
Mobile Code Security Techniques

Jonathan T. Moore

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Mobile Code Security Techniques

Jonathan T. Moore
Department of Computer and Information Science

University of Pennsylvania
jonm@dsl.cis.upenn.edu

May 9, 1998

Abstract

This paper presents a survey of existing techniques
for achieving mobile code security, as well as a rep-
resentative sampling of systems which use them. In
particular, the problem domain is divided into two
portions: protecting hosts from malicious code; and
protecting mobile code from malicious hosts. The
discussion of the malicious code problem includes a
more in-depth study of the Java security model, as
well as touching upon several other systems. The
malicious host problem, however, is much more diffi-
cult t o solve, so our discussion is mostly restricted to
ongoing research in that area.

1 Introduction

The recent explosion of the Internet, and in par-
ticular, the World Wide Web, offers an astounding
amount of interconnected computing resources. How-
ever, for most users, their use of Internet resources is
primarily limited by bandwidth. In particular, espe-
cially in home computers, there are many CPU cycles
to spare in comparison to the rate at which data can
be retrieved.

This suggests that rather than attempting to move
data across a network, we might be best served by
trying to move applications, which may very well be
more compact than the data they operate upon or
produce. The usual term for this is mobile c o d e
code which is written on one computer is transmit-
ted in some form to a second computer, where it is
executed. The two main forms of mobile code that
we will discuss here are applets and agents.

Applets consist of mobile code which is fetched
to be executed in a local environment. This tech-
nique was popularized by web browsers with embed-

ded Java [GJS96] virtual machines. In particular, it
allowed web publishers to reasonably serve interest-
ing "active" content such as animations or games,
rather than just static Hypertext Markup Language
(HTML) [BLC95] pages or bandwidth-dependent in-
teractive Con~mon Gateway Interface (CGI) [CGI98]
content. Here, the user which hosts the executing
applet can be viewed as the consumer.

Agents, on the other hand, are mobile programs
which are sent out into the network to perform some
task for their owner. One of the earliest mobile agent
systems was Telescript [TV96], produced by General
Magic. Intelligent agents might be able t o perform
web searches or shop for bargain airline tickets. The
idea is that various business would host agent execu-
tion environments, and consumers would produce the
mobile code and send it out into the network.

In either the applet case or the agent case, we have
mobile code which is produced by one party and run
in an environment controlled by another party. Natu-
rally, this raises some very important questions about
the security of mobile code. In the applet case, the
consumer would like to execute useful applets while
protecting his system from malicious ones. In the
agent case, however, the consumer would like to be
able to protect his agents from malicious servers. In
this paper, we will refer to these two viewpoints as
the malicious code problem and the malicious h o s t
problem, respectively.

The remainder of this paper explores the security
issues involved with mobile code and surveys existing
techniques for addressing them. We will begin with a
discussion of the malicious code problem in Section 2,
as that is the more well-understood viewpoint of mo-
bile code security. We will then proceed with the ma-
licious host problem in Section 3, studying the cur-
rent approaches to address this set of concerns. This

paper is not an overview of mobile code systems; we
restrict ourselves to the security issues involved and
the techniques for solving them. A good overview of
mobile code programming languages may be found
in [Tho97], and an introduction to the mobile agent
paradigm may be found in [Kna96].

2 Malicious Code

The security issues involved with running untrusted
code are fairly clear. Consider the most straightfor-
ward method of allowing applets: a user downloads
an applet in an appropriate binary executable format
and simply runs it. Since this would imply that the
applet would run with the permissions of the code
consumer, the user's system would be quite vulner-
able. The applet might be able to randomly write
to memory, possibly crashing the machine'. Even
worse, the applet would be able t o read, modify, or
even delete the user's private files.

A first attempt might be to require a step of au-
thentication before running an applet. Then the user
could be sure only to run code which came from
specific trusted sources. This approach however, is
unsatisfying in a t least two ways. Firstly, not only
this would require some sort of public key infrastruc-
ture to scale well, but it might severely limit which
applets a user can run-even an "untrusted" server
might provide useful and benign code. Secondly, and
more importantly, though, even code from "trusted"
sources might contain bugs which could have ma-
licious (though unintentional) consequences on the
user's system.

This would suggest that an ideal solution to the
malicious code problem would be one which caught
and prevented unsafe actions, whether intentional or
not. Then not only could the user feel confident
about downloading applets from untrusted sources,
but would also have some measure of protection from
buggy software. Three different techniques for solv-
ing this problem include safe interpreters, fault iso-
lation, and code verification. The next three subsec-
tions will address each of these techniques in turn.

2.1 Safe Interpreters

As mentioned above, running straight binaries
presents some serious security and safety problems.

'Operating systems without address spaces are distressingly
common in the home computing environment!

Master Safe
Interpreter i Interpreter !

-..................

padded cell
hidden command

Figure 1: Safe-Tcl architecture [OLW97]

A very common approach to addressing this issue is
to forgo compiled executables and instead to inter-
pret the mobile code instead. In this way, the inter-
preter has fine-grained control over the applet, and
can examine each instruction or statement and decide
whether to execute it or not. Now the safety of the
system is reduced to the correctness of the security
policy implemented by the interpreter; a careful code
review could provide some measure of confidence to
this effect. By contrast, determining whether an ar-
bitrary applet program is "safe" is not decidable, and
requiring the user to review all incoming mobile code
is certainly not scalable.

Safe-Tcl. One safe interpreter system which illus-
trates some common security and safety techniques is
the Safe-Tcl system [OLW97]. The major construct
in use is the padded cell, depicted in Figure 1. Each
applet is isolated in a safe interpreter where it can-
not interact directly with the rest of the application.
In turn, the execution environment of the safe inter-
preter is controlled by a (trusted) master interpreter.
This is facilitated by the Tcl language, in which in-
terpreters are first-class values and are highly config-
urable. In particular, any "unsafe" functions can be
hidden from the namespace of the padded cell, thus
preventing the applet from invoking them.

Of course, if function hiding is used too liberally,
it can render an applet not only harmless but also
useless! There are certainly cases where the mobile
code might need to access disk (e.g., for temporary
storage), create a window on the display, or perform
some network communication. The Safe-Tcl system
uses aliases to allow controlled use of unsafe func-
tions. An alias is simply an upcall to the master in-
terpreter which serves to guard some system resource
and decide whether to grant or deny the request. The
padded cell approach, through proper use of function
hiding and aliasing in the construction of the safe
interpreters, thus allows multiple applets to be run-
ning concurrently, each having its own security policy.
Clearly, Safe-Tcl is quite flexible.

However, care must be taken regarding allowing
applets to communicate. In their paper describing
the system, Ousterhout et al. point out that the
composition of two sets of safe commands is not nec-
essarily safe itself; i.e., applets can collude to acquire
more access than they might individually have been
granted2. Despite the complexity of the cooperating
applet problem, the padded cell approach does sim-
plify the setting of security policies for single applets.
Figure 2 shows how this simplification is accom-
plished; namely, all interaction between trusted and
untrusted components of the system occurs through
well-defined interfaces (the aliases), so security efforts
may be focused there.

Extensions to Safe-Tcl. As we just mentioned,
Safe-Tcl provides an environment which takes care
of the safety issues of applets and allows flexibility in
the policy for addressing the security issues. Here we
mention two projects which use Safe-Tcl and apply
their own security policies to solve the malicious code
problem.

The first is the Upper Atmospheric Research Col-
laboratory (UARC) [JRP96], a system designed to al-
low scientists to collaborate remotely. In UARC, the
applications (e.g., test data viewers) are downloaded
from a central authority and then executed, allowing
simple centralized administration. The main appli-
cation is called the browser, and serves the same role
as the master interpreter in the Safe-Tcl architecture;
interpreters for different types of applets (including
Safe-Tcl itself, Java-enabled Netscape, or Java's ap-

 or example, an applet granted network access exclusively
to hosts inside a firewall might cooperate with an applet al-
lowed only to communicate with hosts outside the firewall, thus
effectively bypassing the firewall itself.

padded cell

0 trusted @ alias untrusted

Figure 2: Code interactions in Safe-Tcl [OLW97]

pletviewer [GM96]) are then run as subsidiary safe
interpreters. The browser abstracts system resources
into objects and associates with them access control
lists. Access is controlled by using cryptographic au-
thentication to classify the local user, the applet's
source machine, and the applet's author. Config-
urable policies then perform intersections of the var-
ious principal's rights to grant the least common ac-
cess.

A different approach is used by the
D'agents [BKR98] system (formerly known as
Agent Tcl [Gra96]). Here, the applets are agents
are written in Tcl, Java, or Scheme and run in
interpreters modified to allow process migration.
Resource control is based on an economic system
where each agent carries electronic cash and must
pay resource managers for access to resources.
Special processes serve as "banks" which validate
transactions and issue the electronic cash. There are
additionally "arbiter" processes which are used to
discourage cheating on transactions (i.e., receiving
service and then not paying for it, or accepting
payment and then not rendering the service pur-
chased). Here, each party gives some small amount
of "collateral" electronic cash which is forfeited if
the other party cries foul, thus discouraging cheating
or false accusation. Specifically, these resource
managers serve as the master interpreter sides of the
aliases in Safe-Tcl. In general, this market-based
approach allows the servers to control resource usage
by varying their pricing structures and by having the
banks limit the outflow of currency to the agents.

Unfortunately, neither of these systems represents
a completely general solution to setting security pol-
icy for downloaded applets. In the UARC system, for
example, usefully empowered applets are restricted
to the "official" UARC software-other software is
(probably rightfully so) extremely limited in the ac-
cess control it is granted. Of course, the UARC
system is a very specialized application for atmo-
spheric scientists, and although the general archi-
tecture could easily be instantiated in other collab-
orative environments, it is not meant to be a one-
size-fits-all application. The D'agents work, on the
other hand, seems a little more general; it would be
straightforward for a server to set prices on CPU cy-
cles, memory, and disk space based on its current
load. One large difficulty seems to be setting a price
on read or write access to local files-clearly some
useful applets might need this service. It would seem
that some sort of authentication would be necessary
so that a price could reasonable set for trusted agents
or a sale refused to untrusted ones. The paper by
Bredin et al. does not address this issue; their focus
rather seems to be simply allowing machine owners
to "rent" their spare computational resources.

Telescr.ipt/Odyssey. General Magic was one of
the first companies to offer a commercial mo-
bile agents system. Their original system, Tele-
script [TV96], in light of the overwhelming success
of the Java applet platform, has since been reim-
plemented in Java as is now being marketed as the
Odyssey [Whig81 system. Nevertheless, much of the
original Telescript paradigm has been preserved.

In Telescript, the notion of security has been in-
cluded in the design of the object-oriented source lan-
guage. The class hierarchy includes certain semantic
limitations: a class can be sealed and thereafter may
not be extended or subtyped; also, a class can be
abstract and thereby not able to be instantiated. In
addition, there are operators to turn pointers into
protected references; an object may not be modified
by accessing it through a protected reference. This
gives a sort of read-only capability-based feel to the
system.

However, one of the main features of the Telescript
language is that the security policy for a system may
be specified directly in the language. Specifically,
each agent (called a process) carries with it a permit
which lists its rights. The permit includes limitations
on total lifetime, total memory usage, and CPU pri-
ority, but a hosting site may always choose to grant

a more restricted set of rights than does the permit.
Other rights expressed by the permit include the abil-
ity to spawn new processes, the ability to travel to
another site, and the abilities to either grant or deny
rights to other processes.

In his survey of agent programming lan-
guages [Tho97], Thorn points out some weak aspects
of the Telescript system:

The Telescript system includes a number of
features to restrict the actions of agents, but
they seem to suffer from a lack of systematic
design. It is not clear how to be convinced of
the consistency of the implemented security
restrictions.

One pitfall of having permissions built into the lan-
guage is that a programming error may lead to a pro-
cess with a permit that is too permissive. As Thorn
puts it: "[Telescript processes] can be hard or im-
possible to control once launched." Thus, unlike the
Safe-Tcl approach, where there is a clear distinction
between trusted and untrusted code (recall Figure 2),
in Telescript we may have a jumble of agents execut-
ing on a given host, all with differing access rights
and perhaps interacting in unexpected ways.

Java. Java [GJS96] is perhaps the most well-known
applet system in existence. Unfortunately, it is
known not only for its security system, but also for
the vulnerabilities of that system [Sun98]. We begin
by summarizing nitzinger and Mueller's overview of
Java security [FM96].

The sources of Java applets are compiled down into
bytecode instructions on the Java Virtual Machine
(JVM). An implementation of the JVM is then em-
bedded in an application, e.g., a web browser, which
allows the applet to be interpreted. A local security
manager class is loaded a t start-up. All access to
unsafe operations must be approved by the security
manager. The default restrictions for an applet in-
clude: no local disk access; all stand-alone windows
created by the applet are clearly labeled "untrusted" ;
and no network connections to computers other than
the server from which the applet was downloaded.

When the bytecodes for the applet arrive at the
browser, they are run through a static verifier. The
verification process confirms that the bytecodes ad-
here to the Java language specification (i.e., no
forging of pointers, class loaders, or security man-
agers). In addition, the verifier checks for violations

of namespace restrictions, stack over- or under-flows, Trust Manager JVM as well as to runtimes produced
and illegal type casts. by JavaSoft [Go196].

Once the bytecodes pass the verification stage, a Finally, in [WBDF97], Wallach et al. specify three
class loader is invoked which dynamically links them techniques for extending Java's security architecture.
into the namespace. In particular, the class loader Two of these ways, the addition of capabilities and
keeps separate namespaces for local (trusted) classes hiding classes a la Safe-Tcl, have already been dis-
and for downloaded (untrusted) classes; this prevents cussed here, so we will simply touch upon the last
applets from spoofing an existing trusted class. Con- technique, extended stack introspection. The idea is
trol is then passed to the bytecode interpreter, and to require each class to be digitally signed by some
the applet is executed. principal, which could be a person, the JVM itself,

The ubiquity of Java applets suggests that this se- or even another class. When an access request is
curity model is not overly restrictive-useful work made for a resource, the established identity is used
can be done this way. However, flaws in JVM imple- to access a permissions matrix. Any rights which are
mentations of this model, particularly in class loaders granted are then encoded in the execution stack: sub-
and security managers, can be exploited to circum- sequently called classes then inherit the rights, but
vent the security measures employed. Another short- when the calling class returns, the rights are popped
coming of this original model is that all applets are off the stack, thus preventing a calling class from
given the same set of access rights-there is only one obtaining the callee's rights. Wallach et al. note
security manager per browser. that the Netscape Communicator 4.0 implements ex-

An extension of the Java system meant to alleviate tended stack introspection.
this problem is the use of Java Archive (JAR) files.
These files are digitally signed by their producers; Other interpreted systems. The OCaml [Ler95]
public key cryptography can then be used to guaran- programming language implementation has also been
tee the origin of the bytecodes, and differing security used to implement a web browser, MMM. Like Java,
managers may be used based upon the level of trust applets consist of bytecode files which are dynam-
placed in the applet's author. JAR files, however, are ically linked and interpreted. However, the security
not in as widespread use as the basic JVM system. model is quite different from that of the JVM. In par-

ticular, the bytecodes are not subjected to the same
Java extensions. Electric Communities' Trust rigorous verification process. Instead, a crytographic
Manager [Corn] is a security framework which allows checksum of the interfaces of the downloaded mod-
the specification of the level of trust placed in vari- ules is used; the OCaml language is strongly and stat-
ous principals, and permits rights to be delegated to ically typed, and so a reliance is made on a certified
classes from trusted sources while still retaining the compiler to achieve safety for the system. Security is
ability to revoke them. They have modified Sun's achieved using familiar techniques: much as the Java
JVM to allow certificate-based policy decisions that class loader maintains a Separte namespace for local
allow for the more granular security control hinted at and remote classes, the CICaml system permits local
by JAR files. The changes extend the set of restric- module thinning which results in allowing imported
tions which can be placed on a downloaded applet, modules to only see a (safe) subset of the locally ex-
including control over whether other classes can be ported modules' intc3rf~ces3.
imported or downloaded and control over the pack- Finally, PLAN (Programming Language for Active
age membership of any downloaded applets. Packets) [HKM+98] is a language meant to replace

In [HI97], Hagimont and Ismail proposed an ex- network packet headers. Agents here are subject to
tension to Java and the JVM which adds software special requirements specific to their execution envi-
capabilities [Lev84] for This would allow ronment (i. e., on network routers). Authentication of
mutually-suspicious Java-based mobile agents to con- every packet would be extravagantly costly, and tight
trol the degree of privilege sharing involved in a co- ~0ntr01 of router resources is very important. The
operative exchange, Their system relies on an in- language thus has limited expressibility-there is no
frastructure which will allow agents to mutually au- direct recursion nor general looping constructs. HOW-
thenticate and will permit the granting of an agent's ever, the language is sufficiently expressive to write - - -
initial permissions when it arrives on a server. Ca- 373is is essentially similar to the function hiding capabili-
pabilities have been added to Electric Communities' ties of safe-TC~.

programs which run exponentially long in their size,
so the system still needs CPU timers and allocation
checks. Future work in further language restrictions
may permit the removal of these watchdog overheads.

2.2 Fault Isolation

As the reader may perhaps infer from the relative
length of the previous subsection, interpreted systems
are by far the most common platforms for solving the
malicious code problem. However, interpreters suf-
fer a serious performance overhead when contrasted
with compiled machine code. Users whose Java ap-
plets run achingly slow may wistfully yearn for the
ability to safely execute regular binaries. Fortu-
nately, it is possible to move towards this goal using
a fairly straightforward method known as sandbox-
ing [WLAG93].

Here, the untrusted code is loaded into its own part
of the address space known as a fault domain4. The
code is then instrumented to be sure that each load,
store, or jump instruction is to an address in the fault
domain. This is accomplished in one of two ways:

1. insert a conditional check of the address and
raise an exception if it is invalid, or

2. simply overwrite the upper bits of the address to
correspond to those of the fault domain,

where the tradeoff is that the former alternative is
more useful for debugging but the latter incurs less
overhead.

These techniques provide safety at a much lower
cost5 than interpreters. However, we are still sub-
ject to security concerns, for which the system shares
techniques with the safe interpreters of the previ-
ous subsection. Additional instrumentation is done
to cause system calls to be turned into calls to ar-
bitration code, similar to the aliasing technique of
Safe-Tcl. One major drawback of the sandboxing
approach is that the downloaded code is no longer
platform-independent, which was one of the major
design goals for the Java system [FM96].

One additionally relevant technique of software
fault isolation can be found in the VINO operating
system [SESS96]. Although VINO does not support
mobile code per se, it does support dynamic kernel

4Also known as a sandbox. The idea is that the untrusted
code will only be allowed to "play in its own sandbox."

5Wahbe et al. found overheads as low as 10.30% over unin-
strumented code.

extensions and attempts to address the problem of
a misbehaving piece of dynamic code. Although the
concern here is more one of buggy code, the results
would apply to an applet which attempted to hog the
resources on its hosting machine.

The kernel extensions (called grafts) are run in a
sandboxed address space to prevent them from read-
ing or writing inappropriate data or from executing
bad instructions. In addition, the grafts are run
in the context of a lightweight transaction system.
This allows the system to simply kill a graft which
is interfering with other processes while still leaving
the kernel data structures in a consistent state. Al-
though less important in the applet domain, coop-
eration among various pieces of mobile code is a key
aspect of many mobile agent systems. This technique
would allow a malicious agent to be terminated, even
if it held a resource like a lock, without leaving shared
data in an inconsistent state.

2.3 Code Verification

Although software fault isolation certainly provides
mobile code safety with higher performance than in-
terpretation, we are still subject to the overheads of
the code instrumentation, as well as the overheads of
the indirected calls which access resources. A tech-
nique called proof-carrying code (PCC) [NL97] can be
used to address some of these issues.

Here, the mobile code host decides upon a security
policy for an applet. This policy is then codified in
the Edinburgh Logical Fkamework (LF) [HHP93] and
published. Now, a burden is placed on the applet au-
thor not only to compile the applet t o machine code,
but also to generate a proof that the code conforms
to the conditions specified in the security policy.

Now the code consumer need only verify that the
proof supplied is valid and demonstrates that the bi-
nary satisfies the security conditions6, and then sim-
ply load and execute the code.

One key question which affects the usefulness of
this approach is that of what program properties are
expressible and provable in the LF logic used to pub-
lish the security policy and encode the proof. PCC
has succesfully been applied to minimum and maxi-
mum CPU cycle bounds, memory usage and safety,
network bandwidth consumption, and type safety. In
addition, there is a PCC compiler available for a safe

'Proof verification is usually far less computationally inten-
sive than proof generation, which may not even be decidable!

subset of C, allowing automatic generation of the
safety proofs.

PCC is a very promising approach. The mobile
code host can now avoid not only the instruction
overhead of sandboxing, but also some of the policy-
checking overhead implicit in using the Safe-Tcl alias
approach for achieving system security. It does, how-
ever, have some drawbacks. Like the basic sandbox-
ing technique, PCC sacrifices platform-independence
for performance. In addition, porting is not necessar-
ily straightforward: the LF-encoded security policy
and the safety proof must necessarily be closely tied
to the operating system and hardware of the machine
in question. Nevertheless, the benefits seem to out-
weight these disadvantages: PCC is being spun off
into a commercial venture, Cedilla Systems [Lee98].

3 Malicious Hosts

and will conclude with a theoretical method to pre-
serve secrecy.

3.1 Detecting Tampering

As mentioned earlier, we cannot use technical means
to protect our agents from harm. If mobile agent sys-
tems existed in a vacuum, it would not seem possible
to obtain a satisfactory attempt to solve the mali-
cious host problem, but fortunately, they do not. If
we can provably identify a malicious host, then the
threat of off-line legal, societal, or physical7 action
would serve to discourage the operators of malicious
hosts. Furthermore, it may be that an agent's owner
could get some measure of recompense or revenge for
the loss of his agent.

The techniques presented in this subsection all rely
- -

upon a public key infrastructure to permit the mu-
tual authentication of users, hosts, and/or agents. In
particular, since we are interested in proving that a

Now that we have extensively explored the malicious host was in fact malicious, the use of digital signs-
code problem, let us turn to the converse point of tures will be of primary importance,
view: the malicious host problem. This problem
presents itself primarily in the context of mobile agent
programming, where a consumer may have a vested Execution tracing- Vigna [Vig971 suggests one

interest in the correct execution of his agent. F~~ ex- method to allow tamper detection which involves pro-

ample, a shopping agent might carry electronic cash, ducing an execution trace of an agent's Program.
and it would be undesirable if a host could dupe the Firstly, the agent's code is divided into two types
agent into paying a high price for some good, or even of instructions: those which depend only upon the

worse, to simply "mug" the agent and steal its money. agent's internal state, and those whose results de-

The malicious host problem is daunting indeed; pend upon interaction with the evaluation environ-

the host certainly needs access to an agent,s code ment. For the former type of instruction, we require

and state in order to execute it, so how can sensi- the server to record in the trace only the new values
tive data be kept secret, or how can we guarantee of any variables in the agent. For the latter type,

an honest execution of the agent,s algorithm? chess however, in addition to recording the new values, the

et al. [CGH+95] observe that there are limits to the Server must sign them.

protection that can be achieved for mobile agents. Once the execution has finished, the server corn-
Firstly, if any portion of an agent's code or state is to putes a cryptographic hash of the entire trace and

be kept private, it must be encrypted. Secondly, we returns it to the agent's owner; the hash is in some

cannot prevent denial-of-service attacks which ran- Sense a receipt of the agent's execution. NOW, should

domly modify the agent's code or which simply ter- the agent's owner suspect foul play, he can denland

minate the agent without the assistance of special- to be shown the trace. The host must then produce

purpose trusted hardware. the trace, for which the hash value can be verified,

Therefore, solutions to the malicious host problem and then the trace can be examined to determine if

should focus on two themes: the host either:

1. being able to prove that tampering occurred, and 1. incorrectly executed an internal-only instruc-
tion, or

2. preventing leakage of secret information.

The following subsections outline some current re- 2. "lied" to the agent during one of its interactions

search into this very difficult problem. We will begin with the environment.

with two techniques for the detection of tampering, 7e.g . , socks and doorknobs.

However, there are practical problems with this ap- to the owner who gets some confidence that y was
proach. Firstly, this does not alert the agent's owner correct. The main drawback seems to be the burden
to any foul play; it merely allows it to be provably placed upon the server. Firstly, the construction of
identified if the owner's suspicious are raised. Sec- the holographic proof y' is an NP-complete problem,
ondly, it places a very high burden on the servers which would seem to make it impractical, particularly
(especially the honest ones), as they must store all if the trace y is already too large to simply transmit
of their execution traces in case someone demands back to the owner.
them.

Authenticating Partial Results. Yee pee971
presents two ways to detect tampering by malicious
hosts. The first method involves the use of partial re-
sult authentication codes (PRACs). An agent is sent
out with a set of secret keys kl , ..., k,. At server i, the
agent uses key ki to sign the result of its execution
there, thereby producing a PRAC, and then erases
ki from its state before moving to the next server.
This means that a malicious server cannot forge the
partial results from previous hops; at worst, it could
merely remove them from the agent.

The PRACs should now allow the agent's owner
(who also possesses kl, ..., k,) to automatically cryp-
tographically verify each partial result contained in
a returning agent. The property that these messages
guarantee is perfect forward integrity:

If a mobile agent visits a sequence of servers
S = sl, ..., s,, and the first malicious
server is s,, the none of the partial re-
sults generated a t servers si, i < c, can be
forged. [Yee97]

However, if the tampering occurs simply through
dishonest interactions with the running agent, this
scheme will not automatically detect it. Again, we
must rely upon the suspicions of the agent's owner to
cause the PRACs to be examined-the PRACs will
all be cryptographically valid, although one or more
may not be semantically valid.

Yee presents a speculative approach to detecting
this semantic tampering based on computationally
sound proofs [Mic94]. For a program x, let y be an
execution trace for x. Now, the host could send y
back to the owner to be verified, but execution traces
could be quite large so their transn~ission may be too
costly in terms of bandwidth. Instead, the host can
encode y as a holographic proof y' that y was the re-
sult of running x. This proof y' has the property
that the owner needs only examine a few bits of y'
to be convinced of its correctness. The server then
uses a tree hashing scheme to hash the proof down
to a small root value, which is then transmitted back

3.2 Preserving Secrecy.

Sander and Tschudin [ST971 present a theoretical re-
sult aimed at allowing an agent to preserve some se-
crecy from the malicious host. The motivation is
that there are some situations in which simple de-
tection after-the-fact is insufficient or unsatisfactory.
Two examples are when the cost of legal action is
greater than the financial loss caused by tampering
and when an agent sent to digitally sign something
on its owner's behalf has a private key compromised.

Essentially, the problem we would like to solve is
the following: our agent's program computes some
function f , and the host is willing to compute f (x)
for the agent, but the agent wants the host to learn
nothing substantive about f . The protocol presented
works in the following way, where E is some encryp-
tion function:

1. The owner of the agent encrypts f .

2. The owner creates a program P(E(f)) which im-
plements E (f) and puts it in the agent.

3. The agent goes to the remote host, where it com-
putes P (E (f)) (x), and returns home.

4. The owner decrypts P (E(f)) (x) and obtains

f (x).

The basic idea is to convert the basic algorithm into
a garbled algorithm whose results can only be made
sense of by the owner of the agent.

Sander and Tschudin consider representing the
function f as a polynomial and then showing that
certain classes of homomorphic encryption schemes
would enable the protocol interaction above. How-
ever, there is some question whether a computation-
ally feasible homomorphic encryption function exists:
the above protocol would allow an efficient symmetric
encryption algorithm with a hardwired secret key to
be itself encrypted and sent to a second party. This
second party would then be able to use this func-
tion to encrypt data without discovering the secret

key, thus effectively providing a public key encryp-
tion system. Since there is no known efficient public
key algorithm, this suggests that the encrypted algo-
rithm must itself be inefficient (i.e. applying E to a
function results in nontrivial "code bloat.").

4 Conclusions

The malicious code problem is by far the more well-
understood half of mobile code security concerns.
The wide-ranging popularity of applet-enabled web
browsers alone testifies to the fact that reasonable so-
lutions to this problem exist. Nonetheless, research is
actively ongoing to continue analyzing and automat-
ing security policies and attempting to remove run-
time overhead for enforcement.

The malicious host problem, however, seems to be
far less tractable. There are not yet any computa-
tionally feasible methods to detect tampering, and
even some of the techniques for proving that tam-
pering occurred place a large burden on servers. In
addition, it is not clear that it is possible to reason-

[CGH+95] D. Chess, B. Grosof, C. Harrison,
D. Levine, and C. Parris. Itinerant
Agents for Mobile Computing. Research
Report RC 20010, IBM Research Divi-
sion, March 1995.

[CGI98] The CGI Specification.
h t t p : //hoohoo . ncsa . uiuc . edu/ cg i /
i n t e r f a c e . html, May 1998.

[Com] Electric Communities. Using the
EC Trust Manager to Secure Java.
http://www.communities.com/
company/ papers/ t r u s t .

[FM96] J . S. Fritzinger and M. Mueller. ~ a v a ~ ~
Security. Sun Microsystems, Inc.,
http://java.sun.com/ secu r i ty /
whitepaper .ps, 1996.

[GJS96] J . Gosling, B. Joy, and G. Steele. The
Java Language Specification. Addison-
Wesley, 1996.

ably provide an agent with any sort of secrecy while
it executes in a hostile environment. These problems [GM96] J . Gosling and H. McGilton. The Java

Language Environment: A White Paper, all would go to explain the lack of widespread use
May 1996. Sun Microsystems, Inc., of mobile agents, and in some cases would tend to
http://java.sun.com/ docs/ white/

indicate that secure uses of the agents may be quite
langenv.

limited by a lack of secrecy.

[Go1961

Acknowledgements

I would like to thank Matt Blaze for pointing out
clearly the reduction of a public key encryption al-
gorithm to a secret key encryption algorithm in the
Sander and Tschudin scheme. Upon closer inspec-
tion, this result was in the paper, but I probably [Gra96]

would never have seen it had I not known to look
for it.

References

[BKR98] J . Bredin, D. Kotz, and D. Rus.
Market-based Resource Control for Mo-
bile Agents. In Proceedings of Au-
tonomous Agents, May 1998. To appear. [HI971

[BLC95] T . Berners-Lee and D. Connolly. Hy-
pertext Markup Language-2.0. RFC
1866, Network Working Group, Novem-
ber 1995.

T. Goldstein. The Gateway Se-
curity Model in the Java Elec-
tronic Commerce Framework. Java-
soft, http://www.javasoft.com/
products/ commerce/
j ecf _gateway. ps, November 1996.

R. S. Gray. Agent Tcl: A Flexible and
Secure Mobile-agent System. In Proceed-
ings of the 1996 Tcl/Tk Workshop, pages
9-23, July 1996.

R. Harper, F. Honsell, and G. Plotkin.
A Framework for Defining Logics. Jour-
nal of the Association for Computing Ma-
chinery, 40(1):143-184, January 1993.

D. Hagimont and L. Ismail. A Pro-
tection Scheme for Mobile Agents on
Java. In Proceedings of the 3rd An-
nual ACM/IEEE International Confer-
ence on Mobile Computing and Network-
ing, pages 215-222, September 1997.

[HKM+98] M. W. Hicks, P. Kakkar, J . T . Moore,
C. A. Gunter, and S. M. Nettles. PLAN:
A Programming Language for Active
Networks, April 1998. Submitted to the
International Conference on Functional
Programming (ICFP'98).

[JRP96] T . Jaeger, A. D. Rubin, and A. Prakash.
Building Systems that Flexibly Down-
load Executable Content. In Proceedings
of the 6th USENIX Secuity Symposium,
pages 131-148, June 1996.

[Kna96] F . Knabe. An overview of mobile agent
programming. In Proceedings of the
Fijlh LOMAPS Workshop on Analysis
and Verification of Multiple-Agent Lan-
guages, June 1996.

[ST971 T. Sander and C. F. Tschudin. Protecting
Mobile Agents Against Malicious Hosts.
Lecture Notes in Computer Science on
Mobile Agent Security, November 1997.
To appear.

[Sun981 Java Security Frequently Asked Ques-
tions (FAQ) , 1998. Sun Microsystems,
Inc., h t t p : / / java. sun. com/ s f aq.

[Tho971 T. Thorn. Programming Languages for
Mobile Code. ACM Computing Surveys,
29(3):213-239, September 1997.

[TV96] J . Tardo and L. Valente. Mobile Agent
Security and Telescript. In Forty-
First IEEE Computer Society Conference
(COMPCON), 1996.

[Lee981 P. Lee. Proof-Carrying Code. Invited [Vig97] G. Vigna. Protecting Mobile Agents
talk, Switchware retreat, New Hope, NJ, through Tracing. In Proceedings of the
April 1998. Third Workshop on Mobile Object Sys-

tems, June 1997.
[Ler95] X. Leroy. Le systgme caml special light:

modules et compilation efficace en caml. [WBDF97] D. S. Wallach, D. Balfanzi, D. Dean, and
Research report 2721, INRIA, November E. W. Felton. Extensible Security Archi-
1995. tecture for Java. Technical Report 546-

[Lev841 H. M. Levy. Capability-Based Computer
Systems. Digital Press, 1984.

97, Department of Computer Science,
Princeton University, April 1997.

[Whig81 J . White. Mobile Agents
[Mic94] S. Micali. CS Proofs. In Proceedings White Paper. General Magic,

of the 35th IEEE Symposium on Foun-
http://www.genmagic.com/

dations of Computer Science, pages 436- technology/ techwhitepaper.htm1,
453, November 1994. 1998.

[NL97] G. C. Necula and P. Lee. Safe, Untrusted
[WLAG93] R. Wahbe, S. Lucco, T . Anderson, and

Agents using Proof-Carrying Code. In
S. Graham. Efficient Software-Based

Lecutre Notes in Computer Science Spe-
Fault Isolation. In Proceedings of the cia1 Issue on Mobile Agents, October

1997.
Fourteenth ACM Symposium on Oper-
ating System Principles, pages 203-216,

[OLW97] J . K. Ousterhout, J . Y. Levy, and December 1993.
B. B. Welch. The Safe-Tcl Security
Model. Sun Microsystems Laboratories, [Yee97] B. Yee. A Sanctuary for Mobile Agents.

http://www.scriptics.com/ people/ Technical Report CS97-537, Computer

john. ous te rhout / saf eTcl . ps, March Science Department, University of Cali-

1997. fornia in San Diego, April 1997.

[SESS96] M. I. Seltzer, Y. Endo, C. Small, and
K. A. Smith. Dealing With Disaster: Sur-
viving Misbehaved Kernel Extensions. In
Proceedings of the 2nd ACM Symposium
on Operating Systems Design and Imple-
mentation, pages 213-227, October 1996.

