Comment on "Predicting Narrow States in the Spectrum of a Nucleus beyond the Proton Drip Line"

A recent Letter [1] presented calculations of several resonances in ${}^{14}C + n$ and ${}^{14}O + p$, including three negative-parity states, for which they used the structure of a $0p_{1/2}$ nucleon coupled to 0^+_2 and 2^+_2 core states in ¹⁴C and ¹⁴O. These negative-parity states in ¹⁵C are nearly pure $(sd)^2$ neutrons coupled to the ground state (g.s.) of ¹³C, with the pair of neutrons having J = 0 or 2, as has been suggested [2] by the reaction ${}^{13}C(t, p)$. This configuration has a large overlap with that of Ref. [1], but there appears to be a problem with the widths in both ${}^{15}C$ and ${}^{15}F$ and with the energy shifts between ${}^{15}C$ and ${}^{15}F$.

In Ref. [1], the $1/2^{-}$ state at 3.10 MeV in ¹⁵C has a calculated width of 2 keV, but its experimental width is 42 keV [3]. This width can come only from neutron decay to ¹⁴C(g.s.). A width of 42 keV, combined with an $\ell = 1$ single-particle (SP) width of 1.3 MeV results in a spectroscopic factor S of 0.033, where we have used the relationship $\Gamma_{expt} = C^2 S \Gamma_{SP}$, with $C^2 = 1$ here. The SP width, and hence S, can be sensitive to the details of the SP calculation. However, here we are primarily interested in the ratio $\Gamma(^{15}\text{F})/\Gamma(^{15}\text{C})$ for mirror states, and that ratio is very insensitive to those details.

For the mirror state in ¹⁵F, we can compute its energy using the configuration ${}^{13}N(g.s.) \times (sd)_{0+}^2$, with the mixture of s^2 and d^2 from [4]. The result is $E_p = 4.63$ MeV, not very close to 5.49 MeV in Ref. [1]. With good isospin, the spectroscopic factor in 15 F is the same as in 15 C, so we can compute the expected width of this $1/2^{-}$ state in 15 F from the expression $\Gamma = S\Gamma_{SP}$, where now Γ_{SP} is the $\ell = 1$ SP width for proton decay. Our calculated value for this SP width for a state at our calculated energy is about 1.6 MeV, so that we expect $\Gamma(^{15}\text{F}, 1/2^{-}) \approx 55$ keV, significantly larger than the width of 5 keV in Ref. [1]. If the state is at the energy computed in Ref. [1], its width would be \geq 65 keV. These values are summarized in Table I.

The $5/2^{-}$ and $3/2^{-}$ energies in ¹⁵C are 4.22 and 4.66 MeV, respectively. The $3/2^{-}$ state has considerable width—perhaps (by inspection of the spectrum in [2]) as much as 100-150 keV, similar to the calculated width of 90 keV in Ref. [1]. With the configuration of $(sd)_{2+}^2$ coupled to the ¹³C (or ¹³N) g.s., we get energies in ¹⁵F of $E_p = 5.92$ and 6.30 MeV, for $5/2^-$ and $3/2^-$, respectively. Reference [1] has these two states at 6.88 and 7.25 MeV. Their width for the $3/2^{-}$ state in ¹⁵F is 40 keV. It is very difficult to understand how the width in ¹⁵F could be less than in ¹⁵C. From their *n* width in ¹⁵C, we estimate a $3/2^{-1}$ width in ¹⁵F of about 180 keV for a state at our energy and about 200 keV if at their energy. If the width in ${}^{15}C$ is 150 keV, these change to 300 and 325 keV. These are also listed in Table I.

We have not found an estimate of the experimental neutron width of the $5/2^{-}$ state in ¹⁵C, for which the

TABLE I. Energies (MeV) and widths (keV) of three lowest negative-parity states in ¹⁵C and ¹⁵F.

	¹⁵ C			¹⁵ F			
J^{π}	E_x	Width		Ref. [1]		Present	
		Ref. [1]	Other	E_p	Γ	E_p	Г
$1/2^{-}$	3.10 ^a	2	42 ^b	5.49	5	4.63	55°
$5/2^{-}$	4.22 ^d	2	$\leq 14^{a}$	6.88	10	5.92	6 ^e
$3/2^{-}$	4.66 ^d	90	$100 - 150^{f}$	7.25	40	6.30	180 ^g

^aRef. [5].

^bRef. [3].

^cIf E_p is 5.49 MeV, Γ is ≥ 65 keV. ^dRef. [2].

^eThis value is for $\Gamma(^{15}C) = 2$ keV and $E_p = 5.92$ MeV. If E_p is 6.88 MeV, we get $\Gamma = 10$ keV.

¹By inspection of the spectrum of Ref. [2]. ^gUsing $\Gamma(^{15}C) = 90$ keV. If E_p is 7.25 MeV, Γ is ≥ 200 keV. If $\Gamma(^{15}C)$ is 150 keV, Γ is 300–325 keV.

compilation [5] gives ≤ 14 keV. Reference [1] lists 2 keV for the calculated value of this quantity. If this value is correct, the width of the mirror state in ¹⁵F would be 6 keV if it is at our energy, 10 keV if at the energy of Ref. [1].

In addition, a second $1/2^{-}$ state in ¹⁵C at 5.87 MeV, with a width of about 100 keV, is within the range of energies considered by Ref. [1].

We agree with Ref. [1] that narrow resonances are to be expected in ${}^{14}C + n$ and ${}^{14}O + p$ in the energy range discussed, but it would appear that the energies and widths of the negative-parity resonances will be considerably different from the ones calculated in Ref. [1].

H.T. Fortune

Department of Physics and Astronomy University of Pennsylvania

Philadelphia, Pennsylvania, 19104, USA

R. Sherr

Department of Physics Princeton University Princeton, New Jersey 08544, USA

Received 20 September 2006; published 24 August 2007 DOI: 10.1103/PhysRevLett.99.089201

PACS numbers: 24.10.-i, 25.40.Dn, 25.40.Ny, 27.20.+n

- [1] L. Canton, G. Pisent, J.P. Svenne, K. Amos, and S. Karataglidis, Phys. Rev. Lett. 96, 072502 (2006).
- [2] S. Truong and H.T. Fortune, Phys. Rev. C 28, 977 (1983).
- [3] J. D. Goss, P. L. Jolivette, C. P. Browne, S. E. Darden, H. R. Weller, and R. A. Blue, Phys. Rev. C 12, 1730 (1975).
- [4] H. T. Fortune, M. E. Cobern, S. Mordechai, G. E. Moore, S. LaFrance, and R. Middleton, Phys. Rev. Lett. 40, 1236 (1978).
- [5] F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991).