
C H A P T E R 1

What the ancients knew

The modest goal of this book is to take you from the mid-nineteenth century, where
first-year physics courses often end, to the science headlines you read this morning.
It’s a long road. To get to our destination on time, we’ll need to focus tightly on just
a few core issues involving the interplay between energy, information, and life.

We will eventually erect a framework, based on only a few principles, in which to
begin addressing these issues. It’s not enough simply to enunciate a handful of key
ideas, of course. If it were, then this book could have been published on a single wallet
card. The pleasure, the depth, the craft of our subject lie in the details of how living
organisms work out the solutions to their challenges within the framework of physical
law. The aim of the book is to show you a few of these details.

The remaining chapters of this book open with a biological question, and a terse
slogan encapsulating a physical idea relevant to the question. Think about these as
you read the chapter.
Biological question: How can living organisms be so highly ordered?
Physical idea: The flow of energy can leave behind increased order.

1.1 HEAT

Living organisms eat, grow, reproduce, and compute. They do these things in ways
that appear totally different from man-made machines. One key difference involves
the role of temperature. For example, if you chill your vacuum cleaner, or even your
television, to a degree above freezing, these appliances continue to work fine. But try
this with a grasshopper, or even a bacterium, and you find that life processes practically
stop. (After all, that’s why you own a freezer in the first place.) Understanding the
interplay of heat and work will become a central obsession of this book. This chapter
will develop some plausible but preliminary ideas about this interplay; Part II of the
book will sharpen these ideas into precise, quantitative tools.

1.1.1 Heat is a form of energy

When a rock of mass m falls freely, its altitude z and velocity v change together in
just such a way as to ensure that the quantity E = mgz+ 1

2mv
2 stays constant, where

g is the acceleration of gravity at Earth’s surface.

Ex.
Show this.
Solution: We need to show that the time derivative dE

dt equals 0. Taking v to be the

velocity in the upward direction ẑ, we have v = dz
dt . Applying the chain rule from

calculus then gives dE
dt = mv(g + dv

dt ). But the acceleration, dv
dt , is always equal to

−g in free fall. Hence, dE
dt = 0 throughout the motion: The energy is a constant.
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1.1 Heat 3

Gottfried Leibnitz obtained this result in 1693. We call the first term of E (that is,
mgz) the potential energy of the rock, and the second term (1

2mv
2) its kinetic energy.

We’ll call their sum the mechanical energy of the rock. We express the constancy of
E by saying that1 “mechanical energy is conserved.”

In the example just given, the mechanical energy of an object got converted from
one form to another. Objects can also exchange energy among themselves. When an
object A causes the mechanical energy of another object B to increase we say that “A
did work on B.” The change in energy of B is EB,final−EB,initial, which we abbreviate
∆EB . We also call this quantity the mechanical work done on B by A. By conservation
of energy, then, ∆EA (the mechanical work done on A by B) is a negative quantity,
with the same magnitude as ∆EB .

Now suppose that our rock lands in some mud at z = 0. The instant before it
lands, its kinetic energy is nonzero, so E is nonzero, too. An instant later, the rock
is at rest in the mud and its total mechanical energy is zero. The rock did work on
the mud, but where did that energy go? Is mechanical energy not conserved in the
presence of mud? Every first-year physics student is told that indeed, a mysterious
“frictional” effect in the mud drained off the mechanical energy of the rock. The genius
of Isaac Newton lay in part in his realizing that the laws of motion were best studied
in the context of cannonballs and planets, where complications like frictional effects
are insignificant: Here the conservation of energy, so apparently false on Earth, is
most clearly seen. It took another two centuries before others would arrive at a precise
statement of the more subtle idea that

Friction converts mechanical energy into thermal form. When thermal
energy is properly accounted for, the accounts balance.

(1.1)

Everyday speech uses the word heat as a synonym for thermal energy, and we will
follow that shorthand. Thus, Idea 1.1 claims that the actual conserved quantity is not
mechanical energy, but the total energy, the sum of the mechanical energy plus heat.

But what is friction? What is heat? Merely giving it a name does not mean we
have understood, or even defined, it! Later chapters will take up this challenge in
biophysical contexts, but for now, here is a practical question to ponder: If energy is
really conserved, then it cannot be created or destroyed, so why must we be careful
not to “waste” it? Indeed, what could “waste” even mean? We’ll need to look a bit
more deeply before we really understand Idea 1.1.2

Idea 1.1 says that friction is not a process of energy loss but rather of energy
conversion, just as the fall of a rock converts potential to kinetic energy. You may have
seen an illustration of energy conversion in a school exercise exploring the pathways
that could take energy from the Sun and convert it to mechanical energy, for example,
a trip up a hill (Figure 1.1).

A point your schoolteacher may not have mentioned is that, in principle, all
the energy conversions in Figure 1.1 are two-way: Light from the Sun can generate
electricity in a solar cell, that energy can be partially converted back to light with a
light bulb, and so on. The key word here is partially. We never get all the original
energy back in this way: Some is lost as heat, in both the solar cell and the light bulb.
The word lost doesn’t imply that energy disappears, but rather that some of it makes
a one-way conversion to thermal form.

1Émilie du Châtelet seems to have been responsible for conceptualization of energy as a distinct
concept, and disseminated that view in her translation and commentaries on Newton.
2Throughout this book, the references Equation n.m, Idea n.m, and Reaction n.m all refer to a
single sequence of numbered items. Thus Equation 1.2 comes after Idea 1.1; there is no Idea 1.2.
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4 Chapter 1 What the ancients knew
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Figure 1.1: [Diagram.] Various ways to get up a hill. Each arrow represents an energy-conversion process. Al-
though total energy is conserved at every step, nevertheless each process shown irreversibly converts some
energy to thermal form.

The same idea holds for the falling rock. We could let it down on a pulley, taking
some of its gravitational potential energy to run a lawnmower. But if we just let it
plop into the mud, its mechanical energy is lost. Nobody has ever seen a rock sitting
in warm mud suddenly fly up into space, leaving cold mud behind, even though such
a process is perfectly compatible with the conservation of energy!

So, even though energy is strictly conserved, something has been wasted when we
let the rock plop. To make a scientific theory of this something, we’d like to find an
independent, measurable quantity describing the “quality” or “usefulness” of energy;
then we could assert that sunlight, or the potential energy of a rock, has high quality,
whereas thermal energy (heat) has poor quality. We could also try to argue that the
net quality of energy always degrades in any conversion, and thus explain why the
conversions indicated by arrows in Figure 1.1 are so much easier than those moving
against the arrows. Before doing these things, though, it’s worthwhile to recall how
the ancients arrived at Idea 1.1.

1.1.2 Just a little history

Physicists like a tidy world with as few irreducible concepts as possible. If mechanical
energy can be converted to thermal energy, and (partially) reconverted back again,
and the sum of these forms of energy is always constant, then it’s attractive to suppose
that in some sense these two forms of energy are really the same thing. But we can’t
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1.1 Heat 5

build scientific theories on æsthetic, culturally dependent judgments—Nature cares
little for our prejudices, and other eras have had different prejudices. Instead, we must
anchor Idea 1.1 on some firmer ground.

An example may help to underscore this point. We remember Benjamin Franklin
as the great scientist who developed a theory of electricity as an invisible fluid. Franklin
proposed that a positively charged body had “too much” of this fluid3 and a negative
body “too little.” When such bodies were placed in contact, the fluid flowed from
one to the other, much like joining a cylinder of compressed air to a balloon and
opening the valve. What’s less well remembered is that Franklin, like most of his
contemporaries, had a similar vision of heat. In this view, heat also was an invisible
fluid. Hot bodies had “too much,” cold bodies “too little.” When such bodies were
placed in contact, the fluid flowed until the fluid was under the same “pressure” in
each—or in other words, until both were at the same temperature.

The fluid theory of heat made some superficial sense. A large body would need
more heat fluid to increase its temperature by one degree than would a small body,
just as a large balloon needs more air than does a small one to increase its internal
pressure to, say, 1.1 times atmospheric pressure. Nevertheless, today we believe that
Franklin’s theory of electricity was exactly correct, but the fluid theory of heat was dead
wrong. How did this change in attitudes come about?

Franklin’s contemporary Benjamin Thompson was also intrigued by the problem
of heat. After leaving the American colonies in a hurry in 1775 (he was a spy for
the British), Thompson eventually became a major general in the court of the Duke
of Bavaria. In the course of his duties, Thompson arranged for the manufacture of
weapons. A curious phenomenon in the boring (drilling) of cannon barrels aroused his
curiosity. Drilling requires a lot of mechanical work, at that time supplied by horses.
It also generates a lot of frictional heat. If heat were a fluid, one might expect that
rubbing would transfer some of it from one body to another, just as brushing your
cat leaves cat and brush with opposite net electrical charges. But the drill bit doesn’t
grow cold while the cannon barrel becomes hot. Both become hot.

Moreover, the fluid theory of heat seems to imply that eventually the cannon barrel
would become depleted of “heat fluid” and that no more heat could be transferred by
additional friction. This is not what Thompson observed. One barrel could generate
enough heat to boil a surrounding bath of water. The bath could be replaced by cool
water, which would also eventually boil, ad infinitum. A fresh cannon barrel proved
neither better nor worse at heating water than one that had already boiled many liters.
Thompson also weighed the metal chips cut out of the barrel and found their mass
plus that of the barrel to be equal to the original mass of the barrel: No material
substance had been lost.

What Thompson noticed instead was that heat production from friction ceases the
moment we stop doing mechanical work on the system. This was a suggestive observa-
tion. Later research, presented independently in 1847 by James Joule and Hermann
von Helmholtz, went much further. Joule and Helmholtz upgraded Thompson’s quali-
tative observation to a quantitative law: The heat produced by friction is a constant
times the mechanical work done against that friction, or

(heat produced) = (mechanical energy input)× (0.24 cal/J). (1.2)

3Franklin’s convention for the sign of charge was unfortunate, at least from the viewpoint of first
year physics. Today we know that the mobile carriers of charge in a copper wire (electrons) each
carry a negative quantity of charge in his convention. However, in later chapters of this book the
mobile carriers of charge will be ions, which can be either positive or negative.
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6 Chapter 1 What the ancients knew

Let’s pause to sort out the shorthand in this formula. We measure heat in calories:
One calorie is roughly the amount of heat needed to warm a gram of water by one
degree Celsius.4 The mechanical energy input, or work done, is the force applied (in
Thompson’s case, by the horse), times the distance (walked by the horse); we measure
it in joules just as in first-year physics. Multiplying work by the constant 0.24 cal/J
creates a quantity with units of calories. The formula asserts that this quantity is the
amount of heat created.

Equation 1.2 sharpens Idea 1.1 into a quantitative assertion. It also succinctly
predicts the outcomes of several different kinds of experiments: It says that the horse
will boil twice as many liters of water if it walks twice as far, or walks equally far
while exerting twice the force, and so on. It thus contains vastly more information
than the precise but limited statement that heat output stops when work input stops.
Scientists like hypotheses that make such a sweeping web of interlocking predictions,
because the success of such a hypothesis is hard to brush aside as a mere fluke. We say
that such hypotheses are highly falsifiable, because any one of the many predictions of
Equation 1.2, if disproved experimentally, would kill the whole thing. The fluid theory
of heat made no comparably broad, correct predictions. Indeed, as we have seen, it
does suggest some wrong qualitative predictions. This sort of reasoning ultimately led
to the demise of the fluid theory, despite the strenuous efforts of its powerful adherents
to save it.

Suppose that we use a very dull drill bit, so that in one revolution we make little
progress in drilling; that is, the cannon barrel (and the drill itself) are not changed
very much. Equation 1.2 says that the net work done on a subsystem (drill+barrel)
by another (horse) equals the net heat generated in the first one. More generally,

Suppose that a system undergoes a process that leaves it in its original
state (that is, a cyclic process). Then the net mechanical work done on
the system equals the net of the heat it gives off and takes in, once we
convert the work into calories using Equation 1.2.

(1.3)

It doesn’t matter whether the mechanical work was done by a horse, a falling weight,
or a coiled spring.

What about processes that do change the system under study? In this case, we’ll
need to amend Idea 1.3 to account for the energy that was stored in (or released
from) the system. For example, the heat released when a match burns represents
energy initially stored in chemical form. A tremendous amount of nineteenth-century
research by Joule and Helmholtz (among many others) convinced scientists that when
every form of energy is properly included, the accounts balance for all the arrows in
Figure 1.1, and for every other thermal/mechanical/chemical process. This generalized
form of Idea 1.3 is now called the First Law of thermodynamics.

1.1.3 Preview: The concept of free energy

This subsection is just a preview of ideas to be made precise later. Don’t worry if these
ideas don’t seem firm yet. The goal is to build up some intuition, some expectations,
about the interplay of order and thermal energy. Chapters 3–5 will give many concrete
examples of this interplay, to get us ready for the abstract formulation in Chapter 6.

4The modern definition of the calorie acknowledges the mechanical equivalent of heat: One calorie is
now defined as the quantity of heat created by converting exactly 4.184 J of mechanical work. (The
“Calorie” appearing on nutritional statements is actually one thousand of the physical scientist’s
calories, or one kcal.)
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1.1 Heat 7

The quantitative connection between heat and mechanical work lent strong sup-
port to an old idea (Newton had discussed it in the seventeenth century) that heat
really is nothing but a particular form of mechanical energy, namely, the kinetic energy
of the individual molecules constituting a body. In this view, a hot body has a lot
of energy stored in an (imperceptible) jiggling of its (invisible) molecules. Certainly
we’ll have to work hard to justify claims about the imperceptible and the invisible.
For example, Chapter 4 will outline some experiments that make thermal motion indi-
rectly visible; later chapters will describe today’s world of single molecule experiments,
where that motion plays a big role. But before doing this, we must deal with a more
direct problem.

Equation 1.2 is sometimes called the “mechanical equivalent of heat.” The discus-
sion in Section 1.1.1 makes it clear, however, that this phrase is a misnomer: Heat is
not fully equivalent to mechanical work, because complete conversion isn’t possible.5

Chapter 3 will explore the view that emerged in the late nineteenth century, which is
that thermal energy is the portion of the total energy attributable to random molec-
ular motion (all molecules at any moment are jiggling in random directions) and so
is distinct from the organized kinetic energy of a falling rock (all molecules have the
same average velocity).

Thus, the random character of thermal motion must be the key to its low quality.
In other words, we are proposing that the distinction between high- and low-quality
energy is a matter of organization. Everyone knows that an orderly system tends to
degrade into a disorganized, random mess. Sorting it back out again always seems to
take work, both in the colloquial sense (sorting a big pile of coins into pennies, nickels,
and so on is a lot of work) and in the physics sense. For example, an air conditioner
consumes electrical energy to suppress random molecular motion in the air of your
room; hence, it heats the outside world more than it cools your room.

The idea in the preceding paragraph may be interesting, but it hardly qualifies as
a testable physical hypothesis. We need a quantitative measure of the “useful” energy
of a system, the part of the total that can actually be harnessed to do mechanical
work.6 A major goal of Chapter 6 will be to find such a measure, which we will call
free energy and denote by the symbol F . But we can already see what to expect. The
idea we are considering is that F is less than the total energy E by an amount related
to the randomness, or disorder, of the system. More precisely, Chapter 6 will show
how to characterize this disorder by using a quantity called entropy and denoted by
the letter S. The free energy will turn out to be given by the simple formula

F = E − TS, (1.4)

where the variable quantity T is called the absolute temperature of the system. (Chap-
ter 6 will define T carefully.) We can now state the proposal that F measures the
“useful” energy of a system a bit more precisely:

A system held at a fixed temperature T can spontaneously drive a process
if the net effect of the process is to reduce the system’s free energy F .
Thus, if the system’s free energy is already at a minimum, no spontaneous
change will occur.

(1.5)

According to Equation 1.4, a decrease in free energy can come about either by lowering
the energy E (rocks tend to fall) or by increasing the entropy S (disorder tends to

5Recall Figure 1.1.
6Later we will add other kinds of “useful” transformations, such as chemical synthesis.
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8 Chapter 1 What the ancients knew

increase). Even a process that is unfavorable in one of these senses can proceed, if
overridden by the other one.

We can also use Equation 1.4 to clarify our idea of the “quality” of energy: A
system’s free energy is always less than its mechanical energy. If the disorder is small,
though, so that TS is much smaller than E, then F ≈ E; we then say that the system’s
energy content is of “high quality.” (More precisely still, we should discuss changes of
energy and entropy; see Section 6.5.4.)

Again, Equation 1.4 and Idea 1.5 are provisional—we haven’t even defined the
quantities T and S yet. Nevertheless, they should at least seem reasonable. In partic-
ular, it makes sense that the second term on the right side of Equation 1.4 should be
multiplied by T , because hotter systems have more thermal motion and so should be
even more strongly influenced by the tendency to maximize disorder than cold ones.
Chapters 6 and 7 will make these ideas precise. Chapter 8 will extend the idea of free
energy to include chemical bond energy, which is also of high quality.

1.2 HOW LIFE GENERATES ORDER

1.2.1 The puzzle of biological order

The ideas of the previous section have a certain intuitive appeal. When we put a drop
of ink in a glass of water, the ink eventually mixes, a process we will study in detail
in Chapter 4. We never see an ink–water mixture spontaneously unmix. Chapter 6
will make this intuition precise, formulating a principle called the Second Law of
thermodynamics. Roughly speaking, it says that in an isolated system molecular
disorder never decreases spontaneously.

But now we are in a bind. We have just concluded that a mixture of hydrogen,
carbon, oxygen, nitrogen, phosphorus, and traces of a few other elements, left alone
and isolated in a beaker, will never organize spontaneously to make a living organism.
Indeed, after millennia of confusion Louis Pasteur convinced scientists around 1861
that such “spontaneous generation” of life never occurs. After all, even the lowliest
bacterium is full of exquisite structure (see Chapter 2), and we have claimed that
such organization does not appear spontaneously. How does any organism manage to
remain alive, let alone create progeny, and even evolve to more complex organisms?
Stated bluntly, our puzzle is, Must we suppose that living organisms somehow lie
outside the jurisdiction of physical law?

At the end of the nineteenth century, many respected scientists still answered
“yes” to this question. Their doctrine was called “vitalism.” Today vitalism has gone
the way of the fluid theory of heat, as answers to the paradox of how living things
generate order have emerged. Sketching a few of the details of these answers, along
with their precise quantitative tests, is the goal of this book. It will take some time to
reach that goal. But we can already propose the outlines of an answer in the language
developed so far.

It’s encouraging to notice that living creatures obey at least some of the same
physical laws as inanimate matter, even those involving heat. For example, we can
measure the heat given off by a mouse, and add the work it does on its exercise wheel
by using the conversion formula (Equation 1.2). Over the course of a few days, the
mouse doesn’t change. The First Law of thermodynamics, Idea 1.3, then says that
the total energy output must be proportional to the food intake of the mouse, and
indeed it’s roughly true. (The bookkeeping can get a bit tricky—see Problem 1.7.)
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1.2 How life generates order 9

Thus, living organisms don’t manage to create energy from nothing. Still, when we
look around, it seems obvious that life is constantly generating order from nothing (that
is, from disorder). To escape from vitalism, then, we must reconcile this commonplace
observation with the Second Law.

Such a reconciliation is easier than it at first sounds. After all, a sealed jar full
of dense water vapor changes spontaneously into a jar with a puddle of water at the
bottom and very little vapor. After this transformation, the inside of the jar is more
organized than before: Most of the water molecules are stuck in a very thin layer
instead of moving freely throughout the interior of the jar. But nobody would be
tempted to believe that an unphysical, occult influence ordered the water molecules!

To see what is happening, we must recall that the Second Law applies only
to an isolated system. Even though the jar with water vapor is sealed, it gave off
heat to its surroundings as the water condensed; so it’s not isolated. And there is
nothing paradoxical about a subsystem of the world spontaneously increasing its order.
Indeed, Section 1.1.3 proposed that a system (in this case, the contents of the jar)
will tend spontaneously to move toward lower free energy F , which is not necessarily
the same as moving toward higher disorder. According to our proposed formula for
F (Equation 1.4), the subsystem’s entropy S can indeed decrease spontaneously (the
water can condense) without raising F , if the energy E also decreases by a large
enough amount (via heat loss).

The Earth, like our jar, is not an isolated system. Hence, the increasing organiza-
tion of molecules as life began to develop does not necessarily contradict the Second
Law. To make that statement more precise, let us look globally at what flows into and
out of Earth. Figure 1.2a depicts the stream of incoming solar energy. Because Earth’s
temperature is roughly stable over the long term, all of this energy must also leave the
Earth (along with a bit of geothermal energy generated here). Some of this energy is
just reflected into space. The rest leaves when the Earth radiates it away as thermal
energy to the rest of the Universe. Thus, Earth constantly accepts energy from the
Sun, a very hot body, and exports it as radiation at its own surface temperature. On
a dead rock like the Moon, this is the whole story. But, as depicted symbolically in
Figure 1.2b,c, there is a more interesting possibility.

Suppose that the incoming energy is of higher “quality” than the outgoing energy
and hence represents a net flow of order into the Earth (Chapter 6 will sharpen this
statement). Then we can imagine some enterprising middleman inserting itself in the
middle of this process and skimming off some of the incoming flow of order, using
it to create more and better middlemen. Looking only at the middle layer, it would
seem as though order were magically increasing. That is,

The flow of energy through a system can leave behind increased order. (1.6)

This is life’s big trick. The middle zone is our biosphere; we are the middlemen.7 Green
plants ingest a high-quality form of energy (sunlight), passing most of it through their
bodies to exit as thermal energy (Figure 1.2b). The plant needs some of this energy
just to resist the degrading tendency of thermal disorder to turn its tissues into well-
mixed chemical solutions. By processing even more energy through its body than this
minimum, the plant can grow and do some “useful work,” for example, upgrading
some of its input matter from a low-energy form (carbon dioxide and water) to a

7A second, largely independent, biosphere exists in hot ocean vents, fueled not by the Sun but by
high-energy chemicals escaping from inside the Earth.
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10 Chapter 1 What the ancients knew
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Figure 1.2: [Diagram.] Energy budget of Earth’s biosphere. (a) Most of the incoming high-
quality energy is degraded to thermal energy and radiated into space, but some gets cap-
tured and used to create the order we see in nonliving structures (cloud formations)—and
in living organisms. (b) What plants do with energy: High-quality solar energy is partly
used to upgrade low-energy molecules to high-energy molecules and the ordered structures
they form; the rest is released in thermal form. (c) What animals do with energy: The
high-quality energy in food molecules is partly used to do mechanical work and create or-
dered structures; the rest is released in thermal form.

high-energy form (carbohydrate).8 Plants consume order, not energy.
Closer to home, each of us must constantly flush about 100 joules per second

(100 W) of high-quality energy through our bodies (for example, by eating the carbo-
hydrate molecules manufactured by plants), even at rest. If we eat more than that,
we can grow and even generate excess mechanical (ordered) energy. As shown in
Figure 1.2c, the input energy again leaves in a lower-quality form (heat). Animals,
too, consume order, not energy.

Again, life doesn’t really create order from nowhere. Life captures order, ultimately
from the Sun. This order then trickles through the biosphere in an intricate set of
processes that we will refer to generically as free energy transductions. Looking only
at the biosphere, it seems as though life has created order.

8Plants can also exert enormous mechanical forces, for example, splitting rocks with their roots or
lifting water from roots to leaves.
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Figure 1.3: [Schematic.] A machine transducing free energy. A cylinder filled with water is separated into two
chambers by a semipermeable membrane. The membrane is anchored to the midpoint of the cylinder. Two
pistons slide freely, thus allowing the volumes of the two chambers to change as water molecules (solid dots)
cross the membrane. The distance between the pistons stays fixed, however, because the water between them
is incompressible. Sugar molecules (open circles) remain confined to the right-hand chamber. (a) Osmotic
flow: As long as the weight is not too heavy, when we release the pistons, water crosses the membrane, thereby
forcing both pistons to the right, lifting the weight, and cooling the subsystem in the dashed box. The sugar
molecules then spread out into the increased volume of water on the right. (b) Reverse osmosis: If we pull hard
enough, however, the pistons will move to the left, thereby increasing the concentration of the sugar solution in
the right-hand chamber and generating heat.

1.2.2 Osmotic flow as a paradigm for free energy transduction

If the trick described in Section 1.2.1 were unique to living organisms, then we might
still feel that they sat outside the physical world. But nonliving systems can transduce
free energy, too: The drawing on page 1 shows a machine that processes solar energy
and performs mechanical work.9 Unfortunately, this sort of machine is not a very
precise metaphor for the processes driving living cells.

Figure 1.3 sketches another sort of machine, more closely related to what we are
looking for. A sealed tank of water has two freely sliding pistons. When one piston
moves to the left, so does the other, because the water between them is practically
incompressible (and unstretchable). Across the middle of the chamber, we place a
membrane permeable to water but not to dissolved sugar molecules. The whole system
is kept at room temperature: Any heat that must be added or removed to hold it at
this temperature comes from (or goes into) the surrounding room. Initially, a lump
of sugar is uncovered on the right side. What happens?

At first, nothing seems to happen at all. But as the sugar dissolves and spreads
throughout the right-hand chamber, a mysterious force begins to push the pistons
to the right. This is an honest, mechanical force; we could use it to lift a weight, as
shown in Figure 1.3a. The process is called osmotic flow.

Where did the energy to lift the weight come from? The only possible source of

9Solar energy evaporates water and raises the vapor into clouds. The machine shown utilizes the
gravitational potential energy of the water in the clouds.
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12 Chapter 1 What the ancients knew

energy is the outside world. Indeed, careful measurements show that the subsystem
must absorb heat from its surroundings to maintain its temperature; somehow that
thermal energy gets converted to mechanical work. Didn’t Section 1.1.3 argue that
it is impossible to convert heat completely back into mechanical work? Yes, but we
are paying for this transaction; something is getting used up. That something is
order. Initially, the sugar molecules are partially confined: Each one moves freely, and
randomly, throughout the region between the membrane and the right-hand piston.
As water flows through the membrane, forcing the pistons to the right, the sugar
molecules lose some of their order (or gain some disorder), being no longer confined
to just one-half of the total volume of water. When finally the left side has shrunk to
nearly zero, the sugar molecules have free run of nearly the entire volume of water
between the pistons; further motion won’t change their disorder significantly. Our
device then stops and will yield no more work, even though there’s plenty of thermal
energy left in the surrounding world. Osmotic flow sacrifices order to organize random
molecular motions into mechanical work done against a load.

We can rephrase the above argument in the language introduced in Section 1.1.3.
Idea 1.5 introduced the idea that the osmotic machine will spontaneously move in the
direction that lowers its free energy F . According to Equation 1.4, F can decrease
even if the potential energy of the weight increases, as long as the entropy increases
by at least a compensating amount. But the previous paragraph argued that, as the
pistons move to the right, the disorder (and hence the entropy) increases. So, indeed,
Idea 1.5 predicts that the pistons will move to the right, as long as the weight is not
too heavy.

Now suppose that we pull very hard on the left piston, for example by increasing
the weight as in Figure 1.3b. This time, a rightward movement of the piston would
increase the potential energy of the weight so much that F increases, despite the
second term of Equation 1.4. Instead, if the weight exceeds a threshold value then
the pistons will move to the left, the region of concentrated solution will shrink and
become more concentrated, and the system will gain order. This really works—it’s a
common industrial process called reverse osmosis (or ultrafiltration). You could use
it to purify water before drinking it.

Reverse osmosis (Figure 1.3b) is just the sort of process we were looking for. An
input of high-quality energy (in this case, mechanical work) suffices to upgrade the
order of our system. The energy input must go somewhere, according to the First
Law (Idea 1.3), and indeed it does: The system gives off heat in the process. We
passed energy through our system, which degraded the energy from mechanical form to
thermal form while increasing its own order. We could even make our machine cyclic.
After pulling the pistons to the left, we dump out the contents of each side, move the
pistons all the way to the right (lifting the weight), refill the right side with sugar
solution, and repeat everything. Then our machine continuously accepts high-quality
(mechanical) energy, degrades it into thermal energy, and creates molecular order (by
separating the sugar solution into sugar and pure water).

But that’s the same trick we ascribed to living organisms, as summarized in
Figure 1.2! It’s not precisely the same—in Earth’s biosphere, the input stream of high-
quality energy is sunlight, whereas our reverse-osmosis machine runs on externally
supplied mechanical work. Nevertheless, much of this book will be devoted to showing
that at a deep level these processes, one from the living and one from the nonliving
world, are essentially the same. In particular, Chapters 6, 7, and 10 will pick up this
story and parlay our understanding into a view of biomolecular machines. The motors
found in living cells differ from our osmotic machine by being single molecules, or

Jump to Contents Index Notation



1.2 How life generates order 13

collections of a few molecules. But we’ll argue that these “molecular motors” are again
just free energy transducers, essentially like Figure 1.3. They work better than simple
machines because evolution has engineered them to work better, not because of some
fundamental exemption from physical law.

1.2.3 Preview: Disorder as information

The osmotic machine illustrates another key idea, which Chapter 6 will develop: the
connection between disorder and information. To introduce this concept, consider again
the case of a load that is less than the threshold for reverse osmosis (Figure 1.3a).

Fig. 1.3a on page 11Suppose that we measure experimentally the maximum work done by the piston, by
integrating the maximum force the piston can exert over the distance it travels. That
is, we let the pistons move gradually, always applying the biggest possible load.

Doing this experiment with temperature fixed by the surroundings yields an
empirical observation:

(maximum work) ≈ N × 1.4 · 10−23J K−1 × T × γ. (1.7)

Here N is the number of dissolved sugar molecules, T is absolute temperature, and γ
is a numerical constant. The precise value of γ is not important right now; you will
find it in Your Turn 7B.

In fact, Equation 1.7 was found to hold for any dilute solution, not just sugar
dissolved in water, regardless of the details of the size or shape of the container and
the number of molecules and over a wide range of temperature. Such a universal law
must have a deep meaning. To interpret it, we apply Equation 1.4 on page 7 to the
boxed subsystem in Figure 1.3a. There is no change of energy in that subsystem as the
pistons move, because everything stays at the same temperature (no kinetic energy
change) and there is no internal spring to store potential energy; hence, ∆E = 0.
We are exploring the proposal that the maximum mechanical work the subsystem
is “willing” to do is minus its change of free energy. Equation 1.4 claims that −∆F
equals room temperature times the change of entropy. Writing ∆S for the entropy
change and combining with the empirical result Equation 1.7 then implies that T∆S ≈
NT × 1.4 · 10−23J K−1 × γ. The temperature cancels from both sides of this result.

We already had the expectation that entropy involves disorder, and indeed, some
order does disappear when the pistons move all the way to the right in Figure 1.3a.
Initially, each sugar molecule was confined to half the total volume, whereas in the
end they are not so confined. Thus, what’s lost as the pistons move is a knowledge of
which half of the chamber each sugar molecule was in—a binary choice. If there are N
sugar molecules in all, we would need to specify N binary digits (bits) of information
to state where each one sits in the final state, to the same accuracy that we knew it
originally. Combining this remark with the result of the previous paragraph gives

∆S = constant× (number of bits lost).

Thus, the entropy, which we have been thinking of qualitatively as a measure of disorder,
also turns out to have a quantitative interpretation. If we find that biomolecular motors
also obey some version of Equation 1.7, involving a constant with the same overall
magnitude, then we will be on firm ground when we assert that they really are free
energy transduction devices; and we can make a fair claim to have learned something
fundamental about how they work. Chapter 10 will develop this idea.
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1.3 EXCURSION: COMMERCIALS, PHILOSOPHY, PRAGMATICS

And oftentimes, to winne us to our harme
The Instruments of Darkness tell us Truths
Winne us with honest trifles, to betray’s
In deepest consequence.

— Shakespeare, Macbeth

Cell and tissue, shell and bone, leaf and flower, are
so many portions of matter, and it is in obedience
to the laws of physics that their particles have
been moved, moulded, and conformed.

— D’Arcy Thompson, 1917

Section 1.2 dove directly into the technical issues that we’ll wrestle with throughout
this book. But before we begin our exploration in earnest, a very few words are in
order about the relation between physical science and biology.

The quotes above were chosen to highlight a fruitful tension between the two
cultures:

• The physical scientist’s impulse is to look for the forest, not the trees, to see that
which is universal and simple in any system.

• Traditionally, life scientists have been more likely to emphasize that, in the
inherently complex living world, frozen accidents of history often dominate what
we see, not universal laws. In such a world, often it’s the details that really matter
most. Some apparently simple regularities may even be superficial distractions.

The views are complementary; one needs the agility to use whichever approach is
appropriate at any given moment and a willingness to entertain the possibility that
the other one is valuable, too.

How can one synthesize these two approaches? Figure 1.4 represents one strategy.
The first step is to look around at the rich fabric of the phenomena around us. Next, we
selectively ignore nearly everything about these phenomena, snipping the fabric down
to just a few threads. This process involves (a) selecting a simplified but real model
system for detailed study and (b) representing the simple system by a mathematical
model, with as few independent constructs and relationships as possible. The steps
(a) and (b) are not deductive; words like intuition and insight apply to this process.

The last step is to (c) deduce from the mathematical model some nonobvious,
quantitative, and experimentally testable predictions. If a model makes many such
successful predictions, we gain conviction that we have found the few key ingredients
in our simplifying steps (a) and (b). Words like hygiene and technique apply to step
(c). Even though this step is deductive, again imagination is needed to find those
consequences of the model that are both nontrivial and practical to test. The best,
most striking results are those for which the right side of the figure opens up to embrace
phenomena that had previously seemed unrelated. We have already foreshadowed an
example of such a global linkage of ideas: The physics of osmotic flow is linked to the
biology of molecular machines.

In the best case, the results of step (c) give the sense of getting something for
nothing: The model generates more verifiable predictions than were apparent in its
bare statement (the middle part of Figure 1.4). The truth of those predictions is often
buried, however, in the mass of raw phenomena we began with (left end of Figure 1.4).
In addition, we may in the process find that the most satisfactory physical model
involves some threads, or postulated physical entities (middle part of the figure),
whose very existence wasn’t obvious from the observed phenomena (left part) but can
be substantiated by making and testing quantitative predictions (right part). One
famous example of this process is Max Delbrück and colleagues’ prediction of the
existence of a hereditary molecule, to be discussed in Chapter 3. We’ll see another
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Figure 1.4: [Vision.] One approach to understanding natural phenomena.

example in Chapters 11 and 12, namely, the discovery of ion pumps and channels in
cells.

Physics students are heavily trained on the right end of the figure, the techniques
for working through the consequences of a mathematical model. But this technical
expertise is not enough. Uncritically accepting someone’s model can easily lead to a
large body of both theory and experiment culminating in irrelevant results. Similarly,
biology students are heavily trained in the left side, the amassing of many details of a
system. For them, the risk is that of becoming an archivist. To avoid both these fates,
one must usually know all the details of a biological system, then transcend them with
an appropriate simple model.

Is the physicist’s insistence on simplicity, concreteness, and quantitative tests on
model systems just an immature craving for certainty in an uncertain world? Certainly,
at times. But at other times, this approach lets us perceive connections not visible “on
the ground” by viewing the world “from above.” When we find such universality, we
get a sense of having explained something. We can also get more pragmatic benefits:

• Often, when we forge such a link, we find that powerful theoretical tools useful
to solve one problem have already been created in the context of another. An
example is the mathematical solution of the helix-coil transition model discussed
in Chapter 9.

• Similarly, we can carry over powerful existing experimental techniques as well.
For example, the realization that DNA and proteins were molecules led Max
Perutz, Linus Pauling, Maurice Wilkins, and others to study the structure of
these molecules with x-ray diffraction, a technique invented to find the structure
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of simple, nonbiological crystals like quartz.
• Finally, perceiving a link between two circles of ideas can lead us to ask new

questions that later prove to be important. For example, even after James Watson
and Francis Crick’s proposal that the DNA molecule was a very long sentence
written in an alphabet with four letters (see Chapter 3), attention did not focus
at once on the importance of finding the dictionary, or code, relating sequences
of those letters to the 20-letter alphabet of amino acids that constitute proteins.
Thinking about the problem as one in information transfer led George Gamow,
a physicist interested in biology, to write an influential paper in 1954 asking this
question and suggesting that answering it might not be so difficult as it at first
seemed.

It may seem that we need no longer content ourselves with simple models. Can’t
massive computers now follow the fine details of any process? Yes and no. Many
low-level processes can now be followed in molecular detail. Nevertheless, our ability
to get a detailed picture of even simple systems is surprisingly limited, in part by the
rapid increase of computational complexity when we study large numbers of particles.
Surprisingly, though, many physical systems have simple “emergent properties” not
visible in the complex dynamics of their individual molecules. The simple equations
we’ll study seek to encapsulate these properties and often manage to capture the
important features of the whole complex system. Examples in this book will include
the powerful property of hydrodynamic scale invariance to be explored in Chapter 5,
the mean-field behavior of ions in Chapter 7, and the elasticity of macromolecules in
Chapter 9. The need to exploit such simplicity and regularity in the collective behavior
of many similar actors becomes even more acute when we begin to study even larger
systems than the ones discussed in this book.

1.4 HOW TO DO BETTER ON EXAMS (AND DISCOVER NEW
PHYSICAL LAWS)

Equation 1.2 and the discussion following it made use of some simple ideas involving
units. Students often see units, and the associated ideas of dimensional analysis,
presented with a brush-your-teeth attitude. This is regrettable. Dimensional analysis
is more than just hygiene. It’s a shortcut to insight, a way to organize and classify
numbers and situations, and even to guess new physical laws. Working scientists
eventually realize that, when faced with an unfamiliar situation, dimensional analysis
is always step one.

1.4.1 Most physical quantities carry dimensions

A physical quantity generally has abstract dimensions that tell us what kind of thing
it represents. Each kind of dimension can be measured by using a variety of different
units. The choice of units is arbitrary. People once used the size of the king’s foot. This
book will instead use primarily the Système International d’Unités, or SI units. In this
system, lengths are measured in meters, masses in kilograms, time in seconds, and
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electric charge in coulombs. The distinction between dimensions and units becomes
clearer when we look at some examples:

1. Length has dimensions of L, by definition. In SI units, we measure it in meters,
abbreviated in this book as m.

2. Mass has dimensions of M, by definition. In SI units, we measure it in kilograms,
abbreviated as kg.

3. Time has dimensions of T, by definition. In SI units, we measure it in seconds,
abbreviated as s.

4. Velocity has dimensions of LT−1. In SI units, we measure it in m s−1 (pro-
nounced “meters per second”).

5. Acceleration has dimensions of LT−2. In SI units, we measure it in m s−2.

6. Force has dimensions of MLT−2. In SI units, we measure it in kg m s−2, which
we also call newtons and abbreviate as N.

7. Energy has dimensions of ML2T−2. In SI units, we measure it in kg m2 s−2,
which we also call joules and abbreviate as J.

8. Electric charge has dimensions of Q, by definition. In SI units, we measure it in
coulombs, abbreviated in this book as coul to avoid confusion with the symbol
C. The flow rate of charge, or electric current, then must have dimensions of
QT−1. In SI units, we measure it in coulombs per second, or coul s−1, also called
amperes, abbreviated as A.

9. We defer a discussion of temperature to Sections 1.5.4 and 6.3.2.

Notice that in this book all units are set in a special typeface, to help you distinguish
them from named quantities (such as m for the mass of an object).

We also create related units by attaching prefixes giga (=109, or billion), mega
(=106, or million), kilo (=103, or thousand), milli (=10−3, or thousandth), micro
(=10−6, or millionth), nano (=10−9, or billionth), pico (=10−12). In writing, we ab-
breviate these prefixes to G, M, k, m, µ, n, and p, respectively. Thus, 1 Gy is a billion
years, 1 pN is a trillionth of a newton, and so on. Forces in cells are usually in the pN
range.

A few non-SI units, like cm (10−2 m) and kcal (103 cal), are so traditional that
we’ll occasionally use them as well. You will find these units in the research literature,
so you might as well get good at interconverting them now. See Appendix A for a list
of all the units in this book; Figure 2.1 on page 34 presents the hierarchy of length,
time, and energy scales of interest to cell biology and Appendix B pulls together the
numerical values of many useful constants.

A few physical quantities are dimensionless (they are also called “pure numbers”).
For example, a geometrical angle is dimensionless; it expresses the circumference of
a part of a circle (dimension L) divided by the circle’s radius (also dimension L).
Nevertheless, we sometimes use dimensionless units to describe such quantities. A
dimensionless unit is just an abbreviation for some pure number. Thus the degree
of angle, represented by the symbol ◦, denotes the number 2π/360. From this point
of view, the “radian” is nothing but the pure number 1 and may be dropped from
formulas; we sometimes retain it just to emphasize that a particular quantity is an
angle.

A quantity with dimensions is sometimes called dimensional. It’s important to
understand that the units are part of any such quantity. Thus, when we use a named
variable for a physical quantity, the units are part of what the name represents. For
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example, we don’t say, “A force equal to f newtons” but rather, “A force equal to f”
where, say, f = 5 N.

In fact, a dimensional quantity should be thought of as the product of a “numerical
part” times some units; this viewpoint makes it clear that the numerical part depends
on the units chosen. For example, the quantity 1 m is equal to the quantity 1000 mm.

Ex. Is ten square micrometers the same thing as the square of 10µm?
Solution: No. The first is 10µm2, or 10×(µm)2 = 10−11 m2. The second is (10µm)2 =
102(µm)2 = 10−10 m2.

To convert from one unit to another, we take any equivalence between units, for
example 1 inch = 2.54 cm, and reexpress it as

1 inch

2.54 cm
= 1.

Then, we take any expression and multiply or divide by 1, canceling the undesired
units. For example, we can convert the acceleration of gravity to inch s−2 by writing

g = 9.8
�m

s2
× 100��cm

�m
× 1 inch

2.54��cm
= 386

inch

s2
.

Finally, no dimensional quantity can be called “large” in any absolute sense. Thus,
a speed of 1 cm s−1 may seem slow to you, but it’s impossibly fast to a bacterium.
In contrast, dimensionless quantities do have an absolute meaning: When we say
that they are “large” or “small,” we implicitly mean “compared with 1.” Finding
relevant dimensionless combinations of parameters is often a key step to classifying
the qualitative properties of a system. Section 5.2 will illustrate this idea, defining the
“Reynolds number” to classify fluid flows.

1.4.2 Dimensional analysis can help you catch errors and recall definitions

Is this a lot of pedantic fuss over something trivial? Not really. Things can get com-
plicated pretty quickly; for example, on an exam. Students sometimes don’t take
dimensional analysis too seriously because it seems trivial, but it’s a very powerful
method for catching algebraic errors. We all make errors; the people who seem to
make fewer errors are often the ones who carry all the units explicitly, through every
step of each calculation. Once you train yourself to do that, it doesn’t cost much time.
The benefit is that you get alerted to an error almost as soon as it occurs, so that you
can easily pinpoint it, fix it, and move on.

Suppose that you need to compute a force. You write down a formula that
contains various quantities. To check your work, write down the dimensions of each
of the quantities in your answer, cancel whatever cancels, and make sure the result is
MLT−2. If it’s not, you probably forgot to copy something from one step to the next.
It’s easy, and it’s amazing how many errors you can find in this way. (You can also
catch your instructors’ errors.)

When you multiply two quantities, the dimensions just pile up: force (MLT−2)
times length (L) has dimensions of energy (ML2T−2). But you can never add or
subtract terms with different dimensions in a valid equation, any more than you
can add dollars to kilograms. Again, if you check your work at every step for such
impossible combinations, then you’ll get immediate warning about any errors that
creep in. You can add euros to rupees, with the appropriate conversion factor, and
similarly meters to miles. Meters and miles are different units that both carry the
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same dimension, namely, length (L). Constantly checking units will also alert you if
you accidentally omit a needed conversion factor.

Another useful rule of thumb involving dimensions is that you can only take the
exponential of a dimensionless number. The same thing holds for other nonlinear
functions, such as sin, cos, and ln. One way to understand this rule is to recall that
expx = 1 + x+ 1

2x
2 + · · · . According to the previous paragraph, this sum makes no

sense unless x is dimensionless. (Besides, that the sine function’s argument is an angle,
and angles are dimensionless.)

Suppose that you run into a new constant in a formula. For example, the force
between two point charges q1 and q2 in vacuum, separated by distance r, is

f =
1

4πε0

q1q2

r2
. (1.8)

What are the dimensions of the constant ε0? Just compare the two sides:

MLT−2 = [ε0]−1Q2L−2.

In this formula, the notation [ε0] means “the dimensions of ε0”; it’s some combination
of L,M,T,Q that we want to find. Remember that numbers like 4π have no dimensions.
(After all, π is the ratio of two lengths, the circumference and the diameter of a circle.)
So right away, we find [ε0] = Q2T2L−3M−1, which you can then use to check other
formulas containing ε0.

Finally, dimensional analysis helps you remember things. Suppose that you’re
faced with an obscure SI unit, say, “farad” (abbreviated F). You don’t remember its
definition. You know it measures capacitance, and you have some formula involving
it, say, E = 1

2q
2/C, where E is the stored electrostatic energy, q is the stored charge,

and C is the capacitance. Starting from the dimensions of energy and charge, you find
that the dimensions of C are [C] = T2Q2M−1L−2. Substituting the SI units second,
coulomb, kilogram, and meter, we find that the natural SI unit for capacitance is
s2coul2kg

−1m−2. That’s what a farad really is.

Ex. Appendix B lists the units of the permittivity of empty space ε0 as F/m. Check this
statement.
Solution: You could use Equation 1.8, but here’s another way. The electrostatic
potential V (r) a distance r away from a point charge q is

V (r) =
q

4πε0r
. (1.9)

The potential energy of another charge q sitting at r equals qV (r). Because we know
the dimensions of energy, charge, and distance, we work out [ε0] = T2Q2M−1L−3, as
we already found. Also, using what we found earlier for the dimensions of capacitance
gives [ε0] = [C]/L, so the SI units for ε0 are the same as those for capacitance per
length, or F m−1.

1.4.3 Dimensional analysis can also help you formulate hypotheses

Dimensional analysis has other uses. For example, it can actually help us to guess new
physical laws.

Chapter 4 will discuss the “viscous friction coefficient” ζ for an object immersed in
a fluid. This parameter equals the force applied to the object, divided by its resulting
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speed; so its dimensions are M/T. We will also discuss another quantity, the “diffusion
constant” D of the same object, which has dimensions L2/T. Both ζ and D depend
in very complicated ways on the temperature, the shape and size of the object, and
the nature of the fluid.

Suppose now that someone tells you that, despite this great complexity, the product
ζD is very simple: This product depends only on the temperature, not on the nature
of the object nor even on the kind of fluid it’s in. What could the relation be? You
work out the dimensions of the product to be ML2/T2. That’s an energy. What sort of
energy scales are relevant to our problem? It occurs to you that the energy of thermal
motion, Ethermal (to be discussed in Chapter 3), is relevant to the physics of friction,
because friction makes heat. So you could guess that if there is any fundamental
relation, it must have the form

ζD
?
= const.× Ethermal, (1.10)

where the overall constant is dimensionless. Moreover, dimensionless constants arising
in physical laws generally have magnitude not very different from 1.

You win. You have just guessed a true law of Nature, one that we will derive in
Chapter 4. In this case, Albert Einstein got there ahead of you, but maybe next time
you’ll have priority. As we’ll see, Einstein had a specific goal: By measuring both ζ
and D experimentally, he realized, one could find Ethermal. We’ll see how this gave
Einstein a way to measure how big atoms are, without ever needing to manipulate
them individually. And . . . atoms really are that size!

What did we really accomplish here? This isn’t the end, it’s the beginning: We
didn’t find any explanation of frictional drag, nor of diffusion, yet, nor the exact value
of the constant in our provisional Equation 1.10. But we know a lot about how that
theory should work. It has to give a relation that looks like Equation 1.10. This result
helps in figuring out the real theory.

T2 Section 1.4.3 ′ on page 29 mentions an exceptional dimensionless constant of
Nature.

1.4.4 Units and graphs

When graphing a continuous quantity, it’s usually essential to state the units, to give
meaning to the labels on the axes. For example, if the axis label says length, m

then we understand that a point aligned with the tickmark labeled 1.5 represents a
measured length that, when divided by 1 m, yields the pure number 1.5.

Two special forms of graphs are often used to make common data trends apparent:

Semilog graphs

Suppose that we wish to check the hypothesis that a dependent (measured) variable
y is related to an independent (experimentally controlled) variable x by a relation of
the form y = bx (an exponential relation). For example, x might be elapsed time and
y might be the rate of clicking in a radiation counter.

More precisely, consider the relation

y/y∗ = Abx/x∗ ,

where the base b and prefactor A are dimensionless constants, and the scales y∗ and x∗
are combinations of units with the same dimensions as y and x respectively. Functions
in this specific family look simple when we plot (log10(y/y∗)) versus x/x∗, because
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log10(y/y∗) = log10A+ (x/x∗) log10 b is a linear function of x; the graph will look like
a straight line if the hypothesis is true.

Graphs of this sort are usually presented in a common style:

• The horizontal position of each point is a constant plus x/x∗, as usual. If x∗ = 1 s,
as in the example given, then the axis might be labeled time, s.

• The vertical position of each point is a constant plus log10 y/y∗, as described
above, but the tickmark labels state actual y/y∗ values (not the values of log10 y).
If y∗ = 1 s−1, as in the example given, then the axis might be labeled rate, s−1.

The second point implies that tickmarks corresponding to uniform increments of y do
not appear equally spaced on the vertical axis. You can see examples of such semilog
graphs in Figures 5.14 on page 182, 6.14 on page 230, 7.14 on page 260, 10.15 on page
399, 10.30 on page 433, and 10.34 on page 440.

If the axis label says time, s, and the tick marks are unequal, as they are on
the figures just mentioned, then we understand that a point aligned with the first
tick after the one labeled 1000 represents a measured time that when divided by 1 s,
yields the pure number 2000; the next is 3000 and so on until we get to 9000; then
the following ticks represent 10 000, 20 000, and so on.

Log-log graphs

Suppose that we wish to check the hypothesis that y is related to x by a relation of
the form y = Bxp (a power law relation). For example, x might be body masses of
organisms and y might be their lifespans.

More precisely, consider the relation

y/y∗ = B(x/x∗)
p,

where the exponent p and prefactorB are dimensionless constants, and y∗ and x∗ are as
before. Functions in this specific family look simple when we plot (log10(y/y∗)) versus
(log10(x/x∗)), because log10(y/y∗) = log10B + p log10(x/x∗)) is a linear function of
log10 x; the graph will look like a straight line if the hypothesis is true.

Here again, a special style is often used when presenting such graphs: Now the
tickmarks on both axes appear unevenly spaced, a visual cue to the kind of graph
being presented. You can see examples of such log-log graphs in Figures 4.7a on page
115; 4.8d on page 116; 4.13 on page 127; 5.13 on page 180; 9.5 on page 333; 9.13a
on page 356; 10.23a on page 411; and 10.33 on page 439.

Arbitrary units

Sometimes a quantity is stated in some unknown or unstated unit. It may not be
necessary to be more specific, but you should alert your reader by saying something like
virus concentration, arbitrary units. Many authors abbreviate this as “a.u.”

When using arbitrary units on one axis, it’s usually a good practice to make
sure the other axis crosses it at the value 0 (which should be labeled), rather than at
some other value.10 (Otherwise, your reader won’t be able to judge whether you have
exaggerated an insignificant effect by blowing up the scale of the graph.)

10Except when using log axes, which cannot show the value 0. But on a logarithmic axis, changing
units simply shifts the graph, without changing its shape, so the reader can always tell whether a
variation is fractionally significant or not.
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1.4.5 Some notational conventions involving flux and density

To illustrate how units help us disentangle related concepts, consider a family of related
quantities that will be used throughout the book. (Appendix A on page 527 gives a
complete list of symbols used in the book.)

•We will often use the symbols N to denote the number of discrete things
(a dimensionless integer), V to denote volume (with SI units m3), and
q to denote a quantity of electric charge (with SI unit coul).

•The rates of change of these quantities will generally be written dN/dt
(with units s−1), Q (the volume flow rate, with units m3 s−1), and I
(the electric current, with units coul s−1), respectively.

•If we have five balls in a room of volume 1000 m3, we say that the average
number density (also called concentration) of balls in the room is
c = 0.005 m−3. Densities of dimensional quantities will be denoted by
the symbol ρ; a subscript will indicate what sort of quantity. Thus,
mass density is ρm (units kg m−3), whereas charge density is ρq (units
coul m−3).

•Similarly, if we have five checkers on a 1 m2 checkerboard, the average
surface number density σ is 5 m−2. Similarly, the surface charge density
σq has units coul m−2.

•Suppose that we pour sugar down a funnel and 40 000 grains fall each
second through an opening of area 1 cm2. We say that the number
flux (or simply “flux”) of sugar grains through the opening is j =
(40 000 s−1)/(10−2 m)2 = 4 · 108 m−2 s−1. Similarly, the fluxes of dimen-
sional quantities are again indicated by using subscripts; thus, jq is the
electric charge flux (with units coul m−2 s−1) and so on.

If you accidentally use number density in a formula requiring mass density, you’ll
notice that your answer’s units are missing a factor of kg; this discrepancy is your
signal to go back and find your error.

1.5 OTHER KEY IDEAS FROM PHYSICS AND CHEMISTRY

Our story will rest on a number of other points known to the ancients (and probably
to you from earlier classes).

1.5.1 Molecules are small

Ordinary molecules, like water, must be very small—we never perceive any grainy
quality to water. But how small, exactly, are they? Once again we turn to Benjamin
Franklin.

Around 1773, Franklin’s attention turned to, of all things, oil slicks. What intrigued
him was the fact that a certain quantity of oil could spread only so far on water.
Attempting to spread it farther caused the film to break up into patches. Franklin
noticed that a given quantity of olive oil always covered about the same area of
water; specifically, he found that a teaspoon of oil (≈ 5 cm3) covered half an acre of
pond (≈ 2000 m2). Franklin reasoned that if the oil were composed of tiny irreducible
particles, then it could only spread until these particles formed a single layer, or
monolayer, on the surface of the water. It’s easy to go one step further than Franklin
did and find the thickness of the layer, and hence the size scale of a single molecule.
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Ex. Find the linear size of one oil molecule.
Solution: Divide the volume of oil by the area of the layer, obtaining about 2.5 nm.

Remarkably, Franklin’s eighteenth-century experiment gives a reasonable estimate of
the molecular size scale!

Because molecules are so tiny, we find ourselves discussing inconveniently big
numbers when we talk about, say, a gram of water. Conversely, we also find ourselves
discussing inconveniently small numbers when we try to express the energy of one
molecule in human-size units like joules—see, for example, the constant in Equation 1.7.
Chemists have found it easier to define, once and for all, one huge number expressing
the smallness of molecules and then relate everything to this one number. That
number is called Avogadro’s number Nmole, roughly the number of atoms in one gram
of (ordinary) hydrogen.11 There are also roughly Nmole oxygen molecules, O2, in 32 g
of oxygen, because each oxygen atom’s mass is about 16 times that of a hydrogen
atom and each oxygen molecule consists of two of them.

Note that Nmole is dimensionless.12 Any collection of Nmole molecules is called
a mole of that type of molecule. In our formulas, the word mole will simply be a
synonym for the number Nmole, just as the word million is a synonym for the number
106.

Returning to Franklin’s estimate, suppose that water molecules are similar to oil
molecules, roughly tiny cubes 2.5 nm on a side.13 Let’s see what we can deduce from
this observation.

Ex. Find an estimate for Avogadro’s number starting from this size.
Solution: We won’t get lost if we carry all the dimensions along throughout the
calculation. One cubic meter of water contains

1�m
3

(2.5 · 10−9�m)3
= 6.4 · 1025

molecules. That same cubic meter of water has a mass of about a thousand kilograms,
because the density of water is ≈ 1 g cm−3 and

1�m
3 ×

(
100��cm

1�m

)3

× 1 �g

1��cm3
× 1 kg

1000 �g
= 1000 kg.

We want to know how many molecules of water make up a mole. Because each water
molecule consists of one oxygen and two hydrogen atoms, its total mass is about
16 + 1 + 1 = 18 times that of a single hydrogen atom. So we must ask, if 6.4 · 1025

molecules have mass 1000 kg, then how many molecules does it take to make 18 g,
or 0.018 kg?

Nmole = 0.018��kg × 6.4 · 1025

1000��kg
≈ 0.011 · 1023. (estimate)

The estimate for Avogadro’s number just found is not very accurate (the modern
value is Nmole ≈ 6.0 · 1023). But it’s amazingly good, considering that the data on

11Appendix A gives the exact value of Nmole.
12 T2 See Section 1.5.4′ on page 29 for more about our notational conventions.
13Really they’re more like slender rods. The cube of the length of such a rod is an overestimate of
its volume, so our estimate here is rough.
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which it is based were taken a quarter of a millennium ago. Improving on this estimate,
and hence nailing down the precise dimensions of atoms, proved surprisingly difficult.
Chapter 4 will show how the dogged pursuit of this quarry led Albert Einstein to a
key advance in our understanding of the nature of heat.

Your Turn 1A

Using the modern value of Avogadro’s number, turn the above calculation around
and find the volume occupied by a single water molecule.

1.5.2 Molecules are particular spatial arrangements of atoms

There are only about a hundred kinds of atoms. Every atom of a given element is
exactly like every other: Atoms have no individual personalities. For example, every
atom of (ordinary) hydrogen has the same mass as every other one. The mass of Nmole

atoms of a particular species is called that atom’s molar mass.
Similarly, every molecule of a given chemical compound has a fixed, definite

composition, a rule attributed to J. Dalton and J. Gay-Lussac. For example, carbon
dioxide always consists of exactly two oxygen atoms and one carbon, in a fixed spatial
relationship. Every CO2 molecule is like every other, for example, equally ready or
unwilling to undergo a given chemical change.

There may be more than one allowed arrangement for a given set of atoms, yielding
two or more chemically distinct molecules called stereoisomers. Some small molecules
flip back and forth rapidly between their isomeric states: They are “labile.” Large
molecules do so very rarely. For example, Louis Pasteur discovered in 1857 that two
sugars containing the same atoms, but in mirror-image arrangements, are chemically
different and do not spontaneously interconvert (Figure 1.5). Such molecules are called
chiral; they will play a key role in Chapter 9.

Your Turn 1B

Build two copies of an object like the one in the figure using clay, marshmallows,
or whatever convenient materials are available. Look at one copy in a mirror and
try rotating the other one in ways different from those shown in the figure. Can
you ever make the second copy superimposable on the mirror image of the first?

T2 Section 1.5.2 ′ on page 29 discusses the subdivision of chemical elements into
isotopes.

1.5.3 Molecules have well-defined internal energies

Section 1.1.2 briefly alluded to the chemical energy stored in a match. Each molecule
carries a definite amount of energy relative to the state in which its constituent
atoms are entirely separated. Often that energy can be attributed to chemical bonds
between the atoms. The chemical bond energy drives toward lower values just as any
other form of stored energy does (for example, the potential energy of the weight in
Figure 1.3). In fact, the chemical bond energy is just another contribution to the
quantity E appearing in the formula for free energy F = E − TS (Equation 1.4).
Molecules generally prefer to indulge in heat-liberating (exothermic) reactions rather
than heat-absorbing (endothermic) ones. For example, two hydrogen molecules, 2H2,
can combine with an oxygen molecule, O2, lowering their bond energy by forming
two water molecules, 2H2O. However, we can also drive an endothermic reaction by
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b

a

c

d

Figure 1.5: [Molecular structure sketches.] A chiral object. (a) The original object.
(b) Mirror image of (a). (c,d) No rotated copy of (a) can be perfectly superimposed on
its mirror image (b), even though (b) has the same atoms, bonds, and bond angles as (a).
However, if the original molecule had had two identical groups (for example, two white
groups in place of one white and one black), then the molecule would have been nonchiral:
(b) could then be superimposed on (a).

adding energy from outside. For example, we can split (or hydrolyze) water by passing
electric current through it. More precisely, Chapter 8 will show that chemical reactions
proceed in the direction that lowers the net free energy, just as in the osmotic machine.

Even an unstable molecule, such as hydrogen peroxide (H2O2), will not immedi-
ately separate, however; often an activation energy must be supplied, just as a chair
will not tip over without an external push. Similarly, a mixture of molecules, such
as H2 and O2, may have bond energies that could be lowered by a reaction, but an
activation barrier prevents this. The required energy can be delivered to a molecule
mechanically, by collision with a neighbor (for example, when we strike a match). But
this is not the only possibility. In one of his five historic papers written in 1905, Albert
Einstein showed that light, too, comes in packets of definite energy, called photons. A
molecule can absorb such a packet and then hop over its activation energy barrier, or
even get promoted to a higher energy state than its initial state.

The explanations for all the familiar facts in this subsection and the previous one
come from a branch of physics called quantum mechanics. Quantum mechanics also
explains the numerical values of the typical atomic sizes and bond energies in terms
of fundamental physical constants, such as electron mass and charge and the Planck
constant ~. This book will take all these values simply as experimentally determined
facts, sidestepping their quantum origins altogether.

How can there be a “typical” bond energy? Don’t some reactions (say, in a stick
of dynamite) liberate a lot more energy than others (burning a match)? No, the
dynamite just liberates its energy much faster; the energy change per chemical bond
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is roughly comparable to that in any other reaction.

Ex. One important chemical reaction is the one happening inside the batteries in your
channel changer. Estimate the chemical energy released in this reaction.
Solution: Printed on the battery, we find that its terminals differ in potential by
∆V = 1.5 volt. This statement means that the battery imparts an energy of roughly
e∆V = 1.6 · 10−19 coul× 1.5 volt = 2.4 · 10−19 J to each electron passing through it.
(The value of the fundamental charge e is listed in Appendix B.) If we suppose that
each electron passing across the battery enables the chemical reaction inside to take
one step, then the energy we just calculated is the change in chemical bond energies
(minus any thermal energy given off).

In contrast to chemical reactions, the radioactive decay of plutonium liberates
about a million times more energy per atom than the value just found. Historically,
that discovery was the first solid clue that something very different from chemistry
was going on in radioactive decay.

1.5.4 Low-density gases obey a universal law

The founders of chemistry arrived at the idea that atoms combine in definite propor-
tions by noticing that gases combine in simple, fixed ratios of volume. Eventually it
became clear that this observation reflects the fact that the number of gas molecules
in a box at atmospheric pressure is just proportional to its volume. More precisely,
one finds experimentally that the pressure p, volume V , number of molecules N , and
temperature T of any gas (at low enough density) are related in a simple way called
the ideal gas law:

pV = NkBT. (1.11)

Here the temperature T is understood to be measured relative to a special point
called absolute zero; other equations in this book, such as Equation 1.4, also use T
measured from this point. In contrast, Celsius temperature shifts the scale, assigning
0◦C to the freezing point of water, which is about 273◦C above absolute zero. Thus,
“room temperature” Tr, conventionally defined to mean 22◦C, corresponds to about
295 degrees above absolute zero. (Section 6.3.2 will define temperature more carefully.)
The quantity kB appearing in Equation 1.11 is called the Boltzmann constant; it turns
out to be about 1.38 · 10−23 joules per degree. Thus, the numerical value of kBT at
room temperature is kBTr = 4.1 · 10−21 J. A less cumbersome way of quoting this
value, and an easier way to memorize it, is to express it in units relevant to cellular
physics (piconewtons and nanometers):

kBTr ≈ 4.1 pN nm. (most important formula in this book) (1.12)

Take a moment to think about the reasonableness of Equation 1.11: If we pump
in more gas (N increases), the pressure goes up. Similarly, if we squeeze the box
(V decreases) or heat it up (T increases), p again increases. The detailed form of
Equation 1.11 may look unfamiliar, however. Chemistry texts generally write it as
pV = nRT , where n is the “amount of substance” (number of moles) and RT is about
2500 joules per mole at room temperature. Dividing 2500 J by Nmole indeed gives the
quantity kBTr in Equation 1.12.
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The remarkable thing about Equation 1.11 is that it holds universally: Any gas,
from hydrogen to vaporized steel, obeys it (at low enough density). All gases (and even
mixtures of gases) have the same numerical value of the constant kB and all agree
about the value of absolute zero. In fact, even the osmotic work formula, Equation 1.7
on page 13, involves this same quantity! Physical scientists sit up and take notice
when a law or a constant of Nature proves to be universal (Section 1.3). Accordingly,
our first order of business in Part II of this book will be to tease out the deep meaning
of Equation 1.11 and its constant kB.

T2 Section 1.5.4 ′ on page 29 makes more precise this book’s use of the word mole
and relates it to other books’ usage.

THE BIG PICTURE

Let’s return to this chapter’s Focus Question. Section 1.2 discussed the idea that the
flow of energy, together with its degradation from mechanical to thermal energy, could
create order. We saw this principle at work in a humble process (reverse osmosis,
Section 1.2.2), then claimed that life, too, exploits this loophole in the Second Law
of thermodynamics to create—or rather, capture—order. One goal in the following
chapters will be to work out a few of the details. For example, Chapter 5 will describe
how tiny organisms, even single bacteria, carry out purposeful motion in search of
food, enhancing their survival, despite the randomizing effect of of thermal motion in
their surroundings. We will need to expand and formalize our ideas in Chapters 6–8.
Chapter 8 will then consider the self-assembly of compound molecular structures.
Finally, Chapters 10–12 will discuss how two paragons of orderly behavior—namely,
the motion of molecular machines and nerve impulses—emerge from the disorderly
world of single-molecule dynamics.

Before attempting any of these tasks, however, we should pause to appreciate the
sheer immensity of the biological order puzzle. Accordingly, the next chapter will give
a tour of some of the extraordinarily ordered structures and processes present even
in single cells. Along the way, we will meet many of the devices and interactions to
be discussed in later chapters.

KEY FORMULAS

Each chapter of Parts II and III of this book ends with a summary of the key formulas
appearing in that chapter. The list below is slightly different; it focuses mainly on
formulas from first-year physics that will be used throughout the book. You may want
to review these, referring to an introductory physics text.

• First-year physics: Make sure you recall these formulas, and what all their
symbols mean. Most of these have not been used yet, but they will appear in the
coming chapters.
momentum = (mass)× (velocity) = mv.
kinetic energy = 1

2mv
2.

acceleration in uniform circular motion = (radius)× (angular frequency)
2

= rω2.
force = rate of transfer of momentum.
torque = (moment arm) × (force) = rf if force is applied perpendicular to
moment arm.
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work = transferred mechanical energy = (force)×(distance) = (torque)×(angle).
pressure = (force)/(area).
force and potential energy of a spring, f = −(spring constant)×(displacement) =
−kx; E = 1

2kx
2.

potential energy in Earth’s gravity =(mass)× g × (height).
potential energy of a charged object in an electrostatic field = (charge) ×
(potential) = qV .
electric field, E = −dV/dx.
force on a charged body, f = qE .
electrostatic potential created by a single point charge q in an infinite, uniform,
insulating medium, V (r) = q/(4πε|r|), where ε is the permittivity of the medium.
electrostatic self-energy of a charged sphere of radius a, q2/(8πεa).
Ohmic relation, V = (current) × (resistance) = IR; power loss from a resistor,
I2R.
electrostatic potential drop across a capacitor, V = (charge)/(capacitance) =
q/C.
electrostatic potential energy stored in a capacitor, E = 1

2q
2/C.

capacitance of a parallel-plate capacitor of area A and thickness d, C = Aε/d.
• Mechanical equivalent of heat: One joule of mechanical energy, when completely

converted to heat, will raise the temperature of 1 g of water by about 0.24 ◦C
(Equation 1.2).
• Ideal gas: The pressure, volume, number of molecules, and temperature of a con-

fined ideal gas are related by pV = NkBT (Equation 1.11). At room temperature
Tr, the quantity kBTr ≈ 4.1 pN nm (Equation 1.12).

FURTHER READING

Semipopular:
Heat: von Baeyer, 1999; Segrè, 2002.
The Second Law: Atkins, 1994.
Franklin’s oil experiment: Tanford, 1989.

Intermediate:
Dimensional analysis: Lemons, 2017.
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