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Figure 1: Combination of Support Key and Shape Key (specified using sketches) used for retrieving a cart-wheel motion in the CMU motion
database.

Abstract

There has been a recent paradigm shift in the computer animation
industry with an increasing use of pre-recorded motion for animat-
ing virtual characters. A fundamental requirement to using mo-
tion capture data is an efficient method for indexing and retrieving
motions. In this paper, we propose a flexible, efficient method for
searching arbitrarily complex motions in large motion databases.
Motions are encoded using keys which represent a wide array of
structural, geometric and, dynamic features of human motion. Keys
provide a representative search space for indexing motions and
users can specify sequences of key values as well as multiple com-
bination of key sequences to search for complex motions. We use
a trie-based data structure to provide an efficient mapping from key
sequences to motions. The search times (even on a single CPU) are
very fast, opening the possibility of using large motion data sets in
real-time applications.
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1 Introduction

In the last decade, the games and visual effects industry has
experienced a paradigm shift from procedural methods to us-
ing pre-recorded motion for animating virtual human charac-
ters. This is due to the increasing availability of large motion
databases [CMU 2003; UTA 2011] and recent advancements in
motion re-targeting [Gleicher 1998] and motion synthesis [Kovar
et al. 2002; Arikan et al. 2003]. Efficient indexing and retrieval of
motions is a precursor to using motion capture data. The human
anatomy has a complex skeletal structure with joints connected at
multiple levels of hierarchy. The space of human pose configu-
rations is continuous, non-linear, and extremely high dimensional
which makes searching in this space prohibitive. In addition, there
are many features of motion [Laban 1971] including structural, ge-
ometric, dynamic, and even emotional features that we may want
to query. Hence, there is a growing need to define an efficient, yet
representative encoding of human motion data for indexing and re-
trieval.

Prior work in motion retrieval is classified based on choice of en-
coding, query representation, and measure of similarity. Text-based
indexing requires manual labeling of motion clips, which is not
universal and may not capture the nuances of each motion. Mo-
tion clips as queries provide the most direct mapping to search mo-
tion data. Numerical-based retrieval methods [Kovar and Gleicher
2004] return structurally similar results, but cannot effectively cap-
ture logically and contextually similar motions (e.g., two jump mo-
tions may have widely different pose transitions). Content-based
retrieval methods [Müller et al. 2005; Müller and Röder 2006] de-
fine features as geometric relations between specific body joints,
with feature selection greatly impacting performance and quality of
results. Sketch-based interfaces [Chao et al. 2011; Choi et al. 2012]
can be used to intuitively specify static poses but cannot capture the
dynamic properties of motion. These methods are limited in search
flexibility and ability to handle large databases. The far-reaching
goal is to provide a compact representation that sufficiently cap-
tures the features of human motion and provides an efficient means
of querying and indexing this search space independent of database
size.

In this paper, we propose a flexible, efficient method for searching
motions in very large databases. Motions are encoded using keys
which represent the wide array of structural, geometric, and dy-
namic features of human motion, and can be extended to meet the



needs of specific applications. Keys provide a representative search
space for indexing motions and users can use sequence of key val-
ues as well as multiple combinations of keys to search for complex
motions in the database. A prefix-tree based data structure provides
an efficient mapping from “key sequences” to motions, with very
fast search times (even on a single CPU) that is independent of the
size of the database. This facilitates efficient indexing of arbitrarily
large motion databases without compromising on query complexity,
opening the possibility of using large motion data sets in interactive
applications.

2 Related Work

Motion Index Storage and Retrieval. The work in [Kovar and
Gleicher 2004] parameterizes motions by precomputing “match
webs”. Neigbhor graphs are proposed in [Chai and Hodgins 2005]
for storage and indexing. However, the quadratic memory require-
ment in these methods makes it impractical for large databases.
Content-based retrieval methods [Müller et al. 2005; Müller and
Röder 2006] compute a small set of geometric properties which are
used to find logically similar motions.

Following the pioneering work of [Faloutsos et al. 1994], differ-
ent techniques [Keogh et al. 2004; Krüger et al. 2010] have been
used for spatial indexing of motion data. The work in [Barbič et al.
; Liu et al. 2005] uses Principal Component Analysis to create a
reduced linear representation of human motion which are used as
indices for motion retrieval. The work in [Chao et al. 2011] uses a
set of orthonormal spherical harmonic basis functions to represent
motion trajectories. The work in [Deng et al. 2009; Wu et al. 2009]
reduces the search space by clustering motion data based on body
segments and uses string matching algorithms for efficient runtime
query processing.

Query Specification Interface. Keyword based systems [CMU
2003; Mixamo 2010] are cost-efficient and widely used, but are
not robust to language and semantics, and cannot capture the com-
plexities in motion data. Sketch-based interfaces [Chao et al. 2011;
Thorne et al. 2004; Choi et al. 2012; Li et al. 2006] provide a more
intuitive means of query specification but cannot capture the dy-
namics of human motion. Performance capture devices such as
robots [Numaguchi et al. 2011], dolls [Feng et al. 2008], as well as
hybrid approaches [Lee et al. 2002] have also been used to search
motions. Recent work [Tautges et al. 2011] proposes the use of ac-
celeration information of end effectors captured using accelerome-
ters for motion retrieval.

Visualization. The work in [Assa et al. ] generates image se-
quences to provide an “action synopsis” of the motion. Heat
maps [Ren 2006] provide a useful indication of where the motion
is present. Highlighting relevant keyframes [Fauvet and Bouthemy
2004; Xiao et al. 2006] is particularly useful to get a quick overview
of large motions. Posture keys [Sakamoto et al. ] and motion
cues [Bouvier-Zappa et al. 2007] provide helpful annotations to
augment the visualization of the motion.

Laban Movement Analysis. Laban Movement Analysis
(LMA) [Laban 1971; Bartenieff 1972; Maletic 1987] identifies fea-
tures which describe the structural, geometric, and dynamic prop-
erties of human motion. LMA has been used for gesture anima-
tion [Zhao and Badler 2005], motion expression [Chi et al. ], mo-
tion segmentation [Bouchard and Badler 2007] and learning motion
styles [Torresani et al. 2006]. The work in [Wakayama et al. 2010;
Okajima et al. 2012; Yu et al. 2005] have demonstrated the use of a
subset of LMA features for motion retrieval.

Comparison to Prior Work. Our work supplements excellent
contributions in numerical-based [Kovar and Gleicher 2004] and

Figure 2: Framework Overview.

content-based [Müller et al. 2005; Müller and Röder 2006] retrieval
methods to provide a rich set of structural, geometric, and dynamic
features which can be used for efficiently indexing [Krüger et al.
2010; Wu et al. 2009] motion data. In particular, we are inspired
by the work in [Wakayama et al. 2010; Okajima et al. 2012; Yu
et al. 2005] and use the theories of Laban [Laban 1971] to define
this feature set. In comparison to the binary features described
in [Müller et al. 2005], motion keys can take any vocabulary to
quantify higher-order motion features. To facilitate efficient index-
ing in this large space of motion keys, we present a method that
supports fuzzy subsequence matching operations at interactive rates
on large motion databases[CMU 2003].

3 Framework Overview

Figure 2 presents an overview of our framework. Our method takes
as input raw motion data and extracts meaningful features from the
motion to provide a compact, representative space to index into the
database. End users specify queries as combinations of sequences
of a variety of motion features and our framework returns motion
subsequences that satisfy these properties.

Motion Feature Extraction and Indexing (Offline). Given a large
motion database we first compress the motion data by extracting
only relevant keyframes using the method described in [Xiao et al.
2006]. The motion data is represented as a set of curves for each
joint angle. A set of candidate keyframes are selected which map to
the extreme points of these curves to produce a simplified represen-
tation which approximates the original curve within a reasonable
error threshold. For more details, please refer to [2006].

Next, we define an extensible set of motion keys which characterize
the different structural, dynamic, and geometric properties of the
motion over a time window (Section 4). Keys can be computed di-
rectly from the motion, or computed using other keys. During an
offline process, we compute all key values for all motions in the
database. Key values may be of different data-types and may have
arbitrary ranges. For intuitive query specification and efficient in-
dexing, we first define a minimal alphabet for each key. Key values
are converted into this language to populate a trie data structure
which facilitates efficient motion subsequence matching which is
independent of the number of motions in the database (Section 5).

Query Specification and Motion Retrieval (Online). Motion
keys provide a powerful interface for indexing the motion database,
allowing end-users to search for arbitrarily complex motions by



specifying sequences of combinations of key values (Section 6).
The time complexity for motion retrieval is O(n) where n is the
number of keys used in the search query, and is independent of
database size. Complex motions can be retrieved at interactive rates
on very large motion databases using our method (Section 7).

4 Motion Feature Extraction

The input to the framework is a set of motions M = {mi(t)|∀i}
where each motion clip mi(t) = {mi(tj)|∀j ∈ {1, 2...n}} repre-
sents the sequence of joint configurations of the body over a period
of time. The pose of the character at any point in the motion is
given by P ∈ R3×|J| where Pj is the position of the jth joint of
the body. To make the motion data more tractable, we first extract
key-frames for each motion to represent its most salient properties.
The resulting motion clip {mi(uk)|∀k ∈ {1, 2...m}}} has much
fewer frames (m << n), but still captures all the relevant infor-
mation needed to perform effective motion indexing. The method
of key-frame extraction that we use is described here [Xiao et al.
2006].

There are many different properties of human motion [Laban 1971]
which include: (1) structural and physical characteristics of the hu-
man body, (2) motion dynamics and intent of motion, and (3) shape
morphology of the body during the motion, A fundamental require-
ment for indexing motion databases is to provide a representative
search space which captures all these properties and allows users to
characterize complex motions using combinations of these proper-
ties.

We define a set of motion keys {K (u)} where each key captures
a particular feature of the motion. Keys can be computed directly
from the motion data, or derived from other keys. Keys are exten-
sible – users may define their own keys to meet the needs of their
application. A key valueK (uk) for a motion statem(uk) is defined
as a function f of the the current motion state of the character, and a
set of preceding and succeeding motion states. This allows the key
to capture dynamic properties of the motion that accrue over a win-
dow of frames. Keys can also be derived from other key values and
computed as a function g of the values of a set of keys {Ka(u)}
over a window [k − ∆, k + ∆]. For example, any second order
keys such as velocity or acceleration are computed as a function of
the keys used to store position and orientation information. Note
that even though key values are computed for every key-frame of
a motion, keys are not simply per-frame features but characterize
different properties of motion that may accumulate over a window
of frames.

K (uk) = f({m(uk)|k −∆ ≤ k ≤ k + ∆})
= g({Ka(uk)|k −∆ ≤ k ≤ k + ∆, ∀a}) (1)

We define a set of body segments S for which motion keys can be
computed (Figure 3). Different motion keys can be computed for
different subsets of these body segments. For example, a motion
key which characterizes shape has meaning for the entire body but
does not have meaning for an individual end effector. Motion keys
which capture displacement and orientation are particularly useful
for the hands and feet.

Key Computation. During an offline process, we compute all the
keys for all the motions in the database M. A specific key value
Ka

s (uk) represents the value of the property a, body segment s, at
the motion state m(uk). Based on the theories of [Laban 1971;
Maletic 1987] we define a rich set of keys for motion indexing,
described in the rest of this section.

Figure 3: Body Segments.

4.1 Body Keys

Body keys characterize the structural and physical properties of
human motion. This catagory helps annotate and identify which
body part is moving, connection between different body parts, and
patterns of movement between parts of the body.

Action Presence. This key denotes the presence or absence of
movement in a specific body part over succesive frames and is
computed by detecting if the displacement of the body segment
between successive frames crosses a threshold.

Kaction
s (uk) = |Ps(uk)−Ps(uk-1)| > ε ? 1 : 0 (2)

Displacement and Orientation. K
disp
s (uk) calculates the dis-

placement of an end effector s (e.g., hand) from the root joint
r (e.g., shoulder) of its limb. Similarly, Korient

s (uk) computes
the relative orientation of an end effector with respect to its root.
Korient

head (uk) provides the current look-at direction of the character.

K
disp
s (uk) = |Ps(uk)−Pr(uk)| (3)

Closest Body Segment. Kclosest
s (uk) stores the index of the body

segment that is in closest proximity to end effector s.

Kclosest
s (uk) = arg min

i
|Ps(uk)−Pi(uk)|∀i ∈ S (4)

Closest Body Segment Distance. Kclosest-dist
s (uk) computes the

distance between the end effector and its closest body segment
Kclosest

s (uk). These keys can be used to describe complex relations
between body segments such as motion towards a part of the body
or contact between two body parts.

Kclosest-dist
s (uk) = |Ps(uk)−Pi(uk)| where i = Kclosest

s (uk)
(5)

Center of Mass. Kcom(uk) is computed as a weighted average of
the positions of all joints in the body.



Kcom(uk) =

∑
s∈S

ws ·Ps(uk)∑
s∈S

ws

(6)

Center of Mass Displacement. Kcom-disp(uk) computes the dis-
placement of the center of mass of the body from its rest position.
This key is particularly useful for specifying full-body postures
where the character maybe crouching or jumping in the air.

Kcom-disp(uk) = |Kcom(uk)−Kcom(urest)| (7)

Balance. Kbalance(u) is a boolean value to indicate the relative
location of the center of mass with respect to the support polygon.

Support. Ksupport(u) identifies the current body segment which is
being used to support the body weight and is the body part which is
in contact with the ground. The possible values for Ksupport(u) are
{LFoot,RFoot,BothFeet,LHand,RHand,BothHands}
and can be extended to include any body segment, if required.

4.2 Effort Keys

An angry or a gentle arm gesture are very similar in body structure,
but differ greatly in the intent of motion. In order to capture the
subtle dynamic characteristics of human motion, we define four ef-
fort keys, adapted from LMA: space, weight, time, and flow. Each
key is computed using a dynamic feature in the motion and has two
opposing polarities. Effort keys are computed for each key-frame in
the motion; however, it captures the dynamic properties of motion
that accumulate over a window of frames. The effort key value at a
particular frame uk is the frame index i < k, which indicates that
the motion in the interval [i, k] satisfies the positive polarity for that
particular effort key.

Space. The effort in space is used to characterize the spatial pat-
tern of movement and may be direct or indirect. Indirect mo-
tion is interrupted and roundabout while direct motion proceeds
along a mostly straight line without deviation. We use the ratio
of displacement to net distance traveled to capture the space ef-
fort. Kspace

s (uk) stores the frame index i such that the motion clip
{m(ui),m(ui+1)...m(uk)} has direct space effort and is computed
as follows:

K
space
s (uk) = arg min

i∈(0,k)

k∑
j=i

|Ps(uk)−Ps(uj)|

|Ps(uk)−Ps(ui)|
− T (8)

Weight. The effort of weight in motion can be light (e.g., a delicate
touch) or it can be strong (e.g., a strong impact). The opposing
polarities in weight effort are captured using deceleration of motion.
Strong motion is characterized by large deceleration in motion of
end effectors while light, fluid motion is representative of little or
no deceleration. Note that weight effort is velocity independent.
A running motion is strong because the footfalls or hand motions
have peaks in deceleration at the end of a run cycle, not because
the body moves quickly. Olympic walking, which is very fluid and
fast, is not strong due to energy conservation, and has no peaks in
deceleration.

K
weight
s (uk) stores the frame index i such that the motion clip
{m(ui),m(ui+1)...m(uk)} has strong weight. For a particular

frame uk, Kweight
s (uk) = i where i < k such that the total de-

celeration of the joint s over the interval [i, k] is nearly equal to a
maximum threshold Tmax, indicating strong weight.

K
weight
s (uk) = arg min

i∈[0,k)

(
Tmax −

|vs(uk)| − |vs(ui)|
uk − ui

)
(9)

Time. The effort in time captures the temporal alternation of move-
ment. It may be sudden (e.g., repeated shaking of the fists in anger)
or sustained. A sudden motion is characterized by peaks in accel-
eration while sustained motion has uniform velocity (no accelera-
tion). The physical metric we use to quantiy time effort is the net
acceleration accumulated over the duration of a motion interval. For
a particular frame uk, K time

s (uk) = i where i < k such that the net
acceleration of the joint s over the interval [i, k] is approximately
equal to a maximum threshold Tmax, indicating that the motion clip
{m(ui),m(ui+1)...m(uk)} has sudden motion.

K time
s (uk) = arg min

i∈[0,k)

(
Tmax −

j≤k∑
j=i+1

|vs(uj)− vs(uj-1)|
uj − uj−1

)
(10)

Acceleration is used as the physical quantity to compute both
weight and time effort. Total deceleration over the motion clip
quantifies weight effort while the aggregated acceleration over the
motion is used to compute the time effort. This captures the sym-
metry as well as the subtle difference between the two effort quan-
tities. For example, a repeated shaking of the fist is sudden and
strong, while chopping wood (smooth repetitive motion with high
peaks in deceleration) is sustained and strong.

Flow. Flow effort characterizes continuity in motion and is com-
puted using the third-order physical metric, jerk. Bounded motion
is extremely discontinuous with high jerk, whereas free motion has
little or no change in acceleration.

Kflow
s (uk) = arg min

i∈[0,k)

(
Tmax −

j≤k∑
j=i+1

|as(uj)− as(uj-1)|
uj − uj−1

)
(11)

4.3 Shape Keys

The shape that the body, or parts of the body make in any given
pose, and the manner in which body shapes change is captured us-
ing shape keys. We compute shape keys Kshape

s (uk) for each body
part s as follows:

K
shape
s (uk) = BoundingVolume({P(uk)}s) (12)

where BoundingVolume({P(uk)}s) computes an axis-aligned
bounding box that contains positions of all joints present in the body
part s. Kshape

s (uk) is computed for all body segments as well as the
entire body.

5 Motion Indexing

The keys described in Section 4 provide a representative space for
searching motions. In order to fully exploit the use of keys for mo-
tion retrieval, we must define an efficient mechanism for indexing
the motion database which satisfies the following requirements:



Figure 4: Illustration of a trie used for motion key indexing. Each
node in the trie corresponds to a specific value of the motion key
(e.g., leg configuration). All leaf nodes contain a reference to the
motion clip that matches the key value sequence by traversing the
trie to reach the leaf node. A search for a particular sequence of key
values returns the motion clips that are referenced by the leaf node
descendents of the last node reached by traversing the trie along
the sequence.

• Subsequence Matching. A user must be able to specify
queries of sequences of key values where search results may
include smaller clips of motions within larger motions in the
database.

• Fuzzy Search. Users may specify key values that need to
be specified within a certain tolerance value. In addition, se-
quences of key values may not necessarily occur in successive
key-frames of valid motion clips, as long as the ordering is
maintained.

• Online Motion Retrieval. Search times must be efficient and
independent of database size.

A trie [Fredkin 1960] is an m-ary tree used for efficient retrieval
where the keys used for indexing are defined over a finite alphabet
with a lexicographic ordering. The root node represents a null key,
and each node in the trie corresponds to a specific instance of an
alphabet in the key vocabulary. Hence, the maximum breadth of the
trie is equal to the cardinality of the alphabet. Each node in the trie
represents a prefix of one or more key instances, and all descendents
of a node share a common prefix. A traversal from the root node
to a leaf node in the trie corresponds to a specific key instance, and
each leaf node can additionally store a reference to a value which
the key may be used to index into. Tries support O(1) find, insert
and, delete operations for keys that can be represented by a unique
string. The time complexity of a trie is independent of the number
of elements in the dictionary and the number of elements in the
key alphabet. The maximum depth of the trie is l where l is the
length of the longest key in the dictionary; however, this can often
be greatly reduced using memory optimizations where a node in the
trie can map to a subsequence of alphabets in the key. The worst
case complexity isO(l), corresponding to a traversal to the greatest
depth in the tree. Tries do incur an additional memory overhead;
however, the additional memory requirement is mitigated for very
large databases. We refer the reader to relevant literature [Fredkin
1960] describing the trie data structure and present an overview of
its use for indexing into motion databases.

Motion Retrieval using Tries. Each motion key has a finite set
of possible values it can take and there exists an ordering of key

values. The domain of key alphabets are unsigned integers and each
alphabet is defined using {min,max,inc} where { min, max }
defines the range of the alphabet and inc defines the resolution
of discretization. Choosing an appropriate discretization provides
a balance in flexibility of query specification, while generating an
efficient, yet representative space for indexing. Figure 4 illustrates
a motion key indexed using tries.

We use motion keys as an indexing mechanism by generating a trie
for each computed motion key. Each leaf node in the trie maps to
a unique sequence of key values for a particular key and contains
a reference to the corresponding motion in the database. While the
trie operations are independent of the number of elements in the al-
phabet, having a large vocabulary increases the sparsity of the trie
where the trie has very little branching. This increases the mem-
ory footprint of the trie and also narrows the search results so that
each motion satisfies a very specific sequence of key values. Hence,
we define a minimal vocabulary for each key by calculating the
minimum and maximum value that the key takes across the entire
database of motions and choosing an appropriate discretization (in-
crement) which differentiates motions with differing features while
still clustering similar motions together with the same key value.

Searching for motion subsequences. An important requirement
in motion indexing is the ability to retrieve motion subsequences
that are contained in larger motion clips. This is achieved by return-
ing all leaf nodes (and their associated motions) in a trie for which
the traversal contains the subseqeunce of key values that is speci-
fied. A key subsequence may begin at any level in the trie. Hence,
a subsequence is searched by first searching for occurrences of the
first key value at all levels in the trie and then starting the traver-
sal from that level to see if the sequence of key values is present.
If the sequence ends before the frontier of the trie is reached, all
leaf node descendents of the last node reached are returned as valid
results. Due to the lexicographic ordering of key values, nodes at
each level in the trie are stored in an ordered fashion. This allows
us to efficiently search for the presence of a particular key value at
each level. Equations 16 and 17 are examples of queries that search
for motion subsequences.

Fuzzy Motion Search. A user can specify query with a tolerance
value for a particular key value to indicate an approximate search
where all motions that satisfy the key value within the tolerance
range are valid results. The ordering of key values at each level
allows us to quickly search for nodes whose key values are within
the tolerance range. The remainder of the query sequence is then
independently searched starting from each of these nodes, with the
final result equal to the union of each of these searches. Equation 14
is an example of a fuzzy search query.

6 Motion Retrieval

Input Query. The motion keys {Ka(u)∀a}, described in Sec-
tion 4 provide a representative space for describing complex motion
queries. Each key has an alphabet, and we can specify an atomic
query as a regular expression on a single key alphabet. Regular ex-
pressions provide a mechanism to specify orderings of key values.
In addition, a user may also specify strict temporal constraints that
a particular key value must be specified at a given point of time
(or two different keys must satisfy constraints at the same point of
time). By using a logical combination of atomic queries on differ-
ent keys, complex motions can be easily described. A composite
query Q is specified as follows:

Q =
∐
a∈A

q(Ka(u)) (13)



where
∐

denotes the logical and-or combination of multiple atomic
queries for a set of motion keys {Ka(u)|a ∈ A}. Each atomic
query q(Ka(u)) is a regular expression describing a specific or-
dering of key values, in addition to providing temporal constraints.
The following are sample atomic queries that can be specified for a
motion key:

q1(Ka(u)) ← (k1, ε) · (k2) (14)

q2(Ka(u)) ← (k1u=u1
) · (k2u=u2

) (15)

q3(Ka(u)) ← (−)∗ · (k1) · (−)∗ (16)

q4(Ka(u)) ← (−)+ · (k1) · (−)+ · (k2) (17)

q1 describes the occurrence of two key values k1 and k2 one after
another where the value of k1 may be satisfied within a tolerance
range ε. q2 describes the occurrence of two key values k1 and k2

at specific points in the motion. q3 describes the presence of a
key value somewhere in the motion with zero or more key-frames
present before and after it. q4 describes the presence of a key value
somewhere in the motion with one or more key-frames preceding
and succeeding it. Using these simple constructs, more complex
queries can be defined. In addition, a user may also specify tem-
poral constraints across multiple keys (i.e., two keys must satisfy a
key value at the same point of time in the motion).

Search Results for Atomic Queries. A regular expression on
each key Ka(u) maps to an independent search on the trie for that
particular key. The output of each search is a set of resulting motion
clips {Ra}:

Search(q(Ka(u)))→ {Ra|Ra = {i, us, ue, [u]}} (18)

where i is the motion index, {us, ue} is the start and end of the
motion clip and, [u] are the frame indices when the specific key
values were satisfied.

Temporal Constraints for Atomic Queries. If temporal con-
straints for a particular key are specified, the search result {Ra} is
filtered to remove motion clips which don’t satisfy the constraint.
This process is linear in the number of search results.

Search Result for Composite Query Based on the logical combi-
nation of atomic queries, the result sets of each atomic query are
combined as follows:

R =
⊎
a∈A

{Ra} (19)

where
⊎

is the set operation {
⋂
,
⋃
} depending on the logical

combination between the atomic queries. Two results are consid-
ered to be the same if and only if the motion index i is the same,
{us, ue} in both motion clips are within some threshold of each
other and, [u] satisfies any temporal constraints that were placed
across multiple keys.

7 Results

We demonstrate the effectiveness of our approach by searching for
complex motions in the CMU [CMU 2003] and Texas HMD [UTA
2011] motion databases. The two databases combined have 6121
animations, and a total of 35 hours of motion capture data. The

Figure 5: Use of Kinect for query specification. A set of user-
specified motion keys are computed from the Kinect motion data
which is used for searching the database to return motion clips that
are similar to the recorded motion.

Figure 6: Query specification for a jumping jack motion: A sup-
port key, bounding box key (specified using sketches) and, orienta-
tion keys for the arms and legs are used to specify the input query.

animation length ranges from 0.5 to 96 seconds, with many anima-
tions lasting thousands of frames. Our system uses a total of 43
motion keys to index into the database capturing a wide range of
motion features. The memory footprint of each motion key is 30
MB (linear in number of extracted key frames).

Locomotion. End users can very quickly create simple queries to
define motions such as walk cycles, jumping, crouching, and dif-
ferent arm gestures. A walk cycle can be defined by specifying a
left foot plant followed by a right foot plant, with no flight phase.
Introducing a flight phase in between returns running motions. By
placing additional constraints on the displacement of the center of
mass Kcom-disp

s (u) and the relative orientation of the swing foot
Korient

foot (u), we can return motions with long strides, as well as dif-
ferent turning and side-stepping motions. Different jumping varia-
tions (e.g., forward jump, jump in place, hopping on one leg) can be
retrieved by specifying the COM displacement and using different
support configurations. Effort motion keys are very useful for char-
acterizing the dynamics of motion. Motions where the character is
moving along a straight line are characterized by direct space effort
K

space
body (u). For indirect effort, results are returned where the char-

acter is walking in circles, with little or no net displacement. Stiff
walking motions have sudden time effort due to acceleration peaks



Figure 7: Graphical User Interface for Motion Querying and Re-
trieval.

at the end of each walk cycle. A fluid walking motion, in contrast
has sustained time effort.

Arm Gestures. Arm gestures are queried by checking if the dis-
placement Kdisp

s (uk) of the hands crosses a maximum threshold.
Results can be easily filtered to be specific to either arm, or by using
Korient

s (uk) to detect arm gestures with a specific orientation. Fur-
thermore, the effort keys are particularly useful to query for gestures
with specific dynamic properties. Strong gestures such as a punch,
or light gestures such as slow reaching motions can be queried using
K

weight
s (uk). Kspace

s (uk) is used to specify constraints on the spa-
tial pattern of the motion. Please refer the accompanying video and
supplementary document for different combinations of keys used to
retrieve a variety of arm gestures.

Climbing. We detect climbing motion by its center of mass dis-
placement Kcom-disp(u) along the vertical axis. Specifying a se-
quence of gradually increasing vertical displacement values, we can
search for motions like climbing up a ladder. Introducing a dis-
placement along the horizontal axis returns results where the center
of mass takes a more diagonal trajectory, such as climbing a flight
of stairs.

Jumping Jacks. Exercise motions like jumping jacks require full-
body coordination with the arms and legs following a sequence of
gestures during the motion. Figure 6 illustrates the specification of
arm and leg orientation, the support key, as well as the bounding
volume of the body to describe a jumping jack motion. A real ben-
efit of our approach is to incrementally add more constraints using
different motion keys to filter the search. For example, we can spec-
ify that that the two hands must make contact in the middle of the
motion, or change the desired orientation of the hands and legs to
return more specific results.

Cartwheel. A character performing a cartwheel motion can be de-
fined using the following regular expression of Ksupport(u) values:

q(Ksupport(u)) ← (BF+ · RF+ · BH+ · LF+ · RF+ · BF+)

|(BF+ · LF+ · BH+ · RF+ · LF+ · BF+)

(20)

where B,F and, H stand for Both, Foot and, Hand respectively.
Note that the regular expression must also specify the presence of

Figure 8: Search times for a single trie with increase in query
length. The trie is populated with computed key values for all 6121
motions in the CMU and HMD motion databases.

zero or more Blank frames after each support constraint, which
has been omitted from Equation 20 for ease of exposition. A flight
phase can also be introduced into the cartwheel by specifying that
no hands must touch the ground in the middle of the motion. Other
filters may also be applied by using combinations of other motion
keys. Figure 1 illustrates the specification of support and shape keys
for retrieving a cart wheel motion.

Alternate User Interfaces. Figure 7 illustrates a prototype graph-
ical user interface for querying and motion retrieval. Motion keys
can also be mapped to more intuitive forms of specification. For
example, a user can sketch a sequence of rectangles to represent the
change in shape of a character over the course of a motion, as il-
lustrated in Figure 6. We also demonstrate the use of the Microsoft
Kinect sensor as an alternate form of query specification. A user
records a query motion using the Kinect Sensor which is converted
to motion data using the OpenNI API and is used to compute a set of
user-specified motion keys for the input motion. Note that the algo-
rithm used is the same for both offline key computation and Kinect
input analysis, assuring compatible key-frame selection semantics.
The sequence of key values serves as the input query which is used
for retrieving similar motions. Figure 5 illustrates the use of the
Kinect to search for a jumping-jack motion in the database. Here,
the user specified the use of arm gestures and the shape of the body
as the keys used to generate the query.

Performance. A big advantage of using tries for indexing is that
the size of the database does not affect the the time complexity of
the search, which is a constant time operation. The search time
depends on the number of keys used in the query, where each key
maps to an independent search on a trie. Figure 8 illustrates per-
forming searches on a single trie with increase in query length. We
observe that the average time to perform a single trie search was 6.5
ms. Also, specifying temporal constraints requires a filtering pro-
cess that is linear in the number of results returned. During our ex-
periments, we observed that the average time to search was (25−40
ms) ms when 4− 6 keys were used in combination.

8 Conclusion

The motion keys described in the paper are not a comprehensive
set of all motion features, but are intended to provide a medium
for researchers and end-users to define different categories of mo-
tion features for use in their applications. One category of LMA



that is still under active exploration is the theories of Space which
describe motion in connection with the environment and spatial pat-
terns of movement. For future work, we would like to incorporate
these elements into our set of motion keys to facilitate description
of character interaction with its environment. An open question
that we, and the community at large strives to answer is the ability
to define coverage for a set of motion features, and automatically
derive the minimal set of features that can completely characterize
the extremely high dimensional space of human motion.

For indexing into the database, we use a trie-based data structure
that supports efficient sub-sequence matching and fuzzy searches.
A key advantage of tries is that the search times are independent of
the size of the motion database with a worst case time complexity
of O(l), where l is the length of the longest motion. Tries are also
highly cache local and extremely parallelizable. For future work,
we will explore the use of recent advancements in graphics hard-
ware to further accelerate search times. Also, static tries with no
more insertions and deletions can also be greatly compressed by
merging common branches, which would greatly reduce the mem-
ory footprint.

Querying motions using regular expressions provide a flexible in-
terface for making general as well as specific queries. However,
specifying regular expressions can be cumbersome and require the
user to have prior knowledge of the different motion keys and an in-
terpretation of their values. The current system is not immediately
accessible to end users for whom it may be prohibitive to specify
complex regular expressions. The use of sketches and other alter-
nate user interfaces such as the Kinect are promising directions to
provide a more intuitive means of query specification, but may not
be applicable for all the keys described in this paper. Based on our
experience, we envision the development of specific interfaces de-
signed to support each key category.

Our method returns motion subsequences which satisfy conditions
on the numerical values of one or more keys, as specified in the
query. Motions that are not useful to the user may be pruned by
adding additional filters to the query. However, it is possible that
useful motions may also be pruned as a result, producing false neg-
atives. This is due to the unintuitive mapping of key values to
body configurations, and the discretization of key values. For fu-
ture work, we would like to carry out human factors experiments to
validate the results of our approach, and determine the sensitivity
of the results on the coarseness of key discretization.

The provision of so many different motion keys (43 in our current
implementation) can provide flexibility to the user but can also be-
come burdensome as the user is required to choose which key(s) to
use. This is evident when using the Kinect sensor to input a query
motion as the user had to manually specify which keys would be
most applicable. Automatic feature selection and generating a min-
imal, yet complete feature set is an open area of research.
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