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1 Introduction

There mingle in the contemporary field of robotics a great many disparate currents of thought
from a large variety of disciplines. Nevertheless, a largely unspoken understanding seems to
prevail in the field to the effect that certain topics are conceptually distinct. In general, methods
of task planning are held to be unrelated to methods of control. The former belong to the realm
of geometry and logic whereas the latter inhabit the the earthier domain of engineering analysis;
geometry is usually associated with off-line computation whereas everyone knows that control
must be accomplished in real-time; the one is a “high level” activity whereas the other is at a
“low level”. This article concerns one circle of ideas that, in contrast, intrinsically binds action
and intention together in the description of the robot’s task. From the perspective of task
planning, this point of view secks to represent abstract goals via a geometric formalism which
is gnaranteed to furnish a correct control law as well. From the perspective of control theory,
the methodology substitutes reference dynamical systems for reference trajectories. From the
point of view of computation, less is required off-line, while more is demanded of the real-time
controller. From the historical perspective, these techniques represent the effort of engineers to
avail themselves of natural physical phenomena in the sythesis of unnatural machines.

This article reviews the historical context and some of the more important contemporary
practitioners of the potential field based methodology for robot planning and control. In Sec-
tion 2, the example of PD feedback for a one degree of freedom mechanical system is used to
illlustrate the basic idea in a trivial context. Namely, we interpret the proportional gain as
representative of a one dimensional “planning system” based upon the geometry of cost func-
tions. The derivative gain allows us to “embed” the limiting behavior of the planning system in
the two dimensional physical plant. In Section 3 we sketch the history of the control theoretic
aspect of this methodology — the progress of total energy conceived as a Lyapunov function —
focusing upon the important work of Arimoto and colleagues. Finally, in Section 4 we suggest
the planning capabilities of this point of view by focusing on the pioneering work of Xhatib in
the domain of obstacle avoidance, and touching upon Hogan’s re-interpretation in the domain
of tasks requiring contact with the environment.

2 Example: An End-Point Task for a Simple Robot

Cousider the “one-degree-of-freedom” robot — a single (revolute or prismatic) joint whose posi-
tion, g, and velocity, 4, are measured exactly and instantaneously by a perfect sensor, actuated
by a motor which delivers exact torque, 7, according to the user’s instantaneous command —
and its dynamical equation, given by Newton’s second law as

Mi=r, (1)

where M is the mass (or moment of inertia in the revolute case) of the robot link. Suppose the
robot has been given the task of moving to a point, ¢*, and remaining there. One might imagine
splitting the task up into a “high level” geometric problem — find a curve in the jointspace, c(t),




which ends up at ¢* — and a “low level” control problem — find a contol law, 7(¢), which “forces”
the robot to “track” the commanded behavior, ¢(f) — e(¢). In much of the robotics literature,
these two problems are solved independently. In the methodology under consideration, they are
solved at the same time,

2.1 Geometry: Hill Climbing

The geometric aspect of this task may be represented by the following optimization problem.
Conceive of a “cost” function on the jointspace, ¢, which assigns a scalar value to every position,
vanishing uniquely at the “target”, ¢(¢*) == 0, and growing larger farther away. For example,
the quadratic function,

a6l R
oL = SKplg— ¢,

would do nicely for all positive values of the scalar Kp. If ¢ is continnously differentiable then
it has a well defined negative gradient system,

§=—gradp. (2)

Solutions of this differential equation follow the “fall line” of the “hill” defined by the cost
function — i.e. at every position, the velocity of any solution curve is specified by the directional
derivative of ©. If ¢* is a local minimum of g it follows that all solutions of system (2) which
originate in some neighborhood of that point, define curves which lead to that point. If, in
addition, ¢* is the only extremum of p, then every solution curve leads there. For example,
in the case of the quadratic cost function, gy, the gradient system works out to be the scalar
linear time invariant differential equation,

j=—-Kplg—q'].

Since ¢* is a minimum, and the only extremum of @y, to boot, it follows that this gradient
system generates a solution to the geometric “find path” problem from any starting position.

2.2 Control: Energy Dissipation

Faced with the particular problem of navigating from some initial position, gg, to the target, ¢*,
one might now define a reference trajectory, ¢(t), by solving the gradient differential equation,
(2), for the initial condition, go, and then attempt a tracking control. Instead, we will re-interpret
the cost function, @, as a potential function , and introduce a control law which achieves the
desired result with no recourse to explicit solutions of the original gradient system, (2).

If we are to interpret @ as a potential function, we must form the total energy by taking its
sum with the kinetic energy,

Al, .
n=54"Mi+p,
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and then apply the Lagrangian formalism,
d
| 504 = Do |1 = fun,
(where f.;; denotes all non-conservative forces) to obtain the Newtonian law of motion,

I fert vepresents the effect of a dissipative force, say a Rayleigh damper, fon = —Kpg, where
Kp is positive, then the total energy must decrease:

5 = ~Kpg®.

In consequence, it seems intuitively plausible, and will be made rigorously clear below, that
(g,4) converges to (¢*,0) from some neighborhood of that point in phase space — the space of
positions and velocities — as long as ¢* is a minimum of ¢.

The final equation of motion resulting from this formulation is
MG+ KpG+ gradp =0. (3)

It is clear that {1) may be made to look like (3) by assignment of the control law,

ra - Kpg— grad o .

Thus, if ¢* is a local minimum of @, then, under the influence of this control law, our robot is
guaranteed to approach (¢*,0) asymptotically from any initial state, (g, go), which is sufficiently
close to {¢*,0). In the particular case of a Hook’s Law spring potential, ¢, this control strategy
corresponds exactly to the time honored “proportional-derivative” feedback control strategy of

linear systems theory,
A .
T=-Kpj— Kplg—q,

with the familiar closed loop dynamics,

M+ Kpg+ Kplg— ¢*] = 0.



3 Control: Dissipative Mechanical Systems

The modern history of this idea might be said to begin with the discovery by the American
engineering community of the work of Lyapunov {24]. The specific application to the class of
mechanical systems seems to have been rediscovered on several different occasions by a variety
of researchers in a variety of subdisciplines: Section 3.1 offers an illustrative (and certainly not
exhaustive) sketch of this development. ! Credit for first introducing these results into the
robotics literature is due Arimoto and colleagues: Section 3.2 presents an overview of their
central contributions.

3.1 Lyapunov Theory and Total Energy

Two hundred years ago, Lagrange showed that a conservative physical system has stable behavior
with respect to any minimum of its potential energy. Roughly one century later, Lord Kelvin
argued that the addition of a dissipative field would induce asymptotic stability of any minimum
state. Since our understanding of the relation between gradient planning systems and robot
dynamics stems entirely from these ideas, it is worth spending a little time to sketch a brief
history of their subsequent development and discovery by engineers.

3.1.1 Lyapunov’s Direct Method

In his doctoral dissertation of 1892, Lyapunov unified the asymptotic analysis of linear systems
based upon eigenvalues with the energy-based analysis of mechanical (generally speaking, non-
linear) systems discovered by Lagrange and Lord Kelvin. The so-called “direct method” provides
a remarkably simple test for stability of an equilibrium state, 2*, of a general dynamical system,

&= flz), [f{2)=0 (4)

Namely, one studies the derivative of a scalar valued function, V' (z), along trajectories of (4) in
the neighborhood of 2*. Notice that

V['L(t)] =gradV - &= gradV - f{2),

hence no explicit knowledge of the trajectories of (4) {which are, in general, unobtainable for
nonlinear systems) is required in order to apply the theory. Lyapunov showed that if V is
positive definite at z* — that is, takes positive values on a neighborhood, vanishing only at
that point — and if -V is positive definite as well, then 2* is asymptotically stable.

While this powerful technique was developed and refined by a variety of Soviet mathemati-
cians over the following five decades [5,25,7], it remained virtually ignored in the west. In
the nineteen fifties, Lyapunov’s method gained the attention of the American mathematician

'Of course, the central idea of energy dissipation is to be found in physics texts as well f1{{Prop. 3.7.17).

4



of ¢ relative to « as long as R, P are positive definite square matrices, This last theorem is
used in conjunction with the Lyapunov arguments to determine the asymptotic behavior of
his connected systems — considered as linked rigid bodies by passing to the limiting case of
increasingly large potential forces — in the presence of passive dampers.

3.2 Arimoto’s Use of Total Energy for Robot Systems

The first clear exposition of the use of total energy in robotics was contributed by Arimoto,
Over the better part of a decade, he and his colleagues have offered numerous extensions and
refinements of these ideas. An increasing number of researchers (this author among them) have
had the experience of reporting a “new” result in the application of Lyapunov theory to robotics
and subsequently discovering the same or similar ideas in papers written several years earlier by
Arimoto. This section attempts to present an overview of his work in the area by concentrating
on two important papers.

3.2.1 The Central Idea

In constrast to the situation two decades ago treated by Pringle who analyzed passive arrange-
ments of dampers and springs, the advance of technology in robotics lends the designer complete
freedom (at least in theory) to choose an arbitrary force law at each degree of freedom. Ari-
moto’s contribution was to argue that computationally very simple force laws based upon the
principles of energy dissipation discussed so far conld accomplish rather sophisticated end-point
tasks. The first exposition of this point of view seems to be his 1981 paper with Takegaki [36].

The authors observe that existing potential fields may be exactly cancelled and replaced
by artificial fields in a manipulator whose joints are all actuated by user commanded torques.
They next introduce a Rayleigh damping term and argue, as in our simple example of Section
2.2, that the total energy — the robot’s physical kinetic energy added to the artificial potential
function — must decrease. By invoking LaSalle’s invariance principle, they obtain their desired
asymptotic stability result. Since the Lagrangian formulation of dynamics obtains from varia-
tional principles, the authors are able to assert the optimality of the Rayleigh damping scheme
with respect to a quadratic performance index based upon it. They next choose a quadratic
artificial potential function: since the stability result requires only that the potential function
be positive definite at the desired rest point, they point out that simple decoupled PD feedback
will suffice,

The paper now shifts to applications involving workspace based planning. A quadratic
artificial potential function in work space leads to a feedback law whose proportional term
involves the workspace errors multiplied by the transposed jacobian of the forward kinematics.
A certain amount of unnecessary confusion is added by sticking with the Hamiltonian rather
than Lagrangian formulation of the dynamics: the former requires analysis involving the inverse
jacobian whereas the latter would not. Holonomic constraints in the workspace are handled by
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Solomon Lefschetz [23]. His colleague, Lasalle, discovered a fundamental relationship between
Lyapunov functions and limit sets of dynamical systems which proves to be of primary impor-
tance for mechanical systems,

A glance back at the time derivative, 7, in Section 2.2 shows that the total energy is not a
strict Lyapunov function: this means that its derivative vanishes (in this case, at every zero
velocity state) even though the trajectory has not arrived at the desired equilibrium state. In
general, if V' is positive definite and —V is merely non-negative, then one may deduce stabil-
ity (solutions originating near the equilibrium, 2* remain near that point) but not necessarily
asymptotic stability (nearby solutions not only remain near, but eventually end up at x*). Thus,
the total energy appears to have a significant flaw for purposes of deducing asymptotic attrac-
tion to a nearby minimum of the potential energy: indeed, Lord Kelvin’s original argument
[38][8345] ignores this flaw. In his simple but illuminating book with Lefschetz, Lasalle [22]
presented his “Invariance Principle”, which demonstrated in the context described above that
all solutions eventually end up in an snvariant subset of the set V = 0. An invariant set of (4)
is characterized by the property that all solutions originating there, remain there for all time.
Thus, with a little more effort, Lyapunov theory may be used to make rigorous the intuitive
arguments of Lord Kelvin,

3.1.2 Application to Problems in Mechanical Engineering

In conjunction with the advocacy of these ideas by Lefschetz came the the awareness of their
relevance to engineering problems. The weakness of Lyapunov’s method is that it provides
information only if a “candidate function”, V, is available: the construction of such functions
remains something of a black art in general. In particular, however, when the dynamical system
(4) has a specific structure, then it is often possible to say a great deal. This is the situation
for linear systems — Lyapunov had already proven the existence of quadratic functions, V, in
that case — as well as for mechanical systems where, as we have seen, the total energy provides
the obvious choice. Kalman and Bertram published an infiuential article in 1960 describing the
relevance of Lyapunov functions for control applications [11}, leading to an avalanche of interest
of which the present application are represents just one stream. Credit for first making use of
total energy as a Lyapunov function for a specific engineering application involving mutually
constrained bodies would appear to be due Pringle.

In his 1966 paper [29], Pringle first presents a succint historical review and then defines
Lis notion of a “connected system.” This is a single rigid body together with a set of point
masses interconnected via holonomic constraints. There are three theorems: the first expresses
Lyapunov’s direct method; the second presents the application to mechanical systems taken from
the Soviet literature cited above, together with the appropriate appeal to Lasalle’s invariance
principle; the final theorem states that the block matrix

R %EC
%ECT aP
may be made positive definite, regardless of the properties of C, by a sufficiently small choice
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a local technique based upon the implicit function theorem which yields tangent information
to the jointspace based torque inputs. This necessitates a different feedback structure for each

region of the task giving rise to the use of time varying potentials for which no stability proof is
offered.

Subsequent to the publication of Arimoto’s first paper, independent derivations of the same
result were reported by Van der Schaft {32] and this author [20]. The latter development
proceeded from the Lagrangian rather than Hamiltonian formulation of robot arm dynamics,
thus the author was led to discover a structural aspect of the Coriolis terms which had not been
reported in Arimoto’s work. This “skew-symmetric” structure was later clarified and exploited
by Slotine and Li [33] in the construction of the first globally stable adaptive controller for robot
arms,

3.2.2 Extensions and Problems

The important 1984 paper by Arimoto and Miyazaki [35], receives an independent review in
the same issue of this journal. For the purposes of the present article, that paper provides a
convenient point of departure for discussion of extensions and open problems in this domain. In
the effort to gain a stability result for the traditional PID control algorithm from linear systems
theory, the authors are forced to confront and “fix” the weakness of Lord Kelvin’s original
result: namely, the lack of a negative definite derivative which necessitates appeal to LaSalle’s
Invariance Principle,

They modify the total energy function

Kp 0
Vila) — o | P :
B(z) =2 [ 0 M]"’

by adding a cross term which is bilinear in position and velocity,

K oM
Aoy e T P .
VA"(m) = [ oM M ]

resulting a locally strict Lyapunov Function,

- Kp oM 0 I
R P .
V. =2 [aM M ] [ ~M-1Kp -M"'Kp }“’
1
_ —.’L‘T la’I(p 2&'.[(1) 2.
laKp Kp-—oaM

For the purposes of this illustrative linear example, both V and ¥V may be made sign definite
via small enough choice of the parameter, a: a global stability argument results. In the general
situation, the presence of the Coriolis forces results in a cubic term in V (it is linear in the
position error and quadratic in the velocity error) which, though necessarily sign indefinite, is
dominated by Kp — oM for small enough position error magnitudes, Thus Vy4,; yields only
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a local stability argument: the designer must insure that the initial conditions originate in a
neighborhood of the desired state small enough to guarantee that decreasing V implies the error
remains less than a magnitude proportional to ||Kp — oM||. The alternative — enlarging the
domain of attraction — may be accomplished only by recourse to larger derivative gains, Kp.

Tracking. The notion of tracking appears to be out of context in a review article concerning
robot task encoding via reference dynamics. Actually, the use of a “moving Hook’s Law Po-
tential” ~— that is, a PD-based tracking method — serves as the first instance of generalized
moving potential fields, For example, it would be very nice to use the obstacle avoidance schemes
discussed below to navigate amidst moving environments. Two years ago, this author [19] and
Bayard and Wen [39] announced independent work leading to the proof of exponential stability
of PD compensated nonlinear mechanical systems. This construction afforded a proof of global
boundedness of PD-based tracking schemes, and reasonable estimates of the rate of convergence
to the bound. Both results were based upon a modified version of total energy which yielded
a locally strict Lyapunov function. At the following year’s IBEE Conference on Robotics and
Automation, Arimoto quietly pointed out that he had obtained the same result several years
earlier [3]. The three independent papers offer strikingly similar variants of the total energy —
all with the same local limitations discussed above. In fact, they are all similar to the original
modification Arimoto had introduced in 1984.

Very recently, this author has developed a further modification of the total energy which
yields a strict Lyapunov function whose extent is global[15]. Moreover, unlike the earlier mod-
ifications, which assume a Hook’s Law Spring Potential, the new variant is defined for a large
class of potential laws. This opens the desirable possibility of combining time variation with the
complex artificial potentials to be discussed in the last Section of this article.

Internal Model Principle. Arimoto’s extension of Lord Kelvin’s ideas in the 1984 paper
expand the analogy between linear second order systems and nonlinear mechanical systems
from PD to PID techniques. In classical linear systems theory, the introduction of integral
feedback action is associated with tracking a reference (or rejecting a disturbance) which is
known structurally, but only up to an unknown set of parameters. For example, the addition of
an integrator is dictatce the presence of a step input; two cascaded integrators are required in
the presence of a ramp input; and so on. These ideas from the classical theory were formalized
by Wonham and colleagues as “The Internal Model Principle” [8].

Since the most popular reference trajectories in the robotics literature are generated by
polynomial spline techniques — that is, they may be modeled as outputs of unforced linear
time invariant dynamical reference systems whose dimension is specified by the degree of the
polynomial — the internal model principle is immediately applicable to Cartesian robot arms.
Its extension to nonlinear mechanical systems would be of great significance for practical robot
control.




Transient Analysis. Even though the desired asympotic behavior is assured, it has been
pointed out on many occasions, originally in Arimoto’s 1981 paper [36], that the transients
resulting from potential field control of nonlinear mechanical systems may be poorly behaved.
More generally, given a kinetic energy, it seems very important to develop a theory that matches
the dissipative term to the particular form of the potential, i, in order to assure that the closed
loop mechanical system evince a “sufficiently accurate” copy of the gradient “planning system”
trajectories. In the simple example of Section 2 we already have an intuitive idea of what this
means. The “best” match between (2) and (3) arguably obtains from the assignment of gains
for the latter which produces a critically damped system whose natural frequency is the time
constant of the former. It seems important to generalize this notion in the nonlinear context.



the level lines of the original “objective” function [9]. Thus, a careful construction methodology
for potential functions brings the promise of good transient shaping in the planning system. Of
course, our true interest is in an on-line implementation of the gradient algorithm implicit in
the motion of the robot arm itself. Work of this author has established the global similarity in
limiting behavior between the planning system and the ultimate closed loop mechanical system
[20,15]. Yet, as mentioned at the end of the previous section, it remains to determine the
relationship between the transients.

4.2 Khatib’s Method of Obstacle Avoidance

There are certain ideas which are so natural and compelling that it becomes hard to distinguish
a particular individual responsible for their introduction to a community researchers. Happily,
in the case of artificial potential fields — surely the exemplar of such a compelling idea — it
seems clear that credit for its introduction to the robotics community is due Khatib.

4.2.1 FIRAS

In his original 1978 paper with Le Maitre {12], Khatib suggested the desirability of bringing more
“adaptibility” to the control level, while maintaining a relatively lean (hence, rapidly executable),
yet dynamically meaningful maneuvering algorithm, for robots in cluttered environments. He
proposed adopting the general paradigm of Renaud, who had suggested the relationship between
cost function gradients and mechanical systems in a doctoral dissertation two years earlier [,
to the specific problem of obstacle avoidance.

Assuming that each obstacle is desciibed as the zero level surface of a known scalar valued
analytic function, f(x,y,#) = 0, Khatib formed a local inverse square potential law: it goes to
infinity as the inverse square of f near the obstacle, and gets cut off at zero at some positive
level surface, f{w,y,2) = fo, presumably “far enough” away from the obstacle, as determined
by the designer. A particle moving according to Newton’s Laws in such a potential field would
clearly never hit this obstacle. Khatib further observed that the sum of the gradients is the
gradient of the sum: thus adding up the potential laws for many obstacles would result in a
single function under whose influence the particle could not hit any obstacle.

Since the objects to be maneuvered are not point masses, but rigid links of a kinematic
chain, Khatib proposed identifying a number of distinguished points on the manipulator body,
and subjecting each of them to the potential field of the obstacles. This induces a potential
function on the joint space: the techniques of stable hill climbing via Lagrangian dynamics
described above are immediately applicable. To complete the methodology, Khatib suggested
adding obstacle potentials representing the joint limits to the induced workspace function. Thus
was born FIRAS — “force inducing an artificial repulsion from the surface” — in 1978.
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4 Planning: Gradient Dynamical Systems

The idea of using “potential functions” for the specification of robot tasks was pioneered by
Khatib [?] in the context of obstacle avoidance, and further advanced by fundamental work of
Hogan {10} in the context of force control. The methodology was developed independently by
Arimoto in Japan [26], and by Soviet investigators as well [28]. Of course, the possibility of
solving complex problems by resort to analog methods of computation has a much older history

which we touch upon briefly in Section ?? before turning to Khatib’s contributions in Section
77.

4.1 Hill Climbing via Analog Computation

Possibly the most common use of gradient vector fields in engineering occurs in the context
of root finding: given a function, g(), find those points which attain a particular value. For
example, in robotics, g might likely represent the kinematic transformations. Recent work of
Smale [34] and Hirsch and Smale [?] has established variants of the Newton-Raphson technique
which succeed for almost all initial points, in the search space. They point out that the gradient
algorithm — climbing down the “error hill” — is a much older variant with poorer properties.
Yet recourse to hill climbing has two other advantages that make it so attractive in the present
context. First, peaks as well as valleys may be encoded: this idea leads to the notion of repelling
sets of obstacles. Second, as we have seen in the previous section, the dissipative mechanical
systems make natural analog computers for integrating gradient vector fields.

Of course, the appeal to analog computation has an old and established history. Even after
the domination of electronic computation by digital technology in the sixties, serious engineering
effort has been expended upon analog technology for special purpose problems of data acquisition
and manipulation, e.g. for pulse code modulation devices [4], or image sensory processing [7,6].
More general classes of combinatorially complex problems have been approached from this point
of view in recent years. Work of Hopfield and Tank {37 has demonstrated the possibility of
finding good sub-optimal solutions to the travelling salesman problem (in the class np-complete)
by formulating them in terms of a scalar potential function and implementing their solution using
“neural nets” consisting of many processing elements endowed with elementary analog capability.
Kirkpatrick and colleagues [14] have generated a great deal of interest in a class of objective
functions denoted “simulated annealing” (because of their origin in models of physical cooling
processes) used, again, to find good sub-optimal solutions to the problem of VLSI circuit device
placement (also np-complete}. It should be mentioned that the gradient method has a long
history in systems science as well as the general world of applied mathematics. For instance,
the parameter adjustment algorithms of adaptive control and estimation schemes may be seen
as a gradient solution to a set of linear algebraic equations [27].

Unlike most nonlinear differential equations, gradient vector fields have particularly simple

dynamical behavior. Systems possessed of isolated equilibrium states come with the guarantee
that any bounded solution must asymptotically approach one of them travelling orthogonal to
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4.2.2 Problems and Exiensions

In the decade since its introduction, the idea of using artificial potential functions for robot task
description and control has been adopted or re-introduced independently by a growing number
of researchers [26,2,28]. There are several conceptual problems with the potential function
methodology, of which the more important include the following.

Terrain Shaping Khatib [13] observed that the use of analytic level surfaces to prescribe ob-
stacle boundaries and neighboring regions becomes difficult when the surface is complex because
the relative locus of the concentric level surfaces may be poorly behaved. His alternative — re-
liance upon distance functions computed online — represents an interesting point of departure
but would surely give rise to equally difficult problems in an effort to obtain theoretical under-
standing of the properties of such trajectories given the documented trickiness of set distances
— see the work of Gilbert and Johnson [?], for example.

It seems equally plausible to imagine a more careful examination of the construction of
implicit representations of solid body surfaces via scalar valued functions. Of course, the study
of representations of solid bodies is a vast discipline of its own. While those researchers seem
to favor explicit parametrizations rather than implicit representations [30], it seems certain that
increased contact between the two communities would result in enhanced understanding for
both. In particular, a careful listing of desiderata for such functions — both with respect to
their use in robot navigation as well as in computer models of solid bodies — would seem to be
essential before they are rejected out of hand.

Rigid Bodies Wahile it is most natural to construct obstacle avoidance potentials on the
workspace, existing methods are actually more suited to configuration space where the exact
state of the robot at any instant is represented by a single point. As discussed above, work space
boundaries (obstacle surfaces) are plausibly available from a CAD/CAM model: their “inverse
images” under the kinematic transformation representing any particular robot are not. Thus
practitioners of the methodology must rely upon heuristics. A creditable example is proposed
by Khatib [13] who places his “points subjected to potential” forces on a specific locus — a line
through the body — of each link in the kinematic chain. While this seems like a reasonable
procedure, and the designer is guaranteed that the particular points in question will not collide
with obstacles, there is no such guarantee for the entire link itself. Thus, there is a crying need
for provably correct procedures which build obstacle avoidance potentials on the configuration
space of rigid bodies rather than simply point robots.

Spurious Minima Even given a good description of the configuration space, a central dif-
ficulty w ith this technique has been the possibility of extra minima. As has been asserted,
gradient vector fields have particularly simple dynamical behavior. Systems possessed of iso-
lated equilibrium states come with the guarantee that any bounded solution must asymptotically
approach one of them [9]. However, there is no generally applicable method for determining the
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5 Conclusion

This article has attempted a brief review of the potential function methodology for robot task '
encoding and control. The author hopes that it may simultaneously serve the purpose of an |
elementary introduction to this point of view, while highlighting the significant contributions of |
three researchers: Arimoto, Hogan, and Khatib. A more elaborate treatment of these ideas may |
be found in the author’s recent tutorial articles [21,17]. |

i
|
I
i
|
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particular equilibrium state achieved from a particular initial condition. All points in some open
neighborhood of a local minimum will approach that point, whereas the set of points which ap-
proach a saddle has measure zero, and the set of points which approach a local maximum is
empty. Thus, if the problem formulation gives rise to an objective function with more than
one local minimum a sub-optimal solution is gnaranteed for all initial conditions in some set of
non-zero measure whose location is generally impossible to characterize analytically.

This has prompted the author to spend a growing amount of attention focused on the problem
of how to construct “good” potential functions on manifolds with boundary [18]. We have
been led to define the notion of a navigation function [31] — a refinement of the potential
function which includes the condition of a single minimum (at the desired destination), a uniform
finite height on all the boundaries, along with several other technical requirements — and have
constructed them on a variety of spaces. Thirty year old topological results of S, Smale assure
the existence of smooth navigation functions on any smooth space with boundaries [16]: it is
now up to the engineering community to actually construct them.

4.3 Hogan’s Impedance Functions

It seems useful to include in this article a brief look at some work which demonstrates that
the potential function approach to unified task description and control is not limited to task
domains involving a purely geometric environment. Fundamental work by Hogan [10] advances
persuasive arguments for encoding general manipulation tasks in the form of “impedances”,
Impedances and admittances are formal relationships between the force exerted on the world at
some cartesian position and the motion variables - displacement, velocity, acceleration, etc. - at
that position with respect to some reference point {or “virtual position” in Hogan’s terminology
[10}). He argues that for purposes of modeling manipulation tasks, the kinematic and dynamical
properties of a robots’s contacted environment must be understood as admittances - systems for
which the relationship operates as a function describing a specified displacement for any input
force. Arguing, further, that physical systems may only be coupled via port relationships which
match admittances to impedances, and that robots can violate physics no more than any other
objects with mass, he arrives at the conclusion that the most general model of manipulation is
the specification of an impedance - a system which returns force as a function of motion. By
construing motions relative to a virtual position as defining tangent vectors at that position,
Hogan notes that an impedance may be defined in terms of a scalar valued function on the
cross product of two copies of the tangent space at each virtual position whose gradient co-
vector determines the relationship between motion and force. Thus, an impedance may be
re-interpreted as the gradient co-vector field of an “objective function”, whose fall lines specify
the desired dynamical response of the robot end-effector in response to infinitesimal motions
imposed by the world. In this context, unlike the other gradient vector field task definitions, it
is intended a priori that the dynamics be second order - i.e. define changes of velocity (force)
rather than changes of position.
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