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We discuss the exact solutions of various models of the statistics of dimer coverings of a Bethe
lattice. We reproduce the well-known exact result for noninteracting hard-core dimers by both a very
simple geometrical argument and a general algebraic formulation for lattice statistical problems. The
algebraic formulation enables us to discuss loop corrections for finite dimensional lattices. For the
Bethe lattice we also obtain the exact solution when either (a) the dimers interact via a short-range
interaction or (b) the underlying lattice is anisotropic. We give the exact solution for a special limit
of dimers on a Bethe lattice in a quenched random potential in which we consider the maximal
covering of dimers on random clusters at site occupation probability p. Surprisingly the partition
function for “maximal coverage” on the Bethe lattice is identical to that for the statistics of branched
polymers when the activity for a monomer unit is set equal to —p. Finally we give an exact solution
for the number of residual vacancies when hard-core dimers are randomly deposited on a one
dimensional lattice. © 2006 American Institute of Physics. [DOI: 10.1063/1.2364501]

I. INTRODUCTION

The statistics of covering a lattice with monomers or
dimers has a long and continuing history in condensed matter
physics. Recently there has been a revival of interest in this
topic in connection with a number of seemingly unrelated
problems such as quantum fluctuations in Heisenberg
antiferromagnets,1 stability and dynamics in granular
systems,2 phase transitions in certain complex fluids,’ dy-
namics of catalysis on surfaces, and the biophysics of
membranes.” Accordingly, we have been led to revisit this
problem with the goals of (a) drastically simplifying the deri-
vation of existing approximations and (b) providing a frame-
work within which the more modern techniques of statistical
mechanics can be applied.

The first studies of the statistics of dimer coverings of a
lattice were carried out more than 50 years ago,éf8 obtaining
results analogous to those of the Bethe approximationgf11 for
the Ising and Heisenberg models. At that time, the relation of
this approximation scheme to the structure of the Cayley tree
(a recursive “lattice,” an example of which, with coordina-
tion number ¢, is shown in Fig. 1) was apparently not
known. It was later recognized by Sykes,12 who apparently
first coined the term “Bethe lattice,” that the Bethe approxi-
mation was to be associated with local properties evaluated
near the center of the tree, in order to avoid surface effects
which, for d-dimensional hypercubic lattices, are unphysical.
The pathological effects of the anomalously large surface
were later studied by several authors in the 19705,13716 but,
as was clear from the work of Fisher and Gaunt in 1964,17 it
was the results for local properties at the center of the infinite
tree which could be connected to those of hypercubic lattices
in the limit d—o0. They obtained expansions in powers of
1/d for the coefficients of series expansions in the coupling
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constant. However, it was later shown by the renormalization
group18 that the critical exponents for typical lattice models
were those of mean field theory for d>4.

Most of the results of this paper will be obtained for the
Bethe lattice. We implement the Bethe lattice condition ei-
ther by explicitly considering sites far from the boundary or,
alternatively, by using a formulation appropriate to periodic
lattices and then introducing approximations which become
exact when the lattice does not support any loops.19 By ini-
tially treating a periodic lattice we eliminate anomalous sur-
face effects. We are thus assured that our results are charac-
teristic of the interior of the tree and should be associated
with what is now commonly called a Bethe lattice.””

Of course, an important aim is to treat real
d-dimensional lattices. To this end there have been a number
of papers dealing with series expansions for the problem of
dimer or monomer-dimer coverings of a lattice. Nagle21 in
1966 developed a series expansion in powers of the dimer
activity z for a number of two- and three-dimensional lat-
tices. Longer series were later obtained by Gaunt” who ex-
ploited the relation between the dimer problem and the Ising
model in a field. Alternative formulations, based on the gen-
eralization of the Mayer cluster expansion23 by Rushbrooke
and Scoins,24 have also been given.25 More recently Brazh-
nik and Freed®® have given a formulation suitable not only
for dimers but also for more complicated entities. Here we
treat the cases of both noninteracting and interacting dimers.
We first address these problems using a simple intuitive geo-
metrical approach. Then we adopt an algebraic approach
based on a transformation introduced by Shapir27 which en-
ables us to develop an expansion for a d-dimensional lattice
in which the leading term is the exact result for the Bethe
lattice of the same coordination number g. For noninteracting
dimers corrections are obtained in powers of 1/g and the
activity z, similar to the result of Nagle.21

Briefly this paper is organized as follows. In Sec. Il we
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FIG. 1. A Cayley tree with coordination number g=3. The tree consists of
three generations of bonds starting from the seed site, S.

present a simple geometrical derivation of the Bethe approxi-
mation for the statistics of distributing hard-core (but other-
wise noninteracting) dimers on a lattice. We also give an
alternative algebraic derivation of this result which enables
us to generate loop corrections for the case of a
d-dimensional periodic lattice. We also briefly consider non-
interacting dimers on an anisotropic lattice. In Sec. III we
consider a model which includes dimer-dimer interactions.
We derive the Bethe approximation (which is exact on the
Bethe lattice) for this model by both the geometrical and
algebraic approaches. The exact solution of a model in the
special limit of quenched randomness in which each cluster
of randomly occupied sites is maximally covered by nonin-
teracting dimers is given in Sec. IV. In Sec. V we consider a
model of random deposition of hard-core dimers in one di-
mension. We give an exact result for the fraction of sites
which remain vacant after deposition is completed. Finally,
our conclusions are summarized in Sec. VI. In a future paper
we will generalize our approach to treat the statistics of en-
tities more complicated than dimers.

Il. NONINTERACTING DIMERS ON A BETHE LATTICE
A. Geometrical derivation of the exact result

Here we will develop a formula for p, the average num-
ber of dimers per edge on a lattice in terms of the dimer
chemical potential w, or preferably in terms of the parameter
z=eP*, where B=1/(kT). (Interactions between dimers and
the underlying lattice as well as internal degrees of freedom
of the dimer are easily included by a redefinition of z.) We
will give what we believe to be the simplest possible “geo-
metric” derivation of the well-known®™® “Bethe approxima-
tion,” which has been shown’ to be surprisingly accurate for
some two-dimensional lattices, and which is exact when ap-
plied to the Bethe lattice. We assume that only dimers can be
adsorbed on the lattice, and that they can be adsorbed only as
lying dimers (i.e., an adsorbed dimer covers two lattice
sites). In the present section we will assume that there are no
interactions between adsorbed dimers except for the hard-
core restriction that two dimers cannot touch the same site. It
is easy to generalize this treatment to deal with the two-
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FIG. 2. Classification of bonds in a lattice partially covered by dimers. As
indicated in the text D labels a dimer, V a dimer vacancy, / an interacting
bond, and H a half bond.

component lattice and also to include the possibility of ad-
sorption of standing dimers and monomers.?

As stated in the Introduction, we initially deal with a
periodic d-dimensional lattice and will obtain the results for
the Bethe lattice by introducing an approximation which is
exact when the lattice is treelike (i.e., it contains no loops).
As a starting point of this discussion we introduce the (un-
normalized) probability that there are Nj, dimers on the lat-
tice, Wy(Np)z"p, where Wy(Nj) is the number of distinct
configurations of N dimers on a lattice of N sites. The equa-
tion of state for this dimer system is the relation between z

and Np/N, where Np, is the average value of Np,. In the Bethe
approximation@8

— — — \-2

2N 2N, 2N,

z=——D<1——D)<1——D> : (1)
gN N

where ¢ is number of sites which are nearest neighbors of a
given site. To emphasize that this result applies to a Bethe
lattice we express it in terms of densities such as
p=2Np/(gN), the fraction of bonds (a bond is an edge con-
necting two sites) covered by a dimer or gp, the fraction of
sites which are covered by a dimer. Stated alternatively, p is
the probability that a given bond is covered by a dimer and
gp is the probability that a given site is covered. In terms of
these variables the equation of state is

z=p(1-p)(1-gp)~> (2)
or, equivalently,

1+2gz—V1+40z
P 2+ )

(3)

where o=¢g—1.

For this discussion it is convenient to define some termi-
nology to describe configurations of dimers on a lattice. In
Fig. 2 we show a small section of a lattice where one sees
occupied bonds (D) on which dimers are placed and unoc-
cupied bonds, which can be of three types depending on
whether or not the two sites of the bond are covered by
dimers. If both sites of an unoccupied bond are uncovered,
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the bond is called a “dimer vacancy,” (V). If both sites of the
unoccupied bond are covered, the bond is called (in antici-
pation of Sec. Il where we allow dimer-dimer interactions)
an “interacting bond” (/), and if only one site of the unoccu-
pied bond is covered, the bond is called a “half bond” (H).
We first observe that in the thermodynamic limit the average
and most probable values of Nj, differ negligibly. Thus we

may say that the average number of dimers N, is the value of
Np for which the probability Wy(Np)z"¥P is maximal. The
condition that this quantity be stationary is

Wy(Np + 1)

1
— = (4)
Wi(Np) <

Consider the left-hand side of this equation. From any con-
figuration of Np dimers we can obtain a configuration of
Np+1 dimers by placing an additional dimer on a dimer
vacancy. The number of new configurations obtained by
placing a dimer on one of the Ny dimer vacancies of each

configuration of N;, dimers is thus NyWy(Np), where Ny is
the average number of dimer vacancies for configurations
having Nj dimers. However, we note that in this new set of
configurations each configuration occurs Np+1 times be-
cause each dimer in the new configuration could have been
the one newly added. So®

Wy(Np+1) Ny
Wy(Np) — Np+1’

(5)

where we will replace Np+1 by Np in the thermodynamic
limit. Applying this for the most probable value of N, gives
the simple result’
Ny 1
—=— (6)
Np 2
If we introduce the density of dimer vacancies py by py

=]VV/NB, where Nj is the total number of bonds, then this
may be written as

1
”;V:Z. (7)

Note that p (or py) is defined to be the total number of dimer
(or dimer vacancies) divided by the total number of bonds.
These quantities can also be defined locally for a subsystem
of bonds. It is not obvious that when p and py, are replaced
by their local versions, Eq. (7) will still hold. Indeed, for the
Ising model on a Cayley tree in an applied field, the total
magnetization divided by the total number of sites is not the
same as the local magnetization of a single site near the
center of the tree. We now argue that py/p does not depend
on position within the tree. Consider two subsystems30 S
and S, which consist of N; and N, bonds, respectively, where
N, and N, are both large compared to 1 (so that we do not
need to worry about discreteness effects). Suppose py/p as-
sumes different values within these two subsystems. Then, if
we move a dimer from subsystem S; to subsystem S,, the
ratio of the number of configurations W before moving the
dimer to that, W', after moving the dimer is
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W _pvip

, 8
W' pyap ®
where the subscripts identify the subsystem in question. We
may view the py, for subsystem S, as being order param-
eters. In order that Wy(Np) actually be maximal with respect
to variation of these order parameters, it must be stationary
with respect to moving a dimer. So W/ W’ =1, which implies
that py/p is the same for all large subsystems. Thus Eq. (7),
which initially involved the ratio of global properties, is ac-
tually valid when interpreted as a relation between local
quantities.

We now express py as an explicit function of p in a
region far from the boundary, so that Eq. (7) yields the equa-
tion of state we seek. If A and B are nearest neighboring
sites, then

py = P(sites A and B are vacant)
= P(A is vacant)
X P(B is vacant, given that A is vacant)

=(1-gp) X P(B is vacant, given that A is vacant).

)

Here the symbol P() denotes the probability of the event
inside the parentheses. The basic probability space consists
of all configurations of dimers on the lattice. The (unnormal-
ized) probability assigned to a configuration is z2, where N,
is the number of dimers in the configuration. Equivalently,
we could limit our probability space to the set of configura-
tions containing exactly N dimers, with all configurations
equiprobable. The conditional probability [the last factor in
the last line of Eq. (9)] is denoted P(B vacant|A vacant) and
is, by definition, equal to P(B vacant and A vacant)/P(A va-
cant). More generally, for any two events E; and E,

P(E,|E,) = P(E, and E,)/P(E,). (10)

We now invoke the approximation in which we replace the
factor P(B  vacantfA vacant) in Eq. (9) by
P(B vacant|bond AB unoccupied). This replacement ignores
the possibility that at most one of the other bonds touching
site A might be occupied and thereby might indirectly affect
whether site B is occupied or not. Of course this possible
inaccuracy can only arise if there is some indirect path from
site A to site B not going through the bond AB. Since this
approximation (which we will refer to as the free decoupling)
is exact for the Bethe lattice it leads to the Bethe approxima-
tion. Thus

py=(1-gp) X P(B is vacant|bond AB is unoccupied).
(11)

The probability that a particular bond is unoccupied is 1—p,
so that
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P(B vacant/bond AB unoccupied)

i P(B vacant and bond AB unoccupied)
B P(bond AB unoccupied)

P(B vacant and bond AB unoccupied)
(1-p) '

If B is vacant, the bond AB must be unoccupied; therefore
the numerator of Eq. (12) is just P(B vacant)=1-gp. Thus

py=(1-gp)*(1-p), (13)

which, in combination with Eq. (7), leads to Eq. (2). We have
not succeeded in constructing a simple argument to estimate
the magnitude of the difference between P(B vacant/A va-
cant) and P(B vacantpond AB unoccupied) for
d-dimensional lattices. Qualitatively, the important point is
that, within the family of configurations in which bond AB is
unoccupied, the probability that site B be vacant is not sig-
nificantly influenced by the presence of a dimer on (at most)
one of the other bonds emanating from A.

In Appendix C we present a simple calculation of the
major correction to the tree approximation on a planar trian-
gular lattice. However, the calculation is not the first term in
a systematic series and is not easily extended to the square
lattice. In the next section we will present a formalism which
enables one to systematically generate corrections to the tree
approximation.

(12)

B. Solution by construction of an effective Hamiltonian

We now apply a technique introduced previously3 "in
order to treat here the nonthermal statistical problem of con-
structing a generating function for covering a lattice with
0, 1, 2, etc., hard-core dimers. We wish to identify this gen-
erating function with a partition function, Z of the form Z
=Trexp(-BH), where H can then be interpreted as the
Hamiltonian for the statistical problem.

The first step in this program is obviously to construct
the effective Hamiltonian. This can be done by writing27

e~ PH = eZiysisi, (14)

where (ij) indicates that the sum is over pairs of nearest
neighbors. For the expansion of the partition function in
powers of z to count all possible dimer configurations, where
z is the dimer activity, the following trace rules are imposed
on the operators s;:

Trs?=C, n=0,1,..., (15)

where Tr; indicates a trace over states of site i and we set
Cy=C,=1 and C,=0 for n> 1. It is not actually necessary to
explicitly construct such an operator because the only prop-
erty of these operators we need in order to construct the
partition function is the trace rules of Eq. (15). We see that
the fact that the trace of two or more operators at the same
site vanishes implements exactly the hard-core constraint for
dimers. Thus the partition function Z=Tr exp(-8H) will in-
deed give the grand partition function for dimers as a func-
tion of their chemical potential u,

J. Chem. Phys. 125, 184107 (2006)

7= 2 ePrn(©) (16)
C

where the sum is over all configurations C of dimers and n(C)
is the number of dimers present in the configuration C. From
Z we can get the fraction of sites covered by dimers p as a
function of the dimer chemical potential via

2Np 2 dlnZ 2dInZ

=qu1nz'

(17)

Since the “spin operators” s; commute with one another, we
have a mapping of the athermal problem of dimers on a
lattice into a statistical mechanical problem involving classi-
cal spins with a given Hamiltonian.

Now we use this mapping to (a) construct the exact so-
lution for the partition function for a Bethe lattice and (b)
generate series expansions for finite dimensional lattices. To
do that we develop a perturbation theory for a periodic lattice
in which the leading term contains the sum of all contribu-
tions from tree diagrams. For this purpose we write
Z=Trl;;f;;, where f;;=1+zs;s; [the trace rules allow us to
linearize the exponential in Eq. (14)] or equivalently

L

i (Gjy 8i8j

where g can be chosen arbitrarily. We evaluate this perturba-
tively as

Z=Tr{[ﬂg?MH1+>\v,._,-]}, (19)

i (ij)

where V;;=f:;/(g;g;)— 1. We expand in powers of N which we
set equal to unity at the end. Each term in this expansion
which involves at least one power of A can be associated
with a diagram in which the factor V;; is associated with a
line connecting sites i and j. We now choose g so that dia-
grams having at least one line which is connected to only a
single site (j) give zero contribution. Since all diagrams on a
Bethe lattice have at least one free end, this choice of g will
lead to an exact evaluation of the partition function for a
Bethe lattice and will enable us to generate loop corrections
for d-dimensional lattices. The condition we implement is
that

Trj(g}’Vij) =0, (20)
which can be written in the form

_ Tr(fig8)) )1
gi - q ( )

where o=¢g—1. This is a nonlinear equation for the function
gj» but in view of the trace rules it is easily solved. From the
form of f;; one sees that g; has to be of the form

gizA +le'. (22)

By substituting this form into Eq. (21),
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A+ Bsi _ Tl‘j[(l + ZSI'SI‘)(A + BSJ)U]
TrJ(A + BSj)q

(23)

Using the trace rules we rewrite the right-hand side of this
equation so that
A%+ 0A""'B + 5,(zA?)

A+ Bs;= . (24)
A9+ gA°B

This gives rise to the two equations

A%+ cA’"'B _ A+oB

= == , (25)
A1+ gA°B  A“+gAB
A (26)
A1+ gA°B A +¢B
We may solve Eq. (25) for B as
A-A
B= 5. (27)
o—-gA
Substituting this into Eq. (26) leads to
AY1+ ¢%2) - A*(2goz+ 1) +z07 =0. (28)
Thus
) 2qzo+ 1+ V1 +4z0 (29)

2(1 +¢%2)

(We chose the positive sign before the square root to ensure
that A— 1 as z—0.) Then for the Bethe lattice we have the
exact result

Z”N=Tl‘i g?=Tri [A+Bs;]7=A%+ gqBA°. (30)

After some algebra it can be shown that when this result is
inserted into Eq. (17) we recover the result of Eq. (3).

Unfortunately, this formalism leads to an expansion of
the partition function Z, whereas for d-dimensional lattices,
we would prefer to have an expansion for the free energy per
site, F=(1/N)In Z. For that purpose we consider an expan-
sion of the quantity Z", which in the limit n—0 is 1
+nln Z=1+nNF. To obtain Z" we introduce the n-replicated
Hamiltonian

e o= [T TTT1 + z51084], (31)

a=1 (ij)

where s,, and 5,5 are independent operators for @ # § and for
each replica index s;, obeys the same trace rules as in Eq.
(15). Usually replicas are introduced to perform the
quenched average (over In Z) for random problems in which
case the averaging leads to interactions between different
replicas. Here we introduce replicas simply to facilitate con-
struction of an expansion of In Z and there are no interactions

between different replicas. The partition function, Z, asso-
ciated with the replicated Hamiltonian is
Zupy=TrePtn=7". (32)

Thus we solve Eq. (21) with f;;=I1,(1+2zs;,5;,). Because
different replicas are independent of one another, the solution
to Eq. (21) is of the form

J. Chem. Phys. 125, 184107 (2006)

8i= CH [1+Ds;,] = Cg;. (33)

a=1

Because we need the partition function Z,., to order n,*? we
must evaluate C up to linear order in n but D can be evalu-
ated for n=0 because it always appears in connection with a
sum over replica indices which give a factor of n. The terms
in g; in Eq. (21) independent of s,, give

C=Tr; C7¢]/Tr; C¢] (34)
or
C*="Tr; §7/Tr; §=(1+ aD)"/(1 +¢D)", (35)
which to linear order in n gives
n 1+0oD
C=1+-In . (36)
2 1+¢gD

The terms in g; in Eq. (21) linear in s;, give

_ ZTrl' CUS]QHB(I +DS]’B)(T

CD= (37)
For n=0 this is
D=z(1+oD)™", (38)
which gives
—1+r
D= , 39
e (39)
where r=\1+4o07z.
Then the first term in the expansion of F is
d q ( 1+ O'D)
F=—[Tr(Cg),-0==1 +In(1 +¢D).
dl’l[ r]( g]) ]n—O 2 n 1 +qD Il( q )
(40)

After some algebra one can show that when this is substi-
tuted into Eq. (17) we recover Eq. (2).

C. Loop corrections

Here we consider the expansion in powers of V;
=fi;/(gig;)—1. Our first objective is to show that contribu-
tions to Z, from disconnected diagrams are of order n* or
higher and hence can be dropped. To see this we write

V= C2IT (1 + 2508501 - DsioJ[1 - Ds; ) - 1. (41)

The contribution to Z., from a disconnected diagram is sim-
ply the product of the contributions from each connected
component. We now argue that the contribution to Z, from
a single connected diagram is of order n. Note that V;; is a
multinomial in the s,’s whose constant term is proportional
to n. Thus the contribution to Z,., will get at least one factor
of n, either from the constant term in a V; j» OF from a sum
over replica indices from terms in a V;; involving an s op-
erator. Thus using the n— 0 limit of the replica formalism we
have eliminated unlinked diagrams.

Now we consider the leading loop corrections to Z".
These come from the smallest loops that can be drawn on the
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FIG. 3. Leading loop corrections to Z" for the hypercubic lattice (top) and
for the plane triangular lattice (bottom).

lattice. In Fig. 3 we show these loops for both the
d-dimensional hypercubic lattice and the plane triangular lat-
tice. Here we will explicitly evaluate only the corrections
from the smallest possible loop diagrams.

We will now show that this expansion involves evaluat-
ing a modified dimer partition function for diagrams with no
free ends. The contribution to the replica partition function
from such a diagram I is given by

fii
6Zrep(r) =Tr H g? H <_L -1
iel  (ijyel’ \8i§;
=ndF(I) + O(n?). (42)
The notation i € I' means that the site i is a site covered by at
least one bond of I'. We do not change the result for SF(I") if

we divide this by a quantity which differs from unity by
terms of order n. So, for later convenience we write

Tr{Hi ergqu<ij> e r(fij/gigj -1 )}
Tr Hierg? .

é\Zrep(l-‘) = (43)

We now expand the product over bonds, into its 231 terms,
where Ng(I') is the number of bonds in the set I". In so doing
note that when considered as a multinomial series in {s;,},
each term has the limiting value unity as n— 0 (but the sum
of all 2V5 terms is zero in this limit). Since we are interested
in the limit n—0, we consider d8Z.,(I')/dn (evaluated at
n=0) and write
déZ,., (I

_rEP_) — E (- ])NB(F)_NB(V)G(‘)/)’ (44)

dn yel

where the sum is over the 2V51)— 1 nonempty subsets y of I,
including y=TI". (The term corresponding to the empty set is
unity and therefore drops out when differentiated with re-
spect to n.) Here

d | Trllic,gfTlc (fii/ 8i8))

G(y)=— 45
) dn TrHieyg? (43)

Because we divided by the factor in the denominator, it is no
longer necessary to involve sites in I" which are not in . The
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subtractions of subdiagrams indicated in Eq. (44) define the
cumulant operation (indicated by a subscript ¢), so we write

SF(T) = G,(T), (46)

where G,(I') is the right-hand side of Eq. (44). This repre-
sentation is not very efficient because it contains 2V -1
terms, many of which are either zero or are identical to one
another. The following equivalent recursive definition is
more convenient:

G(y=G(y - X 'G(y), (47)

Yey

where the prime indicates that in the sum over subsets Yy’ we
do not include ' ="y. For the smallest loop on a hypercubic
lattice, namely, a square of four bonds, there are no nonzero
subtractions and G,.(y) is equal to its “bare” value G(7y).
More generally Eq. (47) has many fewer terms than Eq. (44)
and furthermore, all the cumulants of the subdiagrams will
have been previously calculated in a lower order calculation.
So, to implement the cumulant subtraction we only need to
subtract the cumulant contributions of subgraphs with no
free ends.
It remains to discuss the calculation of G(y). We take

g:=Cl1(1+Ds;) = Cll éia (48)
and

fij= ITa +28iaSja) = Hfij;ov (49)
Then

G( ) _ i C_2N8<7)HaTrHie yg?aH<ij> € y(fij;a/giagja)
V= dn HaTrHie 'ygA?a

= L[N0+ gDy NP, (50)

where N,(7y) is the number of sites in y and Q(y) is a parti-
tion function for the graph 7y,

l+ZS,~s]~ ]

Q()’):TY[H (1+Ds) 11 (1+Ds;)(1+Ds))

iey (ijyey

= Tr[H (1+Ds)a4 T] (1+ zsisj)], (51)

iey (ijyey

where ¢,(7y) is the number of sites neighboring to i which are
connected to i by a bond in . Because of the trace rules, the
product over sites mimics a site-dependent monomer activity
z;=1+[g—q,(y)]D and we therefore have

o(y) = {H zi]Q(v;zi,: (zzj), (52)
iey

where Q is the grand partition function for the set of bonds y
in which the bond (ij) has the bond-dependent activity z;;
=z/(zz)),
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Q(?’;{ZU}) =Tr H (1+ Zijsisj)- (53)

{ijyey

Thus the renormalized free energy associated with a diagram
with no free ends is only slightly more complicated than its
unrenormalized (g;=1) value. To summarize,

1+qD)
1+ oD

G(y) == Ny(y)In(1 +¢D) + NB(7)1n<

+ 2 In(1+[g-g(»ID) +In O(y:{z,}).  (54)
iey

It is a remarkable fact that for a diagram y with no loops,
G(7y) vanishes and this forms a nice check of computer pro-
grams used to evaluate G(7y) for an arbitrary diagram. (This
is easy to check for small diagrams.) Furthermore, for a dia-
gram with loops and which has a free end, G(y) does not
vanish, but its cumulant G.(y) does vanish. (This is also a

nice check of computer programs.)
For the hypercubic lattice we consider the leading cor-
rection from a square of four nearest neighbor bonds, y. So
we use Eq. (54) with g=4 and ¢,(y)=2, so that z;;=z/(1

+2D)2. Then Q(y)=1+4z;+2z;; and

1+4D>
1+3D

G(y)=4In(1+2D)-41n(1 +4D)+4ln(
1 [1 pat 227 ]
+ + +
LT 202 T (1+20)
=—41n(1 +3D) +1n[ (1 +2D)* + 4z(1 + 2D)?
+2Z2]. (55)
Now use 1+3D=z/D from Eq. (38), so that
D2 4 D2 D2 2 D4
G(y)=In (1——) +4—<1__> +2=
4

Z < Z

D8

=ln|:1+—4]. (56)
Z

For z, small D is proportional to z and this diagram gives a

contribution to the free energy of order z*. Since there are

d(d—1)/2 squares per site, the perturbative contribution to

the free energy per site is

1 D?
5F=5d(d— 1)ln[1 + Z—4]. (57)

The dimer density then follows using Eq. (17) and the results
are given in Table I for a square lattice.

We now identify the expansion parameters in this formu-
lation. It is clear that the free energy, F, is obtained as a sum
of contributions associated with diagrams having no free
ends, the smallest of which are shown in Fig. 3. This devel-
opment will lead to an evaluation of F as a power series in
the activity,

F=> Fz" (58)

n

From Eq. (40) we see that for the Bethe lattice and for large
qF,~q"/n. We assert that the contributions to F, from a
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TABLE 1. First loop correction for the square lattice for the density of
dimers (w=N,/N) as a function of z. Here m is the value for the Bethe
lattice for g=4, | is the value when the first loop correction, Eq. (57), is
included, and 7 is the “exact” result obtained by extrapolation (Ref. 5) of
the series of Gaunt (Ref. 22).

z T ™ TE
0.005 180 0.010 000 0.010 000 0.010 000
0.010 742 0.020 000 0.020 000 0.020 000
0.023 156 0.039 999 0.039 999 0.040 000
0.037 575 0.059 997 0.060 000 0.060 000
0.054 413 0.079 990 0.080 000 0.080 000
0.074 195 0.099 978 0.100 000 0.100 000
0.097 587 0.119 954 0.119 999 0.120 000
0.125 452 0.139917 0.139 998 0.140 000
0.158 915 0.159 862 0.159 996 0.160 000
0.199 466 0.179 784 0.179 991 0.180 000
0.249 111 0.199 679 0.199 982 0.200 000
0.310 597 0.219 543 0.219 968 0.220 000
0.387 766 0.239 370 0.239 945 0.240 000
0.486 115 0.259 158 0.259 909 0.260 000
0.613 728 0.278 904 0.279 857 0.280 000
0.782 881 0.298 607 0.299 783 0.300 000
1.012 941 0.318 271 0.319 684 0.320 000
1.335914 0.337 903 0.339 556 0.340 000
1.807 776 0.357 516 0.359 397 0.360 000
2.533 661 0.377 128 0.379 204 0.380 000
3.730 072 0.396 761 0.398 970 0.400 000
5.902 289 0.416 436 0.418 682 0.420 000

10.466 788 0.436 180 0.438 318 0.440 000
22.802 101 0.456 068 0.457 892 0.460 000
81.673 705 0.476 432 0.477 641 0.480 000

diagram 7y [which we denote 8F(7y)] are of order
SF,(WIF, ~ g, (59)

where r(7y) is an integer which increases with the size and
complexity of the diagram. For instance, for a square of four
bonds Eq. (57) indicates that r=2 and for a loop of 2n bonds
a similar result shows that r=n. So our diagrammatic formu-
lation generates corrections in inverse powers of g. Further-
more, if one expands f;; and g; in powers of z, one sees that
V;j is of order z. This means that a diagram y with Np(7y)
bonds contributes to F(g) at order zV8Y and higher. So our
formulation involves the two expansion parameters z and
1/q.

An entirely analogous calculation gives the leading loop
correction for the triangular lattice from triangles as

DG
SF=Nyln| 1-— |, (60)
<

where Ny=2 is the number of triangles per site. Thus we see
that the leading correction to the Bethe lattice result has the
opposite sign for triangular lattices as compared to hypercu-
bic lattices. The results based on Eq. (60) are given in Table
II.

The present development appears to be related to that of
Ref. 21, but the detailed relationship of the two approaches is
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TABLE II. First loop correction for the triangular lattice. The notation is as
in Table I, but where | includes the loop correction of Eq. (60) and
includes the loop correction derived geometrically in Appendix C.

z ey ™ TE TG
0.003 459 0.009 999 0.009 999 0.010 000 0.009 999
0.011 206 0.030 004 0.029 999 0.030 000 0.029 999
0.025 331 0.060 040 0.059 998 0.060 000 0.059 997
0.043 360 0.090 121 0.089 991 0.090 000 0.089 987
0.066 712 0.120 261 0.119 975 0.120 000 0.119 962
0.097 473 0.150 457 0.149 943 0.150 000 0.149 912
0.138 811 0.180 705 0.179 892 0.180 000 0.179 831
0.195 705 0.210 994 0.209 822 0.210 000 0.209 712
0.276 329 0.241 312 0.239 741 0.240 000 0.239 559
0.394 826 0.271 650 0.269 667 0.270 000 0.269 386
0.577 329 0.302 001 0.299 629 0.300 000 0.299 221
0.876 264 0.332353 0.329 663 0.330 000 0.329 101
1.408 720 0.362 668 0.359 786 0.360 000 0.359 056
2477977 0.392 849 0.389 972 0.390 000 0.389 084
5.067 826 0.422 724 0.420 118 0.420 000 0.419 135

13.932 546 0.452 078 0.450 085 0.450 000 0.449 161
91.850 988 0.480 860 0.479 893 0.480 000 0.479 338

not clear to us. We note that the disconnected diagram of Fig.
3(d) of Nagle21 (which “is required” for his dimer series)
does not appear in our approach.

D. ANISOTROPY

We may generalize the above model to allow for differ-
ent activities along different coordinate axes. (The dimers all
come from a common reservoir but have different interaction
energies with the horizontal and vertical bonds.) For that
purpose we relate the square lattice to a Bethe lattice in
which each site is surrounded by four bonds, two of which
we arbitrarily label as “horizontal” (or x) bonds and the oth-
ers as “vertical” (or y) bonds. The unnormalized probability
of a particular configuration with N, horizontal dimers and
N, vertical dimers is zXNXziY«". If the chemical potential of a
dimer is u and the interaction energy of a dimer with the
underlying bond is €, (a=x,y), then z,=ef* € The frac-
tion of a bonds covered by dimers will be denoted p,, and the
fraction of & bonds which are dimer vacancies will be de-
noted py,

1. Geometrical approach
The geometrical reasoning used before yields
Za = PvlPa (61)

The tree approximation, which is exact for the Bethe lattice,
then yields

Pva= W/(l - pa)s (62)

where W'2 is the probability that a given site is vacant,
where

W=(1-2p,-2p)’, (63)

so that
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px(l _px) - py(l _py)

=W. (64)
Zy Zy
Thus
pa=[1-\1-4z,W2 (65)
and
W=(1-dz,W+\1-4z,W—1)>2 (66)

This equation allows one to calculate W as a function of z,
and z,, from which all the other relevant quantities can be
obtained.

2. Algebraic approach

We use the Hamiltonian

e_ﬁH= H [1+szisj] H [1+Zysisj]7 (67)
(ijyeH ({ij)eV

where the sum € H means we sum over horizontal (x) bonds
and similarly for €V. The operators s; obey the same trace
rules as before. We write the partition function as

z=Tr[] grgr 111+ V1. (68)
i (i)

where for horizontal bonds

Vij= [1+ szisj]/gixgjx -1 (69)
and for vertical bonds
Viy=[1+zys5:/8,,8j,— 1. (70)

Now we expand in powers of V;; and require that diagrams
with either a vertical or a horizontal free end vanish. For
horizontal bonds we require that

Tr; g5.85,V;; =0, (71)
so that
_ Tr; gjxg,z-v[l +szisj] (72)
ix — 2 2 :
Tr; a8y
For vertical bonds we require that
Trj gjzxgjzyvlj = Oa (73)
so that
_ Trj glzxg]_\’[l + Zysl'sj']
ix — Tr 2 2 . (74)
7 8jx8jy
These equations have a solution of the form
giazAa+Basi' (75)
Thus
A +Bs = TI‘J[I + szisj'][Ax + BXSj][Ay + Bysj']2
x o Tl‘j[Ax+Bij]2[Ay+B}SJ]2
2 2 2
_ AA +BA+2AA\B, +52,AA] (76)
AJA;+2ABA; +247A,B,
and
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Tr 1 +z,s5.[A, + Bs;]/[A, + B,s;
A, +B,s;= iL w38 1L - ATA, - i
Trj[Ax + Bxsj'] [Ay + Bysj']
_AJA,+2ABA, +AB, +52,AA, -
© AJAI+2ABAT+24°AB,
Thus if we set B,=b,A, and By=A,b,, then
»  1+b,+2D,
T 142b,+2b,
2 1+2b,+Db,
Y 142b,+2b,
(78)
Asz — #’
1+2b,+2b,
A%b. = sy
YV 1+2b,+2b,
Thus
bx - #’
L+b,+2b,
(79)

bV:—ZV—.
T 1+2b,+by

These equations reproduce those from the geometrical ap-
proach if one makes the identification

pa=b,/[1+2b,+2b,] (80)
and

W=(1+2b,+2b)7". (81)
The density of dimer bonds along « is given by

107 J 5

Pa= N&Zaza = Zaf?za In(A;AJ[1 +2b,+2b,]). (82)

This can be shown to be equivalent to Eq. (64). Thus we

conclude that the algebraic approach agrees with the much

simpler geometrical approach. But, in principle, the algebraic

approach can be used to generate corrections to the tree ap-
proximation for d-dimensional lattices.

lll. INTERACTING DIMERS
A. Geometrical derivation of the exact result

Here we consider the case when two dimers separated by
a single bond (an interacting bond as shown in Fig. 1) have
an interaction energy —a. Thus the energy of a configuration
of dimers on the lattice is —N;a, where N, is the number of
interacting bonds. We start by expressing N; in terms of Njy,.
For that purpose we record the following sum rules for peri-
odic lattices. The first sum rule expresses the fact that each
bond is uniquely a member of one of the four sets shown in
Fig. 1, so that the total number of bonds of the lattice Ny is
given by
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Nv+N1+ND+NH=NB=Nq/2, (83)

where Ny is the number of half bonds (see Fig. 1). The
second sum rule is obtained by imagining putting a stick on
each of the ¢ bonds emanating from each occupied site. The
total number of sticks is obviously ¢(2Ny). Each half bond
has one stick, whereas each interacting bond and each dimer
bond is covered by two sticks, so that

quD:NH+2N1+2ND' (84)
Combining these two relations we get
N1=—Nq/2+(2q—l)ND+Nv. (85)

Thus the probability P(Nj) that there are Nj, dimers on the
lattice is

P(Np) = Q*% ePaNizNp

= const[zeP¥24-DPD D’ (BaNUG) (86)
g

where Q is the partition function, the sum over G runs over
all configurations with Ny, dimers on the lattice, and Ny(G) is
the number of dimer vacancies in the graph G. Similarly

P(Np+ 1) = const X [zeP2R4-DNpH1Y oBaNv(G) - (87)
g/

where the sum over G’ runs over all the graphs with Np+1
dimers on the lattice. Let G"(G) be a graph formed by adding
an additional dimer to a graph G. The additional dimer is, of
course, placed on one of the dimer vacancies AB in the graph
G. The number of vertices adjacent to A (excluding B) is o,
and the number of vertices adjacent to B (excluding A) is
also o. If m of these 20 vertices are vacant, then the number
of dimer vacancies in the graph G"(G) is Ny(G)—m—1. If we
look at all the different graphs G”(G) which can be generated
by adding a dimer to a particular graph G, m assumes the
values (1,..., 20) with the respective probabilities p(m)
which we shall calculate. Furthermore, since it is quite clear
that the configurations of two small subsections of a large
graph G which are distant from each other are statistically
independent, we assert that the probability distribution p(m)
is the same for almost all graphs G [but p(m) does depend on
Np/N which has the same value for all the graphs G]. Thus
for almost all graphs G we have

20
E eﬁaNV[g”(g)]=Nv(g)eﬁan<g)Ep(m)e—ﬁa(mﬂ)_ (88)
grr(g) m=0

If {G"(G)} is the set of all graphs which can be generated by
adding a dimer to a particular graph G, and 25{G"(G)} is the
set which is the union of all the sets {G"(G)}, then Z5{G"(G)}
is identical to the set of graphs {G'}, except that each graph
G’ occurs Np+1 times in the union (since each graph G’ has
Np+1 “ancestors” G which can be obtained by removing a
single dimer). Thus we obtain
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FIG. 4. Left: the bond AB and its environment in a Bethe lattice with ¢
=4. The subsystems 7, and Ty are the regions outside the dotted lines. We
show the sites neighboring to A and B, which are numbered 1-6 (1-20).
There are no indirect paths connecting any pairs of numbered sites which do
not pass through A and/or B. Middle: environment of a bond AB on a square
lattice where we show indirect paths which connect adjacent numbered sites,
in which case the strong form of tree decoupling is not exact. Right: envi-
ronment of a bond AB on a triangular lattice. Here the decoupling is worse
than for a square lattice because (a) there are nearest neighbor bonds con-
necting numbered sites and (b) some neighbors of A are simultaneously
neighbors of B.

(Np + 1)2 ePaNVG") — 2 2 ePeNG"(G)]
g' 9 g

20
N —
m=0

< E Ny(Q) ePeNy(9)
g

20
= (E P(m)e_'ga(mﬂ))ﬁv(ND)

m=0
X D, P9, (89)
G
where
Ny(Np) = 3 Ny(G)ePaNv® / TS (90)
4 g

For a given value of z, the value of Ny which maximizes
P(Np) satisfies the condition P(Np+1)/P(Np)=1,

- = | 20

Ny(N
) ©1)

ND + 1 m=0

[Note that when a=0 this reduces to Eq. (6) for noninteract-
ing dimers.] The preceding statements are true on all lattices
with g nearest neighbors.

We now obtain Ny and p(m) explicitly as functions of
Np, so that Eq. (91) becomes an explicit equation of state for
dimers. We do this using an approximation, which for rea-
sons explained below we call the “strong form of tree decou-
pling,” in which we replace the d-dimensional lattice by a
Bethe lattice. To obtain p(m) we first relate p(m) to the quan-
tity p.on Which we define to be the conditional probability
that site i is vacant when site j is known to be vacant, where
sites i and j are nearest neighboring sites. Recall that A and B
are vacant neighboring sites. We label the vertices adjacent
to A (excluding B) by the index i (i=1,...,0) and the verti-
ces adjacent to B (excluding A) by the values i=o
+1,...,20, as shown in Fig. 4. We define a random variable
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X; which has the value 1 if the vertex i is vacant and the
value 0 if a dimer is touching vertex i. On the Bethe lattice
the X; (i=1,2,...,20) are independent random variables.
Note that P(X;=1) is the conditional probability that a neigh-
bor of B is vacant given that not only B but also A is vacant.
On a Bethe lattice the condition that A is also vacant is
irrelevant in this context, in which case P(X;=1) is just peon,
so that

p(m)=P(X;+Xo+ -+ +X5,=m)

(20-)' m o-m
= o —myPen(1 = Peon)” (92)
and
20
E p(m)e—ﬁa(mﬂ) = e_Ba[pcone_'Ba +1- pcon]za- (93)
m=0

Thus, Eq. (91) becomes

N
1=z—"[e+ 1 = poonel®, (94)
Np

where e=eP?—1 and we replaced Nj+1 by Np in the ther-
modynamic limit. Now we use Eq. (9) which we write in the
form

py=(1=qp)pcon- (95)
Then Eq. (94) becomes

l-qgp .
1=2peon ) [e+1—peon€l®. (96)

It remains to determine p.,, in terms of p.

In order to calculate p.,, (as a function of p), we first
calculate a simpler quantity p’, the conditional probability
that B is vacant, given that bond AB is unoccupied (i.e., not
covered by a dimer). Note that an unoccupied bond is not
necessarily a dimer vacancy, since a dimer may be touching
one or both ends of the bond. We write

p' = P(B vacant|bond AB unoccupied)

B P(B vacant and bond AB unoccupied)
- P(bond AB unoccupied)

= P(B vacant)/P(bond AB unoccupied)
=(1-gp)/(1-p). (97)

On the other hand, we will calculate p’ in terms of the
weights (unnormalized probabilities) of certain graphs, yield-
ing the information which is needed to calculate p,,.

We focus our attention on a bond AB and we continue to
consider the Bethe lattice. For this discussion we divide the
lattice into two parts by cutting the bond AB, so that one part,
T,, contains site A and all sites accessible to site A without
going through site B and the other part, T, is defined simi-
larly, as shown in Fig. 4. On the Bethe lattice, when the bond
AB is unoccupied, these two parts T, and T are independent
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subsystems. In that case we see, from Eq. (86), that the
“weight” of a configuration of either 7, or Ty is obtained as

the product of (a) a factor {=zexp[Ba(2g—1)] for every
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bond covered by a dimer™ (the actual value of ¢ will not
appear in the final results) and (b) a factor eA® for every bond
which is a dimer vacancy. We define

W40 =sum of weights of all graphs on T,, which contain no dimers touching A,

w41 =sum of weights of all graphs on T, which contain one dimer touching A,

wpg,o=sum of weights of all graphs on Tz which contain no dimers touching B,

wpg,1 =sum of weights of all graphs on T which contain one dimer touching B.

Note that we are only concerned with graphs in which the
bond AB is fixed (to be unoccupied), so that weights of
graphs on the subtrees 7, and Ty are well defined. Then

B P(B vacant)
~ P(AB unoccupied)

!

p

o
WA,OWB,OeB + W4, 1WB0

= . (99)
a
WA,OWB,Oeﬁ +Wa oW1 T WA 1WB 1+ WA 1WB 0

The first term in the numerator is the total weight of graphs
in which A and B are vacant (so that bond AB is a dimer
vacancy), and the second term is the total weight of graphs in
which B is vacant and A is occupied (so that bond AB is not
a dimer vacancy). The terms in the denominator are similarly
interpreted. Since P(B vacant)=P(A vacant) far from the
boundary, we have wgowy =wpg wyo. Thus wy /wy o
=wp.1/Wg-

Dividing the numerator and denominator of Eq. (99) by
wa oWp,o We obtain the following relation between p' and u
=wa1/Wap:

,__ePru (100)
p= P+ 2u’
so that
P u _l-gp

= . 101
v’ +2u 1-p (101)

Now we relate p.,, to u,

P(A and B vacant) B
P(A vacant)

o
WA,OWB,OeB

Pcon = - Ba
WA 0Wp0€" +Wao0Wh 1

e+ 1

=—. (102)
e+1l+u

We now solve Eq. (102) for u# and substitute the result into
Eq. (101) to get
@eon— €+ N+ 1)+ (e+ 1)/pen =0, (103)

where N=pa/(1-gp). (Note that as a«—0, p., becomes
equal to p’, as expected.) Thus we get

(98)
[
1- qp PconT
- , (104)
p [Epcon_e_l][pcon_l]
so that Eq. (96) can be written as
G'ZP2
1= —[e+1-penel, (105)
~ Pcon
or
—In(oz) = G(p), (106)
where
G(P) =2In pcon(p) - ln[l - pcon(p)]
+ (20-_ l)ll’l[6+ I- epcon(p)]’ (107)

where p.o,(p) is determined by Eq. (103).**

The physical range of p is [0,1/¢]. As p—0, peon— 1
and G(p) — +%. As p— 1/q, peon— 0 and G(p)—20. One can
show, either analytically or by making computer plots, that if
€ is less than a certain critical value €. (which we shall cal-
culate) then G(p) is a monotone decreasing function of p in
the interval [0,1/¢]. In this case there is a unique solution of
Eq. (106) for p for each positive value of the activity z. If
€> €., then dG/dp is negative for small p and for p near 1/¢,
but there is an intermediate region in which dG/dp>0, as is
illustrated in Fig. 5. In this case there is a certain range of z
in which there are three values of p which satisfy Eq. (106).
As explained in Appendix A, for z less than a certain value
7o(€), which is determined by an equal-area construction, the
physical solution (i.e., the most probable state) is a homoge-
neous state whose density of dimers is given by the smallest
solution of Eq. (106). For z>>z,(e€) the physical solution is a
homogeneous state whose density of dimers is given by the
largest solution of Eq. (106). For z=z((€) the physical solu-
tion is the coexistence of two homogeneous phases whose
densities are the smallest and largest solutions of Eq. (106).

We now will calculate €, by determining the range of €
for which the equation G'(p)=0 has two solutions for p in
[0,1/4]. We have
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FIG. 5. Schematic graphs of G(p) for e<e, (left) and for €> €. (right). In
the right panel we show the line at —In[oz((€)] at which the net area between
the line and the curve of G(p) is zero. This is the “equal area” construction
which gives z,(€). We also show lines for a value of z (z—) which is less than
zo(€) and a value of z (z~) which is larger than z,(€). The values of p; are the
values of p at which the line for zy(€) intersects G(p).

G'(p) = i_'_ 1 ~ €o-1)

con 1- Pcon

deOn

(108)
e+1 ~ Pcon€ dp

By differentiating Eq. (103) with respect to p one can show
that dp,.,/dp <0 for p.,, in [0, 1] and p in [0,1/g]. Accord-

ingly, setting G'(p)=0 leads to the quadratic equation
20€p2,, — Peon(1 + 26+ 20€) +2e+2=0. (109)

This equation has two real roots for either e>€, or e<e_
and no real roots otherwise, where €, satisfies

(1+2€+20€)?=160€e(e+1), (110)
which gives
30-1+2Vo(20 -1
6= 2 Vo2o-1) (111)

= 2(o-1)?

Since the two values of p.,, corresponding to e_ are both
greater than 1, we see that two relevant solutions for G’ (p)
=0 occur only for e> €.= €,. From the value of €. we obtain
the transition temperature 7, for the liquid-gas transition for
interacting dimers from

kT _ (112)

€.=e

We close this section by discussing the accuracy of the
“strong form of tree decoupling” in which we approximate a
d-dimensional lattice by a Bethe lattice of the same coordi-
nation number. Recall that in the tree decoupling introduced
above in Eq. (11) it was only assumed that we could neglect
indirect paths which connect nearest neighboring sites A and
B. A comparable approximation here is to assume that the
conditional probability that a neighbor of site A is vacant
given that both sites A and B are vacant is the same as the
conditional probability when only site A is vacant. If this
were the only approximation, then the present treatment of
the interacting dimer system would be expected to be quite
accurate—as is the tree decoupling for noninteracting
dimers.’ However, here we also started from the much stron-
ger assumption that the random variables X; introduced
above in Eq. (92) are independent of one another. On the
Bethe lattice this is obviously true, as can be seen from Fig.
4. However, on a real lattice, this assumption neglects the
many next-nearest neighbor connections between the X;
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sites. This same neglect reappears if one tries to apply the
subsequent calculation of p’ to a d-dimensional lattice. Ac-
cordingly it would not be surprising if the Bethe approxima-
tion for interacting dimers had an accuracy similar to that of
mean field theory for the Ising model in the same spatial
dimensionality. In two dimensions, this would imply that the
Bethe lattice value of €. may differ from the exact value for
a d-dimensional lattice by about 30%.

B. Solution by construction of an effective Hamiltonian

In this section we generalize the effective Hamiltonian
for noninteracting dimers to include dimer-dimer interac-
tions. We continue to mark sites with operators s; which obey
the trace rules of Eq. (15). But in addition we need to have
operators which keep track of interactions. So at each site i
we introduce operators f#; which have zero trace unless ac-
companied by an s; operator. These operators commute with

one another and obey
Trj Sft; = 6]),05}’,0 + 517‘] (l 13)

for p and r each assuming the values 0,1, ...,q. Now we set

e PH=TT (1 +xs;s) (1 + tt)].
(i

(114)

For a configuration of Nj dimer bonds and N; interacting
bonds this Hamiltonian gives a contribution to the partition
function of

[x(1+ &) ]2[1 + 6]M. (115)

To get the desired partition function we thus set d=e®—1
=e€ and x=ze P2,

We now obtain the exact solution for the Bethe lattice.
We could introduce replicas to obtain an expansion for the
free energy rather than for the partition function. However, in
the interest of simplicity we work with the partition function
to obtain an exact solution for the Bethe lattice. Accordingly
Eq. (21) in this case assumes the form

= Tr (1 +zeP%;s) (1 + f’t’j)gﬂ.

i (116)
Tr; &
The solution to this equation is of the form
gi=A+Bsi+Cti+Dsiti‘ (1]7)
To satisfy Eq. (116) the constants must obey
B=ze P Tr; 5;87/Tr; g,
(118)

— —-Ba
D =zee P Tr; sjt;g/ITr; g].

These equations may be written in terms of A, rp=B/A,
re=CIA, and rp=D/A, as



184107-13  Dimer statistics on a Bethe lattice

1 +o(rg+rp)(l+ rc)”_1

A=
1+ q(rg+rp)(1+r0)? °
e P + 1)
Ip= o-1’
1+ o(rg+rp)(l+rp)
(119)
eo(rg+rp)(1+rc)7!
c= 1+ o(rg+rp)(1+r0)7 "
zee Pl +rp)”
rp= = erp.
b 1+ o(rg+rp)(1+ro)7! B
From the equation for - we obtain
T
rp+rp= - (120)

o(1+r0)" Ne-r¢)

Using this in conjunction with the equation for rz we obtain
an equation which determines 7,

rcl(1+ €) B Z(1+7re)”
T+l +rde-ro)]

which can be put into the form

ole=re)(1+ro)"! (121)

—In(oz) =2 1In(e—r¢) —In(ere) + (2o — 1)In(1 + ).

(122)

This is identical to (106) when we make the identification
rcl €=peon- (It has to be admitted that this physical interpre-
tation of ro is not obvious if one only has the effective
Hamiltonian.)

In Appendix B we develop mean field theory by a suit-
able decoupling of the effective Hamiltonian and, as ex-
pected, we obtain results qualitatively similar to those for the
Bethe lattice.

IV. QUENCHED RANDOMNESS
A. Dimers on percolation clusters at infinite fugacity

Here we consider the statistics of dimers on a quenched
random lattice in which sites can be either X sites with prob-
ability p or Y sites with probability 1-p. For a given con-
figuration C (i.e., for a given distribution of X and Y sites),
the grand canonical partition function, Z(C;{z}), for dimer
coverings is calculated as

Z(Ciizh) = E oA A A (123)

where the sum is over all arrangements A of 0, 1, 2, etc.,
hard-core dimers, n,5(.A) is the number of dimers covering
an A site and a B site in the arrangement A (where A and B
each assume the values X and Y), and z, is the activity of an
AB dimer. Then the quenched average free energy F is cal-
culated as

F(p{z}) = g P(C:p)n Z(C:{z}), (124)

with P(C;p)=p™©(1-p)»9, where n,(C) (n,(C)) is the
number of X (Y) sites in the configuration C. From this
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quenched free energy one then obtains the average number
of AB dimers as

IF(p;{z})

125
Fn (125)

Nas(pi{zh) = 248

An exact result for the dimer density on a Bethe lattice
does not seem easy to obtain. However, we now give an
exact solution for the dimer density on a Bethe lattice in the
limit zyy— o0 and zyy=zyy— 0. Thus we consider Mp(p), the
average of the maximal number of dimers which can be
placed on percolation clusters of X sites. Even in this limit
the result is not trivial because the constraint that dimers do
not overlap plays a variable role depending on the compact-
ness of the cluster.

To obtain the exact solution we will explicitly evaluate
the expansion of Mp(p) in powers of p. For this purpose we
temporarily consider M, as a function of the set of p,’s,
where p; is the probability that site i is present (i.e., is an X
site). Then we write

MD({pt}) = E MD(O, ’0’pi’0’ ,0)
+ 2 [M)(0, ...,0,p;,0, ...,0,p;,0, ...,0)
i<j
—MD(O, ,0,pi,0, ,0)
_MD(O,...,O,pj,O, .,0)]+ b (]26)
We write this as
Mp(ipih) = E Mp(pi)e+ 2 Mp(piup))e
i<j
+ > Mp(pipjsPi)e -+ » (127)

i<j<k

where we only indicate as arguments those p,’s which are
nonzero and we introduce the cumulants via

Mp(p).=Mp(py),
(128)
MD(pi’pj)c = MD(P:»P,‘) - Mp(p;) - MD(pj) >

etc., as in Eq. (47). Note that Mp(p;)=0 because a dimer
requires two sites being present. Similarly M(p;,p;) #0
only if sites i and j are nearest neighbors. One can show that
the cumulant vanishes for a disconnected diagram. The gen-
eral term (evaluated for p;=p) is

Mp(D).= 2 Mp(y)(-

yel’

I)NF_N}/
= The terms of order p"T in Mp(T")

Ny
=PNF 2 Mp(xy,x,, ... ,XNF)H Xj. (129)
j=1

x==1

In the first line I' denotes a set of p,’s, y is a subset of I’
(with y=I" allowed), and Ny is the number of p;’s in the set
I'. In the last line x;=1 means that the site i is included in the
set and x;=—1 means that the site i is not included. (These
definitions follow from the fact that to get a term of order
pr, we take a factor of p if the site is included and (1-p)
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1//\3/

P

FIG. 6. Small clusters for which we give the cumulant value of M.

— (—p) if the site is not included.) For example, for the sets
of sites shown in Fig. 6 we find that

MD(FI)C =P2,

Mp(I), =P3[1 -2()]= —P3,
(130)
Mp(T3).=p[2-4(1) +3(1)]=p*,

Mp(Ty).=p*1-3(1)+3(1)]=p*.

For I', there is one term with all the x’s equal to +1 and two
nonzero terms with one x; equal —1. For I'5 there is one term
with all the x’s equal to +1, four nonzero terms with one x;
equal —1, and three nonzero terms with two x;’s equal to —1.
For I'; there is one term with all the x’s equal to +1, three
nonzero terms with one x;=—1, and three nonzero terms with
two x;’s equal to —1. These results suggest that for any con-
nected cluster of sites I' on the Bethe lattice one has

Mp(T). = (=p)™r.

Note that in contrast to the cumulant, the bare value Mp(I)
is not simply a function of Ny.

The proof of Eq. (131) is by induction on Ny. We have
explicitly shown this result to be true for N equal to 2, 3,
and 4. We now show that if Eq. (131) is assumed to hold for
Npr=<N-1, then it holds for Np=N (assuming N>2). When
this is proved, the general result is established.

Consider a diagram with N sites and label the sites so
that the Nth site is an “end,” that is, it is connected to only
one other site in the diagram and this other site is labeled
N-1, as shown in Fig. 7. For a Bethe lattice (in contrast to
the case of hypercubic lattices) this construction is possible
because all diagrams have at least one free end.

We will use Eq. (129) for the cumulant, so that

MD(FN)c=pN E

Xx1,xp e xy=x1

(131)

XX * ”xNF(xl’xZ’ 7xN)7

(132)

which we write as

FIG. 7. Cluster of N sites in which site N is a free end.
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Mp(Ty), = PN 2

XX . XN_D

xlX2"'XN_2[A—B+C—D],

(133)

where the algebraic signs reflect the values of the quantity
(.XN_l.xN) with

A =MD(x1,x2"‘XN_2,1,1)»
B=MD(x1,x2' "xN_Zala_ 1)7

(134)
CzMD(.XI,.xz"'-xN_Zy_ 13_ ])9

D=Mp(xi,xs " xy_0,— 1,1).

In terms B, C, and D, the maximal covering by dimers does
not include the bond N—1 to N, because for this bond to be
included obviously both sites N—1 and N must be occupied
(so that xy_;=xy=1). Consider

Y(T'y) =PN E

XXy AN

XXy xyo[— B+ CJ. (135)

This is almost the contribution to the cumulant when the site
N is not included either in the summations or in the covering.
We say “almost” because the sum includes the factor —pxy
which ought to be taken out if we want to identify this with
the N—1 site problem. We have

N
AR
XA XN—2

=(=pp™t D xxyxyo[B-C]

XX N2
= (_ p)MD(F’ —l)c’

where I')_, is the diagram obtained from I'y by omitting the
Nth site.

Now consider A. Suppose the maximal covering does
not actually include the bond N—1 to N. Then clearly, if this
covering is to be maximal it must include a bond from some
site to N—1. But now we may keep the number of dimers
maximal by moving this bond which includes the site N—1
to cover the bond N—1 to N. So, without loss of generality,
in the term A the maximal covering can be chosen so as to
include the bond N—1 to N. Thus for N>1,

XXy Xy~ B+ C]

(136)

A xpxy e xypA =pY > XXy "t AN-2
XX IN=2 XX IN=2
X [MD()CI,)Cz, ,.xN_z) + 1]
(137)

Now if N>2 the term with the 1 will vanish when summed
over x;. (For N=2 there are no summations left and this is a
special case.) Then we see that for N>2

PN

XX IN=2

X125+ XA = pPPM p(Th ) e (138)

where I'y,_, is obtained from I'y by deleting sites N and N
—1. The same reasoning can be applied to term D, but in this
case there is no term with 1. So
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PNE XXy Xyoo(= D) = —PZMD(F;Q_Q)C- (139)
{Xi}
Combining all our results we have (for N>2)
MpTy).=p" 2 xxx[A-B+C-D]
X{.Xp" XN
=(- p)MD(P[IV—l)c" (140)

This completes the proof by induction.

For a general lattice we may make the tree approxima-
tion in which the sum is carried over all diagrams with no
loops. In that case the result is that the average dimer density
is given by

M(p) = Mp(p)INy =NF0‘§ (-p)e, (141)

where N, is the total number of sites, the sum is over all
loopless clusters C of two or more sites, and N is the number

of sites in that cluster. Thus for the Bethe lattice Eq. (127)
yields

M(p)= 2 (= p)"W(n),

n>1

(142)

where W(n) is the number (per site) of clusters of n sites on
a Bethe lattice. (To avoid edge effects it may be more precise
to say that nW(n) is the number of clusters of n sites, one site
of which is the central site in an arbitrarily large Cayley tree.
This definition ensures that this result applies to hypercubic
lattices in the asymptotic limit of large dimensionality.) We
use the result of Fisher and Essam,35

(oc+1)(on+ o)!

Wn+1)= . 143
(n+1) m+D)!(on+o-n+1)! (143)
Therefore the exact result can be written as
= (o+ 1)(on)!
M(p) = —p—_ 144
) gl( 2 nl(on-n+2)! (144)

This result indicates that the singularity in M(p) is at p=
—p”, where p“=(o—1)?"!/0 is the critical concentration for
branched polymers on the Bethe lattice.”’ Curiously then,
dimer statistics on percolation clusters is related to a some-
what artificial model of localization (which is also related to
branched polymer statistics in the same Way31).

For o=1 (a linear chain) this gives

2

14
M(p) = .
1+p

(145)

This result could be obtained far more simply by noting that
the expected number of clusters per site of length n sites is
p"(1-p)? and for a cluster of length 27 or 2n+ 1 the maximal
number of dimers is 7, so that

M(p) =2, (p¥ + p*™* ) (1 - p)’n,

n=1

(146)

which reproduces the result of Eq. (145).
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B. Alternate expression

We now give a closed form expression for M(p). To do
this we construct an expression for d*M/dp?. In this quantity
the binomial coefficient can be expressed as a contour inte-
gral,

147
2 7 (147)

d’M o L[ dz (L+2)™
— =+ )2 (-p) 2f PYRPR
dp n=2
where the contour surrounds the origin. The sum over 7 is a
geometric series which can be summed. After some manipu-
lations we found that

o-1,

5 % (148)

M(p)=p+2zp-

where z is the root of the algebraic equation

(1+20)7=~-2z/p, (149)
which is proportional to p for small p. One can check that
this gives the correct result for o=1. For o0=2 it gives

1
M(p)=7 5l=1-6p- 6p> +4p> + (1 +4p)*?].  (150)

It is necessary to discuss the status of this result. The
step of summing the geometric series and deforming the con-
tour to surround the singularity at z=z, requires that the ratio
of the geometric series, r=—p(1+z)?/z, have magnitude less
than unity somewhere on the positive real axis. The mini-
mum value of || on the positive real axis is pa?/(o—1)7"!
and this leads to the condition p<p“ whose value is given
just below Eq. (144). So the result of Eq. (150) is thereby
established for p<p”. Now we argue that the range of valid-
ity of Eq. (150) actually extends beyond p*. To see this,
suppose we express M(p) as a sum over clusters. Since a
cluster of n sites has probability p™(1—p)o*+!*+=D(@=D_pr(p)
must be of the form

M(p) = (1/p)*®[p(1 - p)” ], (151)
where ®(x) has a power series expansion which should con-
verge as long as p<p,, where p,=(1/0) is the critical con-
centration for the percolation problem on the Bethe lattice.
Since the argument of ® has its maximum value when p
=p,, the form of Eq. (151) provides an exact mapping of the
regime p>p,. onto the regime p<p,.. Therefore Eq. (151)
can be extended to p.<p<1 provided that we understand
that this equation only gives the contribution to M(p) from
finite clusters. For o=2 this mapping is very simple: it im-
plies that we replace p by (1-p) inside the square bracket of
Eq. (150). We have not been able to calculate the contribu-
tion to M(p) from the infinite cluster which appears when p
is greater than p.. Clearly the complete formula for M(p),
including the contribution from the infinite cluster, should
yield M(1)=1/2. Since Eq. (150) does not give M(1)=1/2,
it cannot possibly represent the complete formula for M(p).
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V. RANDOM DEPOSITION
A. Introduction

Here we consider a special case of a model of catalysis4
in which hard-core dimers are randomly deposited on bonds
and the hard-core constraint does not allow two dimers to
intersect the same site. Deposition on all allowable bonds is
equiprobable. A quantity of interest is the final concentration
when no further dimers can be deposited. We have not been
able to construct such a solution on a Bethe lattice. However,
here we give an exact solution of this model in one dimen-
sion.

To characterize this process it is essential to consider
deposition on a line of bonds of finite length in one dimen-
sion. In order to consider deposition recursively, we therefore
introduce the function F(i, ), (with i <j), which is defined to
be the average number of dimers which will ultimately be
deposited in the interval between two preexisting dimers, one
on bond i and the other on bond j. Obviously F(i,j)=F(i
—n,j—n) and as shorthand we set F(1,))=F()).

Let us see what this function is for small argument. It is
clear that F(1,3)=F(1,4)=0 because a new dimer cannot be
deposited on a bond neighboring an occupied bond, since
neighboring bonds share a site which cannot be occupied by
two hard-core dimers. Next consider F(1,5)=F(5). If we
start with dimers on bonds 1 and 5, then an additional dimer
can only be deposited on bond 3, so

F(1,5)=F(5)=1 (152)

is the average number of dimers which will be deposited
between dimers at sites 1 and 5. Similar considerations indi-
cate that F(6)=1 and F(7)=5/3.

Next consider F(1,8). In the first step an additional
dimer will be placed on bonds 3, 4, 5, or 6, each with prob-
ability 1/4. If it is placed on bond 3 (or equivalently on bond
6), then we have added one dimer and will be able to add (on
average) F(1,3)+F(3,8)=0+1=1 further dimer in later
step(s). Therefore in each case these two processes lead to
the deposition of two dimers. So the combined contribution
to F(1,8) from these two cases, each occurring with prob-
ability (1/4), is 8F(1,8)=1. Similarly, if the first new dimer
is placed on bond 4 (or equivalently on bond 5), then we
have added one dimer and will be able to add (on average)
F(1,4)+F(4,8)=0+1=1 further dimer. As before, the con-
tribution to F(1,8) from these two cases, each occurring with
probability (1/4), is 6F(1,8)=1. Therefore we see that
F(8)=2.

B. Recursion relation

Now imagine starting with dimers on bonds 1 and N,
with N>4. The first added dimer can go on bond
3,4,...,N-3,N-2, each with probability 1/(N-4). So, if
we include this added dimer we have
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j=N-2
F(LN) =1+ > [F(Lj) +F(.N)]
j=N=2
=1+ F 1 j
N4 Eé (1))
j=N-2
=1 F(j). 153
v 123 () (153)
Also
Jj=N-3
FIN-1)=1+ F(j). 154
(N=1) =1+~ 2 () (154)
Using these we see that
(N-4)F(N)=(N-5)F(N-1)+1+2F(N-2). (155)
Now we form the generating function
F(x)= X F(N)RY. (156)

N=5

Now multiply Eq. (155) by x" and sum from N=5 to N=c©,
Keeping in mind that F(N) vanishes for N<5 we get

x5

xF,—4F = x’F, — 4xF + +2x°F, (157)
-Xx
where F,=dF(x)/dx. From this we find that
4 —2x
— X l-e
F(x)= . 158
) (1—x)2( 2 ) (158)

To see what this implies about F(N) for large N we write

[

e
(159)
where H,(1)= d"H(x)/dx"|,,. From this we see that
F(N) ~ H(1)N=(1- 6)(N/2), (160)
where
S=e¢?=0.1354 (161)

is the fraction of sites which remain vacant in the jamming
limit (after deposition is completed).

VI. SUMMARY

In this paper we have presented two approaches, which
we call geometric and algebraic, for the analysis of dimer
statistics. Both approaches yield exact results when the lat-
tice does not have loops, as for a Bethe lattice. The charm of
the geometrical method is that it starts from the most basic
statement, namely, that in a grand canonical ensemble, the
activity z is precisely the ratio of the statistical weights of the
N-particle system to that of the N+ 1-particle system. The
virtue of the algebraic approach is that once the Hamiltonian
is constructed using operators whose trace rules incorporate
kinematic restrictions, the standard procedures of statistical
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mechanics can be applied, for instance, to obtain series ex-
pansions for finite dimensional lattices. (This approach was
used”’ to give a field theoretic analysis of the monomer-
dimer problem.) Here we also show that the use of replicas
(which normally are invoked to implement quenched aver-
ages of a random Hamiltonian) can be useful in converting a
series for the partition function into one for its logarithm, the
free energy. Exact solutions for generalizations in which (a)
the lattice is anisotropic or (b) dimer-dimer interactions are
included were also developed using both approaches. We
give an exact solution for dimer statistics on a Bethe lattice
in a simple quenched random potential in which dimers are
placed on percolation clusters. Finally, we developed an ex-
act solution for the fraction of sites which remain vacant
after random disposition is completed in a one-dimensional
system.
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APPENDIX A: ANALYSIS OF THE PHASE TRANSITION

The phase transition in the presence of dimer-dimer in-
teractions is entirely similar to that in the van der Waals gas.

The right-hand side of Eq. (105) gives an explicit for-
mula for zP(Np+1)/P(Np) when Eq. (103) is used.>* Thus
we have

In[P(Np + 1)/P(Np)]= G(p) +In(oz). (A1)

Figure 5 shows schematic graphs of G(p) vs p for € slightly
less than and slightly greater than €.. For 0=2 we find e,
~4.95 and the value of p at the critical point is p.=~0.159,
G(p.)=3.226, and z,~0.0199.

If €> €, and z is close to zg, a horizontal line (dashed in
Fig. 5) at height In(1/0z) will intersect the graph of G(p)
three times, each of the intersections corresponding to a
value of Ny, for which P(Np+1)/P(Np)=1. If the densities
of dimers at the intersections are p; <p, < ps, then we have

Nq P3
In[P(p)/P(p1)]=—= f [G(p) = In(1/a2)]dp.  (A2)
P1

If zy(e) is the value of z such that the area of the loop
below the dashed line at height In(1/07) is equal to the area
of the loop above that line, then P(p;)/P(p;)=1. If z is
slightly less than z;, then the negative area exceeds the posi-
tive area and P(p;)/ P(p;) <1, in which case the stable phase
has p=p,. Note that p, is always less probable than p;. Simi-
larly, if z is slightly greater than zyz=z., then the stable
(most probable) phase corresponds to p=p;. Note that be-
cause of the prefactor Nq/2 before the integral, “most prob-
ably” means “overwhelmingly most probable.”

If we place a density of dimers on the lattice which is
intermediate between p;(z,) and ps3(zo), the lattice will sepa-
rate into regions with coverage at densities p;(zq) and p3(zo),
the size of the two regions being determined by the require-
ment that the total number of dimers is that specified.

If € is slightly greater than €., then the temperature T
is slightly less than 7, and the definition of € implies that
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(T.—T)x(e—¢,). In this case the distance between the two
roots of Eq. (109) is proportional to (e—¢€.)""?, and thus the
distance between the corresponding values of p is also pro-
portional to (e—¢,)!?, which is proportional to (7.—7)"2.
Examination of Fig. 5, without additional analysis, makes it
clear that the difference in density between the two coexist-
ing phases, p;(zy)—p,(zo), is also proportional to (T,.—T)"2.

APPENDIX B: MEAN FIELD THEORY

In this appendix we obtain mean field theory for inter-
acting dimers from the Hamiltonian using the standard de-
coupling even though this Hamiltonian involves operators
which obey unusual trace rules.

In view of the trace rules (extended to infinite ¢) we may
write

-BH _ Zs;s apPiit;
e = [T o,
(ij)

(B1)

where Z=ze™P% Mean field theory is obtained by ignoring
correlated fluctuations and writing

-BH= % [2(si(s) + 5;(s) = (s))
ij

+ a(tr) + 10) = (D). (B2)
Then
Tr; Sl_esiqf<S>+qaﬁ<t>t,- 1B
()= sEsrraaBDn 2(5) 1B’ (B3)
Tr; 5458 4P ] 4 g2(s)ed
Tr, 1,595 racBion; g(s)ed P
0= i (shrqap(y 20 ) pd @B (B4)
Tr; 95 +4eP W 1 4 g7(s)ed
We solve Eq. (B4) for (s) to get
)
S)=—"———, B5
<> qze?PI1 - (1)] (B3
so that Eq. (B3) gives
In{t) = In(g2) + 2qaB{t) + 2 In[1 = (£)]. (B6)

To shorten the discussion we assume a second order
transition in which case the above equations and its two
derivatives with respect to (¢ are zero. Differentiating twice
we get

(B7)

T (B9
The last equation gives 7., the value of (¢) at the critical
point, to be tcsz— 1. Putting this into the preceding equa-
tion gives gafB,.= 2+ (372).

We may compare this with the solution for the Bethe
lattice. For simple models (such as the Ising model) it is
known that the Bethe lattice solution only coincides with
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FIG. 8. A portion of the triangular lattice.

mean field theory for large g. For large g the Bethe lattice
solution for 7, given by Eq. (112) agrees with the present
result.

APPENDIX C: GEOMETRICAL CALCULATION OF
FIRST LOOP CORRECTION FOR THE TRIANGULAR
LATTICE

For the triangular lattice, a simple geometrical argument
permits us to calculate most of the difference between the

“exact” value of Np/N (notation as in Table I) and the value
given by the Bethe approximation. The argument depends on
the “tight” structure of the triangular lattice, and we have not
been able to extend the argument to the square lattice. Fur-
thermore, unlike the “loop corrections” calculated in Sec.
II C, our geometrical calculation is not the first term in a
systematic series of corrections. Nevertheless, the calculation
is simple and remarkably accurate. From Eq. (7) we have

1/z=pylp, (C1)

where py is the probability that adjacent sites A and B are
both vacant and p is the probability that a bond is occupied.
Clearly

P(B vacant) = P(B vacant and A vacant)
+ P(B vacant and A occupied). (C2)

Consider the section of the triangular lattice shown in
Fig. 8. We see that

P(B vacant) = P(A vacant) =1 - 6p (C3)
and we set

P(B vacant and A vacant) = (1 —6p)(p’), (C4)
where

p' = P(B vacant|A vacant). (C5)
Furthermore

P(B vacant and A occupied)
= P(B vac and AE occ) + P(B vac and AD occ)
+ P(B vac and AF occ) + P(B vac and AC occ)
+ P(B vac and AG occ). (Co6)

We now estimate each of the terms on the right-hand
side of this equation. It seems evident that there is
very little difference between P(B vacant|AE occ) and
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P(B vac|A vacant), since the influence of the extra dimer
would have to propagate over a long tortuous path. Thus we

write P(B vac and AE occ)=(p)(p’). Similarly, and on
slightly weaker ground, we write
P(B vacant and AD occupied)
= P(B vacant and AF occupied) = (p)(p'). (C7)

To estimate P(B vac and AC occ) we note that if AC is oc-
cupied then AB and CB must be unoccupied. As far as state
of site B is concerned, it makes little difference whether we
specify that bond AC is occupied or that bonds AB and CB
are unoccupied, because the effect of the presence of the
dimer AC on the state of site B is very indirect. Thus we
make the approximation that

P(B vacant|AC occupied)
= P(B vacant|/AB and BC unoccupied). (C8)

However, the conditional probability that B is vacant, given
that AB and CB are unoccupied, is (1-6p)/(1-2p), so that
approximately

P(B vac|AC occ) = (1 -6p)/(1-2p), (C9)
and thereby that

P(B vac and AC occ) = p(1 —6p)/(1-2p). (C10)

Now we use our evaluation of each term on the right-hand
side of Eq. (C6) to write Eq. (C2) as

(1-6p)=(1-6p)(p") + (3p)(p)

+(2p)(1 = 6p)/1 = 2p. (C11)
Solving for p’ we find that
p'=(1-6p)(1-4p)/(1-2p)(1-3p) (C12)
and Eq. (C1) yields
1/z=(1-6p)(p")/(p) = (1 - 6p)*(1 = 4p)/
(p)(1-2p)(1-3p). (C13)

The computer readily calculates p for each value of z in

Table II. The corresponding value of Nj,/N, which we call
g, 18 3p and is exhibited in Table II.

Thus, a simple geometrical argument yields a good esti-
mate of the “first loop correction” for the triangular lattice.
However, we have been unable to make a corresponding ar-
gument for the square lattice, nor can we extend this argu-
ment in an orderly way to make higher order corrections.
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