 2-38 ✏env(t, ⇢) = � 1

�env
ln

p(t, ⇢)

p(t)p(⇢)

where p(t) is the probability of observing a given residue t in the structure set, p(⇢) is the

probability of observing a given local C� density ⇢ for side chain geometric center across

the structure set, p(t, ⇢) is the joint probability of observing a given residue type t with a

local C� density ⇢ across the structure set, and the inverse temperature is chosen as �env

= 0.5. The local C� density is estimated as density of C� atoms within the free volume of

a shell centered on a given rotamer’s side chain geometric center, given as

Eq. 2-39 ⇢(t) =
n(C�)

4
3⇡R

3
c � hVaccess(t)i

where n(C�) is the C� count within a the specified sphere of radius Rc = 8Å, and hVaccess(t)i

is the mean accessible side chain volume for residue type t across the structure set. Estimates

of ✏env(t, ⇢) were compiled into type dependent histograms, where density values accrued

in bins of 0.003475044 C�/Å3 size; this corresponded to four midpoint centered bins in

each histogram. Each histogram was fit to a fourth order polynomial to smooth estimates.

Calculation of coe�cients ✏env(t, ⇢) in Eq. 2-37 are then obtained from this polynomial for a

given local C� density. As with the previous parameterization, these values are in agreement

with other hydrophobicity scales36. As the environmental coe�cients are independent of

neighboring residue identities, this extrapolates to a simple linear model in the protein’s

total “environmental energy”. As before156, values for a total EEnvironmental were calculated

for each of the 423 structures in the training set to build a linear mapping to a protein’s

total length. This linear relationship is shown in Figure 2-1.
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Figure 2-1. Linear correlation between Environmental Potential and the chain length
of globular single-chain proteins. A linear fit (red line) to the data produces a model
corresponding to the equation EEnvironmental = �0.1207n � 2.514 where n is the protein
chain length.
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2.4. Computational Elements

2.4.1. Minimization Routine

The Vergil package solves the nonlinear programming problem in Eq. 2-14 through a

direct optimization of the e↵ective free energy function subject to the set of constraints. We

note that while the theory mimes a heterogeneous mean field theory, it is significantly easier

to find minimizers utilizing numerical optimization routines in lieu of the traditional self-

consistent approach. Furthermore, the theory allots for the addition of arbitrary constraints

on the set of probabilities which can be easily implemented when solving the nonlinear

programming problem.

To obtain a solution for the set of amino acid-conformation probabilities, we utilize the

method of Lagrange multipliers. Namely, this requires defining a Lagrangian for Eq. 2-14

Eq. 2-40 V (w) = U(w)� 1

�
· S
kb

(w)�
X

k

�k(fk(w)� fo
k )

and obtaining a stationary point, that is where the gradient of the Lagrangian is zero

Eq. 2-41 ~rV (w,~�) = 0

The current implementation relies upon the Interior Point OPTimizer (Ipopt) open-source

software package for solving Eq. 2-14. Ipopt is a robust optimization package used to ad-

dress general, large-scale nonlinear programming problems utilizing a primal-dual interior-

point algorithm with a filter line-search. The interior-point method (or barrier method)

introduces a logarithmic barrier term to the objective function to be minimized. For some
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minimization,

min
x

f(x)

s.t. c(x) = 0

x � 0

Eq. 2-42

the variable boundary constraints are reformulated into a term with some scalar µ.

min
x
'µ(x) = f(x)� µ

nX

i=1

ln(xi)

s.t. c(x) = 0

Eq. 2-43

For some positive non-zero value of µ, this form as the objective function goes to infinity at

the zero boundaries and guarantees than an optimal solution of Eq. 2-43 must be within

the bounds. Moreover, as µ is decreased to 0, an optimal solution of Eq. 2-43 converges to

the optimal solution of the original formulation Eq. 2-42. Thus the overall strategy of the

algorithm is to solve a series of barrier problems each by decreasing µ until the optimality

conditions are met.

The package has shown it is particularly suited for large problems (with up to millions of

variables and constraints) and is able to handle both convex and non-convex programming

problems. Both equality and inequality constraints are handled, where the package inter-

nally introduces necessary slack variables for inequality constraints. We emphasize that

such programming problems are NP-hard, and as such Ipopt is only able to guarantee a

local minimizer.

In practice, obtaining an optimal solution requires that a nonlinear programming problem
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satisfies the Karush-Kuhn-Tucker (KKT) conditions. When the mean field energy is lin-

ear (that is, only considers one body terms), the free energy function is convex; provided

that any additional inequality constraints are convex and equality constraints are a�ne,

this assures that any local minimizer is a global minimizer. However, the introduction of

two body terms into the mean field energy creates possible non-convexities in the energy

function. This means that while we are able to obtain local minimizers of the Lagrangian,

it is possible that other minima exist. Here, we utilize the theory to estimate probabil-

ity profiles that are energetically consistent with a particular target structure instead of

identifying the single-lowest energy sequence-structure. The degree to which solutions are

a↵ected by the mean field energy’s non-convexity are controlled by the relative strength of

the e↵ective temperature term, �; we take care further on to detail appropriate choices for

this parameter when identifying optimized probability profiles.

When multiple stationary points exist, it is important to recall that the success of the Ipopt

solver depends upon choices in a starting point for the probabilities, as well as choices in

the algorithm’s method and convergence criteria. Based on performance testing, we have

made the choice to use the monotone (Fiacco-McCormick) strategy to update the barrier

parameter, µ, instead of the adaptive update strategy. The relative convergence tolerance

was set to 10�5, which terminates the optimization if the Ipopt optimality error function is

smaller than this tolerance. All other algorithm settings, including the maximum number

of iterations, were held at the default values.

Finally, it is of note that the implemented interface for Ipopt is able to accomodate the

addition of any additional constraints, so long as they are twice di↵erentiable. All objective

function elements and constraint functions herein are implemented using analytic first and

second order mixed partial derivatives. All such currently implemented constraints are

linear and provide a sparse Jacobian matrix with respect to the optimization space which

maintains the overall e�ciency of the Ipopt solver.
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2.4.2. Target Structure

We represent the target structure as a fixed sca↵old upon which the sequence ensemble

is constructed. That is, for any design considered, we constrain the common coordinates

among monomer types located at a given site such that their molecular connectivity to

neighboring monomers is consistent throughout the ensemble. This allows the identification

of sequences that are consistent with the targeted folded structure.

In the case of protein design, this is a set of atomic coordinates that comprise the protein

backbone that dictates the secondary, tertiary, and even quaternary structure of the fold.

Despite limiting conformational readjustments that sequence mutations may impart upon

the backbone, the specification of a target structure greatly reduces the computational

dimensionality of the design problem. Furthermore, modeling an ensemble of sequences on

an existing structural motif from a natural protein allows for the ability to leverage known

structures to potentially achieve new functionalities. While these sca↵olds can be obtained

through de novo modeling, naturally occurring structures can be utilized, including those

determined from x-ray crystallography and NMR spectroscopy in the Protein Data Bank

(PDB) file format.

2.4.3. Sequence-Structure Degrees of Freedom

The dimensionality of the ensemble of sequences is explicitly the permissible degrees of free-

dom associated with each position in the target structure. In proteins, this constitutes the

amino acid identities allowed at each of the backbone positions, as well as their respective

side chain conformational states. These can include all type/conformation possibilities, a

narrowed range of types (e.g., hydrophobic patterning of a core), or only specified confor-

mations (a subset of the most probable states). Furthermore, the theory can incorporate

non-standard types including ligands and cofactors, non natural amino acids, or even struc-

turally well-defined water molecules such they they can be discretized to a site specific

location in the ensemble of states.
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For studies herein, we consider only the set of all 20 natural amino acids as possible monomer

types in design calculations. Bonding information is obtained from standard force field

topology information (Amber, Charmm, etc.) as to remain consistent with conventional

atomic naming schemes. However, instead of relying up the topological construction rou-

tines found in such files, each amino acid is modeled from a residue template. Template

structures were generated for each of the 20 natural amino acids by accruing mean values of

all inclusive bond length, bond angles, and dihedral angles across a set of structures. The

set was comprised of residues with full electron density and no partial occupancy from the

high resolution HiQ54+ dataset157.

The discretization of conformation states permits atomic resolution of a given monomer’s

variable structure to include the level of detail associated with directed function properties

(binding, catalysis, etc.) or atomic interactions which stabilize the targeted folded structure.

While it is possible to utilize any arbitrary set of discretized amino acid conformational

states, it is often more useful to choose a subset of more probable conformation space that

reduces the dimensionality of the design ensemble. For protein design calculations, this is

achieved two-fold: conformational states are reduced to rotameric states (only variance of

side chain dihedral angles) and selected from statistically significant values in representative

protein structures. Furthermore, by inferring side chain states from structural databases,

rotamer states are typically consistent with energy minima of molecular potential functions.

The libraries of states used in subsequent calculations were taken from amino acid backbone-

dependent rotamer libraries inferred from Dunbrack et. al.43,47 These libraries model the

smallest amino acids (glycine and alanine) with a single conformational state and most

variable amino acids (e.g. glutamine) with several dozens of rotamer states specific to local

backbone conformations.

In general, finer grain rotamer libraries and even full conformer libraries may be more able

to capture atomic placement, as is necessary with small molecules in enzymes or other

highly specific binding motifs. Likewise, when structure specific information is sparse (e.g.,
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limited x-ray structures) or unavailable (e.g., non natural monomers), rough discretization

may be necessary.

2.4.4. Energy Functions

The population of the coe�cients in Eq. 2-12 relies upon conformer specific energies.

These energies can be estimated in a variety of ways, from simplified, coarse-grain energy

functions158,159 to detailed, all-atom potentials55,56. For the general energy function applied

to the minimization in Eq. 2-14, an atomistic potential is more prone to capture sequence-

structure compatibility at sequence free energy minima. Atomistic potentials can identify

highly complementary noncovalent interactions that highlight energy stabilizing packing

associated with a particular structure.

Including such an explicit atomistic potential can be most easily achieved by harnessing

established classical molecular force fields as developed for molecular simulations. The form

of Eq. 2-12 dictates so called one-body (�i) and two-body (�ij) terms. For all calculations

performed, we consider atomistic one-body terms to include all interaction terms of the

potential for atoms contained within a particular conformer i; this is a means of assaying

the energetic stability of the isolated monomer unit in its present conformation. We consider

atomistic two-body terms to be the sum of all pairwise potential terms between conformer

i and j, including all nonbonding terms as well as bonding terms that may span the two

conformers, i.e. dihedral potential of neighboring residues on a protein chain. In many of

the classical molecular force fields, multi-residue dihedrals (�, ) depend upon the identity

of the residue on not simply the position of the backbone atoms. The two-body terms are

able to capture interactions with other conformations of side chains in the ensemble as well

as interactions with the fixed sca↵old and any other fixed moieties in the design.

Calculations performed herein utilized a modified version of the united-atom Amber force

field55. The standard Amber84 force field is stripped of all polar hydrogens, and partial

charges absorbed into the corresponding heavy atoms. Van der Waals radii for heavy polar

35



atoms are kept unchanged and united carbons use the smaller van der Waals radii specified

by Dunfield et al.160 (not the larger set as specified by the scaled Jorgensen et al.161 values).

To compensate for the removal of polar hydrogens, the energy function uses a simplified

version of the hydrogen bonding potential developed by Kono44 using parameters outlined

by Stickle162 with scaled minimum hydrogen bonding energy of -1 kcal/mol. Electrostatic

interactions utilize a distance dependent dielectric of 4r. All nonbonded interactions intro-

duce a hard cuto↵ at 8 Å.

While it is possible to utilize other standard molecular mechanics force fields (Charmm,

OPLS, etc.), we focus on the the described Amber-derived fully united atom force field to

remove the complexities of hydrogen placement while still being able to capture energetics

associated with hydrogen bonding. Future considerations include the usage of alternate

force fields, as well as alternate means of assaying potential hydrogen bonding.
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3 De Novo Design of a Uranyl Binding NanoBio

Matrix

Extraction of radioactive heavy-atom derivatives like the uranyl cation (UO2+
2 ) through a

highly selective ligand binding is of environmental relevance; immediate concerns include

using adsorbent materials for sequestration to serve in environmental cleanup163–165, as well

as extraction from sea water for sustaining the nuclear fuel cycle166. Well-known uranyl-

binding motifs o↵er distinctive handholds for rational design of proteins that selectively

bind uranyl167,168. Here we present a methodology for the de novo protein design of a

peptide sequence capable of forming a trimeric bundle with multiple uranyl binding sites

at it core. The sequence is tailored within the P6 space group to promote crystallization of

the protein-uranyl complexes, building on the recent success in designing a targeted protein

crystal90.

3.1. Introduction

Uranium and its derivatives are key components in the nuclear fuel cycle. Developing e�-

cient binding materials to harvest uranium is one way to address the necessary remediation

near rare earth processing sites. Rare earth metals are critical components to a number of

modern technologies, including wind turbines, hybrid electric vehicles, and defense applica-

tions. It is their unique chemical properties than make them prime for use in solid oxide fuel

cells, superconductors and laser technology169. However, rare earth extraction, separation,

and refining operations generate radioactive thorium and uranium bearing waste susceptible

to leaching, mobilization, and distribution into the environment in more water/air labile

states165. The increasing demand for heavy metals has led to radioactive waste concentra-

tions above natural levels, raising concerns about ecotoxicity around rare earth processing

operations164. As such, it is of environmental significance to identify means by which to

e�ciently capture and remediate uranium163.
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The uranyl cation is the most stable, common aerobic form of uranium for which there

are well known uranyl-binding motifs. A variety of approaches have targeted sequestering

the uranyl form in aqueous media, including functionalized polymers with amidoxime lig-

ands170,171, small-molecules172, sophisticated chelating ligands173,174, metal-organic frame-

works175, and proteins168,176,177. Proteins o↵er the distinct advantage of leveraging exam-

ples of e�ciently and selectively bound protein-metal assemblies from nature. Furthermore,

proteins can be incorporated into biological systems (e.g. bacteria, plants) capable of regen-

erating the protein at minimal cost. Zhou and coworkers recently reported the computa-

tional identification and rational development of a thermally stable uranyl-binding protein

which o↵ers a high Kd of 7.4 femtomolar (fM); the protein has a significant selectivity over

other metal ions, including those commonly found in seawater168.

Protein design has been utilized to engineer a wide range of unique metalloproteins with

novel functions13,178–184, including significant work regarding the incorporation of metals

and nonbiological cofactors30,31,65,88,89. We aim to couple these strategies to protein design

methods that select protein sequences which crystallize in a chosen lattice arrangement.

Lanci et. al. employed computational design to select a peptide sequence that crystallizes

in a predetermined three dimensional lattice90. A three helix coiled-coil was designed for

the polar, layered P6 space group, and was confirmed to agree with the model structure at

the subangstrom level (C↵ RMSD < 0.7 Å). The crystal design approach is able to capture

the commonly weak intermolecular forces that stabilize crystalline ordering, and is easily

extendable to the positioning of symmetric cofactors or guest molecules within a lattice

framework. By applying such a strategy to a uranyl binding peptide, we are able to target

(a) the design of a crystalline nano-bio matrix which is activated simply upon the addition

of uranyl, as well as (b) a means to assess our design capability at atomistic resolution via

x-ray structure determination.

This work employs probabilistic protein design to engineer an assembly for e�ciently bind-

ing the uranyl cation. The construction of such an assembly presents an opportunity to
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investigate uranyl binding, coordination, structure, and sequestration, potentially o↵ering

insight into improving the removal and cleanup of waste sites and harvesting for the nuclear

fuel cycle.

3.2. Overview of Design Strategy

Here we seek to build upon the protein crystal design work of Lanci et. al.90 to design

peptide trimer assemblies able to bind multiple uranyl cations throughout the trimer core.

Computational methods identify amino acid positions that can accommodate binding uranyl

within a coil-coil structure, and the subsequent designed sequences target a specific crys-

talline lattice. Designed sequences are currently being evaluated experimentally.

The overall design procedure employed herein is as follows: From (1) a uranyl-glutamate

super-rotamer modeled after a uranyl-acetate crystal structure, (2) identify peptide trimer

structures which accommodate a uranyl-glutamate binding site to be replicated at multiple

core locations in the bundle core. From trimer candidates with suitable binding geometries,

(3) identify low energy structures with hydrophobic residues comprising the remainder of

the core. (4) Upon placing the lowest energy trimer structure in the P6 space group, perform

full sequence design on the remaining exterior positions. If necessary, (5) introduce sequence

constraints to address biological rationales and experimental concerns. A visualization of

these steps can be found in Figure 3-1.

The author thanks and acknowledges the significant contribution made by Christopher M.

MacDermaid to this particular project. He devised much of the design strategy described

hereafter, provided a first generation of sequences submitted for experimental verification,

and much guidance in redesigning this system185.

3.3. Uranyl Binding Geometry and Parameterization

The uranyl cation is known to accommodate up to six equatorial ligands in a overall hexago-

nal bipyramidal geometry; this can easily be obtained with binding to either three aspartate
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Figure 3-1. Overview of the design for a uranyl binding protein crystal. Each step is fully
elaborated in subsequent sections, which identify: (1) a model uranyl binding motif, (2) a
peptide coiled-coil trimer accommodating multiple interior binding sites, (3) an optimized
trimer core, and (4) a full sequence in the context of a predetermined space group.

or glutamate amino acids in a 3-fold planar arrangement. Given glutamate has two tor-

sional degrees of freedom, which should provide a larger subset of potential symmetric

binding motifs inside a coiled-coil structure than accessible with aspartate, a GLU-uranyl

super-rotamer was created. This was accomplished by overlaying the glutamate carboxylate

plane onto acetate in the crystal structure obtained for uranyl acetate. The UO2(Ac)3 struc-

ture was obtained from the Cambridge Crystallographic Database186. Distances between

the uranium and glutamate carboxylate oxygens were set to 2.49 Å, and the carboxylate

plane was enforced to be perpendicular to the linear uranyl (Figure 3-2).

Non-bonding parameters for the uranyl were obtained from Lins et al.187 and converted

to units used by the AMBER force field, as listed in Table 3-1. Topologies and parameter

for the GLU were taken from the AMBER84 force field, as modified by Kono et al. to

exclude all explicit hydrogen atoms36. These were then combined into a single residue

with a topology specifying the coordination between the glutamate carboxylate oxygens

and uranium as bonds (Figure 3-2).
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Figure 3-2. Glutamate-Uranyl super rotamer rendering, as attached to an alpha helix. The
coordination between the glutamate carboxylate oxygen and the uranium atom considered
a bond by the force field (green lines). Additionally, the plane spanned by the uranium
atom and glutamate carboxylate oxygens is strictly perpendicular to the vector spanned by
the uranyl molecule.

Atom qi (e) ✏i (kcal/mol) Rmin/2 (Å)
U 2.50 0.131902 1.768

OU1 �0.25 0.151898 2.06
OU2 �0.25 0.151898 2.06

Table 3-1. Uranyl parameters as used by the AMBER force field. Listed are the partial
charge on the atom (qi), the depth of the van der Waals potential well (epsiloni), and
half the radius of van der Waals potential depth (Rmin/2). These parameters have been
converted from the values reported in Lins et al.187
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Figure 3-3. Diagram of varied trimer parameters. (Left) The superhelical radius, r,
defined as the distance from the coiled-coil axis to the alpha-helical axis. (Right) The
minor helical rotation, ✓, defined as the rotation of the first alpha carbon about the alpha
helical axis. For this definition, ✓ = 0 � corresponds to the first alpha carbon on the alpha
helix directed at the coiled-coil axis.

3.4. Modeling Uranyl Binding at the Core of a Coiled-Coil

3.4.1. Generating Coiled-Coil Sca↵olds

The design method targets placement of multiple potential binding sites for the uranyl on

the interior of a trimeric coiled-coil structure – each binding site should comprise three

symmetric GLU at interior positions for the uranyl to satisfy an analogous complex to

the uranyl acetate structure. The previous success in designing a trimeric coiled-coil crystal

structure90 was used a starting point for specifying criteria for coiled-coil sca↵old geometries.

Each alpha helix in the P6 coiled-coil protein crystal structure was comprised of 26 residues

(positions 2-27) with an acetyl N-terminal group (positions 1) and an amidated C-terminal

capping group (positions 28). If uranyl coordinating motifs are positioned every seven

residues, such a helical bundle structure should then a↵ord 4 potential binding locations

(more than 3 heptads). The identification of potential sca↵olds (backbone coordinates) was

achieved de novo, and structures were generated using the well know Crick parameterization

of coiled-coil structures188. Fitting the previous designed crystal structure trimer unit (PDB

Code: 4DAC)90 to a parallel coiled-coil provided a Crick parameterization with a rise per

residue of 1.518 Å and superhelical pitch of 128.0 Å.189.

Each trimeric coiled-coil was generated with a computational builder. The builder places
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alpha carbons along the alpha helical pathway as described by the Crick parameterization,

and then adds the remaining protein backbone heavy atoms for poly-L-glycine. For a

specific superhelical radius (r) and helical rotation (✓), the rise per residue and superhelical

pitch (Po) were fixed to values of the aforementioned crystal structure fit, and the minor

alpha helical radius was fixed to 2.26 Å(i.e. a standard coiled-coil). The Fraser MacRae

constraint190 was imposed upon the residues per turn (Eq. 4-1), ⇢, (based on the current

superhelical radius, superhelical pitch, and rise per residue) to ensure an exact heptad repeat

throughout the trimeric coiled-coil. No axial o↵set (�Z) was applied. All helices were varied

symmetrically, such that all minor helices positioned symmetrically related starting heptad

positions with respect to the coiled-coil axis. For a full description of coiled-coil generation,

please see Section 4.3.1.

3.4.2. Glutamate Rotameric States That Satisfy Trimeric Uranyl Binding Sym-

metry

The GLU-uranyl super rotamer was placed at the third residue position (counting the acetyl

group as the first position) and all other amino acid positions were fixed as glycine. Addi-

tionally, all minor helical rotations were adjusted so that the third alpha carbon position

was rotated to the equivalent rotation of the first alpha carbon position (Figure 3-3). With

the heptad repeat is enforced, this is accomplished by an additional rotation of ✓ through

2 positions of a heptad (4⇡) of �2
7 · 2 · 360

�.

For each coiled-coil considered, acceptable binding geometries were obtained by altering the

three dihedral angles associated with the glutamate [�1,�2,�3] in the super rotamer (Figure

3-4). Acceptable symmetric binding orientations of the super rotamer consist of structures

where the uranyl cation lies on the axis of the coiled-coil (here, the z-axis). By applying the

C3 symmetry to a generated alpha helix in the coiled-coil context, three glutamates can be

placed to fully satisfy the six equatorial ligation points on the uranyl molecule. The uranyl

maintains a locked orientation with respect to the glutamate, and as such, the simplest way

to achieve such orientations of the glutamate is to systematically vary the dihedrals until
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Figure 3-4. Atomic diagram of the GLU-uranyl super rotamer with vectors utilized in
solving for �3. The atoms in the GLU-uranyl super rotamer are labeled according to the
AMBER molecular topology, along with the uranyl naming. Each of the dihedral angles
of the glutamate are illustrated, (�1,�2,�3). For a particular set of dihedral values for
(�1,�2), Eq. 3-1 is used to solve for the value of �3 that most aligns with the z axis.

the uranyl molecule aligns to the z-axis.

For each state of �1 and �2, there exist exactly two (symmetric) values of �3 that maximize

the orientational alignment of uranyl with the z-axis. By solving for this optimal value

of �3, the complexity of the GLU rotamer search is reduced from N3 rotamer states to

N2 rotamer states where N is the number of allowed values for each dihedral angle. The

solution to �3 is obtained by simply enforcing that for a positioning of C� (i.e. for some

�1,�2), the dihedral between the uranyl (~b1 vector between OU1 and OU2) and the z-axis

is minimized. As detailed in Figure 3-4, the axis of rotation for the dihedral is simply the

bond between C� and C�. The value of rotation (�3) about the C�-C� bond is defined such
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that the uranyl vector, ~b1, is brought parallel to the z axis.

~b1 =
����������!
AOU1 �AOU2 = (

��������!
AC� �AO✏1 ⇥

��������!
AC� �AO✏2)

~b2 =
�������!
AC� �AC�

�3 = atan2(~b1 · (b̂2 ⇥ ẑ), (~b1 ⇥ b̂2) · (b̂2 ⇥ ẑ))

Eq. 3-1

where
�!
Ai corresponds to the 3-dimensional coordinates of the given atom, and �3 uses

the well known computational function for the dihedral value between three non-collinear

vectors. Note that ~b2 is normalized in Eq. 3-1, denoted as b̂2. Furthermore, the definition

of ~b1 explicitly acknowledges the planar orientation of the super rotamer, which equates the

uranyl molecular vector with the normal vector to the carboxylate plane.

For each coiled-coil structure, �1 and �2 were scanned over the full angular range [�180 �, 180 �]

with ��i = 1 �, solving for the optimal value of �3 using Eq. 3-1 (32,400 orientations of

GLU-uranyl per coiled-coil structure). The root-mean-squared deviation (RMSD) between

the uranyl and the z-axis was then evaluated with

Eq. 3-2 RMSD(ẑ) =

vuut 1

N

NX

i

(Ai · x̂)2 + (Ai · ŷ)2

where x̂ and ŷ are the x- and y-axes respectively, and for i 2 {U, OU1, OU2} with N = 3.

For an RMSD(ẑ) = 0.0, the uranyl sits exactly on the z-axis, providing perfect superposition

when the C3 symmetry is applied to the entire monomer unit. If the RMSD(ẑ)  0.1 Å, the

rotameric state [�1,�2,�3] was added to a particular coiled-coil’s ensemble of GLU-uranyl

rotameric states. If the current coiled-coil allowed a non-zero set of GLU-uranyl states,

then the remaining binding site residue positions of the alpha helix were typed with the

GLU-uranyl super rotamers (sites 3, 10, 17, 24). This ensemble was then subjected to
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Atom Scaled qi (e) Scaled ✏i (kcal/mol) Rmin/2 (Å)
U 0.83333 0.002931 1.768

OU1 �0.08333 0.016878 2.06
OU2 �0.08333 0.016878 2.06

Table 3-2. Scaled uranyl parameters as used by the AMBER force field, as to accomodate
overlapping uranyl molecules. Listed are the partial charge on the atom (qi), the depth of
the van der Waals potential well (epsiloni), and half the radius of van der Waals potential
depth (Rmin/2).

energetic calculations both for the single chain and the symmetric trimeric coiled-coil unit,

as described below.

3.4.3. Symmetric Energy Function Modifications

As each GLU-uranyl super rotamer was to be placed on a three-fold axis (the center of the

coiled-coil trimer), the non-bonding terms were overcompensated for by a factor of 3 given

three uranyl molecules are overlaid in the crystal structure. For partial charges, this simply

means dividing each partial charge by 3. For the van der Waals 12-6 potential, ✏i is divided

by 9 – this is due to the AMBER geometric combining rules for ✏ij =
p
✏UO2 ⇤ ✏j which we

want scaled by a third.

To prevent collision energies between symmetric GLU-uranyl super rotamers, which were

targeted to overlap in the final crystal structure, the symmetric self interaction for GLU-

uranyl was ignored in all calculations. As described by Eq. 2-29, we denote �0mii as the

interaction between conformer i in the asymmetric unit and that same conformer in mth

symmetric copy; this energy coe�cient was set to 0 if conformer i is a GLU-uranyl super

rotamer. Justification for the omission of this term arises from the distinction that we use a

known binding geometry for uranyl, viz. the uranyl acetate crystal structure. Additionally,

the initial domain trimming routine was modified in a similar way; for clashing pairs of

symmetric rotamers, we excluded the removal of GLU-uranyl super rotamer states to ensure

they were part of the calculation.
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3.4.4. Coiled-Coils Which Accommodate Uranyl Binding

The coiled-coil ensemble considered accesses a wide variety of beta carbon placements for

the glutamate interior positions by scanning through the superhelical radius, r, and the

minor (alpha) helical rotation, ✓. These parameters are defined in Figure 3-3. Values for the

superhelical radii were drawn from observed parallel trimeric radii for natural structures189,

6.5 Å  r  8.5 Å, incremented at �r = 0.02 Å. The minor helical rotation was scanned

from �90.0 �  ✓  +90.0 �, incremented at �✓ = 0.5 �, which roughly corresponds to

sweeping from the g to e helical wheel positions (Figure 3-5). That is, ✓ is varied from

�90.0 � near the ge’-interface at the outer-edge of the coiled-coil core, through the a and d

positions within the core, and finally out near the eg’-interface on the other outer edge at

�90.0 �.

For each identified coiled-coil that accommodated an acceptable binding position, an ensem-

ble energy average was calculated in the context of C3 symmetry by placing the monomer in

the P3 space group (a = b 6= c; ↵ = � = 90 �; � = 120 �). To ensure the elements in the unit

cell (a single trimer) had no interactions with neighboring cells, the unit cell dimensions

were dramatically enlarged (a = b = c = 100 Å). Values of the internal energy were obtained

by minimizing the sequence free energy at � = 0.5 (mol/kcal). Potential terms used in the

energetic calculation include the dihedral potential from the AMBER84 forcefield, van der

Waals (Lennard-Jones) and electrostatic potentials from a modified AMBER84 forcefield36

(absorption of polar hydrogens into associated heavy atoms), and a 12-10 hydrogen bonding

potential36.

Figure 3-6 details the full energetic landscape of the poly-L-glycine trimer with four glutamate-

uranyl binding sites. The landscape indicates the region of coiled-coil structures that permit

the uranyl binding site, which is symmetrically shaped and highly restrictive. Trimers with

larger bundle radii bear a GLU-uranyl orientation which points more directly at the core;

for structures with smaller radii, the GLU-uranyl instead adopts an o↵set position, where

the C↵-C� bond points tangential to the core allowing the GLU to twist back to the bind-
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Figure 3-5. (A) Coiled-coil representation of the parallel trimer, indicating the heptad
repeat. Each heptad position is denoted by the lower case letters abcdefg. The structural
variation of the trimer changes ✓, by rotating the helices about their individual axes ±90 �

with respect to zero position where the alpha carbon points at the coiled-coil center; this
e↵ectively allows potential positions for the GLU-uranyl super rotamer at the ge’, da’, ad’,
and eg’ interfaces. (B) Top-down and (C) side views of one such trimer that accommodates
the uranyl binding motif. Alpha carbons are rendered as spheres on the helical backbone
to show the glutamate placement is close to the a position.
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Figure 3-6. Mean Field Energy of the poly-L-glycine trimer with GLU-uranyl binding
sites, using the dihedral, van der Waals, hydrogen bonding and electrostatic potentials.
White space denotes coiled-coils that do not exhibit an orientation of the GLU-uranyl
super rotamer that satisfies a uranyl-z axis alignment RMSD(ẑ)  0.1Å. Gray tiles indicate
energies above -30.0 kcal/mol. The global minimum is at r = 6.72 Å and ✓ = 32.0 �.
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Figure 3-7. Entropy of the poly-L-glycine trimer with GLU-uranyl binding sites. White
space denotes coiled-coils that cannot find an orientation of the GLU-uranyl super rotamer
that satisfies a uranyl-z axis alignment RMSD(ẑ)  0.1Å.

ing site. The global energy minimum lies in the positive rotation region at r = 6.72 Å and

✓ = 32.0 �. The most probable GLU-uranyl super rotamer state in this coiled-coil consists

of dihedral values [�1 = �136.0 �;�2 = 66.0 �;�3 = �8.7�].

Figure 3-7 shows the entropy associated with each ensemble of satisfactory GLU-uranyl

super rotamer states. The landscape possesses expected characteristics; namely, the edges

of the landscape are low entropy regions (few super rotamer states in the ensemble) while the

the highest entropy region lies at large radii which permit the most states. The coiled-coil

structure at the energetic minimum (r = 6.72 Å, ✓ = 32.0 �) has an value of 4.73 cal/mol.K.
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Figure 3-8. (A) Total dihedral energy for each of the most probable GLU-uranyl for each
coiled-coil satisfying the positioning criteria. White space denotes coiled-coils that cannot
find an orientation of the GLU-uranyl super rotamer that satisfies a uranyl RMSD(ẑ) 
0.1Å. (B) Dihedral potential map across the first two dihedral states in glutamic acid. The
ensemble of rotational states found for the GLU-uranyl super rotamer in A are marked in
white. The 2002 Dunbrack rotamer library43 glutamic acid rotamers are marked in green.
The rotamer corresponding to the lowest energy in 3-6 is marked at [�136.0 �; 66.0 �]
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Characterization of the glutamate dihedral state underscores the global energetic minimum

choice at r = 6.72 Åand ✓ = 32.0 �. Figure 3-8A projects full dihedral potential of the most

probable GLU-uranyl super rotamer onto the surface of the coiled-coil parameters (r and ✓).

The upper ‘arm’ (positive rotations of ✓) collects the lowest energy conformations; the super

rotamer configuration at [�136.0 �; 66.0 �;�8.7�] has a dihedral energy of 3.4 kcal/mol. Fig-

ure 3-8B places all accepted super rotamer states collected in the coiled-coil search on the

potential surface associated with the two primary dihedrals of the glutamate (white). As a

means of reference, the dihedral states found in the Dunbrack 2002 rotamer library43 are

highlighted in green – it is clear that the low z-axis RMSD configurations identified do not

overlap with these states. The GLU-uranyl configuration at [�136.0 �; 66.0 �] sits near the

saddle point between the [�180.0 �; 60.0 �] and [�60.0 �; 60.0 �] wells in the potential surface.

As an additional measure, performing a Rotamer Analysis on this structure with MolPro-

bity191 did not flag the glutamate rotamer state as unacceptable [�136.0 �; 66.0 �;�8.7�],

despite assigning a low rotamer percentile score of 1.0%.

It is worth noting that energetic landscapes for subcomponents of the total internal energy

highlight other potential coiled-coil parameter candidates. Figure 3-9A depicts the sym-

metric mean field energy landscape in the absence of electrostatic interactions. The global

energetic minimum corresponds to the coiled-coil at r = 6.82 Åand ✓ = �59.5 �, placing

the GLU-uranyl in the negative rotation region at the g helical position. While this struc-

ture minimizes the van der Waals contact and provides the appropriate binding motif for

the uranyl, the dihedral potential of the glutamate rotamer is less favorable than the full

potential global minimum. At r = 6.82 Å and ✓ = �59.5 �, the most probable GLU-uranyl

super rotamer state is [�172.0 �;�112.0 �;�130.1�]. This both exists in the higher energy

region of the dihedral potential (Figure 3-8A) and is flagged by MolProbity during the Ro-

tamer Analysis with a rotameric percentile score of less than 0.1%. Investigation of other

rotameric states nearby have similar near-zero MolProbity rotamer percentile scores, sug-

gesting the ensemble of glutamate binding rotamers at the g position take on non-natural

configurations. Conversely, the complete energetic landscape for only the asymmetric unit
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Figure 3-9. Alternate energetic landscapes. (A) Mean Field Energy of the poly-L-glycine
trimer with GLU-uranyl binding sites, using only the dihedral, van der Waals, and hydro-
gen bonding potentials (omission of electrostatics). Gray tiles indicate energies above 0.0
kcal/mol. The global minimum is at r = 6.82 Åand ✓ = �59.5 �. (B) Mean Field Energy of
the poly-L-glycine monomer with GLU-uranyl binding sites, using dihedral, van der Waals,
electrostatic, and hydrogen bonding potentials. Gray tiles indicate energies above -30.0
kcal/mol. The global minimum is at r = 7.8 Åand ✓ = 12.5 �. For (A) and (B), white space
denotes coiled-coils that cannot find an orientation of the GLU-uranyl super rotamer that
satisfies a uranyl RMSD(ẑ)  0.1Å.
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(a single monomer) is presented in Figure 3-9B. While this landscape is able to recover

the well near r = 6.72 Å and ✓ = 32.0 �, it highlights a global minimum at r = 7.8 Åand

✓ = 12.5 �. This is obviously an incomplete picture of the system to be designed (omitting

interhelix energetics in the desired trimer), but does provide an interesting minimum that

corresponds to the lowest dihedral states in Figure 3-8A. The most probable GLU-uranyl

state is [�166.0 �, 92.0 �,�21.2�], which passes the MolProbity Rotamer Analysis with a

percentile score of 4.2%. It is worth noting this larger radius exists at an extreme of ob-

served trimer radii189. In all, these additional landscapes provide a more detailed picture

of what interactions and orientations (atomic overlaps, high torsional potentials, favorable

symmetric electrostatics) bias energetic minima of the more complete energetic landscapes.

3.4.5. Patterned Design of Hydrophobic Core

While the candidate at r = 6.72 Åand ✓ = 32.0 � could simply have been chosen as the

coiled-coil structure used for full sequence calculations, we instead revisit the structural

landscape in the context of a hydrophobic core. We make the assumption that optimization

of an interior sequence will be independent of choice of the remainder of the sequence

(exterior positions interacting with copies in the crystal). Again, to achieve the symmetry,

the monomer unit was placed in the P3 space group such that the coiled-coil axis coincided

with the axis of three-fold symmetry, while making the unit cell dimensions large enough

that no other unit cells were within interaction range of the trimer unit (a = b = c = 100

Å). The interior residues were allowed to be a subset of hydrophobic amino acids (A, V, L,

I, F) while keeping the four GLU-uranyl binding sites and the remainder of the sequence as

glycine. By targeting the ’upper arm’ region (positive ✓) of the coiled-coil structures that

allow uranyl binding, namely to avoid ill-favored glutamate rotamer states, the position of

the GLU-uranyl lay at the a position rotation (✓ = 25.7 �±25.7 �). This in turn identified the

remaining interior positions as the d repeat; where the GLU-uranyl was placed at residues

3, 10, 17, and 24, the hydrophobic ensemble was placed 4 positions away at residues 6, 13,

and 20. Residue position 27 was omitted and reserved for subsequent calculations of the
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Figure 3-10. Design landscape incorporating hydrophobics at the d position. (A) Mean
Field Energy of the poly-L-glycine coiled-coil trimer with GLU-uranyl binding sites and
hydrophobic interior at �=0.5. White space denotes coiled-coils that cannot find an ori-
entation of the GLU-uranyl super rotamer that satisfies a uranyl RMSD(ẑ)  0.1Å. Gray
tiles indicate energies above -40.0 kcal/mol. The global minimum is at r = 6.66 Åand
✓ = 32.0 �. (B) Rendering of the most probable sequence for the global minimum, depicting
the interstitially placed coiled phenylalanine (white) motif.

inter-trimer interface. As before, reside position 1 was typed with an acetyl N-terminal

capping group and position 28 with an amidated C-terminal capping group. An energetic

landscape was generated as before with the probabilistic design methodology by minimizing

the sequence free energy at � = 0.5 mol/kcal. No additional constraints were used, and

the Dunbrack 2010 rotamer library47 (all potential rotamers) were used for the hydrophobic

amino acid rotamer ensemble. An unfolded reference was applied to the sequence free energy,

wherein amino acid specific unfolded reference energies were estimated for an ensemble of

dipeptide states at room temperature � = 1.69 mol/kcal.

The corresponding energetic landscape for positive ✓ is depicted Figure 3-10A. The global

minimum lies at r = 6.66 Åand ✓ = 32.0 �, quite close to the previously identified poly-

glycine parameters. Furthermore, the GLU-uranyl super rotamer state is almost identical,
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making a slight adjustment to the last dihedral at the smaller radius: [�136.0 �; 66.0 �;�8.76�].

The most probable amino acids at the interior positions were identified as predominantly

phenylalanine, with an equal probabilities distributed among its three most probable ro-

tamers at [�73.3 �;�17.30 �], [�73.3 �; 132.60 �], and [�73.3 �; 11.90 �]. Each of these states

places the phenylalanine in position where the C�-C� bond is perpendicular to the bun-

dle axis, allowing a coiled F motif at the core. A rendering of the [�73.3 �; 132.60 �] state

creating a hydrophobic core around the GLU-uranyls is shown is Figure 3-10B.

A note regarding the interior probability profile: at �=0.5, this structure is predominantly F

(probability > 0.8) with small (but non-zero) probabilities for A, I, L and V. As the radius of

the structure increases, the probability distribution di↵uses across the other hydrophobics,

such that at the local minimum at r = 7.48 Åand ✓ = 20.5 �, L, I, and F are about equally

likely. Subsequent designs explicitly target the global minimum at r = 6.66 Åand ✓ = 32.0 �.

3.5. Sequence Design in the Context of a Targeted Space Group

As was done with previous designs targeting a controlled crystallization in a specific space

group90, full sequence design was performed in the context of a lattice though a systematic

grid search of unit cell parameters. Again, the P6 space group (a = b 6= c; ↵ = � = 90 �;

� = 120 �) was chosen as it possesses high symmetry, solvent channels spanning the lattice,

a parallel orientation of the proteins (polarity), and rarity (0.1%) among known protein

crystal structures.

In order to decouple the degrees of freedom associated with placement in the P6 unit cell,

a separate search was carried out over the crystalline “layer” separation, c (z-component of

the unit cell). This design step focuses on optimizing the z-component interface to create an

extended coiled-coil structure throughout the lattice; we focus on the interaction between a

pair of trimers across this layer interface. For simplicity, this was performed in the context

of the P3 space group since both c dimensions operate in the same way between the P3 and

P6 symmetry operations; that is, a c value chose in P3 will provide the same separation
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Figure 3-11. (A) Mean Field Lattice Energy (kcal/mol) in the context of infinitely large
P3 dimensions (a = b = 100 Å) as a function of the crystal layer separation dimension (c).
(B) Rendering of the energy minimum at c = 40.28 Å. Hydrogen bonding between helices
is highlight with dashed lines. Phenylalanines (at the d position) are omitted for clarity.

in P6. The remaining unit cell dimensions were kept large to avoid trimer interactions in

the x-y directions of the unit cell (a = b = 100 Å). The GLU-uranyl states were kept at

the a’ positions in the monomer, only phenylalanine allowed at the d positions, and glycine

at all remaining positions. The search over c (38 Å c  42 Å, incremented at �c = 0.01

Å), is shown in Figure 3-11A. The lowest energy separation lies at 40.28 Å and possess the

characteristic interhelical backbone hydrogen bonding for alpha helices which creates an

extendable coiled coil structure in this dimension of the unit cell (Figure 3-11B).

Subsequent calculations placed the monomer unit in the P6 space group by translocating

each trimer’s C3 axis to a P6 C3 axis. This is achieved by translating the single alpha helix
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Figure 3-12. Illustration of translocation of trimer axis from P6 6-fold axis to a 3-fold
axis, given as ro↵set. The unit cell length, a, is highlighted as the distance between 6-fold
axes. The angle � denotes the rotation applied to the asymmetric unit about the 6-fold
axis prior to translation along ro↵set.

(which originally places the coiled-coil axis at the origin) by ro↵set, given as

Eq. 3-3 ro↵set =
ap
3

Given the chosen coiled-coil parameters (radius, rotation) that satisfy the designed binding

sites and the crystal layer dimension, the remaining degrees of freedom associated with

placement in the P6 space group are the planar unit cell dimension, a = b, and the rotation

of the entire trimer unit about its axis, '. To satisfy these parameters, the initial placement

of the monomer unit requires a rotation about the z-axis (coiled-coil axis) by ', a translation

in the a direction by ro↵set, and then finally a rotation by 30 � about the z-axis. This is

detailed in Figure 3-12, demonstrating the two free lattice parameters.

The replicated monomer unit remains as the single alpha helix with initial placement as

specified by the designed coiled-coil parameters (r = 6.66 Å, ✓ = 32.0 �). Generation
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of the P6 lattice employs the appropriate space group symmetry operations to create each

symmetric copy within the unit cell. Creation of the full lattice of symmetric copies requires

specification of the number of unit cells to generate in each dimension. Unit cells were

generated with respect to the placement of the monomer unit in the positive a direction

of the unit cell origin, creating two cells in +a direction, one cell in both the +b and �b

directions, and one cell in both +c and �c directions. The lattice contained a total of 27

unit cells, each with 6 monomers, for a total of 162 monomer units; these copies were then

iterated through to discard any copies which did not interact with the asymmetric unit due

to cut-o↵s in the intermolecular potential energy function. This routine guarantees that for

any rotation of ', only units with the energetic interaction cuto↵ distance of the asymmetric

monomer unit were present to quicken the speed of the calculation. Furthermore, the

symmetric images exist temporarily in memory – only for the evaluation of lattice energetic

coe�cients as detailed by Eq. 2-29.

3.5.1. Identification of Low Energy Sequences

An initial search through the lattice parameters space was performed, where the monomer

alpha helix retains the GLU-uranyl binding site and phenylalanine interior with the re-

mainder of the sequence as a glycine. This initial scan serves as a means to highlight low

energy, closely-packed regions of the lattice landscape that accommodate glycine-glycine

contacts between neighbors in the crystal. That is, identification of sequences that possess

the GXXXG motif should leverage the success seen with the P6d sequence. The grid search

is computationally inexpensive, here scanning over a (31 Å a  38 Å, incremented at

�a = 0.1 Å) and ' (90 � Å '  210 � Å, incremented at �' = 1 � Å). Note that the

variation in ' sweeps the full 120 � associated with the three-fold axis, but is o↵set by 90 �.

This was done based on implementation details of the lattice generation, and ensures that

the monomer unit was kept within the interior of the P6 unit cell.

The mean field lattice energy for this glycine trimer exterior is shown in Figure 3-13, which

highlights the energetic minima associated with glycine contacts in the crystal. The surface
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Figure 3-13. Glycine crystal contact surface. Mean Field Lattice Energy of the poly-L-
glycine coiled-coil with GLU-uranyl binding sites and phenylalanine interior in the P6 space
group, at �=0.5. White space denotes crystal configurations with backbone overlap. Gray
tiles indicate energies above -100.0 kcal/mol.
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possess four main wells, each corresponding to di↵erent rotated contact surfaces where the

glycine trimer surfaces are within optimal contact. This surface was then used as a guide to

narrow the lattice search space for full designs, limiting the a parameter to the low energy

region of interest between 33 Åand 37 Å.

Identification of the remainder of the sequence was carried out through full designs covering

the aforementioned lattice sub-landscape. Designs were carried out utilizing the Dunbrack

2010 library47 with that library’s 10 most probable rotamers for each amino acid type. For

each design, the four GLU-uranyl binding sites and phenylalanine core were fixed as iden-

tified in previous sections. While the conformation of the GLU-uranyl rotamer remained

fixed, the phenylalanines are the core were allowed all conformations in the Dunbrack li-

brary. The remainder of the positions were typed with the remaining available 18 amino

acids (all except proline and cysteine). Site-specific type probabilities were determined com-

putationally, holding the e↵ective inverse temperature, �, at 0.5 mol/kcal. No additional

constraints were applied to the calculations. Lattice parameters were swept across a (33

Å a  37 Å, incremented at �a = 0.1 Å) and ' (90 � Å '  210 � Å, incremented at

�' = 1 � Å).

Energetic wells within the mean field energy landscape at � = 0.5 guided the selection

of sequences for expression. Previous design protocol identified a sequence by iteratively

calculating profiles at this inverse e↵ective temperature value, fixing some number of sites

to their most probable amino acid at each round. Here a di↵erent approach is taken;

instead, a final sequence is selected by repeating the calculation at a higher � (lower e↵ective

temperature) at room temperature (�=1.69, T=298.15 K). Where the lower � landscape

guides the identification of structural candidates, the higher � landscape yields less di↵use

site probability profiles by emphasizing crystalline contact interactions. In general this tends

to emphasize charged pair interactions, which provides low lattice energies. We note that

the repeated calculation at the higher � parameter generally preserves the highly resolved

type probabilities at the �=0.5 calculation, but does not guarantee such.
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Figure 3-14. Mean Field Lattice Energy landscape for the complete design of the peptide
in the P6 space group. Each sequence fixes all four GLU-uranyl binding sites and the
phenylalanine core, while allowing all other residues (save C and P) at all other positions.
Solutions are obtained at �=0.5. White space denotes crystal configurations with backbone
overlap. Gray tiles indicate lattice energies above �200.0 kcal/mol. Markers (white) are
placed to correspond to choices made for each of the sequences in (A), which include the
global minimum (4) among others.
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Figure 3-15. Circular Dichroism (CD) measurements for the UPx-1 (left) and UPx-2
(right) peptides. The apo peptide spectra (red) are characteristic of random-coil secondary
structure. The peptides in the presence of two equivalents of uranyl (peptide:uranyl ratio
of 3:8) have a spectra (green) consistent with a mixture of alpha-helical and random-coil
secondary structure. Measurements were performed in Starna 0.1 cm path length quartz
cuvettes using an AVIV Circular Dichroism Spectrometer Model 410. Isothermal wavelength
scans were collected at 20 �C. Bandwidth and wavelength step were both set to 1 nm.

Two candidates, UPx-1 and UPx-2, were chosen for synthesis and purified. Both peptides

were solubilized in a bu↵er (20mM MOPS 150mM NaCl pH7) and exhibited immediate

visible aggregation upon the addition of uranyl. When solubilized in a 20mM ammonium

acetate pH5.5 bu↵er, 60µM ( 0.2mg/mL) peptide with 2 equivalents of uranyl (160µM for a

peptide:uranyl ratio of 3:8), neither peptide showed visible aggregation. CD measurements

taken of these samples are shown in Figure 3-15. Both peptides, when in the presence of 2

equivalents of uranyl, possess a CD spectra consistent with a mixture of alpha-helical and

random-coil secondary structure. Additionally, CD of peptide concentrations up to 5mg/mL

in the presence of one equivalent of uranyl showed a significant random-coil population.

These samples were thus non-suitable for crystallization. As such, new peptide designs

were considered.

3.6. Constrained Redesign of Lattice Interactions

Redesigned sequences were identified to address the lack of alpha-helical character for the

UPx-1 and UPx-2 sequences in the presence of multiple equivalents of uranyl. The sus-
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pected non-specific aggregation of those peptides was the main driver for redesign of the

system, which focuses on excluding potential binding sites for uranyl on the exterior of the

trimer, and strengthening the helical stability of the monomer peptide. Here we detail the

imposition of specific constraints on the sequence ensemble to target such features.

3.6.1. Constraint Choices

The previous unconstrained uranyl peptide designs, as well as the the P6d designs90, picked

out candidate sequences with desirable properties from a broad range of low energy struc-

tures. Instead, we take the approach of applying a variety of constraints that focus the

design and search for viable sequences as well as address biological concerns. The following

describes the number of ways in which we adjust the free energy optimization routines to

estimate sequence probabilities subject to constraints which are experimentally motivated.

Sequence Composition

The simplest constraint to impose is in limiting the amino acid ensemble at designable

sites. We exclude certain amino acids from the design so as to prevent any possible uranyl

binding sites from existing outside the folded core. Previous uranyl binding peptide designs

possessed multiple carboxylate bearing residues (ASP and GLU) at exterior positions. The

possibility of these residues acting as uranyl binding sites is corroborated by experimental

details, which suggest that the peptides with large numbers of GLU and ASP residues

are not folding in the presence of uranyl. Furthermore, these peptides exhibit nonspecific

aggregation. In an attempt to mitigate such concerns, we remove all GLU and ASP residues

from the design, save the GLU placed at the four core binding positions. Furthermore, GLY

was removed as an allowed amino acid from the designable sites in an e↵ort to foster helical

structure formation.
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Total Charge

By removing all ASP and GLU from the exterior positions, the only ionizable residues

that remain are positively charged at neutral pH, which raises concerns about the overall

charge of the protein. As we wish to design a sequence that is near neutral to promote

crystallization, the imposition of a net charge constraint is applied. The constraint is linear

in the conformer probabilities. For each conformer indexed i (that is, the abbreviated

indexing used in Chapter 2), its total charge qi is simply the sum of the force field partial

charges of atoms in that residue. The expression for the mean net charge constraint is given

as a sum over residue positions, types, and conformers

Eq. 3-4 hNet Chargei =
X

i

qi ·wi = 0

which is applied to each design optimization at the value 0 (to impose neutrality). It should

be noted that the sum of the partial charges on each GLU-uranyl super rotamer state is

�1
3 . The overall charge of each binding site consisting of 3 GLU (-3) and a uranyl (+2) is

-1. There are 4 binding sites across the trimer for a total charge of -4, a charge per helix of

�4
3 , and an overall charge per GLU bound to uranyl of �1

3 .

Extinction Coe�cient

To enforce a means of monitoring protein concentration throughout experimental trials,

we include the addition of a mean extinction coe�cient constraint. To estimate the molar

extinction coe�cient of a protein, we extend the following estimation over all amino acid
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types, t for the number of each type in the sequence, Nt

Eq. 3-5 ✏Protein =
X

t

✏t ·Nt

where for a protein in water measured at 280 nm, the coe�cients (in M�1.cm�1) are

✏TRP=5500, ✏TYR=1490, ✏CYS=125, and ✏=0 for all other residues. Taking the average

of the above equation over all states in the design ensemble provides the following mean

extinction coe�cient constraint

Eq. 3-6 h✏Proteini =
X

i

✏Ext,i ·wi � 5690.0 M�1cm�1

which is imposed to be greater than or equal to the molar extinction coe�cient of at least

one tryptophan. This guarantees that protein and peptide concentrations are able to be

monitored easily.

Helix Propensity

In order to further promote the helicity of the peptide sequences a helix propensity constraint

was applied. As per the design of the P6d peptide185, the constraint target was estimated

from 304 non-redundant, trimetric, parallel coiled-coil structures from the CC+ database192.

A linear regression from the calculated helix propensities of each coiled-coil region yielded

the equation Eh(n) = 0.317n+0.1407 (R2 = 0.81), and in turn the value Eh = -8.09 kcal/mol

for n=26. This was applied as an upper boundary for the constraint (more negative energies

infer more helicity). The equation for the mean helix propensity across the design ensemble
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takes a similar to the linear constraints above.

Eq. 3-7 hEHelix Propensityi =
X

i

✏h,iwi  -8.09 kcal/mol

Environmental Energy

Initial trials including only these three constraints in the uranyl-binding peptide system

tended to cluster TRP in the solvent channel due to the absence of a solvent component

in the force field. This can be circumvented by excluding hydrophobic residues from the

lattice calculation altogether with the rationalization of avoiding “sticky” patches on the

protein that may cause experimental di�culties. We attempt to harness the power of the

environmental energy to engineer a hydrophobic handle to engineer specific aggregation

points. This is achieved by modifying the local C� density calculation to include the C� of

lattice neighbors as well. The environmental energy, as described in Chapter 2 and utilizing

the updated parameterization, was applied as a constraint in the familiar linear form

Eq. 3-8 hEEnvironmentali =
X

i

✏Env,iwi  -3.0

The contraint is applied as an inequality against the boundary of -3.0. This value arises from

evaluating the upper boundary of the 95% confidence level for the linear fit for the proteins

utilized in parameterizing the environmental energy. We estimate the environmental energy

as one third of the upper boundary for a 78 residue protein (the number of residues in

the trimer structure) which is -3.0. Without the constraint, sequences had environmental

energies over +5.0 due to the placement of ionizable residues at the lattice interface.
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3.6.2. Constrained Designs

Alanine Exterior Landscape

The lattice parameters were scanned to identify key regions of the landscape. Again, glycine

was removed as an allowed amino acid in the calculation to foster helical structure formation.

As before, the monomer alpha helix retained the GLU-uranyl binding site and phenylala-

nine interior with the remainder of the sequence now alanine. Ideally, such a scan will

identify favorable AXXXA motifs (much like the GXXXG motif in the P6d design work).

Calculations were performed over the parameter space of a (31 Å a  38 Å, incremented

at �a = 0.1 Å) and ' (90 � Å '  210 � Å, incremented at �' = 1 � Å). Figure 3-16 high-

lights low energy regions of the lattice landscape as more restrictive than the poly-glycine

search, here between values of 34 Å and 37 Å for the a parameter.

Constrained Sequence Design Landscape

Full designs were then carried out over this subregion as per the constraints described

above. In summary, the lattice energy landscape was recalculated at �=0.5 under the

following conditions:

• Fixing the GLU-uranyl super rotamer at the ’a’ position binding sites

• Typing the remaining core position ’d’ to PHE

• Allowing the remaining sites to be all residues excluding PRO, CYS, GLU, ASP, and

GLY

• Constraining the mean net charge to 0

• Constraining the mean extinction coe�cient to be � 5690.0 M�1cm�1

• Constraining the mean helix propensity to be  -8.09 kcal/mol

• Constraining the mean environmental energy to be  -3.0 kcal/mol
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Figure 3-16. Alanine crystal contact surface. Mean Field Lattice Energy of the poly-L-
alanine coiled-coil with GLU-uranyl binding sites and phenylalanine interior in the P6 space
group, at �=0.5. White space denotes crystal configurations with backbone overlap. Gray
tiles indicate energies above -100.0 kcal/mol.
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Figure 3-17. The Mean Field Lattice Association Energy landscape for the constrained
re-design of the peptide in the P6 space group. Energies are expressed as the Mean Field
Lattice Energy with the Mean Field Energy of the monomer subtracted o↵. Each sequence
fixes all four GLU-uranyl binding sites and the phenylalanine core, while allowing only
(RHKSTNQAVILMFYW) at all other positions. Constraints are applied to helix propen-
sity, net charge, extinction coe�cient, and lattice environmental energy. Solutions are
obtains at �=0.5. Gray tiles indicate lattice energies above -30.0 kcal/mol; white tiles in-
dicate structures with atomic overlap between symmetric backbones. Markers (white) are
placed to correspond to choices made for each of the sequences, which comprise the three
main energy minima.
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The landscape rendered in Figure 3-17 is the resulting mean field lattice association energy

for these calculations. The lattice association energy is given as the di↵erence of the mean

field lattice energy and the monomer mean field energy at the solved probabilities:

Eq. 3-9 hEassoci⇤ = hElatticei⇤ � hEi⇤

where the probabilities are taken from the solution of minimizing the mean field lattice

energy, hElatticei. The quantity highlights the energetics of interactions both within the

trimer unit and the full P6 lattice. The surface possess four main regions, from which three

local energy minima are selected. UEx-1 is the both the lattice association energy and

lattice energy global minimum.

The three highlighted minima are rendered in Figure 3-18. Collectively, they show the

migration of a hydrophobic interface along the trimer surface; where UEx-1 has an ALA-

MET-MET contact towards one end, UEx-3 has a MET-ALA-TRP patch at the other,

and UEx-2 a large hydrophobic strip spanning the interface. Additional properties of these

sequences are given in Table 3-3.

3.6.3. Sequence Mutation Considerations

While a majority of the trimer exterior is hydrophilic, there is a clear hydrophobic MET

‘handle’ at the lattice interface providing an interlocking glove. This should provide an

energetically favorable contact for the entire structure to come together in the P6 space

group. The sequence/structure is rendered to highlight these features in Figures 3-19 and

3-20.

In addition to selecting UEx-1, we chose to synthesize two variants of this sequence. The

first, UEx-1-W09, is the final sequence obtained from running the same UEx-1 calculation at

�=1.69. The calculation estimates an identical sequence with the exception of an additional
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Figure 3-18. Renderings of the three sequences which correspond to the three energy
minima in Figure 3-17. The renderings highlight the translation of the hydrophobic lattice
contact along the trimer exterior for the three di↵erent lattice rotation values. Coloring
scheme indicates carbon atoms in positively charged residues (light blue), hydrophobic
residues (light purple), hydrophilic residues (light green), the specially placed glutamate
and cap residues (orange). Heavier atoms are colored as red (oxygen), blue (nitrogen),
purple (sulfur), and pink (uranium).

Sequence Property UEx-1 UEx-2 UEx-3

Number of Residues 28 28 28
Molecular Weight (Da) 4528.28 4517.32 4431.13
Percent Charged (%) 21.43 21.43 21.43
Percent Hydrophobic (%) 28.57 42.86 39.29
Net Charge +0.67 +0.67 +0.67
Ionizable Charge, pH=7.0 -2.0 -2.0 -2.0
Isoelectric Point, pI 4.1 4.1 4.1
Helix Propensity (kcal/mol) -8.80 -9.06 -8.20
Total Hydropathy Index -47.9 -27.9 -30.8
Average Hydropathy Index -1.711 -0.996 -1.100
Extinction Coe�cient (M�1.cm�1) 11380.0 11380.0 6970.0
Unit Cell Volume (Å3) 42245.32 42732.29 43467.98
Matthews coe�cient (Å3/Da) 1.55 1.58 1.63
Crystal Solvent Content (%) 20.89 21.98 24.77

Table 3-3. Summary of sequence properties for UEx-1, UEx-2, and UEx-3.
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Figure 3-19. Multiple renderings of UEx-1. (A) Stick and (B) sphere renderings of
the UEx-1 sequence which highlight both the composition of the core (A) and the trimer
exterior (B). Coloring scheme indicates carbon atoms in positively charged residues (light
blue), hydrophobic residues (light purple), hydrophilic residues (light green), the specially
placed glutamate and cap residues (orange). Heavier atoms are colored as red (oxygen), blue
(nitrogen), purple (sulfur), and pink (uranium). (C) Rendering of the lattice packing along
the c coordinate. Residues are colored as by di↵erent segments to highlight the interface,
separately from the GLU-uranyl (orange/red) and F (white) core.
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Figure 3-20. Rendering of UEx-1 (spheres) packed against lattice neighbors (surface) in
the P6 space group. Renderings are slightly rotated from each other to show both sides of
the contact surface, meant to highlight the two methionine residues on the exterior which
interlock with their symmetry mates. Coloring scheme indicates carbon atoms in positively
charged residues (light blue), hydrophobic residues (light purple), hydrophilic residues (light
green), the specially placed glutamate and cap residues (orange).
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Figure 3-21. Renderings of the three sequences selected for synthesis, which are UEx-
1 and two mutants. The renderings highlight the extension of the hydrophobic interface
(UEx-1-W09) and the disruption of the hydrophobic lattice contact (UEx-1-K18). Coloring
scheme indicates carbon atoms in positively charged residues (light blue), hydrophobic
residues (light purple), hydrophilic residues (light green), the specially placed glutamate
and cap residues (orange). Heavier atoms are colored as red (oxygen), blue (nitrogen),
purple (sulfur), and pink (uranium).

tryptophan placed at position 9. This in e↵ect extends the hydrophobic interface which is

supported by the lower energy of this higher � sequence. The second sequence, UEx-1-K18,

is intended to disrupt the clear hydrophobic contact at the interface to make the peptide

more soluble. Here, the MET at position 18 is substituted for a LYS by fixing the identified

UEx-1 sequence and allowing only ARG or LYS at position 18. It should be noted that

while the energy of this sequence/structure is higher than that of UEx-1, the most probable

LYS exhibits a conformation consistent with this lattice structure. Rendered interfaces are

shown in Figure 3-21.

The UEx-1 and UEx-1-K18 sequences were selected for synthesis and purified. For both

peptides solubilized in a non-uranyl-coordinating bu↵ers, aggregated material is visible im-

mediately upon addition of uranyl. This is depicted in Figure 3-23 for the UEx-1-K1
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Figure 3-22. Full rendering of the UEx-1 lattice. Coloring scheme indicates carbon atoms
in positively charged residues (light blue), hydrophobic residues (light purple), hydrophilic
residues (light green), the specially placed glutamate and cap residues (orange). Heavier
atoms are colored as red (oxygen), blue (nitrogen), purple (sulfur), and pink (uranium)
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Figure 3-23. Images of of 73µM (0.25mg/mL) UEx-1-K18 in a 20mM MOPS 150mM
NaCl pH7.5 bu↵er. (A) The apo peptide after 12 hours. (B) The peptide in the presence
of one equivalent of uranyl (peptide:uranyl ratio of 3:4) after 12 hours.

peptide. The apo peptide remained solubilized and free of aggregation after 12 hours (3-

23A), whereas aggregated material is visible in significant quantities for the peptide in the

presence of one equivalent of uranyl (a peptide:uranyl ratio of 3:4) after 12 hours (3-23B).

When solubilized, low concentrations of the peptides remained soluble in the presence of

one equivalent of uranyl. CD wavelength scans for a 10 µM sample of UEx1-K18 in 10

mM Glycine pH7 at varying levels of addition of uranyl are shown in Figure 3-24A. There

titration shows a dramatic transition from random-coil to alpha-helical secondary structure.

Figure 3-24B monitors the transition of the 222 nm CD data and suggests the system

saturates at approximately 1 equivalent of uranyl.

3.7. Conclusion

The approach outlines the de novo design of a peptide system which binds four uranyl

cations at a trimer core. The methods developed o↵er a means of aligning a known uranyl

binding geometry to an amino acid motif, and identifying coiled-coil structures capable of

accommodating the multiple binding sites. Having established a coiled-coil trimer structure

and interior sequence, the remainder of the peptide sequence was designed to be compatible

within the P6 space group; the method is an extension of the first computationally designed
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Figure 3-24. (A) Circular Dichroism (CD) measurements for UEx1-K18 peptide in the
presence of varying concentrations of uranyl. Up to 5 equivalents of uranyl were titrated
allowing 15 minutes equilibration time in-between each step. (B) The mean residue ellip-
ticity of the signals presented in (A) at 222nm as a function of uranyl equivalents. All
measurements were performed in Starna 0.1 cm path length quartz cuvettes using an AVIV
Circular Dichroism Spectrometer Model 410. Isothermal wavelength scans were collected
at 20 �C. Bandwidth and wavelength step were both set to 1 nm.

peptide crystal90. Sequences from both unconstrained calculations sampling from diverse

low energy structures, and constrained calculations targeting the global energetic minima

were identified. The latest sequence, UEx1-K18, readily aggregates upon the addition

of uranyl and shows a strong transition from random coil in the apo form to a helical

peptide in the presence of uranyl. CD measurements indicate minimal change in secondary

structure at peptide:uranyl ratios higher than the idealized 3:4 ratio. Further experimental

characterization is currently underway.
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4 Computational Design of a Protein Bundle That

Selectively Binds a Non-Biological Cofactor

Electron transfer reactions are pervasive in biochemical processes, crucial for respiration,

photosynthesis, and water oxidation193–195. Probing biologically relevant, photo-induced

charge separation reactions is challenging, requiring intricate knowledge of the surround-

ing protein structure and energetics. Computational protein design can a↵ord methods to

target the binding and orientation of specific nonbiological cofactors with interesting charge-

transport pathways. The work here leverages design strategies for identifying proteins which

bind such cofactors, and builds a complete de novo methodology for the encapsulation of

a donor-bridge-acceptor electron transfer chromophore. Utilizing the previously described

probabilistic technique, a single chain protein-cofactor construct was targeted with an em-

phasis on a crystalline assembly.

4.1. Introduction

Protein-cofactor assemblies are the building block of many critical biological functions.

Oxygen binding in respiration, transduction of light energy in photosynthesis, and en-

zymatic catalysis193–195 all arise from specific functions conferred to proteins by natural

cofactors. Yet the means by which nature has identified e�ciently bound and organized

protein-cofactor assemblies is still poorly understood. The use of synthetic proteins and

nonbiological cofactors o↵ers one such potential route to exploring the processes underlying

natural systems. Furthermore, designed proteins which incorporate nonbiological cofactors

can provide novel properties that are not a↵orded by natural systems. In turn, the ability

to mime biological design with precise bio-nano-structures would enable the realization of

novel materials.

For natural cofactors, ranging is size from single metal atoms to metalloporphyrins, non-
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convalent interactions predominantly govern positioning. De novo protein design seeks to

leverage these interactions to bind and manipulate the protein-cofactor assembly to modu-

late and tune desired cofactor properties. For proteins encapsulating cofactors, this control

comes from the specification of cofactor conformation and orientation, as well as solubility

and local dielectric environment. Moreover, composition and arrangement of the protein-

cofactor complex exterior dictates larger ordering and assembly required for placement at

interfaces or surfaces. Computational methods have been successful in engineering proteins

able to encapsulate synthetic nonbiological cofactors30,31,65,88,89, where several de novo pro-

teins have been designed to bind cofactors composed of extended ⇡-electron systems, either

of which exhibit specific nonlinear optical (NLO) responses or light induced electron transfer

(ET) over large distances6–13.

A subset of these cofactors includes covalently linked donor-acceptor (D-A) chromophores,

which undergo ultrafast, photo-induced charge separation and thermal charge recombination

ET reactions196–203. Such cofactors are of interest to organic photovoltaic (OPV) applica-

tions, where a high-density of 2-D vectorially oriented cofactors might act as a nanoscale

active layer in bilayer heterojunction devices204–209. The electron transfer process in such

D-A systems (Figure 4-1 A) can be described by (1) excitation by light to an excitonic

state (D*-A), after which some population relaxes via (2) charge separation to form a free

electron and hole charge (+D-A�). This is then followed by (3) charge recombination and

relaxation back to the ground state (D-A). In addition to the bulk organization required to

be useful in OPV applications, these chromophores present the challenge of stabilizing the

charge separated state. Drawing from natural systems, we seek to do so by housing such

cofactors in the low dielectric environment of a protein core.

This work considers the encapsulation of N-[5-(10,20-Diphenylporphinato)zinc(II)] N-(octyl)-

pyromellitic diimide (PZnPI), which features a D-A system as a (porphinato)zinc(II) chro-

mophore (PZn) covalently bound to a pyromellitimide (PI) acceptor202,203 (Figure 4-1B).

Previously, Koo et al. designed an amphiphilic peptide tetramer which was able to bind,
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Figure 4-1. (A) Light induced electron transfer diagram for a donor-acceptor (D-A)
system, indicating charge separation (⌧CS) and charge recombination (⌧CR) rates. (B)
Chemical structure of the PZnPI cofactor (N-[5-(10,20-Diphenylporphinato)zinc(II)] N-
(octyl)pyromellitic diimide). Overlay indicates the charge separation which occurs between
the porphyrin and diimide moieties.
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sequester, and orient the PZnPI cofactor at its core with high specificity12. The bundle

was designed coarsely by inspection, relying upon amino acid patterning along the well-

known heptad repeat to achieve hydrophilic and hydrophobic domains. Upon incorporation

into the peptide bundle, the PZnPI cofactor exhibited enhancement of charge separation

and charge recombination rates as compared to organic solvents. Specifically, time-resolved

transient absorption spectroscopic experiments indicated an accelerated charge separation

lifetime (⌧CS) from 1.2 ps to 0.3 ps, and a protracted charge recombination lifetime (⌧CR)

from 4.6 ps to 78 ps, between the interior of the four helix bundle and DMSO solvent12.

The results suggest a successful enabling of a hydrophobic sheath for the PZnPI cofactor,

and further postulate that one or more hydrogen-bonding interactions with the diimide

carbonyl oxygens are responsible for the promoted electron transfer dynamics202,203,210,211.

The exploration of tuning the D-A’s local environment poses the ability to gain control over

charge migration dynamics, and provide a detailed insight to protein ET processes.

To test the conjecture that specific hydrogen bonding interactions are able to alter the ET

dynamics of the PZnPI cofactor within a protein core, we utilize computational protein

design techniques with atomic precision to target single chain constructs both with and

without specified H-bonding interactions. In lieu of a simple peptide tetramer, we instead

opt to leverage Fry et al.’s success designing a single chain protein to form a four helix bundle

which binds the nonbiological chromophore in a 1:1 ratio13. The single chain construct

allows the construction of a single binding site for coordination of the porphyrin zinc while

sculpting a protein core specific to the shape and desired orientation of the cofactor. What

follows is a presentation of our design technique to identify protein sequences able to fold,

bind, and sequester the PZnPI cofactor. Throughout we maintain a focus on atomistic

precision of interactions within the cofactor bearing core. Identifying pairs of sequences

that di↵er by a single core position residue should test how a tailored hydrogen bonding

interaction a↵ects the ET dynamics of the encapsulated cofactor. Furthermore, given recent

success with computationally designing a protein crystal90, we apply similar constraints

to the exterior sequence of each design to promote crystallization. A protein crystal of
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the protein-cofactor assembly would o↵er resolution of the PZnPI microenvironment and

potentially confirm the ability of computational protein design to target residue placement

with atomistic control.

4.2. Overview of De Novo Design Strategy

The project aims to identify protein sequences compatible with a donor-acceptor chro-

mophore, providing a hydrophobic core o↵ering shape-complementarity. Moreover, the

design should incorporate a tailored hydrogen-bonding interaction within the core; the

placement of a proton donor within an appropriate configuration to the diimide’s carbonyl

oxygens should provide a hydrogen bond which will further stabilize an induced charge

separated state. We expect the local dielectric anisotropy about the cofactor to dictate

the nature of photoinduced charge transfer dynamics. As such, the simple mutation of the

tailored hydrogen-bonding residue to an analogue lacking a proton donor (e.g. serine to

alanine, tyrosine to phenylalanine, etc.) should support the conceit. The complete protein

sequence should be robust as a supermolecular assembly, as to a↵ord structural verification

and identify a sequence in a crystallographic context.

The overall design strategy employed herein builds through increasing complexity by grad-

ually adding variable degrees of freedom to the design target. Starting from (1) a set of

mathematically describable coiled-coil structures, identify (2) suitable binding geometries

and orientations which accommodate the PZnPI chromophore. This set of initial structures

seeds a Monte Carlo optimization to relax the coiled-coil around the cofactor, followed by

(3) additional Monte Carlo trajectories to identify structures that support both a comple-

mentary hydrophobic core and a specific hydrogen-bonding residue in ideal proximity to the

cofactor diimide (acceptor). From these structures, (4) a series of loops are generated by

satisfying loop closure to form a single chain, drawing upon natural backbone probabilities

of flexible poly-glycine segments. Finally, (5) a full sequence is identified as contextual-

ized in a well ordered lattice environment to promote potential crystallization trials. A

visualization of these steps can be found in Figure 4-2.
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Figure 4-2. Overview of the design for a single chain protein construct to bind, orient,
and order the PZnPI chromophore. Each step is fully elaborated in subsequent sections,
which identify: (1) a set of coiled-coil structures, (2) a suitable binding geometry to encase
the PZnPI cofactor, (3) an optimized hydrophobic core, (4) flexible loop segments, and (5)
a full sequence in the context of a predetermined space group.

4.3. Modeling of Bundles of Helices Encapsulating the PZnPI Cofactor

As with previous work13,65,88,89, the design targets the encapsulation of the PZnPI chro-

mophore within a coiled-coil protein bundle. Placement within the core provides a variety

of advantages including (1) a means to solubilize the cofactor, (2) a sheath to both inhibit

cofactor-cofactor aggregation and mitigate cofactor-cofactor interactions, (3) control over

the orientation of the cofactor within the assembly, and (4) the potential to leverage protein

interactions to immobilize the assembly on a surface. As such, we address these advantages

by tailoring a protein core which provides shape-complementarity to the cofactor.

4.3.1. The Coiled-Coil Sca↵old

The coiled-coil sca↵old is an excellent candidate for accommodating large guest molecules

into a protein structure. Many naturally occurring coiled-coil proteins leverage the tubular

structure to encapsulate hemes, anesthetics, and metal ions212,213. The coiled-coil motif is a

widely studied protein fold, contained in an estimated 5-10% of protein structures189,214,215.

Furthermore, the fold is well defined and predictable. Modeling and manipulating the coiled-

coil backbone can be easily achieved through Crick’s parameterization188, which has been

shown to closely capture most naturally occurring coiled-coils189.
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Figure 4-3. (A) Coiled-coil (helical wheel) representation of an antiparallel tetramer,
indicating the heptad repeat. Each heptad position is denoted by the lower case letters
abcdefg. The core is highlighted to indicated the interior a and d positions. (B) Top-down
and (C) side views of one such antiparallel tetramer (red) that accommodates the PZnPI
cofactor (cyan). Binding is achieved by placement of a single histidine residue (yellow) close
to the a position.

A four helix bundle was selected as the protein sca↵old. A helical wheel diagram is given

in Figure 4-3A, indicating positions that correspond to the core of a coiled-coil tetramer,

where Figures 4-3B and 4-3C o↵er renderings of a possible placement for the cofactor. The

bundle was modeled as an idealized coiled-coil from the well known Crick parameterization.

Helices were oriented in an antiparallel configuration to allow for a single chain construct

and target an aspect ratio between protein and cofactor of 1:1.

De novo template structures were generated utilizing a coiled-coil builder. The builder ma-

nipulates the coiled-coil structure via a set of mathematically describable parameters (many

derived from Crick188) by placing alpha carbons along the coiled-coil pathway and adding

the remain poly-L-glycine heavy atoms upon completion189. The five tunable parameters of

interest in this design are illustrated in Figure 4-4. Helices can be rotated about their (the

minor) helical axes, ✓, either individually or in concert (4-4A). For this work, we consider

the rotation of each alpha helix as a separate parameter, ✓i. The value of ✓ = 0 directs

the first alpha carbon at the coiled-coil axis. The superhelical pitch, P , alters the coiled

nature of the bundle (4-4B top), and is related to ⇢, the projected alpha helical residues per
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Figure 4-4. Structural parameters associated with variations in the coiled-coil structure.
(A) Rotation of individual helices about their alpha helical axis, i.e. the minor helical axis.
(B) Variation in the super helical pitch of the coiled-coil, as well as the projected residues
per turn of the alpha helix onto the superhelical axis. (C, top) Variation in the super
helical radius. (C, bottom) For anti-parallel helices, variation in inter-helical o↵set along
the bundle axis. (D) Variation in the inter-helix o↵set in the x-y plane, hereafter termed
’bundle squareness’.

turn onto the superhelical axis (4-4B bottom). Manipulation of the super helical radius,

r, allots for the expansion/contraction of space in the core (4-4C top). Antiparallel helices

are permitted to transverse the coiled-coil axis with respect to each other by some axial

o↵set, �Z (4-4C bottom). Lastly, variation in the inter-helical o↵set within the plane per-

pendicular to the coiled-coil axis results in modifying the “squareness”, ⇣sq of the bundle.

When ⇣sq = 0 �, the bundle is in an idealized square orientation; for values that approach

⇣sq < 90 �, the bundle becomes more and more rectangular (4-4D).
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For all coiled-coil structures, the rise per residue, d, is fixed to 1.495 and the minor helical

radius is fixed to 2.26 Å (i.e. a standard coiled-coil). While the superhelical pitch can be

manipulated directly, but we instead opt to alter ⇢, the projected residues per turn onto

the superhelical axis. This requires the use of the Fraser MacRae constraint190 to enforce

the presence of a heptad repeat through the structure. The constraint is given as

Eq. 4-1 P =

s
� d3.5⇢

3.5� ⇢

�2 � (2⇡r)2

The presence of 3.5 in Eq. 4-1 arises from guaranteeing the heptad repeat through a minor

helical angular frequency of 7
2 . This twist di↵erential thus bounds ⇢ by idealized straight

helices (no twist di↵erential) at ⇢ = 3.5. Values of ⇢ are enforced to create right-handed

coiled-coil structures, where pitch is expressed as a positive quantity.

4.3.2. Zinc Porphyrin Coordination Geometry

For the zinc porphyrin to be positioned on the interior of the bundle, a binding site was engi-

neered to satisfy a Zn(II) penta-coordination via the placement of a single histidine216. The

binding geometry was drawn from x-ray crystal coordinates of a horseheart cytochrome/Zn

porphyrin substituted cytochrome C peroxidase complex (PDB Code: 1U75)217. The crys-

tal structure features the desired histidine axial ligation of a zinc porphyrin. These coordi-

nates are used to model the coordination, and are defined by the bond length between the

histidine epsilon nitrogen and zinc, fixed to 1.95 Å, and the bonding angle fixed between

the zinc, histidine epsilon nitrogen, and histidine epsilon carbon, fixed to 131.5 � (Figure

4-5).

Force field parameters were adapted from previous modeling of synthetic cofactors13 as to

be consist with parameterization of the modified AMBER84 force field excluding all explicit

hydrogen atoms36. The porphyrin zinc atom nonbonding parameters were set to Rmin =

2.18 Å and ✏= 0.25 kcal/mol. The four carbonyl oxygens on the diimide were given hydrogen

bonding acceptor parameters of a 1.6 Å acceptor radius and an sp2 hybridization consistent
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Figure 4-5. Binding geometry defining the pentacoordinated zinc metal at the center of
the PZnPI porphyrin ring. The rendering highlights the positioning of a histidine residue
(cyan) to satisfy the coordination geometry obtained from a cytochrome/Zn porphyrin sub-
stituted cytochrome C peroxidase crystal structure (1U75). While the defined bond lengths
and angles are held fixed, the dihedral centered about the histidine-porphyrin ligation is
permitted to rotation freely during modeling.

with other carbonyl acceptors specified by Stickle et. al.162 A topology was created for

the entire histidine-PZnPI complex (HIS-PZnPI) consistent with the AMBER84 histidine

topology and the bonding structure of the PZnPI, such that the axial zinc coordination

was treated as a bond. The initial geometry of the remainder of the cofactor was taken

from a low energy structure obtained through a minimization, specifying the torsional angle

between porphyrin and diimide at 90 �, and the octyl tail and a full extended trans-trans

configuration.

4.4. Optimization of a Hydrophobic Binding Pocket

Placement of the PZnPI cofactor within the bundle requires balancing constraints on satis-

fying the axial histidine ligand, degrees of freedom associated with the cofactor’s structural

variability, and alteration of the coiled-coil parameters. Instead of independently varying

the cofactor’s placement and optimizing a histidine coordination for each candidate bundle,

we opt to treat the entire HIS-PZnPI complex as a super rotameric state of histidine. Where

HIS bears two degrees of freedom (side chain torsional angles �1 and �2), the HIS-PZnPI
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super rotamer can be permitted many more. Here, the original histidine side chain torsional

angles are kept variable, and three additional dihedrals are introduced into the super ro-

tamer. To allow variable rotation about the ligation bond, the torsional angle spanning the

histidine epsilon nitrogen - porphyrin zinc is allowed to rotate. Additionally, the torsional

angle spanning the bond between the porphyrin and PI diimide is allowed to rotate, as is

the torsional angle defining the position of the first aliphatic carbon in the octyl tail. All

five dihedrals are illustrated in Figure 4-6. In this way, each probabilistic design calculation

can accommodate multiple possible cofactor positionings/conformations, and in turn obtain

a probability distribution for these configurations within the context of the design sequence

ensemble – and in turn a high probability/optimal placement among that set. We detail at

each step what ensemble of HIS-PZnPI states are introduced into the sequence ensemble

calculations.

As indicated in Figure 4-4, the HIS-PZnPI super rotamer is placed at an interior helical

position: here the second a position on the first chain (chain A, resid 8). Because the design

exists in the context of a de novo structure, the position atA8 does not necessarily guarantee

appropriate placement of the cofactor in the bundle’s core. Choosing the histidine side chain

dihedrals alone will place the extremities of cofactor is wildly di↵erent orientations. Di↵erent

minor helical rotations will potentially sample both helical interior positions, a and d, as

well as the helical interface, g and e. In short, the choice of A8 does not specify anything

beyond a position about which the coiled-coil and super rotameric dihedral angles must be

optimized.

4.4.1. Initial Core-Positioned PZnPI Geometries

As the cofactor-protein assembly possesses a large number of degrees of freedom (up to

eight associated with the coiled-coil, and up to five for the HIS-PZnPI super rotamer),

a stochastic sampling of structures provides an e�cient means of identifying low energy

structures. Instead of sampling these structures from random initial conditions, we opt to

find a subset of reasonably positioned HIS-PZnPI conformations to act as structural seeds.
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Figure 4-6. Diagram of the HIS-PZnPI super rotamer state. Variable dihedrals include
the (i, ii) the side chain dihedral angles of the histidine residue, (iii) the rotation about the
ligation between the histidine N✏2 and the PZnPI zinc, (iv) the rotation about the bond
between the zinc porphyrin and the diimide, and (v) the rotation about the bond connecting
the octyl tail to the diimide.
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Initial configurations are taken from a grid search over only the coiled-coil radius and minor

helical rotation. To simplify the search space, all helices are rotated symmetrically and all

other bundle parameters held at fixed values. Additionally, the protein sequence is kept as

poly-alanine except the single HIS-PZnPI residue position. This is done to exclude glycine

from the helical segments of the protein and prevent spurious packing of the cofactor against

any interior glycine. Suitable configurations for the HIS-PZnPI cofactor are obtained from a

discretized ensemble of possible conformations, as given by the rotameric variability depicted

in Figure 4-6. For this round, the cofactor was modeled without the octyl tail and �4 held

at 90 �.

The most e�cient means of obtaining HIS-PZnPI configurations is to leverage an alignment

methodology developed elsewhere (see Chapter 3). Given the goal of restricting the cofactor

orientation within the bundle’s core, this will provide a fast, accurate way of selecting super

rotamers which su�ciently align PZnPI to the coiled-coil core. From these structures,

the usual elimination based upon high energetic overlap with the backbone sca↵old should

provide conformations commensurate with the superhelical parameters of the bundle.

For the HIS �1, �2 pair, we are trying to obtain a rotation about the zinc ligation bond

which optimizes the cofactor’s alignment with the coiled-coil axis. This maps directly on

the previous alignment equations for specifying a super rotamer dihedral �3. Figure 4-7

maps these angles onto the HIS-PZnPI cofactor, specifying that the vector spanning the

porphyrin face vertically best aligns to the z-axis. This is given by the equation

~b1 =
�����������!
ACHD �ACHB

~b2 =
��������!
AZn �AN

✏2

�3 = atan2(~b1 · (b̂2 ⇥ ẑ), (~b1 ⇥ b̂2) · (b̂2 ⇥ ẑ))

Eq. 4-2

such that for any given �1, �2, there exist a value of �3 that maximizes the orientational

alignment to the coiled-coil axis. This solution both restricts the possible placement of the

PZnPI cofactor, while reducing the search space for super rotamer states (from N3 to N2
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Figure 4-7. Atomic diagram of the HIS-PZnPI super rotamer with vectors utilized in
solving for �3. The figure directly cites the formulation used to solve for �3 in the GLU-
uranyl (Figure 3-4). Atoms in the HIS-PZnPI super rotamer are labeled according to
the AMBER molecular topology, along with the designated atomic names for the PZnPI
cofactor (see Appendix). Each of the dihedral angles of the the histidine are illustrated,
(�1,�2,�3). For a particular set of dihedral values for (�1,�2), Eq. 4-2 is used to solve for
the value of �3 that most aligns the verticality of the cofactor with the z axis.

states where N is the total possible states for any of the dihedrals).
�!
Ai corresponds to

the 3-dimensional coordinate of the named atom, as defined in Figure 4-7. Note that ~b2 is

normalized in Eq. 4-2, denoted as b̂2. Furthermore, the definition of ~b1 explicitly assumes

a planar orientation of the porphyrin ring as approximated by the positioning of carbons

CHB and CHD.

For each coiled-coil structure, �1 and �2 are scanned over the full angular range [�180 �, 180 �]

with ��i = 1 �, solving for the optimal value of �3 using Eq. 4-2 (32,400 orientations of

HIS-PZnPI super rotamer per coiled-coil structure). These orientations are then pruned to

assure a desired PZnPI placement within the bundle.

(1) For each super rotamer structure, three evaluations determine retention in the super

rotamer ensemble. The first is a simple evaluation of nonbonding potential with the protein

sca↵old (here, a poly-alanine coiled-coil). If the total nonbonding energy between the super

rotamer and sca↵old exceeds 30 kcal/mol, the the state is removed.
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(2) The orientation of the porphyrin face is assessed to anticipate the reintroduction of the

octyl tail. If the angular alignment of the porphyrin spanning vector and the coiled-coiled

axis exceed some angular tolerance, �✓, then the super rotamer is removed. Here, we select

a strict tolerance of �✓ = 2 �. The vectors are defined between Figure 4-7 and Eq. 4-2, and

the tolerance test given as

Eq. 4-3 acos(b̂1 · ẑ)  �✓

(3) The positioning of the PZnPI within the tubular interior of the coiled-coil is evaluated.

This is done to avoid orientations that are not within the coiled-coil core but still energeti-

cally favorable, such as placement to one side of the bundle between only two alpha helices.

We remove any super rotamer whose zinc position is more than some distance in the plane

perpendicular to coiled-coil axis (here, x-y plane to z-axis), �xy. The modest choice of

�xy = 3Å a↵ords a wide range of PZnPI orientations while still retaining the cofactor in the

bundle core.

Eq. 4-4
q
Ax,Zn

2 +Ay,Zn
2 > �xy

where Ax,Zn and Ay,Zn are the Cartesian x- and y-coordinates of the zinc atom and the

z-axis is coincident with the superhelical axis of the bundle. The remaining subset of super

rotamer states comprise the ensemble of HIS-PZnPI states permissible in a given coiled-coil

structure. We note that in practice, these eliminations are performed in reverse order to

minimize computational cost; that is, the distance calculation is less expensive than the

arccos operation, which is less expensive than the energetic scoring.

A grid search is performed to obtain a rough estimate of initial bundle/cofactor configu-

rations. For this calculation only, each chain in the 4 helix bundle was extended to 28

residues in length, and the HIS-PZnPI (no octyl tail) was placed an additional heptad po-

sition down (chain A, resid 15). This is meant to model an extended bundle and remove
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Label Radius (r) Rotation (✓) Squareness (⇣sq) �1 �2 �3

CC1 8.06 Å 18.0 � +15 � -104 � -152 � -41.8 �

CC2 8.44 Å 4.0 � +15 � -132 � -108 � -77.4 �

CC3 9.20 Å 10.0 � -15 � -100 � +42 � 121.4 �

CC4 9.38 Å -11.5 � -15 � -166 � +18 � -165.0 �

CC5 8.78 Å -37.5 � -15 � +166 � +46 � -164.3 �

Table 4-1. Structural parameters for selected initial configurations in Figure 4-8. The
three � angles describe the first three dihedral angles of the HIS-PZnPI super rotamer.

any possible cofactor interactions with termini. All remaining residues were fixed as ala-

nine. The landscape spans variation in the bundle radius, r, and minor helical rotation, ✓

(where all helices are rotated by the same amount). The axial o↵set is fixed at 0 Å, and

the residues per turn fixed at 3.5 to model “straight” helices. The superhelical pitch was

obtained through the Fraser MacRae constraint to ensure the heptad repeat. To provide

space for the rectangularity of the cofactor without requiring extremely large bundle radii,

we generate two landscapes at nonzero values of the squareness parameter.

The generated landscapes are shown in Figure 4-8. In each, the bundle radius was varied

from 7.5 Å to 9.5 Å at increments of 0.02 Å. Minor helical rotation was varied from �60 � to

60 � at increments of 0.5 �. Drawing from squareness values in previous design work13, the

value was fixed at either +15 � or -15 �. Calculations determined super rotamer probabilities,

and in turn mean field energies, for each ensemble holding the e↵ective inverse temperature

� at a room-temperature value of ⇠1.69 mol/kcal.

From the two generated landscapes, five distinct initial constructs were chosen (Table 4-

1). Renderings of the variation in cofactor placement are shown in Figure 4-8B, orange

indicating selected bundles with positive squareness and green indicating those with neg-

ative squareness. An overlay of the histidines is shown in Figure 4-8C, highlighting the

dramatically di↵erent starting rotamer states. These five structures are then used as initial

configurations (seeds) for subsequent Monte Carlo sampling; the following description of

Monte Carlo search runs five calculations in parallel from these starting constructs.
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Figure 4-8. (A) Mean Field Energy of the poly-L-glycine antiparallel tetramer with a single
HIS-PZnPI binding site (chain A, residue position 15). Each point draws from configura-
tions specified by Eq. 4-2 and the series of described eliminations. The energy encompasses
the dihedral, van der Waals, hydrogen bonding and electrostatic potentials. White space
denotes coiled-coils that, after cofactor elimination, cannot accommodate the PZnPI co-
factor on the interior. Gray tiles indicate energies above 60 kcal/mol. Five minima are
drawn from the surfaces, two from bundles with a fixed squareness of +15 � (left), and
three from bundles with a fixed squareness of �15 � (right). (B) Alignment of the five
selected structural minima drawn from (A). Renderings in orange denote structures with
a fixed squareness of +15 �, renderings in green denote structures with a fixed squareness
of �15 �. (C) Alignment of histidine states in each of the five selected structural minima
drawn from (A). The overlay highlights the di↵erent starting configurations for valid PZnPI
encapsulation.
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4.4.2. Monte Carlo Sampling of Coiled-Coil Structures

As we wish to search over a large number of structural parameters associated with both the

coiled-coil and the super rotamer, exhaustive enumeration over the conformational search

space quickly becomes intractable. Instead, Monte Carlo (MC) sampling is employed to

stochastically sample the structural parameters and hasten the identification of low energy

structures. MC utilizes an e↵ective inverse temperature, �MC , which defines the likelihood

of sampling high energy regions of the search space. The structural searches targeted are

discrete and the ability to escape possible local minima makes MC advantageous. The

search is set up in the usual way: each step is a generated trial on a MC Markov chain with

an associated acceptance criterion according to the Metropolis acceptance probability218

for some scoring function f(w)

Eq. 4-5 a(w,w0) = min(1, exp(��MC(f(w
0)� f(w))))

A slow cooling of �MC , i.e. simulated annealing, provides a good means for estimating

minima. An initial temperature is set to a large value to improve sampling and lowered by

some cooling schedule. We choose an exponential decay schedule from an initial temperature

(T0,MC) to some temperature at MC step n (TMC(n))

Eq. 4-6 TMC(n) = T0,MC exp(�n/⌧c)

or expressed in terms of �MC ,

Eq. 4-7 �MC(n) =
�0,MC

exp(�n/⌧c)
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The decay constant ⌧c is chosen such that after some N MC steps, the acceptance is a

chosen final inverse temperature �MC,f .

Eq. 4-8 ⌧c =
N

ln(�f,MC/�0,MC)

At each MC step, the structural update occurs by selecting one of the conformational vari-

ables at random, and adjusting it by some bounded change based an an allowed maximum

change. Here, the conformational variables are defined as the set of eight coiled-coil param-

eters (bundle radius r, individual helical rotation of the four chains ✓i , superhelical residues

per turn ⇢, axial o↵set �Z, and bundle squareness ⇣sq) and four super rotamer dihedrals

(histidine side chain dihedrals �1, �2, PZn-PI dihedral �4, and PI-octyl main dihedral �5)

– twelve degrees of freedom in total. The super helical pitch is constrained by the Fraser

MacRae formula, the rise per residue set to 1.495 Å, and the HIS-PZn axial ligation dihe-

dral, �3, is assigned for a given (�1, �2) based on Eq. 4-2. At each step, a parameter is

randomly selected from this set and assigned a random update amount bounded by value

and some maximal change (�x). That is, for a random value p(i) from [�1, 1], an update

at i to structural parameter x is given as

Eq. 4-9 xi+1 =

8
>>>><

>>>>:

xmin : xi+1  xmin

xi + p(i) · �x : xmin < xi+1 < xmax

xmax : xi+1 � xmin

A summary of values is given in Table 4-2. Bundle radius is bounded to encompass the

natural range of antiparallel tetramers (6.3 Å to 7.8 Å)189, as well as a reasonable expansion

up to 9.5 Å should the cofactor require it. Helical rotations are bounded such that the

starting heptad a position only sweeps the e position, through the core, to the g interface

position. The bundle squareness is bounded by ±20 � to prevent interhelical contacts from
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Parameter xmin xmax �x
r 6.5 Å 9.5 Å 0.5 Å
✓A -60 � 60 � 10 �

✓B -60 � 60 � 10 �

✓C -60 � 60 � 10 �

✓D -60 � 60 � 10 �

⇢ 3.5 3.65 0.03
�Z -2.0 Å 2. Å 0.5 Å
⇣sq -20 � 20 � 5 �

�1 -180 � 180 � 10 �

�2 -180 � 180 � 10 �

�4 80 � 100 � 10 �

�5 -180 � 180 � 10 �

Table 4-2. Monte Carlo structural parameter update criteria, including value boundaries
and maximal change per MC step. The parameters listed are the bundle radius r, individual
helical rotation of the four chains ✓i, superhelical residues per turn ⇢, axial o↵set �Z,
bundle squareness ⇣sq, the histidine side chain dihedrals �1, �2, PZn-PI dihedral �4, and
PI-octyl main dihedral �5. Omitted structural parameters are either held at a fixed value,
or calculated based on the update as described in the text.

dominating calculation energetics. Lastly, the PZn-PI dihedral, �4, is bound as 90 � ± 10 �

to allow flexibility without severe twisting of the donor-acceptor bridge.

The first MC trajectory, starting from the structures identified in Table 4-1, identifies

low energy poly-alanine bundle/cofactor configurations in the context of all 12 structural

degrees of freedom. This trajectory was run for N = 1,000,000 steps, at a constant MC

temperature (�0,MC = �f,MC = 0.5). The four helix antiparallel bundle was shorted to 25

residues per helix. The cofactor’s octyl tail was reintroduced and rotated in each structure

to be positioned between the wider interhelix interface. The sequence was fixed with the

HIS-PZnPI rotamer at position A15 with ALA elsewhere – in e↵ect a fixed structure with

no sequence/conformational variability. As such, the choice for f(w) was the local energy of

the HIS-PZnPI super rotamer, ✏HIS�PZnPI . Lowest energy structures from each of the five

trajectories were taken as seeds for the subsequent round of MC sampling (Figure 4-9A).

A second round of MC sampling introduced hydrophobic residues to the bundle core. At

each MC step, the interior heptad positions a and d were dynamically identified based on
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Figure 4-9. Representative low energy structures/sequences from each round of Monte
Carlo sampling. (A) MC trajectory energy minimum for poly-alanine coiled-coil encap-
sulating the HIS-PZnPI super rotamer. (B) MC trajectory mean field energy minimum
for hydrophobic core packing around the HIS-PZnPI super rotamer. (C) MC trajectory
combinatorial energy minimum for hydrophobic core packing around the HIS-PZnPI super
rotamer with an optimized hydrogen bonding interaction (rendered: SER, green).

the current coiled-coil parameters. These positions were typed with a restricted set of hy-

drophobic residues (A,V,I,L,F) which excludes the larger W and M residues and encourages

a close packing core. This trajectory was run for N = 200,000 steps, at a constant MC

temperature (�0,MC = �f,MC = 0.5). In including the hydrophobic ensemble in the core,

f(w) is chosen as an ensemble average at the calculated probabilities, here the change in

mean field local energy, h✏HIS�PZnPIi. Again, lowest energy structures from each of the five

trajectories were taken as seeds for the subsequent round of MC sampling (Figure 4-9B).

For each of the five low energy structures identified in the previous MC trajectory, potential

cofactor hydrogen bonding residues were identified within the interior of the protein. Each

residue position in these five coiled-coil structures was evaluated for possible hydrogen

bonding interactions between the diimide carbonyl oxygen and any candidate. Candidate

residues were chosen such that they would lend to simple mutation – recall the motivation

to identify the role hydrogen bonding interactions play in charge transfer dynamics by

engineering a core with and without a hydrogen bonding interaction. As such, we consider
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Label Chain Position Residue
CC1 C 19 TYR
CC2 C 11 SER
CC3 B 19 SER
CC4 D 11 SER
CC5 B 11 SER

Table 4-3. Cofactor hydrogen bonding candidates for each of the five bundle structures,
listing position in the bundle and amino acid identity.

serine, threonine, and tyrosine with the intention of working with a second core where the

nonpolar residues alanine, valine, or phenylalanine, respectively, are placed in their stead

(S ! A; T ! V; Y ! F).

Iterating through each residue location, each of the three candidate residues (S T Y), and

respective Dunbrack rotamers47, a hydrogen bonding interaction36 is calculated between

the candidate and the HIS-PZnPI super rotamer. The lowest scoring candidates for each

structure are presented in Table 4-1. Moving forward, the positions identified in Table 4-3

were fixed to the candidate hydrogen bonding amino acid and corresponding conformation.

An illustration of the identified positioning for CC2 is presented in Figure 4-10.

These results were then incorporated into a final MC trajectory. As before, the interior

a and d positions were dynamically typed for each sampled structure, save the hydrogen

bonding candidate which was fixed in position and conformation. The 12 structural pa-

rameters were again allowed to vary, this time with an applied annealing schedule. The

trajectory was run for N = 30,000 steps, at the cooling decay constant specified by MC

and Eq. 4-8 temperatures �0,MC = 0.5 to �f,MC = 2.0. Where the previous trajectories

sampled according to f(w) as a simple energetic di↵erence, here we wish to track energetic

changes for both the entire bundle ensemble, as well as maintain optimality in the selected

hydrogen bonding residue. The requires f(w) be defined as a linear combination of the two
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Figure 4-10. Rendering of specified hydrogen bonding residue to the diimide carbonyl
oxygens of the PZnPI cofactor (yellow) for the CC2 structure. The bundle here specifies a
single histidine (blue) to axially ligate the porphyrin zinc (gray), and a serine (green) on
the opposing chain to hydrogen bond to the diimide.
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target energies.

Eq. 4-10 f(w) = hEi+ �HBond

�MC
· ✏HBond

where hEi is the mean field energy of the entire ensemble, ✏HBond is the hydrogen bonding

contribution to the interaction between the HIS-PZnPI super rotamer and the selected

hydrogen bonding candidate, and �HBond an associated acceptance temperature for the

hydrogen bonding contribution. The estimation of �HBond/�MC is derived from energetic

statistics for each of the energy terms across the previous MC trajectory (�MC = 0.5).

Across those 200,000 structures, the accepted structures yielded mean field energies of

approximately hEi = 460 ± 6 kcal/mol. The hydrogen bonding energy, due to the functional

form, is optimal at a strength of -1 kcal/mol. As such, we estimate the ratio of fluctuations

between the two energies as⇡ 10
1 , and set �HBond/�MC = 10. This combinatorial acceptance

ratio criterion, combined with the annealing schedule, produced a lowest energy structure

from each of the five trajectories (Table 4-4). An example structure is illustrated in Figure

4-9C.

4.5. Inverse Kinematics and Loop Design

Transforming the coiled-coil tetramer into a single chain construct requires modeling loops

between the helical segments. This may be done by stitching natural loops onto a structure

through PDB Select219 or a database of loop structures89, with connections identified by

visual inspection and overlap scored by backbone RMSD alone. Here, we instead choose to

employ inverse kinematics to model de novo loops onto the established tetramer constructs.

Loops were modeled with the Cyclic Coordinate Descent (CCD) algorithm220–222, known

to be borrowed from the robotics task of inverse kinematics. The algorithm operates as

follows: create an initial loop of specified length l + 3, aligned to the last three backbone
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Label r (Å) ✓A ( �) ✓B ( �) ✓C ( �) ✓D ( �) ⇢
CC1 8.127 17.68 -32.59 -19.51 -54.56 3.501
CC2 8.321 18.79 -39.13 18.18 -41.57 3.520
CC3 7.881 -35.85 4.49 -32.21 16.16 3.501
CC4 7.900 -32.28 10.98 -32.10 11.22 3.506
CC5 7.764 -38.59 12.07 -7.71 13.55 3.505
Label �Z (Å) ⇣sq ( �) �1 ( �) �2 ( �) �4 ( �) �5 ( �)
CC1 -0.745 19.42 -107.37 -151.90 89.71 -119.27
CC2 0.348 16.95 -107.11 -148.16 99.26 85.29
CC3 1.026 -18.65 -175.57 45.80 85.76 100.63
CC4 1.489 -19.86 -174.42 42.60 81.59 -114.78
CC5 1.318 -18.94 174.40 41.94 83.73 78.80

Table 4-4. Structural parameters for selected lowest energy bundles after the final round
of MC annealing. The parameters the bundle radius r, individual helical rotation of the
four chains ✓i , superhelical residues per turn ⇢, axial o↵set �Z, bundle squareness ⇣sq,
the histidine side chain dihedrals �1, �2, the PZn-PI dihedral �4, and the PI-octyl main
dihedral �5.

positions on the C-terminus of the first chain. For some number of attempts at closing

the loop or until the loop is closed, attempt a loop closure. Each loop closer consists of

some number of CCD steps which 1) randomly select a degree of freedom to vary, 2) adjust

that degree of freedom to minimize the closure metric, and 3) check for overall closure

su�ciency. Loop closure is assessed as the RMSD between the backbone atoms in the last

3 residues of the loop (moving) and the backbone atoms in the first three residues on the

N-terminus of the second chain (target). Here, the degrees of freedom selected to vary are

the loop backbone dihedrals (�, ) and are rotated by the geometrical solution outlined by

Canutescu et. al.220 for minimizing the moving/target backbone atoms. RMSD threshold

was set to 0.1 Å, the maximum number of CCD step was set to 10,000, and the maximum

number of closure attempts was set to 10.

For each of the five low energy structures, three loops were modeled: two short loops

between closer adjacent helices, and one longer loop spanning the remaining opposite pair.

An illustration of an ensemble of generated loops is shown in Figure 4-11A. Note that for

loops to span with minimal length, the starting position on a helix is critical. The helices

are trimmed such that the loop termini are oriented in the direction of the opposite helix.
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Figure 4-11. Renderings of loop modeling onto the antiparallel tetramer. (A) Ensemble
of closed loops, showcasing variations in satisfactory conformation given loop length. (B)
Example of comparable loop closure problems with wildly di↵erent lowest energy solutions.
On the left, the loop is of minimal length; on the right, the loop coils back onto itself
overcompensating its energetic value with self-interaction. (C) Selected low energy/high
probability loop at the further interhelix interface. (D) Selected low energy/high probability
loops at the closer interhelix interfaces.

Specifically, for CC1 and CC2 loops are modeled between C25-B2, B24-A2, and A25-D2,

and for CC3, CC4, and CC5, loops are modeled between A24-B1, B24-C2, and C24-D1.

Henceforth, these loops will be referred to as loops e, f, and g respectively. Loops were

modeled as entirely poly-glycine sequences for simplicity.

Based on distance between termini, the e and g (shorter) loops were generated between

lengths 3-8 and the f (longer) loop between lengths 5-8. For each loop, for each candi-

date length, 1000 loops were generated using the CCD algorithm. Each loop was scored

by energetic interaction both within the poly-GLY loop and with the poly-alanine coiled-

coil containing the HIS-PZnPI (absence of hydrophobic core) by summing over local site

energies at each position in the loop, ✏loop,i. However, this metric alone is likely to bias
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towards longer, self-interacting loops. An example of this is illustrated in Figure 4-11B,

where extended length provides an a “doubling-back” of the loop. In addition to energet-

ics, neighbor-independent �, probabilities were estimated from the Dunbrack neighbor-

dependent Ramachandran probability distributions223. A negative log probability average,

given as

Eq. 4-11 h� ln piloop =
1

l

lX

i

� ln(pGLY (�i, i))

was estimated for each loop. An examination of natural structures suggested a negative log

probability average cuto↵ of 10. From the ensemble of generated loops across all considered

lengths, the lowest energy loop with a negative log average probability below the cuto↵ was

chosen.

Examination of low energy structures and loops suggested moving forward with the first

two structures, CC1 and CC2. For both of these structures, the optimal e and g loops

were modeled with l=3 and the optimal f loop modeled with l=5. These final single chain

structures were renumbered so sites were contiguous and all labeled by the same chain.

The 107 residues were relabeled from A1 to A107 thusly: C1 ! C25 ! e1 ! e3 ! B2 !

B24 ! f1 ! f5 ! A2 ! A25 ! g1 ! g3 ! D2 ! D25. Additionally, the first position

(previously C1) was constrained in all subsequent calculations to be GLY to account for

the experimental requirement that a terminal GLY residue is left upon cleavage of the TEV

protease recognition sequence ENLYFQG.

4.6. Full Sequence Design in a Targeted Space Group

Having established a set of bundle parameters which are capable of positioning the co-

factor within a tailored hydrophobic core and containing compact loops, calculations were

performed to determine residue identities at exterior positions of the single chain protein.
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While this could be accomplished with a wide variety of hydrophilic and polar residues, we

instead aim to identify a sequence commensurate with protein crystallization. This provides

a means to bias the probabilistic sequence calculations towards well-defined protein-protein

interactions at lattice interfaces; should crystallization trials be successful, it would also

serve to confirm the designed structure with atomic resolution.

There can be up to twelve parameters positioning the asymmetric unit in a lattice: those

associated with the space group (three lattice dimension and three lattice angles) and those

with the placement of the asymmetric unit within the unit cell (three translational and

three rotational degrees of freedom). A high order space group is targeted to, among other

reasons, restrict this search space. The layered space groups like P3, P4, and P6 all fix

most lattice degrees of freedom, including the layer spacing, c and the constrained in-plane

lattice dimension a=b. Furthermore, by considering the coiled-coil structure as a cylindrical

unit placed within the lattice, we constrain its orientation such that it can only translate

within the a-b plane and rotate about the coiled-coil axis.

To reduce the dimensionality further, the distance between asymmetric cylinder centers can

be constrained to be equal throughout the lattice. This is done as a preliminary step to

allow a larger sampling of bundle rotations and lattice spacings. Figure 4-12 illustrates

this constraint, and Figure 4-13 provides an accompanying rendering highlighting potential

packing of such coiled-coils in the P3, P4, and P6 space groups.

The P6 lattice is selected. It is a layered, porous space group, which o↵ers high symmetry

(to expedite x-ray data collection and structure determination), with large tubular solvent

channels extending through the crystal (a solvent content in the appropriate protein crystal

range of 26% - 65%224). The P6 space group (a = b 6= c; ↵ = � = 90 �; � = 120 �) posseses

a six-fold axis of symmetry at the origin; to compensate for this, the asymmetric unit

must be translated away to prevent overlap between copies. Parameters associated with

the space group and this translocation are defined in Figure 4-14. The P6 lattice possesses

five parameters: the two free unit cell dimensions a=b and c, the the radial o↵set from the
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Figure 4-12. Depiction of spacing in various layered space groups (P3, P4, and P6).
Potential orientations of a cylindrical asymmetric unit (circles) in each requires specification
of rotation about the cylindrical axis (denoted by each plus), the unit cell spacing, and
translation in the a-b plane (top). By constraining the distance between asymmetric unit
centers (bottom, red lines), the search space can be reduced to exclude the two degrees of
freedom associated with translation in the a-b plane.
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Figure 4-13. Overlay of constrained spacing in Figure 4-12 onto sample renderings of
coiled-coil constructs encapsulating the PZnPI cofactor (orange). The P3 (blue), P4 (green),
and P6 (red) space groups are represented. Ultimately the P6 space group was selected for
full sequence design.

six-fold axis ro↵set, the rotation away from the two-fold axis ↵, and the rotation about the

bundle axis '.

As described above, we initially restrict some of the P6 search space to compensate for costly

lattice calculations. Constraining the equidistant bundle spacing requires fixing ↵ = 30 �

and defining the translation ro↵set as

Eq. 4-12 ro↵set =
ap
3 + 1

such that variation of the lattice relies only upon the unit cell dimension a and the superhe-

lical rotation about the bundle’s coiled-coil axis ' (Figure 4-14). For all lattice calculations,

mean lattice association energies are obtained, which are simply the di↵erence between the

mean lattice energy and the mean energy of the asymmetric unit (the full single chain

protein construct) given as

Eq. 4-13 hEassociationi = hElatticei � hEi = 1

2

X

i

MX

m

�0mii wi +
1

2

X

ij

MX

m

�0mij wiwj
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Figure 4-14. Illustration of translocation of tetramer bundle away from the P6 6-fold axis,
given as ro↵set. The unit cell length, a, is highlighted as the distance between 6-fold axes.
The rotation away from the two-fold axis is given as ↵. The angle ' denotes the rotation
about the asymmetric unit’s axisro↵set.

To further reduce the computational cost, we assume that the unit cell parameter c (z-

component of the unit cell) can be optimized independent of the remaining in-plane pa-

rameters. Here, optimizing sequence design along the c separation component can identify

optimal inter bundle interactions between neighboring loop segments. This is achieved by

enforcing a large unit cell size in the a� b plane, a=b=100Å, such that symmetry interac-

tions only occur with neighbors above or below the asymmetric unit. For both CC1 and

CC2 structures, an optimal spacing was obtained across 36Å < c < 46Å at 0.1Å incre-

ments (Figure 4-15). Each calculation allowed the ensemble specified for interior positions

as described before (placement of the HIS-PZnPI super rotamer, specific hydrogen bonding

residue, and all hydrophobics A,V,I,L,M,F,W at the remainder of the core positions), ALA

at the remaining helical positions, and sequence variation at all positions in each of the three

loops. Loops positions were allowed to be all amino acids except histidine and cysteine.

The lowest lattice association energy corresponded to values of c = 41.1Å and 42.24Å for

CC1 and CC2 respectively.
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Figure 4-15. (A) Lattice Association Energy between protein bundles at the z-interface, as
a function of the lattice layer separation parameter c for the CC1 structure. (B) Rendering
of the lattice association energetic minimum along c for CC1. Core residues are depicted
as spheres (PZnPI: orange, hydrophobics: white) and loop residues are rendered as ball
and stick by atom type (N: blue, O: red). This particular interface highlights close packing
glycines, as well as complimentary electrostatic interactions between charged pairs.
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An initial scan over the simplified lattice space with a fully alanine exterior expedites

identifying low energy ALA-ALA lattice contacts. For each calculation, interior positions

were again typed as previously described (placement of the HIS-PZnPI super rotamer,

specific hydrogen bonding residue, and all hydrophobics A,V,I,L,M,F,W at the remainder

of the core positions), exterior positions on helices typed as alanine, and loop positions

typed as glycine. While allowing glycine at the flexible loop regions, we exclude it from the

helical domains to discourage potential helix breakers. Because the search is e�cient, we are

able to scan over an extensive landscape quickly, here over a (57 Å a  70 Å, incremented

at �a = 0.1 Å) and ' (0 � Å '  360 � Å, incremented at �' = 2 � Å). Each calculation

solves for the site-specific amino acid probabilities as those that minimize the sequence free

energy at �=0.5. The mean field lattice association energy landscape (Eq. 4-13) for CC2

is presented in Figure 4-16.

While the landscapes for CC1 (not shown) and CC2 (Figure 4-16) have multiple local min-

ima, the global maximum is selected for the remaining parameter annealing and sequence

design; it is entirely reasonable to repeat the following steps for any of the other identified

local wells, we initially make this choice to winnow structural possibilities. To relax the

severe constraints imposed on inter-bundle spacing posed in Eq. 4-12, the structures first

undergo a MC annealing with the alanine exterior to further promote well packed bundles

within the lattice. Lattice parameter update criteria are listed in Table 4-5. This trajectory

was run for N = 3,000 steps, at the cooling decay constant specified by Eq. 4-8 and MC

temperatures �0,MC = 0.5 to �f,MC = 2.0. The selection criteria uses the di↵erence in mean

field lattice energy values, f(w) = hElatticei.

Upon annealing, the lattices were significantly more compacted structures with clear ALA-

ALA contacts. A preliminary full design calculation (allowing all amino acids except GLY,

HIS, PRO, and CYS at the exterior) on the lowest energy structures possessed both AXXXA

and Small-XXX-Small motifs to validate this. Trials of further annealing this lattice struc-

ture in the context of full design led to larger spacing between bundles with more favorable
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Figure 4-16. Mean Field Lattice Association Energy of the CC2 single chain construct
with all alanine exterior in the P6 space group, as given by the Vergil package at �=0.5.
The global minimum is denoted with a white circle at a = 60.7Å, ' = 100.0 �. White space
denotes crystal configurations with association energies above 0.0 kcal/mol.

Parameter xmin xmax �x
a 55 Å 70 Å 0.5 Å
' -180 � 180 � 5 �

ro↵set 10 Å 30 Å 0.5 Å
↵ -180 � 180 � 5 �

Table 4-5. Monte Carlo lattice parameter update criteria, including value boundaries and
maximal change per MC step. The parameters listed are the in-plane lattice dimension a,
the rotation about the bundle axis ', the radial o↵set from the six-fold axis ro↵set, and the
rotation away from the two-fold axis ↵. The axial lattice dimension c was held fixed as per
values specified in the text.
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interactions between larger residues (e.g., ARG or GLN). While such structures may have

favorable energetics, they largely remove all small residue contacts in previously identified

structures. Instead of modifying the parameters further, we chose to retain the final low

energy lattice structure obtained from the ALA-exterior MC trajectory. The CC2 structure

was selected to identify a full sequence, with final lattice parameters of a = 59.34 Å, ' =

101.16 �, ro↵set = 22.29 Å, ↵ = 29.90 �, c = 42.24 Å.

A final full sequence calculation was performed using the Vergil package at �=1.69 for

the CC2 structure. In addition to the HIS-PZnPI super rotamer, hydrogen bonding serine,

and hydrophobics (A,V,I,L,M,F,W) at the core, exterior helical positions were typed with

all amino acids except GLY, HIS, PRO, and CYS and loop positions typed with GLY

in addition to the exterior set. Again, to promote crystallization we enforce a mean net

neutrality constraint,

Eq. 4-14 hNet Chargei =
X

i

qiwi = 0

a mean molar extinction coe�cient constraint to assure the ability to monitor the protein

concentration throughout experimental trials to a value of at least one TRP,

Eq. 4-15 h✏Proteini =
X

i

✏Ext,iwi � 5690.0 M�1cm�1

and a limit on the total number of TRPs in the sequence to be no more than 6.

Eq. 4-16 hNTRPi =
X

i

wn,TRP,c  6

Trials without the constraint on the tryptophan composition often left to a prevalence of

TRP in the sequence at solvent channel positions. To address unusual solvent accessible

placement of TRP, several trial designs were conducted with the environmental potential

constraint; however, due to the irregular shape of the bundle, the constraint was unable

to capture similar patterning to globular water soluble proteins such at those for which
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the environmental potential was parameterized. Furthermore, TRP rich sequences o↵er

clustered TRP around the PZn porphyrin (electron donor) which may act as potential

electron donors during experiments. The simplest solution is to simply restrict the number

of TRP residues in the sequence. The number 6 was arrived at by counting high probability

TRP positions from the unconstrained calculation. The full calculation solved for site-

specific amino acid probabilities as those that minimize the sequence free energy for the

mean field lattice energy at �=1.69. The final sequence was selected from the most probable

entropically weighted amino acid at each position, denoted as SCPZnPI-2A.

The final sequence for SCPZnPI-2A is rendered in Figure 4-17. The sequence features a

neatly packed hydrophobic core with aromatic residues flanking the diimide of the PZnPI

cofactor. While the larger porphyrin ring occupies a large fraction of the core in the upper

bundle, the octyl tail is positioned to have a clear channel among the dense hydrophobic

block in the lower bundle. A sense of packing within the P6 space group is given in Figure

4-18 which indicates the orientation of the bundle about the six-fold axis (solvent channel).

This face of the bundle bears a stripe of ionizable residues while the other helices and

corresponding interfaces possess small residues to encourage inter bundle packing. A TRP

at the top of the bundle is positioned to pack into the hydrophoic core of what would be

the exposed hydrophobic underside of neighboring bundles to favor a layered crystalline

configuration. Full diagrams of the lattice arrangement are given in Figures 4-19 (helical

backbone and PZnPI cofactor), 4-19 (colored by reside type), and 4-19 (colored by residue).

In addition to this sequence, the final calculation was revisited with further constraints to

suggest a more hydrophobic variant. Inspection of the RuPZn single chain protein13 sug-

gests a hydrophobic interface at the closer inter-helix e/g positions. As such, hydrophobic

residues (A,V,I,L,M,F,W) were typed at the corresponding interface positions: A7, A12,

A14, A21, B3, B10, B17, B24, C7, C12, C14, C21, D3, D10, D17, and D24. The design

calculations were altered to optimize the sequence free energy using the asymmetric mean

field energy (instead of the mean lattice energy) at �=0.5 to focus on stabilizing the indi-
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Figure 4-17. Rendering of SCPZnPI-2A. Coloring scheme indicates atoms in positively
charged residues (blue), negatively charged residues (red), hydrophobic residues (purple),
hydrophilic residues (green), the PZnPI cofactor (orange).
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Figure 4-18. Rendering of SCPZnPI-2A as packed in the P6 space group. All neigh-
boring units are rendered as a uniform surface, to highlight how the designed struc-
ture packs into the crystal contextually. Coloring scheme indicates atoms in positively
charged residues (blue), negatively charged residues (red), hydrophobic residues (purple),
hydrophilic residues (green), the PZnPI cofactor (orange).
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Figure 4-19. Rendering of the extended SCPZnPI-2A lattice in the P6 space group.
Only the protein backbone (cyan), HIS, and PZnPI cofactor (orange) are rendered for
clarity. Heavy atoms are colored as red (oxygen), blue (nitrogen), and gray (zinc).
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Figure 4-20. Rendering of the extended SCPZnPI-2A lattice in the P6 space group.
Coloring scheme indicates carbon atoms in positively charged residues (light blue), hy-
drophobic residues (light purple), hydrophilic residues (light green), the PZnPI cofactor
(orange). Heavier atoms are colored as red (oxygen), blue (nitrogen), purple (sulfur), and
gray (zinc).
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Figure 4-21. Rendering of the extended SCPZnPI-2A lattice in the P6 space group.
Each residue is rendering a distinct color to highlight sequence diversity.
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Figure 4-22. Rendering of SCPZnPI-2B. Coloring scheme indicates atoms in positively
charged residues (blue), negatively charged residues (red), hydrophobic residues (purple),
hydrophilic residues (green), the PZnPI cofactor (orange).

vidual protein over a full assembly. The final sequence was selected by simply choosing the

most probable amino acid at each position from the aggregated type probabilities, denoted

as SCPZnPI-2B. A rendering of SCPZnPI-2B is given in Figure 4-22. The sequence fea-

tures a notably richer hydrophobic region at the wider interfaces, which should dehydrate

the cofactor further than the first sequence.

Four sequences were submitted for expression - both the original SCPZnPI-2A, the re-

designed variant SCPZnPI-2B, and then each of these sequences with the hydrogen bond-

ing serine at residue position 11 mutated to an alanine.

4.7. Conclusion

The methods detailed here outline a strategy for designing fully de novo proteins, including

the ability to precisely identify ligand binding motifs, construct energetically favorable he-
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lical bundle structures connected by novel loops, and determine compatible sequences. The

technique has been shown to be easily extendable to a lattice context, influencing sequence

design to favor protein-protein interactions in a crystal. For the sequences identified to bind

and encapsulate the PZnPI cofactor, experimental trials are underway to assess protein sec-

ondary structure and ability to bind the PZnPI cofactor. Additional studies are aimed at

studying electron transfer properties of these constructs, as well as crystallization trials to

determine the protein/cofactor assembly structure.

Moreover, this work adequately sets up computational protein design techniques to handle a

variety of nuanced cofactor binding schemes. One can imagine designing a hydrophobic core

purely based upon shape complementarity (foregoing histidine ligation), or the design of a

protein construct to selectively bind two or more distinct cofactors with defined locations in

the protein. Where this work seeks control over modulation of the microenvironment of the

sequestered cofactor, the design of a single protein which incorporates cofactors at controlled

distances would be able to probe how physical separation in the core a↵ects charge transfer

dynamics.30. Computational protein design a↵ords the ability to probe such questions and

explore novel bio-assemblies.
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5 Understanding the Helical Wrapping of

Semiconducting Polymers Wrapped about

Carbon Nanotubes ⇤

Shape-persistent conjugated polymers possess unique optical, electronic, and structural

properties225 that yield a wide range of applications, including light emitting diodes, organic

molecular transistors, and biochemical sensors226–228. Poly(p-arylene-ethynylene) (PAE)-

based polymers have been widely studied and consist of aromatic units bridged by acetylene

(ethyne) units. The ostensibly linear backbone of these molecules is conducive to extended

electronic conjugation and facilitates the control of their structures229,230. As a result, there

has been much interest in elaborating derivatives of PAE as components in molecular elec-

tronics and sensors118,229, as their optical and electronic properties have been characterized

in a variety of solvents230–232. The conformational data obtained for these molecules is typ-

ically consistent with rigid-rod type molecules having long persistence lengths233–235. By

leveraging their linear, aromatic-ring-based structures, appropriately functionalized PAE

polymers provide vehicles for both improving dispersion of single wall carbon nanotubes

(SWNTs) in a variety of solvents (including water) and functionalizing such nanotubes

noncovalently, so as to not adversely perturb the tube’s electronic properties101,102,236.

Somewhat surprisingly, PAE polymers have been observed to wrap in a helical manner

about SWNTs102.

Previous studies of poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene

(PPES) have indicated the polymer’s ability to solublize SWNTs with a constant helical

morphology; transmission electron micrographs and atomic force microscopy suggested a

⇤Adapted from Christopher D. Von Bargen, Christopher M. MacDermaid, One-Sun Lee, Pravas Deria,
Michael J. Therien, and Je↵ery G. Saven. “The Role of Ionic Side Chains in the Helical Wrapping of
Phenylene Ethynylene Polymers about Single-Walled Carbon Nanotubes.” J. Phys. Chem. B., 2013, 117
(42).
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helical superstructure of pitch 13 ± 2 nm. All-atom molecular dynamics (MD) simulations

of a solvated PPES 20-mer and (10,0) SWNT complex in aqueous media exhibited wrap-

ping of the PPES polymer about the nanotube to form a helix of pitch 14 ± 1 nm102. The

following chapter employs a quantitative, molecular-level insight into the helical wrapping

of SWNTs by the PPES polymer. MD simulations are used to obtain potentials of mean

force as functions of the polymer end-to-end displacement, which is a monotonic function

of the helical pitch. The simulations also provide a molecular perspective on the helical

PPES-SWNT assembly, including the roles played by aqueous solvent and the propoxysul-

fonate side chains in determining conformational properties of the polymer-SWNT helical

superstructure.

5.1. Introduction

SWNTs possess optical, electrical, structural, and tensile properties103–105,237,238 that make

them promising candidates for a variety of applications, including energy storage239, elec-

tronic devices240, and sensors228. These applications are limited, however, by di�culties

associated with processing and dispersing SWNTs in solvent systems. Carbon nanotubes

are highly insoluble in both organic solvents and in aqueous solutions due to strong inter-

tube van der Waals interactions241. While solubilization of SWNTs can also be achieved via

covalent modification of the nanotube,242,243 doing so a↵ects SWNT electronic structure,

introducing both mechanical defects and disrupting critical semiconducting and conducting

properties244–247. As such, a wide range of surfactants, small molecules, and polymers have

been identified as noncovalent dispersion agents248–251. Many of these noncovalent meth-

ods, which utilize ultrasonication to drive the solubilization in the presence of surfactants

and polymers252,253, yield systems that have no apparent regular structure when associated

with the SWNT. For example, sodium dodecyl sulfate (SDS) non-selectively forms columnar

micelles about SWNTs and is limited to water as the solvent252.

A variety of flexible polymers are capable of wrapping SWNTs, facilitating nanotube disper-

sion, but these systems generally provide ill-defined assemblies254–257. A wide assortment
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of polymers are known to wrap SWNTs in aqueous media: polystyrene sulfonate (PSS)254,

polyvinyl pyrrolidone (including poly acrylic and maleic acid-containing copolymers),254

↵-helical amphiphilic peptides258,259, proteins260, DNA261–265, gum arabic (polysaccha-

ride)266, sodium carboxymethylcellulose (Na-CMC)267, alginic acid268, and �-1,3-glucans269.

In addition to the poly(aryleneethynylene)s, the �-1,3-glucans269, ↵-helical peptides259 and

specific sequences of DNA264 are known to wrap individualized SWNTs with a regular

helical periodicity. However, the biologically derived polymers are unsuitable for provid-

ing well-defined polymer-SWNT superstructures in organic solvents. Nonnatural polymers

can also be similarly problematic; upon transfer from an aqueous to an organic phase,

SWNTs wrapped with an amphiphilic polymer undergo polymer dewrapping, resulting in

SWNT precipitation254,269. Hydrophobic conjugated polymers based on PmPV257, poly-

thiophene270, polyfluorene271, and poly(p-phenylene)ethynylene248 frameworks can disperse

SWNTs in a variety of nonaqueous solvents. Indeed, changing organic solvent has been

used to disperse and release SWNTs with poly(m-phenylene)ethynylene (PPE) polymers272.

These polymer-SWNT systems often display microscopy consistent with indistinct rodlike

structures, and the polymer/SWNT molar ratios are consistent with multilayer polymer

aggregates associated with the nanotubes. For example, flexible polyvinyl pyrrolidone can

wrap SWNTs with very short pitch lengths but does not yield a regular structure for the

polymer monolayer adsorbed on the SWNT254. Relative to the vast array of SWNT solubi-

lization agents that have been utilized, highly charged aryleneethynylene polymers provide

unique combinations of structure and utility101–105.

PAE-based polymers comprising para-connected monomer units are ostensibly linear poly-

mers but have been observed to acquire both linear and helical structures when adhered

to SWNTs. A PPE polymer with neutral side chains appeared to solubilize SWNTs based

on a parallel interaction mode with no evidence for helical wrapping248. For the solubi-

lization of a boron nitride nanotube (BNNT) by a PPE polymer, the polymer backbone

appeared to adhere to the BNNT surface in linear fashion273. Poly[p-{2,5-bis(3-propoxy-

sulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) and the related poly[2,6-{1,5-bis(3-
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propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES), each forms a distinct self-

assembled polymer-SWNT helical superstructure101,102, in which a polymer monolayer

wraps the nanotube surface to form a well-defined helix. These highly charged aryle-

neethynylene polymers exfoliate individual SWNTs in aqueous media, and they also a↵ord

a means to solubilize SWNTs in a wide range of organic solvents, while preserving the

polymer-SWNT helical morphology101. For PPES, transmission electron micrographs and

atomic force microscopy (AFM) observations were consistent, suggesting a single-stranded,

regular helical super-structure of pitch 13 ± 2 nm wrapped about the nanotubes. The

distinctive features of SWNTs wrapped by aryleneethynylene polymers such as PPES and

PNES underscore the need to understand at a molecular level the observed regular, heli-

cally wrapped polymer-SWNT assemblies in aqueous environments. Of particular interest

are: (i) the critical molecular interactions present in the highly charged aryleneethynylene

polymer-SWNT assembly, (ii) the nm-scale geometric features of the polymer-SWNT su-

perstructure including the helical pitch, and (iii) the relative stabilities of various helical

superstructures of a given polymer-SWNT system.

Though electron microscopy, AFM, and spectroscopic methods can be highly informative,

atomistically detailed information on polymer-SWNT assemblies is generally di�cult to

achieve, due to structural heterogeneity and the limited resolution of these methods. Al-

ternatively, molecular simulations have proved insightful and provide vehicles to investigate

the structure, fluctuations, and energetics of these assemblies. Simulation-based studies

have been extensively applied to a wide variety of nanotube/polymer systems, including

SWNTs complexed with: DNA107–112; amylose113; polythiophene;114,115 polymers that are

rich in aromatic groups such as polystyrene (PS), poly(phenylacetylene) (PPA), poly(p-

phenylenevinylene) (PPV), and poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylene-

vinylene) (PmPV)114,116–118; polyethylene119,120; poly-alkylsilanes121; poly-phenylene-

ethynylenes102; poly(N-decyl-2,7-carbazole) and poly(9,9-dialkyl-2,7-fluorene)122; alginic

acid126,127; poly[9,9-dioctylfluorenyl-2,7-diyl] (PFO)123; and proteins124,125. Simulations

and theoretical calculations have provided detailed information on monomer interactions
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with the SWNT, including the preference of aromatic moieties to associate with the nan-

otube surface114,116,124,125,258,274 and conformational backbone energetics such as the bal-

ance between torsional and electrostatic energies in the phosphate linkages of DNA108,110.

In addition, such simulations can assist in understanding the wide range of structures pos-

sible when polymers adhere to SWNTs and the relative free energies of di↵erent super-

structures126,127. For PPES, the superstructures obtained from molecular dynamics (MD)

simulations of a PPES 20-mer and (10,0) SWNT complex in aqueous media were in ex-

cellent agreement with experimental findings102; the simulations exhibited wrapping of the

PPES polymer about the nanotube to form a helix of pitch 14 ± 1 nm102.

Simulation data can provide a detailed molecular-level rendering of the polymer-nanotube

complex, as well as the origins and free energetics of the helical wrapping. A molecular

understanding of the determinants of such helical structures in terms of the chemical prop-

erties of the polymer and its solvent environment would be useful both in understanding

why di↵erent morphologies are observed upon variation of solvent and chemical structure

of the monomeric units and in engineering poly(aryleneethynylene)/SWNT systems having

specific properties.

5.2. Simulation Tools

5.2.1. Molecular Dynamics Simulations

All simulations were performed using the molecular dynamics program NAMD2.7275. Or-

thorhombic periodic boundary conditions were applied in all three Cartesian dimensions,

and the average dimensions were 55 Å x 55 Å x 285 Å. The equations of motion were

integrated with a time step of 2 fs. Covalent bonds involving hydrogen atoms were con-

strained to their equilibrium length by means of the SHAKE/RATTLE algorithms276,277.

Long-range electrostatic forces were evaluated by means of the particle-mesh Ewald (PME)

approach278 with a 1 Å mesh, and van der Waals interactions were truncated smoothly

with a spherical cuto↵ of 12 Å. For solvated simulations, the TIP3P279 water model was
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used. The simulations in the aqueous phase included ⇠23,000 TIP3P waters placed using

the VMD module SOLVATE280, yielding a total of ⇠75,000 atoms including the PPES

polymer, counter ions and the (10,0) nanotube. The aqueous system was ensured to be

electrostatically neutral via the addition of 50 sodium and 8 chloride ions using the VMD

module AUTOIONIZE,280 consistent with a salt concentration (ionic strength) of 0.2 mol/L.

Aqueous simulations were carried out in the isothermal-isobaric ensemble; temperature was

maintained at 300K by employing Langevin dynamics with damping coe�cient of 5 ps�1,

and the pressure was maintained at 1 bar employing the Langevin piston pressure control

with an oscillation period of 100 fs and decay time of 50 fs281. For simulations without

solvent, only the polymer (PPE or PPES with absent atom-centered partial charges) and

SWNT were present, and temperature (300K) was maintained using the aforementioned

Langevin dynamics damping coe�cient. All initial configurations were minimized for 1,000

steps using conjugate gradient energy minimization prior to each simulation. Preparation,

visualization, and analysis of structures and trajectories utilized the VMD package280.

5.2.2. Molecular Models of Phenylene Ethynylene Polymers

Two polymers were considered in the simulations (Figure 5-1): poly[p-phenylene]ethynylene

(PPE) and poly[p-2,5-bis(3-propoxysulfonicacidsodiumsalt)phenylene]ethynylene (PPES).

The molecular potential parameters were taken from previous work102,282–284. For the

aqueous simulations, each sulfonate group was fully ionized with net charge of �1. For

simulations in the absence of solvent (“vacuum” simulations), all atom-centered partial

charges were set to zero. For all simulations, polymers composed of 20 monomer units were

considered (n = 20 in Figure 5-1). For both linear and helical initial configurations of each

polymer, all phenyl rings were positioned in the same manner on each monomer; there were

no ”ring flips,” and the monomers were translationally invariant along the contour of the

polymer.
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Figure 5-1. Chemical structures of the poly[p-phenylene]ethynylene polymers consid-
ered in the simulations. (i) Poly[p-phenylene]ethynylene featuring terminal phenyl units
(PPE). (ii) Poly[p-2,5-bis(3-propoxysulfonicacidsodiumsalt)phenylene]ethynylene featuring
terminal p-{4-(3-propoxysulfonicacidsodiumsalt)}phenyl units (PPES). For all simulations,
n = 20, l is the distance between equivalent carbons in adjacent monomer units, and ⇠ is
the di↵erence in z-coordinates of the indicated carbon atoms.

5.2.3. Carbon Nanotube Model

An achiral semiconducting (10,0) SWNT consistent with previous solubilization studies of

PPES was selected102. Coordinates for an ideal tube were generated using the VMD Nan-

otube Builder285 with no additional chemical functionalization or geometric deformations

at the end of the tube. No relaxation of nuclear coordinates of the tube were performed.

Each atom of the SWNT was parametrized as an sp 2 carbon atom of the CHARMM force

field286 with zero partial atomic charge. The nanotube length in each simulation was 25.4

nm with an internuclear diameter of 0.793 nm. The nanotube length was chosen to be twice

that of the fully extended, linear 20-mer of PPES, and at no point in any simulation did

the polymer approach the nanotube ends. The coordinates of all atoms within each nan-

otube were fixed in all simulations, resulting in C-C bonds constrained to their equilibrium

lengths of 1.42 Å. Nanotubes selected in the following simulations were chosen as achiral

with comparable diameters to nanotube diameters in respective experiments, as given by

Eq. 5-1 d =
a

⇡

p
(n2 + nm+m2)
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for a = 0.246 nm.

5.2.4. Potential of Mean Force Calculations.

The potentials of mean force of the PPE and PPES polymers adsorbed onto a SWNT

were calculated using the adaptive biasing force (ABF) method135,287–289. This technique

estimates the average force hF i⇠ acting along a given reaction coordinate ⇠ and applies a

force that counteracts this average force, thus allowing the system to freely di↵use along

the chosen coordinate.

Eq. 5-2
dA(⇠)

d⇠
= �hF i⇠ =

⌧
@U

@⇠

�

⇠

Here dA(⇠)/d⇠ is the average force that is applied along the coordinate ⇠, and U is the

potential energy of the system. The average h...i⇠ is over configurations having a particular

value of the reaction coordinate ⇠. This calculated average force is used to estimate the

potential of mean force �A(⇠) relative to a fiducial reference value of the order parameter

⇠o.

Eq. 5-3 �A(⇠) = �
Z ⇠

⇠
o

d⇠ hF i⇠

The axis of cylindrical symmetry of the SWNT in each simulation was defined to be collinear

with the Cartesian z-axis. The order parameter, ⇠, associated with the linear-helical tran-

sition of the polymer was chosen as z, the di↵erence in z-coordinates between the two sp2

carbon atoms in the first and last monomers as denoted in Figure 5-1. With this choice,

the expression for the average force is

Eq. 5-4
dA(⇠)

d⇠
=

⌧
@U

@z

�

z

For the potential of mean force calculations, the order parameter was considered in the

range 11.0  ⇠  13.7 nm, where ⇠=13.7 nm corresponds to the fully extended, linear
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20-mer. This range was divided into 15 windows each of 0.4 nm width, overlapping 0.2

nm on each side to improve sampling continuity. To confine sampling within each window,

a harmonic potential was applied if the coordinate exceeded the window boundary; the

potential had a force constant of 10 kcal/mol/Å and was centered at the window boundary.

Each calculation sampled instantaneous force values for 20 ns, collected in bins 0.01 nm

wide. To reduce possible non-equilibrium artifacts, 20,000 samples were accrued in each bin

before introducing the biasing force (Equation Eq. 5-2) within each bin.

In simulations of PPES/SWNT in vacuum and in aqueous solution, the polymer was ob-

served to remain adsorbed to the SWNT in a helical conformation, and thus for the potential

of mean force calculations, a helical initial configuration was chosen to more rapidly sample

“equilibrium” configurations for each value of ⇠. For each of the 15 windows of ⇠, the initial

configuration of the polymer was selected as a helix having the value of ⇠ at the center of

the window. These initial structures were generated by aligning the polymer to an ideal

helix having radius r and pitch p. This helical contour ~rh(t) can be defined parametrically

in terms of the variable t; in Cartesian coordinates ~rh(t) = (r cos(2⇡t), r sin(2⇡t), pt). For

a given window, an ethynyl carbon in each monomer (see Figure 5-1) was positioned on a

helical path, ~rh(t), having radius r = 7.35 Å, which provides near van der Waals contact

between polymer and nanotube carbon atoms (internuclear distance of 3.4 Å). The pitch p

was varied to specify a given value ⇠. In constructing the helical conformation, rigid body

motions were used to position adjacent monomers so that equivalent ethynyl carbons are

at positions ~rh(t) and ~rh(t + ⌧), respectively. The parametric one-monomer increment ⌧

was determined by specifying that equivalent ethynyl carbons on adjacent monomers lie

on the helical contour: |~rh(t + ⌧) � ~rh(t)| = l, where l is the Euclidean distance between

the equivalent ethynyl carbons (Figure 5-1). The phenyl rings of the monomers were then

rotated about an axis collinear with the ethyne bridge such that the plane of the aromatic

ring was perpendicular to the normal of the nearest point on the nanotube surface. In all

cases, the helical axis is chosen as the z-axis (SWNT axis). These initial structures were

minimized for 1,000 steps using the conjugate gradient energy minimization and then run
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for 10,000 time steps (20 ps), prior to the 20 ns of conformational sampling.

5.3. Spontaneous Wrapping of a Single-Walled Carbon Nanotube

To explore the spontaneous wrapping of PPES about the carbon nanotube, unconstrained

MD simulations of the PPES 20-mer (Figure 5-1) and a (10,0) SWNT were carried out

in an aqueous environment. The polymer strand was initially set in a linear conformation

parallel to the SWNT axis (p = 1). The chain was positioned so that the center of mass

of the phenyl subunit was 3.4 Å from the cylinder that contains the carbon nuclei of the

SWNT, consistent with van der Waals contact between the phenyl backbone of the polymer

and the nanotube surface. The simulation was carried out for 40 ns. This initial simulation

employed a water solvated polymer-nanotube system with explicit counter ions. Within 15

ns, the solvated polymer had spontaneously wrapped about the SWNT forming a helical

structure.

To quantify the polymeric superstructure, parameters specifying a helix centered about the

longitudinal axis of the SWNT were calculated from sampled configurations. The pitch p

and radius r of helical conformations were determined from the coordinates of the centroids

of the phenyl rings of the PPES monomer units (centers of mass of the aromatic carbon

atoms). These centroid coordinates were fit to a standard helical contour using a least

squares method282,290. Configurations were sampled every 20 ps from the final 20 ns of

simulation to estimate the pitch, and the uncertainties reported are plus/minus one standard

deviation. For all sampled configurations, the root-mean-square deviations (RMSD) with

respect to ideal helices were less than 2 Å. The average pitch of the helical polymeric

structure was p = 13 ± 1 nm, in good agreement with both that measured from transmission

electron micrographs and previous simulation studies of the PPES polymer102.

The molecular features of PPES that promote helical wrapping about the SWNT were

further explored. The solvated PPES/SWNT system is complex, but via computer simula-

tion, the structural and energetic properties of simplified systems, systems which may not
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be experimentally realizable, can used to probe the roles of particular interactions and struc-

tural features in driving the helical superstructure formation. To this end, simulations of

PPES/SWNT and PPE/SWNT systems were carried out in the absence of solvent, counter

ions, and electrostatic interactions (here termed “vacuum” simulations) as a means to ex-

plore the intrinsic helical propensities of these polymer/SWNT systems. As in the solvated

simulations, the initial conformation of the polymer in each case was a linear configuration.

In vacuum, the PPES polymer wrapped the SWNT in approximately 3 ns, forming a persis-

tent helical superstructure. A larger helical pitch and larger pitch fluctuations (p = 16± 4

nm) were observed compared to that observed for the PPES/SWNT simulations carried

out in solvent. The PPES helical structure obtained in this vacuum simulation is struc-

turally distinct, however, from that observed in the solvated simulation with regard to the

orientation of the side chains relative to the cylindrical axis of the carbon nanotube (Figure

5-4).

In simulating the PPE/SWNT system in vacuum, the impact of the monomer side chains

was explored; compared to PPES, the polymer is simplified via the replacement of the

propoxysulfonate side chains with hydrogen atoms (Figure 5-1). PPE maintains van der

Waals contact with the nanotube surface but had no persistent global helical structure. The

segments of the polymer intermittently acquire helical conformations locally (Figure 5-2).

The polymer only transiently adopts overall helical structures and explores an ensemble of

linear and helical conformations, including the initial collinear state. No persistent helical

structure was observed.

An evaluation of the direct polymer-SWNT interactions and adsorption of the polymer on

the SWNT is presented in Figure 5-3. The interaction energy, Einter between the polymer

and nanotube (nonbonded energy) per monomer unit for each system (Figure 5-3(a)) quan-

tifies the energy of adsorption due to direct noncovalent interactions between the polymer

and the SWNT. For each of the systems, Einter fluctuates about a value established within

the first few nanoseconds of the trajectory. For the solvated PPES/SWNT system, Einter
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(i) PPE Backbone in vacuo:          = 13.5, pitch > 90 nm  

(ii) PPES in vacuo:   = 13.1 nm, pitch = 15 nm,   = +17
o
,   = 43

o
 

(iii) PPES solvated:   = 12.8 nm, pitch = 13 nm,   = -19
o
,   = 79

o
 

(iv) 27.8 ns:      =  13.4 nm,  = 10.0
o
 

(v) 28.5 ns:       = 13.3 nm,  = 6.6
o
 

(vi) 29.1 ns:      = 13.6 nm,  = -0.2
o
 

Figure 5-2. Representative configurations of PPE/SWNT and PPES/SWNT from un-
biased 40 ns simulations. (i) PPE/SWNT in vacuum, (ii) PPES/SWNT in vacuum, and
(iii) PPES/SWNT in aqueous solvent. (iv-vi) Sampled configurations of PPE/SWNT in
vacuum during the simulation at (iv) 27.8 ns, (v) 28.5 ns, and (vi) 29.1 ns.
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Figure 5-3. (a) Evolution of the interaction energy per monomer unit between the polymer
and the SWNT, Einter. Einter is calculated as the total nonbonding energy of the polymer
(per monomer unit) with the (10,0) nanotube. (b) Evolution of the contact area between
the polymer and the SWNT, Acontact, per monomer unit with time for the three 40 ns MD
simulations. Acontact is calculated as given by Equation Eq. 5-5. (c) Evolution of wrapping
angle, ✓, with time for the three 40 ns MD simulations. Initial configuration in each case is
the linear polymer, ✓ = 0, adsorbed onto the SWNT surface. Sampled configurations i–vi in
(Figure 5-2) correspond directly to the indicated positions in each trajectory. PPE/SWNT
in vacuum (green), PPE/SWNT in aqueous solvent (purple), PPES/SWNT in vacuum (red)
and PPES/SWNT in aqueous solvent (blue). For each sampled configuration, ✓ values are
obtained from the 20 interior p-{2,5-bis(3-propoxysulfonate)}phenylene]ethynylene units
(Figure 5-1).
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= -20.6±0.4 kcal/mol. The vacuum simulations of PPES/SWNT have a relatively higher

mean interaction energy, Einter = -22.4±0.3 kcal/mol due to the extensive van der Waals

contact of the side chains onto the tube. The PPE/SWNT has a much lower mean interac-

tion energy, Einter = -7.4±0.1 kcal/mol due to its lack of side chain interactions with the

SWNT. As further evidence of the strong adsorption of the polymer, the contact area of the

polymer with the surface of the SWNT per monomer unit is presented in (Figure 5-3(b))

and is defined as291

Eq. 5-5 Acontact =
Apolymer +ASWNT �Acomplex

2

where for each sampled configuration, Apolymer is the surface area of the isolated polymer

chain, ASWNT is that of the isolated nanotube, and Acomplex is that of the complex com-

prising only the polymer and SWNT. The surface area in each case was calculated with the

solvent-accessible surface area method available in VMD280, using the Shrake-Rupley algo-

rithm292 and a probe radius of 1.4 Å. The contact area per monomer unit fluctuates about a

value established in the first few nanoseconds of each trajectory. The PPES/SWNT solvated

system has a mean contact area of Acontact = 1.07 ± 0.02 nm2, while the PPES/SWNT in

vacuum system has a slighter higher mean at Acontact = 1.16 ± 0.02 nm2. The PPE/SWNT

system in vacuum has the lowest mean contact area of Acontact = 0.53 ± 0.02 nm2. These

results are summarized in Table 5-1. These findings involving interaction energy and con-

tact area support the choice of the initial conditions where the polymers are within van der

Waals contact of the SWNT, as the polymers remain adhered to the nanotube surface and

exhibit little variation in Einter and Acontact throughout each simulation.
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Figure 5-4. Illustration of wrapping angle, ✓, and side chain angle, '. ✓ is the angle
between a vector defined by atoms in the monomer unit (C1 and C2 in Figure 5-1) and the
longitudinal axis of the nanotube. ' is the angle subtending the vector defined by a C-O
bond (between a phenylene carbon and the ether oxygen to which it is bonded) and the
nanotube axis (Figure 5-4). (b) The linear configuration ✓ = 0 �. (a) ✓ < 0 � is uniquely
associated with ' > 60 �. (c) ✓ > 0 � helical direction is uniquely associated with ' < 60 �.

Additionally, the collinear PPE/SWNT system was solvated and allowed to equilibrate.

Much like the PPE/SWNT in vacuum, the polymer maintained van der Waals contact with

the nanotube surface, yielding similar values of Einter = -7.3±0.2 kcal/mol and Acontact

= 0.53±0.02 nm2. The polymer had no persistent global helical structure. The resulting

configurations from the 40 ns trajectory indicate similar behavior to the system in vacuum:

the polymer explores an ensemble of linear and helical structures, never adopting a well-

defined superstructure and often returning to the collinear state.

For the solvated and vacuum simulations, conformations of PPES and PPE were sampled

and analyzed with regard to the local orientations of the monomer units. The local helical

wrapping angle per monomer, ✓, is the angle between a vector defined by atoms in the

monomer unit (C1 and C2 in Figure 5-1) and the longitudinal axis of the nanotube (Figure

5-4). ✓ characterizes the orientation of polymer locally on the nanotube (Figure 5-4). For
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an ideal helix, the relation between ✓ and the corresponding pitch p is

Eq. 5-6 p =

����
2⇡r

tan✓

����

A unique helical wrapping can be described by ✓ and ', where ' is the angle subtend-

ing the vector defined by a C-O bond (between a phenylene carbon and the ether oxygen

to which it is bonded) and the nanotube axis (Figure 5-4). In the case of the solvated

PPES/SWNT simulation, the helical conformation has ' > 60 � and ✓ < 0 �, where side

chains are oriented roughly perpendicular to the nanotube cylindrical axis. Conversely, the

vacuum PPES/SWNT simulation has ' < 60 � and ✓ > 0 �, where the side chains are closer

to colinear with the tube and maintain contact with the nanotube surface. These observa-

tions of particular values of ✓ do not indicate a preferred chirality or helical handedness of

PPES, in solvent or in vacuum. For any of the helical configurations, e.g., the three depicted

in Figure 5-4, there is a mirror image possible that has the opposite helical handedness,

for which ✓ and ' are of opposite sign. Accessing such enantiomeric conformations would

require desorption of the polymer and/or internal torsional rotation of the phenylene units

to reorient the side chains. As mentioned, PPES remains adsorbed in van der Waals contact

with the SWNT throughout the simulations, and such rare, high-energy events (desorption

and internal rotation) were not observed in any of the simulations. The evolution of ✓ for

the solvated PPE/SWNT system has similar fluctuations to the vacuum case. The presence

of solvent has little impact on the range superstructures sampled by the PPE polymer and

does not lead to persistent helical structures. For this reason, all further discussions of the

PPE system concern the simpler study of PPE/SWNT in vacuum.

Representative configurations from each of three simulations are presented in Figure 5-

2(i-iii). In a vacuum simulation, the PPE/SWNT system adopted no well-defined super-

structure and sampled multiple helical conformations, often returning to a collinear state

where ✓ = 0 �. Sampled configurations of the PPE/SWNT system are shown in Figure

5-2(iv-vi), wherein large fluctuations in ✓ for the backbone (see Figure 5-3c) indicate the
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lack of persistent, well-defined helicity. Persistent helical structures were observed, how-

ever, in the PPES/SWNT simulations, both in vacuum and in solution. The fully solvated

PPES/SWNT system reached ✓ = �20± 2 � with pitch of p = 13± 1 nm within 15 ns. The

vacuum simulation of PPES equilibrated within 5 ns to ✓ = +16± 3 �, with pitch p = 16±

4 nm.

To verify the observed helical preferences, additional calculations were performed. For each

of the systems in Figure 5-3, two repeat trajectories of 20 ns each were simulated (data not

shown), and the observed equilibrated conformations possessed helical parameters within

statistical uncertainty of the values in Table 5-1. In addition, the equilibrated structures of

PPES in vacuum and solution were exchanged. That is, the final equilibrium conformation

(✓ = +17 �) of the vacuum simulations of PPES-SWNT was fully solvated, and charges

and counter ions were introduced. Within 20 ns, the newly solvated helix had reorganized,

passed through a linear conformation, and changed its helical wrapping to arrive at a

structure having ✓ = �20±2 �, i.e., the polymer converted from structure iii to structure ii

in Figure 5-2. Similarly, a vacuum simulation was performed using the final conformation

(✓ = �20 �) from the previous solvated simulation of PPES-SWNT as the initial condition.

The polymer also changed helical wrapping to form the superstructure (✓ = +16±3 �) that

was previously observed in vacuum simulations (evolution from ii to iii of Figure 5-2). Each

of these simulations was extended an additional 20 ns, and the helical parameters remained

unchanged, suggesting that the observed helical structures are independent of the initial

conformation.

Several inferences can be made from these simulation results. PPES and PPE adhere

strongly to the SWNT. For each polymer, the phenyleneethynene backbone maintained

contact with the SWNT for each simulation (in solvent and in vacuum), and the polymer

did not dissociate from the nanotube in any of the simulations. Inspection of Figure 5-3

shows that the interaction energy Einter and contact area Acontact are essentially invariant af-

ter the first few nanoseconds, whereas the local monomer contact angle (and thus the global
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polymer conformation) continues to evolve on a longer multi-ns timescale, particularly for

the solvated simulation where persistent helical structure is achieved only after 15-20 ns.

The backbone accommodates deviations from linearity on nm length scales, as observed by

persistent helical structures of the PPES/SWNT systems and the conformational fluctua-

tions observed in the simulations of PPE/SWNT. Both vacuum and solvated simulations

of PPES/SWNT yielded persistent helical structures, suggesting that the propoxysulfonate

side chains play an essential role in specifying the observed helical wrapping. The vacuum

and solvated helical superstructures of PPES/SWNT are di↵erent, however, as is evident in

the respective values of ✓ and ', i.e. the orientations of the monomers in each helix formed

under these two di↵erent conditions. Thus solvent and electrostatic interactions play a

role in determining the precise helical structure of the PPES/SWNT. For the solvated sim-

ulation, the helical pitch matches that observed in transmission electron micrographs.102

Interestingly, neither the interaction energy nor the contact area track with the formation of

helical superstructure. This observation suggests that a subtle set of interactions involving

the polymer, nanotube, and solvent are responsible for the formation of persistent helical

superstructures and motivates the use of free energy calculations to quantify the energetics

of such helical structure formation.

5.4. Potential of Mean Force and Helical Pitch

To quantify the relative stabilities of di↵erent helical superstructures of PPES/SWNT in

vacuum and in solution, potentials of mean force �A(⇠) were calculated using the adaptive

biasing force method (Figure 5-5)135,287–289. The order parameter (or reaction coordinate) is

⇠, the di↵erence in z-coordinates of carbon atoms in the terminal monomers of each polymer

as denoted in Figure 5-1, i.e., ⇠ is the displacement between the indicated atoms projected

onto the longitudinal symmetry axis of the SWNT. In simulations of PPES/SWNT in

vacuum and in aqueous solution, the polymer was observed to remain adsorbed to the

SWNT in a helical conformation, and thus for the potential of mean force calculations, a

helical initial configuration was chosen to more rapidly sample “equilibrium” configurations
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Figure 5-5. (a) Calculated potential of mean force, �A(⇠), as a function of ⇠, the dis-
placement between end monomers projected on the nanotube longitudinal axis (Figure 5-1).
�A provides the relative free energies of helically wrapped polymer/SWNT structures. (i)
PPE/SWNT in vacuum, (ii) PPES/SWNT in vacuum, and (iii) PPES/SWNT in aqueous
solution. (b) The average helical pitch p vs ⇠ for (ii) PPES in vacuum, and (iii) PPES in
aqueous solution; p monotonically increases with ⇠ in each case.

for each value of ⇠. The order parameter was considered in the range 11.0  ⇠  13.7 nm,

where ⇠=13.7 nm corresponds to the fully extended, linear 20-mer. This range was divided

into 15 windows each of 0.4 nm width, overlapping 0.2 nm on each side to improve sampling

continuity. For each of the 15 windows of ⇠, the initial configuration of the polymer was

selected as a helix having the value of ⇠ at the center of the window (r = 7.35 Å). Each

calculation sampled instantaneous force values for 20 ns, collected in bins 0.01 nm wide. To

reduce possible non-equilibrium artifacts, 20,000 samples were accrued in each bin before

introducing the biasing force (Equation Eq. 5-2) within each bin.

The simulation results indicate that for these systems with their well-defined helices, the

pitch p is a monotonic function of ⇠ (see Figure 5-5 b). The potential of mean force �A(⇠)

is the di↵erence in free energy of the system at a particular value of ⇠ (or equivalently,

the helical pitch p), and that at a reference value ⇠o (see Equation Eq. 5-3). �A(⇠) thus

provides the relative free energies of di↵erent helical PPES/SWNT superstructures.

For the PPE/SWNT system in vacuum, �A(⇠) has a single minimum at ⇠ = 13.51 nm,
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where the polymer fluctuates about the linear conformation, consistent with no preference

for helically wrapped configurations under these conditions. The position of this minimum

is slightly less than that of the fully extended, linear polymer (⇠ = 13.7 nm), as expected

from the observed fluctuations of PPE polymer when adhered to the SWNT (Figure 5-2(i)).

This value ⇠o = 13.51 nm is chosen as the reference value of ⇠o with which to calculate�A(⇠)

since ⇠o is the value expected of a poly-[p-phenlyene]ethynylene polymer that adheres to the

SWNT with no persistent helical structure and fluctuates about the linear configuration.

For the vacuum simulations of PPES/SWNT,�A(⇠) has a single minimum at ⇠ = 13.05 nm.

As ⇠ decreases below this value, �A(⇠) increases as the polymer takes on unfavorable, tightly

wrapped configurations. At this minimum, �A = �1.8 kcal/mol, suggesting a modest

stabilization of the helical conformation at 300 K. The value ⇠ = 13.05 nm corresponds to

a helical pitch of p =16 nm, which concurs with that observed in the previously described,

unconstrained molecular dynamics simulation of this system (Figure 5-3). Furthermore,

the breadth of the minimum is consistent with the fluctuations in pitch observed in the

unconstrained simulations (p = 16± 4).

For the solvated PPES/SWNT system, �A(⇠) has a minimum at ⇠ =12.84 nm where

�A = �4.0 kcal/mol. This minimum corresponds to a helical pitch of p = 13 nm, in

agreement with previous simulation results (Figure 5-3) and with previous experimental

and simulation studies102. There is a second local minimum at ⇠ =12.49 nm, which has

�A = �3.8 kcal/mol and corresponds to a helical pitch of p = 10 nm. The metastable

character associated with this conformation was revealed using a subsequent simulation

(data not shown). A sampled configuration of the solvated PPES/SWNT system having

⇠ =12.49 nm was used as the initial condition of a solvated simulation of 12 ns. The

polymer retained the helically wrapped structure of smaller pitch for 2 ns and then evolved

to the global minimum of �A(⇠) within 6 ns; the polymer remained in the lower free energy

helically wrapped structure (⇠ = 12.9± 0.1 nm) for the remainder of the simulation.
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5.5. Propoxysulfonate Side Chain Conformations

In addition to providing the global helical superstructure and relative free energies of di↵er-

ent helical superstructures, simulations can provide molecular information that can further

our understanding of the helical superstructures. Side chain conformations were followed as

functions of ⇠ in the potential of mean force simulations. Four dihedral (torsional) angles of

the propoxysulfonate side chain were monitored (see Figure 5-6 inset). Each of these angles

were binned into one of three intervals: 0 � < � < 120 �, gauche+ or p ; 120 � < � < 240 �,

trans or t; or 240 � < � < 360 �, gauche� or m293. The abbreviations p, t, and m label the

gauche+, trans, and gauche� states, and a particular side chain rotamer state is denoted

by an ordered quartet of these labels �4�3�2�1, e.g., tttt indicates the all trans side chain

conformation. This discretization results in 81 potential rotamer states for each side chain,

and the probabilities of these side chain rotamer conformations were calculated using all

side chains of [p-{2,5-bis(3-propoxysulfonate)}phenylene]ethynylene monomers (Figure 5-1)

every 20 ps from the collection of biasing force trajectories so as to sample conformations

of the PPES/SWNT system at a given value of ⇠ (see Figure 5-6 inset).

The populations of the side chain rotamer states are presented in Figure 5-6. In the vacuum

PPES/SWNT simulations, the side chains populate predominantly three conformations,

tptt, tttt, tmtt, as seen in Figure 5-6 (a). The dihedral rotameric states of the side chains

are almost exclusively populated by states that only di↵er with regard to �3. For ⇠ = 11

nm and thus small pitch, the three conformers are roughly equally populated, but as ⇠

increases a single state tptt becomes favored. For the solvated PPES/SWNT simulations, a

single rotamer state, tptt, predominates and its population is independent of ⇠ (see Figure

5-6 (b)).

The most populated side chain conformations are rendered in Figure 5-7. In the solvated

simulations, the tptt rotamer state dominates throughout. Figure 5-7 illustrates this side

chain state for ✓ = �20 � and ' = 80 �, the values associated with the preferred helically

wrapped structure of the solvated PPES/SWNT system. For these values of ✓ and ',
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Figure 5-6. Populations of propoxysulfonate side chain conformations. Conformations
are classified according to the side chain dihedral angles �4�3�2�1: �4 (SC�C�C↵); �3

(C�C�C↵O); �2 (C�C↵OCA); �1 (C↵OCACB), where the ordered atoms in parentheses are
those that specify the corresponding dihedral angle (inset). Each dihedral angle is grouped
into one of three rotameric states: p: gauche+, t: trans, m: gauche�. A side chain ro-
tamer state is denoted by an ordered quartet of these labels �4�3�2�1, e.g., tptt indicates
that �4�3�2�1 take on the trans, gauche+, trans, and trans dihedral states, respectively.
Only side chain conformational states with probabilities greater than 0.001 are shown.
Populations (probabilities) are calculated from final 20 ns of unbiased molecular dynam-
ics simulation (Figure 5-2). (a) PPES/SWNT in vacuum. (b) PPES/SWNT in aqueous
solution.

(i) tptt (ii)  tptt (iii)  tttt (iv)  tmtt 

> 60° < 60°

Figure 5-7. Rendering of a single p-{2,5-bis(3-propoxysulfonate)}phenylene]ethynylene
monomer from the PPES/SWNT system for “equilibrated” structures to illustrate the po-
sitioning of the side chains (Figure 5-2). In each case, the rotamer side chain configuration
is shown using 3 orthogonal views. (i) PPES/SWNT in aqueous solvent. ✓ = �20 �. (ii-iv)
PPES/SWNT in vacuum. ✓ = +16 �.
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Figure 5-8. Radial distribution function g(r) for pairs of sulfonate oxygen atoms, i.e., g(r)
is the relative density of sulfonate oxygen atoms at the distance r given one such oxygen
is at the origin. The insets illustrate structural elements corresponding to peaks in g(r):
O-O pair within a sulfonate group (r = 2.2 Å), O-O pair on adjacent side chains bridged
by a water molecule (r =4.5 Å), and O-O pair for adjacent sulfonates not hydrogen bonded
to the same water molecule (r =6.2 Å). The average number of sulfonate oxygens within a
distance r of another, n(r), is also shown (dashed) and obtained from integrating g(r).

the tptt side chain conformation maintains van der Waals contact between the SWNT and

the side chain methylenes, while leaving the sulfonate group exposed and accessible to

aqueous solvation. The tptt rotamer configuration seen in Figure 5-7 illustrates the solvent

accessibility of the sulfonate group, which allows for formation of on average 5 hydrogen

bonds to water per side chain (Figure 5-9).

In the vacuum PPES/SWNT simulations (✓ = +16 � and ' = 44 �), the three most prob-

able rotamer states align the side chain along the curved surface of the nanotube so as to

essentially maintain van der Waals contact of the entire side chain, including the sulfonate,

with the SWNT. These particular orientations of the side chains relative to the surface of

the SWNT are somewhat artificial since no electrostatic interactions are present due to the

absence of partial charges and counter ions. Notable, however, is the fact that a helical

structure is strongly preferred even in the absence of electrostatic interactions and solvent;

van der Waals interactions of the side chains with the SWNT play a key role in specifying

such structures.
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(a)

(b)

Figure 5-9. (a) Representative configuration of five hydrogen bonds in the water shell
surrounding a single sulfonate side chain. (b) A bridging water molecule forming two
hydrogen bonds with adjacent sulfonate side groups of the helically wrapped PPES.

146



In the unconstrained solvated simulations of PPES/SWNT (see the last 20 ns of Figure

5-3 (c)), the distribution of the distance r between sulfonate oxygen atoms can be used to

characterize the orientations of side chains relative to each other. The resulting distribution

of distances, the radial distribution function g(r), is shown in Figure 5-8. The first peak at

2.3Å corresponds to the average distance between oxygens that are part of the same SO�
3

group. The peak at 6.2Å corresponds the average distance between oxygen atoms of side

chains that are on adjacent monomers when each is in a conformation that falls into the

tptt rotamer state. The number of SO�
3 oxygens within a chosen distance can be obtained

from integrating g(r): the integrated curve between 0 Å < r < 11.35 Å yields 8 oxygens,

which can be assigned to 2 other oxygens in the sulfonate and 3 in each of two nearest

neighboring side chains. The peak located at 4.5Å occurs at a distance where neighboring

side chains can hydrogen bond to a shared water molecule (Figure 5-9). The fraction of

adjacent monomer pairs that are hydrogen bonded to the same water molecule via their

sulfonate groups is 24% (Figure 5-9). An analysis of the rotamer states for the side chains

participating in these hydrogen bond water bridges shows that on average 82% are in the

tptt rotamer state. The relatively high frequency with which the sulfonate side chains are

observed to be in in the tptt rotamer state suggests that these water bridges between side

chains play an important role in specifying the overall helical superstructure.

5.6. Helical Superstructures

The simulations provide an atomistically detailed perspective on helical PPES/SWNT su-

perstructures. For all simulations in water and in vacuum, the PPE and PPES polymers

were observed to adhere via the phenylene backbone and not desorb from the tube. The

backbone phenyleneethynylene units and nanotube surface were within van der Waals con-

tact throughout the simulation. The noncovalent association of the aromatic units of the

polymer backbone with the nanotube surface is responsible for the observed polyaryle-

neethynylene adhesion to the SWNT and, in the case of those polymers functionalized with

propoxysulfonate side chains, the ability to disperse carbon nanotubes in water and a va-
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riety of organic solvents.101,102 The poly[p-phenylene]ethynylene backbone is flexible and

adopts structures other than the linear conformation, as is evidenced by both the fluctu-

ations in the global structure observed in the vacuum PPE/SWNT simulations and the

helically wrapped superstructures observed in the simulations of PPES/SWNT in vacuum

and in solution. These excursions from the linear conformation are accommodated by vari-

ation of bond angles and internal rotations in the polymer. Deviations of bond angles from

their ideal values are well known and have been addressed in the parameterization of the

potential energy used in the simulations282: (a) the exocyclic angle where the alkyne is

attached to a phenyl ring can exhibit deviations of several degrees from 120 � 294; and (b)

the deviations from linearity of the bond angle that includes the two ethyne carbons of up

to 8 � are consistent with both experimental and theoretical studies.282,294,295 In addition,

the internal rotation of one phenyl ring relative to another due to torsional rotation about

the ethyne linkage is known to have a low barrier (0.6 kcal/mol), that is comparable to kbT

at T = 300K.282,296–298 Thus the phenyl rings can readily rotate so as to maintain van der

Waals contact with the SWNT to accommodate helical superstructures. The underlying

surface of the (10,0) SWNT is smooth and essentially featureless. Multiple conformations of

a polymer adhered to the tube are expected, which is consistent with the large fluctuations

in superstructure and absence of persistent helical wrapping observed for the vacuum sim-

ulations of the PPE/SWNT system. Thus the presence of the propoxysulfonate side chains

and their (2,5) substitution pattern on each monomer appear to specify the particular 13

nm pitch helical superstructure observed in the simulations and in experiment.102

In the aqueous environment, the side chains have a strong preference for the tptt side

chain conformation, and in the preferred helically wrapped structure, this conformation

maintains contact of the side chain methylene groups with the nanotube surface while

making the sulfonate groups accessible for aqueous solvation. In protein simulations, similar

coordination of electrostatic and hydrophobic interactions has been observed299. Here, we

note that the side chain conformations are dictated by both the optimal van der Waals

contact of the aliphatic segments with the nanotube surface, while maintaining solvation
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of the sulfonate groups, creating a well-defined configuration for the side chains to adopt.

Within this work, only aqueous systems have been considered. For other solvents and

side chains, alternate structures could potentially be observed, which may suggest why no

evidence of helical wrapping was reported in studies of related aryleneethynylene polymer

systems having uncharged side chains.248

5.7. Conclusion

PPES/SWNT adopts a superstructure where the polymer is helically wrapped about the

carbon nanotube, and herein atomistic molecular dynamics (MD) simulations were per-

formed to better understand the origins of this helical wrapping for what is ostensibly a

“linear” polymer. In unbiased, aqueous simulations of a 20-monomer PPES and a (10,0)

SWNT, a helical structure was observed to form spontaneously on the nanosecond time

scale. The helical pitch of the polymer matched that measured experimentally: p = 13

nm102. In simulations carried out in vacuum and in solution, no persistent helical structure

was observed for a related system PPE/SWNT, in which the phenylene units of the poly[p-

phenylene]ethynylene polymer lacked 2,5-bis(3-propoxysulfonicacidsodiumsalt) side chains.

For PPES/SWNT simulated in vacuum, the system relaxed to a helical structure distinct

from that of the solvated case with regard to the local monomer orientation and overall pitch

(p = 16 nm). Potential of mean force calculations provided the relative stabilities of dif-

ferent helical configurations of the PPES/SWNT system, and the experimentally observed

helical pitch in aqueous solution was found to be a global free energy minimum. Interac-

tions of the propoxysulfonate side chains with the nanotube and with solvent were found

to specify the helical superstructure observed in water, where one side chain rotamer state,

the tptt rotamer, was almost exclusively populated independent of the range of helical pitch

values accessed in the course of these simulations. In the preferred helical superstructure,

the side chain maintained hydrophobic contact with the carbon nanotube while exposing

the sulfonate group for aqueous solvation. Specific interactions between side chains were

also observed: 24% of the propoxysulfonate side chain population was found to form a
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hydrogen-bonded interaction with a shared water molecule, where 82% of the participating

side chains took on the tptt rotamer state necessary for the solvated helical superstructure.

In water, the calculated di↵erence in free energy between the preferred helically wrapped

PPES/SWNT structure and that of the polymer adsorbed to the tube in a state that fluc-

tuates about the linear conformation is only 0.2 kcal/mol/monomer. The relatively small

value of this stabilization suggests that the global superstructure of the PPES/SWNT sys-

tem could potentially be controlled by engineering weak, noncovalent interactions, e.g., by

modulating van der Waals interactions and solvation forces involving the monomer units

through chemical modification of the PPES archetype. As with proteins300,301 and other

folding polymers302,303, these polymer/SWNT systems possess potentially complex energy

landscapes due to their many noncovalent and frustrated interactions, but this complexity

does not preclude design. Such engineering can be facilitated by molecular simulations,

which address the myriad molecular structures and interactions present in solvated poly-

mer/SWNT systems while providing molecularly detailed insight into the relative stabilities

of possible superstructures.
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6 Simulations of Chiral Polymers Wrapped about

Carbon Nanotubes ⇤

For highly charged semiconducting polymers that utilize a (S)-1,1’-bi-2-naphthol component

in their repeat unit, TEM and AFM images of SWNTs wrapped by these polymers suggest

preferences for helical wrapping handedness commensurate with the chirality of the polymer.

However, a modest statistical analysis of these images indicates that roughly 20% of the

helical structures are formed with the opposite handedness. CD spectroscopic data and a

set of basic TDDFT calculations that attempt to correlate the spectral signatures of the

chiral 1,1’-binaphthalene unit o↵er two binding modes, what are denoted as cis-facial and

cis-side (Figure 6-1). For similar polymers which possess a 2,2’-1,3 benzyloxy bridging the

1,1’-bi-2-naphthol, the restricted set of torsional angles available to the binaphthol unit elicit

an even stronger preference for the ‘expected’ helical handedness given a polymer chirality.

An analysis of TEM images reveals that these bridged-binaphthalene-based polymers form

polymer-wrapped CNT constructs in which chiral polymer helical wrapping manifests an

overwhelming preference (96%) for the expected left-handed helical superstructure (pitch-

length = 8 ± 2 nm). To provide a comprehensive molecular perspective that spans length

scales ranging from the local conformational restrictions of the bridged binaphthyl moiety to

the global helical superstructures observed in the AFM and TEM data, molecular dynamics

(MD) simulations were conducted for such chiral polymer-nanotube systems. The following

chapter o↵ers a series of equilibration simulations of SWNTs that are helically wrapped

by S-PBN(b)-Ph3 and S-PBN(b)-Ph5 in the presence of water and counter ions so

as to characterize the persistence of helical superstructures and the local orientation and

conformation of the constituent monomers. In the simulations, S-PBN(b)-Ph5 is the most

robust and able to persistent in a helical superstructure.

⇤Adapted from Pravas Deria, Christopher D. Von Bargen, , Jean-Hubert Olivier, Amar S. Kumbhar,
Je↵ery G. Saven, and Michael J. Therien. “Single Handed Helical Wrapping of Single-Walled Carbon
Nanotubes by Chiral, Ionic, Semiconducting Polymers.” J. Am. Chem. Soc., 2013, 135 (43).
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Figure 6-1. Conformations of 1,1’-bi-2-naphthol-derived polymer chain components, and
their possible binding modes at SWNT surfaces: (a) the cisoid conformation adopted by
the unbridged R-chirality binaphthalene unit; (b) cartoon depicting cisoid-facial’ bind-
ing of an R-chirality binaphthalene to the SWNT surface in a right-handed helical super-
structure; (c) cartoon depicting the cisoid-side’ binding of an R-chirality binaphthalene
to the SWNT surface in context of the “unexpected” left-handed helical superstructure;
(d) the transoid conformation adopted by a 2,2’-(1,3-benzyloxy)-bridged-1,1’-bi-2-naphthol
unit, and (e) transoid-facial’ binding mode of the 2,2’-(1,3-benzyloxy)-bridged-1,1’-bi-2-
naphthol moiety with the SWNT surface in the context of a left-handed helical superstruc-
ture.

6.1. Simulation Tools

6.1.1. Molecular Dynamics Simulations

All simulations were performed using the molecular dynamics program NAMD2.7275. Or-

thorhombic periodic boundary conditions were applied in all three Cartesian dimensions,

and the average dimensions were 60 Å x 60 Å x 330 Å. The equations of motion were

integrated with a time step of 2 fs. Covalent bonds involving hydrogen atoms were con-

strained to their equilibrium length by means of the SHAKE/RATTLE algorithms276,277.

Long-range electrostatic forces were evaluated by means of the particle-mesh Ewald (PME)

approach278 with a 1 Å mesh, and van der Waals interactions were truncated smoothly with

a spherical cuto↵ of 12 Å. For solvated simulations, the TIP3P279 water model was used.

The aqueous system was ensured to be electrostatically neutral via the addition of sodium

and chloride ions using the VMD module AUTOIONIZE,280 consistent with a salt concen-
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Figure 6-2. Ionic aryleneethynylene polymer S-PBN(b)-Ph5 based on 1,1’-bi-2-naphthol
derivatives and various monomeric units used in molecular dynamics (MD) simulations.

tration (ionic strength) of 0.2 mol/L. The simulations in the aqueous phase included 35,960

TIP3P waters placed using the VMD module SOLVATE280, yielding a total of 111,902

atoms including the PPES polymer, counter ions and the (10,0) nanotube. Aqueous simu-

lations were carried out in the isothermal-isobaric ensemble; pressure and temperature were

maintained at 1 bar and 300K by employing Langevin dynamics with damping coe�cient

of 5 ps�1 and the Langevin piston pressure control with an oscillation period of 100 fs and

decay time of 50 fs281. Preparation, visualization, and analysis of structures and trajectories

utilized the VMD package280.

6.2. Molecular Models of Chiral Binaphthylene Ethynylene Polymers

The molecular potential parameters for chiral polymer repeat units were developed us-

ing quantum mechanical calculations and parameters reported in previous work102,282–284.
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Figure 6-3. Dihedral potential energy of the binaphthyl bond between naphthyl rings
for methoxy-binaphthyl. Values are obtained by rotation through the dihedral angle. The
potential is commensurate with known potential of methoxy-binaphthyl units305–307

The restrained electrostatic potential method was used to obtain e↵ective atomic charges

subject to overall neutrality of each aromatic unit. The e↵ective charges were fit using

electrostatic energies computed using the HF/6- 311G** basis set in Gaussian98304. The

naphthalene-naphthalene dihedral potential of the binaphthyl unit for both polymer deriva-

tives was parameterized to be consistent with known potentials of methoxy-binaphthyl

units305–307 (Figure 6-3). Two representative polymers, both with S chirality, were con-

sidered in the simulations: S-PBN(b)-Ph3 and the “bridged” S-PBN(b)-Ph5. Both

polymers variants were prepared with the same number of subunits (35) and terminal p-

4-(3-propoxysulfonicacidsodiumsalt)phenylene]ethylene units; S-PBN(b)-Ph3 contained 8

monomers with the addition of an additional Ph3 group, while S-PBN(b)-Ph5 contained

5 monomers with an additional Ph5 group. (Figure 6-2). For the helical initial conditions of

the polymers, the binaphthyl interplanner torsional angles were chosen as ✓ = 90 � (Figure

6-4) and all side chains were positioned in the same manner (all trans) on each aromatic

unit.
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Figure 6-4. Aggregate histogram of the binaphthyl dihedral for 40 ns simulations of a
single S-PBN and S-PBN(b) unit, respectively. For S-PBN (left, green), the dihedral
angle is centered at 87 ± 17 �; for S-PBN(b) (right, blue) the dihedral angle is centered
at 107 ± 10 �.

To improve the e�ciency of these simulations and compare the properties of right- and

left-handed structures, the initial conformations of the polymers were those resulting from

alignment to right- and left-handed ideal helical contours. The helical parameters were

chosen such that the helical pitch was p = 8.0 nm and the helical radius was r = 0.736 nm,

yielding polymer configurations in van der Waals contact with the nanotube carbon atoms.

For all helical initial configurations of each polymer, all phenyl rings were positioned in

the same manner on each monomer; there were no “ring flips”, and the aryl subunits were

translationally invariant along the contour of the polymer. In building the helix, rigid body

motions were used to position each monomer by equivalent ethynyl carbon positions that

span each binaphthyl and phenyl subunit.

Simulations of the isolated binaphthyl units, unbridged S-PBN and bridged S-PBN(b), in

TIP3P aqueous solvent (300 K, 1 atm) were performed. The number of water molecules and

atoms were: 6,871 atoms (2,267 water molecules) for S-PBN, and 5,390 atoms (1,768 water

molecules) for S-PBN(b). The length of each trajectory was 40 ns, and configurations were
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sampled every 20 ps for a total of 2,000 configurations. The data were consistent with the

expected properties of unbridged and bridged moieties308; for S-PBN, the average dihedral

angle was ' = 87 ± 17 �,, while for the bridged S-PBN(b), ' = 107 ± 10 � (Figure 6-4).

6.2.1. Carbon Nanotube Model

An achiral (10,0) carbon nanotube, as with previous polymer/nanotube studies of PPES128,

was selected. Coordinates for the tube were generated using the VMD Nanotube Builder309.

An ideal nanotube was used, and no relaxation of nuclear coordinates of the tube was per-

formed. Each atom of the SWNT was parameterized as sp 2 carbon atoms of the CHARMm

force field286 with zero net atomic charge. The nanotube length in each simulation was 29.6

nm with an internuclear diameter of 0.793 nm. The nanotube length was more than twice

that of the extended polymer, and at no point in any simulation did the polymer approach

nanotube ends. The coordinates of all atoms within each nanotube were fixed in all simu-

lations with C-C bonds constrained to their equilibrium lengths of 1.42 Å.

6.2.2. Helical Polymer Alignment

All helical initial structures were generated by aligning the polymer to an ideal helix having

radius r and pitch p. This helical contour ~rh(t) can be defined parametrically in terms of

the variable t, and in Cartesian coordinates ~rh(t) = (r cos(2⇡t), r sin(2⇡t), pt). An ethynyl

carbon in each monomer (see Figure 5-1) was positioned on a helical path, ~rh(t), having

radius which provides near van der Waals contact between polymer and nanotube carbon

atoms (internuclear distance of 3.4 Å in addition to the nanotube radius). In constructing

the helical conformation, rigid body motions were used to position adjacent monomers so

that equivalent ethynyl carbons are at positions ~rh(t) and ~rh(t + ⌧), respectively. The

parametric one-monomer increment ⌧ was determined by specifying that equivalent ethynyl

carbons on adjacent monomers lie on the helical contour: |~rh(t+ ⌧)� ~rh(t)| = l, where l is

the Euclidean distance between the equivalent ethynyl carbons (Figure 5-1). The aromatic

units were rotated about an axis collinear with the ethyne bridge such that the plane of the
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aromatic ring was perpendicular to the normal of the nearest point on the nanotube surface.

In all cases, the helical axis is chosen as the z-axis (SWNT axis). These helical structures

were minimized for 1,000 steps using the NAMD conjugate gradient energy minimization.

6.3. Helical Stability and Preference

Four simulations were considered: each polymer, (S-PBN(b)-Ph3) and (S-PBN(b)-Ph5),

was initially wrapped about the SWNT in either a left-handed and or a right-handed helical

conformation. Each simulation was extended to 80 ns to ensure su�cient sampling. Final

configurations of each 80 ns trajectory are shown in Figure 6-5. A qualitative analysis of

the trajectories indicates that the polymers remain adhered to the nanotube throughout

but that neither initial conformation of the S-PBN(b)-Ph3 maintained persistent helicity.

The Ph3 phenyl subunits of the polymer adhere to the tube and remain in contact with the

tube’s cylindrical surface. These segments can, however, locally change orientation relative

to the nanotube axis. On the other hand, the S-PBN(b)-Ph5 polymer initially placed

in a left handed helix maintained persistent left-handed helicity for the duration of the

simulation. Figure 6-6 depicts a time evolution of both polymer variants initially placed

in a left handed helix; where S-PBN(b)-Ph3 fluctuates to the point of losing its initial

helical structure, S-PBN(b)-Ph5 preserves the initial helical configuration.

For each of the four simulations, conformations of the polymers were sampled during the

entirety of the 80 ns trajectories (every 20 ps for a total of 4,000 configurations) and analyzed

with regard to the local orientations of the phenylene subunits from within the interior 27

subunits. The local helical wrapping angle per monomer, ✓, is the angle between the vector

defined by the 1,4 carbon atoms in each phenyl-based subunit and the longitudinal axis of

the nanotube (see Figure 6-7 for definition of vector). ✓ characterizes the orientation of

the polymer locally on the nanotube. For an ideal helix, the relation between ✓ and the

corresponding pitch p is given by Eq. 5-6. Figure 6-7 depicts the evolution of ✓ average

and standard deviation across all subunits at a given time step for each of the simulations.
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Figure 6-5. Final configurations of the four polymer systems. (a) S-PBN(b)-Ph3 initially
placed in a left handed helical conformation, (b) S-PBN(b)-Ph3 initially placed in a
right handed helical conformation, (c) S-PBN(b)-Ph5 initially placed in a left handed
helical conformation, and (d) S-PBN(b)-Ph5 initially placed in a right handed helical
conformation. After 80 ns, only the left handed S-PBN(b)-Ph5 configuration is able to
maintain its helicity for the duration of the simulation.
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Figure 6-6. Time evolution at 20 ns intervals, depicting the di↵erent configurations
adopted by the initially left handed helices of the two polymer variants. (a) S-PBN(b)-
Ph3, and (b) S-PBN(b)-Ph5. Note S-PBN(b)-Ph3 configurations adopting a zigzag
conformation, wherein the binaphthyl unit orients subsequent monomers to have values of
✓ that change sign.
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Figure 6-7. Evolution of average local contact angle, ✓, for each of the polymer-SWNT
simulations, with corresponding distributions across the entire 80 ns simulation. (a) Vector
description for Ph local contact orientation vector. ✓ is the angle between the projection of
this vector on the nanotube and the nanotube axis, (b) S-PBN(b)-Ph3 initially placed in
a left handed helical conformation, (c) S-PBN(b)-Ph3 initially placed in a right handed
helical conformation, (d) S-PBN(b)-Ph5 initially placed in a left handed helical confor-
mation, and (e) S-PBN(b)-Ph5 initially placed in a right handed helical conformation.
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For both of the S-PBN(b)-Ph3 cases, ✓ exhibits large fluctuations and it appears the aver-

age has not yet reach a plateau after 80 ns. Where the left-handed configuration maintains

a value of ✓ = -25 � ± 3 � (p = 10 ± 2 nm) during the first 20 ns of the simulation, the

magnitude of this mean angle continues to decrease as the simulation progresses. Likewise,

the right-handed configuration maintains a value of ✓ = +27 � ± 2 �(p = 9 ± 2 nm) for the

first 20 ns of the simulation and then continues to decrease. What is apparent in each of

these trajectories is the tendency for the binaphthyl units to reorient phenylene segments

units into the opposite value of ✓, creating local zigzag-like conformations of the polymer

though it remains adhered to the nanotube. This is apparent in the distribution of ✓ over

the course of the simulation (Figure 6-7). For both of these S-PBN(b)-Ph3 simulations,

this local contact angle ✓ is distributed between both the left (negative) and right (positive)

orientations. A depiction of several of the zigzag features can be seen in the final configura-

tions of Figure 6-5, where the binaphthyl moieties appear at vertices and the Ph3 segments

take on alternating negative and positive values of ✓.

Conversely, the simulations of the S-PBN(b)-Ph5 polymer yield a robust helical structure

and a preferred helical handedness. The initially left-handed structure maintains a persis-

tent helical structure throughout the 80 ns simulation (Figure 6-7). This is apparent in the

equilibrated average value of ✓ over the last 40 ns for the left-handed configuration at ✓ =

-24 � ± 3 �, which corresponds to a pitch of p = 10 ± 2 nm. On the other hand, the initially

right-handed configuration almost immediately begins to take on conformations that do not

wrap the SWNT in a helical fashion, and the average value of ✓ drifts from the initial value

of ✓ = +30 � (p = 8 nm) towards ✓ = 0 �. These observations are further corroborated by

the distributions P (✓). P (✓) for the left-handed configuration contains a single maximum

at ✓ = -29 �. P (✓) for the initially right-handed configuration contains two maxima at ✓ =

+25 � and ✓ = -17 �, consistent with the observed zigzag structure (Figure 6-5).

For the left-handed S-PBN(b)-Ph5 polymer, its ability to maintain a helical structure for

the duration of the simulation matches the expectation that this derivative has a strong pref-
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erence for this helical handedness. Since the polymer comprises multiple types of monomer

unit, analyzing the trajectory via fits to ideal helical contours is nontrivial. We opt instead

to consider a quantity that represents the density of polymer backbone atoms adhered to

the surface of the tube. Such a quantity is also in harmony with how helical structural

parameters are inferred experimentally from TEM measurements. An evaluation of a dis-

tribution pair separations (density-density correlations) parallel to the nanotube axis for all

(35 subunits) backbone carbons in the polymer (aromatic phenyl, aromatic naphthyl, and

ethyne carbons) shows characteristics expected for a helical configuration. The pairwise

distribution function, p(�z), is evaluated using the following histogram function

Eq. 6-1 p(�z) =

P
i<j �(�z,�zij , �z)�(↵i,↵j , �↵)P

i<j �(↵i,↵j , �↵)

Eq. 6-2 where �(x, y, �x) =

8
>><

>>:

1, for |x� y| < �x

0, otherwise

where �zij denotes the z-coordinate di↵erence involving atoms i and j, ↵ denotes the radial

angle in the x-y plane perpendicular to the nanotube axis (see Figure 6-8), and �z and �↵

are the corresponding bin sizes for z and alpha respectively. Here �z = 1 Å and �↵ = 10 �.

Configurations with a helical structure will have a peak in this distribution corresponding to

the value of z that is the pitch of the helix, as well as values or z for which are improbable

if the helix is persistent and well maintained. Figure 6-8 shows this distribution for the

S-PBN(b)-Ph5 polymer initially placed in a left handed helix, is evaluated for the final

40 ns of the trajectory. The distribution has a maximum for �z < 3 nm, corresponding to

carbon atoms within the same and adjacent monomers. The the distribution has near zero

amplitude over 4-8 nm and large peak located at 10 nm, consistent with a persistent helical
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Figure 6-8. Pairwise linear distribution of monomer subunits within the same angular
subsection of the nanotube for S-PBN(b)-Ph5 initially placed in a left handed helical
conformation. (subset) Depiction of the cylindrical coordinate system in which p(z) is
calculated. The evaluation of the delta function aligning points within the same angular
section are grouped by some �↵, and placed in the corresponding bin for �z.

structure of pitch 10 nm. This is consistent with to the estimated pitch from Eq. 5-6 (p

= 10 ± 2 nm) and the experimentally inferred helical pitch from the TEM micrographs.

6.4. Binaphthyl Dihedral Angle Distribution

The nature of the binaphthyl interior dihedral angle, �, plays a role in the helical stability of

each of these chiral polymer derivatives when adsorbed to the SWNT. For the S-PBN(b)-

Ph3 polymer, Figure 6-9 shows both conformations have a broad distribution of allowed

� angles for all binaphthyl subunits throughout the course of the simulations. Where
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the interior dihedral angle has been estimated from the CD spectra to be � = 60-70 �,

the mean of the simulations with the initially left- and right-handed configurations of the

S-PBN(b)-Ph3 polymer are � = 111 � ± 14 � and � =106 � ± 13 �, respectively. The

distribution is broad, however, and values as low as 60 � are sampled. Similar simulations

were performed for the S-PBN(b)-Ph3 polymer derivative (data not shown), wherein

the initial configuration of � was set to values both greater than and less than 90 �, and

all such simulations yielded distributions centered around ⇠110 �. For the S-PBN(b)-Ph5

simulations, Figure 6-9 shows the distribution of � is more narrow and centered upon slightly

larger, more oblique angles. While the interior dihedral angle estimated from the CD spectra

and TDDFT calculations suggests a narrow distribution between 95 �-100 �, the left- and

right-handed S-PBN(b)-Ph5 simulation distributions of � are 120 � ± 8 � and 114 � ± 9 �,

respectively. Here, more stringent range for the bridged derivative is apparent. Nonetheless,

relative to the unbridged systems, the average value of � is larger (more oblique) in bridged

polymers for both the experimental and the simulation studies.

To address the orientation and contact of the binaphthyl units on the nanotube, an ori-

entation angle, �, is defined between the binaphthyl bond (vector from C1 to C1’ in the

binaphthyl subunit) projected onto the surface of the nanotube and the nanotube axis. �

addresses the binaphthyl subunits’ placement on the nanotube surface. For both polymers

initially placed in a left-handed helix (the expected helical conformation for the S binapthyl

enantiomer), � fluctuates about a peak at � = 25 �. Conversely, both systems where the

polymers were initially placed in a right-handed helix exhibit an evolution of � from close to

� = 90 � to configurations where � takes on smaller values and the binaphthyl bond vector

is more aligned with the nanotube axis (Figures 6-10 and 6-11).

For both S-PBN(b)-Ph3 initial conditions, the large fluctuations and the inability to

maintain a persistent helix result in part from the larger range of values accessible to � in

the unbridged systems. Where S-PBN(b)-Ph5 remains helical with a relatively narrow

distribution of � = 120 �, in the unbridged systems, the sampling of � < 90 � allows a
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Figure 6-9. Evolution of the average interior binaphthyl dihedral angle, �, (Fig 2) for each
of the polymer-SWNT simulations, with corresponding distributions across the entire 80 ns
simulation. (a) Depiction of S-PBN dihedral angle about the binaphthyl bridge bond, �.
(b) S-PBN(b)-Ph3 initially placed in a left handed helical conformation, (c) S-PBN(b)-
Ph3 initially placed in a right handed helical conformation, (d) S-PBN(b)-Ph5 initially
placed in a left handed helical conformation, and (e) S-PBN(b)-Ph5 initially placed in a
right handed helical conformation.
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Figure 6-10. Evolution of the average binaphthyl bond angle with the nanotube axis,
�, (Fig 2) for each of the polymer-SWNT simulations, with corresponding distributions
across the entire 80 ns simulation. (a) Vector description for S-PBN local vector describ-
ing the binaphthyl bridge bond. � is the angle between the projection of this vector on
the nanotube and the nanotube axis. (b) S-PBN(b)-Ph3 initially placed in a left handed
helical conformation, (c) S-PBN(b)-Ph3 initially placed in a right handed helical confor-
mation, (d) S-PBN(b)-Ph5 initially placed in a left handed helical conformation, and (e)
S-PBN(b)-Ph5 initially placed in a right handed helical conformation.
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Figure 6-11. Configurations for the binaphthyl units in each of the polymer simulations.
For all renderings, only the polymer carbon backbone is show for clarity, with the binaphthyl
bridge highlighted in orange. (a) initial placement of S-PBN(b)-Ph3 in a left handed
helix, and (b) a representative configuration from the final 40 ns. (c) initial placement
of S-PBN(b)-Ph3 in a right handed helix, and (d) a representative configuration from
the final 40 ns. (e) initial placement of S-PBN(b)-Ph5 in a left handed helix, and (f) a
representative configuration from the final 40 ns. (g) initial placement of S-PBN(b)-Ph5

in a right handed helix, and (h) a representative configuration from the final 40 ns.

local contraction of the polymer at the binaphthyl unit such that the “zigzag” pattern is

now accessible. Figure 6-10 illustrates this; where the left handed helix S-PBN(b)-Ph5

(Figure 6-10a) begins in a similar conformation to the left handed helix of S-PBN(b)-Ph5,

the wider distribution of � allows for conformations like Figure 6-10b to exist. Here, the

binaphthyl unit has contracted su�ciently such that the remaining phenyl portion of the

polymer has slid across the nanotube surface adopting the “zigzag”. As the initially right

handed trajectories evolve (Figure 6-10c), � reorients to values aligned with the nanotube

(perfect alignment would be � = 0 � or 180 �) to foster aromatic contact of the binaphthyl

with the SWNT. Such local structures can involve contact of one or both naphthyl rings

with the nanotube surface. Figures 6-10d and 6-10h illustrate such configurations, where

one of the naphthylene units makes contact with the nanotube surface while the other is

oriented edge to face.
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The simulation results support the interpretation that restraining the chiral binaphthyl sub-

units’ conformation restricts the conformational availability of the polymer when adsorbed

onto the SWNT surface. The simulations suggests that the broad range of allowable di-

hedral values in all four simulations is a↵orded by the broad internal dihedral potential,

which is consistent with that studied in previous work308. In restraining the dihedral angle

to a more oblique value (� > 90 �) and limiting the fluctuations to a narrower range by

bridging the binaphthyl units, the polymer is able to maintain the “expected” helicity (here

left-handed for the S derivative) without creating any of the “zigzag” patterning both S-

PBN(b)-Ph3 simulations obtained. Where the S-PBN(b)-Ph3 simulations exhibited a

wide variety of conformations and general instability in the initial placement along a helical

contour, the S-PBN(b)-Ph5 simulations are consistent with the superstructure inferred

from the TEM and AFM images.

6.5. Conclusion

While chiral polymers, such as ssDNAs, have been established to helically wrap single-walled

carbon nanotubes (SWNTs), the resulting ssDNA-SWNT hybrids manifest both right- and

left-handed helical SWNT assemblies, indicating that intrinsic polymer helical chirality is

in general insu�cient to dictate the helical chirality of polymer-nanotube constructs. The

experimental studies of the S/R-PBN(b)-Ph3 and S-PBN(b)-Ph5 polymers suggests the

first general method to rigorously control the handedness of the helically wrapped polymer-

SWNT superstructures. The above simulations point to the presence of interstitially placed

binaphthyl units that permit these polymers to adopt directed structures when adhered

to the SWNT surface. Preferred helical superstructures as adopted by these poly-arylene

ethynylene polymers are influenced by the presence of charged side chains, alteration of back-

bone chemistry, and restriction of backbone conformation. Most notably, distinct modes

associated with the polymer-SWNT complex environments have helped elucidate expec-

tations for the increasing/decreasing of helical pitch, either through solvation or chemical

modification of monomer flexibility. The design insights described herein enable enantiose-
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lective control of the helical screw axis of semiconducting polymers that single-chain wrap

SWNT surfaces. We posit that this work opens up new opportunities to: (i) regulate

the strength of excitonic and electronic interactions between an aryleneethynylene polymer

and the nanotube surface, (ii) engineer robust conjugated polymer-SWNT superstructures

in which optoelectronic and chirooptic properties can be extensively modulated, and (iii)

develop new approaches to organize SWNTs in the solid state.
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A Mean Field Theory Derivations

A.1. Enumerated Solution

If we consider an exact enumeration of the sequences in a given sequence ensemble of size

⌦seq, it is possible to find an exact solution. Computationally, this is only limited by the

tractability of the ensemble size. Starting from the sequence entropy, Eq. 2-2, individual

sequence probabilities Wseq can be obtained for each polymer microstate. The sequence

probabilities are multivariate objects, given as

Eq. A-1 Wseq = W (tc1, tc2, ..., tcN )

where each polymer microstate is defined as the set of monomer conformations for a given

sequence across all positions in the polymer chain; that is, at each site n, a particular

choice of monomer type t and conformation c. The mean energy of the sequence ensemble,

as expressed by the sequence energies in Eq. 2-7 is given as

Eq. A-2 Useq =

⌦
seqX

seq

EseqWseq

such that the e↵ective free energy of the sequence is expressed as

Eq. A-3 Fseq = Useq �
1

�

S

kB
=

⌦
seqX

seq

EseqWseq �
1

�

⌦
seqX

seq

Wseq lnWseq
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A minimization of this e↵ective free energy in the context of a normalization constraint

applied to the sequence probabilities,

Eq. A-4

⌦
seqX

seq

Wseq = 1

produces an exact solution for predetermined � in the form of

Eq. A-5 Wseq =
exp(��Eseq)

⌦
seqP
seq

exp(��Eseq)

where we can express the individual probabilities of the independent conformers as the sum

over all sequence probabilities that contain the selected monomer, t, of conformation state

c at position n

Eq. A-6 wn0t0c0 =
X

tc1

X

tc2

...
X

tc
N

W (tc1, tc2, ..., tcN )�(ntc, n0t0c0)

where the delta function picks out sequences that contain the specified set of indices n0, t0,

and c0. Eq. A-6 can otherwise be written as

Eq. A-7 wn0t0c0 = wi =

⌦
seqX

seq3i
Wseq

Furthermore, obtaining an expression for the heat capacity of the mean sequence energy
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is straight forward, utilizing expressions from Eq. 2-15 and Eq. A-21 to evaluate the

derivative of the mean sequence energy as

Eq. A-8
@Useq

@�
=

@

@�

⌦
seqP
seq

Eseq exp(��Eseq)

⌦
seqP
seq

exp(��Eseq)

= �
⌦

seqX

seq

(E2
seq � Eseq

⌦
seqX

seq

EseqWseq)Wseq

obtaining the sequence heat capacity as proportional to the variance of that mean sequence

energy

Eq. A-9 Cv,seq = �kb�
2@U

@�
= kb�

2((

⌦
seqX

seq

E2
seqWseq)� U2) = kb�

2V ar(Useq)

A.2. Recasting the Optimization with the Method of Lagrange Multipliers

In practice, we simply solve Eq. 2-14 utilizing standard nonlinear optimization techniques.

However, it is sometimes useful to partially solve the set of equations cast in the traditional

Gibbs form to obtain new constraints or metrics (i.e., the mean field energy derivative). To

do so, we treat the minimization of the e↵ective free energy using the method of Lagrange

multipliers by defining the variation functional with objective function ��F (w)

Eq. A-10 V (~w, ~↵,~�) = �
X

i

wi lnwi��(U(~w))�
X

n

↵n(
X

tc

wi�1)�
X

k

�k(fk(~w)�fo
k )

for normalization constraints and arbitrary constraints, fk(~w), and their corresponding

Lagrange multipliers, ↵n and �k, respectively. The optimum is obtained at the stationary
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point of V (~w), that is, where the gradient is a zero vector.

Eq. A-11 ~rV (~w, ~↵,~�) = ~0

Gradient elements of V with respect to probability wi are expressed as

Eq. A-12
@V

@wi
= � lnwi � 1� ↵n �Qi = 0

and we define Qi as

Eq. A-13 Qi ⌘ �
@U

@wi
+
X

k

�k
@fk
@wi

noting that our definition of Qi provides a way to summarize any non entropic contributions

to V . Rearranging Eq. A-12 obtains,

Eq. A-14 wi = exp(�1� ↵n) · exp(�Qi)

Gradient elements of V with respect to the normalization Lagrange multipliers are expressed
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as

Eq. A-15
@V

@↵n
=
X

tc

wi � 1 = 0

Applying this definition to these normalization constraints solves for the normalization

Lagrange multipliers and removes them from the system of equations, providing a definition

for a sequence partition function, zi,

X

tc

wi =
X

tc

exp(�1� ↵n) · exp(�Qi) = 1

exp(�1� ↵n) =
1P

tc
exp(�Qi)

⌘ 1

zi

Eq. A-16

and finally providing a series of equations for the individual probabilities.

Eq. A-17 wi =
exp(�Qi)

zi

For the particular instance of no additional constraints to the normalization, the local energy

definition arises naturally. Eq. A-13 reduces to

Eq. A-18 Qi = �
@U

@wi
⌘ �✏i thus wi =

exp(��✏i)
zi

This equation includes ✏i, the mean local energy of i, which we define in Eq. 2-9 when

establishing the mean field energy Eq. 2-12.
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Again, we note that Eq. A-17 provides insight into the theory’s analog to statistical me-

chanics, and that in practice solving these equations with self-consistent techniques is inad-

equate when dealing with possible nonlinearities in the energy function and associated with

constraints.

A.3. Heat Capacity

As usual, the heat capacity is defined as

Eq. A-19 Cv =
@U

@T
= �kb�

2@U

@�

Obtaining an expression for the heat capacity of the mean field energy as defined in

Eq. 2-15 requires obtaining a partial derivative of Eq. 2-12 with respect to �,

Eq. A-20
@U

@�
=
X

i

�i
@wi

@�
+

1

2

X

ij

�ij(wi
@wj

@�
+
@wi

@�
wj)

Utilizing the self-consistent equation established in Eq. A-17, we evaluate the partial

derivative of wi with respect to �

Eq. A-21
@wi

@�
=

1

z2i


@ exp(�Qi)

@�
zi � exp(�Qi)

@zi
@�

�
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Evaluating both derivatives reduces to

Eq. A-22
@wi

@�
= �wi

@Qi

@�
� wi

zi

X

tc

�@Qi

@�
exp(�Qi) = �wi

 
@Qi

@�
�
X

tc

@Qi

@�
wi

!

In assuming that the first of the k constraints is the mean field energy function it is clear

that we simply recover the form presented in Eq. A-13. We evaluate the derivative of Qi

with respect to �, choosing to ignore any of the mixed partial derivatives.

Eq. A-23
@Qi

@�
=
@U

@wi
+ �

@2U

@wi@�
+
X

k

�k
@2fk
@wi@�

⇡ @U

@wi

arriving at a derivative of the probability wi with respect to � that evaluates to a weighted

di↵erence between the local mean energy at i and the site mean energy across all monomer

types and conformers at that site.

Eq. A-24
@wi

@�
= �wi

 
✏i �

X

tc

✏iwi

!
for ✏i ⌘

@U

@wi
= �i +

X

j

�ijwj

Inserting this definition into Eq. A-20, we are able to recover the mean sequence energy
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derivative with respect to � corresponding to the sum of all polymer site variances.

@U

@�
= �

2

4
X

i

�iwi

 
✏i �

X

tc

✏iwi

!
+

1

2

X

ij

�ijwiwj

  
✏j �

X

tc

✏jwj

!
+

 
✏i �

X

tc

✏iwi

!!3

5

= �
X

i

 
✏i
2 � ✏i

X

tc

✏iwi

!
wi = �

SX

s

2

4
X

tc

✏i
2wi �

 
X

tc

✏iwi

!2
3

5 = �
SX

s

V ar(✏s)

Eq. A-25

The final expression, limited by the choice made in Eq. A-23, looks in many ways similar

to the traditional expression for the heat capacity in statistical mechanics.

Cv = kb�
2

NX

n

2

4
X

tc

✏i
2wi �

 
X

tc

✏iwi

!2
3

5 = kb�
2

NX

n

V ar(✏n)Eq. A-26

A.4. Entropically-Normalized Monomer Type Probabilities

In the absence of any energetic constraints (or an infinite temperature ensemble), a discrep-

ancy between monomer type probabilities by simply aggregating conformational probabili-

ties (Eq. 2-16) is clear should Cnt di↵er for indices n and t.

Eq. A-27 w(n,t)

���
S
max

=
C

ntX

c

1

(
T
nP
t
Cnt)

=
Cnt

T
nP
t
Cnt

given wi

���
S
max

=
1

T
nP
t
Cnt

In order to recover monomer type probabilities that are independent of the number of

allowable conformational states, we weight each monomer type probability by a conditional

monomer type entropy, Snt, as to recover the property that at the infinite temperature
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solution, all w(n,t) are equal.

Eq. A-28 w̃(n,t) = w(n,t) ·A · exp(�Snt

kb
) for

Snt

kb
= �

C
ntX

c

wi

w(n,t)
ln

wi

w(n,t)

These weighted probabilities are then normalized

Eq. A-29
T
nX

t

w̃(n,t) = 1 thus A =

 
T
nX

t

w(n,t) · exp(�
Snt

kb
)

!�1

yielding

Eq. A-30 w̃(n,t) =
w(n,t) · exp(Snt

k
b

)

T
nP
t
w(n,t) · exp(Snt

k
b

)

The definition a↵ords the appropriate limits associated with this reweighting. For the infi-

nite temperature sequence-state entropy maximum, we obtain conformational independence

for each type probability; that is, the probabilities of each type at position n on the polymer

are equal.

Eq. A-31 w̃(n,t)

���
S
max

=

1
T

nP
t

C
nt

T
nP
t

0

@ 1
T

nP
t

C
nt

1

A

=
1
T
nP
t

=
1

Tn

In the limit of the zero temperature solution, (i.e., the reduction to a single conformer
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identity and zero probabilities for all others), the reweighted type probability reduces exactly

to the original summation over conformational probabilities, being either identity or zero.

Eq. A-32 for w(n,t) =

8
>><

>>:

1

0

, w̃(n,t) =
w(n,t) · exp(0)

T
nP
t
w(n,t) · exp(0)

=
w(n,t)

T
nP
t
w(n,t)

= w(n,t) =

8
>><

>>:

1

0
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B Vergil Implementation Details

The methodology detailed in Chapter 2 was implemented in the completely reorganized

software package Vergil (previously versions were referred to as SCADS – Statistical Com-

putationally Assisted Design Strategy). Architecting the Vergil suite placed emphasis on

the utilization of parallel computing, the ability to run calculations on laptops and desktops

to massively parallel machines, and user interfaces in the Tcl scripting languages. However,

the most critical aspects of the software are the internal data structures and routines housed

in the Domain and the Optimizer. The Domain is responsible for the atomic organization

of the ensemble of sequences considered, containing positional and chemical information.

The Optimizer is the work-horse, which handles the probability functions of interest and

solves for the desired sequence probabilities. Below we discuss both, including associated

data structures, interfaces, and general implementation details.

B.1. Domain Levels and Transversal

The main organization of the molecular system subject to design lies within the implemen-

tation of the domain; it is here that information relevant to the system variability is stored,

from molecular segregation of motifs down to the atomistic coordinates. The domain serves

as the physical location for the molecular ensembles in question, organized in a tree where

depth of traversal corresponds to the level of detail.

Each of the levels of the domain has been derived from the template class Container. This

class acts as the base class for each of the domain levels. Their commonality lies in that

each has an ElementType – of which that level contains a collection – and a ParentType –

of which that level belongs to.

The container class is meant to provide a general interface for any level of the domain. For

example, any container can add new children, add a copy of a child, delete children, etc.
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Figure B-1. Simple UML diagram indicating the Domain organization. All levels of the
Domain (blue) inherit from the Container Interface (red), with the exception of the Atom
class (yellow). An example domain is depicted to indicate how a particular protein structure
might be organized into this tree system (green).
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Perhaps the most useful of these is the ability to access a child element with the accessor [ ]

operator, or evaluate if a container contains a particular child. Additionally, each container

is equipped with an iterator (and a corresponding const iterator) to iterate through its

children.

More importantly, all levels of the domain are equipped with iterators through all sub-

levels through the use of the ContainerIterator template class. That is, while a Container

can iterate through all its children, it can use the ContainerIterator to also iterate through

subchildren, subsubchildren, and so on. For example, the domain is equipped with iterators

through all levels, down to an iteration through all atoms contained within the domain. This

is equivalent to iterating in a depth first search manner, thus providing e�cient shorthand

that is useful through the library.

The domain is organized into eight levels as indicated in Figure B-1. A general domain is

composed of a series of motifs (eg. di↵erent protein chains, a nonbiological cofactor, etc.).

Each motif is composed of sections that divide the motif into discrete units, and in turn each

section can have multiple paths (pathways) for the sca↵olding of the design. This is done so

that within a motif, the interface between connected sections is fixed as to provide continuity

between the possibility of alternate pathways. Each path has an associated probability that

provides a means of determining the most probable pathway/structure. For design work

where only one backbone path is considered, this probability is always 1.

A given path is composed of a series of sites (residue locations). Sites are explicitly connected

with pointers to indicate molecular connections, creating a directed graph throughout the

domain. Additionally, a site has a reference child which guarantees molecular information

when no ensemble variability is present. Each site is composed of a series of types (monomer

types allowed to exist in the ensemble at that site). A type object is a container of conform-

ers, and includes a default conformational state (conformer) when no explicit conformers are

specified. Additionally, a type object has an associated probability to specify the most prob-

able sequence through the domain. Conformer objects are specific conformations of a given
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type at a given site location, each with an associated probability. Finally, all conformers

are composed of a collection of atom objects.

The Atom class, the lowest level of the domain, is an extension of a Point object. An

atom stores the cartesian coordinates it occupies, has an atom name, a pointer to its atom

type in the topology libraries, and like all levels of the domain, a pointer to its parent –

in this case its parent conformer. We have provided an additional method for Atoms that

attempts to evaluate the smallest number of bonds between the atom and some other atom

in the domain (used in nonbonding interactions, etc.). We note that this only works for

atoms that belong to conformers that belong to a type that has been appropriately linked

to the topology library. This is due to the routine used for evaluating the smallest number

of bonds between atoms according to the molecular topology in the topology library.

B.2. Generalized Probability-based Functions

As discussed in Chapter 2, the basis for the thermodynamic quantities lies in the individual

probabilities of the ensemble of conformers. Recall the probability of the ith conformer being

wi = w(n,t,c), corresponding to site n, type t, and conformational state c. These become the

free variables used to evaluate the various quantities defined throughout Chapter 2, and are

described below.

The implementation of the function class is implemented as a base abstract Function class

(defined in function.h), for which the function interface is defined. The three main class

methods are Value, FirstDerivative, and SecondDerivative (Listing B.1) each of which

take a vector w (and partial derivative indices) and return the value of the function at that

point. Value must be defined for each of the functions, but the derivative methods have

been provided with default forward-finite di↵erences routines should an exact formula be

di�cult to arrive at.
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Listing B.1. Function Interface

virtual double Value(const Vector &x) = 0;

virtual double FirstDerivative(const Vector &x, size_t i);

virtual double SecondDerivative(const Vector &x, size_t i, size_t j);

The abstract Function class also provides a means of managing which indices of the vector

w are included in the evaluation of the member methods, as well as interfaces that must be

defined for adding, removing, and updating those indices. This creates an e�cient lookup for

functions which only include a specific set of variables (eg., SiteProbability or Composition).

The following sections discuss the implementation of commonly used functions and their

corresponding equations.

B.2.1. Conformational Entropy

The total entropy of the sequence conformational states is defined in Eq. 2-5 as the total

entropy over the Boltzmann factor. To keep the quantity unitless, we divide through by the

gas constant, R, when the entropy is in per molar values.

Eq. B-1
S

R
= �

NX

i

wi lnwi

This function utilizes all i in the summation, and the implementation is straightforward.

The evaluation of the first partial derivative with respect to the ith variable is given as

Eq. B-2
@ S
R

@wi
= � lnwi � 1

while the second mixed partial derivative with respect to the ith and jth variables is given
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as

Eq. B-3
@2 S

R

@wi@wj
=

8
>><

>>:

� 1
w

i

for i = j

0 for i 6= j

The implementation of these is found in function entropy.cpp.

It is worth noting that the definitions above are real only for positive values of the proba-

bilities. While solutions to the entropic maximization problem should not include negative

probabilities, solvers may not necessarily be bounded by [0, 1]. For each of the above defini-

tions (the real parts of the entropy), we also define the corresponding imaginary definitions.

The imaginary part of the function is given as

Eq. B-4 Im(
S

R
) =

8
>><

>>:

�
NP
i
⇡ ⇤ wi for wi < 0

0 for wi � 0

which is nonzero for negative probabilities. The corresponding first derivative is given as

Eq. B-5 Im(
@ S
R

@wi
) =

8
>><

>>:

�⇡ for wi < 0

0 for wi � 0
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while the imaginary part of the second derivative is always zero.

Eq. B-6 Im(
@2 S

R

@wi@wj
) = 0 for all wi

These metrics have been helpful for identifying solutions of the entropy maximization prob-

lem where the normalization constraints have been satisfied, but contain negative proba-

bilities. The class as implemented will output the imaginary part of the entropy should it

exist, as a way to alert the user that conformers have negative probability values.

B.2.2. Site Probability

The critical constraint to the entropy maximization problem is the normalization of the

conformer probabilities. As described in Section 2.2, the normalization occurs across all

conformers at a particular site, invariant of their type. We define a function to perform

such a summation (which we will later constrain to be 1 in the context of the optimization

problem) as given by

Eq. B-7 f =
T
nX

t

C
ntX

c

wi

Because the function is linear in wi, its first partial derivative is constant and is nonzero

for variables that exist at site n,

Eq. B-8
@f

@wi
= 1 for i 2 site n
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and its second mixed partial derivative is always zero

Eq. B-9
@2f

@wi@wj
= 0

All implementations can be found in function siteprobability.cpp.

B.2.3. Mean Field Energy

Section 2.2 describes the formulation for a mean field based approach to obtaining an energy

for the sequence ensemble. The implementation of Eq. 2-12 is defined as a function of

energy coe�cients in both one and two indices (�i, �ij). These coe�cients are defined by

a sum of potential compute objects passed on construction, such that for any conformer i,

�i is defined by the InterConfomer routine, and for any pair of conformers i and j, �ij is

defined by the IntraConfomer routine, as summed across those potential functions. The

mean field energy, a quadratic function in the probabilities, is thus given as

Eq. B-10 U =
X

i

�iwi +
1

2

X

ij

�ijwiwj

where the first partial derivative is defined as

Eq. B-11
@U

@wi
= �i +

1

2

X

j

(�ij + �ji)wj
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and the second mixed partial derivative is defined as

Eq. B-12
@2U

@wi@wj
=

1

2
(�ij + �ji)

It is prudent to note that the above definitions explicitly take into account the di↵erence

in the quadratic coe�cients �ij and �ji (as is necessary for the definition of the lattice

energy, see Section 2.2.3). However, given our simple definition of the energy coe�cients,

we can reduce Eq. B-11 and Eq. B-12 by taking advantage of the inversion symmetry in

i and j when considering the pairwise interactions. This means that the energy interaction

of conformer i with conformer j is equivalent to the energy interaction of conformer j

with conformer i. Because of this, the evaluation of the energetic coe�cients is reduced

considerably as detailed in Listing B.2.

This then a↵ords a reduced form of Eq. B-11 and Eq. B-12 which incorporates this

inversion. The first partial derivative of the mean field energy then becomes

Eq. B-13
@U

@wi
= �i +

X

j

�ijwj

and second mixed partial derivative

Eq. B-14
@2U

@wi@wj
= �ij

The specific implementation of the mean field energy utilize the Eq. B-11 and Eq. B-12

in the class implementation in function meanfieldenergy.cpp.
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Listing B.2. One- and Two-Body Energies

//One -Body Energies

for (size_t i = 0; i < n; ++i) {

for (list <Compute *>:: const_iterator it = computes_.begin(); it !=

computes_.end(); ++it) {

one_body_energies_[i] += (*it)->Intra(* conformers[i]);

}

}

//Two -Body Energies

for (size_t i = 0; i < n; ++i) {

for (size_t j = i + 1; j < n; ++j) {

for (list <Compute *>:: const_iterator it = computes_.begin(); it !=

computes_.end(); ++it) {

two_body_energies_(i, j) += (*it)->Inter(* conformers[i], *conformers[j

]);

}

two_body_energies_(j, i) = two_body_energies_(i, j);

}

}

B.2.4. Sequence Conformational Free Energy

As defined in Section 2.2, it is often desirable to maximize the entropy function in the

context of the mean field energy constraint at a particular value of the mean field energy

Lagrange multiplier, � (here denoted as the e↵ective temperature). To do so, we create a

new function, taking the form of a sequence conformational free energy fixed at a particular

value of �.

Eq. B-15 F = U � TS = U � 1

�

S

R
= U �RT

S

R
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As seen here, this is just a linear combination of the previously defined functions of the mean

field energy (Eq. B-10) and the sequence conformational entropy (Eq. B-1). Because of

that, the partial derivatives are trivial to define, in the sense that we have already done so.

The implementation of this function simply sums function calls from each of those classes.

The first partial derivative is given as

Eq. B-16
@F

@wi
=
@U

@wi
�RT

@ S
R

@wi

and second mixed partial derivative as

Eq. B-17
@2F

@wi@wj
=

@2U

@wi@wj
�RT

@2 S
R

@wi@wj

Each implementation can be found in function freeenergy.cpp.

B.3. The Optimization Interface

The main purpose of Vergil is find a solution to the entropy maximization/free energy

minimization problem detailed in Chapter 2; that is, to solve constrained optimization

problems using the domain-based probability functions defined in Section B.2. Vergil is

organized in a way that allows the definitions of these optimization problems to be formed

in a modular way: adding and deleting constraints, changing the objective function, and

finding the stationary point of a partially solved problem are just a few such examples.

The primary means by which to interface the probability-based functions with optimization

routines is the Problem class. The class is composed of six private data members as

detailed in Listing B.3. The n-dimensional point x stores some value which serves as a

means of accessing values of the problem. Vectors detailing the upper and lower boundaries
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are included for each variable in x, which default to the largest positive and lease negative

double values respectively. A pointer to an objective function to optimize is stored, along

with a map of Constraints indexed by a string key (id for the constraint).

Listing B.3. Problem Data Memebers

Vector x_;

Vector lower_boundary_;

Vector upper_boundary_;

Function* objective_function_;

std::map <std::string , Constraint > constraints_;

The problem class provides an interface for the general form of an optimization problem:

minimize some objective function f(x) subject to equality constraints gk and boundaries

on the variables x.

min f(~x)

subject to gk = gok

bounded by xL  x  xU

Eq. B-18

Constraints are handled by the routines listed in Listing B.4. To impose a constraint on

the problem, one simply calls the AddConstraint method, passing a string identifier for

that constraint, a pointer to the constraint function (gk), and the constrained value (gok).

As constraints are organized in a map indexed by string ids making search or deletion

simple map operations. Additionally, the class provides a means to obtain a vector of all

constraints (maintained as insertion order) for ease of use in the optimizer classes.
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Listing B.4. Optimizer Interface for Constraints

void AddConstraint(std:: string id, Function* function , double target);

Constraint& constraint(std:: string id);

void DeleteConstraint(std:: string id);

const std::vector <Constraint *>& constraints ();

The Constraint object is organized as a combination of a function pointer and target value.

The class also supports booleans indicating whether the constraint is an equality, greater

than, or less than constraint. It is important to note is the various public methods of the

constraint class implement manipulations of the primal form of a constraint, indicated in

Listing B.5.

Listing B.5. Constraint Methods

double Value(const Vector &x);

double PrimalValue(const Vector &x);

double PrimalFirstDerivative(const Vector &x, size_t i);

double PrimalSecondDerivative(const Vector &x, size_t i, size_t j);

bool IsPrimalFirstDerivativeZero(size_t i);

bool IsPrimalSecondDerivativeZero(size_t i, size_t j);

Calculating the value of the constraint at some point x is simply evaluating the constraint

function’s Value method, gk(x).

This is contrasted by evaluating the primal value of the constraint, through PrimalValue,

which is the value of the constraint function minus the target value. This is the same as

evaluating how close the constraint is to being satisfied.

Eq. B-19 gk(x)� gok(x)
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Additionally, both the first and second partial derivatives of the primal value of the con-

straint are supplied by PrimalFirstDerivative

Eq. B-20
@

@wi
gk(x)� gok(x) =

@gk(x)

@wi

and PrimalSecondDerivative.

Eq. B-21
@2

@wi@wj
gk(x)� gok(x) =

@2gk(x)

@wi@wj

Lastly, as with the definitions for all Function classes, methods are provided to assess if

the first or second partial derivatives will always be zero for certain indices with IsPrimal-

FirstDerivativeZero and IsPrimalSecondDerivativeZero.

The interface for obtaining information about the objective function in the problem is

provided in Listing B.6, which gives the user access to the value of the objective function,

the gradient of that function, and its Hessian.

Listing B.6. Problem Interface

double ObjectiveFunctionValue ();

void Gradient(Vector* gradient);

void Hessian(Matrix* hessian);

To handle the specific case of optimization problems working on functions given in the

theory chapter, there is the derived class ProblemDomainProbability, which considers

all functions provided to work on the set of conformer probabilities associated with the

domain. This class is unique in its ability to get and set probabilities from corresponding
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conformers in the domain. Upon instantiation, this class sets the lower and upper bounds of

all variables (probabilities) to 0 and 1, respectively. Additionally, normalization constraints

are automatically added for each site in the domain.

B.3.1. Optimizers

The default optimization interface for the Optimizer class is detailed in Listing B.7. It

provides a class method which takes a problem and performs the optimization. If the

problem is able to be solved, it will store the solution x⇤ in the problem. There is also a

means of obtaining the multipliers from the optimizer directly.

Listing B.7. Problem Interface

bool optimize(Problem& problem);

Vector& multipliers ();

The default (base class) optimizer casts the problem as a Lagrangian system of nonlinear

equations, and creates a nonlinear solver based on the modified Newton-Raphson solver with

a line search as implemented in Numerical Recipes in C, Second Edition. In the future, this

optimizer will be adjusted to a more robust method.

Vergil also provides an interface to the IPOPT (Interior Point Optimizer) software package.

CMake will automatically detect if the IPOPT package is installed on your system, and

compile the corresponding derived class if necessary. The class provides the same interface

as in Listing B.7, with the addition of a handful of routines for adjusting IPOPT settings.

B.3.2. Lagrangian Optimization

The default optimizer uses the method of Lagrange multipliers to cast the problem as a

system of nonlinear equations. For a problem as given by Eq. B-18, we can define a
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Lagrangian as

Eq. B-22 V = f(x) +
X

k

�k(gk(~w)� gok)

where the solution x⇤ is a local optimizer of V as given by

Eq. B-23 ~rV = ~0

To find this solution, Vergil contains a series of classes that abstract solving this system of

nonlinear equations, through both the NonlinearSystem and NonlinearSolver classes.

The NonlinearSystem class contains an interface for setting the value of the system’s

Functional, as well as the Jacobian of the Functional at some point x (Listing B.8).

Listing B.8. Nonlinear System Interface

virtual void Functional(const Vector &x, Vector* functional);

virtual void Jacobian(const Vector &x, Matrix* jacobian);

The NonlinearSystemLagrangian is derived from the NonlinearSystem class. The

Functional and Jacobian methods are then defined by the following equations, forming the

Gradient and Hessian of the Lagrangian variational functional, respectively. The Gradient

consists of the first partial derivative of V with respect to the variables (using the first partial

derivative of the objective function and the first partial derivative of the constraints), and

the first partial derivative with respect to the constraint multipliers (using the primal value
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of the constraints).

Eq. B-24 F(~x) =

0
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Eq. B-25 ~x =
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The Jacobian of the gradient of the variational function is exactly the Hessian of the vari-

ational functional.

Eq. B-26
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To solve a given system of nonlinear equations, a NonlinearSolver class is implemented.

The interface, given in Listing B.9, takes a NonlinearSystem on construction, contains a

means of finding the root of that system for an initial estimate of the root, a boolean

indicating if the root finder was successful, an accessor to the root, and a measure of the

residual for that system of nonlinear equations.
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Listing B.9. Nonlinear System Interface

NonlinearSolver(NonlinearSystem& nonlinear_system , int dimension);

virtual void FindRoot(const Vector& initial_guess) = 0;

bool root_found ();

Vector root();

virtual double Residual () = 0;

This interface is implemented specifically in the NonlinearSolverNumericalRecipes

class, which finds the root of the system of equations using the Newton-Raphson inspired

implementation detailed in Numerical Recipes in C, Second Edition.

B.3.3. Gibbs Form of Nonlinear System of Equations

Historically, the probabilistic approach has taken advantage of the partial solution a↵orded

by Eq. A-17. Taking this equation across all probabilities along with any additional equal-

ity constraints, one can then form a system of nonlinear equations whose root is a solution.

This looks like

Eq. B-27 F(~x) =

0
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where

Eq. B-28 ~x =
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and where the definition for Qi and zi are given in Chapter 2. As a reference, we will begin
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with Eq. A-13 as the current definition, where U is the mean field energy and � is the

“e↵ective temperature”.

Qi = �
@U

@wi
+
X

k

�k
@gk
@wi

zi =
X

tc

exp(�Qi)

Eq. B-29

The NonlinearSystemGibbs class is a derived class from NonlinearSystem, which de-

fines the Functional as Eq. B-27, and the Jacobian of that Functional as

Eq. B-30
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Eq. B-31
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It is clear that to populate the Functional vector and Jacobian matrix, we need to be able to

evaluate the first partial derivatives of the Boltzmann factors and partition functions with

respect to both the probabilities and Lagrange multipliers. The NonlinearSystemGibbs

class keeps computational time down by storing the current estimate of both Qi and zi,

each stored in a vector, and has a private interface for evaluating each (using Eq. B-29)

as well as their first partial derivatives, as given in Listing B.10.
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Listing B.10. NonlinearSystemGibbs Private Interface for Boltzmann Factors and Parti-

tion Functions

double BoltzmannFactor(size_t i);

double BoltzmannFactorFirstDerivative(size_t i, size_t j);

double PartitionFunction(size_t isite);

double PartitionFunctionFirstDerivative(size_t isite , size_t j);

void AddFunctionTerm(std:: string id, Function* function , double

constant_scalar = 1.0);

ProblemDomainProbability probability_problem_;

std::vector <double > boltzmann_factor_;

std::vector <double > partition_function_;

std::vector <size_t > partition_function_index_;

std::vector <std::vector <size_t > > partition_function_list_;

std::map <std::string , std::pair <Function*, double > > function_terms_;

Vector multipliers_;

It is worth calling attention to the vector of vector indices, partition function list , which

stores the list of indices associated with each partition function index; as well as the vector

of integers partition function index which stores the corresponding index to parti-

tion function list for each of the conformer indices. These two objects are created on

instantiation when the domain is passed to the constructor.

The equations defining the first partial derivatives in Listing B.10 are as follows. The first

partial derivative of the Boltzmann factor with respect to the probabilities wi is given as

Eq. B-32
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)

199



while the first partial derivative with respect to the multipliers is given as

Eq. B-33
@

@�k
exp(�Qi) = � exp(�Qi)

@Qi
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= � exp(�Qi)(

@gk
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The first partial derivative of the partition function simply uses the above definitions for

the first partial derivatives of the Boltzmann factors with respect to both the probabilities

and Lagrange multipliers as shown in the following equations.

Eq. B-34
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Eq. B-35
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To minimize having to call the evaluation of the Boltzmann factors and partition functions,

the set x functions have been overridden to make sure that any changes to the variables

also updates the appropriate terms. Additionally, we call special attention to the routine

which fills in the Jacobian matrix. Because the same derivatives will be called in each

column, the fill is done in a column-wise fashion as detailed in Listing B.11.
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Listing B.11. Gibbs Fill Jacobian Routine

void NonlinearSystemGibbs :: Jacobian(const Vector &x, Matrix* jacobian) {

// Update the variables , boltzmann factors , and partition functions

set_x(x);

//For each column j in the Jacobian

for (size_t j = 0; j < jacobian ->number_cols (); j++) {

...

//Grab all derivates of Qi and Zi for this fixed column of j

for (size_t i = 0; i < boltzmann_factor_.size(); i++) {

boltzmann_factor_1D[i] = BoltzmannFactorFirstDerivative(i, j);

}

for (size_t isite = 0; isite < partition_function_.size(); isite ++) {

partition_function_1D[isite] = PartitionFunctionFirstDerivative(isite ,

j);

}

//Fill probability rows of the jth column

for (size_t i = 0; i < probability_problem_.NumberVariables (); i++) {

size_t isite = partition_function_index_[i];

//Fill each element in that column

...

}

}

}
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