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Abstract

Voluntary emissions offset programs between developing and industrialized countries suffer

from adverse selection, because participants will self-select into the program. In contrast, pure

subsidies for mitigation lead to full participation and hence efficiency, but require large financial

transfers which make them unattractive to industrialized countries. We present a simple model

to demonstrate the impact of three policy options on the performance of offset programs: (1)

baseline scale increases, (2) offset discounting and (3) setting stringent baselines. With baseline

scale increases, entire political jurisdictions such as regions or nations are assigned a single,

aggregate baseline and must choose whether to participate as one entity. We find that scale both

improves efficiency and reduces transfers from offset buyers to sellers. Offset discounting means

paying less than the value of abatement, or using trading ratios between offsets and allowances

in a cap-and-trade system. We show that discounting is inefficient. While the conventional

wisdom – that discounting can be used to reduce the fraction of offsets that are spurious –

is invalid, discounting can make offsets more attractive to industrialized countries. Setting

stringent baselines also involves a tradeoff between efficiency and transfers. We finally show

that Pareto efficient policies that are individually rational for buyers and sellers entail some

combination of discounting and/or stringent baselines: offset policies are never first-best, but

can be efficiency improving, especially with increased scale. This paper frames the issues in

terms of avoiding deforestation but the results are applicable to any voluntary offset program.
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1 Introduction

Deforestation is responsible for 15-25% of total greenhouse gas emissions, and including forests in

climate negotiations appears crucial for the success of any potential climate deal. In fact, many

leading academics and policy makers assert that avoiding deforestation is a key short-run, low-cost

climate mitigation option (Stern, 2008; Kindermann et al., 2008).1 A large literature emphasizes

that it is critically important to price carbon in forests (Melillo et al., 2009; Wise et al., 2009),

but does not take into account the difficulty of designing effective policies to address deforestation

in developing countries, where most deforestation occurs (Andam et al., 2008; Pfaff et al., 2007).

Many proposals assume the application of efficient price-based policies, yet these are hard to achieve

in much of the developing world.

Offset programs, a key current instrument for industrialized countries to transfer resources in

order to affect deforestation in developing countries, typically give credit for forest remaining above

an estimated and assigned forest baseline.2 Such programs suffer from serious problems such as

adverse selection and spurious offsets. Adverse selection is caused by a combination of two factors:

a voluntary element (i.e., forest owners can choose whether or not to opt in to the program) and

asymmetric information about the baseline (i.e., the forest owners know more about their true

baseline than the regulator).3 Spurious offsets occur if the regulator overestimates the baseline

deforestation rate.

Are such offset programs doomed to be economically inefficient and, perhaps, undesirable, or can

they be designed in ways to make them more efficient? This paper aims to answer this important

policy question from a theoretical perspective.4 We formally model a voluntary price-based offset

program to avoid deforestation, and examine the impact of three key policy levers on the program’s

economic performance, attractiveness to industrialized and developing countries as a mitigation

option, and environmental outcome. The first policy is to increase the scale of offset programs so

that entire political jurisdictions such as regions or nations get assigned a single, aggregate baseline

and must choose whether to voluntarily participate in an international agreement as one entity

with all its forested land. This is in sharp contrast to small scale, plot-specific baselines and opt-in

rules for small local agents (e.g., individual landowners). The second policy is to discount offsets

(pay less than the value of abatement), or use trading ratios between offsets and allowances in a

1Current estimates of the forest carbon supply curve are based on land use responses to commodity prices (Sathaye
et al., 2006; Melillo et al., 2009) or on estimates of the opportunity cost of land (e.g. Kindermann et al., 2008).

2In this paper, we focus on offset programs in which buyers and sellers reside in different countries. Buyer countries
have committed to reduce emissions, and are currently mostly industrialized countries. In principle, developing
countries could become offset buyers if they commit to emissions targets in an international climate agreement.

3Montero (2000), Fischer (2005), Arguedas and Van Soest (2009) and Bushnell (2011) establish theoretical results
for the effect of adverse selection on offset programs. Montero (1999) presents empirical evidence for the US acid
rain program. Zhang and Wang (2011) use an econometric approach to indirectly assess the additionality and co-
benefits of sulfur dioxide emissions reductions in China under the Clean Development Mechanism, and do not find
any significant impacts. Millard-Ball (2012) explores similar issues for sectoral emissions baselines. Adverse selection
in voluntary environmental programs has also been demonstrated in energy conservation programs (Hartman, 1988).

4We first explored these issues in an earlier working paper version (Van Benthem and Kerr, 2010). The current
paper is a substantially updated version.
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cap-and-trade system.5 The third policy is to set stringent baselines.

Specifically, we assess performance using three inter-related criteria. Efficiency is determined

by whether land goes to its optimal use – land that yields agricultural or timber returns exceeding

the positive environmental externalities from the forest should be cleared; land with lower returns

should not.6 The average cost per unit of emissions abatement through avoided deforestation is

an indicator of the offset buyers’ value for money. Quality or environmental integrity of offsets

is measured as the percentage of offsets that are not spurious. Spurious offsets lead to a global

environmental loss if their presence is not factored in through a more ambitious cap.

We use a combination of analytical results and numerical simulations from a microeconomic

model of land use. This model shows that asymmetric information about the forest baseline in

voluntary programs leads to trade-offs between efficiency, average cost and offset quality. We then

introduce a framework to make explicit the benefits and costs of transfers between industrialized

and developing countries, and present the Pareto set of individually rational policies.

We draw the following conclusions. First, baseline scale increases improve efficiency and quality

and reduce infra-marginal transfers from buyers to sellers, leading to lower average cost. Second,

discounting and trading ratios are inefficient (since they make participation unattractive to certain

sellers of non-spurious offsets), but also reduce transfers. In addition, trading ratios between offsets

and allowances have ambiguous environmental effects if the cap is not properly adjusted. While

the conventional wisdom – that discounting can be used to reduce the fraction of offsets that are

spurious – is invalid7, discounting can make offsets more attractive to industrialized countries.8

Third, more stringent baselines also reduce efficiency and reduce average cost for industrialized

countries but, in contrast to discounting, generally improve the quality of offsets.9 Finally, the

Pareto set only contains policies that involve some combination of discounting and/or stringent

baselines, to guarantee that it is individually rational for industrialized countries to participate.

In an international context, offset programs are therefore never first-best, but can be efficiency

improving, especially with increased baseline scale.

This research is important since a lot of funds are currently being invested in offset programs

with baselines in developing countries. Examples include the Clean Development Mechanism

(CDM), Verified Carbon Standards, and, more recently, an international program to reduce de-

forestation referred to as REDD (Reducing Emissions from Deforestation and Degradation), and at

a national level, the payments for ecosystem services program in Costa Rica.10 Some are beginning

5In our model, lowering the price is equivalent to requiring a trading ratio for offsets in a cap-and-trade system
in which the cap can be adjusted to achieve the same global abatement. A 5:1 trading ratio is an 80% price discount.

6Environmental externalities include non-carbon forest benefits such as flood protection, water quality and bio-
diversity, but these will be ignored if the offsets are designed for carbon markets only.

7Chung (2007), Environmental Defense Fund (2007), Greenpeace and Papua New Guinea (2008) and Schneider
(2009) all propose discounting as a way to reduce “non-additional” or spurious offsets.

8Another related policy, limiting the number of offsets that can be one-for-one exchanged with allowances in a
cap-and-trade system, will lower the offset price and hence make offsets more attractive to buyers, but also reduce
efficiency and quality. See Bento et al. (2011) for more details.

9With stringent baselines, projects can be awarded fewer offsets than their actual emissions reductions (Bento et
al., 2012).

10Several studies provide evidence on adverse selection in the context of Costa Rican deforestation (Kerr et al.,
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to be implemented on a wider scale and provide rewards based on a regionally or nationally set base-

line – notably Norway’s innovative contracts with Guyana, Brazil and Indonesia.11 Our findings

suggest that such programs have the potential to be more efficient and attractive as an alternative

mitigation option for industrialized countries, provided that developing country governments can

effectively respond to the financial incentives and pass them on to local forest owners.

Our paper can be interpreted as an analysis of either adding avoided deforestation offsets to a

broader cap-and-trade market, or as an international fund used to pay for avoided deforestation

to supplement a separate cap on other emissions. Both programs provide rewards relative to a

forest baseline. In a cap-and-trade market these rewards would be offsets that can be converted

to emissions allowances, whereas in the fund these rewards would be dollars. In both programs,

buyers in industrialized countries pay for emissions reductions in developing countries. These two

approaches are equivalent under the following assumptions. First, the rewards must be the same

per unit of avoided deforestation. Second, the emissions cap and the money in the fund can be

adjusted so that regardless of which approach is used, global emissions are identical.12

Our presentation focuses on deforestation but the results are equally applicable to a variety

of voluntary offset programs, national and international, particularly those that involve interna-

tional public goods and financial transfers between countries, and to climate agreements between

industrialized and developing countries more generally.

The remainder of this paper is organized as follows. Section 2 presents a simple model of a

voluntary avoided deforestation program that demonstrates the trade-off between efficiency losses

from adverse selection and the level of transfers. Section 3 discusses how the offset program’s

performance is affected by baseline scale increases, offset discounting and changing the generosity

of the assigned baseline. Section 4 presents the set of individually rational, Pareto efficient policies

across international borders. Section 5 concludes and summarizes the main policy implications.

2004; Sanchez-Azofeifa et al., 2007; Robalino et al., 2008). Strand (2011) shows that the CDM may serve as an
obstacle to implementing more stringent environmental policies, in an effort to influence baseline assigment. A
plethora of reports explore the issues associated with the design of REDD. See Angelsen (2008, 2010), Plantinga and
Richards (2008) and Busch et al. (2009) for discussions of the challenges.

11For example, see Government of Kingdom of Norway and Government of the Republic of Indonesia (2010).
12Suppose industrialized countries (ICs) have a joint emissions cap that requires them to undertake abatement

A. The allowance price equals p∗. ICs could use a fund to achieve n further units of abatement (and pay for m
infra-marginal, or “spurious”, units), at a price per unit pc which may be lower than p∗. Global abatement would
be A+ n, where n is a function of pc. Instead of a fund, ICs could purchase n+m offsets from developing countries
(DCs) at price pc and trade them in their cap-and-trade system. This, however, would not be a fair comparison.
Under the fund, global abatement equals A+ n. Using offsets that can be traded one-for-one with allowances, global
abatement will be A −m. The environmental outcome is worse than without offsets (and p∗ would decrease). To
correct this, ICs must increase their abatement target to A + n + m. This ensures that, after n + m offsets are
purchased from DCs, IC mitigation effort is back at A and the allowance price at p∗. Global abatement is now also
A+ n. If a trading ratio t : 1 is applied, global abatement with offsets will be A+ (t− 1)n−m, where n and m are
now functions of t. This could be higher or lower than A+ n. Again, an adjustment to the abatement target would
be needed to make the fund and the offset program equivalent. As long as the introduction of offset trading does not
cause DCs to include non-forest sectors in an international cap-and-trade program, there is no effect from strategic
bargaining about baselines, in which environmentally less (more) concerned countries have an incentive to demand
more (fewer) allowances than when they commit to emissions reductions without trading possibilities (Helm, 2003).
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2 A Simple Model of Voluntary Opt-In

2.1 A trade-off between efficient subsidies and baselines with adverse selection

Consider a continuum of small plots of forested land, indexed by i. Landowners decide on a plot-

by-plot basis whether to clear fully or keep the forest. For each plot, its owner will clear the forest

if the net return from deforesting ri (e.g. agricultural plus timber revenues minus clearing costs)

exceeds any payment pc to maintain the forest. Landowner i knows ri with certainty. The marginal

environmental externality from deforestation is defined as δ.13 Returns ri are distributed across

i with density fr. Note that in reality, landowners may own several plots, and do therefore not

face an “all-or-nothing” deforestation decision for their total forest area. We will return to this

issue in Section 3. The intuition for adverse selection can be illustrated at the single plot level,

however, and the single plot model forms a useful building block for further analysis. Therefore, in

the remainder this section, we assume that landowners own exactly one plot.

The simplest policy would be to offer a subsidy equal to pc = δ per plot that remains forested.

All landowners with ri ≤ pc will accept the subsidy and not deforest, but only landowners with

0 ≤ ri ≤ pc will actually change their behavior; landowners with ri > pc will (efficiently) deforest.14

The change in economic surplus ∆Seff from this efficient policy relative to no policy equals:

Efficiency gain = ∆Seff =

∫ pc

0
(pc − r) fr (r) dr (1)

This achieves efficient deforestation but requires a large transfer of resources:

Total transfer = TT = pc

∫ pc

−∞
fr (r) dr (2)

The total amount of avoided deforestation is:

Avoided deforestation = AD =

∫ pc

0
fr (r) dr (3)

The average cost (AC = TT/AD) to industrialized countries of climate mitigation through

avoided deforestation summarizes the program’s value for money for offset buyers. Under the

13We implicitly assume that the amount of carbon per hectare of forest is constant. This could be relaxed with
little loss of generality. Converting from forest cover to carbon still mostly relies on carbon tables (derived from
field work supplemented with LIDAR, an optical remote sensing technology) for different ecological conditions that
can be identified with Geographic Information Systems data. This measurement method could induce a bias in
the estimates of carbon saved. If the threat to forests is positively correlated with the unobservable errors in carbon
measurements, incentives will be poorly targeted and forests with higher than average carbon stocks will be protected
at sub-optimally low levels (Kerr et al., 2004). If carbon is not determined ex-ante using carbon tables, rewarding
carbon ex-post using LIDAR or on-the-ground measurements will expose the seller to extra risk, in addition to other
forest risks such as burning. Both risks can be addressed through insurance type mechanisms.

14The ri may be interdependent. In general equilibrium, one landowner’s deforestation decision will alter returns
for others. This could operate through leakage: e.g., a landowner who does not deforest reduces the supply of timber,
which affects local timber prices. It could also occur if clearing involves investment in local infrastructure, or induces
local service provision or labor supply that make clearing more attractive for neighboring parcels. fr could be thought
of as an ex-post distribution of returns when a new set of equilibrium land uses is reached.
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subsidy, the average cost is high if many plots have negative returns and would not have been

cleared even without the subsidy.

To avoid large transfers to forest-rich developing countries, a second policy option is a voluntary

offset program that will pay participants an amount pc for each hectare of forest exceeding an

assigned baseline.15 Landowners know their true plot level forest baselines BLi:

BLi =

{
1 if ri ≤ 0

0 if ri > 0

}
(4)

We model an “all-or-nothing” decision at the plot level, but note that if a landowner owns

multiple plots, this policy assigns a separate baseline for each of his plots. This implies that

deforestation does not have to be a binary decision at the landowner level.

If the regulator observes ri, the efficient solution is achieved by assigning each landowner i the

true baseline BLi(ri). If BLi = 1 (no deforestation), no payment will be made and the forest will

remain intact. If BLi = 0 (full deforestation) and 0 ≤ ri ≤ pc, the landowner will opt in and choose

not to deforest. If BLi = 0 and ri > pc, the landowner will deforest and forego the payment pc. If

pc = δ, the remaining deforestation is efficient. Efficiency and avoided deforestation are still given

by (1) and (3) but the total transfer is lower by the amount in (5) and hence the average cost is

lower. This policy dominates the subsidy if transfers are costly:

Decrease in TT relative to subsidy = pc

0∫
−∞

fr (r) dr (5)

In practice, however, the regulator cannot observe ri, but instead observes r̂i = ri + εi.
16

The observation error εi has density fε ∼ (0, σε) and is assumed to be symmetric around 0 and

independent of fr. The predicted baselines are:

B̂Li =

{
1 if r̂i ≤ 0

0 if r̂i > 0

}
(6)

What happens if the government assigns baseline B̂Li? When (ri > 0, r̂i > 0) or (ri ≤ 0, r̂i ≤ 0),

the assigned baseline coincides with the true baseline. The landowner will make the socially efficient

decision. However, if (ri > 0, r̂i ≤ 0), the assigned baseline is 1 but the true baseline is 0. The

landowner would have deforested the plot in the true baseline, but gets assigned an unfavorable

“no deforestation” baseline. Hence, the landowner will not participate in the scheme. This leads to

15If it were practically feasible, a policy that sets pc = ri would reduce transfers even further. Mason and Plantinga
(2010) describe a model in which the regulator can provide landowners with a menu of two-part contracts, which
consist of a lump-sum payment from the landowner to the regulator and a “per unit of forest” payment back to the
landowner. Under certain conditions, these are type-revealing, where an ex-ante unobserved “type” corresponds to
a marginal opportunity cost curve of keeping a fraction of the land forested. A similar approach to maximize the
benefits to funders in an environmental transfer program was developed in Kerr (1995). Our model does not consider
this option, since such sophisticated contracts are not likely in most developing countries.

16This assumption is similar to Montero (2002)’s approach for modeling asymmetric information between a regu-
lator and firms about aggregate abatement costs in a setting of incomplete enforcement of a regulation.
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an efficiency loss if 0 ≤ ri ≤ pc = δ, since the landowner will now deforest while he would not have

done so had his baseline been correctly assigned and he had participated in the scheme. Relative

to the efficient outcome in (1) the efficiency loss caused by adverse selection equals:

pc∫
0

(pc − r)

 −r∫
−∞

fε (ε) dε

 fr (r) dr (7)

The amount of avoided deforestation falls by:

pc∫
0

 −r∫
−∞

fε (ε) dε

 fr (r) dr (8)

Finally, consider the case where (ri ≤ 0, r̂i > 0). These landowners would have kept their forest,

but now get assigned a full deforestation baseline. This will not affect their behavior, but it implies

an additional infra-marginal transfer pc. The cases described above are summarized in Figure 1.

BL=1 BL=0

r r

pc pc

0 0

Landowner deforests, 

regardless of assigned 

baseline

Landowner should not 

deforest, but will if 

assigned baseline equals 1

Landowner will not 

deforest, regardless of 

assigned baseline

Landowner may receive 

payment with no 

behavioral change

Figure 1

(No deforestation) (Full deforestation)

Figure 1: Adverse selection causes an efficiency loss in the range 0 ≤ ri ≤ pc = δ and increases
average cost in the range ri ≤ 0 if landowners in these ranges get assigned an incorrect baseline.

The total transfer (TT ) in an offset program is lower than under the pure subsidy (2). TT is

given by the sum of marginal transfers (MT ) and infra-marginal transfers (IT ). The former are

the payments made to landowners that change their decision as a result of the policy and do not

deforest. The latter are payments to landowners that would not have deforested without the policy,
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but get assigned a favorable full deforestation baseline and will therefore opt in.17

TT = MT + IT

= pc
pc∫
0

(
∞∫
−r
fε (ε) dε

)
fr (r) dr + pc

0∫
−∞

(
∞∫
−r
fε (ε) dε

)
fr (r) dr

(9)

Deforestation is higher relative to both the subsidy and the full information voluntary program

(both given by (3)). Total transfers are lower than under the subsidy (2), but can be either higher

or lower than under the full information program (5).18 Adverse selection increases the average

cost relative to a full information voluntary program, but the comparison with average cost under

the subsidy is theoretically ambiguous.

To obtain intuition for this ambiguity, we use the decomposition in (9) to write:

AC = pc

1 +

0∫
−∞

(
∞∫
−r
fε (ε) dε

)
fr (r) dr

pc∫
0

(
∞∫
−r
fε (ε) dε

)
fr (r) dr

 = pc

(
1 +

OS

AD

)
(10)

where OS denotes the amount of infra-marginal forest credited, or spurious offsets. Moving from

a subsidy to a voluntary program reduces OS but also lowers AD. For most realistic distributions

(described in Section 2.2) the reduction in OS is larger than the reduction in AD, so AC would

fall. We use the fraction of offsets that are spurious (FOS = OS
OS+AD ) as a measure of the offset

quality.

This section has highlighted that adverse selection causes a trade-off between efficiency and

average cost for offset buyers. Section 3 presents numerical simulations that indicate that adverse

selection can have a dramatic negative impact on the performance of voluntary offset programs.

We also show that increasing the baseline scale from the individual plot’s forest to, say, a whole

country’s forested land reduces this trade-off significantly.

2.2 The impact of the observation error distribution on performance measures

The trade-off between efficiency and average cost depends on the distribution of observation errors.

In this section, we analyze the impact of the observation error variance on our three performance

measures: economic efficiency, average cost (AC) and offset quality (FOS). Appendix A discusses

the impact of the marginal costs of avoiding deforestation on these criteria.

Equation (7) shows that any change in fε(ε) that increases the probability mass in the range

[−∞,−ri], where 0 ≤ ri ≤ pc, increases the efficiency loss from adverse selection (assuming pc = δ)

and decreases avoided deforestation (AD). A mean preserving spread such that F ′ε(x) ≥ Fε(x)

17In a cap-and-trade system, infra-marginal transfers would be analogous to spurious or non-additional offsets.
18From (2) and (9), it follows trivially that TT (baseline) < TT (subsidy). However, TT (baseline) is unsigned rel-

ative to TT (full information), because IT (baseline) > IT (full information) = 0, but MT (baseline) < MT (full
information). Generally, TT (baseline) > TT (full information). However, if, for example, fr(r) has no density
below 0, TT (baseline) < TT (full information).
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∀x < 0 is sufficient. If the distribution of errors is normal, an increase in variance will generate

such a mean preserving spread.

Under the same assumptions and for fε(ε) symmetric around 0, AC will increase.19 More

landowners with ri < 0 will now get assigned B̂Li = 0 and receive the payment pc, but they do not

provide additional deforestation and funders pay more for less benefit.

Numerical illustration

To provide more intuition for the results, we now assume a parametric form for the distribution

of net agricultural returns fr(r) on forested land and the baseline observation error fε(ε). In the

remainder of this paper, we will focus mostly on return distributions fr(r) for which (1) Fr(0) > 0.5

and (2) that are downward sloping at 0. The first assumption reflects the reality in key countries

that most forested land is not at risk of deforestation, at least in the short term. Landowners have

previously chosen not to clear the remaining forest so only land on which relative returns have

recently risen will be at risk of clearing. The second assumption implies that there is a higher

probability mass for returns just below zero than for returns just above zero, which intensifies the

trade-off between efficiency and infra-marginal transfers. These assumptions are only meant to

guide intuition but are not necessary for our main results to hold, and we will show robustness to

a range of distributional assumptions in Appendix B (normal, exponential and uniform fr(r)).

With no shocks, all land with positive returns would already have been cleared without any

policy while no land with negative returns would have been cleared. Hence, there will be positive

probability mass below zero and no mass above zero and the assumptions trivially hold. Additional

deforestation occurs because the returns distribution shifts over time. If this shift has both a

common (e.g., local technology and infrastructure changes) and an idiosyncratic (e.g., a random

plot-specific return shock) element, we would still expect the assumptions to hold.20

We consider fr(r) ∼ N(−1, 1), fε(ε) ∼ N(0, σ2
ε) and pc = δ = 0.5 as our central case. Figure

2 plots the various performance criteria as a function of the standard deviation of the observation

error σε: the efficiency loss from adverse selection (7) relative to potential efficiency (1), AC and

FOS.

Naturally, the efficiency loss is 0 if the observation error standard deviation σε = 0. The

efficiency loss is increasing in σε. As σε grows large the assignment of baselines becomes random.

Participation, efficiency and avoided deforestation all fall toward 50% of their maxima (at σε = 0).

Figure 1 shows that efficiency losses only result from landowners with 0 ≤ ri ≤ δ. These will make

19OS, defined in (10), will increase because OS(f ′ε) =
0∫
−∞

(
∞∫
−r

f ′ε (ε) dε

)
fr (r) dr =

0∫
−∞

(1− F ′ε(−r)) fr (r) dr =

(by symmetry of fε)
0∫
−∞

F ′ε(r)fr (r) dr ≥ (by the mean preserving spread)
0∫
−∞

Fε(r)fr (r) dr = OS(fε). Since AD

decreases and OS increases, AC increases.
20The common shock will generate a probability mass of forested land above zero return up to the size of the shock.

The idiosyncratic shock will move some land to higher returns (and some to lower), leading to a lower probability mass
in the upper tail of the returns distribution. Positive shocks, such as discovery of oil under remote non-productive
land, encourage deforestation; negative shocks, such as the creation of a national park, discourage forest clearing.
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Figure 2
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Figure 2: Efficiency loss, AC and FOS as a function of observation error standard deviation σε
(pc = δ = 0.5).

the inefficient decision to deforest if and only if they get assigned B̂Li = 1, which happens with

probability approaching 0.5 as σε increases. Figure 1 also shows that spurious offsets are given out

only to those with ri < 0. As σε increases, the fraction of offsets that are spurious rises rapidly.

Combined, the fall in AD and rise in FOS have dramatic implications for AC: AC quickly rises

from the efficient value of 0.5 (the environmental externality δ), as FOS becomes large.

This section has shown that a mean preserving spread that widens the tails of the observation

error distribution unambiguously has negative effects on all three performance measures. Any

improvement in our ability to observe returns, or equivalently predict deforestation, would reduce

the trade-off between efficiency and transfers.

3 The Impact of Policy Choices

Governments have several policy options at their disposal to design a voluntary avoided deforesta-

tion program. We analyze three policy options: increasing the baseline scale, offset price discounting

and changing the generosity of the assigned forest baseline.
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3.1 Policy 1: increasing the baseline scale

So far, we have considered a small scale policy in which landowners get assigned plot-specific

baselines and can opt in separately with each individual plot. While many real-world forest carbon

programs are indeed small scale (though not literally at the single plot level), other proposals feature

baselines for large areas (e.g., a region or a country - if the funder is international). The Costa

Rican payments for ecosystems services program is an example of a relatively small scale system

where individual landowners choose whether to opt in. Brazil’s Amazon Fund, to which Norway has

agreed to contribute up to US$1 billion, sets up a large scale system. A baseline is assigned based

on a 10-year average deforestation rate for the entire Amazon, and donor payments are based on the

difference between the previous year’s deforestation and the baseline.21 Empirical evidence suggests

that before 2000 the Costa Rican landowner-scale program was ineffective (Sanchez-Azofeifa et al.,

2007): it was costly but had no significant impact on deforestation. In contrast, efforts associated

with the Amazon Fund have appeared to be effective at reducing deforestation so far (Nepstad et

al., 2009 and Soares-Filho et al., 2010).

Larger programs devolve responsibility to large local entities for passing on incentives to in-

dividual landowners. Such entities may have more authority and better information to influence

local deforestation than an international regulator. We now show that setting baselines for larger

areas (consisting of many plots) instead of baselines at the level of an individual landowner’s forest

(consisting of just a few plots) also mitigates the severity of the trade-off between efficiency, average

cost and offset quality.

3.1.1 A multiple plot model

We now consider a single entity (a regional or national jurisdiction or a large indigenous entity)

which controls N 1-hectare plots. Each plot j has a return from deforestation rj . We initially

assume that these returns are distributed i.i.d. over plots with density fr. Without the program,

the entity will clear all plots for which the return rj exceeds zero. Hence, the true baseline is:

BLN =
N∑
j=1

BLj where BLj =

{
1 if rj ≤ 0

0 if rj > 0

}
(11)

The government observes each rj with error εj : r̂j = rj + εj . Assume that εj is i.i.d. across j.

This means that r̂j has a distribution with mean µr and variance σ2
r +σ2

ε . The distribution of r̂j is

more dispersed than fr(r). The government could compute an unbiased prediction of the baseline

B̂LN,unbiased as the sum of the expectations of the random variables for the plot-specific baselines.

From its point of view, the true baseline for a specific plot BLj is a Bernoulli random variable

with mean pj and variance pj(1− pj), where pj = Pr(rj < 0|r̂j) = Pr(BLj = 1|r̂j).22 Since these

21http://www.regjeringen.no/en/dep/md/Selected-topics/climate/the-government-of-norways-international-
/norway-amazon-fund.html

22Note that pj 6= Pr(r̂j < 0), except if fr(r) is symmetric around zero. If the government naively assumed that r
and r̂ have the same distribution, it would calculate pj = Fε(−r̂j) = (if fε is symmetric) 1−Fε(r̂j). This would lead
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are non-identically but independently distributed across j, the central limit theorem yields that for

N →∞:

BLN =
N∑
j=1

BLj
d→ N

 N∑
j=1

pj ,
N∑
j=1

pj (1− pj)

 (12)

The unbiased assigned baseline B̂LN,unbiased =
N∑
j=1

pj , is a single, cumulative baseline for all N

plots (as opposed to N plot-specific baselines with N separate opt-in decisions).

3.1.2 The effect of increased baseline scale on efficiency

With the N -plot aggregate baseline, the entity that controls the area (which could be a local or

national government) must decide whether or not to opt in with his entire forest area, or not

participate at all. This does not mean that the entity must protect the entire forest area to get

any rewards, but rather that they accept a baseline (and agree to being monitored) for the entire

area and are rewarded based on the difference between baseline and monitored forest levels. The

difference with the single plot model is illustrated by Figure 3.

Figure 5
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Figure 3: Single versus multiple plot policy.

Figure 3 contrasts the single plot with the multiple plot case. In the single plot case, an

inefficiency occurs when the true baseline is clearing the forest (0), but the government assigns a

no-deforestation baseline (1). In the multiple plot case, assigning a more favorable baseline (B̂LN <

to a biased estimate of the baseline. Consider fr(r) ∼ N(−1, 1) and fε(ε) ∼ N(0, 1). In that case, fr̂(r̂) ∼ N(−1, 2).
The probability that r̂ > 0 exceeds the probability that the true return r > 0. Therefore, if the government used a
bottom-up plot-level approach to estimate r̂ and assigned a zero baseline for all plots with positive r̂, the baseline
would be biased downwards.
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BLN ) will lead to guaranteed opt-in and infra-marginal payments. However, if B̂LN > BLN , the

entity has two options. If it opts in, it will clear all plots with returns exceeding pc = δ, but forego

clearing plots with returns between 0 and pc. Let Npc be the number of plots with r < pc. Hence,

opting in is favorable if and only if:

pc

(
Npc − B̂LN

)
>

∑
j|rj∈[0,pc]

rj (13)

Hence, for some assigned baselines B̂LN , the entity will still opt in, but for assigned baselines

exceeding a threshold value, the entity will opt out with all of its N plots. There are cases in

which scale increases efficiency: even if the baseline is too stringent, the entity will still opt in with

all N plots. Hence, all plots with returns between 0 and pc will remain forested. This leads to a

higher efficiency gain than plot-specific baselines, in which some plots with returns between 0 and

pc will get assigned a no-deforestation baseline, and opt out. However, in some cases the efficiency

of the new system will be lower than with plot-specific baselines. This happens when the baseline

is so unfavorable that the entity opts out with all N plots. In contrast, in the single plot program,

some critical plots with returns between 0 and pc will get assigned a correct baseline and some

deforestation will be efficiently avoided.

By the law of large numbers, as N →∞, BLN
N → B̂LN,unbiased

N : the standard error of the average

baseline per plot goes to zero. However, the standard error of BLN does not converge to zero.

Therefore, it is possible that the entity gets assigned a baseline that it so unfavorable that it

decides to opt out with all N plots. Since this standard error only grows at rate
√
N while the

expected benefit from program participation grows at rate N , the probability of opt-in approaches

1 as N →∞ and the efficient solution will be obtained.

In the limit, a larger baseline scale will lead to the same efficient outcome as under the full

information voluntary program.23 However, real-world programs can only be scaled up to a finite

number of plots.24 We therefore turn to numerically exploring the effects of moderate increases in

baseline scale.

3.1.3 Numerical simulations of increased baseline scale

We numerically simulate the differences between single plot versus multiple plot baselines for a

“country” with a total forest area of Ntotal plots. We compare offset programs that assign Ntotal/N

separate baselines covering N plots each for different values of N ∈ {1, 2, . . .}. We show results for

certain example error and returns distributions, but the results hold quite generally for many dis-

tribution (we discuss an exception below). Throughout this section, we assume fε(ε) ∼ N(0, 0.52),

unbiased assigned baselines B̂LN,unbiased, and pc = δ = 0.5. The central case returns distribution

23Another benefit of scaling up is that it reduces leakage: reduced deforestation within the project increases
pressure to clear in neighboring regions and gains are offset by losses elsewhere. As project scale rises, these leakage
effects diminish.

24The next section illustrates that, for finite N and certain unusual land return distributions, it is possible that
efficiency initially decreases with N .
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is fr(r) ∼ N(−1, 1), but we also consider alternative distributions below and, in more detail, in

Appendix B. Table 1 demonstrates what happens to the performance criteria as N increases.

Table 1: The impact of increasing the baseline scale: fr(r) ∼ N(−1, 1).

1-plot 2-plot 10-plot 100-plot Maximum efficiency:
σε = 0

(1) (2) (3) (4) (5)

Efficiency gain 1.33 1.42 1.82 2.47 2.53
AC 0.91 0.87 0.68 0.51 0.50
FOS 45.29% 42.53% 26.83% 1.86% 0%
AD 5.34 5.54 6.60 8.95 9.18
TT 4.88 4.82 4.51 4.56 4.59
Opt-in 9.76% 18.30% 58.42% 97.47% 100%

Notes: Each simulation contains Ntotal = 10, 000 plots, with baselines assigned for sets of N ∈
{1, 2, 10, 100} plots. Simulations are repeated 100 times. δ = pc = 0.5. fε(ε) ∼ N(0, 0.52). Efficiency

gains, AD and TT are all normalized per 100 plots. Assigned baselines are unbiased.
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Figure 4: A graphical representation of the impact of baseline scale on the performance criteria.

Table 1 shows that increasing the baseline scale has dramatic consequences for its performance.

For the central case, N -plot aggregate baselines increase efficiency and AD and reduce AC as

N increases. In this example, N = 100 is enough to approach the efficient solution. Hence, scale

mitigates adverse selection. As explained above, the observation error normalized per plot decreases

as N grows, and the probability of opt-in becomes very high (97.47%), although the program will

only induce a change in deforestation decisions for a limited number of the N plots (those for which

0 ≤ r ≤ pc). Figure 4 represents the same results graphically. The interval between the error bars

contains 95% of all realized values.

The central case returns distribution reflects that in most developing countries, the majority of

the forested land is not at threat of deforestation, at least in the short to medium run. Still, we

test the robustness of the results by analyzing the effects of baseline scale increases for two other
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return distributions: a N(0, 1) distribution (which implies that 50% of the forest will be cleared

absent any policy) and a more exotic distribution: a symmetric bimodal normal BMN(0.5, 0.12)

distribution with modes at -0.5 and 0.5 and standard deviation σr = 0.1 around each mode. The

latter distribution is unlikely to represent reality, but illustrates that – for finite N – efficiency does

not necessarily monotonically increase in N .

Figure 5 summarizes the effects on efficiency and FOS of increasing baseline scale and compares

it to the efficient solution. For the N(0, 1) distribution, the effects are similar to the central

case distribution. Both efficiency and FOS improve with scale. The BMN(0.5, 0.12) distribution

demonstrates that increasing scale does not monotonically increase efficiency for all distributions.

The intuition is that there are many plots with returns around pc = δ (as well as returns close to

−δ). Therefore, the BMN(0, 5, 0.12) distribution has many realizations for which (13) holds only

if the baseline is correct or more favorable. A slight baseline error will cause the entity to opt out

with all N plots. This effect dominates for small N : AD and efficiency decrease in N between N

= 1 and 10. However, such distributions are highly stylized and unlikely to represent true returns

distributions.25 AC and FOS decrease with scale for the three example distributions, although the

effect is also theoretically ambiguous for finite N .26 The simulation results are consistent with the

empirical evidence discussed above: the small-scale baselines in Costa Rica have performed poorly

(Sanchez-Azofeifa et al., 2007) relative to nationwide baselines for Brazil (Nepstad et al., 2009 and

Soares-Filho et al., 2010). Figure 6
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Figure 5: The impact on efficiency (left panel) and FOS (right panel) of increasing the baseline
scale for alternative return distributions, for N = 1, 2, 10 and 100.

We now test the robustness of our conclusions in another way. An important assumption has

25We generated results with many alternative probability distributions. The only counterexamples we found for
the “scale improves efficiency” result are distributions with a probability mass that is heavily concentrated around δ.

26Consider the following example with three plots. For plot 1: BL = 1, B̂L = 0 (spurious offset). For plot 2:

BL = 0, B̂L = 1 and r < pc = δ. For plot 3: BL = 0 and B̂L = 0 and r < pc = δ. Under a single plot policy, 1
and 3 opt in, leading to 1 spurious credit and 1 real offset. Now consider a policy in which the participation decision
needs to be made for plots 2 and 3 together; plot 1 remains standalone. Under this larger-scale policy, plots 2 and 3
get an assigned baseline B̂L2 = 1. If r2 + r3 > pc, the entity will opt out with both plots. Plot 1 still opts in. This
means there are only spurious offsets now: baseline scale adversely impacts both FOS and AC.
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been that fr(r) and fε(ε) are i.i.d: both returns and observation errors are independent across

plots. In reality, there may be a high degree of spatial correlation in both returns and errors. We

introduce spatial correlation across plots in the following stylized way:

rj = ρrrj−1 + ur

εj = ρεεj−1 + uε
(14)

where ur and uε are i.i.d. with variances σ2
ur and σ2

uε, such that σ2
r = σ2

ur/(1 − ρ2
r) and σ2

ε =

σ2
uε/(1− ρ2

ε). Table 2 summarizes the main findings for the central case.27

Table 2: The impact of spatially correlated returns and observation errors: N = 1 and N = 100.
fr(r) ∼ N(−1, 1).

1-plot 100-plot 100-plot 100-plot 100-plot Maximum
efficiency:

ρr = ρε = 0 ρr = ρε = 0.5 ρr = ρε = 0.9 ρr = ρε = 0.99 σε = 0

(1) (2) (3) (4) (5) (6)

Efficiency gain 1.33 2.47 2.41 2.02 1.59 2.53
AC 0.91 0.51 0.52 0.61 0.80 0.50
FOS 45.29% 1.86% 3.54% 17.76% 37.69% 0%
AD 5.34 8.95 8.72 7.27 5.72 9.18
TT 4.88 4.56 4.52 4.42 4.59 4.59
Opt-in 9.76% 97.47% 94.96% 78.40% 37.28% 100%

Notes: Each simulation contains Ntotal = 10, 000 plots, with baselines assigned for sets of N = 1 or N = 100 plots

and various degrees of spatial correlation. Simulations are repeated 100 times. δ = pc = 0.5. fε(ε) ∼ N(0, 0.52).

Efficiency gains, AD and TT are all normalized per 100 plots. Assigned baselines are unbiased.

Table 2 shows that as the correlation across plots and errors increases, efficiency and AD

decrease, and AC and FOS increase. The intuition is that observation errors do not quickly cancel

out across plots, but are persistent. High spatial correlation reduces the probability of participation

for a given N and therefore adversely impacts the performance criteria. A larger baseline scale will

counteract the effects of spatial correlation: setting baselines at the landowner level (one or several

plots) will be much less efficient than setting baselines for large regions (N >> 100).28

3.2 Policy 2: discounting the payment per hectare

In the analysis above, the payment per hectare pc equals the marginal externality from deforesta-

tion δ. A second potential policy is to vary pc. This section analyzes what happens to the three

performance measures. Reducing pc is equivalent to the practice of “offset discounting” sometimes

observed in real-world offset programs (Kollmuss and Lazarus, 2011). Under a system of discount-

ing, fewer offsets are awarded than the environmental gains represented by the difference between

the baseline and the actual forest level, or a trading ratio is applied between offsets and allowances

27Results for the N(0, 1) distribution, and the various other distributions that we simulated, are qualitatively
similar, but the relative efficiency loss from high spatial correlation varies across distributions.

28If uε is i.i.d., a large enough N will eliminate the effect of spatial correlation. However, if there are unobservable
factors that affect large numbers of plots similarly, adverse selection can remain even for large-scale baselines.
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in a cap-and-trade system. As discussed in Section 1, this is often promoted as a way to correct

for spurious offsets. First, we discuss the impact of changing pc in a single plot model. Then, we

analyze how these results change in a multiple plot model using numerical simulations.

It is straightforward that, independent of scale, any pc 6= δ is less efficient if σε = 0. All

entities get assigned the true baseline, and paying less than δ reduces efficiency, because entities

with average returns ((r|0 ≤ r ≤ δ) > pc) would opt out. Paying more than δ (a “premium” rather

than a “discount”) reduces efficiency because some entities will opt in even though their private

gains from deforestation exceed the environmental value of the forest. In the single plot model with

symmetric information, the change in efficiency relative to a no policy case was given by (1). A

simple application of Leibniz’ Rule yields that efficiency is maximized when pc = δ. We will now

investigate if this result changes with asymmetric information – i.e. when σε > 0.

3.2.1 Discounting in the single plot model

In the single plot model, the introduction of observation error does not change the conclusion that

the most efficient payment is pc = δ. The efficiency change relative to no policy equals:

∆S (pc) =

pc∫
0

(δ − r)

 ∞∫
−r

fε (ε) dε

 fr (r) dr (15)

Proposition 1. In the single plot model, efficiency is maximized for pc = δ, regardless of fε(ε).

Proof. The first order condition is given by d(∆S(pc))
dpc

= (δ − pc)

(
∞∫
−pc

fε (ε) dε

)
fr (pc), using

Leibniz’ Rule. Since
∞∫
−pc

fε (ε) dε > 0 for any fε(ε) and fr(pc) ≥ 0, efficiency is maximized when

pc = δ.

We now investigate what happens to the other performance criteria as the payment pc varies.

Proposition 2. AD, MT , IT , and TT are globally (weakly) increasing in pc; FOS is globally

(weakly) decreasing in pc.

Proof. AD =
pc∫
0

(
∞∫
−r
fε (ε) dε

)
fr (r) dr. The derivative of AD w.r.t. pc is

(
∞∫
−pc

fε (ε) dε

)
fr (pc)

≥ 0 ∀pc, proving the first statement. The derivative of MT (first term in (9)) w.r.t. pc is
pc∫
0

(
∞∫
−r
fε (ε) dε

)
fr (r) dr + pc

(
∞∫
−pc

fε (ε) dε

)
fr (pc) ≥ 0 ∀pc. The derivative of IT (second term

in (9)) w.r.t. pc is
0∫
−∞

(
∞∫
−r
fε (ε) dε

)
fr (r) dr ≥ 0 ∀pc. Hence, the derivative of TT w.r.t. pc

is weakly greater than zero ∀pc. Finally, using (9), FOS = IT/TT =
0∫
−∞

(
∞∫
−r
fε (ε) dε

)
fr (r) dr/
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pc∫
−∞

(
∞∫
−r
fε (ε) dε

)
fr (r) dr. Since the denominator is monotonically (weakly) increasing in pc, FOS

is monotonically (weakly) decreasing in pc.

Proposition 2 demonstrates that, contrary to the intended effect, the fraction of offsets that is

spurious, FOS, increases when the offset price is discounted: as pc falls the share of offsets that is

spurious rises toward 1. The intuition is that discounting never changes the decision for spurious

sellers, but sellers of “real” offsets will opt out if their return is between pc and δ. Discounting does

reduce transfers, which can make the offset program more attractive to industrialized countries.

The effect on AC is theoretically ambiguous for low values of pc, but eventually AC must increase.29

We conclude that, in the single plot model, efficiency is maximized by paying pc = δ. Discount-

ing increases FOS, leads to less AD, but requires fewer transfers.

3.2.2 Discounting in the multiple plot model

In the multiple plot model, pc = δ no longer unambiguously maximizes efficiency. The intuition

is as follows. Raising pc above δ has two countervailing effects on efficiency. First, it will increase

the opt-in probability. This increases efficiency because it helps prevent deforestation of plots

with positive returns below δ. Second, it causes certain forest to be inefficiently prevented from

deforestation. The relative strength of these channels determines whether a higher pc is more

efficient than pc = δ. A lower pc will never increase efficiency, since it will both reduce opt-in

and cause inefficient deforestation. The effects go in the same direction. Hence, pc ≥ δ maximizes

efficiency in the multiple plot model.

Figure 6 illustrates that raising pc above δ can increase efficiency (δ = 0.5 and N = 10 or 100),

and also shows the impact of discounting on other criteria. For N = 10, raising pc above δ (to pc

= 0.6) slightly increases efficiency. This increased efficiency coincides with higher AC, however.

When N = 100, the opt-in probability at pc = δ is already almost efficient at 97.47%. Raising pc

to 0.6 increases opt-in only slightly to 98.93%. The efficient pc is close to 0.5.

In summary, we find that efficiency considerations never justify discounting the payment pc

below the environmental damage δ. Setting pc > δ can be justified if opt-in at pc = δ is below

100%, but this efficiency increase comes at the expense of higher average cost. Since increasing

scale leads to full opt-in in the limit, pc = δ always becomes the most efficient payment as N

approaches infinity. There always exists a p′ (p′ > δ) such that efficiency falls and transfers rise for

any p > p′. In that price region, efficiency decreases while transfers increase. For δ < pc < p′, the

trade-off between efficiency and average cost remains.

Analogous to Proposition 2 for the single plot model, FOS (and opt-in) unambiguously become

more favorable as pc increases. If an entity had a favorable baseline at pc, it would have chosen to

29Since AD is bounded, very high values of pc will lead to increasing AC. For intermediate values of pc, a small
increase in pc can either lead to almost no additional deforestation, or a large increase in avoided deforestation,
depending on the specification of the return distribution fr(r). For instance, if fr(r) = 0 for r ∈ [0, p], then AC
will be infinite for pc ≤ p and achieve a global minimum for some pc > p. Hence, AC can either be increasing or
decreasing in pc.
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Figure 6: The impact of changing pc and baseline scale on efficiency and opt-in (left panel) and
on AC and FOS (right panel), for fr(r) ∼ N(−1, 1), δ = 0.5, N = 10 and 100.

opt in. At a higher price pc + ε, the entity will still opt in but no additional spurious offsets will be

generated. Hence, raising the price does not increase the number of spurious offsets while it does

increase AD, leading to a reduced FOS.

Hence, we conclude that improving the quality of offsets is not a valid reason to advocate

discounting: offset quality always falls if pc decreases. If the discounted price is achieved by limiting

demand (e.g., limiting the number of offsets that can enter the market), so that buyers pay less

than the market price for a unit that is then fully fungible with other units (i.e., a 1:1 trading ratio

without downward adjustment of the cap, as is the case in the Clean Development Mechanism),

buyers will reap gains and global mitigation will fall. If, however, discounting is achieved by trading

ratios (offsets and allowances trade in (t : 1, t > 1) ratios) this could increase global mitigation for

high enough t, even if the cap is not adjusted.30 Discounting also, almost always, reduces the

average cost to industrialized countries of real mitigation through offsets. Thus discounting, while

inefficient, makes industrialized countries more willing to fund mitigation in developing countries.

Section 4 explains why discounting may be necessary for a self-interested, rational international

buyer to participate in an offset program.

3.3 Policy 3: changing the generosity of the assigned baseline

A third policy choice for the regulator is to set a baseline that is, in expectation, too high or too

low. In other words, the government assigns the following baseline for plot i:

B̂Li =

{
1 if r̂i ≤ r∗

0 if r̂i > r∗

}
(16)

where r∗ is a specified return set by the government. The government, aware of adverse selection,

30Note that, if trading ratios are used without adjusting the cap, the environmental effect could be negative even
for large t. A straightforward example is a returns distribution with positive probability mass below zero, but no
probability mass between 0 and pc.
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may try to pay only landowners who are most likely to deforest in the baseline, for instance by

choosing pc > r∗ > 0. Assuming pc = δ, we analyze the impact of this policy change on the

performance criteria: efficiency, AD, AC and FOS. To provide intuition, we first discuss the

impact in the context of the single plot model. Then, we present numerical simulations of the

multiple plot model.

3.3.1 Changing baselines in the single plot model

Proposition 3. More generous baselines (weakly) increase efficiency and AD, but require a (weakly)

higher TT .

Proof. The efficiency change relative to no policy equals ∆S (r∗) =
pc∫
0

(pc − r)

(
∞∫

r∗−r
fε (ε) dε

)
fr (r) dr. By Leibniz’ Rule, this expression is globally weakly decreasing in r∗. Hence, effi-

ciency is maximized if r∗ → −∞. AD is given by AD(r∗) = Pr(0 ≤ r ≤ pc, r̂ > r∗) =
pc∫
0

(
∞∫

r∗−r
fε (ε) dε

)
fr (r) dr, which is globally weakly decreasing in r∗. TT is given by TT (r∗) =

pc
pc∫
−∞

(
∞∫

r∗−r
fε (ε) dε

)
fr (r) dr, which is also globally weakly decreasing in r∗.

The fact that efficiency increases as the baseline becomes more generous is not surprising, since

in the limit this is equivalent to assigning a no-forest baseline or an unconditional subsidy of pc per

hectare of forest standing. As discussed in Section 2, such a subsidy is indeed efficient but requires

a large infra-marginal transfer. The shape of AC and FOS is dependent on the return distribution

fr(r), but for reasonable returns distributions like our central case, AC and FOS are decreasing

in r∗ (as baselines become more stringent).

The ambiguity of the effect on FOS can be demonstrated as follows. Using (9) and (10),

OS/AD = IT/TT is decreasing in r∗ if and only if MT/IT is increasing in r∗. We can write

MT/IT =
pc∫
0

(
∞∫

r∗−r
fε (ε) dε

)
fr (r) dr/

0∫
−∞

(
∞∫

r∗−r
fε (ε) dε

)
fr (r) dr =

pc∫
0

(1− Fε(r
∗ − r)) fr (r) dr/

0∫
−∞

(1− Fε(r
∗ − r)) fr (r) dr. If this expression is increasing in r∗, OS/AD and hence FOS is

decreasing in baseline stringency. This condition will certainly hold if the baseline error is bounded

from above. Using (10) and making OS and AD functions of r∗ we can see that the effect of r∗ on

AC is also ambiguous. OS, the amount of spurious offsets, is decreasing in r∗, but so is AD.

3.3.2 Changing baselines in the multiple plot model

The conclusions from the single plot model also hold in the multiple plot model. Figure 7 illustrates

the effect of assigning baselines that are too (un)favorable in expectation for the central case returns

distribution. The true baseline equals 84 (84 out of 100 plots will remain forested in absence of

a policy). The figure shows that increasing the baseline (i.e., making it less favorable) reduces
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efficiency and AD, but also reduces AC and FOS. For very stringent baselines FOS becomes

negative: the environmental gains are greater than the number of traded offsets. Again, efficiency,

average cost and offset quality are conflicting policy aims: efficiency requires setting generous

baselines, while minimizing average cost and maximizing offset quality requires setting stringent

baselines.
Figure 9
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Figure 7: The impact of changing baseline generosity on the performance criteria, for fr(r) ∼
N(−1, 1) and N = 100. 84 is an unbiased baseline.

Section 3 has shown that only increasing baseline scale improves all performance measures simul-

taneously (for “typical” returns distributions). Offset discounting and changing baseline generosity

lead to a trade off between performance criteria. Discounting reduces efficiency, AD and offset

quality, but reduces the average cost for funders. Making assigned baselines more stringent reduces

efficiency and AD, but improves offset quality and reduces average cost. This also illustrates that

tightening the baseline should be favored over offset discounting if environmental integrity of offsets

is a key policy concern and not enough of the gains to industrialized countries from discounting are

spent on additional mitigation (e.g. through trading ratios and/or reducing the cap) to counteract

the fall in offset quality.

Table 3 provides a summary of the impact of the various policy options on the performance

criteria discussed in this paper.

21



Table 3: The effects of the various policy options on the performance criteria.

Policy option Performance criteria
Required Maximize Maximize offset Maximize value Maximize

scale efficiency quality for money avoided
of baseline (minimize FOS) (minimize AC) deforestation

(1) (2) (3) (4) (5)

Increase Finite N (+) (+) (+) (+)
scale N →∞ + + + +

Raise price N = 1 − + (−) +
above δ N > 1 First +, then − + (−) +

Lower price Any − − (+) −
below δ
(“discount”)

Generous Any + (−) (−) +
baseline

Stringent Any − (+) (+) −
baseline

Notes: + indicates a favorable effect; - indicates an unfavorable effect; round brackets indicate that the effect holds

for “reasonable” distributions but is theoretically ambiguous.

4 Constrained Pareto Efficient Policies

The previous sections have illustrated that avoided deforestation policies involve trade-offs between

environmental outcomes, financial transfers and efficiency. This section shows how the efficient

policy differs from the Pareto set of individually rational policies.

4.1 Globally efficient vs. constrained Pareto efficient policies

A global social planner, who can force participation and faces no costs of transfers, could maximize

efficiency and then redistribute the surplus to meet distributional (and political) objectives. This

is a useful benchmark, which we refer to as the “globally efficient policy”. A subsidy per hectare

with ex-post international redistribution of funds would achieve the efficient allocation.31 At the

national level, it is reasonable to assume that the government can transfer funds across industries,

potentially to compensate losers and/or to make all parties better off (Bovenberg et al., 2008).

However, in an international context, unconstrained money transfers across international borders

are not realistic. Instead, buyers (industrialized countries, or ICs) and sellers (developing countries,

or DCs) can only bargain over prices and baselines, but not commit to ex-post financial transfers.

31Various global climate change models (e.g., DICE/RICE) calculate “cooperative efficiency gains” in this way
or assume that countries set binding national targets while ignoring beneficial international environmental spillovers
(Nordhaus, 1996).
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We therefore focus on policies in which both parties will participate voluntarily ex-ante. Our basic

policy design ensures that the DC participation constraint is always met, since they can opt out.

We now define the extremes of the Pareto set of policies that make both parties at least as well off

compared to a no policy case:

max
B̂L,pc

SIC s.t. ∆SDC ≥ 0 & max
B̂L,pc

SDC s.t. ∆SIC ≥ 0 (17)

where S denotes surplus and ∆S surplus change. Stakeholders should in theory be able to negotiate

a policy in the Pareto set. However, we will show below that a globally efficient policy can no longer

be negotiated.

To define surplus, consider a fund that ICs use to pay DC governments that opt in to the

program.32 DC forest owners receive pc per hectare, which leads to AD hectares of avoided de-

forestation and OS units of infra-marginal forest receiving payments (offsets that are spurious).

They value each dollar received at face value. DCs forego returns rj on each of the AD hectares of

avoided deforestation. In this simple framework, we make the strong assumption that the global

environmental gain δ is fully valued by ICs, and is not valued at all by DCs.33 ICs transfer resources

to the fund at face value plus an additional cost or benefit γ per dollar. If γ = 0, a $1 dollar transfer

costs the ICs exactly $1. Alternatively, γ > 0 if distortionary taxes need to raise money for the

fund. γ < 0 if rich ICs derive satisfaction from donating funds to poor DCs.

Under these assumptions, the costs and benefits to the different countries are:

∆SDC = AD

(∫ pc
0 (pc − r) fr (r) dr∫ pc

0 fr (r) dr

)
+OSpc = AD (pc − E[r|0 ≤ r ≤ pc]) +OSpc (18)

∆SIC = δAD − pc(AD +OS)(1 + γ) (19)

∆Sglobal = AD (δ − E[r|0 ≤ r ≤ pc])− γpc(AD +OS) (20)

where ∆Sglobal assumes equal marginal utility of money for ICs and DCs. This specification of

surplus combines the performance criteria discussed in previous sections: efficiency (captured by

the first term of (20)), avoided deforestation, total transfers (included in the second term in (19)),

and average cost (defined by pc, AD and OS). Hence, this represents a framework to trade off

these performance criteria subject to participation constraints.

We can now compute the Pareto set with boundaries defined by (17) above. Our model does not

predict which point in the Pareto set will be chosen, but rules out feasible but Pareto-dominated

32As discussed in Section 1, under assumptions we maintain in this paper, including avoided deforestation in a
cap-and-trade system and rewarding it through an international fund are equivalent.

33In reality, some of the environmental benefits accrue to DCs. If DC governments value them, they should inter-
vene even without an IC-induced policy. This shifts the baseline upwards, but would not affect our qualitative results.
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policies. The set of feasible policies neither contains the globally efficient policy nor any policy in

which pc = δ if there is remaining adverse selection and γ ≥ 0: (19) shows that if OS > 0, γ ≥ 0

and pc = δ, ICs will not participate.

As suggested in Section 3, two options could induce IC participation. First, offsets could be

discounted (pc < δ). Second, the baseline could be set stringent enough to achieve OS < 0. Both

will reduce efficiency.

4.2 Numerical simulations of optimal policy choices

We now illustrate the Pareto set with numerical simulations. Initially we assume γ = 0. The IC

participation constraint becomes δAD−TT ≥ 0. We simulate a multiple plot program (N = 100),

which mitigates but does not eliminate adverse selection. Using the same parameters as in Section

3, the true baseline is 84 (out of 100 hectares) and the environmental gain is δ = 0.5.

Figure 8 shows contour plots of the IC, DC and global surplus for policies that involve a

combination of discounting (pc varies between 0 and 0.65) and changing the generosity of the

assigned baseline (B̂L varies between 82 and 92).

Figure 8 indicates that DC surplus is decreasing in B̂L and increasing in pc (upper right panel):

more generous policies are preferred. However, the surplus maximizing choice for ICs is an interior

solution: (pc, B̂L) = (0.35, 86) (upper left panel). This involves a combination of discounting and

a more stringent than unbiased baseline. The intuition is that a small change from pc = δ to

pc = δ − ε increases IC surplus by ADε, while AD decreases only slightly as landowners with

returns between pc and δ opt out. Similarly, the gains from reduced transfers from a slight increase

in the stringency of the assigned baseline exceed the efficiency losses. Global surplus is decreasing

in B̂L and increasing as pc → δ (lower left panel).

The bottom right panel shows the Pareto set. The gray dotted lines indicate the environmental

externality (δ = 0.5) and the unbiased baseline (BL = 84). Point A maximizes the surplus that

ICs can derive from an offset program; point B makes ICs indifferent about participating in the

policy. Because of adverse selection, the Pareto set does (just) not include the unbiased baseline

and efficient price policy (pc,eff , B̂Lunbiased) = (0.50, 84), illustrating an economic rationale for

the simultaneous use of discounting and stringent baselines. Which policy in the Pareto set gets

implemented ultimately depends on the relative bargaining positions of ICs and DCs. The global

social planner’s constrained optimal choice in the Pareto set would be point B, which assigns as

much surplus as possible to DCs.

These results assume that γ = 0: the net effect of deadweight losses from raising revenues

cancels out against any utility that ICs may receive from transferring funds to poor countries.

Changing γ will affect the location of Pareto set. If γ > 0, transfers are more costly for ICs and

the Pareto set moves further away from the globally efficient solution.34 For large values of γ, the

34For example, when γ = 0.25, the ICs’ optimal policy choice would be (pc, B̂L) = (0.25, 85), while, within the

Pareto set, DCs are best off with (pc, B̂L) = (0.35, 84). These policies result in a smaller global efficiency gain
compared to when γ = 0.
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Figure 8: Contour plots of IC, DC and global surplus for γ = 0, fr(r) ∼ N(−1, 1), N = 100, and

various combinations of (pc, B̂L).

Pareto set covers a region with very low pc and very high B̂L. In that case, no globally meaningful

avoided deforestation policy is possible. In contrast, if γ < 0, the Pareto set will move southeast and

possibly include (pc,eff , B̂Lunbiased) = (0.50, 84).35 This is not an unrealistic assumption for certain

ICs such as Norway, which has shown a willingness to finance avoided deforestation programs that

are hard to justify if no donation motive were present.

We have shown that the location of the Pareto set depends on the ICs’ cost (or benefit) of

transferring funds. Another determinant of the location is the degree of adverse selection. The

results in Figure 8 assume N = 100, representing a large forest holding entity such as a country.

However, a country may not simply be large collection of individual plots with asymmetric infor-

mation on the plot level. In addition, there may be asymmetric information at the government

35For example, when γ = −0.25, the ICs’ optimal policy choice would be (pc, B̂L) = (0.50, 87), while DCs

are best off with (pc, B̂L) = (0.60, 83). The Pareto set now includes policies that are more efficient, such as

(pc,eff , B̂Lunbiased) = (0.50, 84).
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level. For instance, a DC government may know more about its own intentions to protect forests

(e.g., through establishing national parks, or better enforcement) than a potential IC offsets buyer.

If so, adverse selection persists even when negotiating baselines and prices with large DCs.

Qualitatively, one way to model the effect of country level adverse selection on the location of

the Pareto set is by varying N . Figure 9 demonstrates the effect of reducing N from 100 to 10.

A100

B100

IC Surplus < 0 
(N = 100)

IC Surplus < 0 
(N = 10)A10

B10

Figure 9: The Pareto set of a low degree (N = 100) versus a high degree (N = 10) of country level
adverse selection, for fr(r) ∼ N(−1, 1) and γ = 0.

Figure 9 shows that more adverse selection at the country level (lower N) moves the Pareto set

further away from the globally efficient solution. Contracts now require more discounting and more

stringent baselines. This reduces efficiency, total surplus and the amount of avoided deforestation.

We conclude that under reasonable assumptions (γ ≥ 0), ICs should find it in their best interest

to propose an avoided deforestation policy which features a combination of discounting and/or

stringent baselines. Offset policies such as REDD, while never first-best, can be efficiency improving,

especially with increased baseline scale. Total surplus gains are larger with increased IC generosity,

but smaller with significant remaining adverse selection at the country level.

5 Conclusion and Policy Implications

This paper analyzes the performance of voluntary avoided deforestation programs in an interna-

tional context. Using a microeconomic model of land use, we demonstrate a trade-off between three

key performance criteria when there is asymmetric information: efficiency, minimizing average cost

to offset buyers (typically industrialized countries), and quality of offsets. We then analyze how

the performance of offset programs is affected by three policy choices: increasing the baseline scale

26



of projects, offset discounting (reducing the payment per hectare to below the value of the environ-

mental externality) and changing the generosity of the baseline. Finally, we present a framework

to make explicit the role of benefits and costs of international transfers, and demonstrate how the

Pareto set of individually rational policies differs from the first-best outcome.

We have three main findings. First, under almost all circumstances, offset programs perform

better when they are scaled up so that entire political jurisdictions such as regions or nations get

assigned a single, aggregate baseline and must choose whether to opt in as one entity. This forces

offset sellers to decide on participating with all of their forested land, rather than being offered

the flexibility of plot-specific baselines under which they can opt in with several plots and opt out

with others. This makes it less easy for the seller to exploit his information advantage, and leads

to an efficiency gain. Second, offset discounting and trading ratios between offsets and allowances

in a cap-and-trade system reduce efficiency but also reduce transfers to offset-selling developing

countries. Contrary to conventional wisdom, offset discounting increases the percentage of offsets

that are spurious, and even high trading ratios have ambiguous effects on global carbon emissions.

Third, we show that setting more stringent baselines reduces efficiency and transfers to developing

countries but, in contrast to discounting, generally improves the quality of offsets. The Pareto sets

presented in Section 4 highlight the main rationale of using discounting and/or stringent baselines:

they may be necessary to convince self-interested offset buyers to participate in the program. We

then show that feasible offset programs are never first-best, but can be designed such that they

yield an efficiency gain relative to no policy.

We offer two key messages for policy makers. First, scale up programs and baselines as much

as possible. Programs with region-wide baselines will be more efficient than the currently common

payments for ecosystem service programs, which deal with baselines for individual landowners.

These programs will also offer better value for money to funders. An example of a large scale

program is the Norwegian agreement with Brazil, where an Amazon-wide forest baseline is set.

In contrast, Costa Rica offered the flexibility of separate baselines for each individual landowner.

This flexibility maximized the potential for landowners to exploit information advantages over the

regulator, and resulted in a very inefficient outcome. Other advantages of scaling up are that

baseline deforestation rates might be somewhat easier to predict at the national or regional scale

than at the individual plot or landowner level, and that there is less scope for leakage.

Second, recognize that the primary purpose of offset discounting and setting stringent baselines

is to reduce the cost to industrialized countries to convince them to participate in avoided defor-

estation offset programs, but not too “correct” the problem of spurious offsets. While it is possible

to design a program that is individually rational for both industrialized and developing countries

and efficiency-improving, voluntary offset programs should be used with caution and – everything

else equal – replaced with mandatory emissions reduction regulations whenever politically feasible.

That being said, we conclude that well-designed, large-scale offset programs that provide finan-

cial incentives to developing country governments are more likely to lead to significant efficiency

gains than existing small-scale programs. This does require that such governments have the ability
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to effectively respond to such incentives (e.g., by enforcing illegal logging laws, national park cre-

ation, stimulating alternatives for fuel wood, or promoting better agricultural practices) and pass

them on to local forest owners. While not first-best policies, large-scale offset programs could meet

the expectations of those who promote avoided deforestation as a key climate mitigation option in

the short run.
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Appendix A: The Impact of Different Marginal Costs of Avoiding

Deforestation on the Performance Measures

Although abatement cost is largely a function of geography and economic factors and not a policy

choice, it will influence where avoided deforestation programs will lead to the largest gains. In

our model, abatement costs are represented by the foregone net return from deforestation r: the

marginal abatement cost curve is determined by the distribution fr(r).

We first consider which distributions fr(r) lead to the largest efficiency gain from a voluntary

avoided deforestation policy. We abstract from observation errors and adverse selection for now.

The efficiency gain relative to no policy (1) depends on fr(r) through two channels. First, a higher

probability mass of returns between [0, δ] increases the efficient level of AD. Second, a higher

probability mass of very small positive returns between [0, ε << δ] relative to returns between

[δ−ε, δ] increases efficiency. The first channel by itself is not sufficient for an overall efficiency gain.

Figure A.1 illustrates this by using three different returns distributions that imply different

marginal abatement cost curves. As the distribution changes from case 1 (N(−1, 0.52)) to case

2 (N(−1, 1)), fr increases for all r between [0, δ]. This increases the deforestation response at

every positive price, by unambiguously lowering marginal abatement cost, and hence increases the

efficiency gain of the policy. The efficiency gain increases fourfold, while AD increases fivefold.

However, moving from case 2 to case 3 (Uniform(−3.6, 1.6)), fr increases for r close to δ, but

decreases for small r. AD increases by seven percent, but the efficiency gain decreases by three

percent. Hence, the relationship between avoided deforestation and efficiency gains is ambiguous.

Figure 3
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Figure A.1: The ambiguous relationship between returns distributions, avoided deforestation and
efficiency.

Proposition A.1. A returns distribution fr that generates more AD at pc = δ than f ′r does not

necessarily generate a higher efficiency gain.
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Proof. By counterexample (Figure A.1).36

Note that sufficient conditions for efficiency to increase are f ′r(r) > fr(r) ∀r ∈ [0, pc = δ], or -

somewhat weaker -
pc∫
0

f ′r (r) dr >
pc∫
0

fr (r) dr ∀r ∈ [0, pc = δ].

Proposition A1 shows that stronger assumptions on fr and f ′r are needed to ensure an increase

in efficiency than an increase in AD: an increase in the (observation error weighted) probability

mass between [0, δ] is sufficient for AD to increase, but not to guarantee increased efficiency.

With observation errors, a change in the returns distribution also affects the likelihood of

spurious offsets: a less negatively (more positively) sloped distribution around zero yields fewer

spurious offsets. The combined effects on AD and spurious offsets determine the effect on AC.

Numerical illustration

Figure A.2 illustrates these effects using a numerical example similar to the previous one with

fr(r) ∼ N(−1, σr), fε(ε) ∼ N(0, σε), σε = 0.5, pc = δ = 0.5 and three different σr which alter

the relevant part of fr(r). Case 3 now corresponds to a N(−1, 2) returns distribution. Marginal

abatement cost unambiguously falls between case 1 and 2 while in case 3 it is higher than 2 for

some units and lower for others.

Moving from case 1 to case 2 unambiguously raises efficiency and lowers AC. This follows from

the statement below Proposition A1, since f ′r(r) > fr(r) for all r between [0, δ]. It corresponds to a

downward movement in the marginal cost curve. The fraction of offsets that are spurious also falls

from 91% to 67%. In contrast, moving from case 2 to case 3, efficiency falls slightly; AC does also.

Efficiency and AD fall because the probability mass of returns between [0, δ] decreases slightly, and

the distribution becomes almost flat in the region [0, δ]: the density close to zero (where abatement

costs are low) falls relative to the density close to δ (where abatement costs are high). This flatness

also means that the ratio of land with returns at risk of infra-marginal payments (r just below 0)

to returns with potential efficiency gains (r between [0, δ]) is lower, which reduces the fraction of

offsets that are spurious (from 67% to 57%) as well as AC.

36A more general counterexample can be constructed as follows. Consider a distribution fr that is downward
sloping in the interval r ∈ [0, pc = δ], and a distribution f ′r such that f ′r = fr(pc−r) for this interval and f ′r(r) = fr(r)

elsewhere in the domain. First, note that
pc∫
0

f ′r (r) dr =
pc∫
0

fr (pc − r) dr =
pc∫
0

fr (r) dr. Second, since
∞∫
−r

fε (ε) dε is

increasing in r, AD (f ′r) =
pc∫
0

(
∞∫
−r

fε (ε) dε

)
f ′r (r) dr >

pc∫
0

(
∞∫
−r

fε (ε) dε

)
fr (r) dr = AD (fr). For example, consider

fε(ε) ∼ Uniform(−k, k) with k > pc. In that case,
∞∫
−r

fε (ε) dε = 1
2

(
1 + r

k

)
for r ≤ pc. Hence, (pc−r)

(
∞∫
−r

fε (ε) dε

)
is

decreasing in r. Therefore, ∆S (f ′r) =
pc∫
0

(pc − r)

(
∞∫
−r

fε (ε) dε

)
f ′r (r) dr =

pc∫
0

(pc − r)

(
∞∫
−r

fε (ε) dε

)
fr (pc − r) dr <

pc∫
0

(pc − r)

(
∞∫
−r

fε (ε) dε

)
fr (r) dr = ∆S (fr), since f ′r(r) is increasing in r while fr(r) is decreasing in r and f ′r(0) =

fr(pc). Hence, AD can increase while efficiency decreases.

32



Figure 4
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Figure A.2: Impact of changing fr(r) on the performance criteria, with pc = δ = 0.5 and σε = 0.5.

Appendix B: Robustness of the Simulation Results to Alternative

Returns Distributions

We present figures similar to Figure 4, but for fr(r) ∼ N(0, 1), fr(r) ∼ Exponential(1) translated

to the left by a distance of 1, and fr(r) ∼ Uniform(−3, 1). We further assume fε(ε) ∼ N(0, 0.52),

unbiased assigned baselines B̂LN,unbiased, and pc = δ = 0.5.
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Figure B.1: The impact of baseline scale increases on the performance criteria: fr(r) ∼ N(0, 1).
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Figure B.2: The impact of baseline scale increases on the performance criteria: fr(r) ∼
Exponential(−1) translated to the left by a distance of 1.

The uniform distribution is bounded, which might be more appealing than a distribution that

assigns a positive probability to very high returns: such plots should have been cleared already.

The qualitative results, however, do not depend on such distributional details:
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Figure B.3: The impact of baseline scale increases on the performance criteria: fr(r) ∼
Uniform(−3, 1).
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