
Design, Implementation, and Evaluation
Of A Distributed Real-Time Kernal

For Distributed Robotics

(Dissertation Proposal)

MS-C1S-90-40
GRASP LAB 220

Robert King

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

July 1990

Design, Implementation, and Evaluation of a
Distributed Real-Time Kernel for Distributed

Robotics

Robert B. King

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania

Dissertation Proposal
Supervised by Dr. Insup Lee

July 5, 1990

Abstract

Modern robotics applications are becoming morc complex due to greater
numbers of sensors and actuators. The control of such systems may require
multiple processors to meet the computational demands and to support the
physical topology of the sensors and actuators. A distributed real-time system
is needed to perform the required communication and processing while meeting
application-specified timing constraints.

We are designing and implementing a real-time kernel for distributed robotics
applications. The kernel's salient features are consistent, user-definable schedul­
ing, explicit dynamic timing constraints, and a two-tiered interrupt approach.
The kernel wi1l be evaluated by implementing a two-arm robot control example.
Its goal is to locate and manipulate cylindrical objects with spillable contents.
Using the appHcation and the kernel, we will investigate the effects of time
granularity, network type and protocol, and the handling of external events
using interrupts versus polling. Our research will enhance understanding of
real·time kernels for distributed robotics control.

Contents

1 Introduction 1

1.1 Distributed Real-Time Systems 1

1.2 Robot Control Systems . 2

1.2.1 Application 3

1.2.2 Problems 6

1.3 Research Motivation 7

1.4 Proposal Outline 9

2 Related Work 10

2.1 Scheduling. 10

2.2 External Events 14

2.3 Robot Control with Timix{RCI 18

3 Goals and Approach 20

3.1 Goals . .. 20

3.2 Approach 22

3.3 Research Contributions. 23

4 Distributed Real-Time Kernel 25

4.1 "Process" Model 26

4.1.1 Execution Environment 28

4.1.2 Threads .. 28

4.1.3 Nameserver 29

4.2 Scheduling and Timing Constraints 30

4.3 Alarms . . 33

4.4 Resources 33

4.4 .1 Event 34

4.4.2 Port

4.4.3 Device

4.4.4 Memory

4.5 Communication

4.5.1 Events

4.5.2 Messages .

5 Robot Application

5.1 System Architecture

5.2 Logical Organization

5.3 Modes of Operation.

5.3.1 Mode 1: Search under collision avoidance.

5.3.2 Mode 2: Object found and push to common area

5.3.3 Mode 3: Manipulate object with both arms ...

6 Research Plan

6.1 Kernel ...

6.2 Application

6.3 Measurement and Kernel Design Alternatives

6.4 Timetable

Bibliography

II

34

35

37

38

39

40

42

42

44

46

46

47

48

50

50

50

51

52

53

I

1 Introduction

Real-time applications differ from other computer applications by requiring logical

correctness and satisfaction of certain timing constraints. Satisfying timing con­

straints is required to avoid possible catastrophic results from the underlying physical

processes being controlled [Lee84]. The term hard real-time is used when these tim­

ing constraints must be met in all cases. Complex real-time applications tend to

be naturally distributed. A distributed real-time application consists of a collection

of real-time processes cooperating to perform some computation. These processes

communicate with one another and with the external environment. Examples of dis­

tributed real-time applications include flight control systems [WLG*78], space shuttle

avionics [Car84], and robotics.

Most robotics application programs must not only be logically correct, but they

must satisfy certain timing constraints. The adherence to these timing constraints

are important for two reasons. First, the physical characteristics of manipulators and

sensors require regular, carefully timed feedback control for continuous and smooth

operations. Second, the high-level tasks may require timely execution to avoid pos­

sible catastrophic results. In addition to being real-time, the requirements on timely

computations of many numerical and symbolic functions are such that they can only

be met using multiple processors. Furthermore, complex robotics applications in­

clude many physical devices that are distributed across multiple processors. This

distributed view of the underlying system allows robotics applications to be imple­

mented as relatively independent processes which run asynchronously except for oc­

casional synchronization and communication. Concurrent programs such as these,

which need to respond to external and internal stimuli within specified deadlines, are

called distributed real-time programs [LG85].

1.1 Distributed Real-Time Systems

A distributed system consists of multiple nodes connected by one or more networks

capable of handling communication between the nodes. A node consists of one or

more processors that share a single backplane which includes memory, devices, and

2 1 INTRODUCTION

network adapters. A network consists of channels to allow one node to communica.te

with one or more nodes at any given instant in time. A distributed system utilizes dy­

namic scheduling requirements if the scheduling requirements directly depends upon

external stimuli and the external stimuli depends upon a combination of the environ­

ment and other components of the system. Since these systems may receive sporadic

information from the environment and the rate of information may change as the

system runs, the resulting scheduling parameters are not fully known in advance of

the system's execution. The term static scheduling requirements refers to scheduling

requirements that do not change as the system runs.

The most important quality that a distributed hard real-time system should pos­

sess is predictability. A real-time system is predictable if its functional and timing

behavior is as deterministic as is necessary to satisfy system specifications [StaSSI·

The system must respond to external events within bounded time intervals to avoid

potential catastrophe. Predictability should be foremost in the minds of those who

design, debug and maintain real-time programs [LKPS9].

A distributed real-time kernel consists of a single kernel that is replicated on each

node throughout a distributed real-time system. Most distributed real-time kernels

are not designed as multipurpose kernels, but to serve the specific needs of real-time

processes [CMM87]. A message-based distributed real-time kernel consists of two es­

sential components: a scheduler which guarantees process completion within specified

timing constraints and a message transmission service which delivers messages within

specified timing constraints. Meeting of dynamic scheduling requirements is crucial

in these systems.

1.2 Robot Control Systems

To motivate our discussion of distributed hard real~time systems, consider the class of

applications known as robot control systems which are used to control robot manipula­

tors in conjunction with other sensors and actuators. Robot control systems can be de­

composed into several hierarchical levels [CIa89,LGCS89,MWB89,SaI89,SARTICS89]

[SHKK89]. Servo loops form the lowest levels of most robot control systems. A servo

1.2.1 Application 3

loop consists of a periodically scheduled process which takes as its input the error of

some part of the system and produces corrections which when applied to the system's

actuators will reduce the error. Functioning at higher levels, supervisory control in­

volves the coordination of multiple sensors, actuators, and subsystems to form coupled

systems. Such control systems must communicate with other computers to perform

higher-level tasks such as motion planning or factory-level coordination. In addition,

they provide support functions such as process monitoring and error recovery.

1.2.1 Application

Consider a two manipulator robot control system which is used to locate circular

objects with spillable contents, push them around, pick them up, and pour their

contents out. Attached to the end of one manipulator arm is first a six-degree-of­

freedom compliant wrist ([XP88]) and then a wedge-shaped end effector. The other

arm has a wedge-shaped end effector attached to it. These wedge-shaped end effectors

have two three inch square faces connected at a right angle with simple contact sensors

mounted on the interior side of each face. Most arm movements occur as Cartesian

motion (straight-line motion) rather than joint motion. Objects are picked up by

applying forces to the opposite sides of the objects by the two arms (the friction

between the object and the wedge allows the object to be lifted). Once an object is

lifted, it is moved over a bucket and its contents are emptied out. Then the object

is moved over a box and dropped into the box. Figure 1 illustrates the application

from above - the large circle indicate the reach of each robot arm and the objects

themselves are represented by grey circles.

There are three fundamental modes of operation In this two-arm pushing and

lifting application. We enumerate them in the order of their occurrence:

Mode 1. The initial configuration has each end-effector located a constant distance

above a flat surface which contains the objects. Each arm starts an independent

search and uses the contact sensors on the end-effectors to detect contact with

any objects. The goal is to find an object which is later lifted, emptied, and

dropped. As each arm moves, it sends location information to a collision avoid-

4

Reach of
Arm #1

(')

•
Reach of
Arm #2

•

1 INTRODUCTION

Figure 1: Robot Application (top view).

ance module which computes the distance between the arms. If the distance

between the arms is decreasing at a rate which exceeds a predefined system

constant, then warning messages are sent to both arms. In addition, if colli­

sion is imminent, the arm which initiated the movement in this direction last

is instructed to change its path. Since the two arms are operating in an in­

dependent fashion, the communication requirements are minimal except when

collisions are feasible between to two arms.

Mode 2. Once an object has been found, the two arms operate in an uncoupled, co­

operative manner. Our goal is to push the object into the common area between

the two robot arms and move the end-effectors until each one is contacting op­

posite sides of the object. Let arm A be the one which found the object and

arm B be the other. Arm A carefully pushes the object so as to prevent spilling

of the contents of the object. Arm B moves to "meet" the object from the other

side of the common area. The communication requirements are moderate since

the update messages are sent more frequently as the distance between the arms

decreases.

Mode 3. The object is now manipulated by the two arms in a coupled, cooperative

manner. Our goal is to lift the object, move and empty its contents into a

bucket, and move and dispose of the object into a box. The arm with the

1.2.1 Application 5

compliant wrist is called the slave arm and the other arm is called the master

arm. The master arm initiates the moves and the slave follows by sensing the

forces acting on the wrist. The communication requirements are extensive since

the slave arm can not lag the master by more than a few sampling periods (the

exact number will be determined in our experimentation). Once the object is

dropped, the arms move the end-effectors back to the location from which they

lifted the object. At this point, we return to Mode 1 where the search proceeds

for another object.

This distributed real-time application can be subdivided into three processing

components: one for each manipulator arm, and one for the collision avoidance and

cooperative components. The robot arm with the wrist and wedge end-effector con­

sists of six basic tasks. First, the hand task only executes sporadically in modes 1

and 2 when contact occurs and then the task updates the contact information. Sec­

ond, the wrist task only executes periodically in mode 3 where it updates the force

information. Third, the arm task executes periodically in all modes to compute the

next joint angle for each joint on the manipulator arm. Once the computation has

been completed, the results are passed to the joint control subsystem. Fourth, the

search strategy task executes sporadically only when the arm requests a new goal

path. There are two communication tasks: network in which is used to receive mes­

sages and network out which is used to transmit messages. These tasks only execute

whenever other components communicate with this control system, or vice versa.

The system architecture contains dedicated processors at the lowest levels for joint

actuation which communicate to the higher levels via dedicated hardware links. The

higher level consists a distributed real-time system forming the supervisory control

system. The distributed real-time kernel discussed in this proposal is used to handle

the supervisory control aspects of such a system and to handle the sensor processing.

Section 5 examines this application in further detail.

6

1.2.2 Problems

1 INTRODUCTION

We now identify four problems that must be solved when implementing a real-time

application such as this one.

1. How does the system guarantee timely response to sporadic entities? This prob­

lem refers to the tradeolfs between polled and interrupt-driven input and their

respective costs. Although our example does not contain a specific case where

this problem is crucial, we can extend the application to illustrate our point.

As described, our application assumes that the objects are located in a static

environment - that is, the objects will not be moved unless pushed by a wedge.

However, if the objects are in a dynamic environment where an object may be

given to an arm, then this problem is crucial. Consider the hand task which pro­

cesses the data from the contact sensors located in the wedge and only executes

when contact has been detected. Interrupt-driven input is required for this task

since the system does not know when the sensor may detect contact. Polling

can only be used if the system knows how frequently or when polling should be

performed in advance. For the contact sensor, the manipulator a.rm moves at a

specific rate and this rate can be used to compute the polling frequency. How­

ever, since the environment in which the robot arm moves is dynamic, one does

not know in advance how the environment will change. Thus, if polling were

used, the contact might not prevent the pushing of objects before the correct

direction has been determined.

2. How does the system guarantee that the overall scheduling of tasks is maintained

when external events occur? The overhead in processing interrupts should not

preempt processing of tasks which are more critical. The traditional approach

is to disable all interrupts or to disable interrupts from selected devices. In

the first case, critical interrupts cannot execute their handlers since they too

are disabled. In the second case, knowledge of the individual devices would be

required. Consider the network in task where message processing and ordering

depends upon the contents of the message. Ideally, we would like the task to

only run if the message received is more critical than any other task within the

system.

1.3 Resea.rch Motiva.tion 7

3. Scheduling requirements may change as the system executes or may depend on

the system state. How does the system deal with this? Dynamic scheduling

requirements include timing constraints, priority, and any other parameter ap­

propriate to the application. Our robotic application illustrates this problem in

two ways: tasks only run in certain modes and the communication tasks (such

as network in and network out) have scheduling requirements which change

depending upon the mode.

4. How easy is it to convert application requirements into desired scheduling char­

acteristics? This problem is only relevant when one considers that real-time

systems must be used in order to be considered usefuL If scheduling require-.

ments (timing requirements and message ordering) can not be scheduled with

the scheduling algorithm supported by the real-time system, then the usefulness

of the system is lost.

1.3 Research Motivation

Our research is motivated by the difficulties encountered when we attempted to im­

plement time dependent distributed programs such as a distributed robotics system

using existing operating systems. These difficulties arose because most operating

systems are designed to provide good average performance, while possibly yielding

unacceptable worst-case response times. Furthermore, they provide a limited set of

primitives for dealing with time, making it impossible to implement programs whose

correctness depends on exact timing.

Even with currently available real-time operating systems, it is difficult to develop

distributed robotics programs. First, they typically provide schedulers based on pri­

ority rather than timing constraints. Programmers must therefore ensure that timing

constraints are met by making the proper process priority assignments. This can prove

to be quite a difficult task in a complex system, and can often result in very low pro­

cessor utilization ISLR86]. Further, most off-the-.shelf operating systems provide a

very limited set of primitives to manage time, making it cumbersome to implement

programs whose correctness depends on exact timing. The typical kernel interface

8 1 INTRODUCTION

includes primitives used for setting and clearing alarms, or for making a process sleep

(or wait). But since these functions do not explicitly affect process scheduling, it is

not easy to use them for predictable time management in real-time programs. Cur­

rent operating systems also lack services necessary for time-bounded communication.

For example, the scheduling of message transmission is not deadline-driven; instead

it generally adheres to first-come-first-served or priority-based paradigms. Further­

more, the end-ta-end communication delay of a message cannot be bounded since the

scheduling of processes and message delivery are not integrated.

To deal with these problems, we believe that a distributed real-time kernel must

adhere to the notion of consistent scheduling. Under the consistent scheduling par­

adigm, all threads (the basic unit of execution) are scheduled for execution in a

uniform manner with a user-definable scheduler. The scheduling parameters specified

by each thread may be modified as the system executes. Therefore, if the scheduling

requirements change as the system executes or as the system state changes, then the

scheduling parameters can be dynamically modified. Furthermore, device interrupts

are isolated from the system by employing the notion of an event and a thread. When­

ever a interrupt occurs, the appropriate event is triggered. The interrupt handler is

written as a thread and suspends itself until the associated event becomes valid. At

this point, the scheduling of the interrupt thread occurs via the same scheduler as

the other threads. Finally, port-based asynchronous message passing should be en­

hanced to allowing individual message priorities which are used to order messages in

the queue at each port.

To facilitate the development of robotics applications that require real-time capa­

bilities, we propose the design and implementation of a distributed real-time kernel

(Timix (v. 2)) to support the timely execution of time critical threads and communi­

cations. A user·definable scheduling algorithm is used to determine which thread to

execute next. A two-tiered interrupt scheme is provided using event and lightweight

threads which allow all device interrupts to be mapped into threads scheduling using

the standard scheduler. The kernel allows the programmer to express timing con­

straints explicitly. The explicit specification of timing constraints makes real-time

programs easier to write and maintain than those without explicit timing constraints.

Furthermore, the kernel can use timing constraints for scheduling threads and message

1.4 Proposal Outline 9

transmission and reception. If explicit timing constraints are used with a predictable

kernel, timing violations can be detected as they happen and the kernel can schedule

processes and messages so that as many timing constraints as possible are satisfied.

1.4 Proposal Outline

There are five sections to follow. Section 2 classifies existing real-time kernels ac­

cording to their scheduling approach and their technique for responding to external

events. Section 3 examines the goals of our proposed research and our approach for

undertaking the research. The kernel design is described in Section 4. Section 5 ex­

amines the two-arm pushing and lifting robotics application in further detaiL Finally,

we conclude with a summary of the current status, a description of future work, and

a timetable for this work in Section 6.

10 2 RELATED WORK

(SChedUle;:)

------ "'.Value Deedllne eStatl') Priority
Function FLEX MARS SAGE (64 bit)

Alpha MARlITI CHORUS
ARTS ANet Computer X
Spring DEC VAXELN

Meglos
MOOOSK
VRTX
VxWor'tfs

/~
And Dynamic: Axed

CHAOS HARTOS FADOS
GEM pSOS ATU

AMK

Figure 2: Taxonomy of Techniques that Real-Time Kernel Schedulerfl Ui'le

2 Related Work

Using the problems that were identified in the previous section, we can classify existing

real-time kernels in two separate taxonomies: scheduling approach and technique for

responding to external events. Next, we summarize our work on Timix (v. 1) and

its use in robotic applications. The problems found with Timix (v. 1) provides the

motivation for this work.

2.1 Scheduling

Many real-time kernels impose their scheduling policies on the application program·

mer. For instance, the kernel may use first-come-first-serve, priority-based, or rate

monotonic scheduling policies. Since the specification of an application does not usu­

ally reflect these notions, the programmer must convert application specified schedul­

ing requirements into notation which the kernel's scheduler may use. Furthermore,

the programmer may not be able to tell whether an application meets its scheduling

requirements without simulating all possible execution choices.

2.1 Scheduling 11

Scheduling algorithms for real-time kernels can be divided into four basic cate­

gories: by static, by priority, by deadline, and by value function. Figure 2 classifies

existing systems in a taxonomy based on their scheduling approach. We discuss these

systems in the order of least flexible to most flexible.

Static The scheduling information utilized by a static scheduling approach is de­

termined before the system executes. The primary advantage of such an approach is

predictability - since the scheduling is determined in advance, one will know if the

system is as deterministic as is necessary to meet the required timing requirements.

However, there are several disadvantages. First, it is difficult to predetermine how ev­

erything within the system should be scheduled. Second, once a schedule is obtained,

it is difficult to modify a program without having to recompute the entire schedule.

Baker [B588] defines a cyclic executive as a control structure for explicitly interleaving

the execution of several periodic processes on a single CPU. MAintainable Real-time

System (MARS) [DRST<89,KDK*89] utilizes an extension of the cyclic executive ap­

proach as its scheduling approach. Hard real-time tasks are cyclic tasks that receive,

process, and send messages. However, with this system, they can be no hard real-time

tasks which are not periodic. Acyclic tasks are provided in the form of soft real-time

tasks and utilize the idle time of the CPU in low load situations. MARS' off-line

scheduling approach considers the maximum execution times of hard real-time tasks}

their cooperation by message exchange, and the assignment of messages to slots on

the communication network. To provide some flexibility. changes between two sched­

ules can occur only at predefined points in time and the maximum delay between an

immediate switch is eight milliseconds.

Priority Most current commercial real-time operating systems utilize a priority­

based scheduling approach. A preemptive, priority-based scheduling algorithm allows

higher priority tasks to run as soon as they are ready by preempting lower priority

tasks. This algorithm may use either static or dynamic priorities. The static pri­

ority of a task is usually set when a task is created. Examples of systems utilizing

preemptive, priority-based algorithm on tasks with static priorities include: CHO­

RUS (version 4) [RAA*88], Compuler X [KB87a,KB87b], DEC VAXELN [Sle88],

12 2 RELATED WORK

Meglos [Gag86,GK86], MASSCOMP's RTU [Hen88], Real-time Multiprocessing Ker­

nel (RMK) [Stu88], Versatile Real-Time Executive (VRTX) [Rea86J, and VxWorks

[VxW,Mah88a,Mah88hJ. The priority of a process in FADOS [TH86] contains two

parts: the hardware priority determines the priority level of the processor and the

software priority. The hardware priority is only relevant for processes which handle

interrupts. With dynamic priorities, the priority of a task may change as the task ex­

ecutes. Modular Distrihuted Operating System Kernel (MODOSK) [GLR82] allows

processes to change their priority level dynamically.

There are two other systems which use priorities in a more generic way. The SAGE

[SaI88,Sa189] system allows process priority to be specified as 64 bit integer values and

compares them according to macros specified at system compile time. As a result, the

system supports any scheduling policy that allows priorities to be specified in 64 bit

integers. In pSOS [KKS89] (and HARTOS [KKS89] which uses pSOS), processes may

dynamically change their mode (preemptable or non~preemptable) and their priority

as they execute.

Deadline Since many real-time processes have deadlines by which their execution

must complete, a better way to schedule processes is to employ these deadlines di­

rectly. The earliest deadline first algorithm (EDF) runs at every instant the ready

process with the earliest deadline. On a single processor, EOF has been proven to be

optimal when the processes are independent {Mok84]. Processes are said to be inde­

pendent if their interprocess conununication primitives do not impose any scheduling

restrictions. RNet [CMM87] is an example of a system using the EOF algorithm for

scheduling processes.

MARUTI, GEM, and CHAOS extend the traditional notion of deadline-based

scheduling in three different ways.

• MARUTI [LTCA89] imposes both start-time and finish-time constraints on all

computations, whether periodic or aperiodic. The scheduler supports on-line

and off-line scheduling disciplines: on-line is for guaranteed jobs and off-line is

for both non-deterministic execution time bounds and non-real-time jobs.

2.1 Scheduling 13

• Generalized Executive for real-time Multiprocessor (GEM) [SBWT87] asso­

ciates the following scheduling information with each process: deadline specifies

the time interval (relative to the time it was made ready) which the process

should complete the execution of all of its microprocesses that are ready to run;

period specifies the process' period of execution and is undefined if the process

is sporadic; and priority specifies the scheduling priority of the process. The

scheduler uses this information to schedule processes first by priority and then,

within each priority level, by the shortest deadline first (EDF) algorithm. This

is a non-preemptive scheduler since processes run until completion.

• Concurrent Hierarchical Adaptable Object System (CHAOS) [SGB87,GS89] can

adapt its behavior to deliver the specified performance. This performance re·

quirement is specified in terms of an overall deadline for the application. In­

vocation deadlines are recomputed dynamically so that they remain consistent

with this overall deadline. When there is no longer enough slack time available

to recompute the invocation deadlines, the application is dynamically modified

by moving it along a continuum of different programmer specified versions, each

with different functionality and performance.

Value Function A value function provides the most flexible way to schedule pro­

cesses for execution. Associated with each process is a set of parameters. To determine

which process executes next, the value function is executed for each process with its

set of parameters, and the process with the "most value" is chosen to execute next.

There are some drawbacks to this approach: (1) the computational overhead required

to execute the value function and (2) the method required to deal with time depen­

dent value functions. The value returned by a time dependent value function depends

on the current time. For instance, a value function for the minimum laxity first par­

adigm would return the highest value for the process with the least laxity. Laxity is

computed by subtracting the remaining execution time from the deadline. The laxity

associated with each process is static except for the process that is executing. Laxity

represents the maximum delay before which a process can not complete and meet

its deadline if it consumes its maximum execution time. Alpha [Jen89] allows the

expression of application timing constraints in terms of value to the system in com-

14 2 RELATED WORK

pleting each activity, a function of each activity's completion time. Every evaluation

is performed collectively for all executing and pending activities.

Two other systems use the value function algorithm in conjunction with other

scheduling algorithms.

• ARTS [TM89] uses the Integrated Time-Driven Scheduling (ITDS) model which

provides a notion of "capacity preservation" to deal with hard and soft real·

time activities. ITDS determines schedulability of hard periodic tasks, uses

value functions for soft real-time task scheduling, and provides overload control

based on the value functions of aperiodic tasks. Simple, non-communicating

and independent periodic tasks are scheduled using rate monotonic scheduling.

The basic rate monotonic scheduling method has been extended to deal with

dependent tasks, the synchronizing of tasks in critical sections, and transient

overload. A deferrable server for soft real-time tasks selects most important

aperiodic task among runnable aperiodic tasks using a value function .

• In Spring [SR87a,SR89], the system processors offload the scheduling algorithm

and other operating system overhead from the application tasks both for speed,

and so that this overhead does not cause uncertainty in executing already guar­

anteed tasks. All critical tasks are guaranteed a priori and resources are reserved

for them. Essential tasks have deadlines and are guaranteed on-line. Although

scheduling is subdivided into four modules, we only examine the local sched­

uler which is used to guarantee that a new task can make its deadline. This

scheduler uses the heuristic function,

H(T)=TD+W*T,..

where TD is the task's deadline, Tut is the task's scheduled start time, and W

is a weight.

2.2 External Events

The development of software used by an operating system (or an application) to

interact with devices has always involved a classic question: polled input/output or

2.2 External Events 15

interrupt-driven input/output. The solution to this classic question must consider

the reasons for which interrupts may occur. Output interrupts usually indicate when

a device has finished handling some output and is ready for some more. This kind of

interrupt can usually be predicted since such an output interrupt does not occur unless

output to the device has already been initiated. Input interrupts usually indicate that

a device has some new data ready to be used by the application and they present the

greatest problem.

There are tradeoffs on using polling to initiate input from a device and on using

an interrupt to signify that a device has input. The computer hardware used by most

kernels let interrupt handlers execute immediately after an interrupt occurs unless

the processor is executing a handler for a higher priority interrupt. This may not

be in the best interest of the application as its execution may be more important

than the execution of the interrupt handler. For example, a network communication

interrupt may not be important while executing code to prevent the blind robot from

colliding with an object. A traditional solution to this problem involves the use of

polled input. If network communication was polled instead of interrupt-driven, then

messages would only be received when the system requests them. However, a polled

interaction wastes t execution time as it polls devices which are not ready for input.

In addition, if a single device's sole purpose is to notify the system that some fault

has occurred, then the determination of the polling frequency must tradeoff wasted

processor execution time with the delay in determining that a fault has occurred.

The same tradeoffs exist for output, but they are less critical since the occurrence of

an output interrupt can usually be predicted.

Methods for dealing with external events within real-time kernels can be divided

into three basic categories: assigning a dedicated processor to handle the interrupts,

polling the device, and interrupting an application processor. Figure 3 classifies ex­

isting systems in a taxonomy based on their approach in dealing with external events.

lls wasting processor execution time necessarily a bad thing? From an accounting perspective,

i.e., justification for such a machine, we wish to obtain the highest utilization of the system possible

and still meet the timing requirements. However, from an engineering perspective, we are more

concerned that it be predictable than it necessarily obtain the highest utilization possible [Smi90].

16

OMiIClited
Ptoe:.._.

Spring
RTU

2 RELATED WORK

."....
SAGE

Communication ProeM'"
Computer X
MARUTI......
pSOS

Figure 3: Taxonomy of Techniques that Real-Time Kernel Use for External Events

Dedicated Processors With MASSCOMP's RTU [Hen88], all interrupts are ser­

viced on the boot processor to free the other CPUs from associated latencies and

uncertainties. At system creation the system manager can make a block of external

memory available for direct access by user processes to provide rapid access to devices

without having to write new device drivers. However, if interrupts are to be serviced,

then a device driver still is required. Depending upon the system configuration, the

interrupt latency is bounded in the five to ten millisecond range.

The Spring [SR87a,SR89] kernel executes on a distributed network of multipro­

cessors where each multiprocessor contains at least one application processor, one or

more system processors, and an input/output subsystem. Input/output devices are

subdivided into two types, according to their speeds. Slow devices are multiplexed

through a front-end I/O subsystem, are preallocated, and are not part of the dynamic

on-line guarantee. Interrupts from the I/O subsystem are handled by system proces­

sors. Fast devices are handled with a dedicated processor or have dedicated cycles on

a given processor or bus. Resources are preallocated for fast devices.

2.2 External Events 17

Polled In MAintainable Real-time System (MARS) [DRSKS9,KDK*S9j, tbere is

only one interrupt, for the periodic clock interrupt. Since the remaining devices are

polled within the clock interrupt, strictly periodic and deterministic system behavior

is maintained. The clock interrupt handler is divided into two levels. Every mil·

lisecond, the handler interrupts any executing task or system call and polls the other

devices. Every eight milliseconds, the handler only interrupts tasks but follows any

system call that may be executing, updates the system data structures upon sending

or receiving data from the other level, and allows state changes to occur.

System Interrupts Interrupt-based real-time kernels can be subdivided into two

basic categories: kernel responds to interrupts and application responds to interrupts.

The notion kernel responds to interrupts defines those operating systems which re­

spond directly to the interrupt and do not permit the application to directly interact

with devices. Experience with existing systems, such as UNIX-based ones, have shown

that interrupt handler latencies can be huge, particularly for those handlers that han­

dle requests for more than one process at a time (i.e., disk or network requests). For

instance, consider the interrupt handlers provided by SAGE {SaI88,SaI89]: each han­

dier runs on the current process's kernel stack, can access any valid kernel address,

and can only invoke a limited number of operations. Because it shares the process's

stack, an interrupt handler cannot block, and it can only be preempted by a higher

priority interrupt handler.

The notion application responds to interrupts defines those operating systems that

permit applications processes to directly response to device interrupts, either through

message-based communication or by viewing the interrupt handler as a process. The

message-based communication approach is used by RNet [CMM8?] and Computer X

[KB87a,KB87b]. The viewing of the interrupt handler as a process is used by pSOS

[KKSS9], Versatile Real-Time Executive (VRTX) [Rea86], and MARUTI [LTCAS9).

In pSOS, the interrupt handlers can only use a restricted set of primitives to interact

with other processes. VRTX provides more flexibility by placing no constraints on the

operation of its interrupt handlers. Any object in MARUTI that requires an interrupt

must reserve the interrupt service as an enabling condition for its execution. Once

the reservation has occurred, the object state is set to IDLE. When the interrupt

18 2 RELATED WORK

occurs, the interrupt service object is set to ACTIVE and it returns to where it was

executing.

2.3 Robot Control with Timix/RCI

Timix [Kin87] (extended in [LK88,LKY88,Kin89]) was an attempt to provide some

of the features missing in existing real-time systems. Timix supports processes with

independent address spaces that execute, communicate and handle devices within

timing constraints. Signals and asynchronous message passing are the two basic com­

munication paradigms supported in Timix. New devices, which are directly controlled

by application processes, can be integrated into the system without changing the ker­

nel. In addition, dynamic timing constraints are used for scheduling processes and

interprocess communications.

The Robot Control Interface (RCI) ILl085] was designed to provide a programmer

with primitives for writing simple control procedures to operate the individual joints

of a robot. ReI consists of two components: a control task which periodically executes

at a high priority in a non-interruptible context to produce commands for each joint

and a planning task which provides high level directives to the control task. The

control task is restricted from executing UNIX system calls and its code and data

pages are locked into memory.

In UNIX, the timing constraints imposed on the system by the robot are not

adequately represented. The author ported RCI onto Timix in two different versions:

one which does not utilize robot timing constraints for scheduling purposes and one

which attempts to employ those timing constraints.

The first port of RCI to Timix provided a set of library routines to mimic the

functionality that RCI provided with UNIX. This package required no modifications

to the kernel as was required to implement RCI on UNIX: each process is always

resident in memory and the device interface allows new applications to be easily

added. The same communication program that runs on the PUMA controller for

RCI on UNIX is used for ReI on Timix.

The second port attempted to map timing constraints into the various compo-

2.3 Robot Control witb Timix/RCI 19

nents of the ReI interface. At this point, several design flaws within Tirnix were

discovered. Namely, signals and processes are not scheduled for execution in a con­

sistent and uniform manner. Also, if a temporal scope is defined for the main part of

a process with a start time in the future, an interrupt can not be processed. until the

process reaches its start time. With these flaws, there was no straightforward way to

implement a version of the ReI using timing constraints for scheduling purposes.

20

3 Goals and Approach

3.1 Goals

3 GOALS AND APPROACH

Modern robotics applications are gradually becoming more complex by involving

greater numbers of sensors and actuators. The control of such systems require multiple

processors as a single processor may nol be able to meet the computational demands

and certainly cannot physically be connected to all the sensors and actuators due

to location and other constraints. Providing a modular system usually involves the

specification of a single task for each sensor or actuator in the system. Distributed.

robotics systems tend to be structured as follows: each sensor task collects data and

sends it off to a task to interpret the datal the interpretation task integrates the

sensor data and sends the results to the appropriate tasks, and the actuator tasks use

the integrated data to determine what to do next. A distributed real-time system

is required to perform the required communication and processing while meeting the

application specified timing constraints. Our research goal is to:

Study the structure of a real-time kernel which facilitates the

development of distributed robot systems.

We are concerned with the development of a suitable real-time kernel which sup­

ports distributed robot control systems while solving our previously identified prob­

lems. The kernel must provide predictable response with respect to time. Further, the

kernel is employed by a single robot control application I i.e. , the kernel is dedicated.

to executing a single application at any given time. However, since the kernel will be

used in a robotics laboratory where a single platform is utilized for several different

experiments} the kernel must allow for the easy development and modification of ap­

plications. The software abstraction employed. by the kernel should provide a simple}

concise, and consistent operator set.

Using our four previously identified problems, we can briefly examine four subgoals

dealing with kernel design which enables our kernel to solve the problems. Note that

our research approach is summarized in the next subsection.

3.1 Goals 21

1. The system must guarantee timely response to sporadic entities. The

kernel conforms to a notion of consistent scheduling. By consistent scheduling,

we mean that all threads are scheduled for execution using the same scheduling

paradigm. Periodic and sporadic entities are scheduled in a uniform manner

using the same scheduling paradigm. With periodic entities, we use the event

mechanism to periodically make the thread runnable (as we explain later).

2. The system must guarantee that the overall scheduling of tasks IS

maintained at all times. Normally, tasks are scheduled to execute based on

their timing requirements. If all devices (other than the clock) are polled, then

the overall scheduling of tasks is intrinsically maintained. However, if interrupts

are used, the kernel does not know in advance when the interrupt will occur.

Traditional real-time systems use computer hardware to schedule the execution

of interrupt handlers without consideration to the timing requirements of the

application. If device interrupts occur more frequently than expected and ex­

ceed the design specification, then the processor can be overtaxed and cause

timing constraints to be missed.

To solve this problem, a two-tiered interrupt paradigm using events and lightweight

threads is used to guarantee that the overall scheduling of tasks is maintained

at all times. The only processing not occurring within a thread is the clock and

a minimal interrupt handler. The execution overhead for the clock can easily be

predicted - it occurs at regular intervals. Although interrupt handlers execute

whenever an interrupt occurs, the processing overhead introduced is strictly

bounded and relatively small. The purpose of such an interrupt handler is to

convert the interrupt to a passive entity called an event. These events may be

used as start conditions for the execution of threads. All threads, whether initi­

ated by communication or by devices, are scheduled using the same scheduler.

3. Scheduling requirements may change as the system executes or may

depend on the system state. The kernel allows the specification of explicit

dynamic timing constraints which may be modified by each thread while the

system executes. Therefore, if the scheduling requirements change as the system

executes or as the system state changes, then the scheduling parameters can be

22 3 GOALS AND APPROACH

dynamically modified.

4. Conversion of application requirements into scheduling parameters

should be straightforward. The ease of design and change in real-time

application development is crucial in a research environment where the real-time

system changes as the research requirements change. In our notion of consistent

scheduling, the kernel provides a default scheduling algorithm based on the

earliest-deadline-first algorithm. However, we allow the application programmer

to redefine the scheduling algorithm by specifying the desired characteristics

among those predefined within the kernel. Thus, the ease of conversion of

application requirements into scheduling parameters directly depends on the

choice of the scheduling algorithm selected by the application programmer.

3.2 Approach

Our approach is to design a real-time system model suitable for distributed robotics,

to realize the system model by implementing a distributed real-time kernel, and to

design and implement a robot control application which is typical of those found in

distributed robotics.

The real-time system model employs a single scheduling algorithm which is applied

to each thread in a consistent manner. This algorithm uses a user-definable schedul·

ing algorithm with application specified timing constraints to provide a predictable

response to external events. Applications requiring dynamic scheduling requirements

are supported by allowing the application to change the timing constraints as it ex­

ecutes. Furthermore, threads may propagate the timing constraints when they com­

municate. Communication between threads can functionally follow two paradigms:

synchronous message passing and asynchronous message passing. With synchronous

message passing, the timing constraints associated with the sending thread is prop­

agated to the receiving thread. The priority associated with the message is used for

scheduling the message's communication. With asynchronous communication, the

scheduling parameters and message priority associated with the message are only

used for communication purposes and not for scheduling the thread's execution.

3.3 Research Contributions 23

Not only may applications directly respond to interrupts, but a two-tiered in­

terrupt mechanism is used to provide a greater degree of system predictability. All

device interrupts other than those from the clock are converted into events. An event

is "triggered" when the interrupt occurs which wakes up any threads waiting on that

event by placing the thread in the ready queue. The handlers (or threads) associated

with each interrupt will then execute only when its timing constraints put the thread

at the head of the ready queue. This approach essentially merges the advantages of

both polled and interrupt-driven input/output. A byproduct of this approach is the

ease in which experimentation of the tradeoffs of polling and interrupts can proceed.

Given the real-time system model, we intend to realize it by implementing a dis­

tributed real-time kernel (Timix (v. 2)) on a network of DEC MicroVAX II processors

connected through an Ethernet. The design of the kernel attempts to isolate as many

of the low-level hardware dependencies from the operator set as possible.

To evaluate our real-time system model and our kernel implementation, we intend

to implement a distributed robotics application. By implementing a "real" robotics

application, we can reflect on our kernel design choices and speculate on the solutions

to any difficulties caused by them. The robotics implementation will be modular to

permit future extensions of the application, such as the addition of another arm or

more sensors.

3.3 Research Contributions

The primary contributions of this research is the design, implementation, and evalu­

ation of a distributed real-time kernel using a distributed robotics application:

1. A real-time system model is developed. Its salient features are the notion of

consistent scheduling, the use of explicit timing constraints, and a two-tiered

interrupt structure.

2. A kernel is realized using the system model as its base. The kernel permits

experimentation with various levels of time granularity, with real-time protocols

and networks, and with the tradeoff's between interrupts versus polling.

24 3 GOALS AND APPROACH

3. A distributed robot control application will be realized to show the effectiveness

of the real-time kernel and the model on which it is based.

25

4 Distributed Real-Time Kernel

Timix (v. 2) is a distributed real-time kernel designed support distributed robotics ap­

plications with predictable execution and interprocess communication. The applica­

tion programmer can specify timing constraints for thread execution and interthread

communication. These timing constraints directly reflect the timing requirements of

the application. The kernel uses these constraints for scheduling threads and com­

munications. This approach of treating time explicitly facilitates the implementation

and debugging of time dependent application programs.

The key components of the kernel include:

Execution environment is the basic unit of resource allocation, has an indepen­

dent address space, and does not execute.

Thread represents a logically independent execution thread of control.

Scheduler permits threads to only wait on the occurrence of an event. Depending

upon the type of the thread, timing constraints may be specified for each thread

{start time, execution limit, and deadline}.

Event is used for timing, system, and processor errors, synchronization, periodic

events, and device interrupts. When it is triggered (sent), the value and the

identifier of the entity which requested the trigger is entered into a circular

queue. All event triggering occurrences are remembered until the queue fills.

Port has been extended for real-time communication by allowing the sender to pass

timing constraint information in messages and the receiver to control message

queuing and reception strategies.

Device may be directly controlled by application threads. All device interrupts,

other tha.n the clock, trigger events which may, in turn, cause a thread to

execute.

Memory segment permits regions of memory to be shared between execution en­

vironments on the same processor.

26

4.1 "Process" Model

4 DISTRIBUTED REAL-TIME KERNEL

A distributed real-time application consists of a set of execution environments. Each

execution environment consists of a set of threads and a set of resources. A resource

is either a port, a device, a shared memory segment, or an event. Threads are defined.

by the programmer and represent a logically independent execution thread of control.

Each execution environment services as the basic unit of resource allocation and has

an independent address space. The execution environment does not execute.

All threads are initially non real-time threads. Threads may wait on events and

events may be triggered by alarms (at a specific time or periodically), by ports when

messages arrive, by devices when they interrupt, or by threads when they explicitly

trigger an event. A thread becomes a real-time thread when it either specifies a timing

constraints or recieves a synchronous message with timing constraints.

Unique system-wide id is used to refer to all execution environments, threads,

ports, memory segments, devices, events, and alarms.

Every execution environment has read-only access to a global data page which

includes the time of day that the system was booted, the current time of day, and

port ids for various services, such as the nameserver. One key benefit of this page

is that the current time of day is accessible without the overhead of a system call.

Threads repeatedly read the current time of day until two consecutive readings return

the same value. This ensures that the current time has not been corrupted by a system

update.

There are two kinds of devices: system devices, which are an integral part of the

kernel; and applications devices, which are only pertinent to a particular application.

System devices, such as clocks and network adapters, are managed by the kernel and

used indirectly by many application execution environments. Application devices are

directly controlled by particular application execution environments and include the

analog-to-digital conversion board required for the wrist and the parallel interface

board required for the end-effectors. The kernel converts a device interrupt into an

event and provides shared memory between a device and an execution environment.

The kernel Timix (v. 2) is viewed as a single execution environment with threads

4.1 "Process" Model 27

.,

g
w
E

!
§]
~

11
"t.n

§]
~

~;g
<':

§]
~ §]

~

Global Data

Execul:ion Environment

Figure 4: Default Execution Environment

connected to each service port. Threads issue service requests to the kernel by sending

synchronous messages or by requesting a system call. A service port is a reception

port used to receive requests for services from a. thread. In order to bound the

execution overheads of system calls, services provided through system calls are kept to

a minimum. System calls are used only for services that require the crossing of address

boundaries or predictably fast response. They include memory management, process

switching, signals, events, alarms and interprocess communication. Server threads

provide non-time critical services such as thread creation, terminal input/output and

device manipulation. An application process sends a service request to a server thread

and waits for a reply if needed.

In either case) the updated scheduling parameters (such as execution time remain­

ing) are passed to the kernel code responsible for handling the request. In this way,

the kernel only uses the CPU resources that have been previously allocated by the

application making the request. The kernel can only attempt to satisfy the request as

long as the application has not exceeded its timing constraints. When the kernel fin­

ishes its processing, the scheduling parameters of the application are modified by the

resources utilized by the kernel. This is particularly applicable for execution limits.

28 4 DISTRIBUTED REAL-TIME KERNEL

4.1.1 Execution Environment

The kernel operator set for the execution environment requires three basic operations:

creating a new execution environment, obtain status about an execution environment,

and deleting an execution environment.

• error-t execenv_create(eid, codesize, code, data, datasize, dynamic, stack)

The execenv_create operator creates a new execution environment and returns

the unique exection environment identifier.

• execenv-status(eeid, status)

The execenv....status operator obtains status information about an execution

environment. Status information essentially describes the contents of the en­

vironment - such as the number of threads, memory segments, ports, devices,

and events associated with the environment.

• error_t execenv_delete(eid)

The execenv_delete operator deletes an execution environment. This opera­

tion is restricted to threads within the execution environment and to privileged

threads.

4.1.2 Threads

Thread consists of register context, stack with thread information, and scheduling in­

formation. Within a thread , a single thread of control is maintained at all times. The

read-only thread information structure contains reply information, current schedul­

ing information, error event information structures, a pointer to the global data page,

and start event alarm information.

The kernel operator set for threads require three basic operations: creation of a

runnable thread, obtaining status about a thread, and deleting a thread.

• error_t thread_create(tid, eid, entry, stacksize, argstring, argsize)

The thread_create operator creates a new I runnable thread within execution

4.1.3 Nameserver 29

environment eeid and returns a unique thread identifier. The next two argu­

ments are buffers containing code and data. The final argument specifies the

relative entry point within the code buffer.

• error_t thread-status(tid, status)

The thread-.status operator obtains status information about a thread. Status

information essentially contains the processor status block and a copy of the

current scheduling parameters.

• error_t thread_delete(tid)

The thread_delete operator deletes a thread. This operation is restricted to

threads within the same execution environment and to privileged threads.

• error_t thread_events(tid, syserr, exec1imit, deadline)

The thread_events routine indicates to the kernel which events should be

triggered in the event of a system error, execution limit exceeded, and deadline

missed errors.

• error-t thread..reply(tid, port, event)

The thread_reply routine inserts into the thread information data structure,

the default reply port and events - used when issuing synchronous library rou­

tines.

• error_t thread..save_context(regs, val)

The thread-.save_context routine is similar to the Unix routine setjmp.

• error_t thread-l"estore_context(tid, regs, val)

The thread-restore_context routine is similar to the Unix routine longjmp.

4.1.3 Nameserver

A distributed nameserver is used for converting resource, thread, and execution en­

vironment names to their unique identifier.

30 4 DISTRIBUTED REAL-TIME KERNEL

• error_t ns_enter(id, name, size)

The ns_enter operator is used to enter the string name of length size with the

identifier id.

• errOf_t nsJookup(name, size, id)

The ns.Jookup operator is used to lookup the string name of length size in the

nameserver and id is returned.

• errof_t ns_delete(id)

The ns_delete operator is used to delete the identifier id and all the information

associated with it.

4_2 Scheduling and Timing Constraints

Timix (v. 2) supports both real-time and non real-time threads. In addition, real-time

threads are prioritized as imperative, hard real-time, and soft real-time since not all

real-time processes are equally important [KDK*89]. Threads are executed in the

order of priorities. Within the same priority, imperative threads are executed on a

first-come-first-serve basis, whereas hard and soft real-time threads are executed based

on their timing constraints. The difference between hard and soft timing constraints

is that hard constraints must be scheduled in advance and if accepted, they are

guaranteed to be met by the system. Soft timing constraints are not guaranteed to

be met by the system and are considered less critical than hard timing constraints.

When no real-time threads are ready, non real-time threads are executed on a first­

come-first-serve basis.

Requirements for real-time processing can be viewed as the time when certain

processing has to take place, for how long and how soon. There are two kinds of

timing constraints: periodic and sporadic [Mok84J. A periodic timing constraint

becomes effective at regular intervals and a sporadic timing constraint can be imposed

on at any time. These timing constraints are defined on the whole process or on part

of the process. They are either explicitly requested by a process or implicitly specified

when a process receives a message with a timing constraint.

32 4 DISTRIBUTED REAL-TIME KERNEL

• errof_t sched_geLparam (tid, type, startid, limit, deadline, prio)

The sched_geLparam operator is get the current scheduling parameters for

the thread tid. The five remaining arguments are the same as the sched....set-param

operator.

A timing constraint is violated if either the thread executes longer than the max­

imum execution time or the deadline for the thread is exceeded. When this happens,

the kernel triggers the appropriate event. If the timing constraint is missed in a hard

real-time thread, then a critical system error has occurred since the constraint was

guaranteed by the scheduler. Thus, the thread associated with the maximum exe­

cution time event runs as an imperative thread so that a controlled shutdown of the

system can occur as soon as possible. However, when a soft real-time constraint is

violated, the thread associated with the maximum execution time event runs as a soft

real-time thread while the exception is being handled. This is not considered a fatal

error so, at programmer control, the system may attempt to continue if desired.

Timing Constraint Inversion The timing constraint inversion problem can be

viewed as a priority inversion problem. The term priority inversion refers to a problem

which occurs when a high priority thread is waiting for a response from a low priority

thread and a middle priority thread preempts the execution of the lower priority

thread [SLR86]. Extra delay is incurred by the high priority thread since the middle

priority thread must complete before the low priority thread resumes. The timing

constraint inversion problem can occur between threads of different priorities and

between real-time threads with different deadlines. The extra delay from a middle

priority thread executing could cause a timing constraint to be missed. We prevent

both types of timing constraint inversion from occurring by allowing the propagation

of timing constraints for interthread communication. In the first case, suppose a

soft real· time thread issues a request to a non real-time server thread. The timing

constraints associated with the message are propagated to the server thread so that

it becomes a soft real-time thread to handle the message. After a reply is sent, the

priority of the server thread is reduced to that of a non real-time thread. Similarly,

timing constraints are propagated from a sender to a receiver within the same real­

time priority level.

4.3 Alarms

4.3 Alarms

33

To facilitate the resumption of threads at particular times, an alarm package allows

events to be triggered at specified times. There are two distinct kernel operators used

to set an alarm: one for a single triggering at a particular time and one for a trigger

at time start and repeating every period time intervals until it has been cleared.

• errof_t alarm_trigger(aid, tv, eid, val)

The alarm_trigger operator is used to insert a single alarm into the alarm

queue so that at time tv, event eid is triggered with value val.

• errof_t alarm_periodic(aid, start, period, eid, val)

The alarm_periodic operator is used to insert a periodic alarm in the alarm

queue so that at time start, event eid is triggered with value val. Every time

period period thereafter, event eid is triggered with value val.

• error-t aJarm_clear(aid)

The alarm_clear operator clears the specified alarm.

4.4 Resources

In this section, we describe the operator set for the four basic resources: events,

ports, devices, and memory segments. The required operators for resources may be

classified according to five categories. First, a resource is created or defined with the

appropriate attributes. At this time, it is not associated with any particular execution

environment and no thread may access it until it is allocated. Next, a resource is

allocated to an execution environment by getting it. The status of a resource may be

queried by any thread. When the execution environment is finished with the resource,

it is freed by a thread within that environment so that other execution environments

may obtain access. Finally, if the resource is not needed within the system anymore,

it may be deleted.

34

4.4.1 Event

4 DISTRIBUTED REAL-TIME KERNEL

The event manipulation operator set includes:

• error_t event-create(eid)

The evenLcreate operator creates an event.

• error-t evenLget(eid, eventJist, size)

The event-get operator is used to allocate a previously created event and

associates the event with a circular list to store triggering information (value

and whom from).

• event-status(eid, status)

The event-status operator obtains status information about an event.

• evenLfree(eid)

The event-free operator is used to return an event back to the system.

• evenLdelete(eid)

The evenLdelete operator deletes an event from the system.

4.4.2 Port

Asynchronous messages al10ws messages to be sent from one execution environment

to another. Ports are used for specifying the destination of a message. Every thread

is created with a default reception port. This port is used when requesting services

from system server threads. Ports are lIsed to queue incoming messages for delivery

to an execution environment.

The port manipulation operator set includes:

• error_t port_create(pid)

The port-create operator creates a port.

• error-t porLget(pid)

The port-get operator is used to allocate a previously created port (pid).

4.4.3 Device 35

• error_t portJree(pid)

The portJree operator is used to return an allocated port back to the system.

Thus, one execution environment may process a specified number of messages

and then give the port to another execution environment for its threads to

perform further processing.

• error-t porLdelete(pid)

The porLdelete operator deletes a port from the system so that no more

messages may be received by the port.

• error_t port..attrib(pid, change, attrib)

The porLattrib operator can either be used to change the attributes of a port

or to obtain status information about a port. Status information essentially

contains the attributes about the port and the number of messages pending.

There are various attributes that can be changed by the execution environment

currently using the port. First, the ordering of messages within a queue is either

by message sent time, by message arrival time or by lowest priority (or dead­

line). Second, the size of the queue limits the maximum number of messageSj

if overflow occurs, this attribute also specifies whether messages are thrown

away at the head or tail of the queue. Third, messages are removed from the

queue when the message is received by a process unless its stick attribute is set.

Here, the message remains in the queue even after it is received. It is replaced

only when a new message arrives [SBWT87]. Fourth, messages can be received

explicitly or asynchronously. This is described later. For instance, if the port

should notify the execution environment that a message has been received asyn­

chronously, then one attributes specifies which event should be triggered when

a message arnves.

4.4.3 Device

The purpose of most real-time systems is to either control or collect data. from one

or more application devices within timing constraints. Traditional operating systems

provide a device driver which buffers requests between application processes and a

device. This scheme allows the same device to be used by many processesj however,

36 4 DISTRIBUTED REAL-TIME KERNEL

it introduces additional delay between the time when the device completes a task

and the process is notified of its completion. It is difficult for application processes

to control devices within timing constraints if traditional device drivers are used

due to this additional delay. In distributed sensory systems, sensory devices are not

shared among proce'>ses as they are controlled by individual processes that collect

and preprocess the sensory data. Thus, our kernel allows threads to directly control

devices.

To control a device, a thread requests the device from the device server. After

the request is granted, it is possible to share memory and device registers between

the device and the process. In addition, a thread may request to the device server

that device interrupts be converted to events. An alternative approach is to let the

interrupt handler collect the data and then send the data to the process in the form

of a message [CMM87]. Although our approach requires the programmer to know

low-level details about devices 1 it inherently supports faster feedback control than

the alternative approach since no process switching is needed to apply feedback to

a device. Furthermore, the kernel need not be changed to reflect the addition or

deletion of devices.

The device manipulation operator set makes as few assumption as possible about

the architecture under which the kernel is implemented. The device manipulation

operator set includes:

• error-t device_create(did)

The device_create operator creates a device.

• error_t device_get(did)

The device_get operator is used to allocate a previously created device (did).

• error-t device_status(did, status)

The device_status operator obtains status information about a device. Status

information essentially contains information about the interrupt vectors and

associated event identifiers.

• error_t device-free(did)

The deviceJree operator is used to return a device back to the system. Note,

4.4.4 Afennor}' 37

the device retains its interrupt attributes until it is deleted from the system.

• error_t device_delete(did)

The device_delete operator deletes a device from the system.

The interrupt vector manipulation operator set also tries to make as few assump­

tions as possible about the architecture under which the kernel is implemented. The

interrupt vector operator set includes;

• error-t intr..alloc(did, vector)

The intr_alloc operator is used to allocate a floating interrupt vector. This

vector is required for those devices that do not contain hardwired interrupt

vectors.

• error_t intr_reserve(did, vector)

The intr_reserve operator is used to allocate a fixed interrupt vector. This

vector is required for those devices that contain hardwired interrupt vectors.

• error_t intr..assoc(did, vector, eid, val)

The intr_assoc operator is used to associate an interrupt vector with an event

and value. Whenever an interrupt occurs on this vector, the event eid will be

triggered with the value val.

• error_t intr_disassoc(did, vector)

The intr_disassoc operator is used to disassociate an interrupt vector with an

event. If an interrupt occurs after this operation is performed, a "STRAY"

interrupt occurs.

4.4.4 Memory

The memory segment operator set makes as few assumptions as possible about the

architecture under which the kernel is implemented. The term region refers to a

independent addressing spaces within the node's architecture. We assume that there

are at most two such regions: data and device. The private region is the main memory

directly accessible to the current processor (typically used by threads within execution

38 4 DISTRIBUTED REAL-TIME KERNEL

environments by default), the device region is used for input/output (used by devices

and their interrupt handlers), and the bus region is used for devices and memory

accessible through the bus.

The memory segment operator set includes:

• error-t memory-ereate(mid, type, start, size)

The memory_create operator creates a memory segment in the region specified

by type, starting at address start with a length of size bytes. The address is

specified. according to the region in which the segment is to be allocated.

• error-t memory_get(mid , location)

The memory_get operator is used to allocate a previously created memory

segment (mid) starting at address location within the data region.

• errof_t memory....status(mid, status)

The memory..status operator obtains status information about a memory seg­

ment. Status information essentially contains the attributes about the memory

segment and the entity to which it is allocated.

• error-t memory.1ree(mid)

The memory_free operator is used to return an allocated memory segment

back to the system. Note, the memory segment retains its attributes until it is

deleted from the system.

• error_t memory_delete(mid)

The memory_delete operator deletes a memory segment from the system.

• error_t memorY-Onto_busmem(midl, mid2)

The memory_onto_busmem operator is used to map private memory segment

midi onto the bus memory segment mid2.

4.5 Communication

Real-time systems are asynchronous III nature and require predictably fast com­

munication. Often more important than actual speed of communication is predic-

4.5.1 ~vents 39

tability [SR87b]. Commonly used synchronization and communication primitives

such as signals and messages based on ports have been designed without considering

guaranteed response. Timix (v. 2) provides two basic communication methods:

• Events for asynchronous notification of events with the propagation of timing

constraints and for critical system errors,

• Ports for asynchronous message passing with timing constraints,

4.5.1 Events

The simpliest and quickest communication technique is events. Associated with each

event is a circular queue of pending events. We say that an event is valid is the

circular queue is not empty - i.e., the event has been triggered at least once for which

processing has not occurred. The circular queue allows the value and the entity

which triggered the event to be remembered until the queue is full. Once the queue

becomes full, an overflow flag is set to TRUE. Events may be triggered by other

threads, notification of message arrival (ports), alarms, and on a device interrupt.

Events are used by the kernel to notify a thread than an error has occurred. The

purpose of sending an event in this case is to give the thread a chance to dean up

its state or to perform a controlled shutdown of the system. There are three types of

errors: timing errors, process errors, and system errors. Timing errors are only with

respect to the timing constraints of the current temporal scope. The kernel triggers

the execution limit event if a real-time thread executes longer than the maximum

execution time, and the deadline evnet if a real-time thread misses its deadline. Unlike

timing errors, events may be triggered for process and system errors in non real-time

threads. Process errors are errors due to an execution environment itself; for example,

an access to an invalid memory address. System errors are errors due to the kernel;

for example, running out of buffers that have been guaranteed to a process.

The operator set for trigger events and obtaining their values is:

• errOf-t evenLtrigger(eid, value)

The event-trigger operator triggers the event eid and enters the following pair

40 4 DISTRIBUTED REAL-TIME KERNEL

in the event's circular queue: value value and from the current thread.

• errof_t evenLremove(eventJist, val, from)

The evenLremove operator removes the next value and event from information

from the circular queue associated with the event.

4.5.2 Messages

Tirnix (v. 2) provides asynchronous message-based communication as its most primi­

tive communication paradigm. Its operators may be combined to support synchronous

communication and blocked message reception. With synchronous message commu­

nication, the scheduling parameters associated with each message is propagated and

used when scheduling the thread services the call. With asynchronous message com~

munication, the scheduling parameters are only used for scheduling message trans­

mission and ordering with the destination port's queue.

A thread sends a message to a port and receives messages from a port. Each port

has a unique system-wide id and has a data structure in the kernel to queue messages.

Sending a message to a port is always non-blocking and its execution time is bounded

to ensure a predictable delay. For time critical messages, it is important when a

message is delivered to a receiver. Thus, the sender can include a message priority and

scheduling propagation parameters with each message. The message priority is used

for scheduling message transmission and the scheduling propagation parameters are

used for scheduling the execution of the receiver thread. The scheduling propagation

parameters include the start time, the maximum execution duration, and the deadline.

The propagation parameters are only used if they are more critical (of higher priority)

than those currently specified by the receiver. This feature allows non real-time server

threads to handle requests from threads of higher priority (i.e., real-time threads).

Send The message communication primitives include:

• error_t msg....send(hdr, data)

The msg....send operator is used to send a message to another port.

4.5.2 Messages 41

• error-t msgJorward(device, protocol, hdr, data)

The msg_forward operator is used to forward a message to the appropriate

server port which corresponds to the specified device and protocol.

• error_t msg-reply(hdr, data)

The msg-reply operator is used to send a reply message to the specified port.

Receive The message communication primitives include:

• error_t msg-recv(port, hdr, data)

The msg-recv operator is used to receive messages from the port port.

There are two ways to receive a message from a reception port. They differ in how

the timing constraints are handled and in what message reception paradigm is desired.

One way to receive a message is to explicitly invoke the msg_recv system call when

the receiver needs to receive the message. Since it is possible that the message is not

received before the scheduling parameters have exceeded its deadline, the kernel does

not utilize the scheduling propagation parameters. To use these timing constraints

after receiving the message, the receiver thread must explicitly update its scheduling

information.

The other way to receive a message is to receive it asynchronously as it arrives on

a reception port. Asynchronous message reception is useful when the main execution

thread performs some task and incoming messages need to provide some simple service

that can be performed at any time. To wait for a message when asynchronous delivery

is enabled, a thread must specify that the event is the thread's start condition. The

notification of message arrival is through an event associated with the port. When a

message arrives on a port, an event is sent to the thread which owns that port.

42

"

5 ROBOT APPLICATION

"
Figure 5: Robotics System Architecture

5 Robot Application

A two-manipulator arm robot control system was proposed in the Introduction. Its

goal is to use a wedge locate circular objects with spillable contents, move them, pick

them up, and POUf their contents out. Since the wedge must maintain a gap of one

half inch between it and the top of the surface until it is time to lift the object (in

mode 3), the application requires the use of Cartesian motion. Paul [PauS!/ defines

Cartesian motion as movement along straight lines and rotation about fixed axes in

space. When an object is found, the wedge pushes it into a common area reachable

by each robot arm (see Figure 1 on page 4). Once the objects are in this common

area, they are picked up by applying forces to the opposite sides of the object by the

two arms. To permit coordina.tion between the robot arms, it is essential that their

controllers communicate with each other in real-time.

5.1 System Architecture

The system architecture of the robot control system consists of two six-degree-of­

freedom manipulator arms (PUMA 560s) and is shown in Figure 5. PUMA #1 and

PUMA #2 are each equipped with a wedge-like end effector. A wrist [XPS8] is located

between the end effector (ha.nd) and the manipulator arm on PUMA #1.

The wedge-like end effector is shown in Figure 6. It is made of a three inch

"L-bracket" - two three inch square aluminum pieces connected at a right angle.

Located on the interior sides are two contact sensors made from two push-button

5.1 System Architecture

Figure 6: Wedge End·Effector

43

switches connected by a flat metal plate (similar in construction to a space bar). The

contact sensors can be used to detect contact with either the left face l the right face,

or both interior faces.

Each robot arm has a low-level dedicated processor which acts as ajoint controller

by issuing commands to the joint actuators and determining position from the joint

encoders. The joint controller consists of a supervisor processor and a joint processor

for each joint of the manipulator arm and is connected to a MicroVAX via a parallel

interface. The joint processors take the commands received from the MicroVAX via

the supervisor processor and use them to control the joint motors.

The lowest levels of most robot control systems are servo loops running on dedi­

cated processors. In these systems, the error values used as input are represented by

continuously varying values. Since a missing value represents a continuously varying

quantity, it is feasible for the receiving process to use the value from the previous cy­

cle. This means that some of the requirements usually imposed on interprocess data

communication can be relaxed. The loops must be fast enough to provide smooth

operation of the device and to keep the device within operational limits. Once servo

loop processes are given their input data, they can proceed to completion without

further interaction and typically do not block [Cla89].

At a higher level, the robot control system consists of three MicroVAX processors

connected through a 10 Mb Ethernet and a 10 Mb ProNET-10 token ring. These

MicroVAX processors use Timix (v. 2) to provide the computation power needed

for the timely execution of threads used in determining the path of the robot arms,

in sensing contact by the end-effector, in determining forces on the wrist, and in

44 5 ROBOT APPLICATION

I (~m1 e
88

.~

Contrall.,

e
.~

Conlroller

W""'
Conflgunl.1lon......

Figure 7: Two Manipulator Arm Robotics System Model

avoiding collisions between the manipulator arms. For simple sensors, we gather the

information directly and bypass the use of dedicated processors. The output of each

degree of the wrist sensor is an analog signal. This signal is converted to a digital

value by the analog-ta-digital converter board in a MicroVAX. The contact sensors

on each hand (wedge) is connect to a MicroVAX via a parallel interface.

5.2 Logical Organization

Figure 7 provides an overview of the two manipulator arm exploratory robotic thread

model and Table 2 lists the attributes of the threads. Each robot manipulator arm has

a thread, a1 and az, which is used to communicate with the low-level joint controller.

These threads operate with a sampling period of 28 milliseconds. In addition, there

is a thread for each wedge end-effector, hI and h2 • Until both arms are lifting an

object (mode 3L the hand threads operate with a sampling period of 28 milliseconds.

The wrist thread, WI, also operates with a sampling period of 28 milliseconds when

the two arms are lifting or manipulating an object.

5.2 Logical Organization

Symbol Thread Type Period/Deadline

WI wrist periodic 28 ms
al manipulator arm periodic 28 ms
hI hand sporadic 28 ms
81 search strategy sporadic
in} network input sporadic varies

outl network output sporadic varies
a, manipulator arm periodic
h, hand sporadic
8, search strategy sporadic
In, network input sporadic varies

OUt2 network output sporadic vanes
avoid3 collision avoidance sporadic

uncouple3 uncoupled cooperative sporadic
coupled3 coupled cooperative sporadic

mon3 system monitor sporadic
in3 network input sporadic varies

out3 network output sporadic varies

Table 2: Robot Control Threads

45

Operating at a higher level are the collision avoidance thread (avoid3), the un­

coupled cooperative thread (uncouple3)' the coupled cooperative thread (coupled3),

the search path threads (51 and 52)' and the system monitor thread (mon3)' The

collision avoidance mode 1 thread executes in a sporadic fashion whenever new data

arrives from the arms and determines whether collision is imminent. The uncoupled

cooperative mode 2 thread executes in a sporadic fashion whenever new data arrives

from the arms and determines a path to enable them wedges to meet on opposite

sides of the objects so a "grasp" can occur. The coupled cooperative mode 3 thread

executes in a sporadic fashion generating destination goals for the object and sending

the goals to the arms to carry out the appropriate motion. The search path threads

are used to compute in which directions the robot arm must move while searching for

another object to pick up and empty. The system monitor thread is used to monitor

system activity and display the actions as they occur.

In determining the scheduling requirements for the system, we must also exam­

ine the network communication requirements. There are six communication threads

46 5 ROBOT APPLICATION

associated with network communication. The network in threads (in., inz 1 and in3)

are used for receiving messages from other machines. The network out threads (OUlll

Qut Zl and out3) are used for transmitting messages to other machines. These threads

execute at sporadic intervals with varying degrees of priority and/or deadlines, de­

pending upon the content of the messages.

5.3 Modes of Operation

In this section, we examine the three basic modes of operation in further detail. For

each mode, there is a table summarizing how communication flows through the system

by showing the source and destination of each message or shared memory operation.

The first column, source, specifies the thread sending the message or writing the data

into shared memory. The second column, data, specifies the type of data that is

being transferred. The third column, deadline, specifies the deadline by when the

message should arrive. Since the size of the period is 28 milliseconds for the arm

threads, most communication should complete before the next period. The fourth

column, destination, specifies the receiver thread. The fifth column, model, specifies

the communication model used. The communication model may either be current

values or historic values2
• A task may use as input the current values of various

hardware sensors and software variables and produce as output a set of current values.

Inputs are always assumed to be present and the output values overwrite previous

values. A task may use as input the historic values containing commands or data

values and produce similar values as output. These historic values are usually in the

form of messages which are queued up and never overwritten. The sixth column,

method, specifies the method of communication: either messages or shared memory.

5.3.1 Mode 1: Search under collision avoidance

The initial configuration of the system has each end-effector placed about one­

half inch above the surface in a known and calibrated position. In this mode, the two

2The two communication models were originally defined by Schwan in [SBWT87]. He used the

term "discrete messages" where we have used the term "historic values."

5.3.2 Mode 2: Object found and push to common area 47

MethodModelIDeadline IDestination IData

hI contact data 28ms a, current values shared memory
a, search path done 28ms 8, current values shared memory
a, arm state 28ms avoid3 current values message
8, next search path a, historic values message

h, contact data 28ms a, current values shared memory
a, search path done 28ms 8, current values shared memory
a, arm state 28ms avoid3 current values message
8, next search path a, historic values message
avoid3 collision imminent varies a, current values message
avoid3 collision imminent varies a, current values message

I Source I

Table 3: Communication Flow Under Mode 1

arms are looking for objects in an independent fashion. The search thread computes a

search path and then passes the information to the arm thread by sending a message

to the appropriate port. The arm then moves along the path and its thread polls

shared memory to determine if the wedge has contacted an object. In addition, the

arm thread checks for messages from the collision avoidance thread to see if collision

between the two arms is imminent and sends information to the collision avoidance

thread at the end of each sampling period. The hand thread checks the state of its

contact sensors every sampling period and relays the information to the arm thread

via shared memory. Once stable contact with an object has been achieved, a message

is sent to the system monitor thread. This thread then moves the system into mode

2 by disabling the collision avoidance and search path threads.

5.3.2 Mode 2: Object found and push to common area

Once an object has been found I it must be moved into an area between the two

robots so that each end-effector may approach the object from opposite sides. Let

the arm which found an object be designated A and the other arm be designated B.

Arm A carefully pushes the object by computing the path to a known location while

monitoring shared memory to ensure that contact is maintained with the object. Arm

B follows the directions received from the uncoupled cooperative thread uncouple3

48 5 ROBOT APPLICATION

MethodModelIDeadline IDestination IData

h. contact data 28ms a. current values shared memory

a. arm state 28ms uncouple3 current values message

h8 contact data 28ms a8 current values shared memory

a8 arm state 28ms uncouple3 current values message

uncouple3 path correction varies a. current values message

uncQuple3 path correction varies a8 current values message

I Source I

Table 4: Communication Flow Under Mode 2

MethodModelIDeadline IDestination IData

w, wrist data 28ms a, current values shared memory
a, arm state 28ms coup1ed3 current values message

I Source I

messageI current values II arm state I 28ms I coupled3

coupled3 object path varies a, current values message
cQupled3 object path varies a, current values message

I a,

Table 5: Communication Flow Under Mode 3

and moves its end-effector to the appropriate position. While arm B is moving, the

thread aB monitors the shared memory containing data from its end-effector - if

contact with an object is detected , the location is noted and the arm moves to one

side of the object. Once the two arms are in the appropriate position, arm B moves

until it contacts the object. At this point, we reach mode 3.

5.3.3 Mode 3: Manipulate object with both arms

Now that the object has been "gripped" using the forces applied by both arms,

the object must be lifted, emptied, and dropped. The arm with the compliant wrist

is known as the slave arm and the one without the wrist is known as the master arm.

From this point on, the Cartesian reference frame for both robots is now located within

the object. The coupled cooperative thread coupled3 sends the path information to

the master arm. The slave arm uses the data received from the wrist to determine

how it should react to the movement while maintaining a stable grip on the object.

5.3.3 Mode 3: Manipulate object with both arms 49

Once the object is over the bucket, the contents are emptied out by rotating the

object. Then the object is moved over a box and dropped.

50

6 Research Plan

6 RESEARCH PLAN

In this section, we subdivide our research into three areas: the distributed. real­

time kernel, the robotics application, and the evaluation of the combined kernel and

robotics application. In each of these areas, we describe our current status and

summarize the remaining research required to complete this dissertation. Finally, we

conclude with a timetable.

6.1 Kernel

The design for the distributed real-time kernel has been completed. Furthermore, the

realization of this kernel as Timix (v. 2) is about two-thirds complete. The current

implementation supports the scheduling of threads with explicit timing constraints,

allows threads to directly control devices, and permits threads to communicate locally

via asynchronous message passing. The design of the kernel provides several addi­

tional features which have not yet been implemented. First, the scheduler does not

currently guarantee in advance that hard real~time constraints will be met. Second,

the shared memory segments have not been implemented. Third, there is no network

or protocol support for either Ethernet or ProNET-10. The second and third features

must be completed before the kernel can be used to develop applications. Finishing

the network and protocol part of the kernel should be relatively straightforward as it

can be based on Timix (v. 1).

6.2 Application

The basic design for the robotics application has been completed. The wedge-like

end-effectors are being built by the machine shop and should be finished in several

weeks. However, the crux of OUf remaining work is to build an implementation of the

robotics application, include the robot control interface (ReI). We believe that the

remaining work can be ordered as follows:

6.3 Measurement and Kernel Design Alternatives 51

1. Port the RCI implementation from Timix (v. 1) to Timix (v. 2). Although this

version of RCI works under Timix (v. 1), it does not utilize the explicit timing

constraints that Timix provides.

2. Integrate timing constraints and real-time communication into RCI so that the

implementation utilizes the real-time features provided by Timix (v. 2).

3. Add Cartesian mode to the Timix RCI so that the appropriate motions can

be provided by the robot control interface. By default, RCI only employs joint

motion which is not along straight lines or along any other simple, well defined

path.

4. Program the two manipulator arms as separate components without any com­

munication between them. This is to ensure that a single arm can search for

objects and push them.

5. Program the two manipulator arms to work at pushing objects and conununi­

eating. This is to ensure that we can manipulate objects in a common workspace

and that the robots are calibrated to one world view.

6. Program the two manipulator arms to work together to lift an object. This is

the final step.

6.3 Measurement and Kernel Design Alternatives

Once the distributed real-time kernel and the robotics application have been imple­

mented, we can experiment with various types of communication networks and levels

of time granularity. We intend to measure how the changes affect robot performa.nce.

To obtain accurate performance measurements, the Codar Technology timer/counter

board must be integrated into the kernel. A library has been implemented to enable

the control of this board which contains five individually controllable counters with a

programmable resolution as fine as 250 nanoseconds. Once the library routines have

been integrated into the kernel, the accuracy of the clock for timing and alarms can

be set at one millisecond, instead of the ten milliseconds provided by the built-in

interval time on the MicroVAX II CPU.

52 6 RESEARCH PLAN

Ethernet is provided as the default communication network. However, as we

know, the network access delay is not bounded. Another network option is to utilize

a Proteon token ring (ProNET-lO). We envision various experiments by comparing

the communication delays encountered when using the different networks.

6.4 Timetable

The timetable for the proposed work follows:

1. Finish the implementation of Timix (v. 2) - three weeks.

2. Implement ReI under Timix (v. 2) - three weeks.

3. Implement robotics application - five weeks.

4. Write/defend dissertation - two months.

REFERENCES

References

53

[BS88]

[Car84]

[Cla89)

[CMM87]

[DRSK89)

IGag86]

[GK86]

[GLR82]

[GS89]

[Hen88]

Theodore P. Baker and Alan Shaw. The cyclic executive model and
Ada. In Proceedings of the Real-Time Systems Symposium, pages 120­
129, December 1988.

G. D. Carlow. Architecture of the space shuttle primary avionics soft­
ware system. Communications of the ACM, 27(9):926-936, September
1984.

Dayton R. Clark, Jr. Data Communication in Robot Control Systems.
PhD thesis, Department of Computer Science, New York University,
Courant Institute of Mathematical Sciences, May 1989. Also available
as Technical Report No. 436 and Robotics Report No. 193, March 1989.

Michael F. Coulas, Glenn H. MacEwen, and Genevieve Marquis. RNet:
a hard real-time distributed programming system. IEEE Transactions
on Computers, C~36(8),917-932, August 1987.

A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real~time

operating system of MARS. ACM OPERATING SYSTEMS REVIEW,
23(3):141-157, July 1989.

R.D. Gaglianello. A distributed computing environment for robotics.
In Proc. of 1986 IEEE International Conference on Robotics and Au­
tomation, pages 1890-1895, IEEE Council on Robotics and Automa­
tion, IEEE Computer Society Press, 1986.

Robert D. Gaglianello and Howard P. Katseff. Communications in
Meglos. Software - Practice and Experience, 16(10):945-963, October
1986.

Patricia Garetti, Pietro Laface, and Silvano Rivoira. MODOSK: a
modular distributed operating system kernel for real-time process con­
trol. Microprocessing and Microprogramming, 9:201-213, April 1982.

Prabha Gopinath and Karsten Schwan. CHAOS: why one cannot have
only an operating system for real-time applications. ACM OPERAT­
ING SYSTEMS REVIEW, 23(3),106-125, July 1989.

John Henize. Understanding real-time UNIX. Marketing Brochure
from MASSCOMP, February 1988. Reference Number 080~O1l34~OO

0288~1l34.

54

[Jen89]

[KB87a]

[KB87b]

[KDK*89]

[Kin87]

[Kin89]

[KKS89]

[Lee84]

[LG85]

[LGCS89]

REFERENCES

E. Douglas Jensen. Alpha promotes BMjC3 operations. Defense Com­

puting, JanuaryfFebeuary 1989.

Andrew Kun and John Barr. The Computer X distributed, real-time
system. In Proc. of the IEEE Fourth Workshop on Real-Time Operat­
ing Systems, pages 55-58, July 1987.

Andrew Kun and John Barr. Computer X, Inc. real-time, distributed,
operating system. July 1987. Photocopy of Transparencies from the
Presentation at the IEEE Fourth Workshop on Real-Time Operating
Systems.

Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani,
Wolfgang Schwab., Christoph Senft, and Ralph Zainlinger. Distributed
fault-tolerant real-time systems: the mars approach. IEEE Micro,
9(1):25-40, February 1989.

Robert Bruce King, II. Design and Implementation of a Real- Time
Distributed [(ernel. Master's thesis, Department of Computer and In­
formation Science, University of Pennsylvania, August 1987.

Robert B. King. Timix Manual. GRASP Laboratory, University of
Pennsylvania, Philadelphia, PA 19104, April 1989. Version 1.0.

Dilip D. Kandlur, Daniel L. Kiskis, and Kang G. Shin. HARTOS: a dis­
tributed real-time operating system. ACM OPERATlNG SYSTEMS
REVlEW, 23(3):72-89, July 1989

Insup Lee. A programming system for distributed real~time applica­
tions. In Proceedings of the Real-Time Systems Symposium, pages 18­
27, December 1984.

Insup Lee and Vijay Gehlot. Language constructs for distributed real­
time programming. In Proceedings of the Real- Time Systems Sympo­
sium, pages 57-66, December 1985.

Stephen Leake, Tom Green, Sue Cofer, and Tim Sauerwein. Hierarchi­
cal Ada robot programming system (HAPRS): a complete and work­
ing telerobot control system based on the NASREM model. In Proc.
of 1989 IEEE International Conference on Robotics and Automation,
pages 1022-1028, IEEE Council on Robotics and Automation, IEEE
Computer Society Press, May 1989.

REFERENCES 55

[LK88]

[LKP89]

[LKY88]

[Llo85]

[LTCA89]

[Mah88a]

[Mah88b]

[Mok84]

[MWB89)

[Pau8!]

Insup Lee and Robert King. Timix: a distributed real-time kernel
for multi-sensor robots. In Proc. of 1988 IEEE International Confer­
ence on Robotics and Automation, pages 1587-1589, IEEE Council on
Robotics and Automation, IEEE Computer Society Press, April 1988.

Insnp Lee, Robert B. King, and Richard P. Paul. A predictable real­
time kernel for distributed multi-sensor systems. IEEE Computer,
22(6):78-83, June 1989.

Instip Lee, Robert King, and Xiaoping Yun. A real-time kernel for
distributed multi-robot systems. In Proc. of the 1988 American Control
Conference, pages 1083-1088, American Automatic Control Council,
June !988.

John Lloyd. Implementation of a Robot Control Development Envi­
ronment. Master's thesis, Computer Vision and Robotics Laboratory,
Department of Electrical Engineering, McGill University, December
1985.

Shem-Tov Levi, Satish K. Tripathi, Scott D. Carson, and Ashok K.
Agrawala. The MARUTI hard real-time operating system. ACM OP­
ERATING SYSTEMS REVIEW, 23(3):90-105, July 1989.

Jennifer Maher. Vxworks enhanced with release 4.0. VxWords Newslet­
ter, 1(1):1 & 3, Summer 1988. Marketing Newsletter for Wind River
Systems, Inc.

Jennifer Maher. Wind river expands vxworks kernel options. VxWords
Newsletter, 1(1):2, Summer 1988. Marketing Newsletter for Wind River
Systems, Inc.

Aloysius K. Mok. The design of real-time programming systems based
on process models. In Proceedings of the Real- Time Systems Sympo­
sium, pages 5-17, December 1984.

Amante A. Mangaser, Yulun Wang, and Steven E. Butner. Concurrent
programming support for a multi-manipulator experiment on RIPS. In
Proc. of 1989 IEEE International Conference on Robotics and Automa­
tion, pages 853-859, IEEE Council on Robotics and Automation, IEEE
Computer Society Press, May 1989.

Richard P. Paul. Robot Manipulators: Mathematics, Programming,
and Control. The MIT Press, Cambridge, Massachusetts, 1981.

56 REFERENCES

[SARTICS89] Proposal for the development of: standard architecture for real-time
intelligent control systems (SARTICS). October 1989. Submitted to:
LtCol Eric Mettala, DARPA, ISTO; Submitted by National Institute
of Standards and Technology, Robotic Systems Division.

[RAA*88] Marc Rozier, Vadirn Abrossimov, Francois Armand, I. Boule, Michel
Gien, Marc Guillemont, Frederic Herrmann, Claude Kaiser, Sylvain
Langlois, Pierre Leonard, and Will Neuhauser. CHORUS distributed
operating systems. Computing Systems, 1(4):305-370, Fall 1988.

[Rea86] James F. Ready. VRTX: a real-time operating system for embedded
microprocessor applications. IEEE Micro, 6(4):8-17, August 1986.

[SaI88] Lou Salkind. The SAGE operating system. In Proc. of the Fifth Work­
shop of Real- Time Software and Operating Systems, pages 54-58, May
1988.

ISa189) Lou Salkind. The SAGE operating system. In Proc. of 1989 IEEE
International Conference on Robotics and Automation, pages 860-865,
IEEE Council on Robotics and Automation, IEEE Computer Society
Press, May 1989.

[SBWT87] Karsten Schwan, Tom Bihari, Bruce W. Weide, and Gregor Taulbee.
High-performance operating system primitives for robotics and real­
time control systems. ACM Transactions on Computer Systems,
5(3):189-231, August 1987.

[SGB87] Karsten Schwan, Prabha Gopinath, and Win Bo. CHAOS - kernel
support for objects in the real-time domain. IEEE Transactions on
Computers, C-36(8):904-916, August 1987.

[SHKK89] Donald Schmitz, Regis Hoffman, Pradeep Khosla, and Takeo Kanade.
CHIMERA: a real-time programming environment for manipulator
control. In Proc. of 1989 IEEE International Conference on Robotics
and A utomation, pages 846-852, IEEE Council on Robotics and Au­
tomation, IEEE Computer Society Press, May 1989.

[SLR86] Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar. Solutions
for some practical problems in prioritized preemptive scheduling. In
Proceedings of the Real-Time Systems Symposium, pages 181-191, De­
cember 1986.

[Smi90] Johnathan Smith. March 1990. Private communication.

REFERENCES 57

ISR87a]

[SR87b]

[SR89]

[StaS8]

[SteS8]

[Stu88]

[TH86]

[TM89]

[VxW]

[WLG*78]

[XP88)

John A. Stankovic and Krithi Ramamritham. The design of the
spring kernel. In Proceedings of the Real- Time Systems Symposium,
pages 146-157, December 1987.

John A. Stankovic and Krithi Ramamritham. The design of the spring
kernel. In Proc. a/the IEEE Fourth Workshop on Real-Time Operating
Systems, pages 19-23, July 1987.

John A. Stankovic and Krithi Ramamritham. The Spring kernel: a
new paradigm for real-time operating systems. ACM OPERATING
SYSTEMS REVIEW, 23(3):54-71, July 1989.

John A. Stankovic. Misconceptions about real-time computing: a seri­
ous problem for next-generation systems. IEEE Computer, 21(10):10­
19, October 1988.

Jeffrey A. Steinberg. VAXELN responds. Digital Review, 45-52, July
11 1988. Tech Report: Scientific & Engineering.

Martin C. Sturzenbecker. RMK: a real-time multripcoessing kerneL
April 20 1988. Robot Systems Group, IBM Research Division, T.J.
Watson Research Center.

F. Tuynman and L. O. Hertzberger. A distributed real-time operating
system. Software - Pmctice and Experience, 16(5):425-441, May 1986.

Hideyuki Tokuda and Clifford W. Mercer. ARTS: a distributed real­
time kernel. ACM OPERATING SYSTEMS REVIEW, 23(3):29-53,
July 1989.

VxWorks: a revolution in real-time. Marketing Brochure from Wind
River Systems.

John H. v..'ensley, Leslie Lamport, Jack Goldberg, Milton W. Green,
Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shostak, and Charles B.
Weinstock. SIFT: design and analysis of a fault-tolerant computer for
aircraft control. P7'Oceedings of the IEEE, 66(11):1240-1255, Odober
1978.

Yangsheng Xu and Richard P. Paul. On position compensation and
force control stability of a robot with a compliant wrist. In Proc.
of 1988 IEEE International Conference on Robotics and Automation,
pages 1173-1178, IEEE Council on Robotics and Automation, IEEE
Computer Society Press, April 1988.

