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Abstract 

This paper presents a survey of existing techniques 
for achieving mobile code security, as well as a rep- 
resentative sampling of systems which use them. In 
particular, the problem domain is divided into two 
portions: protecting hosts from malicious code; and 
protecting mobile code from malicious hosts. The 
discussion of the malicious code problem includes a 
more in-depth study of the Java security model, as 
well as touching upon several other systems. The 
malicious host problem, however, is much more diffi- 
cult t o  solve, so our discussion is mostly restricted to 
ongoing research in that area. 

1 Introduction 

The recent explosion of the Internet, and in par- 
ticular, the World Wide Web, offers an astounding 
amount of interconnected computing resources. How- 
ever, for most users, their use of Internet resources is 
primarily limited by bandwidth. In particular, espe- 
cially in home computers, there are many CPU cycles 
to spare in comparison to the rate at  which data can 
be retrieved. 

This suggests that rather than attempting to move 
data across a network, we might be best served by 
trying to move applications, which may very well be 
more compact than the data they operate upon or 
produce. The usual term for this is mobile c o d e  
code which is written on one computer is transmit- 
ted in some form to a second computer, where it is 
executed. The two main forms of mobile code that 
we will discuss here are applets and agents.  

Applets consist of mobile code which is fetched 
to be executed in a local environment. This tech- 
nique was popularized by web browsers with embed- 

ded Java [GJS96] virtual machines. In particular, it 
allowed web publishers to reasonably serve interest- 
ing "active" content such as animations or games, 
rather than just static Hypertext Markup Language 
(HTML) [BLC95] pages or bandwidth-dependent in- 
teractive Con~mon Gateway Interface (CGI) [CGI98] 
content. Here, the user which hosts the executing 
applet can be viewed as the consumer. 

Agents, on the other hand, are mobile programs 
which are sent out into the network to perform some 
task for their owner. One of the earliest mobile agent 
systems was Telescript [TV96], produced by General 
Magic. Intelligent agents might be able t o  perform 
web searches or shop for bargain airline tickets. The 
idea is that various business would host agent execu- 
tion environments, and consumers would produce the 
mobile code and send it out into the network. 

In either the applet case or the agent case, we have 
mobile code which is produced by one party and run 
in an environment controlled by another party. Natu- 
rally, this raises some very important questions about 
the security of mobile code. In the applet case, the 
consumer would like to execute useful applets while 
protecting his system from malicious ones. In the 
agent case, however, the consumer would like to be 
able to protect his agents from malicious servers. In 
this paper, we will refer to these two viewpoints as 
the malicious  code problem and the malicious  h o s t  
problem, respectively. 

The remainder of this paper explores the security 
issues involved with mobile code and surveys existing 
techniques for addressing them. We will begin with a 
discussion of the malicious code problem in Section 2, 
as that is the more well-understood viewpoint of mo- 
bile code security. We will then proceed with the ma- 
licious host problem in Section 3, studying the cur- 
rent approaches to address this set of concerns. This 



paper is not an overview of mobile code systems; we 
restrict ourselves to the security issues involved and 
the techniques for solving them. A good overview of 
mobile code programming languages may be found 
in [Tho97], and an introduction to the mobile agent 
paradigm may be found in [Kna96]. 

2 Malicious Code 

The security issues involved with running untrusted 
code are fairly clear. Consider the most straightfor- 
ward method of allowing applets: a user downloads 
an applet in an appropriate binary executable format 
and simply runs it. Since this would imply that the 
applet would run with the permissions of the code 
consumer, the user's system would be quite vulner- 
able. The applet might be able to randomly write 
to memory, possibly crashing the machine'. Even 
worse, the applet would be able t o  read, modify, or 
even delete the user's private files. 

A first attempt might be to  require a step of au- 
thentication before running an applet. Then the user 
could be sure only to  run code which came from 
specific trusted sources. This approach however, is 
unsatisfying in a t  least two ways. Firstly, not only 
this would require some sort of public key infrastruc- 
ture to  scale well, but it might severely limit which 
applets a user can run-even an "untrusted" server 
might provide useful and benign code. Secondly, and 
more importantly, though, even code from "trusted" 
sources might contain bugs which could have ma- 
licious (though unintentional) consequences on the 
user's system. 

This would suggest that an ideal solution to the 
malicious code problem would be one which caught 
and prevented unsafe actions, whether intentional or 
not. Then not only could the user feel confident 
about downloading applets from untrusted sources, 
but would also have some measure of protection from 
buggy software. Three different techniques for solv- 
ing this problem include safe interpreters, fault iso- 
lation, and code verification. The next three subsec- 
tions will address each of these techniques in turn. 

2.1 Safe Interpreters 

As mentioned above, running straight binaries 
presents some serious security and safety problems. 

'Operating systems without address spaces are distressingly 
common in the home computing environment! 

Master Safe 
Interpreter i Interpreter ! 

-.................. 

padded cell 
hidden command 

Figure 1: Safe-Tcl architecture [OLW97] 

A very common approach to addressing this issue is 
to forgo compiled executables and instead to  inter- 
pret the mobile code instead. In this way, the inter- 
preter has fine-grained control over the applet, and 
can examine each instruction or statement and decide 
whether to execute it or not. Now the safety of the 
system is reduced to the correctness of the security 
policy implemented by the interpreter; a careful code 
review could provide some measure of confidence to 
this effect. By contrast, determining whether an ar- 
bitrary applet program is "safe" is not decidable, and 
requiring the user to  review all incoming mobile code 
is certainly not scalable. 

Safe-Tcl. One safe interpreter system which illus- 
trates some common security and safety techniques is 
the Safe-Tcl system [OLW97]. The major construct 
in use is the padded cell, depicted in Figure 1. Each 
applet is isolated in a safe interpreter where it can- 
not interact directly with the rest of the application. 
In turn, the execution environment of the safe inter- 
preter is controlled by a (trusted) master interpreter. 
This is facilitated by the Tcl language, in which in- 
terpreters are first-class values and are highly config- 
urable. In particular, any "unsafe" functions can be 
hidden from the namespace of the padded cell, thus 
preventing the applet from invoking them. 



Of course, if function hiding is used too liberally, 
it can render an applet not only harmless but also 
useless! There are certainly cases where the mobile 
code might need to access disk (e.g., for temporary 
storage), create a window on the display, or perform 
some network communication. The Safe-Tcl system 
uses aliases to  allow controlled use of unsafe func- 
tions. An alias is simply an upcall to the master in- 
terpreter which serves to  guard some system resource 
and decide whether to  grant or deny the request. The 
padded cell approach, through proper use of function 
hiding and aliasing in the construction of the safe 
interpreters, thus allows multiple applets to be run- 
ning concurrently, each having its own security policy. 
Clearly, Safe-Tcl is quite flexible. 

However, care must be taken regarding allowing 
applets to communicate. In their paper describing 
the system, Ousterhout et al. point out that the 
composition of two sets of safe commands is not nec- 
essarily safe itself; i.e., applets can collude to acquire 
more access than they might individually have been 
granted2. Despite the complexity of the cooperating 
applet problem, the padded cell approach does sim- 
plify the setting of security policies for single applets. 
Figure 2 shows how this simplification is accom- 
plished; namely, all interaction between trusted and 
untrusted components of the system occurs through 
well-defined interfaces (the aliases), so security efforts 
may be focused there. 

Extensions to Safe-Tcl. As we just mentioned, 
Safe-Tcl provides an environment which takes care 
of the safety issues of applets and allows flexibility in 
the policy for addressing the security issues. Here we 
mention two projects which use Safe-Tcl and apply 
their own security policies to solve the malicious code 
problem. 

The first is the Upper Atmospheric Research Col- 
laboratory (UARC) [JRP96], a system designed to al- 
low scientists to collaborate remotely. In UARC, the 
applications (e.g., test data viewers) are downloaded 
from a central authority and then executed, allowing 
simple centralized administration. The main appli- 
cation is called the browser, and serves the same role 
as the master interpreter in the Safe-Tcl architecture; 
interpreters for different types of applets (including 
Safe-Tcl itself, Java-enabled Netscape, or Java's ap- 

 or example, an applet granted network access exclusively 
to hosts inside a firewall might cooperate with an applet al- 
lowed only to communicate with hosts outside the firewall, thus 
effectively bypassing the firewall itself. 

padded cell 

0 trusted @ alias untrusted 

Figure 2: Code interactions in Safe-Tcl [OLW97] 

pletviewer [GM96]) are then run as subsidiary safe 
interpreters. The browser abstracts system resources 
into objects and associates with them access control 
lists. Access is controlled by using cryptographic au- 
thentication to classify the local user, the applet's 
source machine, and the applet's author. Config- 
urable policies then perform intersections of the var- 
ious principal's rights to grant the least common ac- 
cess. 

A different approach is used by the 
D'agents [BKR98] system (formerly known as 
Agent Tcl [Gra96]). Here, the applets are agents 
are written in Tcl, Java, or Scheme and run in 
interpreters modified to allow process migration. 
Resource control is based on an economic system 
where each agent carries electronic cash and must 
pay resource managers for access to  resources. 
Special processes serve as "banks" which validate 
transactions and issue the electronic cash. There are 
additionally "arbiter" processes which are used to 
discourage cheating on transactions (i.e., receiving 
service and then not paying for it, or accepting 
payment and then not rendering the service pur- 
chased). Here, each party gives some small amount 
of "collateral" electronic cash which is forfeited if 
the other party cries foul, thus discouraging cheating 
or false accusation. Specifically, these resource 
managers serve as the master interpreter sides of the 
aliases in Safe-Tcl. In general, this market-based 
approach allows the servers to control resource usage 
by varying their pricing structures and by having the 
banks limit the outflow of currency to  the agents. 



Unfortunately, neither of these systems represents 
a completely general solution to setting security pol- 
icy for downloaded applets. In the UARC system, for 
example, usefully empowered applets are restricted 
to the "official" UARC software-other software is 
(probably rightfully so) extremely limited in the ac- 
cess control it is granted. Of course, the UARC 
system is a very specialized application for atmo- 
spheric scientists, and although the general archi- 
tecture could easily be instantiated in other collab- 
orative environments, it is not meant to be a one- 
size-fits-all application. The D'agents work, on the 
other hand, seems a little more general; it would be 
straightforward for a server to set prices on CPU cy- 
cles, memory, and disk space based on its current 
load. One large difficulty seems to be setting a price 
on read or write access to local files-clearly some 
useful applets might need this service. It would seem 
that some sort of authentication would be necessary 
so that a price could reasonable set for trusted agents 
or a sale refused to untrusted ones. The paper by 
Bredin et al. does not address this issue; their focus 
rather seems to be simply allowing machine owners 
to "rent" their spare computational resources. 

Telescr.ipt/Odyssey. General Magic was one of 
the first companies to offer a commercial mo- 
bile agents system. Their original system, Tele- 
script [TV96], in light of the overwhelming success 
of the Java applet platform, has since been reim- 
plemented in Java as is now being marketed as the 
Odyssey [Whig81 system. Nevertheless, much of the 
original Telescript paradigm has been preserved. 

In Telescript, the notion of security has been in- 
cluded in the design of the object-oriented source lan- 
guage. The class hierarchy includes certain semantic 
limitations: a class can be sealed and thereafter may 
not be extended or subtyped; also, a class can be 
abstract and thereby not able to be instantiated. In 
addition, there are operators to turn pointers into 
protected references; an object may not be modified 
by accessing it through a protected reference. This 
gives a sort of read-only capability-based feel to the 
system. 

However, one of the main features of the Telescript 
language is that the security policy for a system may 
be specified directly in the language. Specifically, 
each agent (called a process) carries with it a permit 
which lists its rights. The permit includes limitations 
on total lifetime, total memory usage, and CPU pri- 
ority, but a hosting site may always choose to grant 

a more restricted set of rights than does the permit. 
Other rights expressed by the permit include the abil- 
ity to spawn new processes, the ability to travel to 
another site, and the abilities to either grant or deny 
rights to other processes. 

In his survey of agent programming lan- 
guages [Tho97], Thorn points out some weak aspects 
of the Telescript system: 

The Telescript system includes a number of 
features to restrict the actions of agents, but 
they seem to suffer from a lack of systematic 
design. It  is not clear how to be convinced of 
the consistency of the implemented security 
restrictions. 

One pitfall of having permissions built into the lan- 
guage is that a programming error may lead to a pro- 
cess with a permit that is too permissive. As Thorn 
puts it: "[Telescript processes] can be hard or im- 
possible to control once launched." Thus, unlike the 
Safe-Tcl approach, where there is a clear distinction 
between trusted and untrusted code (recall Figure 2),  
in Telescript we may have a jumble of agents execut- 
ing on a given host, all with differing access rights 
and perhaps interacting in unexpected ways. 

Java. Java [GJS96] is perhaps the most well-known 
applet system in existence. Unfortunately, it is 
known not only for its security system, but also for 
the vulnerabilities of that system [Sun98]. We begin 
by summarizing nitzinger and Mueller's overview of 
Java security [FM96]. 

The sources of Java applets are compiled down into 
bytecode instructions on the Java Virtual Machine 
(JVM). An implementation of the JVM is then em- 
bedded in an application, e.g., a web browser, which 
allows the applet to be interpreted. A local security 
manager class is loaded a t  start-up. All access to 
unsafe operations must be approved by the security 
manager. The default restrictions for an applet in- 
clude: no local disk access; all stand-alone windows 
created by the applet are clearly labeled "untrusted" ; 
and no network connections to computers other than 
the server from which the applet was downloaded. 

When the bytecodes for the applet arrive at the 
browser, they are run through a static verifier. The 
verification process confirms that the bytecodes ad- 
here to the Java language specification (i.e., no 
forging of pointers, class loaders, or security man- 
agers). In addition, the verifier checks for violations 



of namespace restrictions, stack over- or under-flows, Trust Manager JVM as well as to runtimes produced 
and illegal type casts. by JavaSoft [Go196]. 

Once the bytecodes pass the verification stage, a Finally, in [WBDF97], Wallach et al. specify three 
class loader is invoked which dynamically links them techniques for extending Java's security architecture. 
into the namespace. In particular, the class loader Two of these ways, the addition of capabilities and 
keeps separate namespaces for local (trusted) classes hiding classes a la Safe-Tcl, have already been dis- 
and for downloaded (untrusted) classes; this prevents cussed here, so we will simply touch upon the last 
applets from spoofing an existing trusted class. Con- technique, extended stack introspection. The idea is 
trol is then passed to the bytecode interpreter, and to require each class to be digitally signed by some 
the applet is executed. principal, which could be a person, the JVM itself, 

The ubiquity of Java applets suggests that this se- or even another class. When an access request is 
curity model is not overly restrictive-useful work made for a resource, the established identity is used 
can be done this way. However, flaws in JVM imple- to access a permissions matrix. Any rights which are 
mentations of this model, particularly in class loaders granted are then encoded in the execution stack: sub- 
and security managers, can be exploited to circum- sequently called classes then inherit the rights, but 
vent the security measures employed. Another short- when the calling class returns, the rights are popped 
coming of this original model is that all applets are off the stack, thus preventing a calling class from 
given the same set of access rights-there is only one obtaining the callee's rights. Wallach et al. note 
security manager per browser. that the Netscape Communicator 4.0 implements ex- 

An extension of the Java system meant to alleviate tended stack introspection. 
this problem is the use of Java Archive (JAR) files. 
These files are digitally signed by their producers; Other interpreted systems. The OCaml [Ler95] 
public key cryptography can then be used to guaran- programming language implementation has also been 
tee the origin of the bytecodes, and differing security used to implement a web browser, MMM. Like Java, 
managers may be used based upon the level of trust applets consist of bytecode files which are dynam- 
placed in the applet's author. JAR files, however, are ically linked and interpreted. However, the security 
not in as widespread use as the basic JVM system. model is quite different from that of the JVM. In par- 

ticular, the bytecodes are not subjected to the same 
Java extensions. Electric Communities' Trust rigorous verification process. Instead, a crytographic 
Manager [Corn] is a security framework which allows checksum of the interfaces of the downloaded mod- 
the specification of the level of trust placed in vari- ules is used; the OCaml language is strongly and stat- 
ous principals, and permits rights to be delegated to ically typed, and so a reliance is made on a certified 
classes from trusted sources while still retaining the compiler to achieve safety for the system. Security is 
ability to revoke them. They have modified Sun's achieved using familiar techniques: much as the Java 
JVM to allow certificate-based policy decisions that class loader maintains a Separte namespace for local 
allow for the more granular security control hinted at and remote classes, the CICaml system permits local 
by JAR files. The changes extend the set of restric- module thinning which results in allowing imported 
tions which can be placed on a downloaded applet, modules to only see a (safe) subset of the locally ex- 
including control over whether other classes can be ported modules' intc3rf~ces3. 
imported or downloaded and control over the pack- Finally, PLAN (Programming Language for Active 
age membership of any downloaded applets. Packets) [HKM+98] is a language meant to replace 

In [HI97], Hagimont and Ismail proposed an ex- network packet headers. Agents here are subject to 
tension to Java and the JVM which adds software special requirements specific to their execution envi- 
capabilities [Lev84] for This would allow ronment (i. e., on network routers). Authentication of 
mutually-suspicious Java-based mobile agents to con- every packet would be extravagantly costly, and tight 
trol the degree of privilege sharing involved in a co- ~0ntr01 of router resources is very important. The 
operative exchange, Their system relies on an in- language thus has limited expressibility-there is no 
frastructure which will allow agents to mutually au- direct recursion nor general looping constructs. HOW- 
thenticate and will permit the granting of an agent's ever, the language is sufficiently expressive to write - - - 
initial permissions when it arrives on a server. Ca- 373is is essentially similar to the function hiding capabili- 
pabilities have been added to Electric Communities' ties of safe-TC~. 



programs which run exponentially long in their size, 
so the system still needs CPU timers and allocation 
checks. Future work in further language restrictions 
may permit the removal of these watchdog overheads. 

2.2 Fault Isolation 

As the reader may perhaps infer from the relative 
length of the previous subsection, interpreted systems 
are by far the most common platforms for solving the 
malicious code problem. However, interpreters suf- 
fer a serious performance overhead when contrasted 
with compiled machine code. Users whose Java ap- 
plets run achingly slow may wistfully yearn for the 
ability to safely execute regular binaries. Fortu- 
nately, it is possible to move towards this goal using 
a fairly straightforward method known as sandbox- 
ing [WLAG93]. 

Here, the untrusted code is loaded into its own part 
of the address space known as a fault domain4. The 
code is then instrumented to be sure that each load, 
store, or jump instruction is to an address in the fault 
domain. This is accomplished in one of two ways: 

1. insert a conditional check of the address and 
raise an exception if it is invalid, or 

2. simply overwrite the upper bits of the address to 
correspond to those of the fault domain, 

where the tradeoff is that the former alternative is 
more useful for debugging but the latter incurs less 
overhead. 

These techniques provide safety at  a much lower 
cost5 than interpreters. However, we are still sub- 
ject to security concerns, for which the system shares 
techniques with the safe interpreters of the previ- 
ous subsection. Additional instrumentation is done 
to cause system calls to be turned into calls to ar- 
bitration code, similar to the aliasing technique of 
Safe-Tcl. One major drawback of the sandboxing 
approach is that the downloaded code is no longer 
platform-independent, which was one of the major 
design goals for the Java system [FM96]. 

One additionally relevant technique of software 
fault isolation can be found in the VINO operating 
system [SESS96]. Although VINO does not support 
mobile code per se, it does support dynamic kernel 

4Also known as a sandbox. The idea is that the untrusted 
code will only be allowed to "play in its own sandbox." 

5Wahbe et al. found overheads as low as 10.30% over unin- 
strumented code. 

extensions and attempts to address the problem of 
a misbehaving piece of dynamic code. Although the 
concern here is more one of buggy code, the results 
would apply to an applet which attempted to hog the 
resources on its hosting machine. 

The kernel extensions (called grafts) are run in a 
sandboxed address space to prevent them from read- 
ing or writing inappropriate data or from executing 
bad instructions. In addition, the grafts are run 
in the context of a lightweight transaction system. 
This allows the system to simply kill a graft which 
is interfering with other processes while still leaving 
the kernel data structures in a consistent state. Al- 
though less important in the applet domain, coop- 
eration among various pieces of mobile code is a key 
aspect of many mobile agent systems. This technique 
would allow a malicious agent to be terminated, even 
if it held a resource like a lock, without leaving shared 
data in an inconsistent state. 

2.3 Code Verification 

Although software fault isolation certainly provides 
mobile code safety with higher performance than in- 
terpretation, we are still subject to the overheads of 
the code instrumentation, as well as the overheads of 
the indirected calls which access resources. A tech- 
nique called proof-carrying code (PCC) [NL97] can be 
used to address some of these issues. 

Here, the mobile code host decides upon a security 
policy for an applet. This policy is then codified in 
the Edinburgh Logical Fkamework (LF) [HHP93] and 
published. Now, a burden is placed on the applet au- 
thor not only to compile the applet t o  machine code, 
but also to generate a proof that the code conforms 
to the conditions specified in the security policy. 

Now the code consumer need only verify that the 
proof supplied is valid and demonstrates that the bi- 
nary satisfies the security conditions6, and then sim- 
ply load and execute the code. 

One key question which affects the usefulness of 
this approach is that of what program properties are 
expressible and provable in the LF logic used to pub- 
lish the security policy and encode the proof. PCC 
has succesfully been applied to minimum and maxi- 
mum CPU cycle bounds, memory usage and safety, 
network bandwidth consumption, and type safety. In 
addition, there is a PCC compiler available for a safe 

'Proof verification is usually far less computationally inten- 
sive than proof generation, which may not even be decidable! 



subset of C, allowing automatic generation of the 
safety proofs. 

PCC is a very promising approach. The mobile 
code host can now avoid not only the instruction 
overhead of sandboxing, but also some of the policy- 
checking overhead implicit in using the Safe-Tcl alias 
approach for achieving system security. It does, how- 
ever, have some drawbacks. Like the basic sandbox- 
ing technique, PCC sacrifices platform-independence 
for performance. In addition, porting is not necessar- 
ily straightforward: the LF-encoded security policy 
and the safety proof must necessarily be closely tied 
to the operating system and hardware of the machine 
in question. Nevertheless, the benefits seem to out- 
weight these disadvantages: PCC is being spun off 
into a commercial venture, Cedilla Systems [Lee98]. 

3 Malicious Hosts 

and will conclude with a theoretical method to pre- 
serve secrecy. 

3.1 Detecting Tampering 

As mentioned earlier, we cannot use technical means 
to protect our agents from harm. If mobile agent sys- 
tems existed in a vacuum, it would not seem possible 
to obtain a satisfactory attempt to solve the mali- 
cious host problem, but fortunately, they do not. If 
we can provably identify a malicious host, then the 
threat of off-line legal, societal, or physical7 action 
would serve to discourage the operators of malicious 
hosts. Furthermore, it may be that an agent's owner 
could get some measure of recompense or revenge for 
the loss of his agent. 

The techniques presented in this subsection all rely 
- - 

upon a public key infrastructure to permit the mu- 
tual authentication of users, hosts, and/or agents. In 
particular, since we are interested in proving that a 

Now that we have extensively explored the malicious host was in fact malicious, the use of digital signs- 
code problem, let us turn to the converse point of tures will be of primary importance, 
view: the malicious host problem. This problem 
presents itself primarily in the context of mobile agent 
programming, where a consumer may have a vested Execution tracing- Vigna [Vig971 suggests one 

interest in the correct execution of his agent. F~~ ex- method to allow tamper detection which involves pro- 

ample, a shopping agent might carry electronic cash, ducing an execution trace of an agent's Program. 
and it would be undesirable if a host could dupe the Firstly, the agent's code is divided into two types 
agent into paying a high price for some good, or even of instructions: those which depend only upon the 

worse, to simply "mug" the agent and steal its money. agent's internal state, and those whose results de- 

The malicious host problem is daunting indeed; pend upon interaction with the evaluation environ- 

the host certainly needs access to an agent,s code ment. For the former type of instruction, we require 

and state in order to execute it, so how can sensi- the server to record in the trace only the new values 
tive data be kept secret, or how can we guarantee of any variables in the agent. For the latter type, 

an honest execution of the agent,s algorithm? chess however, in addition to recording the new values, the 

et al. [CGH+95] observe that there are limits to the Server must sign them. 

protection that can be achieved for mobile agents. Once the execution has finished, the server corn- 
Firstly, if any portion of an agent's code or state is to putes a cryptographic hash of the entire trace and 

be kept private, it must be encrypted. Secondly, we returns it to  the agent's owner; the hash is in some 

cannot prevent denial-of-service attacks which ran- Sense a receipt of the agent's execution. NOW, should 

domly modify the agent's code or which simply ter- the agent's owner suspect foul play, he can denland 

minate the agent without the assistance of special- to be shown the trace. The host must then produce 

purpose trusted hardware. the trace, for which the hash value can be verified, 

Therefore, solutions to the malicious host problem and then the trace can be examined to determine if 

should focus on two themes: the host either: 

1. being able to prove that tampering occurred, and 1. incorrectly executed an internal-only instruc- 
tion, or 

2. preventing leakage of secret information. 

The following subsections outline some current re- 2. "lied" to the agent during one of its interactions 

search into this very difficult problem. We will begin with the environment. 

with two techniques for the detection of tampering, 7e.g . ,  socks and doorknobs. 



However, there are practical problems with this ap- to the owner who gets some confidence that y was 
proach. Firstly, this does not alert the agent's owner correct. The main drawback seems to be the burden 
to any foul play; it merely allows it to be provably placed upon the server. Firstly, the construction of 
identified if the owner's suspicious are raised. Sec- the holographic proof y' is an NP-complete problem, 
ondly, it places a very high burden on the servers which would seem to make it impractical, particularly 
(especially the honest ones), as they must store all if the trace y is already too large to simply transmit 
of their execution traces in case someone demands back to the owner. 
them. 

Authenticating Partial Results. Yee pee971 
presents two ways to detect tampering by malicious 
hosts. The first method involves the use of partial re- 
sult authentication codes (PRACs). An agent is sent 
out with a set of secret keys kl , ..., k,. At server i, the 
agent uses key ki to  sign the result of its execution 
there, thereby producing a PRAC, and then erases 
ki from its state before moving to the next server. 
This means that a malicious server cannot forge the 
partial results from previous hops; at worst, it could 
merely remove them from the agent. 

The PRACs should now allow the agent's owner 
(who also possesses kl, ..., k,) to automatically cryp- 
tographically verify each partial result contained in 
a returning agent. The property that these messages 
guarantee is perfect forward integrity: 

If a mobile agent visits a sequence of servers 
S = sl, ..., s,, and the first malicious 
server is s,, the none of the partial re- 
sults generated a t  servers si, i < c, can be 
forged. [Yee97] 

However, if the tampering occurs simply through 
dishonest interactions with the running agent, this 
scheme will not automatically detect it. Again, we 
must rely upon the suspicions of the agent's owner to 
cause the PRACs to be examined-the PRACs will 
all be cryptographically valid, although one or more 
may not be semantically valid. 

Yee presents a speculative approach to detecting 
this semantic tampering based on computationally 
sound proofs [Mic94]. For a program x,  let y be an 
execution trace for x. Now, the host could send y 
back to the owner to be verified, but execution traces 
could be quite large so their transn~ission may be too 
costly in terms of bandwidth. Instead, the host can 
encode y as a holographic proof y' that y was the re- 
sult of running x. This proof y' has the property 
that the owner needs only examine a few bits of y' 
to  be convinced of its correctness. The server then 
uses a tree hashing scheme to hash the proof down 
to a small root value, which is then transmitted back 

3.2 Preserving Secrecy. 

Sander and Tschudin [ST971 present a theoretical re- 
sult aimed at allowing an agent to preserve some se- 
crecy from the malicious host. The motivation is 
that there are some situations in which simple de- 
tection after-the-fact is insufficient or unsatisfactory. 
Two examples are when the cost of legal action is 
greater than the financial loss caused by tampering 
and when an agent sent to digitally sign something 
on its owner's behalf has a private key compromised. 

Essentially, the problem we would like to solve is 
the following: our agent's program computes some 
function f ,  and the host is willing to compute f (x) 
for the agent, but the agent wants the host to learn 
nothing substantive about f .  The protocol presented 
works in the following way, where E is some encryp- 
tion function: 

1. The owner of the agent encrypts f .  

2. The owner creates a program P(E( f ) )  which im- 
plements E ( f )  and puts it in the agent. 

3. The agent goes to  the remote host, where it com- 
putes P ( E (  f )) (x), and returns home. 

4. The owner decrypts P (E( f ) ) (x )  and obtains 

f (x). 

The basic idea is to convert the basic algorithm into 
a garbled algorithm whose results can only be made 
sense of by the owner of the agent. 

Sander and Tschudin consider representing the 
function f as a polynomial and then showing that 
certain classes of homomorphic encryption schemes 
would enable the protocol interaction above. How- 
ever, there is some question whether a computation- 
ally feasible homomorphic encryption function exists: 
the above protocol would allow an efficient symmetric 
encryption algorithm with a hardwired secret key to 
be itself encrypted and sent to a second party. This 
second party would then be able to use this func- 
tion to  encrypt data without discovering the secret 



key, thus effectively providing a public key encryp- 
tion system. Since there is no known efficient public 
key algorithm, this suggests that the encrypted algo- 
rithm must itself be inefficient (i.e. applying E to a 
function results in nontrivial "code bloat."). 

4 Conclusions 

The malicious code problem is by far the more well- 
understood half of mobile code security concerns. 
The wide-ranging popularity of applet-enabled web 
browsers alone testifies to the fact that reasonable so- 
lutions to this problem exist. Nonetheless, research is 
actively ongoing to continue analyzing and automat- 
ing security policies and attempting to remove run- 
time overhead for enforcement. 

The malicious host problem, however, seems to be 
far less tractable. There are not yet any computa- 
tionally feasible methods to detect tampering, and 
even some of the techniques for proving that tam- 
pering occurred place a large burden on servers. In 
addition, it is not clear that it is possible to reason- 
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